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Aims Myocardial infarction and heart failure are major cardiovascular diseases that affect millions of people in the USA with mor-
bidity and mortality being highest among patients who develop cardiogenic shock. Early recognition of cardiogenic shock 
allows prompt implementation of treatment measures. Our objective is to develop a new dynamic risk score, called 
CShock, to improve early detection of cardiogenic shock in the cardiac intensive care unit (ICU).

Methods 
and results

We developed and externally validated a deep learning-based risk strati昀椀cation tool, called CShock, for patients admitted into 
the cardiac ICU with acute decompensated heart failure and/or myocardial infarction to predict the onset of cardiogenic 
shock. We prepared a cardiac ICU dataset using the Medical Information Mart for Intensive Care-III database by annotating 
with physician-adjudicated outcomes. This dataset which consisted of 1500 patients with 204 having cardiogenic/mixed shock 
was then used to train CShock. The features used to train the model for CShock included patient demographics, cardiac ICU 
admission diagnoses, routinely measured laboratory values and vital signs, and relevant features manually extracted from 
echocardiogram and left heart catheterization reports. We externally validated the risk model on the New York 
University (NYU) Langone Health cardiac ICU database which was also annotated with physician-adjudicated outcomes. 
The external validation cohort consisted of 131 patients with 25 patients experiencing cardiogenic/mixed shock. CShock 
achieved an area under the receiver operator characteristic curve (AUROC) of 0.821 (95% CI 0.792–0.850). CShock was 
externally validated in the more contemporary NYU cohort and achieved an AUROC of 0.800 (95% CI 0.717–0.884), dem-
onstrating its generalizability in other cardiac ICUs. Having an elevated heart rate is most predictive of cardiogenic shock de-
velopment based on Shapley values. The other top 10 predictors are having an admission diagnosis of myocardial infarction 
with ST-segment elevation, having an admission diagnosis of acute decompensated heart failure, Braden Scale, Glasgow Coma 
Scale, blood urea nitrogen, systolic blood pressure, serum chloride, serum sodium, and arterial blood pH.

Conclusion The novel CShock score has the potential to provide automated detection and early warning for cardiogenic shock and im-
prove the outcomes for millions of patients who suffer from myocardial infarction and heart failure.
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Introduction
Cardiogenic shock is a life-threatening condition that is characterized 
by reduced cardiac output in the presence of adequate intravascular 
volume, resulting in tissue hypoxia. Myocardial infarctions1,2 and 
acute decompensated heart failure3 are the two most common aeti-
ologies for cardiogenic shock.4 Mortality for cardiogenic shock re-
mains high (30–50%).1,4,5 Early identi昀椀cation of cardiogenic shock 
can facilitate interventions that may mitigate the consequences of 
prolonged end-organ insult,6,7 such as rapid employment of haemo-
dynamic support with pharmacologic and nonpharmacologic agents, 
engagement of a dedicated shock team, and prompt transfer of pa-
tients at lower-acuity hospitals to a tertiary high-volume shock 
hub.1 In the setting of acute myocardial infarction, early recognition 
of patients at high risk for cardiogenic shock allows providers to pro-
ceed with urgent revascularization of the infarct-related coronary 
artery.5 Therefore, timely recognition of patients at high risk for car-
diogenic shock is crucial for improving the care of patients and their 
outcomes.

Despite the potential bene昀椀ts, early identi昀椀cation of cardiogenic 
shock has been challenging. Intensive care unit (ICU) providers are pre-
sented with tremendous amounts of data generated from multiple 
sources including laboratory measurements, vital signs, haemodynam-
ics, and cardiac function studies. The limited ability of human providers 
to process, interpret, and act upon all the data stored in the electronic 
health record (EHR) in a timely fashion can lead to poor patient out-
comes. Moreover, it is dif昀椀cult to provide around-the-clock monitoring 
and risk assessment of cardiac ICU patients by human caregivers, espe-
cially in settings with low provider-to-patient ratios.

Furthermore, there lacks an effective risk strati昀椀cation tool for the 
development of cardiogenic shock. Current risk strati昀椀cation strategies 
such as the Society for Cardiovascular Angiography and Intervention 
classi昀椀cation schema8,9 lack speci昀椀c quantitative criteria, making it chal-
lenging to apply clinically. Well-established scores such as CardShock,10

intraaortic balloon pump (IABP)-shock II,11 and Acute Physiology and 
Chronic Health Evaluation II12 were developed to predict outcomes 
such as in-hospital or 30-day mortality rather than the development 
of cardiogenic shock. The Observatoire Régional Breton sur 
l’Infarctus (ORBI) risk score13 was developed for predicting cardiogenic 
shock and is transparent and can be applied at the bedside. However, 
the study cohort for the ORBI risk score was myocardial infarction 
with ST-elevation (STEMI) patients only.

