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Aims Myocardial infarction and heart failure are major cardiovascular diseases that affect millions of people in the USA with mor-
bidity and mortality being highest among patients who develop cardiogenic shock. Early recognition of cardiogenic shock
allows prompt implementation of treatment measures. Our objective is to develop a new dynamic risk score, called
CShock, to improve early detection of cardiogenic shock in the cardiac intensive care unit (ICU).

Methods We developed and externally validated a deep learning-based risk stratification tool, called CShock, for patients admitted into

and results the cardiac ICU with acute decompensated heart failure and/or myocardial infarction to predict the onset of cardiogenic
shock. We prepared a cardiac ICU dataset using the Medical Information Mart for Intensive Care-lll database by annotating
with physician-adjudicated outcomes. This dataset which consisted of 1500 patients with 204 having cardiogenic/mixed shock
was then used to train CShock. The features used to train the model for CShock included patient demographics, cardiac ICU
admission diagnoses, routinely measured laboratory values and vital signs, and relevant features manually extracted from
echocardiogram and left heart catheterization reports. We externally validated the risk model on the New York
University (NYU) Langone Health cardiac ICU database which was also annotated with physician-adjudicated outcomes.
The external validation cohort consisted of 131 patients with 25 patients experiencing cardiogenic/mixed shock. CShock
achieved an area under the receiver operator characteristic curve (AUROC) of 0.821 (95% CI 0.792-0.850). CShock was
externally validated in the more contemporary NYU cohort and achieved an AUROC of 0.800 (95% Cl 0.717-0.884), dem-
onstrating its generalizability in other cardiac ICUs. Having an elevated heart rate is most predictive of cardiogenic shock de-
velopment based on Shapley values. The other top 10 predictors are having an admission diagnosis of myocardial infarction
with ST-segment elevation, having an admission diagnosis of acute decompensated heart failure, Braden Scale, Glasgow Coma
Scale, blood urea nitrogen, systolic blood pressure, serum chloride, serum sodium, and arterial blood pH.

Conclusion The novel CShock score has the potential to provide automated detection and early warning for cardiogenic shock and im-
prove the outcomes for millions of patients who suffer from myocardial infarction and heart failure.
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Graphical Abstract

Development and external validation of a dynamic risk score for early prediction of cardiogenic shock in
cardiac intensive care units using machine learning
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Introduction

Cardiogenic shock is a life-threatening condition that is characterized
by reduced cardiac output in the presence of adequate intravascular
volume, resulting in tissue hypoxia. Myocardial infarctions™* and
acute decompensated heart failure® are the two most common aeti-
ologies for cardiogenic shock.* Mortality for cardiogenic shock re-
mains high (30—50%).1'4'5 Early identification of cardiogenic shock
can facilitate interventions that may mitigate the consequences of
prolonged end-organ insult,®” such as rapid employment of haemo-
dynamic support with pharmacologic and nonpharmacologic agents,
engagement of a dedicated shock team, and prompt transfer of pa-
tients at lower-acuity hospitals to a tertiary high-volume shock
hub." In the setting of acute myocardial infarction, early recognition
of patients at high risk for cardiogenic shock allows providers to pro-
ceed with urgent revascularization of the infarct-related coronary
artery.® Therefore, timely recognition of patients at high risk for car-
diogenic shock is crucial for improving the care of patients and their
outcomes.

Despite the potential benefits, early identification of cardiogenic
shock has been challenging. Intensive care unit (ICU) providers are pre-
sented with tremendous amounts of data generated from multiple
sources including laboratory measurements, vital signs, haemodynam-
ics, and cardiac function studies. The limited ability of human providers
to process, interpret, and act upon all the data stored in the electronic
health record (EHR) in a timely fashion can lead to poor patient out-
comes. Moreover, it is difficult to provide around-the-clock monitoring
and risk assessment of cardiac ICU patients by human caregivers, espe-
cially in settings with low provider-to-patient ratios.
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Furthermore, there lacks an effective risk stratification tool for the
development of cardiogenic shock. Current risk stratification strategies
such as the Society for Cardiovascular Angiography and Intervention
classification schema® lack specific quantitative criteria, making it chal-
lenging to apply clinically. Well-established scores such as CardShock,'®
intraaortic balloon pump (IABP)-shock II,'" and Acute Physiology and
Chronic Health Evaluation II'*> were developed to predict outcomes
such as in-hospital or 30-day mortality rather than the development
of cardiogenic shock. The Observatoire Régional Breton sur
IInfarctus (ORBI) risk score'® was developed for predicting cardiogenic
shock and is transparent and can be applied at the bedside. However,
the study cohort for the ORBI risk score was myocardial infarction
with ST-elevation (STEMI) patients only.

