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Energy Optimization for Federated Learning on
Consumer Mobile Devices With Asynchronous
SGD and Application Co-Execution

Cong Wang

Abstract—Federated learning relies on distributed training on
mobile device. The previous research mainly focuses on addressing
the heterogeneity from computation and data distributions. As
battery life remains to be the performance bottleneck on mobile de-
vices, energy consumption from the persistent training tasks poses
great challenges. In this paper, we propose an online scheduler to
optimize energy usage by leveraging application co-execution and
asynchronous gradient updates. Motivated by a series of empirical
studies, we find that placing the training process in the background
while co-running a foreground application gives the system a large
energy discount. Based on these findings, we first study an offline
baseline assuming all the application occurrences are known in
advance, and propose a dynamic programming solution. Then we
propose an online scheduler using the Lyapunov framework to
exploit the energy-staleness/slowdown trade-offs and prove the con-
vergence at the rate of 1/ VK. We conduct extensive experiments
on a mobile testbed with devices from different vendors. The results
indicate 10-30% energy saving and much faster convergence com-
pared to FedAvg and FedProx with 3-4% higher testing accuracy
under the non-IID data setting. The design is also validated in terms
of resource utilization, memory bandwidth and Frame-Per-Second
rates.

Index Terms—Asynchronous federated learning, energy-
efficiency, on-device training, power-aware online optimization.

1. INTRODUCTION

HESE years, we are witnessing our planet warming up
T at an unprecedented rate, causing irreversible change to
the climate [1]. Unfortunately, the recent advance in Al plays
an increasing role in this tragedy [2]. For example, training a
large transformer model would generate the same amount of
carbon emissions as five fuel vehicles in their entire lifetime [3].
The study in [4] shows that 40% of the energy comes from
centralized cooling while training is performed in data centers.
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On the other hand, Federated Learning (FL) rises as a new
paradigm to preserve user privacy by conducting training on
distributed mobile/edge devices [6], [7], [9], [10]. It is shown
that federated learning potentially offers better energy efficiency
because centralized cooling is no longer required [5].

Although FL is promising to reduce the overall carbon foot-
print, by migrating high-intensity training tasks to the mobile
CPUs on consumer devices, the complex energy implication and
useability impact are far from clear [12], [13]. In this paper, we
seek energy minimization of FL tasks while making the device
still usable. With the prevalent dominance of ARM’s architec-
ture in the mobile market [59], we focus on the big.LITTLE
CPU cores [29] that are designed to achieve energy-efficient
multi-tasking. Big. LITTLE uses the big cores of high throughput
for foreground applications and the low-power little cores for
system and background processes. However, the Ul framework
on mobile devices is still event-driven, user-centric and the
hardware/software architecture is optimized to respond to the
foreground activities with less parallelism, whereas training
acceleration requires thread-level parallelism. To avoid interfer-
ing with user’s foreground activities, we designate the training
thread as a background service [34], which can be activated
once a set of conditions such as networking, battery energy are
met. Such user-driven approach raises new questions about per-
formance and energy when both resource-intensive foreground
and background processes co-exist in the system.

Through some empirical studies, we found that when and
how to dispatch the training tasks to what cores have con-
trastive energy footprint on the mobile devices. Surprisingly,
once the highly paralleled training threads are running in the
background (pinned to the little cores), simultaneous execution
of a foreground application gives the entire system a deep energy
discount (about 30-50%) compared to running the foreground
application and training separately, with little performance im-
pact measured by Frame per Second (FPS) and memory access.
Thus, it is preferred to co-execute application and training for
energy saving purposes.

Such energy-saving incentives pose new challenges to the ex-
isting FL pipelines since the mainstream frameworks are built on
Synchronous Stochastic Gradient Descent (Sync-SGD) [6], [7],
[10]. All participants proceed in lock-step and their parameters
are averaged at the parameter server which is subject to the
computational and statistical heterogeneity from a dynamic
mobile environment [7], [10]. Worst-case stragglers (slowest
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workers) could be orders of magnitude slower than the average
execution per epoch, especially under severe thermal throt-
tling [12], where the computing power is underutilized. Asyn-
chronous SGD (ASync-SGD) is a natural solution to tackle com-
putational heterogeneity [14], [20]. It allows fast participants
to proceed in lock-free steps while the global parameters are
exchanged and kept with the most updated ones. Without such
barrier from the stragglers, the system enjoys higher throughput
over fixed wall-clock period. However, its potential is yet to be
fully explored for federated learning on mobile devices.

