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Abstract
We derive the first adaptively secure identity-based encryption (IBE) and attribute-based
encryption (ABE) for t-conjunctive normal form formula (t-CNF), and selectively secure ABE
for general circuits from lattices, with 1 − o(1) leakage rates, in the both relative leakage
model and bounded retrievalmodel (BRM). To achieve this,wefirst identify a newfine-grained
security notion forABE—partially adaptive/selective security, and instantiate this notion from
the learning with errors (LWE) assumption. Then, by using this notion, we design a new key
compressing mechanism for identity-based/attributed-based weak hash proof system (IB/AB-
wHPS) for various policy classes, achieving (1) succinct secret keys and (2) adaptive/selective
security matching the existing non-leakage resilient lattice-based designs. Using the existing
connection between weak hash proof system and leakage resilient encryption, the succinct-
key IB/AB-wHPS can yield the desired leakage resilient IBE/ABE schemes with the optimal
leakage rates in the relative leakage model. Finally, by further improving the prior analysis
of the compatible locally computable extractors, we can achieve the optimal leakage rates in
the BRM.
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1 Introduction

Leakage-resilient cryptography aims to create cryptosystems that maintain security even
when partial information of the secret key is leaked. This line of study is motivated by
both theoretical curiosities and perhaps more importantly, real-world scenarios, where some
secure cryptosystems might be completely broken if some partial key information is given to
the attackers. One famous example is the side-channel attack where the adversary can obtain
leakage frommeasuring somephysical behavior of an implementation [1, 28].Another source
of leakage comes from imperfect erasure where the attacker can obtain partial information
before the content is completely erased, e.g., the cold boot attacks [25]. On the other hand,
leakage resilience can be used to achieve security for other more complicated systems. For
example, in the design of non-malleable codes, the works [21, 27, 32] leveraged leakage
resilience to prove non-malleability. Therefore, leakage resilience has been an active research
subject for the community, e.g., [4, 6, 7, 11, 20, 26, 34], to name a few.

1.1 Main goal

As motivated above, we aim to determine how to derive encryption schemes with better
leakage rates, stronger security, and more expressive access control functionalities. More
specifically, our goal is to construct leakage resilient encryption schemes in both the relative
leakage model and the bounded retrieval model (BRM) with (1) optimal leakage rates, i.e.,
1 − o(1), (2) post-quantum security and (3) more fine-grained access control, i.e., IBE and
ABE for various classes of policy functions.

1.2 The leakagemodels

Various leakage models have been studied in the literature, capturing information leaked to
the adversary. This work focuses on a simple yet general model called the bounded-leakage
model (also known as the memory leakage model), allowing the attacker to learn arbitrary
information about the secret key sk, as long as the number of leaked bits is bounded by
some parameter �. This model has drawn a lot of attentions [4, 6, 26, 34] for its elegance
and simplicity, and can be used as a building block towards more sophisticated and realistic
models, such as the continual leakage model [12, 19] (see [26]). Thus, understanding this
model is not only of theoretical interest but also a necessary step towards realizing security
for broader physical attacks.

The bounded leakagemodel would require � < |sk|, as otherwise, the attacker can trivially
obtain the whole secret key, and thus no meaningful security can be attained. To further
characterize this requirement, there are two important models studied in the literature that
treat the relation between � and sk in a different way: (1) relative leakage model, and (2)
bounded retrieval model (BRM).

In the former, the secret key and public-key are chosen in the same way as a standard
cryptosystem (not necessary leakage resilient), and then the leakage parameter � would be
determined. The latter model generalizes the former by considering � as an independent
parameter whose growth (essentially) only goes with |sk|, but would barely affect the other
parameters, such as the public-key size, encryption running time, and ciphertext size. Basi-
cally, both models can scale up � to allow an arbitrarily long leakage. But their difference is
that the former would require to scale up the security parameter and thus all the other param-
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eters, while the latter would only scale up the secret-key size and keep the other parameters
essentially the same. Thus, constructions in the BRM is more desirable yet more challenging.

Leakage rate, i.e., the ratio �/|sk|, is an important measure of efficiency for cryptosystems
in these twomodels. Particularly, rate 1−o(1) is the best we can hope for—in order to tolerate
� bits of leakage, the system only needs to scale |sk| slightly larger than �, optimizing the
security/efficiency tradeoff.

1.3 Current state of the arts and challenges

We first notice that in the pre-quantum setting, leakage resilience can be achieved via the
beautiful framework—dual system encryption, even for IBE/ABE and with optimal leakage
rates [31]. However, current instantiations of the dual system encryption are all group-based
[15, 22, 30, 31, 43, 44], and thus cannot defend against quantum algorithms. It is an interesting
yet extremely challenging open question to instantiate dual system encryption from a post-
quantum candidate, such as LWE or LPN.

For post-quantum leakage resilient encryption schemes, we notice that there are some
limitations of the current techniques in achieving optimal leakage rate beyond the basic PKE.
In prior work, there have been constructions of LWE/LPN-based PKE schemes with leakage
rates 1−o(1), e.g., [14, 18], but their ideas do not generalize tomore advanced settings, such as
IBE and ABE. In a subsequent work, Hazay et al. [26] proposed a unified framework, showing
that (1) PKE implies leakage resilient PKE in the relative leakage model, and (2) IBE implies
leakage resilient PKE/IBE in the BRM. Moreover, the leakage resilient IBE achieves the same
level of adaptive/selective security as that of the underlying IBE. Their idea can be generalized
to construct leakage resilient ABE, but this approach inherently yields a very low leakage rate
(i.e., 1/O(κ)).

A recent work [36] somewhat mitigated this issue by improving the leakage rates, but at
the cost of weaker security guarantees for the post-quantum instantiations. Particularly, they
construct LWE-based leakage resilient IBE schemes in both the relative leakage model and
the BRM, achieving 1 − o(1) leakage rate in the former and 1 − O(1) (for any arbitrarily
small constant) in the latter. Their improvement relies on a novel key-compressionmechanism
that shortens the secret key length required in the framework of Hazay et al. [26]. Due to
some technical limitation in the mechanism, their IBE scheme can only achieve the selective
security. From these works [26, 36], we see a tradeoff between security and leakage rate,
i.e., either we have an adaptively secure IBE with a low leakage rate, or a selectively secure
IBE with a higher leakage rate.

1.4 Main question

In this work, we aim to further determine whether the tradeoff between (selective/adaptive)
security and leakage rates as above is inherent. Particularly, we ask the following:

Can we achieve the optimal leakage rate (1− o(1)) for IBE (and ABE ) in both relative
and bounded retrieval models with security matching existing non-leakage resilient
IBE (ABE ), under LWE?
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1.5 Our contributions

In this work, we give positive answers in many settings of the main question. Our central idea
is a refinement of the framework of [26, 36] by designing a new key compression mechanism
for ABE with succinct keys. Below we describe our contributions in more detail.

– As a warm-up, we propose a new leakage model for ABE that incorporates parameters �

and ω, where � is the number of bits allowed to leak per key and ω is the number of keys
the adversary can leak. We note that for PKE and IBE, there is only one possible secret
key corresponding to the public-key and the challenge id.1 In this case, it is without
loss of generality to just consider ω = 1. However, for the ABE setting, there could be
many possible secret keys corresponding to the challenge attribute, so specifying ω is
natural and necessary in the leakage model. We call a scheme (�, ω)-leakage resilient if
the scheme can tolerate leakage on ω keys, each within � bits.

– Next, we design improved instantiations of attribute-based weak hash proof system
(AB-wHPS), which generalizes (identity-based) weak hash proof system [6, 26] by asso-
ciating each ciphertext with an attribute and each secret key with a policy function.
Particularly, we construct lattice-based AB-wHPS from ABE for various function classes,
achieving two important new features: (1) succinct secret keys, i.e., the secret key length
is (| f |+o(| f |)), where f is the policy function, and (2) security matching currently best
known lattice-based ABE schemes (not necessarily leakage resilient). More specifically,
we construct adaptively secure AB-wHPS for the class of comparison functions (which is
the IB-wHPS) and the class t-CNF∗,2 and selectively secure AB-wHPS for general circuits.

– By using AB-wHPS for classF with succinct keys, we are able to construct (�, 1)-leakage
resilient ABE for F , with leakage rate �/|sk| = (1− o(1)) in the relative leakage model.
We view AB-wHPS with succinct key as an improved key compression mechanism in
comparison to prior works [26, 36] in the following two aspects: (1) AB-wHPS has better
expressibility of policy function (the prior work [36] can only express the comparison
function), and (2) we can derive adaptively secure AB-wHPS with succinct keys for
classes which we have adaptively secure (non-leakage resilient) ABE. Prior to our work,
for lattice-based schemes, we only had either a selectively secure IB-wHPS with succinct
secret keys [36] or an adaptively secure IB-wHPS with non-succinct keys [26].

– From our AB-wHPS, we can further derive (�, 1)-leakage resilient ABE in the BRM, via an
amplification and a connection with locally computable extractors as pointed out by [26].
However, prior compatible locally computable extractors [6] can only achieve 1− O(1)
leakage rate for an arbitrarily small constant. To achieve 1−o(1) leakage rate, we improve
the prior analysis [6] by refining their proof technique via the framework of Vadhan [41].

– Finally, we present a bootstrapping mechanism that generalizes our prior (�, 1)-leakage
resilient ABE schemes to (�, ω)-leakage resilient schemes for any bounded polynomial
ω, in both relative leakage model and bounded retrieval model. The resulting leakage rate
is still optimal (i.e., 1− o(1)) against block leakage functions, a slightly more restricted
class.

1 Here, we do not consider the case of randomizing the keys of PKE and IBE, as our main leakage-resilience
results focus on bounded leakage case, rather than continual leakage case.
2 This is the dual class for t-CNF used in [40]. Particularly, for t-CNF∗, an assignment x is viewed as the
policy function and the description of t-CNF is viewed as an attribute. In the general circuit model, the above
reverse treatments are reasonable in theory. We use the dual class as we are working on key-policy ABE while
the prior work [40] worked on ciphertext-policy ABE.
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1.6 Overview of our techniques

Our central insight is a new key-compression mechanism for the framework in [26]. To
illustrate our new idea, we first briefly review the prior framework [26] and point out the
barrier in their leakage rates. Then we will describe our new ideas for the improvement.

1.6.1 (Weak) Hash proof system

A hash proof system can be described as a key encapsulation mechanism that consists of
four algorithms (Setup, Encap, Encap∗,Decap): (1) Setup outputs a key pair (pk, sk), (2)
Encap(pk) outputs a pair (CT, k) where k is a key encapsulated in a “valid” ciphertext CT,
(3) Encap∗(pk) outputs an “invalid” ciphertext CT∗, and (4) Decap(sk,CT) outputs a key k′.
A (weak) hash proof system requires the following:

– CorrectnessFor a valid ciphertextCT,Decap always outputs the encapsulated key k′ = k,

i.e., Decap(sk,CT) = k, where (CT, k)
$←− Encap(pk).

– Ciphertext indistinguishability Valid ciphertexts and invalid ciphertexts are compu-
tationally indistinguishable, even given the secret key. This condition is essential for
achieving leakage resilience [6, 34].

– Universality The decapsulation of an invalid ciphertext has information entropy, even
for unbounded adversaries. Here, the randomness of invalid decapsulation comes from
randomness in generating secret keys. A weak HPS (wHPS) only requires this property

to hold for a random invalid ciphertext, i.e. CT∗ $←− Encap∗(pk), while a full-fledged
HPS requires this to hold for any invalid ciphertext.

As noted in prior work [6], a wHPS already suffices to achieve leakage resilience, though it
is not sufficient for CCA2 security, for which the design of HPS was originally intended [16].
Roughly speaking, the leakage resilient scheme derived from wHPS[6, 26, 34] can tolerate
� ≈ |k|−κ bits of leakage, i.e., the length of encapsulated key minus security parameter, and
thus the leakage rate of the derived encryption scheme would be �/|wHPS.sk| ≈ |k|−κ

|wHPS.sk| .
Moreover, the idea can be generalized to IB-wHPS and AB-wHPS where an additional id

or attribute x is associated with the ciphertext, and id or a policy function f is associated
with the secret key. In the same way [26], IB-wHPS and AB-wHPS suffice to derive leakage
resilient IBE and ABE.

1.6.2 wHPS from any PKE and generalizations [26]

While there were several instantiations ofwHPS from specific assumptions [6, 34], Hazay et
al. [26] showed somewhat surprisingly, any PKE implies wHPS. Their construction [26] can
be broken into the following two steps: (1) construct a basic wHPS that only outputs 1 bit
(or log λ-bits), (2) amplify the output of the wHPS via parallel repetition. As pointed out in
the work [26], parallel repetition might not amplify HPS in general, yet it does for wHPS as
required in the application of leakage resilience.

The basic wHPS is simple: given any PKE = (Enc,Dec), wHPS.pk consists of two public
keys pk0,pk1 from PKE, and wHPS.sk is (b, skb) for a random bit b where skb corresponds
to pkb. The Encap algorithm outputs a valid ciphertext CT = (Encpk0(k), Encpk1(k)) to
encapsulate a uniformly random key k ∈ {0, 1}. The Encap∗ algorithm outputs an invalid
ciphertext CT∗ = (Encpk0(k), Encpk1(1−k)) for a uniformly random bit k. With n times par-
allel repetition, i.e., wHPS‖.pk := {pki,0,pki,1}i∈[n] and wHPS‖.sk := {(i, bi ), ski,bi }i∈[n],
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we can get wHPS‖ with the encapsulated key k = (ki )i∈[n] for an arbitrarily large n � κ ,
and thus a leakage resilient encryption that tolerates � = (n − κ) ≈ (n − o(|wHPS‖.sk|)).3

Naturally, this elegant approach can be generalized to construct IB-wHPS and AB-wHPS
for class F from any IBE and ABE for F , and the (adaptive/selective) security of the IB-wHPS
and AB-wHPS matches the underlying IBE and ABE. Therefore, this framework provides a
powerful way to design leakage resilient IBE and ABE from any IBE and ABE that can tolerate
an arbitrarily large leakage �.

1.6.3 Technical challenges from prior work

This technique of [26] achieves almost everything one would desire, except for the leakage
rate. The main reason comes from the secret key size of wHPS‖, which is also scaled up by

the parallel repetition, resulting in a low leakage rate as �
|wHPS‖.sk| = n−o(|wHPS‖.sk|)

|wHPS‖.sk| ≈
n−o(n|PKE.sk|)

n|PKE.sk| ≈ 1
|PKE.sk| . To further improve the rate, it suffices to decrease |wHPS.sk|

as observed by [36]. In particular, if we can shrink the secret key size of the wHPS to

roughly |wHPS‖.sk| ≈ n + |PKE.sk|, then the leakage rate would be n−o(|wHPS‖.sk|)
|wHPS‖.sk| ≈

n−o(n+|PKE.sk|)
n+|PKE.sk| ≈ 1 − o(1), for sufficiently large n. Therefore, now the goal becomes to

design a compact form of wHPS‖.sk that can encode n possible keys in a succinct way.
The work [36] achieved this goal and the more general IB-wHPS by proposing a novel

key compression mechanism from a new primitive called multi-IBE. Then they instantiated
the required multi-IBE from inner-product encryption (IPE) [2, 15, 44] with succinct keys.
However, for lattice-based IPE schemes [2], only the selective security can be achieved under
currently known techniques. Thus, the work [36] can only derive selectively secure leakage
resilient IBE from lattices.

At this point, we summarize two limitations from the prior key compression mechanism
[36]: (1) the approach is tied to IBE/IB-wHPS, and it is unclear whether we can further general-
ize the technique for further expressive policies, i.e., ABE; (2) the lattice-based instantiations
are only selectively secure under currently known techniques. Below we show our new ideas
to break these limitations.

1.6.4 Our new key compression mechanism

Wefirst present a newkey compressionmechanism that can be generalized tomore expressive
policy functions, i.e., ABE. To illustrate our core insight, we first describe how to use the
technique of key-policy (KP)-ABE to encode wHPS‖.sk succinctly. The idea can be naturally
generalized to compress IB-wHPS and AB-wHPS. To facilitate further discussions, we first
recall the concept of KP-ABE.

In a KP-ABE scheme, a secret key is associated with a policy function f : {0, 1}∗ → {0, 1},
and a ciphertext is associated with an attribute x. The secret key can decrypt and recover the
encrypted message if and only if f (x) = 1.

Now we explain our key compression mechanism. Let us describe the format of a valid

ciphertext ofwHPS‖ as CT :=
{
Encpki,0(ki ), Encpki,1(ki )

}
i∈[n], and a secret key is of the form

3 Implicitly, we assume that the input min-entropy of an extractor is at least the security parameter κ . And
such an extractor will be applied on the encapsulated key k = (ki )i∈[n] ∈ {0, 1}n . Thus, the length of tolerated
key-leakage should be � = n − κ . Moreover, it is implicitly assumed that o(|wHPS‖.sk|) ≈ κ , as wHPS‖.sk
consists of a number of basic secret key PKE.sk and κ = o(|PKE.sk|).
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{(i, bi ), ski,bi }i∈[n]. From another angle looking at the ciphertext, we can view the indices
(i, b)’s as attributes in an ABE, i.e. CT := {ABE.Enc(mpk, (i, 0), ki ),ABE.Enc(mpk, (i, 1),
ki )}i∈[n]. Thenwe can use a singleABE secret key to encode the set of keys {(i, bi ), ski,bi }i∈[n]
as follows. Let b = (b1, b2, . . . , bn) ∈ {0, 1}n be a binary vector, and define the following
policy function gb(i, z) = 1 iff bi = z for each i ∈ [n]. In this way, only this set of
attributes {(i, bi )}i∈[n] satisfies the policy function gb, so the ABE decryption algorithm with
skgb can successfully recover the encrypted messages from {ABE.Enc(mpk, (i, bi ), ki )}i∈[n].
The other part of the ciphertext, i.e., {ABE.Enc(mpk, (i, 1 − bi ), ki )}i∈[n] is hidden by the
security of the ABE. This approach can be naturally extended to the setting of IB-wHPS
and AB-wHPS by adding an additional string x ∈ {0, 1}∗ (either an ID or general
attribute) to the existing attributes as above, resulting in ciphertexts of the form CT :=
{ABE.Enc(mpk, (x, i, 0), ki ),ABE.Enc(mpk, (x, i, 1), ki )}i∈[n]. It is not hard to verify that
these designs satisfy the requirements of (IB/AB)-wHPS.

Here we can conclude: (1) skgb is functionally equivalent to the set of secret keys
{(i, bi ), ski,bi }i∈[n], and (2) as long as skgb has a succinct representation, i.e., |skgb | only
depends on the depth but not the size of the function gb when gb is given, we can achieve
the optimal leakage rate. We can instantiate the desired ABE by the lattice-based schemes
[10, 23], and consequently derive a PKE/IBE/ABE with the optimal rate in the relative leakage
model.

1.6.5 Adaptive security for various function classes

A careful reader may already observe that the underlying ABE schemes of [10, 23] do not
achieve adaptive security, and neither do the IB-wHPS and AB-wHPS as constructed above.
Moreover, it seems that lattice-based ABE that supports the computation of gb(·) with suc-
cinct keys (e.g., general circuits [10, 23]) can only achieve selective security. Thus, existing
techniques plus the above approach do not suffice for our goal on adaptive security.

To overcome the limitation, we further observe that our constructions of IB-wHPS and
AB-wHPS above actually do not require the full adaptive security of the whole attribute
(x, (i, b)) from the underlying ABE. We only need the selective security over the second
part (i, b), as this part is generated by an honest key generation algorithm, instead of being
challenged by the adversary.

With this insight, we define a more fine-grained security notion that considers partially
adaptive/selective security over partitioned attributes (x, (i, b)). Intuitively, if the underlying
ABE is adaptively (or selectively) secure over x and selective secure over (i, b), then we can
prove the AB-wHPS is adaptively (resp. selectively) secure. Furthermore we instantiate the
required partially adaptive-selective ABE for various function classes. As a result, we obtain
an adaptively secure IB-wHPS and AB-wHPS for t-CNF∗, and selectively secure AB-wHPS
for general circuits. This matches the function classes for which we know how to construct
adaptively secure ABE without leakage.

1.6.6 Application

Our AB-wHPS with succinct keys immediately yields a (�, 1)-leakage resilient ABE with
leakage rate 1 − o(1) in the relative leakage model, followed from the framework [26].
More specifically, by using our adaptively secure AB-wHPS for the comparison function (i.e.,
IB-wHPS) and the t-CNF∗ functions, we get leakage resilient and adaptively secure ABE for
these classes with optimal leakage rates. Additionally, we can have selectively secure leakage
resilient ABE for general circuits, with leakage rate 1− o(1).
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1.6.7 Extension I

As pointed out by [26], we can further derive (�, 1)-leakage resilient ABE in the BRM from
AB-wHPS, via an amplification and a connection with locally computable extractors [41].
However, the analysis from prior compatible locally computable extractors only yields 1 −
O(1) rate for the leakage resilient encryption scheme. It was left as an interesting open
question by [36] how to improve the analysis of the extractor. We solve this open question
by improving the analysis of the sampler [6] required by the general construction of Vadhan
[41]. With our improved analysis, we are able to achieve 1− o(1) leakage rate in the BRM.

1.6.8 Extension II

Finally, we show how to derive (�, ω)-leakage resilient ABE with the optimal leakage rate in
the block leakage setting for both relative model and BRM, for any bounded polynomial ω.
Inspired by the work [24], we derive a new bootstrapping mechanism by connecting secret
sharing with our AB-wHPS. We leave it as an interesting open question to achieve leakage
resilient ABE even for an unbounded polynomial ω.