Early identification and treatment of cardiogenic shock could lead
to better outcomes, shorter cardiac ICU length of stay, and fewer
complications in cardiac ICUs.® To improve risk stratification of car-
diac critical care patients and provide early warning of cardiogenic
shock for patients admitted into cardiac ICU with (i) acute decompen-
sated heart failure and/or (ii) STEMI or myocardial infarction without
ST-elevation (NSTEMI), we develop a new dynamic risk score, called
CShock, by training a machine learning model with a novel loss
function designed specifically for risk scoring. Our goal is to predict
the development of late cardiogenic shock after cardiac ICU admis-
sion for at-risk patients. We prepared a cardiac ICU dataset using
Medical Information Mart for Intensive Care-lIl (MIMIC-III) database™
by annotating with physician-adjudicated outcomes and relevant
features manually extracted from echocardiogram and catheteriza-
tion reports. This dataset was then used to train CShock. We exter-
nally validated the risk model on the New York University (NYU)
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Langone Health cardiac ICU database which was also annotated with
physician-adjudicated outcomes.

Methods

Preparation of a cardiac intensive care unit
dataset with physician-adjudicated outcomes
and cardiac features extracted from

unstructured data

We used a publicly available critical care database MIMIC-IIl,"" which has
8188 admissions involving at least one cardiac ICU stay during the hospital-
ization. The inclusion criterion for chart review was that patients needed to
have a possible diagnosis of acute decompensated heart failure and/or myo-
cardial infarction with or without ST-elevation. The exclusion criteria were
patients with age <18 years old or >89 years old, total hospital stay <24 h,
surgery ICU admission prior to cardiac ICU admission during the same hos-
pitalization, and shock on arrival to cardiac ICU (details in Supplementary
material online, Methods, section Chart review). The discharge summary
and echocardiogram reports of the admissions that were eligible for chart
review were subsequently split among four physicians to review, which pro-
vided information regarding additional exclusion criteria, admission diagno-
ses, outcomes (no shock vs. non-cardiogenic shock only vs. cardiogenic
shock/mixed shock), left heart catheterization, and echocardiogram data
(details in Supplementary material online, Methods, section Chart review).
Patients who developed shock within 4 h of cardiac ICU admission were
excluded due to the assumption that the patient was likely in a peri-shock
state at the time of admission. Patients’ outcomes were retrospectively ad-
judicated from chart review. Time of shock onset was determined as the
earliest time after cardiac ICU admission when (i) systolic blood pressure
was <90mmHg for at least 30 min and there was evidence of systemic hy-
poperfusion or (ii) pharmacologic agents/mechanical circulatory support
was initiated to maintain systolic blood pressure >90mmHg,’ consistent
with the clinical criteria used in prior landmark trials on cardiogenic
shock.>'® If there was a discrepancy between physician-adjudicated out-
comes and objective data, i.e. physician-adjudicated outcome revealed no
shock but there was shock based on structured data, a second physician re-
viewed both the discharge summary and the structured data to reconcile
the discrepancy (details in Supplementary material online, Methods, section
Chart review). Primary physician assessment of outcomes from discharge
summary was blinded to the predictors. The validation of the primary as-
sessment and the time of the event was done in an unblinded manner
with respect to blood pressure, lactate, creatinine, and urine output.

14
I,

Development of a dynamic risk score for

prediction of cardiogenic shock

We developed CShock to determine the risk a patient has for developing
cardiogenic shock after admission to the cardiac ICU. CShock is updated
every hour after cardiac ICU admission. A patient was considered positive
if the patient developed cardiogenic or mixed shock during their cardiac
ICU stay; the patients who developed non-cardiogenic shock only or no
shock in the study cohort were treated as negative cases. The features
used to train the model for CShock included patient demographics, cardiac
ICU admission diagnoses, routinely measured laboratory values and vital
signs, and relevant features manually extracted from echocardiogram and
left heart catheterization reports (see Supplementary material online,
Methods, List of Features in the models). The physiological time series of
the time-varying features from cardiac ICU admission to event (discharge
if no shock; shock onset otherwise) were inputted into the CShock model.
The model that underlies CShock was based on a dilated causal convolu-
tional neural network (CNN) architecture, often used for time series mod-
elling (See Supplementary material online, Methods, Model development for
more details on model architecture).