In contrast to a large body of works, in this paper, we combine
system-level opportunities with machine learning algorithms to
achieve fine-grained energy optimization for federated mobile
systems. Such integration faces several cross-level challenges:
1) the success of asynchronous learning relies on well-managed
staleness in the system, especially for non-1ID data, that the stale
updates from the stragglers should not diverge too much from the
current directions [15], [20], i.e., the staleness is bounded with
low variance and properly penalized to improve model accuracy
and convergence [48], [49]. Hence, the first challenge comes
from the statistical instability while waiting for energy-saving
opportunities. 2) Since the patterns and future occurrences of
applications are non-deterministic, the system needs to make
real-time decisions based on the known priori. 3) The multi-
faceted interplay among control decision, training throughput,
energy and performance slowdown requires a thorough opti-
mization formulation to account for all these factors. In addition
to power saving, we investigate how the system-level control
decision would propagate upwards to affect model convergence,
wall-clock training time and the foreground applications.

To tackle these challenges, we start with an offline scheduling
problem assuming the access to all future occurrences of the ap-
plications, which serves as the optimal upper bound. We adopt a
recently proposed metric called gradient gap to measure the dif-
ference between model parameters in their norm magnitude [48],
[49], and formulate offline optimization into a Two Dimen-
sional Knapsack Problem [45] with a pseudo polynomial-time
dynamic programming solution. To enable real-time decision
making, we further propose an online optimization algorithm
based on the Lyapunov framework [46], which balances the
trade-off between energy, staleness and performance slowdown.
For control knob V, it is proved to achieve the [O(1/V), O(V)]
energy-staleness/slowdown trade-off, which only requires the
current information of system dynamics and queue backlogs.
The convergence of the online scheme is also proved. The
contribution of this work is summarized below.

1) Motivated by a series of key findings in the experiments,
we leverage ASync-SGD for energy optimization of fed-
erated training tasks. To the best of our knowledge, this
is one of the few works that integrate high-level machine
learning algorithms with low-level system dynamics on
consumer mobile devices.

2) We formulate both offline, online optimization problems
and design an efficient online scheduler while ensuring
staleness and performance slowdown in the long term.
We also prove the online scheme converges at the 1/v/K
rate under bounded latency.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 11, NOVEMBER 2024

3) We conduct extensive experiments on a mobile testbed
with 6 different devices using the MNIST and CIFAR10
datasets [51], [52]. The results demonstrate up to 30%
energy saving and faster convergence compared with
FedAvg [6], FedProx [7] in both IID and non-IID data
distributions and only 10% away from the ideal offline
solution. We also evaluate the adaptation under daily usage
and collect system traces from the hardware counters to
validate our design.

II. BACKGROUND
A. Energy Optimization

Battery optimization on consumer mobile device develops
solution across both hardware and software stacks, e.g., ARM’s
asymmetric CPU architecture [29], dynamic voltage and fre-
quency scaling of the processing cores [30], resolving “energy
bugs” from unexpected energy consumption [31] and App-level
energy monitoring in Android [32]. Most on-device learning re-
search focuses on prominent challenges of minimizing inference
latency and memory footprint [33].

As FL requires on-device training [13], the pressure of these
persistent workloads on battery energy and usability is not quite
clear. A viable way to avoid interrupting normal usage is to
dispatch the long-running training workload as a background
service [34], so the big cores can respond to the foreground
Apps promptly. From the performance perspective, the sepa-
ration of workloads across the big and little clusters reduces
the coherence traffic across the heterogeneous cores [35]; from
the energy perspective, since a running foreground App has
already activated shared resources on the big cores, co-execution
of training on the little cores could take advantages of such
energy disproportionality. In [38], itis shown that optimal energy
saving of task bundling is realized when the overall power
state is not elevated. In fact, the idea of bundling different
tasks dates back to piggyback sensing with Apps such as web
browsing and phone calls on symmetric core systems [39]
and coalescing network packets to reduce tail energy on the
wireless interface [36], [37]. However, these early works cannot
be readily applied to federated learning. The closest works to
ours are [36], [37] that develop online schedules based on the
Lyapunov framework for packets coalescing. This paper takes a
step forward to consider multi-faceted trade-offs between energy
and staleness/performance slowdown, and fills the gap between
federated learning and mobile systems to achieve higher energy
efficiency.