Early identi昀椀cation and treatment of cardiogenic shock could lead 
to better outcomes, shorter cardiac ICU length of stay, and fewer 
complications in cardiac ICUs.6 To improve risk strati昀椀cation of car-
diac critical care patients and provide early warning of cardiogenic 
shock for patients admitted into cardiac ICU with (i) acute decompen-
sated heart failure and/or (ii) STEMI or myocardial infarction without 
ST-elevation (NSTEMI), we develop a new dynamic risk score, called 
CShock, by training a machine learning model with a novel loss 
function designed speci昀椀cally for risk scoring. Our goal is to predict 
the development of late cardiogenic shock after cardiac ICU admis-
sion for at-risk patients. We prepared a cardiac ICU dataset using 
Medical Information Mart for Intensive Care-III (MIMIC-III) database14

by annotating with physician-adjudicated outcomes and relevant 
features manually extracted from echocardiogram and catheteriza-
tion reports. This dataset was then used to train CShock. We exter-
nally validated the risk model on the New York University (NYU) 
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Langone Health cardiac ICU database which was also annotated with 
physician-adjudicated outcomes.

Methods
Preparation of a cardiac intensive care unit 
dataset with physician-adjudicated outcomes 
and cardiac features extracted from 
unstructured data
We used a publicly available critical care database MIMIC-III,14 which has 
8188 admissions involving at least one cardiac ICU stay during the hospital-
ization. The inclusion criterion for chart review was that patients needed to 
have a possible diagnosis of acute decompensated heart failure and/or myo-
cardial infarction with or without ST-elevation. The exclusion criteria were 
patients with age <18 years old or >89 years old, total hospital stay <24 h, 
surgery ICU admission prior to cardiac ICU admission during the same hos-
pitalization, and shock on arrival to cardiac ICU (details in Supplementary 
material online, Methods, section Chart review). The discharge summary 
and echocardiogram reports of the admissions that were eligible for chart 
review were subsequently split among four physicians to review, which pro-
vided information regarding additional exclusion criteria, admission diagno-
ses, outcomes (no shock vs. non-cardiogenic shock only vs. cardiogenic 
shock/mixed shock), left heart catheterization, and echocardiogram data 
(details in Supplementary material online, Methods, section Chart review). 
Patients who developed shock within 4 h of cardiac ICU admission were 
excluded due to the assumption that the patient was likely in a peri-shock 
state at the time of admission. Patients’ outcomes were retrospectively ad-
judicated from chart review. Time of shock onset was determined as the 
earliest time after cardiac ICU admission when (i) systolic blood pressure 
was <90mmHg for at least 30 min and there was evidence of systemic hy-
poperfusion or (ii) pharmacologic agents/mechanical circulatory support 
was initiated to maintain systolic blood pressure >90mmHg,7 consistent 
with the clinical criteria used in prior landmark trials on cardiogenic 
shock.5,15 If there was a discrepancy between physician-adjudicated out-
comes and objective data, i.e. physician-adjudicated outcome revealed no 
shock but there was shock based on structured data, a second physician re-
viewed both the discharge summary and the structured data to reconcile 
the discrepancy (details in Supplementary material online, Methods, section 
Chart review). Primary physician assessment of outcomes from discharge 
summary was blinded to the predictors. The validation of the primary as-
sessment and the time of the event was done in an unblinded manner 
with respect to blood pressure, lactate, creatinine, and urine output.

Development of a dynamic risk score for 
prediction of cardiogenic shock
We developed CShock to determine the risk a patient has for developing 
cardiogenic shock after admission to the cardiac ICU. CShock is updated 
every hour after cardiac ICU admission. A patient was considered positive 
if the patient developed cardiogenic or mixed shock during their cardiac 
ICU stay; the patients who developed non-cardiogenic shock only or no 
shock in the study cohort were treated as negative cases. The features 
used to train the model for CShock included patient demographics, cardiac 
ICU admission diagnoses, routinely measured laboratory values and vital 
signs, and relevant features manually extracted from echocardiogram and 
left heart catheterization reports (see Supplementary material online, 
Methods, List of Features in the models). The physiological time series of 
the time-varying features from cardiac ICU admission to event (discharge 
if no shock; shock onset otherwise) were inputted into the CShock model. 
The model that underlies CShock was based on a dilated causal convolu-
tional neural network (CNN) architecture, often used for time series mod-
elling (See Supplementary material online, Methods, Model development for 
more details on model architecture).