The study cohort was split 50, 25, and 25% into training, validation, and
testing in a four-fold cross-validation. Each fold had the same proportion of
patients who developed cardiogenic shock vs. did not develop cardiogenic
shock. To improve performance, the model was pretrained in an auxiliary
task of predicting in-hospital mortality for ICU patients in MIMIC-III

database. The receiving operator characteristic (ROC) curve and its corre-
sponding area under the curve (AUC) were obtained by varying the alarm
threshold that determined which patients were identified by the model as at
risk for cardiogenic shock. We considered a comparison of CShock against
the ORBI risk score but could not accurately calculate the ORBI risk
score, as many of the variables involved in the calculation of the ORBI score
were not available such as history of previous stroke/transient ischemic at-
tack (TIA), post-primary percutaneous coronary intervention (pPCl)
thrombolysis in myocardial infarction (TIMI) flow <3, Killip class, and first
medical contact-to-pPCl delay >90 min. In addition, the ORBI risk score
was developed for patients admitted for STEMI only, whereas our cohort
also included patients admitted for acute decompensated heart failure
and NSTEMI. We followed TRIPOD (Transparent reporting of a multivari-
able prediction model for individual prognosis or diagnosis)'® in reporting
the results (see Supplementary material online, Appendix for details).

External validation

The model was externally validated using a dataset that comprised patients
admitted to the cardiac ICU at NYU Langone Health who met the same in-
clusion and exclusion criteria as the study cohort. Patients’ outcomes in the
external validation cohort were retrospectively adjudicated by a physician.
The NYU Langone Health patient cohort is more contemporary than the
MIMIC-III cohort (MIMIC-IIl data were between 2001 and 2012 and NYU
data were between 2018 and 2022). A subset of the features in the full model
were available for external validation. We trained the model on the MIMIC-IlI
cohort using the subset of features. The time-dependent variables also had
missing indicators that took a value of 1 if the corresponding feature value
was missing at each unique hour after cardiac ICU admission; O otherwise.
Missing values were forward filled with the last known values and if the last
known values were not available, imputed using population mean, as they
were done for the development dataset. Primary physician assessment of
outcomes from discharge summary was blinded to the predictors. The valid-
ation of the primary assessment and the time of the event was done in an un-
blinded manner with respect to blood pressure, lactate, creatinine, and urine
output. The input features of the external validation cohort were fed into the
portable model to produce the time-varying CShock risk score for cardio-
genic shock. Receiving operator characteristic curve and its corresponding
AUC were obtained by varying the alarm threshold that determined which
patients were identified by the model as at risk for cardiogenic shock.

Model interpretation

We used Shapley values'” to provide explanations for how each feature in-
fluenced predictions. We employed FastSHAP,"® an efficient algorithm for
calculating Shapley values.'” The Shapley values were based on a FastSHAP’s
surrogate model that was trained to produce CShock risk scores given dif-
ferent feature subsets by masked prediction'®?° rather than model the cov-
ariates®! (see Supplementary material online, Methods for more details on
model interpretation). Shapley values were determined for the features
in the portable model using the training dataset.

Results

Cardiogenic shock early warning system

In total, 3220 admissions met the inclusion and exclusion criteria for
chart review (Figure 1). After applying the additional criteria (details
in Supplementary material online, Methods, section Study cohort) ob-
tained from chart review, the final study cohort comprised 1500 pa-
tients (Figure 1), comparable in size to the cohorts used to derive
other risk scores for cardiogenic shock.'"?* A total of 1264 patients
had no shock event before cardiac ICU discharge; 204 had cardio-
genic/mixed shock; and 32 had non-cardiogenic shock only (Figure 7).
The 204 patients who developed cardiogenic/mixed shock were con-
sidered positive; 1296 patients who developed non-cardiogenic shock
only or no shock in the study cohort were treated as negative cases.
The causes of non-cardiogenic shock were found to be septic or haem-
orrhagic shock during chart review. The average age of the study cohort
in MIMIC-IIl was 68.1 + 13.5. There were 918 male and 582 female
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Figure 1 Study cohort. ¥The admissions that met the following criteria were excluded: development of acute respiratory distress syndrome, massive
pulmonary embolism, cardiac tamponade and mechanical complications of myocardial infarction, urgent coronary artery bypass surgery, cardiac surgery
in the 7 days prior to first cardiac intensive care unit admission, and cardiac arrest in the 7 days prior to first cardiac intensive care unit admission and
admission to cardiac intensive care unit for diagnosis other than myocardial infarction with ST-elevation/myocardial infarction without ST-elevation/
ADHF. Patients who developed shock within 4 h of cardiac intensive care unit admission were also excluded due to the assumption that the patient

was likely in a peri-shock state at the time of admission.

patients in the MIMIC-IIl study cohort. Race, ethnicity, and socio-
economic status were not provided for the study cohort. Baseline
characteristics of the study cohort are shown in Table 1.