B. Federated Learning

The principal FL schemes are built on synchronous SGD [6],
in which the clients proceed with a barrier until everyone finishes
or the slower updates are discarded. As pointed out in [7],
[9], [10], such coordinate-wise synchronization is subject to
heterogeneity in a mobile environment due to diverse hardware
configuration, network bandwidth, user behavior and data distri-
butions. A plethora of works focus on addressing the objective
inconsistency between the local and global models. FedProx
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introduces a proximal term to augment local gradient direc-
tions and reduces solution bias [7]. An objective re-formulation
is proposed in [8] that confines the local models around the
mean values with a quadratic penalty term. Similarly, vari-
ance reduction method is used to correct diverging gradient
updates with fewer communication rounds [9]. Another line
of works optimize the local training epoches. FedNova devel-
ops a new aggregation rule to allow local variations such as
different number of epoches and optimizers [10]. A control
algorithm is proposed in [11] to find the optimal aggregation
frequency under the resource budget. These studies improve
the computational and statistical efficiency under the Sync-SGD
framework.

On the other hand, asynchronous SGD is a natural solution
to tackle computational heterogeneity. The original implementa-
tion can be traced back to HOGWILD! [14] in multicore systems,
where multiple threads are allowed access to shared memory
and updating the model with a fast convergence rate at 1/k.
Although asynchronous updates improve overall throughput by
eliminating synchronization overheads, the slower clients may
work on a staled copy of the model and their updates would
have negative impact on the overall convergence. Considerable
efforts have been devoted to understanding and mitigating stale-
ness [15], [16], [17], [18], [20], [48], [49]. Taylor Expansion and
Hessian approximation are utilized to compensate the delay from
stale gradients [15]. A regularized term is introduced to reduce
the variance due to staleness [16]. Different forms of penalties
have been applied to staled gradients to facilitate model conver-
gence [18], [48], [49]. From the momentum perspective, stale
gradients can be considered as an implicit momentum that damp-
ens oscillation by adding a portion of the previous (stale) updates
to the current update [17]. As shown in [20], optimizers have
different degrees of robustness to staleness. Some recent works
attribute the convergence speedup to such implicit momentum
and a large pool of clients [24], but the tension between potential
divergence and training acceleration is not fully understood at
this stage. Unfortunately, most of the research in Sync-SGD [6],
[71,181,[9],[10],[11]and ASync-SGD [14], [15],[16],[20], [24]
lie in the confined areas of machine learning and optimization
theories, but the interaction to the underlying system is not fully
explored, particularly for achieving energy-efficient computa-
tion on consumer mobile device. Different from these works on
the algorithm level, we combine ASync-SGD with system-level
opportunities to reduce energy footprint in federated mobile
systems.

Different from the earlier version [25], we formulate execu-
tion time into the optimization to account for the trade-offs be-
tween energy consumption and gradient staleness/performance
slowdown while making online decisions. While [25] only
contains empirical evaluations, we prove convergence under
a bounded latency by connecting with the Lyapunov-based
online schedules. On the system side, this work provides new
findings to unveil the relation between memory access and per-
formance slowdown of co-execution contentions. By targeting
resource-constrained mobile architectures, this work also adds
to the existing efforts of scheduling conflict in multi-tenant CPU
clusters [26].
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Fig. 1. Power consumption of different schedules (a) Pixel2 (b) Hikey970
Dev. Board. The green bars (co-running) represent about 35-50% power saving
compared to the sum of blue bars (separate).

III. MOTIVATION
A. Preliminary Experiment

We motivate the design by conducting preliminary power
measurements on the HiKey 970 Development Board [40] and
Pixel2 smartphone (see Section VII for implementation details).
We compare the power consumption of two approaches: 1)
Schedule training as a service in the background, separately
from the application (denoted by separate). 2) Schedule training
to co-run with the foreground application (co-execution). Since
applications have diverse resource demands and user interaction
patterns, we choose some popular applications from Google
Play, and summarize important observations in the following.

Observation 1. (Power Saving): Compared to separate sched-
uling, co-execution can potentially offer 35-50% power saving
(Fig. 1).

Explanation: The power saving originates from temporal
sharing of the hardware resources. Though the big/little cores
have their own L1/L2 cache, the memory bandwidth is shared in
the SoC. Once the highly-paralleled training process is started
on the little cores, the memory resource is activated and kept at
certain power state. Having a foreground application executed on
the big cores does not elevate the total power state too much, thus
resulting in a substantial energy saving compared to separate
execution. This finding is cross-validated with the homogeneous
cores of Nexus6 as resource contention on the same CPU cluster
degrades the power saving benefits (see Section VIII). Though
shared resources offer better energy efficiency, they also lead to
potential slowdown as illustrated below.