The study cohort was split 50, 25, and 25% into training, validation, and 
testing in a four-fold cross-validation. Each fold had the same proportion of 
patients who developed cardiogenic shock vs. did not develop cardiogenic 
shock. To improve performance, the model was pretrained in an auxiliary 
task of predicting in-hospital mortality for ICU patients in MIMIC-III 

database. The receiving operator characteristic (ROC) curve and its corre-
sponding area under the curve (AUC) were obtained by varying the alarm 
threshold that determined which patients were identi昀椀ed by the model as at 
risk for cardiogenic shock. We considered a comparison of CShock against 
the ORBI risk score13 but could not accurately calculate the ORBI risk 
score, as many of the variables involved in the calculation of the ORBI score 
were not available such as history of previous stroke/transient ischemic at-
tack (TIA), post-primary percutaneous coronary intervention (pPCI) 
thrombolysis in myocardial infarction (TIMI) 昀氀ow <3, Killip class, and 昀椀rst 
medical contact-to-pPCI delay >90 min. In addition, the ORBI risk score 
was developed for patients admitted for STEMI only, whereas our cohort 
also included patients admitted for acute decompensated heart failure 
and NSTEMI. We followed TRIPOD (Transparent reporting of a multivari-
able prediction model for individual prognosis or diagnosis)16 in reporting 
the results (see Supplementary material online, Appendix for details).

External validation
The model was externally validated using a dataset that comprised patients 
admitted to the cardiac ICU at NYU Langone Health who met the same in-
clusion and exclusion criteria as the study cohort. Patients’ outcomes in the 
external validation cohort were retrospectively adjudicated by a physician. 
The NYU Langone Health patient cohort is more contemporary than the 
MIMIC-III cohort (MIMIC-III data were between 2001 and 2012 and NYU 
data were between 2018 and 2022). A subset of the features in the full model 
were available for external validation. We trained the model on the MIMIC-III 
cohort using the subset of features. The time-dependent variables also had 
missing indicators that took a value of 1 if the corresponding feature value 
was missing at each unique hour after cardiac ICU admission; 0 otherwise. 
Missing values were forward 昀椀lled with the last known values and if the last 
known values were not available, imputed using population mean, as they 
were done for the development dataset. Primary physician assessment of 
outcomes from discharge summary was blinded to the predictors. The valid-
ation of the primary assessment and the time of the event was done in an un-
blinded manner with respect to blood pressure, lactate, creatinine, and urine 
output. The input features of the external validation cohort were fed into the 
portable model to produce the time-varying CShock risk score for cardio-
genic shock. Receiving operator characteristic curve and its corresponding 
AUC were obtained by varying the alarm threshold that determined which 
patients were identi昀椀ed by the model as at risk for cardiogenic shock.

Model interpretation
We used Shapley values17 to provide explanations for how each feature in-
昀氀uenced predictions. We employed FastSHAP,18 an ef昀椀cient algorithm for 
calculating Shapley values.17 The Shapley values were based on a FastSHAP’s 
surrogate model that was trained to produce CShock risk scores given dif-
ferent feature subsets by masked prediction19,20 rather than model the cov-
ariates21 (see Supplementary material online, Methods for more details on 
model interpretation). Shapley values were determined for the features 
in the portable model using the training dataset.

Results
Cardiogenic shock early warning system
In total, 3220 admissions met the inclusion and exclusion criteria for 
chart review (Figure 1). After applying the additional criteria (details 
in Supplementary material online, Methods, section Study cohort) ob-
tained from chart review, the 昀椀nal study cohort comprised 1500 pa-
tients (Figure 1), comparable in size to the cohorts used to derive 
other risk scores for cardiogenic shock.11,22 A total of 1264 patients 
had no shock event before cardiac ICU discharge; 204 had cardio-
genic/mixed shock; and 32 had non-cardiogenic shock only (Figure 1). 
The 204 patients who developed cardiogenic/mixed shock were con-
sidered positive; 1296 patients who developed non-cardiogenic shock 
only or no shock in the study cohort were treated as negative cases. 
The causes of non-cardiogenic shock were found to be septic or haem-
orrhagic shock during chart review. The average age of the study cohort 
in MIMIC-III was 68.1 ± 13.5. There were 918 male and 582 female 
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patients in the MIMIC-III study cohort. Race, ethnicity, and socio-
economic status were not provided for the study cohort. Baseline 
characteristics of the study cohort are shown in Table 1.