There were 194 input variables, including 182 time-varying (physio-
logical) and 12 static (e.g. demographic) features. The left panel of
Figure 2 demonstrates the physiological time series of five example fea-
tures that were entered into the dilated CNN-based model, which then
outputted the CShock score as shown by the blue lines in the right pa-
nel. The dashed blue line is the CShock score for a patient who devel-
ops no shock and gets discharged from the cardiac ICU at Hour 16; the
solid blue line shows the CShock score for a patient who goes into
mixed cardiogenic/non-cardiogenic shock at Hour 11. Cardiogenic
shock detection occurs if a patient’s CShock score exceeds the alarm
threshold value.

The CShock score was able to achieve an area under the receiver op-
erator characteristic curve (AUROC) of 0.821 (95% CI 0.792-0.850)
(Figure 3). Table 2A shows positive predictive value (PPV)/negative pre-
dictive value (NPV), sensitivity/specificity, overall accuracy of the model,
and how early the model can predict cardiogenic shock at different
thresholds. Each row in the table corresponds to the CShock model
having a PPV of one-fourth, one-third, and 0.4.

Model performance in different subgroups
We performed subgroup analysis based on age, sex, and aetiology (Table 3).
The model performed better for the younger group than the older group.
We also found that the model performed better for male patients [0.844
(95% Cl 0.807-0.881)] compared with female patients [0.781 (95% Cl
0.733-0.828)]. The model performed best in the STEMI subgroup com-
pared with NSTEMI and acute decompensated heart failure subgroups.
The NSTEMI and acute decompensated heart failure subgroups showed

weaker prediction compared with the entire study cohort. The STEMI sub-
group had better performance than the entire study cohort.

External validation

The model was externally validated using a dataset that comprised all pa-
tients admitted to the cardiac ICU at NYU Langone Health who met the
same inclusion and exclusion criteria as the study cohort (see
Supplementary material online, Figure S1). The external validation cohort
consisted of 131 patients with 25 patients experiencing cardiogenic/
mixed shock. The average age of the external validation cohort was
64.5 + 14.9. There were 85 male and 46 female patients. Race, ethnicity,
and socioeconomic status were not provided for the external validation
cohort. Of the 182 time-varying input features in the original model, 58
input features are routinely measured in the EHR at NYU Langone
Health. Therefore, we developed the portable model by training with
70 input features (58 were time-varying and 12 were static) using the
MIMIC-III database (list of features is available in the Supplementary
material online, Methods, List of Features in the models, denoted as in-
cluded in the portable model). The portable model was able to achieve
similar AUROC at 0.806 (95% CI 0.777-0.835) on the study cohort. It
was then externally validated using the NYU Langone Health cardiac
ICU dataset and obtained an AUROC of 0.800 (95% CI 0.717-0.884).

Model interpretation

Figure 4A presents the 10 most important features, i.e. with the largest
Shapley values; each dot represents the feature values averaged over
time of an individual patient from the training dataset with a higher value
being more red and a lower value being more blue. Positive and nega-
tive Shapley values are associated with an increase or decrease in the
CShock score, i.e. risk of cardiogenic shock development, respectively.
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Table 1 Baseline characteristics of the study cohort
Did not have cardiogenic shock Cardiogenic/mixed shock P-value
N 1296 204
Age, mean (SD) 67.8 (13.5) 69.9 (13.9) 0.045
Female, n (%) 491 (37.9) 91 (44.6) 0.079
STEMI, n (%) 536 (41.4) 30 (14.7) <0.001
NSTEMI, n (%) 411 (31.7) 52 (25.5) 0.088
ADHF, n (%) 568 (43.8) 161 (78.9) <0.001
Creatinine, mean (SD) 1.6 (1.6) 19 (1.3) 0.002
Glucose, mean (SD) 158.8 (78.4) 140.5 (66.5) <0.001
Heart rate, mean (SD) 81.0 (16.8) 87.0 (184) <0.001
SBP, mean (SD) 130.1 (22.2) 114.0 (19.6) <0.001
DBP, mean (SD) 68.6 (15.6) 612 (13.1) <0.001
EF, mean (SD) 41.6 (13.9) 37.1 (15.0) 0.004
Previous CABG, n (%) 132 (14.6) 20 (24.7) 0.024
Time to event, mean (SD) 542 (41.1) 41.0 (42.5) <0.001
| cshock risk model
Mixed shock at hour 11
15
Glasgow Coma Scale ] /—H Alarm threshold
10
2
Creatinine ] -_——— " =
;
Lactate ] §
2 ]
130 =
Heart rate ] /_/\/—ﬂ’\\
80
. 120 Discharged at hour 16
Systolic blood pressure ]_”\/\_"\ __________________
) n o0 n 16