Observation 2.1 (Performance Slowdown - Background
Training) Performance of background training is proportional
to the accessing rates to the main memory (Fig. 2(a)), which
serves as a hardware indicator of the interference between back-
ground/foreground applications.

Explanation: 2.1 is similar to the observations in [27] on
desktop/servers, where the performance of memory-bound ap-
plications are found to be proportional to how fast the memory
requests are served. This is due to memory access priority
assigned to the applications by the memory controller, and the
foreground applications are typically given higher priority. E.g.,
Tiktok tends to have higher resource utilization while the user is
swiping for the next video and we observe less memory access
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Memory Access of Background Training FPS: running Tiktok only
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Performance impact from co-executing the background training and foreground applications: (a) Performance slowdown versus memory access from the

background training co-running with different applications; (b)-(d) FPS of Tiktok, Angrybird and Candycrush co-executed with background training.
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from the background training process. Co-running with these
applications causes temporary contention on the memory bus
and reduces the memory service rate of the background training
process.

Observation 2.2 (Performance - Foreground Apps): Co-
execution has negligible slowdown measured by FPS rendering
to the foreground applications (Fig. 2(b—d)).

Explanation: With the co-execution of training and gaming,
we notice a bit more frequent stuck while gaming, especially
at loading different background, that the FPS temporarily drops
near zero. However, as shown the figure, most of the FPS values
stay around 60 frames/s to deliver real-time user experience.
More experimental results are available in Fig. 10.

IV. SYSTEM MODEL

This section describes the system model and definitions.
Training consists of the following procedures: 1) A device pulls
the latest model from the server when it is ready; 2) then it is
scheduled for training either immediately or waiting until an
application co-running opportunity; 3) the model is pushed to
the server after the local training finishes; 4) the global model
is updated and ready to be downloaded by other users. Fig. 3
shows an example with two users in the time interval [t — 26, t].

Example of asynchronous federated learning. The scheduler decides whether to launch training immediately or co-execute with the foreground applications.

Att — 26, User 1 performs training immediately for 9 time units,
and User 2 executes training with CandyCrush after waiting for
2 time units. The global model is updated at ¢t — 17 and ¢ — 13
when Users 1 and 2 finish training respectively. Next, User
1 waits Tiktok for 7 time units and User 2 performs training
immediately. Likewise, the global model is updated at t — 3
and ¢.

For simplicity, we use the average power consumption: co-
execution takes P power at the i-th device; separate execution
of application and training consume P{ and P? respectively;
otherwise, P? power is consumed while idling. According
to device profiling, we typically have P < PP < P® < Pf
and Pf < P! + P?. We assume the application would at least
last for the duration of the training task in the background.
While co-running, background training would have a poten-
tial slowdown of d; and the foreground slowdown is mea-
sured by FPS (evaluated in Sec.VIII-C2). To quantify gra-
dient staleness, we formally define delay and gradient gap
below.

Definition 1. (Lag): Lag L, is defined as the number of
updates that have been made to the global model within de-
lay 7, e.g., a device downloads the model at ¢t — 7 and it
takes 7 (waiting, training and communication) until the next
update.
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TABLE I
LIST OF IMPORTANT NOTATIONS
Notation Definition
Pg, PP Average power consumption of separate executions of foreground application and background training
pPe pPe Average power consumption of training/application co-execution, and device idling.
Tt,gt,0:  Delay, gradient gap and model parameters at time ¢.
a(t),s(t) Control decision {“schedule”, “idle”}, application status {“app”, “no app”}.
In the example of Fig. 3, there is one update from User 1 at ¢ ¢ ¢

t — 17 between [t — 26,t — 13], so the lag of is L,, = 1. Lag
only gives a coarse estimation of staleness, since the gradient
difference between two updates is not captured. We further
leverage the concept of gradient gap introduced by [48], [49].
Definition 2. (Gradient Gap): According to the L-Lipschitz
continuity, the gradient gap gy, is bounded by the norm difference
between the model parameters at 6; - and 6, [48], [49],

gr =IVF(r7) = VEO)> < L6+ = 6,]°. (1)

Table I summarizes the important notations used in this paper.

V. OFFLINE SCHEDULING BASELINE

We first study an offline problem by assuming all the ap-
plication occurrences are known. This serves as a baseline for
the online algorithm proposed next. For the offline problem,
our goal is to maximize power saving of all n users in a time
slot with bounded staleness and performance slowdown. The
power saving is denoted by s; = P? + P? — P¢, if the decision
is co-execution (decision variable x; = 1); otherwise, s; = 0
(z; = 0). The total performance slowdown is d;, when z; = 1;
otherwise, it is 0.