1.7 Other related work

AB-wHPS has been studied to construct leakage resilientABE schemes in [45, 46]. Particularly,
in [45], the authors focus on AB-wHPS supporting linear secret sharing schemes as the policy
function class, from the pre-quantum decisional bilinear Diffie-Hellman assumption. The
work in [46] constructed an AB-wHPS from a post-quantum, i.e, LWE, assumption. However,
the constructions only achieve selective security for linear secret sharing schemes. And both
of these related works only consider security in the relative leakage model. Compared with
the prior works, our design/analysis approach is more modular, supporting broader function
classes and/or stronger (adaptive) security.

1.8 Comparisons with the prior version in PKC 2022

In this section, we highlight the new contributions of the current paper, beyond the the prior
version [29] published in PKC 2022. Generally, the current one is the full version, in which
we add many more closely related background notions, definitions, and lemmas. All these
are significantly helpful for unfamiliar but interested readers to understand our paper and this
research field.

Besides, we supply the concrete partial-adaptively secure LWE-based ABE schemes and
the detailed proofs for all theorems in the whole paper. They are quite important, as these
details indicate that our new framework for optimal leakage-resilient encryption schemes can
be concretely instantiated, instead of just a theoretically feasible result. Moreover, we believe
that all these new added concrete ABE constructions are of independent interests, since its
underlying key compression mechanismmight inspire the researches in other settings related
to the compactness of secret key.

Furthermore, from the view of techniques, we prove several interesting and necessary
lemmas used for the parameter setting in pure mathematical way. And we believe these
should be the first time that all of them are formally published by a journal or conference
paper. And these lemmas can be used in other research fields.

Below, for clarity, we list all above mentioned new contents as follows.
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– In the beginning of Sect. 2, we first add the used notations of this paper. Then, we present
the necessary lattice background and technical tools for security proof in Sects. 2.2 and
2.5, respectively.

– In Sect. 3.2, we present the detailed proof of Theorem 3.12, which formally prove the
security of Construction 3.11.

– In Sect. 4, we present the concrete instantiations of AB-wHPS from lattices. Particularly,
we instantiate two partial-adaptively secure ABE schemes in Sects. 4.1.1 and 4.2, together
with their parameter settings and formal security proofs.

– In Sect. 5,we present the detailed proof of Theorem5.2,which formally prove the security
of Construction 5.1.

– In Sect. 6.1, we present the detailed proof of Theorem 6.3, which formally prove the
security of Construction 6.2.

– In Sect. 6.2, we present the detailed proof of Claims 6.12 and 6.13.
– In Sect. 6.3, we present the detailed proof of Theorem 6.16, which formally prove the

security of Construction 6.15.
– In Sect. 7, we first introduce a useful lemma, Lemma 7.1, which is the key principle for

the parameter setting of our construction. Notice that this lemma has been previously
given as Lemma C.1 in [24]. However, it seems that their proof has certain flaws. In this
section, we prove it again in a much more formal way. Then, we present the detailed
proof of Theorem 7.3, which formally prove the security of Construction 7.2.

Besides, in order to help the readers to understand our construction of AB-wHPS more
clearly, we recall the previously known basic wHPS in Online Appendix A.1.

1.9 Readingmap

Wefirst present the necessarymathematical notations, cryptographical definitions and related
lemmas in Sect. 2. In Sect. 3, we introduce the notion of attribute-based weak hash proof
system (AB-wHPS) and its general construction from ABEwith a fine-grained security notion.
In Sect. 4, we instantiate the AB-wHPS with three different function classes, through using
or constructing three different ABE schemes. In Sect. 5, we show how to achieve the leakage
resilient ABE with optimal leakage rate in the relative leakage model. Then, in Sect. 6, we
enhance the schemes in Sect. 5 to achieve optimal leakage rate in the bounded retrievalmodel.
Finally, in Sect. 7, we extend all above mentioned schemes to achieve leakage resilience in
the multiple-key setting where the attacker can obtain leakage on ω possible decrypting keys
for any bounded polynomial ω.

2 Preliminaries

In this section, we first introduce several standard mathematical notations for our construc-
tions, then present necessary definitions and related lemmas.

2.1 Notations

In this paper,Z denotes the set of integers.We use κ to denote the security parameter, which is
the implicit input for all algorithms presented in this paper. A function f (κ) > 0 is negligible
and denoted by negl(κ) if for any c > 0 and sufficiently large κ , f (κ) < 1/κc. A probability
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is said to be overwhelming if it is 1− negl(κ). A column vector is denoted by a bold lower
case letter (e.g., x). A matrix is denoted by a bold upright upper case letter (e.g., A). For a
vector x, its Euclidean norm (also known as the �2 norm) is defined to be ‖x‖ = (

∑
i x

2
i )

1/2.
For a matrixA, its i th column vector is denoted by ai and its transposition is denoted byA
.
The Euclidean norm of a matrix is the norm of its longest column: ‖A‖ = maxi ‖ai‖.

For a set D, we denote by u
$←− D the operation of sampling a uniformly random ele-

ment u from D, and represent the bit length of u as |u|. For an integer � ∈ N, we use U�

to denote the uniform distribution over {0, 1}�. Given a randomized algorithm or function

f (·), we use y
$←− f (x) to denote y as the output of f on input x . For a distribution X ,

we denote by x
$←− X the operation of sampling a random x according to the distribution

X . Given two different distributions X and Y over a countable domain D, we can define
their statistical distance to be Δ(X , Y ) = 1

2

∑
d∈D |X(d) − Y (d)|, and say that X and Y

are Δ(X , Y )-close. Moreover, if Δ(X , Y ) is negligible in κ , we say that the two distribu-

tions are statistically close, which is always denoted by X
s≈ Y . For any ppt algorithm

A, if |Pr[A(1κ , X) = 1] − Pr[A(1κ , Y ) = 1]| is negligible in κ , then we say that the two

distributions are computationally indistinguishable, denoted by X
c≈ Y .

2.2 Lattices background

A lattice is a discrete additive subgroup of Rm . Let B = (b1, . . . , bm) ⊂ R
m consist of

m linearly independent vectors. The m-dimensional lattice Λ generated by the basis B is
Λ = L(B) = {B · c =∑

i∈[m] ci ·bi : c = (c1, . . . , cm) ∈ Z
m}.

The minimum distance λ1(Λ) of a lattice Λ is the length in the Euclidean �2-norm of the
shortest nonzero vector: λ1(Λ) = min

0 �=x∈Λ
‖x‖. For an approximation factor γ = γ (m) > 1,

we define the problem GapSVPγ as follows: given a basis B of an m-dimensional lattice
Λ = L(B) and a positive number d , distinguish between the case where λ1(Λ) ≤ d and the
case where λ1(Λ) ≥ γ d . We let B̃ denote the Gram-Schmidt orthogonalization of B, and
‖B̃‖ is the length of the longest vector in it.

In this paper, we will focus on a particular family of integer lattices. Let A ∈ Z
n×m
q for

three positive integersm, n, q , wherem and q are functions of n.4 We consider the following
two kinds of full-rankm-dimensional integer lattices defined byΛ⊥

q (A) = {e ∈ Z
m : A · e =

0 mod q} and its shift Λu
q (A) = {e ∈ Z

m : A · e = u mod q}.
Lemma 2.1 [5] For any integers n ≥ 1, q ≥ 2, and sufficiently large m = �6n log q�,
there is a probabilistic polynomial-time algorithm TrapGen(q, n) that outputs a pair (A ∈
Z
n×m
q ,TA ∈ Z

m×m) such that the distribution of A is statistically close to the uniform

distribution over Zn×m
q and TA is a short basis for Λ⊥

q (A) satisfying ‖T̃A‖ ≤ O(
√
n log q)

and ‖TA‖ ≤ O(n log q) with overwhelming probability.

2.2.1 Gaussians on lattices

Let σ be any positive real number. The Gaussian distribution Dσ,c with parameter σ and c
is defined by probability distribution function ρσ,c(x) = exp(−π‖x − c‖2/σ 2). For any
discrete and countable set S ⊆ R

m , define ρσ,c(S) = ∑
x∈S ρσ,c(x). The discrete Gaussian

4 For certain applications, q should be prime.
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distribution DS,σ,c over S with parameters σ and c is defined by the probability distribution
function ρσ,c(x) = ρσ,c(x)/ρσ,c(S) for all x ∈ S.

Lemma 2.2 [3, Lemma 8] Let A and TA be a pair of matrices output by TrapGen(q, n), and
r ≥ ‖T̃A‖ · ω(

√
logm). Then for c ∈ R

m and u ∈ Z
n
q , we have:

1. Pr[x ← DΛu
q (A),r : ‖x‖ > r

√
m] ≤ negl(n).

2. There is a probabilistic polynomial-time algorithm SampleGaussian(A,TA, r , c) that
outputs a sample from a distribution statistically close to DΛ,r ,c.

3. There is a probabilistic polynomial-time algorithm SamplePre(A,TA, u, r) that outputs
a sample from a distribution statistically close to DΛu

q (A),r .

The next two efficient algorithms SampleLeft and SampleRight is used to generate identity
secret key and prove anonymous indistinguishability for our new constructions.

Lemma 2.3 [3] Given integers n ≥ 1, q ≥ 2, there exists some m = m(n, q) = O(n log q),
there are sampling algorithms as follows:

– There is a ppt algorithm SampleLeft(A,B,TA, u, s), that takes as input: (1) a rank-n
matrixA ∈ Z

n×m
q , and any matrixB ∈ Z

n×m1
q , (2) a “short” basisTA for latticeΛ⊥

q (A),

a vector u ∈ Z
n
q , (3) a Gaussian parameter s > ‖T̃A‖ ·ω(

√
log(m + m1)); then outputs

a vector r ∈ Z
m+m1 distributed statistically close to DΛu

q (F),s where F := [A|B] ∈
Z
n×(m+m1)
q is an extension of A with B.

– There is a ppt algorithm SampleRight(A,B,R,TB, u, s), that takes as input: (1) a
matrix A ∈ Z

n×m
q , and a rank-n matrix B ∈ Z

n×m
q , a matrix R ∈ Z

m×m
q , where

sR := ‖R‖ = supx:‖x‖=1 ‖Rx‖, (2) a “short” basis TB for lattice Λ⊥
q (B), a vector

u ∈ Z
n
q , (3) a Gaussian parameter s > ‖T̃B‖ · sR · ω(

√
logm); then outputs a vector

r ∈ Z
2m distributed statistically close to DΛu

q (F),s where F := [A|(AR + B)] ∈ Z
n×2m
q .

2.2.2 Gadget matrix

We recall the “gadget matrix” G defined in [33]. The “gadget matrix” G = In ⊗ g
 ∈
Z
n×n�log q�
q where g
 = (1, 2, 4, . . . , 2�log q�−1).

Lemma 2.4 [33, Theorem 1] Let q be a prime, and n,m be integers with m = n�log q�. There
is a full-rank matrix G ∈ Z

n×m
q such that the lattice Λ⊥

q (G) has a publicly known trapdoor

matrix TG ∈ Z
n×m with ‖T̃G‖ ≤ √

5, where T̃G is the Gram-Schmidt orthogonalization of
TG.

Lemma 2.5 [10, Lemma 2.1] There is a deterministic algorithm, denoted by G−1(·) :
Z
n×m
q → Z

m×m, that takes any matrix A ∈ Z
n×m
q as input, and outputs the preimage

G−1(A) of A such that G ·G−1(A) = A (mod q) and ‖G−1(A)‖ ≤ m.

Lemma 2.6 [3, Lemma 13] Suppose that m > (n + 1) log q + ω(log n) and that q > 2
is a prime. let R be an m × m matrix chosen uniformly in {0, 1}m×m. Let A and B be
chosen uniformly in Z

n×m
q . Then for all vectors w ∈ Z

m
q , the distribution (A,AR,R
w) is

statistically close to the distribution (A,B,R
w).
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2.2.3 Lattice homomorphic evaluation

We need to use the following homomorphic evaluation algorithms in [10].

Lemma 2.7 [10, 23] Given integers n > 1, q > 2 and m = O(n log q), there exist three
deterministic algorithms Evalpk ,Evalct and EvalSim as follows:

– Evalpk( f ,C1, . . . ,C�) takes as input a d-depth circuit f : {0, 1}� → {0, 1} andmatrices
C1, . . . ,C� ∈ Z

n×m
q , and outputs a matrix C f ∈ Z

n×m
q .

– Evalct( f ,C1, . . . ,C�, c1, . . . , c�, x) takes as input a d-depth circuit f : {0, 1}� →
{0, 1}, matrices Ci ∈ Z

n×m
q , vectors ci ∈ Z

m
q and x ∈ {0, 1}�, and outputs a vector

c f ∈ Z
m
q , such that if there exists some s ∈ Z

n
q such that for every i ∈ [�],

ci = s
(Ci − xiG) + ei

with ‖ei‖∞ ≤ B, then

c f = s
(C f − f (x)G) + e f ,

where ‖e f ‖∞ ≤ (m + 1)d · B.
– EvalSim( f , {(xi ,Ri )}�i=1,A) takes as input a d-depth circuit f : {0, 1}� → {0, 1}, x =

(x1, · · · , x�) ∈ Z
�
q , A ∈ Z

n×m
q and R1, . . . ,R� ∈ {−1, 1}m×m, and outputs a matrix R f

satisfying

AR f − f (x)G = B f where B f = Evalpk( f ,AR1 − x1G, . . . ,AR� − x�G),

and ‖R f ‖∞ ≤ 3 · 4dm + 1

Furthermore, the running time of Evalpk , Evalct and EvalSim is | f | · poly(n, log q).

We rely on the following lemma, which says that adding large noise “smudges” out any
small values.

Lemma 2.8 (Smudging Lemma) Let B1 = B1(κ), and B2 = B2(κ) be positive integers and
let e1 ∈ [−B1, B1] be a fixed integer. Let e2 ← [−B2, B2] be chosen uniformly at random.
Then the distribution of e2 is statistically indistinguishable from that of e2 + e1 as long as
B1/B2 = negl(κ).

2.2.4 Learning with errors

The Learning with errors problem, or LWE, is the problem of determining a secret vector
over Fq given a polynomial number of “noisy" inner products. The decision variant is to
distinguish such samples from random. More formally, we define the problem as follows:

Definition 2.9 [38] Let n ≥ 1 and q ≥ 2 be integers, and let χ be a probability distribution
on Zq . For s ∈ Z

n
q , let As,χ be the probability distribution on Zn

q ×Zq obtained by choosing
a vector a ∈ Z

n
q uniformly at random, choosing e ∈ Zq according to χ and outputting

(a, 〈a, s〉 + e).
The decision LWEq,n,χ problem is: for uniformly random s ∈ Z

n
q , given a poly(n) number

of samples that are either (all) from As,χ or (all) uniformly random in Z
n
q × Zq , output 0 if

the former holds and 1 if the latter holds.
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We say the decision-LWEq,n,χ problem is infeasible if for all probabilistic polyno- mial-
time algorithms A, the probability that A solves the decision-LWE problem (over s and A’s
random coins) is negligibly close to 1/2 as a function of n. The works of [13, 37, 38] show
that the LWE assumption is as hard as (quantum or classical) solving GapSVP and SIVP
under various parameter regimes.

2.3 Attribute-based encryption (ABE)

Definition 2.10 (ABE [39]) An attribute-based encryption (ABE) scheme for a function class
Fκ = { f : Xκ → {0, 1}} consists of four algorithms ABE.{Setup, KeyGen, Enc,Dec} as
follows.

– SetupABE.Setup(1κ ) takes a security parameter κ as input, and generates a pair ofmaster
public key and master secret key (mpk,msk), where mpk contains the attribute space
Xκ , message space M and ciphertext space CT .

– Key generation ABE.KeyGen( f ,msk) takes as input a function (or circuit) f ∈ Fκ and
themaster secret keymsk, and generates a secret key ( f , sk f ).Without loss of generality,
we think the secret key contains two parts, the function description f , and an extra sk f .
The secret key is succinct if |sk f | = o(| f |).5 When the context is clear, we often omit
the description of f .

– Encryption ABE.Enc(mpk, x, μ) takes as input the master public keympk, an attribute
x ∈ Xκ and a message μ ∈ M, and outputs a ciphertext ct ∈ CT .

– Decryption ABE.Dec(sk f , ct) takes as input a secret key sk f and a ciphertext c, and
outputs μ ∈ M if f (x) = 1 and ⊥ if f (x) = 0, where x is the corresponding attribute
used to generate ct.

Correctness We require that for all f ∈ F , x ∈ Xκ , μ ∈ M, for correctly

generated (mpk,msk)
$←− ABE.Setup(1κ ), sk f

$←− ABE.KeyGen(msk, f ) and ct
$←−

ABE.Enc(mpk, x, μ), it holds that

– if f (x) = 1, Pr
[
ABE.Dec(sk f , ct) = μ

] ≥ 1− negl(κ).

– if f (x) = 0, Pr
[
ABE.Dec(sk f , ct) = ⊥] ≥ 1− negl(κ).

2.3.1 Leakage resilience in the relative leakagemodel

Next, we give the formal definition of leakage-resilient key-policy ABE.

Definition 2.11 (Leakage-resilient ABE) A leakage-resilient ABE with attribute space Xκ for
a class of functions Fκ = { f : Xκ → {0, 1}} in the relative leakage model consists of four
algorithmsABE.{Setup, KeyGen, Enc,Dec},which are parameterized by a security parameter
κ and leakage parameters �, ω. In particular, (�, ω)-leakage-resilient ABE can be defined by
the following experiment.

We define the advantage of A in the above experiment6 to be

AdvLRABE,A(κ, �, ω) = ∣∣Pr[b = b′] − 1/2
∣∣ .

5 For a general definition itself on ABE, there are not strict requirements on whether the size | f | is fixed for
all f ∈ Fκ , and whether the size |sk f | is independent of | f |. But for the instantiation of lattice-based ABE,
we always set an upper bound for the circuit size | f |, and let |sk f | depend on the depth of f , rather than
| f |. Besides, with the consideration of leakage resilience, we assume that sk f for arbitrary f ∈ Fκ can be
encoded as bit-strings with fixed length.
6 Notice that in the above experiment ExpLRABE,A(κ, �, ω), we allow the adversary to interleave key queries in
Test Stage 1 and leakage queries in ω-Leakage queries Stage, in an arbitrary way.
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Experiment ExpLRABE,A(κ, �, ω)

Attribute Challenge: In the selective setting, A chooses a challenge attribute
x∗ ∈ Xκ before the Setup stage and sends it to C; In the adaptive setting,
A chooses an challenge x∗ ∈ Xκ in the challenge stage, and sends it to C.

Test Stage 1:A adaptively queries the challenger C with function f ∈ Fκ . For
each query in the selective setting, C responds with ( f , sk f ) if f (x∗) �= 1 and
⊥ otherwise. ω-Leakage Queries Stage:A adaptively queries the challenger C
with ( fi , hi ) for i ∈ [ω], where fi is a policy function such that fi (x∗) = 1,

and hi : {0, 1}|sk fi
| → {0, 1}� is a leakage function. The adversary gets hi (sk fi ) from C.

Challenge Stage:A chooses two messages μ0, μ1 ∈ M and sends them to C. Then
C chooses b

$←− {0, 1} and computes ctb
$←−ABE.Enc(mpk, x∗, μb). Finally, C returns

ctb toA.
Test Stage 2:A adaptively queries the challenger C with function f ∈ Fκ . Then
in the selective setting, C responds with ( f , skid, f ) if f (x∗) �= 1 and ⊥ otherwise.

Output: The adversaryA outputs a bit b′ ∈ {0, 1}.

The scheme is (�, ω)-leakage resilient if for any ppt adversaryA, we haveAdvLRABE,A(κ, �, ω)

≤ negl(κ), and the leakage rate of this ABE is �
|sk| .

Furthermore, the scheme is abbreviated as �-leakage resilient if ω = 1 in the above
experiment.

Remark 2.12 We use the parameter ω to denote the number of different challenge keys on
which leakage queries can be made. For PKE and IBE, we have ω = 1 as for these two
settings, there is a unique challenge key corresponding to the challenge attribute. For themore
general ABE, there might be many different keys sk fi such that for the challenge attribute
x∗, fi (x∗) = 1. Thus, this parameter ω would be an important specification for the leakage
resilient ABE.

Remark 2.13 In our security model, the adversary can obtain leakage on ω secret keys adap-
tively one after another. The secret keys would then form a block-source under the leakage.7

We note that it is possible to generalize the model where the leakage function takes as inputs
all the ω secret keys. In this work, we focus mainly on the block-source setting, as it already
captures many useful scenarios.

2.3.2 Leakage resilience in the BRM

Below, we generalize to the setting of ABE the definition of leakage-resilience in the BRM by
Alwen et al. [6].

Definition 2.14 (ABE in the BRM) An ABE for attribute space Xκ and policy function class
F := {Xκ → {0, 1}} is (�, ω)-leakage resilient in the BRM if its master public-key
size, ciphertext size, encryption time and decryption time (and the number of secret-key
bits used by decryption) are independent of the leakage-bound �. Besides, in the leak-
age resilient experiment, the adversary is allowed to conduct key leakage attacks on ω

7 For the case that sk := S = (S1, . . . , Sm ) is an m × e block source as in [42], we define leakage functions
fi : {0, 1}∗ → {0, 1}� independently for each block Si with all i ∈ [m]. We say ( f1, . . . , fm ) are block
leakage functions, if the min-entropy of Si is still large enough even given leakage ( f1(S1), . . . , fi−1(Si−1))

for any i ∈ [m]. Clearly, when m = 1, this is the trivial case in Definition 2.11. Here, we call m�
|sk| the block

leakage rate of the corresponding scheme.
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secret keys corresponding to the challenge attribute. More formally, there exist polynomi-

als mpksize, ctsize, encT,decT, such that, for any polynomial � and any (mpk,msk)
$←−

ABE.Setup(1κ , 1�(κ)), x ∈ Xκ , μ ∈ M, ct
$←− ABE.Enc(mpk, x, μ), the scheme satisfies:

1. Master public-key size is |mpk| ≤ O(mpksize(κ)), ciphertext size is |ct| ≤
O(ctsize(κ, |μ|)).

2. Run-time of ABE.Enc(μ,pk) is bounded by O(encT(κ, |μ|)).
3. Run-time of ABE.Dec(ct, sk f ) and the number of bits of sk f used in this decryption

bounded by O(decT(κ, |μ|)), where sk f
$←− ABE.KeyGen(msk, f ) with f ∈ F such

that f (x) = 1. Here we assume that the secret key sk f is stored in a random access
memory (RAM), and the decryption algorithm ABE.Dec(ct, ·) only needs to read partial
bits of sk f to decrypt.