Time since cardiac ICU admission (hours)

Figure 2 The physiological time series of five example features from cardiac intensive care unit admission to event (discharge if no shock; shock onset
otherwise) are shown for a patient developing mixed cardiogenic/non-cardiogenic shock (left panel). Features displayed are the Glasgow Coma Scale (a
score for coma severity, see Supplementary material online, Methods, List of Features in the models for the three components of the score), creatinine,
lactate, heart rate, and systolic blood pressure without support. The physiological time series were fed into the convolutional neural network-based
model, which outputted CShock scores. CShock scores (in the right panel) were calculated for each hour from cardiac intensive care unit admission
until the event. Two patients’ CShock scores are shown here: one patient develops no shock and gets discharged from cardiac intensive care unit at
Hour 16 (dashed line); the other patient goes into mixed shock at Hour 11 (solid line). Cardiogenic shock detection occurs if a patient’s CShock score
exceeds the alarm threshold value. The horizontal line indicates the detection threshold corresponding to a sensitivity of 0.8.

For instance, heart rate is the most predictive feature of cardiogenic
shock development and having an elevated heart rate is associated
with an increased risk of cardiogenic shock development.
Figure 4B shows how the AUROC changes as more features are
added in descending order of importance into the FastSHAP surro-
gate model. AUROC improved as more features were included in
the model and the best AUROCs were similar to that obtained
using the portable model. With only the 10 most important features
(as displayed in Figure 4A), the FastSHAP surrogate model was able

to achieve AUROC (vertical line in Figure 4B) similar to that when
more features were included. We used the top 10 variables in
Figure 4A at the time of cardiac ICU admission to predict cardiogenic
shock with a logistic regression model and found the AUROC of the
reduced model to be 0.758 (95% CI 0.725-0.792), which is lower
than the AUROC for the full (0.821, 95% C10.792-0.850) and port-
able (0.806, 95% Cl 0.777-0.835) models. We reported the aver-
aged beta coefficients and odds ratio of the reduced model in
Table 4.
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Figure 3 Cross-validated receiving operator characteristic for pre-
dicting cardiogenic shock using the developed CShock score with the
Medical Information Mart for Intensive Care-IIl dataset.

Discussion

Myocardial infarction and heart failure affect nine and six million people
in the US, respectively.”> Cardiogenic shock is a common complication
of myocardial infarction and heart failure and its occurrence is asso-
ciated with substantial health and economic costs.' Early recognition
of cardiogenic shock is of paramount importance as it facilitates timely
treatments that could potentially prevent the vicious spiral of cardio-
genic shock and reduce the health and financial burden. However, early
identification of cardiogenic shock has remained challenging.® We have
demonstrated that the CShock score can predict cardiogenic shock
with excellent AUROC. The early warning system was tested in an in-
dependent and more contemporary patient cohort from a different
hospital and showed comparable performance as in the development
data.

At several different PPVs, CShock was able to achieve good NPV
(>0.92) and predict cardiogenic shock, on average, >37 h ahead of
the shock event. With increasing PPV, sensitivity decreased and speci-
ficity increased as expected. ORBI is an easy-to-use score with excellent
performance for its study cohorts.'® Unfortunately, some variables in
the ORBI score calculation were not available for our study cohort
such as history of previous stroke/TIA, post-pPCl TIMI flow <3, Killip
class, and first medical contact-to-pPCl delay >90 min. Some variables
such as post-pPCl TIMI flow <3 and first medical contact-to-pPCl delay
>90 min are not relevant for acute decompensated heart failure pa-
tients subgroup in our study cohort, as ORBI was developed for
STEMI patients only and our study cohort also had NSTEMI and acute
decompensated heart failure patients.