There were 194 input variables, including 182 time-varying (physio-
logical) and 12 static (e.g. demographic) features. The left panel of 
Figure 2 demonstrates the physiological time series of 昀椀ve example fea-
tures that were entered into the dilated CNN-based model, which then 
outputted the CShock score as shown by the blue lines in the right pa-
nel. The dashed blue line is the CShock score for a patient who devel-
ops no shock and gets discharged from the cardiac ICU at Hour 16; the 
solid blue line shows the CShock score for a patient who goes into 
mixed cardiogenic/non-cardiogenic shock at Hour 11. Cardiogenic 
shock detection occurs if a patient’s CShock score exceeds the alarm 
threshold value.

The CShock score was able to achieve an area under the receiver op-
erator characteristic curve (AUROC) of 0.821 (95% CI 0.792–0.850) 
(Figure 3). Table 2A shows positive predictive value (PPV)/negative pre-
dictive value (NPV), sensitivity/speci昀椀city, overall accuracy of the model, 
and how early the model can predict cardiogenic shock at different 
thresholds. Each row in the table corresponds to the CShock model 
having a PPV of one-fourth, one-third, and 0.4.

Model performance in different subgroups
We performed subgroup analysis based on age, sex, and aetiology (Table 3). 
The model performed better for the younger group than the older group. 
We also found that the model performed better for male patients [0.844 
(95% CI 0.807–0.881)] compared with female patients [0.781 (95% CI 
0.733–0.828)]. The model performed best in the STEMI subgroup com-
pared with NSTEMI and acute decompensated heart failure subgroups. 
The NSTEMI and acute decompensated heart failure subgroups showed 

weaker prediction compared with the entire study cohort. The STEMI sub-
group had better performance than the entire study cohort.

External validation
The model was externally validated using a dataset that comprised all pa-
tients admitted to the cardiac ICU at NYU Langone Health who met the 
same inclusion and exclusion criteria as the study cohort (see 
Supplementary material online, Figure S1). The external validation cohort 
consisted of 131 patients with 25 patients experiencing cardiogenic/ 
mixed shock. The average age of the external validation cohort was 
64.5 ± 14.9. There were 85 male and 46 female patients. Race, ethnicity, 
and socioeconomic status were not provided for the external validation 
cohort. Of the 182 time-varying input features in the original model, 58 
input features are routinely measured in the EHR at NYU Langone 
Health. Therefore, we developed the portable model by training with 
70 input features (58 were time-varying and 12 were static) using the 
MIMIC-III database (list of features is available in the Supplementary 
material online, Methods, List of Features in the models, denoted as in-
cluded in the portable model). The portable model was able to achieve 
similar AUROC at 0.806 (95% CI 0.777–0.835) on the study cohort. It 
was then externally validated using the NYU Langone Health cardiac 
ICU dataset and obtained an AUROC of 0.800 (95% CI 0.717–0.884).

Model interpretation
Figure 4A presents the 10 most important features, i.e. with the largest 
Shapley values; each dot represents the feature values averaged over 
time of an individual patient from the training dataset with a higher value 
being more red and a lower value being more blue. Positive and nega-
tive Shapley values are associated with an increase or decrease in the 
CShock score, i.e. risk of cardiogenic shock development, respectively. 

Excluded based on informa!on obtained from chart review of 

discharge summaries*

8288 admissions involving at least one cardiac 

ICU stay from MIMIC-III database

3220 admissions chart reviewed

Study cohort: 1500 admissions

Cardiogenic or mixed shock

204 admissions

Noncardiogenic shock only

32 admissions

No shock

1264 admissions

Met inclusion and exclusion criteria for 

chart review

Figure 1 Study cohort. *The admissions that met the following criteria were excluded: development of acute respiratory distress syndrome, massive 
pulmonary embolism, cardiac tamponade and mechanical complications of myocardial infarction, urgent coronary artery bypass surgery, cardiac surgery 
in the 7 days prior to 昀椀rst cardiac intensive care unit admission, and cardiac arrest in the 7 days prior to 昀椀rst cardiac intensive care unit admission and 
admission to cardiac intensive care unit for diagnosis other than myocardial infarction with ST-elevation/myocardial infarction without ST-elevation/ 
ADHF. Patients who developed shock within 4 h of cardiac intensive care unit admission were also excluded due to the assumption that the patient 
was likely in a peri-shock state at the time of admission.
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For instance, heart rate is the most predictive feature of cardiogenic 
shock development and having an elevated heart rate is associated 
with an increased risk of cardiogenic shock development. 
Figure 4B shows how the AUROC changes as more features are 
added in descending order of importance into the FastSHAP surro-
gate model. AUROC improved as more features were included in 
the model and the best AUROCs were similar to that obtained 
using the portable model. With only the 10 most important features 
(as displayed in Figure 4A), the FastSHAP surrogate model was able 