The leakage rate of this scheme is defined as �
|sk f | . Furthermore, the scheme is abbreviated

as �-leakage resilient if the parameter ω = 1 in the experiment.

2.3.3 Policy function classes

Thiswork considers three function classes: (1) ID comparison functions, (2) t-CNF∗ formulas,
and (3) general circuits. (1) and (3) are clear from the literature. We elaborate on (2). First
we present the definition of the function class t-CNF.

Definition 2.15 (t-CNF [40]) A t-CNF policy f : {0, 1}� → {0, 1} is a set of classes f =
{(Ti , fi )}i , where for all i, Ti ⊆ [�], |Ti | = t and fi : {0, 1}t → {0, 1}. For all x ∈ {0, 1}�
the value of f (x) is computed as f (x) = ∧

i fi (xTi ), where xT is the length-t bit-string
consisting of the bits of x in the indices T . A function class F is t-CNF if it consists only of
t-CNF policies for some fixed � ∈ N and a constant t ≤ �. If F is a t-CNF class, we say that
t is the CNF locality of F .

In this paper, we use the “dual” form of t-CNF, called t-CNF∗. The use of the dual version
is because the prior work [40] worked on the ciphertext-policy ABE for t-CNF, and this work
presents the result in the key-policy setting.

Definition 2.16 (t-CNF∗) For any x ∈ {0, 1}� (the domain of t-CNF), let Ux (·) denote the
function for which x is hardwired intoUx (·), andUx (·) takes f ∈ t-CNF as input and outputs
Ux ( f ) such that Ux ( f ) = f (x). Ux (·) is uniquely determined by x . We denote the function
class {Ux (·)} as t-CNF∗.

2.4 Entropy and extractors

Definition 2.17 (Min-entropy) The min-entropy of a random variable X , denoted as H∞(X)

is defined as H∞(x) = − log

(
max
x0∈X

Pr[x = x0]
)
.

Definition 2.18 (Average-conditionalmin-entropy [17])The average-conditionalmin-entropy
of a randomvariable X conditionedon a correlatedvariable Z , denoted asH∞(X |Z) is defined
as

H∞(X |Z)=− log
(
Ez←Z [max

x
Pr[X = x |Z = z]]

)
=− log

(
Ez←Z [2H∞[X |Z=z]]

)
.
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This notion of conditional min-entropy measures the best guess for X by an adversary that
may observe an average-case correlated variable Z .

Lemma 2.19 [17] Let X , Y , Z be arbitrarily correlated random variables where the sup-
port of Y has at most 2� elements. Then H∞(X |(Y , Z)) ≥ H∞(X |Z) − �. In particular,
H∞(X |Y ) ≥ H∞(X) − �.

We also give the definition of randomness extractors [35], which is somewhat stronger than
the average-case strong extractor [17].

Definition 2.20 (Randomness extractor) An efficient function Ext : X × S → Y is a (v, ε)-
extractor if for all (correlated) random variable X , Z such that the support of X is X and
H∞(X |Z) ≥ v, we haveΔ((Z , S, Ext(X; S)), (Z , S, Y )) ≤ ε, where S (also called the seed)
and Y are distributed uniformly and independently over their domains S,Y respectively.

Theorem 2.21 [17] Let H = {hs : X → Y}s∈S be a universal family of hash functions

meaning that for all x = x ′ ∈ X we have Prs←S [hs(x) = hs(x ′)] ≤ 1
|Y| . Then Ext(x, s)

de f=
hs(x), is a (v, ε)-extractor for any parameter v ≥ log |Y| + 2 log(1/ε).

2.5 Pairwise independent hash function

In order to prove the security of our concrete constructions, we need to use the partitioning
strategy. As a preparation, we give a lemma which shows that pairwise independent hash
function family which is denoted asHpind has the isolation property as long as a conditional
probability defined as below approximates 1/|Q|.
Lemma 2.22 ([8, Lemma 6.1]) Let Q ⊆ {0, 1}n, A, B be integers such that B ≤ A, |Q| ≤ δB
for some δ ∈ (0, 1), and let Hpind : {0, 1}n → Y be an almost pairwise independent hash
function family which has the following properties:

– ∀a ∈ {0, 1}n, PrH←Hpind [H(a) = 0] = 1/A;
– ∀a �= b ∈ {0, 1}n, PrH←Hpind [H(a) = 0|H(b) = 0] ≤ 1/B.

Then for any element a /∈ Q, we have

PrH∈Hpind [H(a) = 0
∧

H(a′) �= 0,∀a′ ∈ Q] ∈
[
1− δ

A
,
1

A

]
.

2.5.1 An explicit almost pairwise independent hash construction

Let q ∈ N be a prime, t ∈ N, and let f (x) be a monic irreducible polynomial in Zq of degree
(t − 1). Then we define R = Zq [X ]/〈 f (x)〉, and note that R is isomorphic to GF(qt ) as
q is a prime and f (x) is an irreducible polynomial of degree (t − 1). We will use R as the
representation of GF(qt ). We then define two mappings φ : R → Z

t
q and Rot : R → Z

t×t
q

by

φ : θ = a1 + a2x + · · · + at x
t−1 �→ (a1, . . . , at )


,

Rot : θ = a1 + a2x + · · · + at x
t−1 �→ [

φ(θ)φ(θx) . . . φ(θxt−1)
]
.

We note that Rot(θ) · φ(ϑ) = φ(θϑ), Rot(θ) · Rot(ϑ) = Rot(θϑ), and Rot(θ) + Rot(ϑ) =
Rot(θ+ϑ). Thismeans thatRot is a ring-homomorphism from R toZt×t

q . If θ �= θ
′ ∈ GF(qt ),

then Rot(θ) − Rot(θ
′
) = Rot(θ − θ

′
) �= 0.
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For any h ∈ GF(qt ), we define G(h) as G(h) := Rot(h) ∈ Z
t×t
q , then we define

an pairwise independent hash function family Hpind : Z
�
q → Z

n×n where t |n as:

∀H ∈ Hpind, H is indexed by (h1, . . . , h�) ∈ GF(qt )�, ∀x = (x1, . . . , x�) ∈ Z
�
q ,

H(x) = In +∑�
i=1 xi (G(hi ) ⊗ In/t ). We have the following lemma.

Lemma 2.23 [3, 8] The function familyHpind defined above is an pairwise independent hash
function. Moreover, we have

– ∀H ← Hpind and ∀a ∈ {0, 1}�, Pr[H(a) = 0] = (1/q)t .
– ∀H ← Hpind and ∀a �= b ∈ {0, 1}�, Pr[H(b) = 0|H(a) = 0] ≤ (1/q)t .

3 Attribute-based weak hash proof systems

In this section,we first present a generalization of theweak hash proof system called attribute-
based weak hash proof system (AB-wHPS). This notion associates attributes and policy
functions to the system following the spirit of attribute-based encryption. Next, we show
how to construct AB-wHPS from ABE that achieves the property of succinct keys, which is the
key to leakage resilience with the optimal rate.With a new fine-grained approach, we are able
to achieve AB-wHPS with selective security for general circuits, adaptive security of identity
comparison functions (i.e., identity-basedwHPS), and adaptive security for t-CNF∗ functions,
from lattices. This would imply lattice-based leakage resilient, adaptively secure PKE, IBE,
ABE for t-CNF∗, and selectively secure ABE for general circuits, all with the optimal rate,
matching the best known non-leakage resilient selectively/adaptively secure constructions.

3.1 Formal definition of attribute-basedwHPS

We first present the formal definition of an AB-wHPS.

Definition 3.1 (AB-wHPS) An attribute-based weak hash proof system (AB-wHPS) for an
attribute space Xκ = {0, 1}∗ and a class of functions Fκ = { f : Xκ → {0, 1}} consists of
five algorithms AB-wHPS.{Setup, KeyGen, Encap, Encap∗,Decap}:
– Setup AB-wHPS.Setup(1κ ) takes a security parameter κ as input, and generates a pair

of master public key and master secret key (mpk,msk). The attribute space Xκ and the
encapsulated key space K are determined bympk.

– Key generation AB-wHPS.KeyGen ( f ,msk) takes as input a function f ∈ Fκ and the
master secret key msk, and generates a secret key ( f , sk f ). Without loss of generality,
we think the secret key contains two parts, the function description f , and an extra sk f .
The secret key is succinct if |sk f | = o(| f |). When the context is clear, we often omit the
description of f .

– Valid encapsulation AB-wHPS.Encap(mpk, x) takes as input the master public key
mpk and an attribute x ∈ Xκ , and outputs a valid ciphertext CT and its corresponding
encapsulated key k ∈ K.

– Invalid encapsulation AB-wHPS.Encap∗(mpk, x) takes as input the master public key
mpk and x ∈ Xκ , and outputs an invalid ciphertext CT∗.

– DecapsulationAB-wHPS.Decap(sk f ,CT) takes as input a secret key sk f and a ciphertext
CT, and deterministically outputs k ∈ K if f (x) = 1 and ⊥ if f (x) = 0, where x is the
corresponding attribute used to generate CT.
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Table 1 Valid/invalid ciphertext indistinguishability experiment of AB-wHPS

Valid/Invalid Ciphertext Indistinguishability Experiment

Attribute Challenge: In the selective setting, A chooses an challenge attribute

x∗ ∈ Xκ before the Setup stage and sends it to C; In the adaptive setting, A
chooses a challenge x∗ ∈ Xκ in any arbitrary stage before the challenge stage,

and sends it to C.
Setup: The challenger C gets a pair of (mpk,msk) by running AB-wHPS.Setup(1κ ),

and sendsmpk to A.

Test Stage 1:A adaptively queries the challenger C with f ∈ Fκ , and C responds

with ( f , sk f ).

Challenge Stage: C selects b
$←− {0, 1}.

If b = 0, C computes (CT, k)
$←−AB-wHPS.Encap(mpk, x∗).

If b = 1, C computes CT
$←−AB-wHPS.Encap∗(mpk, x∗).

Then C returns CT toA.

Test Stage 2:A adaptively queries the challenger C with f ∈ F . Then C responds

with ( f , sk f ).

Output: A outputs a bit b′ ∈ {0, 1}.A wins the experiment, if b = b′ and at most

one ofA’s key queries f satisfies f (x∗) = 1.

Furthermore, an AB-wHPS needs to satisfy three properties: correctness, ciphertext indis-
tinguishability, and universality.

3.1.1 Correctness

For (mpk,msk)
$←− AB-wHPS.Setup(κ), any x ∈ Xκ and any f ∈ Fκ such that f (x) = 1,

we have

Pr
[
k = k′

∣∣∣sk f
$←− AB-wHPS.KeyGen( f ,msk),

(CT, k)
$←− AB-wHPS.Encap(mpk, x), k′ = AB-wHPS.Decap(sk f , c)

]
= 1.

3.1.2 Ciphertext indistinguishability

For any challenge attribute x∗, valid/in-valid ciphertexts output byAB-wHPS.Encap(mpk, x∗)
and AB-wHPS.Encap∗(mpk, x∗) are indistinguishable, even given one secret “1-key” sk f

such that f (x∗) = 1 and perhaps many “0-keys” sk f ′ such that f ′(x∗) = 0. More formally,
this indistinguishability is always described by the experiment between an adversary A and
a challenger C in Table 1.

We define the advantage of A in the above game to be AdvAB-wHPSΠ,A,Fκ
(κ) = |Pr[A wins]

− 1/2|. The indistinguishability means that AdvAB-wHPSΠ,A,Fκ
(κ) ≤ negl(κ).

Remark 3.2 In this definition, we require ciphertext indistinguishability to hold even given a
single sk f such that f (x∗) = 1. This suffices to achieve leakage resilient PKE, IBE, and (�, 1)-
leakage resilient ABE directly, and (�, ω)-leakage resilient ABE for any bounded-polynomial
ω via a bootstrapping procedure (ref. Sect. 7), where � ≈ (1− o(1))|sk f |.
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3.1.3 Universality

We need one additional information theoretic property, requiring that for any adversary with
public parameters, the decapsulation of an invalid ciphertext has information entropy. We
define this property as follow.

Definition 3.3 (Universal AB-wHPS) We say that an AB-wHPS is (l, w̄)-universal, if for any

attribute x ∈ Xκ , (mpk,msk)
$←− AB-wHPS.Setup(1κ ), and CT∗ $←− AB-wHPS.Encap∗

(mpk, x), it holds

H∞(AB-wHPS.Decap(CT∗, sk f )|mpk,msk,CT∗, x) ≥ w̄,

where sk f = AB-wHPS.KeyGen( f ,msk) with f (x) = 1, and l is the bit-length of the
decapsulated value from AB-wHPS.Decap(CT∗, sk).

3.2 Fine-grained security notions and general construction ofAB-wHPS fromABE

In this section, we present how to construct AB-wHPS from ABE. To achieve adaptive security
for several subclasses of policy functions,we present amore fine-grained approach as follows.
We first define a notion called partially selective/adaptive security over partitioned attributes.
Next we show for a specific class G, if an ABE is (X, sel)-secure for class F ∧‖ G with
X ∈ {sel, ada},8 then we can construct an X-secure AB-wHPS for F . Moreover, suppose
the underlying ABE has succinct keys, so does the AB-wHPS. In the next section, we show
instantiations of (ada, sel)-secure ABE for various function classes. Below we elaborate on
the notations and the new security definition.

Definition 3.4 Let F1 = { f1 : X1 → {0, 1}} and F2 = { f2 : X2 → {0, 1}} be two function
classes. We define the operator ∧‖ over two function classes as follow: F := F1 ∧‖ F2

is a function class that consists of function maps X1 × X2 → {0, 1}, where each function
f f1, f2 ∈ F is indexed by two functions f1 ∈ F1 and f2 ∈ F2 such that on input x =
(x1, x2) ∈ X1 × X2, f f1, f2(x) = f1(x1) ∧ f2(x2).

Using this composed function class in Definition 3.4, we can naturally consider any
combination of selective/adaptive security for ABE as follows.

Definition 3.5 (Partial selective/adaptive security) For anyABEwith the attribute spaceX1×
X2 for the policy function classF := F1∧‖F2 defined as in Definition 3.4, we define partial
selective/adaptive security as follows:

– ada-sel security: For any challenge attribute x∗ = (x∗
1, x

∗
2) ∈ X1 × X2, x∗

1 is chosen
adaptively but x∗

2 is chosen selectively in the corresponding indistinguishability experi-
ment.

– sel-ada security: For any challenge attribute x∗ = (x∗
1, x

∗
2) ∈ X1 × X2, x∗

1 is chosen
selectively and x∗

2 is chosen adaptively in the corresponding indistinguishability experi-
ment.

This notion also captures the standard selective (or adaptive) security as sel-sel (or ada-ada)
security, where both parts of the challenge attribute are chosen selectively (or adaptively).

8 The formal definition of F ∧‖ G is presented in the following Definition 3.4.
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Remark 3.6 In this work, we need a slightly weaker version of the partial selective/adaptive
security fromABE—the adversary is only allowed to query one key ( f , g) such that f (x∗1 ) = 1
and g(x∗2 ) = 0. The other keys are of the form ( f ′, g′) such that f ′(x∗1 ) = 0. Therefore,
throughout this work we will use this slightly weaker version by default.

Remark 3.7 In the same way, we can define the partial selective/adaptive ciphertext indistin-
guishability for AB-wHPS.

Remark 3.8 This definition can be defined recursively. For example, the first partF1 can also
consists of two parts, i.e., F1 = F1,1 ∧‖ F1,2. In this case, we can consider (X-Y)-Z security
for any combination of X, Y, Z ∈ {sel, ada}.

To construct our desired AB-wHPS for F , we need an ABE for F ∧‖ G for this specific G
as we describe below.

Definition 3.9 Let m = m(κ) and n = n(κ) be two integer parameters, and we define a
function class G = {g : [n] × [m] → {0, 1}} as follows. Each function gy ∈ G is indexed by
a vector y = (y1, . . . , yn)
 ∈ [m]n , and gy(x1, x2) = 1 if and only if x2 = yx1 .

Remark 3.10 The class G can be captured by boolean circuits with input length log n+ logm,

and depth within O(log(n + m)), i.e.,
∨

i∈[n](i
?= x1) ∧ (yi

?= x2).

Given this particular class G (with parameters m, n) defined in Definition 3.9 and a class
F , we show how to use ABE for F ∧‖ G to construct AB-wHPS for F . For different classes
F’s, the AB-wHPS can be used to further derive leakage resilient PKE, IBE, and ABE.

Construction 3.11 (AB-wHPS from ABE) Let ΠABE = ABE.{Setup, KeyGen, Enc,Dec} be
an ABE scheme with attribute-space X̄κ = Xκ × X ′

κ = {0, 1}∗ × {[n] × [m]}, message-
space M = Zm and ciphertext space CT for the policy-function class F ∧‖ G for the class
G as in Definition 3.9 with parameters m, n. Then, an AB-wHPS ΠAB-wHPS with attribute
space Xκ = {0, 1}∗ and the encapsulated-key-space K = Z

n
m for the policy-function class

F = { f : {0, 1}∗ → {0, 1}} can be constructed as follows:

– AB-wHPS.Setup(1κ ): Given the security parameter κ as input, the algorithm runs

ABE.Setup to generate (mpkABE,mskABE)
$←− ABE.Setup(1κ ), and outputs mpk :=

mpkABE andmsk := mskABE.
– AB-wHPS.KeyGen(msk, f ): Given a master secret-key msk := mskABE and a function

f ∈ F as input, the algorithm first chooses a random vector y
$←− [m]n, and sets

f̂ := f̂ f ,gy ∈ F ∧‖ G. Then the algorithm runs ABE.KeyGen to generate skABE
f̂

$←−
ABE.KeyGen(mskABE, f̂ ), and outputs sk f := ( f̂ , skABE

f̂
) as the secret key for f . Note

that the description of f̂ can be expressed as ( f , y)
– AB-wHPS.Encap(mpk, x): Given a master public-keympk and an attribute x ∈ {0, 1}∗

as input, the algorithm first samples a random vector k = (k1, . . . , kn)
 ∈ Z
n
m, and then

runs ABE.Enc mn times with attributes xi, j = (x, i, j) ∈ {0, 1}∗ × [n] × [m] to set

CT := {cti, j $←− ABE.Enc(mpk, xi, j , ki )}(i, j)∈[n]×[m] ∈ CT n×m, i.e.,

CT :=
⎡
⎢⎣
ABE.Enc(x1,1, k1) . . . ABE.Enc(x1, j , k1) . . . ABE.Enc(x1,m, k1)

...
. . .

...
. . .

...

ABE.Enc(xn,1, kn) . . . ABE.Enc(xn, j , kn) . . . ABE.Enc(xn,m, kn)

⎤
⎥⎦ .

Finally, the algorithm outputs (CT, k).
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– AB-wHPS.Encap∗(mpk, x): Given a master public-keympk and an attribute x ∈ {0, 1}∗
as input, the algorithm first samples a random vector k = (k1, . . . , kn)
 ∈ Z

n
m, and then

runs ABE.Enc mn times with attributes xi, j = (x, i, j) to set

CT∗ := {ct∗i, j $←− ABE.Enc(mpk, xi, j , ki + j)}(i, j)∈[n]×[m] ∈ CT n×m, i.e.,

CT∗ :=
⎡
⎢⎣
ABE.Enc(x1,1, k1+1) . . . ABE.Enc(x1, j , k1+ j) . . . ABE.Enc(x1,m, k1+m)

...
. . .

...
. . .

...

ABE.Enc(xn,1, kn+1) . . . ABE.Enc(xn, j , kn+ j) . . . ABE.Enc(xn,m, kn+m)

⎤
⎥⎦,

where the addition ki + j is performed over Zm. The algorithm outputs CT∗.
– AB-wHPS.Decap(sk f ,CT): Given a secret key sk f := ( y, skABE

f̂
) and CT :=

{cti, j }(i, j)∈[n]×[m] as input, the algorithm runs ABE.Dec to compute ki = ABE.Dec
(skABE

f̂
, cti,yi ) for all i ∈ [n], and then outputs k = (k1, . . . , kn)
, if f̂ (x, i, yi ) =

f (x) ∧ gy(i, yi ) = 1 for all i ∈ [n], and ⊥ otherwise.

Intuitively, our attribute design (the class G) allows the secret key to open one ciphertext
per row while keeping the others secret. For the valid encapsulation, all ciphertexts in a
row encrypts the same element, while for the invalid encapsulation, they encrypt different
elements. As the secret key can only open one per row, an adversary cannot distinguish a
valid from an invalid encapsulation, even given the secret key.

Our AB-wHPS secret key would be of length | f̂ f ,gy |+ s( f̂ f ,gy ) = | y|+ | f |+ s( f̂ f ,gy ) =
n logm + | f | + s( f̂ f ,gy ), where s(·) is the key-size function (of the extra part, excluding
the function description) of the underlying ABE. If the underlying ABE has succinct keys,
i.e., s( f ) = o(| f |), then our AB-wHPS secret would have size n logm + | f | + s( f̂ f ,gy ) =
n logm+| f |+o(n logm+| f |). By setting sufficiently large n,m, we can achieve ABEwith
the optimal leakage rate, ref. Sect. 5.

Next we present the following theorem and its proof.