The CShock risk score performed better for the younger subgroup
compared with the older subgroup. This could be due to the fact that
the elderly tend to have more comorbidities that were embedded only
in the unstructured data of the EHR (e.g. clinical notes) and thus un-
accounted for in the model. The CShock risk score also performed bet-
ter for the male cohort compared with the female cohort. This was
possibly a result of the study cohort having more male patients (918)
as compared with female patients (582) and thus the model was better
trained for the male cohort. The CShock risk score performed best for
the STEMI cohort followed by the NSTEMI and acute decompensated
heart failure (ADHF) subgroups, which is inversely associated with the
prevalence of cardiogenic shock in the three subgroups.

Table 2 (A) Positive predictive value/negative
predictive value, sensitivity/specificity, and overall
accuracy of the model at different thresholds. Each row
in the table corresponds to the CShock model having a
positive predictive value of one-fourth, one-third, and
0.4. (B) Area under the receiver operator characteristic
curve and area under precision recall curve (AUPRC) of
the CShock model (in comparison, the prevalence of
cardiogenic shock/mixed shock in the study cohort was
13.6%)

PPV NPV Sensitivity Specificity Accuracy How early it
can predict

cardiogenic
shock (h)

14 0970 0.878 0.584 0.624 389
13 0954 0.765 0.759 0.759 37.3
04 0920 0.500 0.883 0.831 37.8
(®)
AUROC AUPRC
0.821 0.387

The portable model is readily deployable. The portable model with
70 features that are routinely captured in the EHR database at NYU
Langone Health achieved an AUROC of 0.806 (95% CI 0.777-0.835).
This model could be easily implemented at other facilities with modern
EHR systems, as most of the variables in the portable model are avail-
able in modern EHR systems. Using the portable model instead of the
full model for EHR deployment can make implementation easier. It is
interesting to note that the portable model performed on par with
the full model despite having fewer features. This could be because
(i) it is difficult to manually extract features from unstructured data
(e.g. echocardiogram and catheterization data) and the lack of data
can jeopardize the performance of the machine learning model; it is
possible if those features were available as structured data, the per-
formance of the full model would be even better. (ii) The structured
data captured most of the predictive information that would be embed-
ded in unstructured data; incorporating unstructured data will not im-
prove the performance of the machine learning model beyond what has
been achieved with structured data only. We were also able to achieve
lower but still predictive AUROC using the top 10 variables in Figure 4A
at the time of cardiac ICU admission to predict cardiogenic shock in a
logistic regression model; this reduced model can be a good
point-of-care tool at the time of admission.

Previous machine learning studies in broader medicine have relied on
International Classification of Diseases (ICD) codes and natural lan-
guage processing of clinical notes? to determine outcomes such as sep-
sis and septic shock. These types of approaches for determining
outcomes are often inaccurate.” In contrast, the outcome events for
the cardiac ICU patients were carefully adjudicated by physicians in
this study. This will allow the CShock score developed by this project
to translate more easily into clinical implementation.

We constructed a novel loss function specifically for risk scoring. The
dilated causal CNN architecture along with the novel loss function are
of broad applicability and can be employed for risk stratification in mul-
tiple clinical settings such as sepsis and pulmonary embolism.
Pretraining is a relatively new technique for improving the performance
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Table 3 Area under the receiver operator characteristic curve, number of patients, and number of patients with

cardiogenic/mixed shock (percentage) for each age group.

, seX, and aetiology

AUROC Number of Number of patients with

Age (years)
<25 percentile (<59) 0.856 (95% Cl 0.788-0.924)
Between 25 and 50 percentile (at  0.816 (95% Cl 0.757-0.875)
least 59, <70)
Between 50 and 75 percentile (at  0.812 (95% Cl 0.758-0.867)
least 70, <80)

>75 percentile (at least 80) 0.772 (95% Cl 0.712-0.832)
Sex

Female 0.781 (95% Cl 0.733-0.828)

Male 0.844 (95% Cl 0.807-0.881)
Aetiology

STEMI 0.880 (95% Cl 0.808-0.953)

NSTEMI 0.780 (95% Cl 0.716-0.845)

ADHF 0.756 (95% Cl 0.716-0.796)

patients cardiogenic/mixed shock (percentage)

368 40 (10.9%)
361 44 (12.2%)
388 58 (14.9%)
383 62 (16.2%)
582 91 (15.6%)
918 113 (12.3%)
566 75 (13.3%)
463 66 (14.3)