to achieve AUROC (vertical line in Figure 4B) similar to that when 
more features were included. We used the top 10 variables in 
Figure 4A at the time of cardiac ICU admission to predict cardiogenic 
shock with a logistic regression model and found the AUROC of the 
reduced model to be 0.758 (95% CI 0.725–0.792), which is lower 
than the AUROC for the full (0.821, 95% CI 0.792–0.850) and port-
able (0.806, 95% CI 0.777–0.835) models. We reported the aver-
aged beta coef昀椀cients and odds ratio of the reduced model in 
Table 4.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics of the study cohort

Did not have cardiogenic shock Cardiogenic/mixed shock P-value

N 1296 204

Age, mean (SD) 67.8 (13.5) 69.9 (13.9) 0.045

Female, n (%) 491 (37.9) 91 (44.6) 0.079

STEMI, n (%) 536 (41.4) 30 (14.7) <0.001

NSTEMI, n (%) 411 (31.7) 52 (25.5) 0.088

ADHF, n (%) 568 (43.8) 161 (78.9) <0.001

Creatinine, mean (SD) 1.6 (1.6) 1.9 (1.3) 0.002

Glucose, mean (SD) 158.8 (78.4) 140.5 (66.5) <0.001

Heart rate, mean (SD) 81.0 (16.8) 87.0 (18.4) <0.001

SBP, mean (SD) 130.1 (22.2) 114.0 (19.6) <0.001

DBP, mean (SD) 68.6 (15.6) 61.2 (13.1) <0.001

EF, mean (SD) 41.6 (13.9) 37.1 (15.0) 0.004

Previous CABG, n (%) 132 (14.6) 20 (24.7) 0.024

Time to event, mean (SD) 54.2 (41.1) 41.0 (42.5) <0.001

Alarm threshold

CShock risk model

Glasgow Coma Scale

Lactate

Crea nine

Heart rate

Systolic blood pressure

Mixed shock at hour 11

Discharged at hour 16

Time since cardiac ICU admission (hours)

Figure 2 The physiological time series of 昀椀ve example features from cardiac intensive care unit admission to event (discharge if no shock; shock onset 
otherwise) are shown for a patient developing mixed cardiogenic/non-cardiogenic shock (left panel). Features displayed are the Glasgow Coma Scale (a 
score for coma severity, see Supplementary material online, Methods, List of Features in the models for the three components of the score), creatinine, 
lactate, heart rate, and systolic blood pressure without support. The physiological time series were fed into the convolutional neural network-based 
model, which outputted CShock scores. CShock scores (in the right panel) were calculated for each hour from cardiac intensive care unit admission 
until the event. Two patients’ CShock scores are shown here: one patient develops no shock and gets discharged from cardiac intensive care unit at 
Hour 16 (dashed line); the other patient goes into mixed shock at Hour 11 (solid line). Cardiogenic shock detection occurs if a patient’s CShock score 
exceeds the alarm threshold value. The horizontal line indicates the detection threshold corresponding to a sensitivity of 0.8.
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Discussion
Myocardial infarction and heart failure affect nine and six million people 
in the US, respectively.23 Cardiogenic shock is a common complication 
of myocardial infarction and heart failure and its occurrence is asso-
ciated with substantial health and economic costs.1 Early recognition 
of cardiogenic shock is of paramount importance as it facilitates timely 
treatments that could potentially prevent the vicious spiral of cardio-
genic shock and reduce the health and 昀椀nancial burden. However, early 
identi昀椀cation of cardiogenic shock has remained challenging.6 We have 
demonstrated that the CShock score can predict cardiogenic shock 
with excellent AUROC. The early warning system was tested in an in-
dependent and more contemporary patient cohort from a different 
hospital and showed comparable performance as in the development 
data.

At several different PPVs, CShock was able to achieve good NPV 
(>0.92) and predict cardiogenic shock, on average, >37 h ahead of 
the shock event. With increasing PPV, sensitivity decreased and speci-
昀椀city increased as expected. ORBI is an easy-to-use score with excellent 
performance for its study cohorts.13 Unfortunately, some variables in 
the ORBI score calculation were not available for our study cohort 
such as history of previous stroke/TIA, post-pPCI TIMI 昀氀ow <3, Killip 
class, and 昀椀rst medical contact-to-pPCI delay >90 min. Some variables 
such as post-pPCI TIMI 昀氀ow <3 and 昀椀rst medical contact-to-pPCI delay 
>90 min are not relevant for acute decompensated heart failure pa-
tients subgroup in our study cohort, as ORBI was developed for 
STEMI patients only and our study cohort also had NSTEMI and acute 
decompensated heart failure patients.