Theorem 3.12 (AB-wHPS from ABE) SupposeΠABE is a secureABE scheme with attribute
space X̄κ = Xκ × X ′

κ = {0, 1}∗ × {[n] × [m]} for the function class F ∧‖ G, where G is the
class as in Definition 3.9 with parameters m, n, then the construction ΠAB-wHPS described
above is an (n logm, n logm)-universal AB-wHPS with the attribute space Xκ and the
encapsulated-key-space K = Z

n
m, for the function class F . Furthermore,

– if the ABE is X-sel secure for X ∈ {sel, ada}, then the AB-wHPS is X secure;
– if the key-size (of the extra part, excluding the function description) of theABE scheme for

policy function f is s( f ), then the key size of theAB-wHPS for f is n logm+| f |+s( f̂ f ,gy ),
where s(·) is the key-size function (of the extra part, excluding the function description)
of the underlying ABE.

Proof The second part of the theorem follows directly by our construction from ABE to
AB-wHPS, especially by the relationship between policy functions of ABE and that of
AB-wHPS.

To prove the first part of the theorem, we need to prove the following three properties:
correctness, smoothness and ciphertext indistinguishability.

CorrectnessCorrectness of our AB-wHPS follows directly from the correctness of the under-
lying ABE.
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Universality Given the master public key mpk and an invalid ciphertext CT∗ =
AB-wHPS.Encap∗(mpk, x) = {ABE.Enc(xi, j , ki + j)}i∈[n], j∈[m], we have

AB-wHPS.Decap(sk f ,CT∗) = k + y

where sk f := ( y, sk f̂ f ,g y
) for a randomly and independently chosen vector y = (y1, . . . , yn),

and k is the vector used to generate the invalid ciphertext. Clearly, the decryption function
can be written as the permutation hk( y) = k + y.

As this is an injective function of y (for any fixed k), the min-entropy of y remains the
same after applying this function, i.e.,

H∞(AB-wHPS.Decap(CT∗, sk f )|mpk,CT∗, x) = H∞((k + y)|mpk, x,CT∗)
= H∞( y|mpk, x,CT∗).

Moreover, we note that y is independent ofmpk, x,CT∗, so H∞( y|mpk, x,CT∗) = n logm.
As a result, the construction ΠAB-wHPS is (l, w)-universal, where l = w = n logm.

Ciphertext indistinguishability We prove that the ciphertexts output by AB-wHPS.Encap
(mpk, x∗) and AB-wHPS.Encap∗(mpk, x∗) are indistinguishable, given one secret “1-key”
sk f such that f (x∗) = 1 and perhaps many “0-keys” sk f ′ such that f ′(x∗) = 0, where x∗
is the challenge attribute. We summarize the result in the lemma below. ��
Lemma 3.13 (Ciphertext indistinguishability) The construction of AB-wHPS satisfies selec-
tive (or adaptive) valid/invalid cipheretext indistinguishability as Definition 3.1, following
from the sel-ada/sel-sel (or ada-ada/ada-sel) security of the underlying ABE.

Proof To facilitate the proof presentation, we introduce an intermediate notion denoted as
multi-ABE (with parameter t), where the adversary can send two challenge messages vectors
k0 = (k0,1, . . . , k0,t ) ∈ Z

n
m and k1 = (k1,1, . . . , k1,t ) ∈ Z

n
m , along with t different attributes

x1, . . . , xt as the challenge attributes. The adversary then receives a vector of challenge
ciphertexts {ci ← ABE.Enc(xi , kb,i )}i∈[t] for a random bit b, and needs to decide a bit b′.
Here the adversary is allowed to query sk f as long as f (xi ) = 0 for all i ∈ [t], i.e., the key
cannot open any component in the challenge ciphertexts. It is not hard to prove a reduction
from the standard ABE to this multi-ABE via a hybrid argument, which only incurs a security
loss t . ��
Claim 3.14 For any t ∈ N, if there exists an adversary A that breaks the (partially) selec-
tive/adaptive security of multi-ABE with parameter t and advantage ε, then there exists a
reduction B that breaks the same (partially) selective/adaptive security of ABE with advan-
tage ε/t .

Proof This follows from a standard hybrid argument. ��
Next, we prove the valid/invalid ciphertext indistinguishability of AB-wHPS via a hybrid

argument. We define the following hybrids, where we start from a valid ciphertext, and then
switch row-by-row towards an invalid ciphertext.We prove that each two neighboring hybrids
are indistinguishable via a reduction from multi-ABE (with parameter m − 1). The proof of
this lemma follows directly from the indistinguishability of these hybrids.
Hybrid H0: This hybrid is defined as the ciphertext indistinguishability experiment in Defi-
nition 3.1, where A is given a valid ciphertext

CT0 :=
⎡
⎢⎣
ABE.Enc(x1,1, k1) . . . ABE.Enc(x1,m, k1)

...
. . .

...

ABE.Enc(xn,1, kn) . . . ABE.Enc(xn,m, kn)

⎤
⎥⎦ ∈ CT n×m .
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In this hybrid, it is clear that the ciphertext is generated as Encap.
Hybrid Hz: For any 1 ≤ z ≤ n − 1, Hz is almost same to Hz−1, except that A is given the
following ciphertext

CTz :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ABE.Enc(x1,1, k1+1) . . . ABE.Enc(x1,m, k1+m)
...

. . .
...

ABE.Enc(xz,1, kz+1) . . . ABE.Enc(xz,m, kz+m)

ABE.Enc(xz+1,1, kz+1) . . . ABE.Enc(xz+1,m, kz+1)
...

. . .
...

ABE.Enc(xn,1, kn) . . . ABE.Enc(xn,m, kn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ CT n×m .

In this hybrid, the first z rows are generated as Encap∗ (that encrypts different keys), and the
rest is as Encap (that encrypts the same key).

Hybrid Hn: This hybrid is almost same to Hn−1, except thatA is given the following cipher-
text

CTn :=
⎡
⎢⎣
ABE.Enc(x1,1, k1+1) . . . ABE.Enc(x1,m, k1+m)

...
. . .

...

ABE.Enc(xn,1, kn+1) . . . ABE.Enc(xn,m, kn+m)

⎤
⎥⎦ ∈ CT n×m,

In this hybrid, it is clear that the ciphertext is generated as Encap∗.
Then, it suffices to prove the computational indistinguishability between Hz and Hz+1 for

z ∈ [n − 1]
Claim 3.15 Suppose the basic multi-ABE (with parameter m − 1) is secure, then the above
hybrids Hz and Hz+1 are computational indistinguishability for any z ∈ [n − 1].
Proof We prove this claim through establishing a reduction from the (partially) selec-
tive/adaptive security of multi-ABE to the corresponding indistinguishability between Hz and
Hz+1. This means if there is an efficient adversaryD who can distinguish Hz from Hz+1 with
advantage ε, then we can construct an efficient reduction B to break the corresponding multi-
ABE with advantage ε. Here, we just describe the reduction in the case of ada-sel security
(multi-ABE), and note that a similar argument can be carried to the sel-ada/ada-ada/sel-sel
security in a straight-forward way.

In particular, let A be the adaptive adversary for the AB-wHPS with attribute space Xκ

for the policy function class F , and D be a distinguisher that distinguishes Hz from Hz+1

with a non-negligible advantage for some z ∈ [n− 1]. Now we describe the reduction B that
breaks the ada-sel security of multi-ABE with attribute space Xκ ×{[n]× [m]} for the policy
function class F ∧‖ G, when interacting with the challenger C.

Setup B simulates either the hybrid Hz or Hz+1 by running A in the following way.

1. With respect to the ada-sel security of multi-ABE,B selectively chooses (m−1) attributes
(z + 1, 2), . . . , (z + 1,m) ∈ [n] × [m], and then sends them to C before getting mpk,
where (z + 1, 2), . . . , (z + 1,m) are essentially the second part of challenge attributes
for multi-ABE;

2. B gets a master public-key mpk from the challenger C for the multi-ABE.
3. Then B forwards this mpk to the adversary A for the AB-wHPS.
4. At the same time, B initializes a table T = ∅.
Test Stage 1 B answers the secret key queries of A in the following way.
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1. A sends a function f ∈ F to B for a secret key query.
2. B first checks whether there exists an item containing this f in the table T .

– If yes, B returns the corresponding secret key sk f in T to A.
– Otherwise, B goes to the next step 3.

3. B chooses a random vector y
$←− [m]n such that gy(z+ 1, j) = 0 for all 2 ≤ j ≤ m, and

sets f̂ := f̂ f ,gy ∈ F ∧‖ G.
4. Then B sends this f̂ to C as a secret key query for multi-ABE, and then gets skABE

f̂
as its

response.
5. Finally, B sends sk f := ( y, skABE

f̂
) as the secret key for f to A, and stores the tuple

( f , y, skABE
f̂

)) as an item in the table T .

Challenge stage
B simulates the challenge ciphertext to A as follows.

1. With respect to the adaptive security of AB-wHPS, A adaptively selects an attribute
x∗ ∈ Xκ and sends it to B.

2. B chooses a random values k
$←− Zm , and uses k to set two sequences of messages

k0 = (k0,2, . . . , k0,m)
 = (k, . . . , k)
 ∈ Z
m−1
m

and

k1 = (k1,2, . . . , k1,m)


= (k + 1, . . . , k + m − 1)
 ∈ Z
m−1
m .

3. Then B sends (k0, k1) and the attribute x∗ as the challenge query of multi-ABE, where
x∗ composes of the first part of challenge attributes for multi-ABE.

4. As a result, B obtains (m − 1) ciphertexts
{
ct∗z+1, j

$←− ABE.Enc(x∗
z+1, j , kb, j )

}

2≤ j≤m

for a random b ∈ {0, 1} chosen by the multi-ABE challenger C, where
{x∗

z+1, j = (x∗, z + 1, j)}2≤ j≤m .

5. Furthermore, B chooses (n − 1) random values v1, . . . , vi , vi+2, . . . , vn
$←− Zm .

6. B sets x∗
i, j = (x∗, i, j), and then calculates

{
ct∗i, j

$←− ABE.Enc(x∗
i, j , vi + j)

}

i∈[z], j∈[m]
,

{
ct∗i, j

$←− ABE.Enc(x∗
i, j , vi )

}

i∈[n]\[z+1], j∈[m]
and

ct∗z+1,w
$←− ABE.Enc(x∗

z+1,1, k).

7. B collects all ciphetexts ct∗i, j for i ∈ [n], j ∈ [m] together to construct a n × m matrix
CT∗ according to the indices of these ciphertexts.

8. Finally, B sends this matrix CT∗ as the challenge encapsulation ciphertext to A.

123



Leakage-resilient IBE/ABEwith optimal leakage rates from lattices

Test Stage 2 B answers the secret key queries of A as in Test Stage 1, but with a restriction
that there is at most one function f ∈ F such that f (x∗) = 1 can been queried in Test Stage
1 and 2.

Output B simulates the output of the experiment according to the response of A, and thus
obtain a view H, which is either Hz or Hz+1 as we will prove below. Finally, B outputsD(H).

Next, we analyze the advantage of B. We observe that B perfectly simulates one of the
two hybrids: if the challenge ciphertext from C encrypts k0, then the AB-wHPS challenge
ciphertext CT∗ is generated according to Hz , and otherwise Hz+1. Thus, the advantage of B is
the same as that ofD in distinguishingHz fromHz+1, i.e., a non-negligible advantage ε. Thus,
B breaks the multi-ABE with advantage ε, which reaches a contradiction. This completes the
proof of this claim. ��
Lemma 3.13 follows directly from Claim 3.15 by a standard hybrid argument. ��
In summary, we complete the proof of the first part of theorem. ��

4 Instantiations of AB-wHPS from lattices

In this section, we present concrete instantiations of AB-wHPS from lattices. In order to do
this, according to the generic construction in Sect. 3.2, we just need to present the underlying
ABE with the corresponding properties. Notice that as ABE in [10] supports general circuits
as policy function class, it implicitly implies sel-sel secure ABE for F ∧‖ G, where F and G
are general boolean circuits.

Besides, we instantiate two partial-adaptively secure ABE schemes as needed in Sect. 3.2
from LWE with a polynomial modulus. The first construction is with respect to the function
family I ∧‖ G, where I is the equation test function family for which a function id ∈ I
satisfies fid(x) = 1 if and only if id = (b1, . . . , b�) = x and 0 otherwise, and G is a general
circuit family. The second construction is with respect to the function family (t-CNF∗)∧‖ G.

Particularly, our first construction combines the adaptively secure IBE scheme proposed
by Agrawal et al. [3] and the selectively secure ABE proposed by Boneh et al. [10] in a natural
way, and achieves the ada-sel security. The second construction combines the recent ABE
scheme byTsabary [10, 40], and obtains the ada-sel security.We present our first construction
in Sect. 4.1.1, and the second in Sect. 4.2.

4.1 ada-sel secureABE based on LWE

4.1.1 Construction of ABE for I ∧‖ G from lattices

For convenience, we denote I ∧‖ G as F1 for short.

ABE.SetupF1
(1κ ): The setup algorithm takes as input a security parameter κ , and then does

the following:

1. Sample a random matrix A ∈ Z
n×m
q along with a trapdoor basis TA ∈ Z

m×m of lattice

Λ⊥
q (A) by running TrapGen.

2. Select �1 + 1 uniformly random matrices A1, . . . ,A�1 ,B ∈ Z
n×m
q .

3. Select �2 uniformly random matrices C1, . . . ,C�2 ∈ Z
n×m
q .

4. Select a random matrix U
$←− Z

n×z
q .
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5. Output the public parameters

mpk = (A, {Ai }i∈[�1], {Ci }i∈[�2],B,U)

and the master secret key msk = (TA).

ABE.KeyGenF1
(mpk,mpk, f id ∧‖ g): The key generation algorithm takes as input

mpk,msk, an equation test function for id with binary representation (b1, b2, . . . , b�1) ∈
{0, 1}�1 and a policy function g ∈ G with depth d , and then does the following:

1. Compute Aid = B+∑�1
i=1(biAi ) ∈ Z

n×m
q .

2. Define function ḡ(·) = 1− g(·), and compute

Hg = Evalpk(ḡ,C1, . . . ,C�2) ∈ Z
n×m
q .

3. Let F fid∧‖g = (A|A′
fid∧‖g) = (A|Aid|Hg) ∈ Z

n×3m
q .

4. Sample D ∈ Z
3m×z as D ← SampleLeft(A,TA,A′

fid∧‖g,U, τ ).
5. Output sk fid∧‖g := D, where F fid∧‖g · D = U mod q .

ABE.EncF1(mpk, x1, x2),μ): In order to encrypt a message μ ∈ {0, 1}z with respect to
attribute (x1, x2) where x1 = (x11, . . . , x1�1) ∈ {0, 1}�1 and x2 = (x21, . . . , x2�2) ∈ Z

�2
q ,

the encryption algorithm first chooses a random vector s ← Z
n
q and two error vectors

e0 ← χm , e1 ← χ z where χ is a B bounded discrete Gaussian distribution, and then does
the following:

1. Compute Ax1 = B+∑�1
i=1(x1iAi ) ∈ Z

n×m
q .

2. Choose �1 uniformly random matrices Ri ← {−1, 1}m×m for i ∈ [�1], and compute
Rx1 =∑�1

i=1(x1iRi ).
3. Set e2 = R


x1 · e0 ∈ Z
m
q .

4. Set Hx2 = (x21G+ C1| · · · |x2�2G+ C�2) ∈ Z
n×m�2
q .

5. Choose �2 uniformly random matrices R′
j ← {−1, 1}m×m for j ∈ [�2], and set e3 =

(R′
1| · · · |R′

�2
)
 · e0 ∈ Z

m�2
q .

6. Set Fx1,x2 = (A|A′
x1,x2) = (A|Ax1 |Hx2) ∈ Z

n×(2+�2)m
q .

7. Output c = (F

x1,x2 · s + (e
0 , e
2 , e
3 )
,U
 · s + e1 +  q/2�μ) ∈ Z

(2+�2)m+z
q .

ABE.DecF1(mpk, sk f id∧‖ g, (x, c)): The decryption algorithm uses the key

sk fid∧‖g := D to decrypt c with attribute x = (x1, x2). If fid(x1) ∧ g(x2) �= 1, output

⊥. Otherwise, let the ciphertext c = (cin,1, cin,2, c1, . . . , c�2 , cout ) ∈ Z
(2+�2)m+z
q , compute

cg = Evalct (ḡ, {(xi ,Ci , ci )}�2i=1) ∈ Z
m
q , where cin,1, cin,2 ∈ Z

m
q , cout ∈ Z

z
q and ci ∈ Z

m
q for

1 ≤ i ≤ �2.
Let c′g = (cin,1, cin,2, cg) ∈ Z

3m
q and output Round(cout − D
 · c′g) ∈ {0, 1}m .

Correctness.The correctness of the scheme follows from our choice of parameters. Specifi-
cally, to showcorrectness first note thatwhen fid(x1)∧g(x2) = 1weknow cin,2 = A


id·s+e2,
cg = H


g · s + eg , then we have during decryption,

μ′ = Round(cout − D
 · c′g)
= Round(cout − D
 · ((A|Aid|Hg)


 · s + (e0, e2, eg)))

= Round(U
 · s + e1 +  q/2�μ − U
 · s − D
 · (e0, e2, eg))
= Round( q/2�μ + e1 − D
 · (e0, e2, eg))
= μ
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Table 2 Parameter setting of ada-sel secure ABE for I ∧‖ G
Parameters Description Setting

κ Security parameter

z Message length O(log κ)

n PK-lattice row dimension κ

m PK-lattice column dimension n1+ε

q Modulus n5m4

d Depth of g ∈ G O(log κ)

τ SampleLeft and SampleRight parameter n2m2

B Bound of errors κ

�1 Identity length n

�2 Attribute length n

This completes the proof of correctness.

4.1.2 Parameter setting for our construction

Given an arbitrarily constant ε, we set the system parameters according to the Table 2 below.
These values are chosen in order to satisfy the following constraints:

– To ensure correctness, we require ‖e1 − D
 · (e0, e2, eg)‖∞ ≤ q/4; here we bound the
dominating term:

‖D
 · eg‖∞ ≤ τ
√
3m · 4dm3/2B ≤ q/4.

– For SampleLeft, we know ‖T̃A‖ = O(
√
n log q), so require that the sampling width τ

satisfies

τ ≥ O(
√
n log q) · ω(

√
log 3m).

– For SampleRight. we know ‖T̃G‖ ≤ √
5 and that

τ ≥ √
5 · 4dm3/2 · ω(

√
logm) ≥ ‖T̃G‖ · sRg · ω(

√
logm).

– To apply Regev’s reduction, we need B ≥ √
nω(log n).

– To apply the Leftover Hash Lemma, we need m > (n + 1) log q + ω(log n).

4.1.3 Secret key size

We give a simple analysis of the secret key size of our ABEF1 construction. By Lemma 2.2,
we know that

Pr[D ← DΛU
q (F fid∧‖g),τ

: ‖D‖ > τ
√
3m] ≤ negl(n).

By our setting of parameters above, the size of the secret key of our ABE scheme for F1 is
bounded by O(κ1+ε log2 κ).
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4.1.4 Security proof ofABEF1

Below, we prove the security of ABEF1 in a formal way.

Theorem 4.1 For parameter setting in Table 2, ABEF1 scheme above is ada-sel secure as
defined in Definition 3.5 and Remark 3.6, assuming the LWEn,q,χ assumption holds.

Proof We prove the security of ABEF1 construction by a sequence of hybrids, where the first
hybrid is identical to the original security experiment Expada-selA (1κ ) as in Definition 3.5. We
show that if a ppt adversaryA that makes at most |Q| secret key queries, can break the ABEF1

scheme described above with non-negligible advantage ε (i.e. success probability 1/2+ ε),
then there exists a reduction that can break the LWE assumption with advantage poly(ε) −
negl(ε). Given such an adversary A, we consider the following hybrids. In Hybrid Hi we
let Wi denote the event that the adversary correctly guessed the challenge bit, namely that
b = b′ at the end of the game. The adversary’s advantage in Hi is |Pr[Wi ] − 1

2 |.
The Sequence of Hybrids (H0,H1,H2,H3,H4)

Hybrid H0: This is the original security experiment Expada-selA (1κ ) from Definition 3.5
between the adversary A and the challenger.
Hybrid H1: In hybrid H1, we slightly change the way that the challenger generates the
matrices Ai for i ∈ [�1] and the matrices C j for j ∈ [�2] in the public parameters. We
let Ri ∈ {−1, 1}m×m for i ∈ [�1] and R′

j ∈ {−1, 1}m×m for j ∈ [�2] denote the �1 + �2
ephemeral random matrices generated for the creation of ct∗. The hybrid H1 challenger
chooses �1 random elements hi ∈ GF(qt ). Next it generates matrices A and B as in H0

and constructs the matrices Ai for i ∈ [�1] as
Ai = A · Ri + (G(hi ) ⊗ In/t )G,

whereG is the ring isomorphic map described in Sect. 2.5, and constructsC j for j ∈ [�2]
as

C j = A · R′
j − x∗2 jG,

where x∗
2 = (x∗21, . . . , x∗2�2)


 ∈ {0, 1}�2 is the challenge attribute.
We show thatH0 andH1 are statistically indistinguishable.Observe that inH1, thematrices
Ri for i ∈ [�2] are used only in the construction of the matricesAi and in the construction
of the challenge ciphertext where e2 = (Rx∗1 )


 ·e0 ∈ Z
m
q , whereRx∗1 =∑�1

i=1 x
∗
1iRi . Let

R̃ = (R1| . . . |R�1 |R′
1| . . . |R′

�2
) ∈ Z

m×(�1+�2)m
q then by Lemma 2.6, the distributions

(
A,A · R̃, (R̃)
 · e0

) s≈
(
A, (A

′
1| . . . |A

′
�1+�2

), (R̃)
 · e0
)

are statistically close, where A′
i for i ∈ [�1 + �2] are uniform independent matrices in

Z
n×m
q . It follows that with e2 = (Rx∗1 )


·e0 and e3 = (R′
1| · · · |R′

�2
)
·e0 the distributions

(
A,AR1, . . . ,AR�1 ,AR

′
1, . . . ,AR

′
�2

, e2, e3
) s≈

(
A,A

′
1, . . . ,A

′
�1+�2

, e2, e3
)

.