729 110 (15.1%)

of physiological time series. It has been widely used for improving the
performance of imaging analysis*® and also for text via large language
models.?” Recently, there have been a few studies employing pretrain-
ing with labels that are related but not identical to the primary out-
come of interest to improve the performance of physiological time
series models.”® We therefore employed a similar technique to im-
prove the performance of our model in predicting cardiogenic shock
by pretraining our model with a label such as mortality. Cardiogenic
shock and mortality share certain physiological characteristics such
as deranged metabolism. In this case, we showed that pretraining
with an auxiliary task of predicting mortality for ICU patients in the
MIMIC-IIl database improved the AUROC of the cardiogenic shock
model from 0.750 (95% Cl 0.715-0.786) to 0.821 (95% CI 0.792—
0.850). We demonstrated that pretraining with a different cohort
and a label that is related but not identical to the primary outcome
of interest such as mortality can be a useful strategy to improve
physiological time series model performance when there is a limited
number of patients who meet all the inclusion and exclusion criteria
of the study.

Shapley values are widely used to explain deep learning models and
we used Shapley values to explain our model. We implemented a
state-of-the-art algorithm for computing Shapley values'® to reduce
the amount of time it would take to calculate Shapley values relative
to the traditional way that relies on optimizing the loss given by the least
squares characterization for each new data point."” This model inter-
pretation analysis using Shapley values indicated that an admission diag-
nosis of STEMI is associated with a lower risk of development of
cardiogenic shock, whereas having an admission diagnosis of acute de-
compensated heart failure is associated with a higher risk of develop-
ment of cardiogenic shock. This likely reflects advancements in acute
coronary syndrome (ACS) management strategies over the years,
which makes ACS patients less likely to develop cardiogenic shock. It
could also relate to the fact that patients who were admitted with
STEMI and acute decompensated heart failure have a higher risk of de-
veloping cardiogenic shock (12.7% in MIMIC-III study cohort), while pa-
tients admitted with STEMI but no acute decompensated heart failure
have much lower risk of developing cardiogenic shock (4.5% in
MIMIC-IIl study cohort). Among the 10 most important features, low

Braden Scale (a risk score for identifying patients at risk for pressure ul-
cers,”® see Supplementary material online, Methods, List of Features in
the models for the six variables in Braden Scale), Glasgow Coma Scale,
systolic blood pressure without support, and serum sodium are pre-
dictive of cardiogenic shock development, as expected clinically.”%3"
Lactate, a commonly used lab measurement to assess for severity of
cardiogenic shock, is not among the 10 most important features; con-
ceivably other top features captured most of the predictive information
that would be embedded in lactate.

There have been other recent efforts to predict cardiogenic shock
with machine Iearning.32'33 However, they only considered patients
who required inotropes/mechanical circulatory support as developing
cardiogenic shock and used the time to initiate supportive measures
as shock onset, which are not in alignment with the clinical criteria
used in previous landmark trials;>"> the early presentation of cardio-
genic shock with low blood pressure and end-organ hypoperfusion
would be missed by their algorithms. In addition, both studies lacked ex-
ternal validation to demonstrate generalizability in other populations.
1% of the study cohort developed cardiogenic shock in the study by
Rahman et al.** which resulted in the best PPV being only 11% (with
recall/sensitivity 27%) and would lead to the algorithm sounding
many false alarms secondary to extreme class imbalance and missing
the majority of cardiogenic shock patients. However, the comparison
is limited as their score was developed using data from floors/emer-
gency rooms and thus the population would have a lower prevalence;
their reported PPVs of cardiogenic shock would be expected to be low-
er. Despite these challenges, like developing a dynamic risk score for
early prediction of cardiogenic shock in cardiac ICU, developing risk
scores for the general floor is an important clinical problem. It can
also be interesting to extend the CShock model to non-ICU settings
in future studies. The study by Chang et al.> relied on ICD codes to
determine outcomes, which would be inaccurate as discussed above;
they excluded mixed cardiogenic/non-cardiogenic shock patients
from the study cohort, which could limit the algorithm’s applicability.
Lastly, machine learning techniques have been improving for better pre-
diction of cardiogenic shock. The recent publication by Jajcay et al. de-
veloped a data processing pipeline for cardiogenic shock prediction
using machine learning and achieved good classification performance.*


http://academic.oup.com/ehjacc/article-lookup/doi/10.1093/ehjacc/zuae037#supplementary-data

Development and external validation of a dynamic risk score for cardiogenic shock

479

High

Heartrate =«
STEMI diagnosis
ADHF diagnosis

Braden Scale .