The CShock risk score performed better for the younger subgroup 
compared with the older subgroup. This could be due to the fact that 
the elderly tend to have more comorbidities that were embedded only 
in the unstructured data of the EHR (e.g. clinical notes) and thus un-
accounted for in the model. The CShock risk score also performed bet-
ter for the male cohort compared with the female cohort. This was 
possibly a result of the study cohort having more male patients (918) 
as compared with female patients (582) and thus the model was better 
trained for the male cohort. The CShock risk score performed best for 
the STEMI cohort followed by the NSTEMI and acute decompensated 
heart failure (ADHF) subgroups, which is inversely associated with the 
prevalence of cardiogenic shock in the three subgroups.

The portable model is readily deployable. The portable model with 
70 features that are routinely captured in the EHR database at NYU 
Langone Health achieved an AUROC of 0.806 (95% CI 0.777–0.835). 
This model could be easily implemented at other facilities with modern 
EHR systems, as most of the variables in the portable model are avail-
able in modern EHR systems. Using the portable model instead of the 
full model for EHR deployment can make implementation easier. It is 
interesting to note that the portable model performed on par with 
the full model despite having fewer features. This could be because 
(i) it is dif昀椀cult to manually extract features from unstructured data 
(e.g. echocardiogram and catheterization data) and the lack of data 
can jeopardize the performance of the machine learning model; it is 
possible if those features were available as structured data, the per-
formance of the full model would be even better. (ii) The structured 
data captured most of the predictive information that would be embed-
ded in unstructured data; incorporating unstructured data will not im-
prove the performance of the machine learning model beyond what has 
been achieved with structured data only. We were also able to achieve 
lower but still predictive AUROC using the top 10 variables in Figure 4A
at the time of cardiac ICU admission to predict cardiogenic shock in a 
logistic regression model; this reduced model can be a good 
point-of-care tool at the time of admission.

Previous machine learning studies in broader medicine have relied on 
International Classi昀椀cation of Diseases (ICD) codes and natural lan-
guage processing of clinical notes24 to determine outcomes such as sep-
sis and septic shock. These types of approaches for determining 
outcomes are often inaccurate.25 In contrast, the outcome events for 
the cardiac ICU patients were carefully adjudicated by physicians in 
this study. This will allow the CShock score developed by this project 
to translate more easily into clinical implementation.

We constructed a novel loss function speci昀椀cally for risk scoring. The 
dilated causal CNN architecture along with the novel loss function are 
of broad applicability and can be employed for risk strati昀椀cation in mul-
tiple clinical settings such as sepsis and pulmonary embolism. 
Pretraining is a relatively new technique for improving the performance 

Figure 3 Cross-validated receiving operator characteristic for pre-
dicting cardiogenic shock using the developed CShock score with the 
Medical Information Mart for Intensive Care-III dataset.
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Table 2 (A) Positive predictive value/negative 
predictive value, sensitivity/speci昀椀city, and overall 
accuracy of the model at different thresholds. Each row 
in the table corresponds to the CShock model having a 
positive predictive value of one-fourth, one-third, and 
0.4. (B) Area under the receiver operator characteristic 
curve and area under precision recall curve (AUPRC) of 
the CShock model (in comparison, the prevalence of 
cardiogenic shock/mixed shock in the study cohort was 
13.6%)

(A)

PPV NPV Sensitivity Speci昀椀city Accuracy How early it  
can predict  
cardiogenic  
shock (h)

1/4 0.970 0.878 0.584 0.624 38.9

1/3 0.954 0.765 0.759 0.759 37.3

0.4 0.920 0.500 0.883 0.831 37.8

(B)

AUROC AUPRC

0.821 0.387
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of physiological time series. It has been widely used for improving the 
performance of imaging analysis26 and also for text via large language 
models.27 Recently, there have been a few studies employing pretrain-
ing with labels that are related but not identical to the primary out-
come of interest to improve the performance of physiological time 
series models.28 We therefore employed a similar technique to im-
prove the performance of our model in predicting cardiogenic shock 
by pretraining our model with a label such as mortality. Cardiogenic 
shock and mortality share certain physiological characteristics such 
as deranged metabolism. In this case, we showed that pretraining 
with an auxiliary task of predicting mortality for ICU patients in the 
MIMIC-III database improved the AUROC of the cardiogenic shock 
model from 0.750 (95% CI 0.715–0.786) to 0.821 (95% CI 0.792– 

0.850). We demonstrated that pretraining with a different cohort 
and a label that is related but not identical to the primary outcome 
of interest such as mortality can be a useful strategy to improve 
physiological time series model performance when there is a limited 
number of patients who meet all the inclusion and exclusion criteria 
of the study.