Therefore, in the adversary’s view, the matrices ARi ,AR′
j are statistically close to uni-

form and independent of e2, e3. Hence, matricesAi andC j as defined as above are close
to uniform, which means that those matrices are random independent matrices in the
attacker’s view, as in H0. This shows that |Pr[W0] − Pr[W1]| = negl(κ).
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Hybrid H2: Hybrid H2 is identical to Hybrid H1 except that we add an abort event that
is independent of the adversary’s view. The H2 challenger behaves as follows:

− The setup phase is identical to H1 except that the challenger also chooses a random
hash function H ∈ Hpind and keeps it to itself.
− The challenger responds to identity-policy queries and issues the challenge cipher-
text exactly as in H1 (using a random bit b ∈ {0, 1} to select the type of challenge).
Let

(
( fid1 ∧‖ g1), . . . , ( fidt ∧‖ gt )

)
be the identity-policy pairs where the attacker

queries and let x∗
1 be the challenge identity and x∗

2 be the challenge attribute. By
definition, the two events that x∗

1 ∈ {id1, . . . , idt } and gi (x∗
2) = 1 for i ∈ [t] can not

happen at the same time.
− In the final guess phase, the attacker outputs its guess b′ ∈ {0, 1} for b. The
challenger now does the abort check: H(x∗

1) = 0 and H(idi ) �= 0 for all idi ∈
{idi }i∈[t]\{x∗

1}. If the condition does not hold, the challenger overwrites b′ with a
freshly random bit in {0, 1}, and we say the challenge aborts the game.

Note that the adversary never sees the random hash function, and has no idea if an abort
event took place.While it is convenient to describe the abort action at the end of the game,
nothing would change if the challenger aborted the game as soon as the abort condition
becomes true.
The only difference between hybrids H0 and H1 is the abort event. We argue that the
adversary still has non-negligible advantage inH1 even though the abort event can happen.
More formally, we will use Lemma 28 in the full version of the work [3], which is
described as follows.

��
Lemma 4.2 Let I be a Q + 1 tuple (x∗

1, id1, . . . , id|Q|) consisting of the challenge attribute
x∗
1 along with the queried ID’s, and let ε(I ) define the probability that an abort does not

happen in hybrid Hi . For i = 1, 2, we set Wi be the event that b = b′ at the end of hybrid
Hi . Assuming ε(I ) ∈ [εmin, εmax ], then we have

∣∣∣∣Pr[W2] − 1

2

∣∣∣∣ ≥ εmin

∣∣∣∣Pr[W1] − 1

2

∣∣∣∣−
1

2
(εmax − εmin).

The lemma was analyzed by Bellare and Ristenpart [9], and further elaborated in the work
[3]. As our overall proof just uses this lemma in a “black-box way”, we do not include its
proof for simplicity of presentation.

Hybrid H3: We now change how A and B in H2 are chosen. In H3 we generate A as a
random matrix in Z

n×m
q , but generate B by sampling a random matrix R ∈ {−1, 1}m×m

and computing B = A ·R+G ∈ Z
n×m
q . The construction ofAi for i = 1, . . . , �1 andC j

for j = 1, . . . , �2 remains as in H2, namely, Ai = A ·Ri + (G(hi )⊗ In/t )G. To respond
to a private key query for id = (b1, . . . , b�1) ∈ {0, 1}�1 and a policy function g ∈ G with
depth d , the challenger needs to output a small matrix D ∈ ΛU

q (F fid∧‖g), where

F fid∧‖g =
(
A|B+

�1∑
i=1

(biAi )|Hg

)
= (A|A · Rid + H(id)G|A · Rg − (1− g(x2∗))G)

with

Rid = R +
�1∑
i=1

(biRi ) and Rg = Eval(ḡ,A,R1, . . . ,R�2 , x
∗
2)
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and H(id) = In +
�1∑
i=1

bi (G(hi ) ⊗ In/t ).

Note that H is the hash function in Hpind defined by (h1, . . . , h�1) as in Sect. 2.5.
The challenger now does the following:

1. Construct H(id) and Rid as in above. If H(id) = 0 and g(x∗
2) = 1 abort the game

and pretend that the adversary outputs a random bit b′ in {0, 1}, as in H2.
2. Set D ← SampleRight(A, H(id),Rid,TG,U, σ,Rg) ∈ Z

3m×z .
3. Send sk fid∧‖g = D to A.

H3 is otherwise the same asH2. In particular, in the challenge phase the challenger checks
if the challenge attribute (x∗

1, x
∗
2) ∈ {0, 1}�1+�2 satisfies H(x∗

1) = 0 and f (x∗
2) = 1. If

not, the challenger aborts the game (and pretends that the adversary output a random bit
b′ in {0, 1}), as in H2. Similarly, in H3 the challenger implements an abort check in the
guess phase.
Since H2 and H3 are statistically indistinguishable in the attacker’s view (the public
parameters, responses to private key queries, the challenge ciphertext, and abort condi-
tions) the adversary’s advantage in H3 is statistically indistinguishable to its advantage
in H2, namely

|Pr[W3] − Pr[W2]| = negl(κ).

Hybrid H4: Hybrid H4 is identical to H3 except that the challenge ciphertext ct is always
chosen as a random independent element in Z

(2+�2)m+z
q . Since the challenge ciphertext

is always a fresh random element in the ciphertext space,A’s advantage in this hybrid is
zero.

It remains to show that H3 and H4 are computationally indistinguishable, which we do by
giving a reduction from the LWE problem. If an abort event happens then the games are
clearly indistinguishable. Therefore, it suffice to focus on sequences of queries that do not
cause an abort. We have the following lemma:

Lemma 4.3 Assuming the hardness of LWE assumption, hybrid H3 and H4 are computation-
ally indistinguishable.

Proof Suppose there exists an adversary who has non-negligible advantage in distinguishing
hybrid H3 and H4, then we can construct a reduction B that breaks the LWE assumption using
the adversary A. Recall in Definition 2.9, an LWE instance is provided as a sampling oracle
O that can be either uniformly random O$ or a pseudorandom Os for some secret random
s ∈ Z

n
q . The reduction B uses adversary A to distinguish the two oracles as follows:

Invocation. Reduction B requests m + z instances from oracle O, i.e. pair (ai , bi ) for
i = 1, . . . ,m + z.

Setup. Reduction B constructs master public keympk as follows:

1. Set matrix A ∈ Z
n×m
q to be the first m vectors ai in pairs (ai , bi ) for i = 1, . . . ,m.

2. Assign the {m + i}i∈[m+1,m+z]-th LWE instances (atm+1, . . . , a
t
m+z) to be matrix

U ∈ Z
n×z
q .

3. Construct the reminder of master public key, namely matrices {Ai }i∈[�1] and
{C j } j∈[�2] as in hybrid H3.

4. Sendmpk = (A, {Ai }i∈[�1], {C j } j∈[�2],U) to A.
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Queries. Reduction B answers identity queries as in hybrid H3, including aborting the
simulation if needed.

Challenge. When adversary A sends message (μ0,μ1) and challenge attribute (x∗
1, x

∗
2),

reduction B does the following:

1. Set v ∈ Z
m
q the first m integers bi in LWE pairs (ai , bi ), for i = 1, . . . ,m.

2. Set challenge ciphertext ct = (c1, c2) as

c1 =
(
v, (Rx∗1 )


 · v, (R′
1| . . . |R′

�2
)
 · v

)

and c2 = (bm+1, . . . , bm+z) +  q/2�μb.

3. Send challenge ciphertext ct = (c1, c2) to adversary A.

Guess. After being allowed to make additional queries, A guesses if it is interacting
with a hybrid H3 or H4 challenger. Our simulator outputs the final guess as the
answer to the LWE challenge it is trying to solve.

We can see that when O = Os, the adversary’s view is as in hybrid H3; when O = O$, the
adversary’s view is as in hybrid H4. Hence, B’s advantage in solving LWE is the same asA’s
advantage in distinguishing hybrids H3 and H4. ��

Completing the Proof Recall that |Q| is the upper bound of the number of the adversary’s
key queries, and ε is the advantage of the adversary in H0. By Lemmas 2.22 and 2.23, we
can know that

Pr
H

[
H(x∗

1) = 0
∧

H(id1) �= 0
∧

. . .
∧

H(id|Q|) �= 0
]
∈
[
1

qt
(1− Q

qt
),

1

qt

]
.

Thus, we know that for any (Q + 1)-tuple I denoting a challenge id∗ along with ID queries,

we have ε(I ) ∈
(

1
qt (1− Q

qt ),
1
qt

)
. Then by setting [εmin, εmax ] =

[
1
qt

(
1− Q

qt

)
, 1
qt

]
in

Lemma 4.2, we have∣∣∣∣Pr[W2] − 1

2

∣∣∣∣ ≥
1

qt

(
1− Q

qt

) ∣∣∣∣Pr[W1] − 1

2

∣∣∣∣−
Q

2q2t
.

By our parameter setting, |Q| ≤ 1
2εq

t , where ε = ∣∣Pr[W0] − 1
2

∣∣, we have that
∣∣∣∣Pr[W2] − 1

2

∣∣∣∣ ≥
1

qt
(1− Q

qt
)

∣∣∣∣Pr[W0] − 1

2
− negl(κ)

∣∣∣∣−
Q

2q2t
≥ ε

4qt
− negl(κ).

We set t = �logq(2|Q|/ε)�, then we have qt ≥ 2|Q|/ε ≥ qt−1. This implies 1
qt ≥ ε

2q|Q| . We

can further derive: ε
4qt ≥ ε2

4|Q|q . This quantity is non-negligible as long as ε is non-negligible,
as q is polynomial for our setting of parameters and |Q| is polynomially bounded.

In summary, as Pr[W4] = 1
2 , we have that

ε2

4|Q|q − negl(κ) ≤
∣∣∣∣Pr[W2] − 1

2

∣∣∣∣+ negl(κ)

≤
∣∣∣∣Pr[W3] − 1

2

∣∣∣∣− AdvLWE
B (1κ )

≤
∣∣∣∣Pr[W4] − 1

2

∣∣∣∣ = 0,
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which implies AdvLWE
B (1κ ) ≥ ε2

4|Q|q − negl(κ). This means the reduction B defined in
Lemma 4.3 breaks the LWE assumption with non-negligible probability. This reaches a con-
tradiction, which completes the proof. ��

4.2 ada-sel secureABE for (t-CNF∗) ∧‖ G from LWE

Before presenting the ABE scheme, let us first recall the building block—conforming cPRF
of the ABE construction by Tsabary [40].

Definition 4.4 (Conforming constrained PRF [40]) Let F be a function class such that F ⊆
{0, 1}� → {0, 1}. A conforming constrained PRF for policies inF is a tuple of ppt algorithms
with the following syntax and properties.

– cPRF.Setup(1κ ) → (pp,msk) takes as input a security parameter κ and outputs public
parameters pp along with a master secret keymsk.

– cPRF.Evalmsk(x) → rx is a deterministic algorithm that takes as input a master secret
key msk and a bit-string x ∈ {0, 1}�, and outputs a bit-string rx ∈ {0, 1}k .

– cPRF.Constrainmsk( f ) → sk f takes as input a master secret key msk and a function
f ∈ F , and outputs a constrained key sk f .

– cPRF.ConstrainEvalsk f (x) is a deterministic algorithm that takes as input a constrained

key sk f and a bit-string x ∈ {0, 1}�, and outputs a bit-string r ′x ∈ {0, 1}k .

Correctness A cPRF scheme is correct if for all x ∈ {0, 1}� and f ∈ F for which
f (x) = 1, it holds that cPRF.Evalmsk(x) = cPRF.ConstrainEvalsk f (x) where (pp,msk) ←
cPRF.Setup(1κ ) and sk f ← cPRF.Constrainmsk( f ).

Gradual evaluation The algorithm cPRF.Constrain (in addition to cPRF.Eval, cPRF.
ConstrainEval) is deterministic and the following holds. For any fixing of pp ←
cPRF.Setup(1κ ), f ∈ F and x ∈ {0, 1}� for which f (x) = 1, define the following cir-
cuits:

– Uσ→x : {0, 1}κ → {0, 1}k takes as inputmsk and �-bits input x , computes

rx = cPRF.Evalmsk(x).

– Uσ→ f : {0, 1}κ → {0, 1}� f takes as inputmsk and f ∈ F , computes

sk f = cPRF.Constrainmsk( f ).

– U f→x : {0, 1}� f → {0, 1}k takes as input sk f and �-bits input x , computes

rx = cPRF.ConstrainEvalsk f (x).

We require that for all pp, f , x as define above, the circuitUσ→x and the effective sub-circuit
of U f→x ◦ Uσ→ f are the same. That is, the description of Uσ→x as a sequence of gates is
identical to the sequence of gates that go from the input wires to output wires of circuit
U f→x ◦Uσ→ f .

Pseudorandomness The adaptive security game of a cPRF scheme between an adversary A
and a challenger C is as follows.

1. Initialization: C generates (pp,msk) → cPRF.Setup(1κ ) and sends pp to A.
2. Queries Phase I: A makes (possibly many) queries in an arbitrary order:
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– EvaluationQueries:A sends abit-string x ∈ {0, 1}�,C returns rx ← cPRF.Evalmsk(x).
– Key Queries: A sends a function f ∈ F , C returns

sk f ← cPRF.Constrainmsk( f ).

3. Challenge Phase:A sends the challenge bit-string x∗ ∈ {0, 1}�. C uniformly samples b
$←−

{0, 1}. If b = 0 then returns r∗ $←− {0, 1}k . Otherwise it returns r∗ ← cPRF.Evalmsk(x∗).
4. Queries Phase II: same as the first queries phase.
5. End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b; (2) all the evaluation queries are not for x∗; and (3) all of
the key queries f are such that f (x∗) = 0. Moreover, we call it to be single-key adaptive
security if in the above described game, A can only make a single key query throughout the
entire game. A cPRF scheme is secure (resp. single-key secure) if for any ppt adversary A,
the probability that A wins in the adaptive (resp. single-key adaptive) security game is at
most 1/2+ negl(κ).

Key simulationWe require a ppt algorithmKeySimpp( f ) → sk f such that any ppt adversary
A has at most 1/2+ negl(κ) probability to win the following game against a challenger C.

– Initialization: C generates (pp,msk) ← cPRF.Setup(1κ ) and sends pp to A.
– Evaluation Queries I: A makes (possible multiple) queries. In each query it sends a

bit-string x ∈ {0, 1}� and C returns rx ← cPRF.Evalmsk(x).
– Challenge Phase: A sends the challenge constrain f ∗ ∈ F . C uniformly samples b ←

{0, 1}. If b = 0 then C returns sk f ∗ ← cPRF.Constrainmsk( f ), otherwise, it returns
sk f ∗ ← KeySimpp( f ).

– Evaluation Queries II: same as the first queries phase.
– End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b and (2) all the evaluation queries x are such that f ∗(x) = 0.
We first recall a lemma from a prior work, and the present our construction.

Lemma 4.5 [40] Assuming the hardness of LWE with super-polynomial modulo-to-noise
ratio, there exists a conforming cPRF scheme for t-CNF function family such that all the
required properties above are satisfied.

4.2.1 Construction ofABE for (t-CNF∗) ∧‖ G

Let Π = (cPRF.Setup, cPRF.Eval, cPRF.Constrain, cPRF.ConstrainEval) be a conforming
cPRF for t-CNF function family with input length �1 and output length k, and assume that
the length of mskΠ is κ . For all f ∈ t-CNF let � f denote the size of sk f for the function f .
Let Uσ→x ,Uσ→ f and U f→x be the circuit as defined in the part of Gradual Evaluation,
and denote the depth of U f→x as dce. Let G be the function family with input length �2
and output length 1. For convenience, we denote F2 as t-CNF∗ ∧‖ G for short. ABE =
(ABE.SetupF2

,ABE.EncF2 ,ABE.KeyGenF2
,ABE.DecF2) is defined as follows.

ABE.SetupF2
(1κ ): The setup algorithm takes as input a security parameter κ , and then does

the following:

1. Sample a random matrix A ∈ Z
n×m
q along with a trapdoor basis TA ∈ Z

m×m of lattice

Λ⊥
q (A) by running TrapGen.

2. Sample (ppΠ,mskΠ) ← cPRF.Setup(1κ ), denote σ := mskΠ .
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3. Select matrices B1, . . . ,B�1

$←− Z
n×m
q .

4. Select matrices C1, . . . ,C�2

$←− Z
n×m
q .

5. Select a random matrix U
$←− Z

n×z
q .

6. Output the public parameters

mpk = (A, {Bi }i∈[�1], {Ci }i∈[�2],U,ppΠ)

and the master secret key msk = (TA, σ ).

ABE.SetupF2
(mpk,msk,Ux∧‖ g): The key generation algorithm takes as inputmpk,msk,

a policy function Ux ∧‖ g ∈ F2 where the depth of g is d , and then does the following:

1. Compute the matrixBσ→x ← Evalpk(Uσ→x , {Bi }i∈[κ]), and denoteBx = [B, . . . ,B�1 ] ·
Hσ→x .

2. Compute r ← Π.Evalσ (x) and let Ir : {0, 1}k → {0, 1} be the function that on input r ′
returns 1 if and only if r = r ′. Compute Br ← Evalpk(Ir ,Bx ), and denote Bx,r = BxBr .

3. Define function ḡ(·) = 1− g(·), and compute

Hg = Evalpk(ḡ,C1, . . . ,C�2) ∈ Z
n×m
q .

4. Let FUx,r∧‖g = (A|A′
Ux,r∧‖g) = (A|Bx,r |Hg) ∈ Z

n×3m
q .

5. Sample D ∈ Z
3m×z as D ← SampleLeft(A,TA,A′

Ux,r∧‖g,U, τ ).
6. Output skUx,r∧‖g := (r ,D), where FUx,r∧‖g · D = U mod q .

ABE.EncF2(mpk, ( f , x),μ): In order to encrypt a message μ ∈ {0, 1}z with respect to
attribute ( f , x) where f ∈ t-CNF and x = (x1, . . . , x�2) ∈ Z

�2
q , the encryption algorithm

first chooses a random vector s ← Z
n
q and three error vectors e0 ← χm , e1 ← χ̃m·� f ,

e2 ← χ z where χ and χ̃ are B and B̃ bounded discrete Gaussian distribution, respectively,
and then does the following:

1. Sample sk f ← KeySimpp( f ), and denote s f = sk f .
2. Compute Bσ→ f ← Evalpk(Uσ→ f , {Bi }i∈[κ]), and denote B f = [B1, . . . ,B�1 ] · Bσ→ f .

3. Set Hx = (x1G+ C1| · · · |x�2G+ C�2) ∈ Z
n×m�2
q .

4. Choose �2 uniformly random matrices R′
j ← {−1, 1}m×m for j ∈ [�2], and set e3 =

(R′
1| · · · |R′

�2
)
 · e0 ∈ Z

m�2
q .

5. Set F f ,x = (A|A′
f ,x) = (A|B f − s f ⊗G|Hx) ∈ Z

n×(2+�2)m
q .

6. Output c = (s f ,F

f ,x · s + (e
0 , e
1 , e
3 )
,U
 · s + e2 +  q/2�μ).

ABE.DecF2(mpk, skUx,r∧‖ g, (( f , x), c)): The decryption algorithm uses the key skUx,r∧‖g
:= D to decrypt c with attribute ( f , x). If Ux,r ( f ) �= 1, output ⊥. Particularly, let the
ciphertext c = (s f , cin,1, cin,2, c1, . . . , c�2 , cout ), compute r ′ ← U f→x (s f ). If r = r ′ then
set Ux,r ( f ) = 0.

Otherwise, computeB f ,Bx as in Enc and KeyGen respectively. Then compute cts f →r ′ ←
Evalct

(
U f→x , s f ,B f

)
and ctr ,r ′ ← Evalct

(
Ir , r ′,Bx

)
, and also compute

cg = Evalct (ḡ, {(xi ,Ci , ci )}�2i=1).

Lastly, output μ′ = Round(ctout − D
 · (ctin,1, ctin,2, cts f →r ′ , ctr ,r ′ , ctg)).

123



Leakage-resilient IBE/ABEwith optimal leakage rates from lattices

Table 3 Parameter setting of ada-sel secure ABE for (t-CNF∗) ∧‖ G
Parameters Description Setting

κ Security parameter

n PK-lattice row dimension κε3

m PK-lattice column dimension O(n log q)

q Modulus B(2n2)3dce+5

d Depth of g O(log κ)

dce Depth of U f→x κε2

τ SampleLeft and SampleRight parameter κ(2m)dce+3

B Bound of error distribution χ O(κ)

B̃ Bound of error distribution χ̃ Bκ2(2m)dce+1

k Output length of conforming cPRF κ

�2 Input length of g κ

� f The size of sk f O(1)

Correctness

Lemma 4.6 If Π is a conforming cPRF for function class t-CNF, then ABEF2 is a correct ABE
scheme for the function class F2.