Glasgow Coma Scale

Blood urea nitrogen

.
]
.

Feature value

Systolic blood pressure
Serum chloride
Serum sodium

Arterial blood pH

Low

02
Shapley value

AUROC

08
(]
Ay oh,
Q .-PW\‘”./.\% ".‘./.
*
' d
L]
07 .
Top 10 features included
[ ]
06 1 : .
0 £l &0

Number of features included in the model

Figure 4 (A) The 10 most important features based on Shapley values in descending order of importance (1 heart rate, 2 having an admission diag-
nosis of myocardial infarction with ST-elevation, 3 having an admission diagnosis of acute decompensated heart failure, 4 Braden Scale, 5 Glasgow Coma
Scale, 6 blood urea nitrogen, 7 systolic blood pressure, 8 serum chloride, 9 serum sodium, 10 arterial blood pH). Each dot represents the feature values
averaged over time of an individual patient from the training dataset with a higher value being more red and a lower value being more blue. Positive and
negative Shapley values are associated with an increase or decrease in the risk of cardiogenic shock development, respectively. (B) Area under the re-
ceiver operator characteristic curve obtained with an increasing number of features included in the FastSHAP surrogate model using the evaluation
dataset. Vertical line indicates the area under the receiver operator characteristic curve when only the 10 most important features (as displayed in
Figure 4A) were included in the FastSHAP surrogate model that was trained to predict on subsets of features.

Table 4 Beta coefficients averaged across folds and the corresponding odds ratio for the reduced model

0.265
1.303

-0.233
0.792

0.480
1.617

Averaged beta coefficient
Odds ratio

-0.377
0.686

—-0.262
0.769

0.341
1.407

—0.843
0.431

-0.274
0.760

—-0.049
0.952

—0.598
0.550

Their pre-processing pipeline could prove helpful for improving the
performance of future machine learning-based risk models for cardio-
genic shock including our CShock risk model.

Given the performance of our CShock score, we hypothesize that
this CNN-based early warning model can help cardiac ICU teams clin-
ically integrate complex data and more rapidly identify patients at risk
for cardiogenic shock. A recent study using the Critical Care
Cardiology Trials Network data showed that a multidisciplinary shock
team approach improved outcomes in cardiogenic shock® and this
machine learning-based model could build upon this improvement,
alerting shock teams to impending cardiogenic shock. Each cardiac
ICU team can choose a PPV value that is best for their team in terms
of sensitivity so that they can achieve a balance in capturing most of
the cardiogenic shock patients but also minimizing alert fatigue. The
exact way to implement the algorithm can take on different forms:
it can be an alert notifying the team of the possible impending cardio-
genic shock; alternatively, the CShock score of the patient developing
cardiogenic shock can be displayed. The best way to implement this
algorithm will depend on each cardiac ICU team’s preference and re-
quires further studies with principles from human—computer inter-
action. The CShock model is able to predict cardiogenic shock at
least 37 h in advance at several PPV thresholds. It can, therefore,
help alert the shock team in advance to give the team ample time
to prepare for impending cardiogenic shock. In summary, we demon-
strate that the CShock score we developed has the potential to pro-
vide automated detection and early warning for cardiogenic shock and

improve the outcomes for millions of patients who suffer from myo-
cardial infarction and heart failure.

Limitations

The major limitation of the study is that the CShock model was devel-
oped and externally validated using cardiac ICU data from two academ-
ic medical centres in metropolitan areas and that the MIMIC-IIl database
was collected from 2001 to 2012, which is not contemporary. Future
studies should be conducted to evaluate the performance of the
CShock model in other contemporary cardiac ICU databases of differ-
ent hospital practices and different patient populations, especially in po-
pulations that are different from the typical demographics seen in
academic centres in the Northeast USA. In addition, even though we
treated the patients who developed non-cardiogenic shock as negative
cases in this manuscript, this could present a bias as septicaemia can lead
to cardiac suppression. Lastly, the availability of some input features
such as pulmonary artery catheter data, lactate, and arterial blood gas
data could be that the team is worried of impending shock. Using those
features in training the model could introduce a bias to the model.

Supplementary material

Supplementary material is available at European Heart Journal: Acute
Cardiovascular Care online.


http://academic.oup.com/ehjacc/article-lookup/doi/10.1093/ehjacc/zuae037#supplementary-data
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