Shapley values are widely used to explain deep learning models and 
we used Shapley values to explain our model. We implemented a 
state-of-the-art algorithm for computing Shapley values18 to reduce 
the amount of time it would take to calculate Shapley values relative 
to the traditional way that relies on optimizing the loss given by the least 
squares characterization for each new data point.17 This model inter-
pretation analysis using Shapley values indicated that an admission diag-
nosis of STEMI is associated with a lower risk of development of 
cardiogenic shock, whereas having an admission diagnosis of acute de-
compensated heart failure is associated with a higher risk of develop-
ment of cardiogenic shock. This likely re昀氀ects advancements in acute 
coronary syndrome (ACS) management strategies over the years, 
which makes ACS patients less likely to develop cardiogenic shock. It 
could also relate to the fact that patients who were admitted with 
STEMI and acute decompensated heart failure have a higher risk of de-
veloping cardiogenic shock (12.7% in MIMIC-III study cohort), while pa-
tients admitted with STEMI but no acute decompensated heart failure 
have much lower risk of developing cardiogenic shock (4.5% in 
MIMIC-III study cohort). Among the 10 most important features, low 

Braden Scale (a risk score for identifying patients at risk for pressure ul-
cers,29 see Supplementary material online, Methods, List of Features in 
the models for the six variables in Braden Scale), Glasgow Coma Scale, 
systolic blood pressure without support, and serum sodium are pre-
dictive of cardiogenic shock development, as expected clinically.9,30,31

Lactate, a commonly used lab measurement to assess for severity of 
cardiogenic shock, is not among the 10 most important features; con-
ceivably other top features captured most of the predictive information 
that would be embedded in lactate.

There have been other recent efforts to predict cardiogenic shock 
with machine learning.32,33 However, they only considered patients 
who required inotropes/mechanical circulatory support as developing 
cardiogenic shock and used the time to initiate supportive measures 
as shock onset, which are not in alignment with the clinical criteria 
used in previous landmark trials;5,15 the early presentation of cardio-
genic shock with low blood pressure and end-organ hypoperfusion 
would be missed by their algorithms. In addition, both studies lacked ex-
ternal validation to demonstrate generalizability in other populations. 
1% of the study cohort developed cardiogenic shock in the study by 
Rahman et al.,33 which resulted in the best PPV being only 11% (with 
recall/sensitivity 27%) and would lead to the algorithm sounding 
many false alarms secondary to extreme class imbalance and missing 
the majority of cardiogenic shock patients. However, the comparison 
is limited as their score was developed using data from 昀氀oors/emer-
gency rooms and thus the population would have a lower prevalence; 
their reported PPVs of cardiogenic shock would be expected to be low-
er. Despite these challenges, like developing a dynamic risk score for 
early prediction of cardiogenic shock in cardiac ICU, developing risk 
scores for the general 昀氀oor is an important clinical problem. It can 
also be interesting to extend the CShock model to non-ICU settings 
in future studies. The study by Chang et al.32 relied on ICD codes to 
determine outcomes, which would be inaccurate as discussed above; 
they excluded mixed cardiogenic/non-cardiogenic shock patients 
from the study cohort, which could limit the algorithm’s applicability. 
Lastly, machine learning techniques have been improving for better pre-
diction of cardiogenic shock. The recent publication by Jajcay et al. de-
veloped a data processing pipeline for cardiogenic shock prediction 
using machine learning and achieved good classi昀椀cation performance.34

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Area under the receiver operator characteristic curve, number of patients, and number of patients with 
cardiogenic/mixed shock (percentage) for each age group, sex, and aetiology

AUROC Number of 
patients

Number of patients with 
cardiogenic/mixed shock (percentage)

Age (years)

<25 percentile (<59) 0.856 (95% CI 0.788–0.924) 368 40 (10.9%)

Between 25 and 50 percentile (at 

least 59, <70)

0.816 (95% CI 0.757–0.875) 361 44 (12.2%)

Between 50 and 75 percentile (at 

least 70, <80)