Proof Fix μ ∈ {0, 1}z , (pp,msk) ← ABEF2 .Setup(1κ ),Ux,r ∧‖ g ∈ F2 and attribute ( f , x)

such that Ux,r ( f ) ∧ g(x) = 1. Consider the execution of ABE.DecF2 .
We can show that ctr ,r ′ = B


r · s + e
′
1 by similar computation as [40], where ‖e′1‖ ≤

m2� f k B̃(2m)dce+1 and B̃ is the bound of distribution χ̃ . On the other hand, ctg = H

g ·s+eg ,

where ‖eg‖ ≤ 4dm3/2B. Therefore,

ctout − D
 · ((ctin,1, ctin,2, cts f →r ′ , ctr ,r ′ , ctg))

= U
 · s + e2 +  q/2�μ − D
 · (A|Bx,r |Hg) · s − D
 · (e0, e′1, eg)
= e2 +  q/2�μ − D
 · (e0, e′1, eg),

by our choice of parameters, the error term ẽ = e2−D
·(e0, e′1, eg) satisfies that ‖ẽ‖ ≤ q/4.
This completes the proof of correctness. ��

Parameter setting for this construction For arbitrarily small constant ε1 ∈ (0, 1) and
constant ε2, we denote ε3 = 2ε2

ε1
, and set the system parameters according to the Table 3

below.
These values are chosen in order to satisfy the following constraints:

– To ensure correctness, we require ‖e2 − D
 · (e0, e′1, eg)‖∞ ≤ q/4; here we bound the
dominating term:

‖D
 · e′1‖∞ ≤ τ
√
3m · m2� f k B̃(2m)dce+1 ≤ q/4.

– For SampleLeft, we know ‖T̃A‖ = O(
√
n log q), so require that the sampling width τ

satisfies

τ ≥ O(
√
n log q) · ω(

√
log 3m).
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– For SampleRight. we know ‖T̃G‖ ≤ √
5 and that

τ ≥ √
5 · m2κ(2m)dce+1 · ω(

√
logm) ≥ ‖T̃G‖ · sRσ→r · ω(

√
logm).

– To apply Regev’s reduction, we need B ≥ √
nω(log n).

– To apply the Leftover Hash Lemma, we need m ≥ (n + 1) log q + ω(log n).

Secret key size We give a simple analysis of the secret key size of our ABEF2 construction.
By Lemma 2.2, we know that

Pr[D ← DΛU
q (FUx∧‖g),τ

: ‖D‖ > τ
√
3m] ≤ negl(n).

By our setting of parameters above, the size of the secret key of our ABE scheme for F2 is
bounded by O(κ2ε3+ε2 log2 κ).

4.2.2 Security proof ofABEF2

Theorem 4.7 For parameter setting in Table 3, ABEF2 scheme above is ada-sel secure as
defined in Definition 3.5 and Remark 3.6, assuming the LWEn,q,χ assumption holds.

Proof The proof proceeds in a sequence of games where the first game is identical to the
security experiment as in Definition 3.5, while in the last game in the sequence the adversary
has advantage zero. Our goal is to prove indistinguishability among the adjacent games. We
let Wi denote the event that adversary wins the ABEF2 security experiment in game i , thus
adversary’s advantage in game i is |Pr[Wi ] − 1/2|. The sequence of games can be described
as follows:

The sequence of hybrids (H0,H1,H2,H3,H4)

Hybrid H0: This is the original security experiment Expada-selA (1κ ) from Definition 3.5
between the adversary A and the challenger.
Hybrid H1: Hybrid H1 is identical to Hybrid H0 except that we add an abort event that is
independent of the adversary’s view. Suppose the number of queries made by adversary
is Q which is a polynomial in κ . And let (x1, g1), · · · , (xQ, gQ) denote the key queries.
W.l.o.g., assume that there does not exist one query (xi , gi ) such that f ∗(xi ) = gi (x∗) =
1, where f ∗ and x∗ are the first and the second part of the challenge attribute.
In final guess phase, upon receiving the adversary’s guess b′ ∈ {0, 1} for b, the challenger
does the abort check: f ∗(xi ) �= 1 and gi (x∗) �= 1. If the condition does not hold, the
challenger overwrites b′ with a freshly random bit in {0, 1}, and we say the challenger
aborts the game.
Hybrid H2: We change the way challenger generates the challenge ciphertext. Instead
of computing sk f ∗ ← KeySimpp( f

∗), it computes

sk f ∗ ← cPRF.Constrainmsk( f
∗).

Now sk f ∗ = Uσ→ f ∗(σ ).
Hybrid H3: We change the way challenger generates the matrices {Bi }, {C j } as follows.
It samples uniformly random matrices {Ri }, {R′

j }, where Ri
$←− {0, 1}m×m, R′

j
$←−

{0, 1}m×m , and set Bi = ARi + σiG,C j = AR′
j − x2 jG.

Hybrid H4: We change the way challenger generates the challenge ciphertext again.
Specifically, let the ciphertext c = (s f , cin,1, cin,2, c1, . . . , c�2 , cout ). Recall that previ-

ously cin,2 = s
(B f − s f ⊗G)+ e
1 , c j = s
(x jG+C j )+ e
3, j , where j ∈ [�2], e1 $←−
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χ̃m·� f . In this hybrid, these vectors will be computed as cin,2 = cin,1 ·Rσ→ f +e
1 , where
Rσ→ f = EvalSim(Uσ→ f , {(σi ,Ri )}κi=1,A), and c j = cin,1 · R′

j .
Hybrid H5: We change the way challenger answers key queries. Let x be a query
and fix r ′ ← Evalσ (x). Note that Bσ→x = ARσ→x + r ⊗ G, where Rσ→x =
EvalSim(Uσ→x , {(σi ,Ri )}κi=1,A), and Br = ARr + Ir (r ′) ⊗ G, where Rr =
EvalSim(Ir , (r ,Rσ→x ),A).
Since Ux ( f ∗) ∧ g(x∗) = 0, then Pr[¬( f ∗(x) = 1 ∧ g(x∗) = 1)] = 1. If f ∗(x) = 1,
then Ir (r ′) = 0 with overwhelming probability. On the other hand, when f ∗(x) = 1,
g(x∗) must be 0, then Hg = AR′

g + (1 − g(x∗))G = AR′
g + G, where R′

g =
EvalSim(ḡ, (x∗, {R′

j }),A). Now challenger can use algorithm SampleRight to make the
following equation hold

[A|ARr |AR′
g +G] · D = U mod q.

Similarly, If f ∗(x) = 0, Ir (r ′) = 1. Then challenger can also use algorithm SampleRight
to make the following equation hold

[A|ARr +G|AR′
g + (1− g(x∗))G] · D = U mod q,

no matter g(x∗) = 0 or 1.
Hybrid H6: We change the way A is generated. Instead of sampling it via TrapGen, we

sample A
$←− Z

n×m
q uniformly at random.

Hybrid H7: We change again the way challenger generates the challenge ciphertext. It
now samples cin,1 and cout uniformly at random. Now the challenge completely hides b
and so adversary has no advantage.

Now we explain the indistinguishability between the adjacent hybrids briefly. For H0 and
H1, the challenger in H1 has probability 1

Q that doesn’t abort the game, so |Pr[W1] − 1/2| =
1
Q |Pr[W0] − 1/2|. The indistinguishability between H1 and H2 comes from the pseudoran-
domness of the underling PRF of the cPRF. H2 is indistinguishable from H3 because of the
Key Simulation security and the fact that random ri doesn’t leak any information ofmsk. We
can apply the leftover hash Lemma 2.6 to show the indistinguishability between H3 and H4.
H4 is indistinguishable from H5 due to the smudging Lemma 2.8. The indistinguishability
between H5 and H6 comes from Lemma 2.3. H6 is indistinguishable from H7 because of
Lemma 2.1. Finally, H7 is indistinguishable from H8 due to the hardness of LWE.

In conclusion, |Pr[W0] − 1/2| = Q|Pr[W1] − 1/2| ≤ Q(|Pr[W2] − 1/2| + εPRF) ≤
Q(|Pr[W3] − 1/2| + εPRF + εkeysim) ≤ · · · ≤ Q(|Pr[W8] − 1/2| + εPRF + εkeysim + εLWE +
negl(κ)) = Q(εPRF + εkeysim + εLWE + negl(κ)). Therefore, the advantage of adversary in
ABE security game is negligible assuming the security of cPRF and the hardness of LWE. ��

As a direct corollary of this section, we obtain the following AB-wHPS from lattices.

Corollary 4.8 Assuming LWE, there exists AB-wHPS that is

1. adaptively secure for the comparison functions;
2. adaptively secure for t-CNF∗ functions.
3. selectively secure for general circuits.

Moreover, the secret key size (excluding the function description) of the AB-wHPS only
depends on the depth of the function, but not the size.
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5 Optimal-rate leakage-resilient encryption schemes in the relative
leakagemodel

Prior work (e.g., Naor and Segev [34], Alwen et al. [6], and Hazay et al. [26]) showed
how to construct leakage resilient PKE/IBE from wHPS/IB-wHPS in the relative model. The
construction can be generalized to construct leakage resilient ABE from AB-wHPS in the
same spirit. To further achieve the optimal leakage rate, we observe that all we need is an
AB-wHPS with succinct keys (which do not depend on the function size). This is what we
construct in Sect. 3.2, i.e., Construction 3.11, Theorem 3.12, AB-wHPS and the underlying
ABE instantiations in Corollary 4.8.

Construction 5.1 Let Π =AB-wHPS.{Setup, KeyGen, Encap, Encap∗,Decap} be a
(log |K|, log |K|)-universalAB-wHPSwith the encapsulated-key-spaceK and attribute space
X = {0, 1}∗ for a class of policy functionsF = { f : {0, 1}∗ → {0, 1}}. Let Ext : K×S → M
be a (log |K|− �, ε)-extractor, where three setsK,S,M are efficient ensembles, � = �(κ) is
some parameter and ε = ε(κ) = negl(κ) is negligible. Furthermore, assume that M is an
additive group. Then, a leakage-resilientABE schemeΠF = ΠF .{Setup, KeyGen, Enc,Dec}
with message space M and policy function class F can be constructed as follows:

– ΠF .Setup(1κ ): The algorithm runs (mpkΠ,mskΠ)
$←− Π.Setup(1κ ), and outputs

mpk := mpkΠ , andmsk := mskΠ .
– ΠF .KeyGen(msk, f ): Given a master secret-key msk and a function f ∈ F as input,

the algorithm runs AB-wHPS.KeyGen to generate and output ( f , skΠ
f ), where sk f :=

skΠ
f

$←− AB-wHPS.KeyGen(msk, f ).
– ΠF .Enc(mpk, x, μ): Given a master public-key mpk, an attribute x ∈ X = {0, 1}∗,

and a message μ ∈ M as input, the algorithm runs AB-wHPS.Encap to generate

(CT′, k) ←AB-wHPS.Encap(mpk, x), and then samples s
$←− S. Furthermore, the algo-

rithm computes and outputs

ct = (s, ct0, ct1) = (s,CT′, μ + Ext(k, s)).

– ΠF .Dec(sk f , ct): Given a ciphertext ct = (s, ct0, ct1) and a secret key sk f as input, the
algorithm runs AB-wHPS.Decap to generate
k = AB-wHPS.Decap(sk f , ct0), and then output μ = ct1 − Ext(k, s).

Our construction achieves a leakage resilientABE, and can bemodified into a leakage resilient
PKE/IBE. We summarize the results in the following theorem.

Theorem 5.2 Assume Π is a selectively (or adaptively, resp.) secure (log |K|, log |K|)-
universal AB-wHPS for the policy function class F , and Ext : K × S → M be a (log |K| −
�,negl(κ))-extractor. Then the above ABE scheme ΠF = ΠF .{Setup, KeyGen, Enc,Dec}
for F is a selectively (or adaptively, resp.) �(κ)-leakage resilient attribute-based encryption
scheme for the policy function classF in the relative-leakage model. Particularly,ΠF is aslo

– an �(κ)-leakage-resilient PKE in the relative-leakage model, if F contains only a single
function that always outputs 1.

– an �(κ)-leakage-resilient IBE in the relative-leakage model, if F contains the following
comparison functions, i.e., each function f y ∈ F is indexed by a vector y, and f y(x) = 1
if and only if y = x.
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Proof Here, we just prove the general case of ABE for a general function class F . Then, the
results for IBE and PKE are clearly set up, since IBE and PKE are special cases of ABE for
equation-testing functions and constant function, respectively.

First, the correctness of this ABE scheme ΠF follows naturally from that of AB-wHPS Π .
Furthermore, the security of this ABE scheme can be argued by using a sequence of hybrids
as follows.
Hybrid H0: This hybrid is defined to be the security experiment with �-leakage in Definition
2.11. In this hybrid, the view ofA consists of the master public-key pk, leakage information

h(sk f ), and challenge ciphertext (s,CT0,CT1), where (mpk,msk)
$←− AB-wHPS.Setup(1κ ),

sk f
$←− AB-wHPS.KeyGen(msk, f ), s

$←− S,

(CT0, k) ← AB-wHPS.Encap(mpk, x), CT1 = μb + Ext(k, s).

Notice that the leakage function h : {0, 1}∗ → {0, 1} is chosen adaptively by the adversary
before the challenge stage. More importantly, in the leakage query stage, A is allowed to
query only one policy function f such that f (x∗) = 1 where x∗ is the challenge attribute.
Hybrid H1: This hybrid is almost identical to the Hybrid 0, except the challenge ciphertext
is computed in the following way:

(CT0, k)
$←− AB-wHPS.Encap(mpk, x), k1 = AB-wHPS.Decap(sk f ,CT0),

CT1 = μb + Ext(k1, s).

The only difference betweenHybrid 0 andHybrid 1 is the usage of k and k1 in the computation
of c1. In fact, k = k1 according to the correctness of the underlying AB-wHPS. Hence, Hybrid
0 and Hybrid 1 are identical.
Hybrid H2: This hybrid is almost same to Hybrid 1, except the challenge ciphertext is
computed in the following way:

CT′0
$←− AB-wHPS.Encap∗(mpk, x), k1 = AB-wHPS.Decap(sk f ,CT′0),

CT1 = μb + Ext(k1, s).

The only difference between Hybrid 1 and Hybrid 2 is the computation and usage of CT0
and CT′0. In fact, according to the ciphertext indistinguishability of the underlying AB-wHPS,
CT0 and CT′0 are computationally indistinguishable even for an adversary having secret key
sk f . Hence, Hybrid 0 and Hybrid 1 are indistinguishable for an adversary having the leakage
information h(sk f ). Notice that, in the real scenarios, one party is always issued just one secret
key satisfying his attributes, which will be used in the following decryption computation.
Therefore, it makes sense for us to limit just one policy function f such that f (x∗) = 1 in
the leakage query stage.
Hybrid H3: This hybrid is almost same to Hybrid 2, except that the challenge ciphertext is
computed in the following way:

CT′0
$←− AB-wHPS.Encap∗(mpk, x), r

$←− M, CT1 = μb + r .

Essentially, pk, CT′0, k1 = AB-wHPS.Decap(sk f ,CT′0) and h(sk f ) are correlated variables.
According to the universality of underlying AB-wHPS, we know that k1 is uniform over K
even given pk and CT′0, i.e.,

H∞(k1|pk,CT′0) = log(|K|).
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Furthermore, since the bit-length of leakage information h(sk f ) is �, we have

H∞(k1|pk,CT′0, h(sk f )) ≥ log(|K|) − �.

Then, for a random s
$←− S, Ext(k1, s) is ε-close to the uniform distribution over M even

given pk,CT′0, h(sk f ), since Ext is assumed to be a strong (log(|K|) − �, ε)-extractor for
ε = negl(κ). As a result, Hybrid 2 and Hybrid 3 are statistically indistinguishable.

Notice that the viewofA inHybrid 3 is completely independent ofμb and b. Therefore, the
advantage ofA in Hybrid 3 is 0. Finally, combining all above hybrids together, we conclude
that the advantage of A in Hybrid 0 is also negligible in κ . Thus the ABE scheme ΠF is
�-leakage-resilient for F . ��

Combining Theorems 3.12 and 5.2, we obtain the following results. Assume there exists
a sel-sel (or ada-sel) secure ABE scheme with the message space Zm for the function class
F ∧‖ G, where G is the class as in Definition 3.9 with parameters m, n, and the key-length
(of the extra part, excluding the function description of f ) of this underlying ABE scheme for
policy function f is s( f ). Then the allowed leakage length of the above leakage resilient ABE
(or IBE or PKE) scheme ΠF for the function class F is � = (n logm−2κ) and the key-length
of ΠF for f is |sk f | = n logm + | f | + s( f̂ f ,gy ).

Furthermore, if the secret key size s( f̂ f ,gy ) is succinct, i.e., s( f̂ f ,gy ) = o(| f̂ f ,gy |) =
o(n logm + | f |), then we can set sufficiently large n,m such that n logm = ω(| f |). Conse-
quently, the leakage rate of this schemeΠF is n logm−2κ

n logm+| f |+s( f̂ f ,g y )
= 1− 2κ

n logm

1+ s( f̂ f ,g y )+| f |
n logm

≈ 1−o(1),

achieving the desired optimal leakage rate.
Finally, by combining Corollary 4.8 and Theorem 5.2, we obtain the following Corollary.

Corollary 5.3 Assuming LWE, for all polynomial S = poly(κ), there exist 1 − o(1) leakage
resilient ABE schemes in the relative leakage model, which are

1. adaptively secure for the comparison functions;
2. adaptively secure for t-CNF∗ functions of size up to S;
3. selectively secure for general circuits of size up to S.

Remark 5.4 We note that our ABE schemes are leakage resilient even if the policy function
goes beyond the size bound S. The leakage rate would still be 1−o(1) for a slightly restricted
class that leaks n logm − 2κ on the part y, the whole description of f , and the extra part of
skΠ

f (excluding the function description) of the underlying AB-wHPS. This is more restrictive
than functions that leak n logm − 2κ + | f | from the whole secret key.

6 Extension I: optimal-rate leakage-resilient encryption schemes in the
BRM

In this section, we present how to use AB-wHPS to construct optimal-rate leakage resilient
ABE in the BRM. We follow the structure of [6, 26] by first amplifying the hash proof system
and then combining it with a locally computable extractor [41]. In particular, we first amplify
AB-wHPS through parallel repetition and random sampling in Sect. 6.1. Then, in Sect. 6.2,
we generalize the notion of locally computable extractor by Vadhan [41] into one with larger
alphabets, and show that a refined analysis of this tool can be used to derive 1−o(1) leakage
rate in the BRM, improving the prior analysis [6, 36] that can only achieve a constant leakage
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rate. Finally in Sect. 6.3, we present the overall construction of our leakage resilient ABE in
the BRM with optimal leakage rate.

6.1 Amplification ofAB-wHPS

Definition 6.1 Let n′ be a positive integer, and H = {h : [n′] → {0, 1}} be a function class
where each function hy ∈ H is indexed by a value y ∈ [n′], and hy(x) = 1 if and only if
x = y.9

Construction 6.2 (Construction of amplified AB-wHPS) Let Π = Π.{Setup, KeyGen,

Encap, Encap∗,Decap} be an AB-wHPS with the encapsulated-key-space K and attribute
space X = {0, 1}∗ × [n′] for a class of functions F ∧‖H, and let t ≤ n′ be a positive integer.
Then a new AB-wHPS Π

n′,t
‖ with attribute space {0, 1}∗ and encapsulated-key-space Kt for

the function class F can be constructed as follows.

– Π
n′,t
‖ .Setup(1κ ): The algorithm runs (mpkΠ,mskΠ)

$←− Π.Setup(1κ ), and outputs

mpk := mpkΠ , andmsk := mskΠ .

– Π
n′,t
‖ .KeyGen(msk, f ): Given a function f ∈ F , the algorithm first sets f̂ i = f̂ if ,hi ∈

F∧‖H for every i ∈ [n′], and runsΠ n′ times to generate sk f̂ i
$←− Π.KeyGen(mskΠ, f̂ i )

for i ∈ [n′]. The algorithm outputs

sk f :=
(
sk f̂ 1 , sk f̂ 2 , . . . , sk f̂ n′

)
.

– Π
n′,t
‖ .Encap(mpk, x): Given mpk and an attribute x ∈ {0, 1}∗ as input, the algorithm

chooses a random subset r := {r1, . . . , rt } ⊆ [n′] and computes10

(CTi , ki )
$←− Π.Encap(mpk, (x, ri )) for all i ∈ [t].

The algorithm finally outputs CT := (r,CT1, . . . ,CTt ) and k = (k1, . . . , kt )
.
– Π

n′,t
‖ .Encap∗(mpk, x): Givenmpk and an attribute x ∈ {0, 1}∗ as input, the algorithm

chooses a random subset r := {r1, . . . , rt } ⊆ [n′] and computes

CTi
$←− Π.Encap∗(mpk, (x, ri )) for all i ∈ [t].

Finally, the algorithm outputs CT := (r,CT1, . . . ,CTt ).
– Π

n′,t
‖ .Decap(sk f ,CT): Given a ciphertext CT := (r,CT1, . . . ,CTt ) and a secret key

sk f :=
(
sk f̂ 1 , sk f̂ 2 , . . . , sk f̂ n′

)
, the algorithm runs Π.Decap to generate ki =

Π.Decap(sk f̂ ri ,CTi ) for i ∈ [t], and outputs k = (k1, . . . , kt )
 if f̂ ri (x, ri ) = 1
for all i ∈ [t]. Otherwise, the algorithm outputs ⊥.

Next, we present the following amplification theorem, which is essential an extension of
the work [6].

9 Clearly, the domain of hy is [n′]. And the parameter n′, whose concrete setting is described in Sect. 6.3, is
set to achieve the optimal leakage rate for the encryption in the bounded-retrieval model.
10 The subset {r1, . . . , rt } must be randomly chosen, as it is an important property for the analysis of locally
computable extractor in Sect. 6.2.
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Theorem 6.3 Assume Π is an (l, w)-universal AB-wHPS with the encapsulated-key-space

K for F ∧‖ H. Then the above amplified construction of Π
n′,t
‖ is an (t · l, t · w)-universal

AB-wHPS with the encapsulated-key-set Kt for F . Furthermore,

– if the underlying Π is selectively (or adaptively) secure, then the Π
n′,t
‖ is also selectively

(or adaptively) secure;
– if the secret-key-size of Π scheme for the policy function f is (| f | + s( f )),11 then the

secret-key size of the Π
n′,t
‖ for f is n′ × (| f | + log n′ + s( f̂ f ,h)).