0.812 (95% CI 0.758–0.867) 388 58 (14.9%)

>75 percentile (at least 80) 0.772 (95% CI 0.712–0.832) 383 62 (16.2%)

Sex

Female 0.781 (95% CI 0.733–0.828) 582 91 (15.6%)

Male 0.844 (95% CI 0.807–0.881) 918 113 (12.3%)

Aetiology

STEMI 0.880 (95% CI 0.808–0.953) 566 75 (13.3%)

NSTEMI 0.780 (95% CI 0.716–0.845) 463 66 (14.3)

ADHF 0.756 (95% CI 0.716–0.796) 729 110 (15.1%)
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Their pre-processing pipeline could prove helpful for improving the 
performance of future machine learning-based risk models for cardio-
genic shock including our CShock risk model.

Given the performance of our CShock score, we hypothesize that 
this CNN-based early warning model can help cardiac ICU teams clin-
ically integrate complex data and more rapidly identify patients at risk 
for cardiogenic shock. A recent study using the Critical Care 
Cardiology Trials Network data showed that a multidisciplinary shock 
team approach improved outcomes in cardiogenic shock6 and this 
machine learning-based model could build upon this improvement, 
alerting shock teams to impending cardiogenic shock. Each cardiac 
ICU team can choose a PPV value that is best for their team in terms 
of sensitivity so that they can achieve a balance in capturing most of 
the cardiogenic shock patients but also minimizing alert fatigue. The 
exact way to implement the algorithm can take on different forms: 
it can be an alert notifying the team of the possible impending cardio-
genic shock; alternatively, the CShock score of the patient developing 
cardiogenic shock can be displayed. The best way to implement this 
algorithm will depend on each cardiac ICU team’s preference and re-
quires further studies with principles from human–computer inter-
action. The CShock model is able to predict cardiogenic shock at 
least 37 h in advance at several PPV thresholds. It can, therefore, 
help alert the shock team in advance to give the team ample time 
to prepare for impending cardiogenic shock. In summary, we demon-
strate that the CShock score we developed has the potential to pro-
vide automated detection and early warning for cardiogenic shock and 

improve the outcomes for millions of patients who suffer from myo-
cardial infarction and heart failure.

Limitations
The major limitation of the study is that the CShock model was devel-
oped and externally validated using cardiac ICU data from two academ-
ic medical centres in metropolitan areas and that the MIMIC-III database 
was collected from 2001 to 2012, which is not contemporary. Future 
studies should be conducted to evaluate the performance of the 
CShock model in other contemporary cardiac ICU databases of differ-
ent hospital practices and different patient populations, especially in po-
pulations that are different from the typical demographics seen in 
academic centres in the Northeast USA. In addition, even though we 
treated the patients who developed non-cardiogenic shock as negative 
cases in this manuscript, this could present a bias as septicaemia can lead 
to cardiac suppression. Lastly, the availability of some input features 
such as pulmonary artery catheter data, lactate, and arterial blood gas 
data could be that the team is worried of impending shock. Using those 
features in training the model could introduce a bias to the model.

Supplementary material
Supplementary material is available at European Heart Journal: Acute 
Cardiovascular Care online.
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Figure 4 (A) The 10 most important features based on Shapley values in descending order of importance (1 heart rate, 2 having an admission diag-
nosis of myocardial infarction with ST-elevation, 3 having an admission diagnosis of acute decompensated heart failure, 4 Braden Scale, 5 Glasgow Coma 
Scale, 6 blood urea nitrogen, 7 systolic blood pressure, 8 serum chloride, 9 serum sodium, 10 arterial blood pH). Each dot represents the feature values 
averaged over time of an individual patient from the training dataset with a higher value being more red and a lower value being more blue. Positive and 
negative Shapley values are associated with an increase or decrease in the risk of cardiogenic shock development, respectively. (B) Area under the re-
ceiver operator characteristic curve obtained with an increasing number of features included in the FastSHAP surrogate model using the evaluation 
dataset. Vertical line indicates the area under the receiver operator characteristic curve when only the 10 most important features (as displayed in 
Figure 4A) were included in the FastSHAP surrogate model that was trained to predict on subsets of features.

Table 4 Beta coef昀椀cients averaged across folds and the corresponding odds ratio for the reduced model

Averaged beta coef昀椀cient 0.265 −0.233 0.480 −0.377 −0.262 0.341 −0.843 −0.274 −0.049 −0.598

Odds ratio 1.303 0.792 1.617 0.686 0.769 1.407 0.431 0.760 0.952 0.550
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