Proof The secondpart of the theorem followsdirectly byour construction from the underlying
Π to the amplified Π

n′,t
‖ , especially by the relationship between policy functions of Π and

that of Π
n′,t
‖ .

Similar to Theorem 3.12, in order to prove the first part of this theorem, we need to prove
the following three properties: correctness, smoothness and ciphertext indistinguishability.

CorrectnessCorrectness of ourΠn′,t
‖ follows directly from the correctness of the underlying

Π .

Universality As Π
n′,t
‖ is a parallel repetition of the underlying Π , universality of our Π

n′,t
‖

follows directly from the universality of the underlying Π .

Ciphertext indistinguishabilityWe prove that the ciphertexts output by Π
n′,t
‖ .Encap(mpk,

x∗) and Π
n′,t
‖ .Encap∗(mpk, x∗) are indistinguishable, given one secret “1-key” sk f such

that f (x∗) = 1 and perhaps many “0-keys” sk f ′ such that f ′(x∗) = 0, where x∗ is the
challenge attribute. We summarize the result in the lemma below. ��
Lemma 6.4 (Ciphertext indistinguishability) The construction of the amplified AB-wHPS
satisfies valid/invalid cipheretext indistinguishability as Definition 3.1.

Proof We prove the valid/invalid ciphertext indistinguishability of AB-wHPS via a hybrid
argument. More specifically, we define the following hybrids, where we start from a valid
ciphertext, and then switch row-by-row towards an invalid ciphertext. We prove that each
two neighboring hybrids are indistinguishable via a reduction from the underlying AB-wHPS.
The proof of this lemma follows directly from the indistinguishability of these hybrids.
Hybrid H0: For a randomly chosen subset r := {r1, . . . , rt } ⊆ [n′], this hybrid is defined
as the ciphertext indistinguishability experiment in Definition 3.1, where A is given a valid
ciphertext

CT0 := (r,Π.Encap(mpk, (x, r1)), . . . ,Π.Encap(mpk, (x, rt ))),

In this hybrid, it is clear that the ciphertext CT0 is generated as Π
n′,t
‖ .Encap.

Hybrid Hz: For any 1 ≤ z ≤ t − 1, Hz is almost same to Hz−1, except that A is given the
following ciphertext

CTz :=(r,Π.Encap∗(mpk, (x, r1)), . . . ,Π.Encap∗(mpk, (x, rz)),

Π.Encap(mpk, (x, rz+1)) . . . , ,Π.Encap(mpk, (x, rt ))).

In this hybrid, the first z ciphertexts are generated by Π.Encap∗ (with z different attributes),
and the rest are by Π.Encap (with other t − z different attributes).

11 Recall that the function s( f ) denotes the size of the extra part of the secret key, excluding the description
of the function.
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HybridHt : This hybrid is almost same toHt−1, except thatA is given the following ciphertext

CTt := (r,Π.Encap(mpk, (x, r1)), . . . ,Π.Encap(mpk, (x, rt ))),

In this hybrid, it is clear that the ciphertext CTt is generated as Π
n′,t
‖ .Encap∗.

Then, it suffices to prove the computational indistinguishability between Ht and Ht+1 for
z ∈ [t − 1] ��
Claim 6.5 Suppose the valid/invalid ciphertext of the underlying AB-wHPS is selective or
adaptive indistinguishability, then the above hybrids Hz and Hz+1 are selective or adaptive
indistinguishability for any z ∈ [t − 1].
Proof Weprove this claim through establishing a reduction from the valid/inva- lid ciphertext
of the underlying AB-wHPS to the indistinguishability between Hz and Hz+1. This means if
there is an efficient adversary D who can distinguish Hz from Hz+1 with advantage ε, then
we can construct an efficient reduction B to break the corresponding indistinguishability of
underlying AB-wHPS with ε. Here, we just describe the reduction in the case of adaptive
indistinguishability (underlying AB-wHPS), and note that a similar argument can be carried
to the selective security in a straight-forward way.

LetA be the adversary for the ciphertext indistinguishability experiment for the amplified
AB-wHPS, and D be a distinguisher that distinguishes Hz from Hz+1 with a non-negligible
advantage for some z ∈ [t − 1]. Now we describe the reduction B that breaks the ciphertext
indistinguishability of the underlying AB-wHPS when interacting with the challenger C.

Setup B simulates either the hybrid Hz or Hz+1 by running A in the following way.

1. B first get a master public-key mpk from the challenger C for the underlying AB-wHPS
Π .

2. Then B forwards this mpk to the adversary A for the amplified AB-wHPS Π
n′,t
‖ .

3. At the same time, B sets a table T = ∅.

Test Stage 1 B answers the secret key queries of A in the following way.

1. A sends a function f ∈ F to B for a secret key query.
2. B first checks whether there exists an item containing this f in the table T .

– If yes, B returns the corresponding secret key sk f in T to A.
– Otherwise, B goes to the next step 3.

3. B sets f̂ i = f̂ if ,hi ∈ F ∧‖ H for every i
$←− [n′],.

4. Then B sends all f̂ i to C to conduct secret key query for AB-wHPS, and thus get sk f̂ i as
a respond.

5. Finally,B sends sk f :=
(
sk f̂ 1 , sk f̂ 2 , . . . , sk f̂ n′

)
as the secret key for f toA, and stores

the tuple ( f , sk f ) as an item into the table T .

Challenge stage B simulates the challenge ciphertext to A as follows.

1. A choose any x∗ ∈ X satisfying that there is at most one function f ∈ F such that
f (x∗) = 1 had been queried in Test Stage 1, as the challenge attribute to conduct the
challenge query.

2. For a randomly chosen subset r := {r1, . . . , rt } ⊆ [n′], B sets attribute x∗
z+1 =

(x∗, rz+1).
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3. Then B send attribute x∗
z+1 to C for the challenge query with respect to the underlying

AB-wHPS.
4. Next,B obtains a ciphertextCT∗z+1

$←− AB-wHPS.Encap(x∗
z+1)orAB-wHPS.Encap

∗(x∗
z+1)

depending on a random b ∈ {0, 1} as the challenge ciphertexts from C.
5. Furthermore, B sets x∗

i = (x, ri ) for i ∈ [t], and then calculates
{
CT∗i

$←− AB-wHPS.Encap∗(x∗
i )

}

i∈[z]
and {

CT∗i
$←− AB-wHPS.Encap(x∗

i )

}

i∈[t]\[z+1]
by himself.

6. B collects all ciphetexts CT∗i for i ∈ [t] together to construct (CT∗1, . . . ,CT∗t ) according
to the indexes of these ciphertexts.

7. Finally, B sends this matrix CT∗ := (r,CT∗1, . . . ,CT∗t ) as the challenge encapsulation
ciphertext to A.

Test stage 2 B answers the secret key queries of A as in Test Stage 1, but with a restriction
that there is at most one function f ∈ F such that f (x∗) = 1 can been queried in Test Stage
1 and 2.

Output B simulates the output of the experiment and obtain a view H, which is either Hz or
Hz+1 as we will prove below. Finally, B outputs D(H).

Next, we analyze the advantage ofB. We observe thatB perfectly simulates one of the two
hybrids: if the challenge ciphertext from C is valid, then the amplified AB-wHPS challenge
ciphertext CT∗ is generated according to Hz , and otherwise Hz+1. Thus, the advantage of B
is the same as that of D in distinguishing Hz from Hz+1, i.e., a non-negligible advantage ε.
Thus,B breaks the ciphertext indistinguishability of the underlyingAB-wHPSwith advantage
ε, which reaches a contradiction. This completes the proof of this claim. ��
Lemma 6.4 follows directly from Claim 6.5 by a standard hybrid argument. ��
In summary, we complete the proof of the first part of theorem. ��

Combining Theorems 3.12 and 6.3, we obtain the following corollary.

Corollary 6.6 Assume there exists an ABE scheme with the message spaceZm for the function
class F ∧‖ H ∧‖ G, where G with parameters m, n and H with parameter n′ are as Defini-
tions 3.9 and 6.1, then there exists an amplified AB-wHPS with the encapsulated-key-space
Z
t
m for the function class F .

6.2 Locally computable extractor

Definition 6.7 (Locally computable extractor, [41, Definition 6]) An extractor Ext : {0, 1}n×
{0, 1}d → {0, 1}v is said to be t-locally computable if for every r ∈ {0, 1}d , Ext(x, r) depends
only on t-bits of x ∈ {0, 1}n .
For our application (constructing leakage-resilient encryption in the BRM), we need a gen-
eralized variant of the above notion. Let x ∈ {0, 1}nk be a vector. We can view it as a
concatenation of n vectors xi ∈ {0, 1}k for i ∈ [n], i.e., x = (x


1 , . . . , x

n )
. In this case,

each xi ∈ {0, 1}k can be viewed as a symbol of some larger alphabet, i.e., Γ = {0, 1}k , and
we will need a locally computable extractor for Γ as follow.
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Fig. 1 Depiction of averaging samplers

Definition 6.8 (Locally computable extractor for larger alphabets) Let Γ = {0, 1}k be some
alphabet. An extractor Ext : Γ n×{0, 1}d → {0, 1}v is t-locally computablewith respect toΓ ,
if for every r ∈ {0, 1}d , Ext(x, r) depends only on t symbols of x = (x


1 , . . . , x

n )
 ∈ Γ n .

Generally, a locally computable extractor can be obtained in two steps [41]: (1) the extrac-
tor uses part of the seed to select t bits (or symbols) of x, and (2) the remaining seed is used
to apply a standard extractor on the selected bits/symbols in the previous step. Vadhan [41]
showed that as long as the selection in step (1) achieves an averaging sampler, then the com-
bined steps would achieve a locally computable extractor. Below, we summarize the result
of Vadhan [41] below, and recall the formal notion of an averaging sampler.

Definition 6.9 (Averaging sampler, [41, Definition 8]) A function Samp : {0, 1}r → [n]t
is a (μ, θ, γ ) averaging sampler, if for every function f : [n] → {0, 1} with average value
1
n

∑
i f (i) ≥ μ,

Pr
(i1,...,it )

$←−Samp(Ur )

⎡
⎣1

t

t∑
j=1

f (i j ) < μ − θ

⎤
⎦ ≤ γ.

In order to understand such an averaging sampler more clearly, we depict it in the left side
of Fig. 1.

Next, we present a theorem by Vadhan in [41] that describes detailed requirements for a
locally computable extractor.

Theorem 6.10 ([41, Theorem 10]) Suppose that Samp : {0, 1}r → [n]t is an (μ, θ, γ )

averaging sampler with distinct samples for μ = (δ − 2τ)/ log(1/τ) and θ = τ/ log(1/τ),
and Ext : {0, 1}t × {0, 1}d → {0, 1}v is a strong ((δ − 3τ)t, ε) extractor. Define Ext′ :
{0, 1}n × {0, 1}r+d → {0, 1}v by

Ext′(x, ( y1, y2)) = Ext(xSamp( y1), y2).

Then Ext′ is a t-local strong (δn, ε + γ + 2−Ω(τn)) extractor.

As we mentioned above, our application needs a locally computable extractor for larger
alphabets, which may not be implied directly from Theorem 6.10. To tackle this issue, we
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define the following samplingprocedureSampler1 that outputs t distinct symbols of samples,
and then prove that Sampler 1 is in fact a good averaging sampler as needed in Theorem 6.10.
This would imply a locally computable extractor for larger alphabets as required in our
application.

Notations for the sampling Before describing the algorithm, we set up some notations as
follows. Let Γ = {0, 1}k and x = (x


1 , . . . , x

n )
 ∈ Γ n be a vector of n symbols, where

xi = (xi1, xi2, . . . , xik)
 ∈ Γ = {0, 1}k for i ∈ [n]. Let S denote a subset of [n] × [k], i.e.
S contains tuples (i, j) ∈ [n] × [k] as its elements. In this case, we define xS = {xi j }(i, j)∈S .
Then, we define Sampler 1 as below. Sampler 1: Sample a random subset R of [n] that
contains t elements, i.e., R = {r1, . . . , rt }, and output S := {(ri , j)}i∈[t], j∈[k].

In order to understand such Sampler 1more clearly, we depict it in the right side of Fig. 1.
Then we derive the following lemma.

Lemma 6.11 For any κ ∈ Z, μ, θ ∈ (0, 1] and γ = 2κ exp(−tθ2/4) +
(
t(t−1)
2n

)κ

, Sampler

1 is a (μ, θ, γ ) averaging sampler.

Proof According to the natural bijection between [nk] and [n]×[k], to prove that Sampler 1
is a good averaging sampler as Definition 6.9, it suffices to show that for any f : [n]×[k] →
[0, 1] such that 1

nk

∑
i∈[n], j∈[k] f (i, j) ≥ μ, the following inequality holds:

Pr
S

$←−Sampler 1

⎡
⎣ 1

|S|
∑

(i, j)∈S
f (i, j) < μ − θ

⎤
⎦ ≤ γ. (1)

In order to do this, our first transfer the algorithm Sampler 1 into the other statistically
close algorithm Sampler 2 (viaClaim6.12), and then prove that the above inequality (1) holds
for Sampler 2 through using aChernoff bound argument (via Claim 6.13). Thus, we conclude
that Sampler 1 is a good averaging sampler with overwhelming probability. Furthermore,
we conclude that Sampler 1 with any strong extractor yields a locally computable extractor
for larger alphabets.

Particularly, we define Sampler 2 as follows.

Sampler 2

1. Sample R = {r1, . . . , rt } from [n]t uniformly at random.

– If all elements are distinct, then output S := {(ri , j)}i∈[t], j∈[k] and terminate.

2. Otherwise, i.e., there is a repeated element, discard the whole sample and redo Step 1.
Note: the algorithm will only redo Step 1 up to κ times. If the algorithm does not produce
an output by then, then output ⊥.

Next we analyze Sampler 1 and Sampler 2 by the following two claims. ��
Claim 6.12 For a set X consisting of n = n(κ) different blocks and the parameters t = t(κ)

such that 1 ≤ t ≤ n, the output distributions of Sample 1 and Sample 2 are statistically close.

Proof Wenotice that the distribution of Sampler 1 is identical to that of Sampler 2 conditioned
on non-⊥ values. Therefore, their statistical distance is bounded by the probability that
Sampler 2 does not terminate in κ steps. Let T denote the event that Sampler 2 selects
distinct elements at a particular round (and thus terminates). We have

Pr[T ] = n(n − 1) · · · (n − t + 1)

nt
.
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Since every round of Sample 2 is independent of others, we know the probability of Sample
2 outputs ⊥ is

(1− Pr[T ])κ =
(
1− n(n − 1) · · · (n − t + 1)

nt

)κ

≤
(
1− (n − t + 1)t

nt

)κ

.

Therefore, for 1 ≤ t ≤ n, it holds that 0 <
(n−t+1)t

nt ≤ 1. the statistical distance between

two output distributions is at most
(
1− (n−t+1)t

nt

)κ ≤ negl(κ). ��

Claim 6.13 For any μ, t, θ, n, Sampler 2 is a (μ, θ, γ ) average sampler conditioned on
non-⊥ output, where γ = 2κ exp(−tθ2/4).

Proof As we discussed above, it suffices to show that for any f : [n] × [k] → {0, 1} such
that 1

nk

∑
i∈[n], j∈[k] f (i, j) ≥ μ, we have:

Pr
S

$←−Sampler2

⎡
⎣ 1

|S|
∑

(i, j)∈S
f (i, j) < μ − θ

⎤
⎦ ≤ γ,

conditioned on S �= ⊥.
In particular, let f : [n] × [k] → {0, 1} be a function such that μ f := 1

nk

∑
i∈[n], j∈[k]

f (i, j) ≥ μ. Let r1, . . . , rt be i.i.d. random variables sampled from [n], and Si =
{(ri , j)} j∈[k]. Clearly, S1, . . . , St are the choices of Sampler 2 at a particular round, and
they are also i.i.d. random variables. If r1, . . . , rt are distinct, then Sampler 2 will output
S = {S1, . . . , St }. Next we denote random variables μri := 1

k

∑k
j=1 f (ri , j) for i ∈ [t], and

clearly, μri ’s are also i.i.d. random variables with the same expectation

E[μri ] =
∑
i ′∈[n]

1

k

∑
j∈[k]

f (ri , j)Pr[ri = i ′] = 1

nk

∑
i∈[n], j∈[k]

f (i, j) = μ f .

Therefore, by the Chernoff bound, we have:

Pr

[ ∣∣∣∣∣
1

t

t∑
i=1

μri − μ f

∣∣∣∣∣ ≥ θ

]
≤ 2 exp(−tθ2/4),

for any θ, t > 0. As μ f ≥ μ from the assumption. Thus for this particular round, we have

Pr

[
1

t

t∑
i=1

μri ≤ μ − θ

]
≤ Pr

[
1

t

t∑
i=1

μri ≤ μ f − θ

]

≤ Pr

[ ∣∣∣∣∣
1

t

t∑
i=1

μri − μ f

∣∣∣∣∣ ≥ θ

]

≤ 2 exp(−tθ2/4).

(2)
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Then by a union bound over all rounds, we have:

Pr
S

$←−Sampler2

⎡
⎣ 1

|S|
∑

(i, j)∈S
f (i, j) < μ − θ

⎤
⎦

≤ Pr

[
∃ a round such that

1

t

t∑
i=1

μri ≤ μ − θ

]

≤ 2κ exp(−tθ2/4).

This concludes the proof of the claim. ��
The proof of the lemma follows by the above Claims 6.12 and 6.13. ��

Furthermore, by applying the Sample 1 to Theorem 6.10 with the following parameters
setting, we derive the following theorem.

Parameter setting Taking κ as the security parameter, we set all the parameters in the
following way: k = poly(κ), n = poly(κ), t = κ log3(nk), δ = 1

log(nk) , τ = 1
6 log(nk) , μ =

2
3 log(nk) log(6 log(nk)) , θ = 1

6 log(nk) log(6 log(nk)) , γ = 2κ exp(−tθ2/4) +
(
t(t−1)
2n

)κ

, ε =
negl(κ).

Theorem 6.14 Let Γ = {0, 1}k , Samp : {0, 1}r → [n]t be the Sampler 1 (as a (μ, θ, γ )

average sampler), and let Ext : Γ t ×{0, 1}d → {0, 1}v be a strong ((δ−3τ)tk, ε) extractor.
Define Ext′ : Γ n × {0, 1}r+d → {0, 1}v as

Ext′(x, ( y1, y2)) = Ext(xSamp( y1), y2).

Then Ext′ is a t-block-local strong (δnk, ε+γ +2−Ω(τn)) extractor, where ε+γ +2−Ω(τn) =
negl(κ) according to the setting of parameters.

6.3 Leakage-resilient encryption in the bounded-retrieval model

In this section, we construct leakage-resilient encryption schemes in the BRM, through
combining an random extractor with an amplified AB-wHPS presented in Sect. 6.1. Below,
we give the specific construction of leakage resilient ABE scheme in the BRM from an
amplified AB-wHPS.

Construction 6.15 (Construction in the BRM) Let Π = AB-wHPS. {Setup, KeyGen, Encap,

Encap∗,Decap} be an amplified AB-wHPS with integer parameters n′, t , the encapsulated-
key-space Kt and attribute space X = {0, 1}∗ for a class of policy functions F = { f :
{0, 1}∗ → {0, 1}}. Let Ext : Kt × S → M be a strong extractor, where three sets K,S,M
are efficient ensembles, k denotes the size of K. Furthermore, assume that M is an additive
group. Then, an ABE scheme ΠF = ΠF .{Setup, KeyGen, Enc,Dec} with message spaceM
and policy function class F can be constructed as follows:

– ΠF .Setup(1κ ): The algorithm runs (mpkΠ,mskΠ)
$←− Π.Setup(1κ ), and outputs

mpk := mpkΠ , andmsk := mskΠ .
– ΠF .KeyGen(msk, f ):ΠF .KeyGen(msk, f ): Given amaster secret-keymsk and a func-

tion f ∈F as input, the algorithm runs

skΠ
f

$←− AB-wHPS.KeyGen(msk, f ) and output sk f := skΠ
f .
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– ΠF .Enc(mpk, x, μ): Given a master public-key mpk, an attribute x ∈ {0, 1}∗
and a message μ ∈ M as input, the algorithm runs AB-wHPS.Encap to generate

(CT′, k) ←AB-wHPS.Encap(mpk, x) with k ∈ Kt , and then samples s
$←− S. Fur-

thermore, the algorithm computes and outputs

ct = (s, ct0, ct1) = (s,CT′, μ + Ext(k, s)).

– ΠF .Dec(sk f , ct): Given a ciphertext ct = (s, ct0, ct1) and a secret key sk f as input, the
algorithm runs AB-wHPS.Decap to generate k = AB-wHPS.
Decap(sk f , ct0) with k ∈ Kt , and then output μ = ct1 − Ext(k, s).

Parameter setting For security parameter κ , we set the system parameters as follows: k =
poly(κ), n′ = poly(κ), t = κ log3(n′k), δ = 1

log(n′k) , τ = 1
6 log(n′k) , ε = negl(κ).Moreover,

for the proof of leakage-resilience in the BRM, we let Ext : Kt ×S → M be a ((δ−3τ)tk, ε)-
extractor.

Next, we prove that the construction is a leakage resilient ABE in the BRM. Our proof uses
a technique of locally computable extractors [41], i.e., Theorem 6.14, in a black-box way.

Theorem 6.16 AssumeΠ is a selectively (or adaptively, resp.) secureamplifiedAB-wHPSwith
integer parameters n′, t = κ log3(n′k) for the policy function classF , and Ext : Kt×S → M
be a strong extractor. Then the above ABE scheme ΠF = ΠF .{Setup, KeyGen, Enc,Dec}
for F is a selectively (or adaptively, resp.) �-leakage-resilient attribute-based encryption
scheme with message space M in the BRM where � = kn′ − kn′

log(kn′) .
Particularly, ΠF is also

– an �-leakage-resilient public-key encryption scheme in the BRM with � = kn′ − kn′
log(kn′) ,

if F contains only a single function that always outputs 1.
– a selectively (or adaptively, resp.) �-leakage-resilient identity-based encryption scheme

in the BRM with � = kn′ − kn′
log(kn′) , if F contains the following comparison functions,

i.e., each function f y ∈ F is indexed by a vector y, and f y(x) = 1 if and only if y = x.

Moreover,

1. Public-key (resp. master public-key) size of ΠF is the same as that of Π , which is not
dependent on leakage parameter �.

2. The locality-parameter is t = κ log3(n′k). Thus, the size of secret-key accessed during
decryption depends on t, but not �.

3. The ciphertext-size/encryption-time/decryption-time of ΠF depends on t, but not �.

Proof Similar to the proof for leakage-resilience in the relative model, we just prove the
general case of ABE for general functionsF in the BRM. Then, the results for IBE and PKE can
be proved similarly, since IBE and PKE are special cases of ABE for equation-testing functions
and constant function, respectively. The correctness of thisABE schemeΠF follows naturally
from that of amplified AB-wHPS Π . Below we focus on proving leakage resilience.

Let us denote r ∈ {0, 1}∗ as the randomness used to sample random subset {r1, . . . , rt } ⊆
[m] in the construction of amplified AB-wHPS, i.e., r = (r1, . . . , rt )
. That is, for
k′ = (k1, . . . , kn′)
 ∈ Kn′ , there exists a random sampling algorithm Sampr (k

′) that sam-
ples a random subset {r1, . . . , rt } ⊆ [m] and outputs k = (kr1 , . . . , krt )


. Similarly, for
(CT1, . . . ,CTn′) ∈ CT n′ , Sampr (CT1, . . . ,CTn′) outputs (CTr1 , . . . ,CTrt ).

We define Ext′ : Kn′ × ({0, 1}∗ × S) → M by

Ext′(k′, r, s) = Ext(kSampr (k
′), s).
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As a result, the ciphertext CT for ΠF can be rewritten as

ct = (r, s,CTr1 , . . . ,CTrt ,m + Ext′(k′, r, s)).

From Theorem 6.14 and the setting of parameters for Construction 6.15, we can conclude
that Ext′ : Kn′ × ({0, 1}∗ × S) → M is a t-locally computable strong ( n′k

log(n′k) , ε + γ +
2−Ω(τn′k)) extractor for alphabets K. Thus, the leakage resilience of ΠF can be proved
through a sequence of hybrids similar to the proof of Theorem 5.2 in the relative leakage
model.

The allowed leakage length is kn′ − kn′
log(kn′) . At the same time, it is clear that all efficiency

parameters ofΠF are not dependent on leakage parameter �. Thus,ΠF is a
(
kn′ − kn′

log(kn′)

)
-

leakage resilient ABE in the BRM. ��

CombiningCorollary 6.6 andTheorem6.16,we obtain the following results. Assume there
exists an ABE scheme with the message spaceZm for the function classF∧‖H∧‖G, where G
with parameters m, n andH with parameter n′ are as defined in Definitions 3.9 and 6.1, and
the key-length (of the extra part, excluding the function description of f ) of this underlying
ABE scheme for policy function f is s( f ). Then the largest allowed leakage length of the
above ABE (or IBE or PKE) scheme ΠF for the function class F is � = (kn′ − kn′

log(kn′) ) with

k = n logm and the key-length ofΠF for f is |sk f | = n′(n logm+log n′+| f |+s( f̂ f ,h,gy )).

Furthermore, if the secret key size s( f̂ f ,h,gy ))is succinct, i.e., s( f̂ f ,h,gy ) = o(| f̂ f ,h,gy |) =
o(n logm+ log n′ +| f |), then we can set sufficiently large n,m, n′ such that (log n′ +| f |) =
o(n logm). Consequently, the leakage rate of this schemeΠF is

kn′− kn′
log(kn′)

n′(n logm+log n′+| f |+s( f̂ f ,h,g y ))

= 1− 1
log(nn′ logm)

1+ log n′+| f |+s( f̂ f ,h,g y )

n logm

≈ 1− o(1), achieving the desired optimal leakage rate.

Finally, by combining Corollary 4.8 and Theorem 6.16, we obtain the following Corollary.

Corollary 6.17 Assuming LWE, for all polynomial S = poly(κ), there exist 1− o(1) leakage
resilient ABE schemes in the BRM, which are

1. adaptively secure for the comparison functions;
2. adaptively secure for t-CNF∗ functions of size up to S;
3. selectively secure for general circuits of size up to S.

For unbounded polynomial S, our schemes are still leakage resilient with the optimal rate for
a smaller function class. See Remark 5.4 for the discussion.

7 Extension II: leakage onmultiple keys

Our prior ABE constructions from AB-wHPS only achieve leakage resilience in the one-key
setting where the adversary can only leak on one of the all possible decrypting keys with
respect to the challenge attribute. In this section, we show how to achieve leakage resilience
in the multiple-key setting where the attacker can obtain leakage on ω possible decrypting
keys for any bounded polynomialω. Our construction leverages the normal AB-wHPS (where
the ciphertext indistinguishability holds when the adversary gets one decrypting key) and a
threshold secret sharing scheme, following the bootstrapping idea of the work [24].
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Below, we first introduce a useful lemma which is the key principle for the following
parameter setting. Notice that this lemma has been previously given as Lemma C.1 in [24].
However, it seems that their proof has certain flaws. Here, we prove it again in a much more
formal way.

Lemma 7.1 Let Γ1, . . . , Γω be randomly chosen subsets of size t + 1. Let t0 = Θ(ω2tκ
1
c ),

and n = Θ(ω2t). It holds

Pr

⎡
⎣
∣∣∣∣∣∣
⋃
i �= j

(Γi ∩ Γ j )

∣∣∣∣∣∣
≤ t0

⎤
⎦ = 1− e−Ω(κ),

where the probability is over the random choice of the subsets Γ1, . . . , Γω.

Proof For all i, j ∈ [ω] such that i �= j , we use Xi j to denote a random variable, which
represents the size of the intersection of Γi and Γi . Then, we define the following random
variable

X =
∑

i, j∈[ω],i �= j

Xi j .

Clearly, it holds
∣∣∣⋃i �= j (Γi ∩ Γ j )

∣∣∣ ≤ X . Thus, for the proof of this lemma, it is sufficient to

get a meaningful upper bound for X .
Notice also that for a fixed set Γi and a randomly chosen set Γ j , Xi j follows a hypergeo-

metric distribution, where t + 1 serves as the number of success states and number of trials,
and n is the population size. In this case, for 0 < δ <

(t+1)2

n , there is an tail bound:

Pr

[
Xi j ≥ (t + 1)2

n
+ δ(t + 1)

]
≤ e−2δ2(t+1).

Furthermore, it holds

Pr

[
X ≥ ω(ω − 1)

2
(
(t + 1)2

n
+ δ(t + 1))

]

= Pr

⎡
⎣ ∑
i, j∈[ω],i �= j

Xi j ≥ ω(ω − 1)

2
(
(t + 1)2

n
+ δ(t + 1))

⎤
⎦

≤ Pr

⎡
⎣⋃
i �= j

(
Xi j ≥ (t + 1)2

n
+ δ(t + 1)

)⎤
⎦

≤ ω(ω − 1)

2
Pr

[
Xi j ≥ (t + 1)2

n
+ δ(t + 1)

]

≤ ω(ω − 1)

2
e−2δ2(t+1).

Thus, setting n = Θ(ω2t), t0 = Θ(ω2tκ
1
c ) for any constant c, we have

Pr[X ≥ t0] ≤ e−Ω(κ).

��
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Construction 7.2 (Extended leakage resilient ABE) Let Π = Π.{Setup, KeyGen, Encap,

Encap∗,Decap} be a (log |K|, log |K|)-universal AB-wHPSwith the encapsulated-key-space
K and attribute space X = {0, 1}∗ for a class of policy functions F = { f : {0, 1}∗ →
{0, 1}}. Let Ext : K × S → M be a (log |K| − �, ε)-extractor, where K,S,M are efficient
ensembles, � = �(κ) is some parameter and ε = ε(κ) = negl(κ) is negligible. In addition,
let (Share, Rec) be a (t̂ + 1)-out-of-n threshold secret sharing scheme with respect to secret
domain M, an additive group.

Then, a leakage-resilient ABE scheme ΠF = ΠF .{Setup, KeyGen, Enc,Dec} with mes-
sage space M for policy function class F can be constructed as follows:

– ΠF .Setup(1κ , n): The algorithm runs (mpkΠ
i ,mskΠ

i )
$←− Π.Setup(1κ ) for every i ∈

[n], and outputsmpk := {mpkΠ
i }i∈[n] andmsk := {mskΠ

i }i∈[n].
– ΠF .KeyGen(msk, f ): Given a master secret-key msk := {mskΠ

i }i∈[n] and a function
f ∈ F as input, the algorithm first chooses a random subset of cardinality t̂ + 1, i.e.,

Γ = {r1, . . . , rt̂+1} ⊆ [n], and then runs sk(ri )
f

$←− Π.KeyGen(mskΠ
ri , f ) for i ∈ [t̂+1].

Finally, the algorithm outputs

sk f := (Γ , sk(r1)
f , . . . , sk

(rt̂+1)

f ).

– ΠF .Enc(mpk, x, μ): Given a master public-key mpk := {mpkΠ
i }i∈[n], an attribute

x ∈ X = {0, 1}∗ and a message μ ∈ M as input, the algorithm first runs

(μ1, . . . , μn)
$←− Share(μ). Furthermore, the algorithm runs Π.Encap to generate

(CTi , ki )
$←− Π.Encap(mpki , x) for every i ∈ [n]. Next, the algorithm samples

s1, . . . , sn
$←− S, and outputs

ct = (s1, . . . , sn, ct1, . . . , ctn, ctn+1, . . . , ct2n)

= (s1, . . . , sn,CT1, . . . ,CTn, μ1 + Ext(k1, s1), . . . , μn + Ext(kn, sn)).

– ΠF .Dec(sk f , ct): Given a ciphertext ct = ({si }i∈[n], {cti }i∈[2n]) and a secret key

sk f = (Γ , {sk(ri )
f }i∈[t̂+1]) as input, the algorithm first runs Π.Decap to generate

kri = Π.Decap(sk(ri )
f , ctri ) and μri = ctn+ri − Ext(kri , sri ) for every i ∈ [t̂ + 1].

Then, the algorithm outputs μ = Rec(μr1 , . . . , μrt̂+1
).

Parameter setting For security parameter κ , given any ω = poly(κ), we set t̂ = Θ(ω2κ)

and n = Θ(ω2 t̂). For details, we refer readers to Lemma 7.1.
Our construction achieves a leakage resilient ABE in the multiple key setting. We summa-

rize the results in the following theorem.

Theorem 7.3 Assume Π is a selectively (or adaptively, resp.) secure (log |K|, log |K|)-
universal AB-wHPS for the policy function class F , and Ext : K × S → M be a (log |K| −
�,negl(κ))-extractor. Then the above ABE scheme ΠF = ΠF .{Setup, KeyGen, Enc,Dec}
for F is a selectively (or adaptively, resp.) (�(κ), ω(κ))-leakage resilient attribute-based
encryption scheme for F in the relative-leakage model, for any fixed bounded polynomial
ω(κ) = poly(κ).

The corresponding leakage rate is �(κ)

(t̂+1)(|sk f |+log n)
. Furthermore, when the underlying

secret keys (sk(r1)
f , . . . , sk

(rt̂+1)

f ) form a block source under each leakage function, the corre-

sponding leakage rate is �(κ)
(|sk f |+log n)

.
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Proof Clearly, the correctness of thisABE schemeΠF followsnaturally from that ofAB-wHPS
Π and (t + 1)-out-of-n threshold secret sharing scheme (Share, Rec). Furthermore, the
security of this ABE scheme can be argued through using a sequence of hybrids as follows.
Hybrid H0: This hybrid is defined to be the security experiment with (�, ω)-leakage in
Definition 2.11. In this hybrid, the view of A consists of the master public-key mpk, leak-
age information {hi (sk fi )}i∈[w], and challenge ciphertext ct = ({si }i∈[n], {cti }i∈[2n]), where
mpk := {mpkΠ

i }i∈[n], sk fi := (Γi , {sk(ri, j )
fi

} j∈[t+1]) with Γi = {ri,1, . . . , ri,t+1} ⊆ [n],
fi (x∗) = 1 and i ∈ [ω], si $←− S with i ∈ [n], and

(cti , ki ) ← Π.Encap(mpki , x
∗), ctn+i = μb,i + Ext(ki , si )

with i ∈ [n] and (μb,1, . . . , μb,t+1)
$←− Share(μb). Notice that the block leakage function

hi : {0, 1}∗ → {0, 1}� is chosen adaptively by the adversary before the challenge stage. Here,
in the leakage query stage,A is allowed to queryω policy functions fi ’s such that fi (x∗) = 1
with each i ∈ [ω]. Recall that x∗ is the challenge attribute.
Hybrid H1 This hybrid is almost identical to the H0, except that for positive integer ω, the
challenger chooses the random subsets Γi = {ri,1, . . . , ri,t+1} ⊆ [n] with each i ∈ [ω] in
advance, and put them as parts of themaster secret key, i.e.,msk := ({mskΠ

i }i∈[n], {Γi }i∈[ω]).
When the adversary requests the leakage queries on the challenge secret keys sk fi for i ∈ [w],
the challenger directly uses the pre-selected subset Γi to respond. Clearly, H0 to H1 are
identical from the view of the adversary.
Hybrid H2 This hybrid is almost identical to the H1, except the challenge ciphertext is
computed in the following way:

Given the subsets Γi = {ri, j } j∈[t+1] for i ∈ [ω], the challenger computes the union of Γi

for i ∈ [ω], i.e., Γ̄ = ⋃
i∈[n] Γi ⊆ [n], and then partitions [n] into two disjoint sets Γ̄ and

[n] \ Γ̄ . Then for each ri, j ∈ Γ̄ , the challenger computes

(ctri, j , kri, j ) ← Π.Encap(mpkri, j , x
∗), k′ri, j = Π.Decap(sk

(ri, j )
fi

, ctri, j ),

ctn+ri, j = μb,ri, j + Ext(k′ri, j , s).

For other indices ri, j ∈ [n] \ Γ̄ , the ciphertexts are computed in the same way as that of
Γ̄ . Therefore, the only difference between H0 and H1 is the usage of kri, j and k′ri, j in the
computation of ctn+ri, j for all ri, j ∈ [n]. In fact, kri, j = k′ri, j according to the correctness of
the underlying AB-wHPS Π . Hence, H1 and H2 are identical.
Hybrid H3 This hybrid is almost same to H2, except the challenge ciphertext is computed in
the following way:

The challenger first computes the subset Γ0 containing all elements ri, j that are included
in more than one subset Γi for i ∈ [ω], such that Γ0 ⊆ Γ̄ ⊆ [n]. Then for each ri, j ∈
[n]\Γ0 = ([n]\Γ̄ ) ∪ (Γ̄ \Γ0), the challenger computes

ct′ri, j
$←− Π.Encap∗(mpkri, j , x

∗), k′ri, j = Π.Decap(sk
(ri, j )
fi

, ct′ri, j ),
ct′n+ri, j = μb,ri, j + Ext(k′ri, j , sri, j ).

On the other hand, for each ri, j ∈ Γ0, the challenger computes

(ctri, j , kri, j )
$←− Π.Encap(mpkri, j , x

∗), k′ri, j = Π.Decap(sk
(ri, j )
fi

, ctri, j ),

ctn+ri, j = μb,ri, j + Ext(k′ri, j , sri, j ).
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The only difference between H2 and H3 is the computation and usage of ctri, j and ct′ri, j for
each ri, j ∈ [n]\Γ0 = ([n]\Γ̄ ) ∪ (Γ̄ \Γ0).

Notice that, according to the ciphertext indistinguishability of the underlying AB-wHPS
Π , {ctri, j }ri, j∈Γ̄ \Γ0

and {ct′ri, j }ri, j∈Γ̄ \Γ0
are computationally indistinguishable even for the

adversary holding the challenge secret keys {sk fi }i∈[ω] := {sk(ri, j )
fi

}i∈[ω], j∈[t+1] such that
fi (x∗) = 1. This is because in this case, each invalid ciphertext ct′ri, j can be decapsulated by
only one secret key in {sk(ri, j )

fi
}i∈[ω], j∈[t+1]. Furthermore, {ctri, j }ri, j∈[n]\Γ̄ and {ct′ri, j }ri, j∈[n]\Γ̄

are trivially computational indistinguishability, since the adversary even does not possess
any secret key that could decapsulate these ciphertexts. Hence, through combining two parts
together, H2 and H3 are indistinguishable for the adversary having the leakage information
{hi (sk fi )}i∈[ω].

Notice that, in the real scenarios of ABE, the system always issues many secret keys
satisfying the specific attributes, which will be used in the following decryption computation.
Therefore, it is more general for us to consider polynomially bounded ω policy function fi
such that fi (x∗) = 1 in the leakage query stage.
HybridH4: This hybrid is almost same toH3, except that the challenge ciphertext is computed
in the following way:

Then for each ri, j ∈ Γ̄ \ Γ0, the challenger computes

ct′ri, j
$←− Π.Encap∗(mpkri, j , x

∗), r̃ri, j
$←− M,

ct′n+ri, j = μb,ri, j + r̃ri, j .

Essentially, mpkri, j , ct
′
ri, j , k

′
ri, j = Π.Decap(sk

(ri, j )
fi

, ct′ri, j ) and block leakage

hi (sk
(ri,1)
fi

, . . . , sk
(ri,t+1)

fi
) are correlated variables. According to the universality of underlying

AB-wHPS, we know that k′ri, j is uniform over K even given mpkri, j and ct
′
ri, j , i.e.,

H∞(k′ri, j |mpkri, j , ct
′
ri, j ) = log(|K|).

Furthermore, since the bit-length of leakage information hi (sk fi ) = hi (sk
(ri,1)
fi

, . . . , sk
(ri,t+1)

fi
)

is �, we have

H∞(k′ri, j |mpkri, j , ct
′
ri, j , hi (sk fi )) ≥ log(|K|) − �.

Then, for a random sri, j
$←− S, Ext(k′ri, j , sri, j ) is ε-close to the uniform distribution over M

even given mpkri, j , ct
′
ri, j , hi (sk fi ), since Ext is assumed to be a strong (log(|K|) − �, ε)-

extractor for ε = negl(κ).
On the other hand, for each ri, j ∈ [n]\Γ̄ , the challenge ciphertext can be computed in

the same way as that of ri, j ∈ Γ̄ \ Γ0. The outputs of the corresponding extractor indeed
satisfy the statistical closeness property, following from the universality of the underlying
AB-wHPSΠ . This is because in this case, the adversary even does not possess any information
on the related secret keys.

As a result, combining the above two parts of arguments, H3 and H4 are statistically close.
Our parameter setting ensures that the number of indexes in subset Γ0 is at most t with an

overwhelming probability. Therefore, the view of the adversary (for the challenge ciphertext)
in H4 consists of at most t shares of the challenge message and n − t random values. Due to
the perfect hiding property of the secret sharing scheme, the adversary’s view is completely
independent ofμb and b. As a result, the advantage ofA in H4 is 0. Finally, combining all the
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above hybrids together, we conclude that the advantage of A in Hybrid 0 is also negligible
in κ . Thus the ABE scheme ΠF is �-leakage-resilient for F . ��

Combining Theorems 3.12 and 7.3, we obtain the following results. Assume there exists
an sel-ada/sel-sel (or ada-ada/ada-sel) secure ABE scheme with the message space Zm̄

for the function class F ∧‖ G, where G is the class as in Definition 3.9 with parameters
m̄, n̄, and the key-length (of the extra part, excluding the function description of f ) of this
underlying ABE scheme for policy function f is s( f ). Then the allowed leakage length of the
above leakage resilient ABE scheme ΠF with parameters n, t̂, ω as in the above paragraph
setting for the function class F is � = (n̄ log m̄ − 2κ) and the key-length of ΠF for f is
|sk f | = (t̂ + 1)(log n + n̄ log m̄ + | f | + s( f̂ f ,gy )).

Furthermore, if the secret key size s( f̂ f ,gy ) is succinct, i.e., s( f̂ f ,gy ) = o(n̄ log m̄ + | f |),
then we can set sufficiently large n, m̄, n̄ such that (log n+| f |) = o(n̄ log m̄). Consequently,
when the underlying secret keys form a block source under each leakage function, the corre-

sponding leakage rate of this scheme ΠF is n̄ log m̄−2κ
log n+n̄ log m̄+| f |+s( f̂ f ,g y )

= 1− 2κ
n̄ log m̄

1+ log n+| f |+s( f̂ f ,g y )

n̄ log m̄

≈
1− o(1), achieving the desired optimal leakage rate.

Finally, by combining Corollary 4.8 and Theorem 7.3, we obtain the following Corollary.

Corollary 7.4 Assuming LWE, for any S = poly(κ) and ω = poly(κ), there exist (�, ω)-
leakage resilient ABE’s in the relative leakage model, which are

1. adaptively secure for t-CNF∗ functions of size up to S;
2. selectively secure for general circuits of size up to S.

Moreover, when the underlying secret keys form a block source under the each leakage
function, the corresponding leakage rate is 1− o(1).

Furthermore, we can also achieve similar results in the BRM. By combining Corollary 4.8,
Theorems 6.3 and 7.3, we obtain the following corollary.

Corollary 7.5 Assuming LWE, for any polynomial S = poly(κ) and ω = poly(κ), there exist
(�, ω)-leakage resilient ABE schemes in the BRM, which are

1. adaptively secure for t-CNF∗ functions of size up to S;
2. selectively secure for general circuits of size up to S.

Moreover, when the underlying secret keys form a block source under the each leakage
function, the corresponding leakage rate is 1− o(1).
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