Offline Problem Formulation:

P1: maxz SiT; ()
i=1
S.t.
1 n
*ZQi(Ti;wi) < Gm, 3)
n <
i=1
1 n
— Z dixi S Dm. (4)
nia

Constraints (3) and (4) impose that the average gradient gap and
performance slowdown are bounded by the maximum gradient
difference G,, and slowdown D,, respectively. The problem
is a natural extension to the Two-Dimensional Knapsack Prob-
lem [45], which maximizes the total value of items under an
area capacity (length and width) of packing rectangle blocks in a
container. A unique challenge to our problem is the dependence
between the gradient gap and scheduling decisions noted by
gi(Ti;2;) in Constraint (3), i.e., the gradient gap of a user
depends on the scheduling decisions from other users, and this
unfortunately, forms a difficult looping situation. To resolve
this problem, we derive an upper bound of the lag given the
information of application arrivals and training/communication

&b

x;=0;Ly<4 t xp=1;L,;<3

Fig. 4. Illustration of Property 1 for different scheduling decisions of user <.
time. Once this upper bound is satisfied, we have a feasible, near-
optimal solution. The derivation is illustrated in the following
property.

Property 1: At time t, given the waiting time for application
¢, execution time ¢ (training and communication) of all the
users {1,2,...,n}, L., is bounded by,

e, Mty 7 =0
JeL, ... ,n—
Lﬂ < Z ]l{t+t;:§t+t,‘;+t,‘f}7 z; = 1. %)

je{l,...,n—1}
1y is 1if the condition is satisfied. Depending on the scheduling
decision x;, the lag is bounded by the maximum number from the
restusers j € {1,...,n — 1} who finish before 4, i.e., the worst
case is when they are all scheduled immediately at ¢; otherwise,
they might wait for the applications first and update to the global
model after ¢ finishes, which does not count towards the lag
value. Fig. 4 shows an example for user ¢ with execution time
t7 and t + t5: when x; = 0, there are 4 users {1,2,4,5} who
finishes before ¢ so L,, < 4; when x; = 1, there are 3 users
{2,3,4} who finishes before 7 so L,, < 3.

The gradient gap can be calculated by (1), where the number
of discrete model updates between [t — 7,t] is bounded by
(5). Hence, we can approximate g¢;(7;;x;) in Constraint (3)
and solve the 2D Knapsack problem by utilizing its recursive
sub-structure:

Sifl(xay% 0<x S 9(7'7,,.137,),0 < ) S dia

max {Si1(2,y), Si-1(x—g(7i;2:),y — di)+5i} ,
9(1is25) <@ <nGpydi <y <nDpy,.

Si(x,y)=

(6)
Si(xz,y) represents the maximal power saving given the two
states (x, y), where x and y represent gradient staleness and per-
formance slowdown respectively. The maximal value S;(z,y)
is calculated by comparing S;_1(x, y) with the previous values
of S;_1(x — g(1i;2;),y — d;) plus the power saving s;. The
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solution can be tabulated by a 2D matrix with the rows from
0 to nG,, and the columns from O to nD,,, thereby having a
total O(n3G,,, D, ) computation complexity for n users.

VI. ONLINE SCHEDULING

Offline scheduling assumes the future application arrival as a
priori. In this section, we propose an online scheduling based
on the Lyapunov framework that only relies on the current
observation. The Lyapunov framework defines a task queue for
the entire system.

Definition 3. (Queue Dynamics): The task queue represents
the number of users waiting to be scheduled. Their arrival is
considered as arandom process. The queue backlog will increase
by A(t) if a number of A(¢) users are ready to start training at ¢.
If b(t) users finish their training, the backlog is reduced by b(t).

The system makes a control decision «(t) =
{‘schedule’, ‘idle’} at time ¢. Recall that the power
consumption P;(¢) of the i-th device depends on how
training is scheduled and the current application status

s5(t) = {‘app’, ‘no app’}, ie., Pi(t) = Pi(a(t), s(t)):

Pr aft) = idle’, s(t) = ‘app’
) PP, a(t) = ‘schedule’, s(t) = ‘no app’
Pi(t) = P, a(t) = ‘schedule’, s(t) = ‘app’ @
P2, a(t) = ‘idle’, s(t) = ‘no app’.

The corresponding service rate is,

1, a(t) = ‘schedule’
bilt) = {0. a(t) = “dle’ ®)

The total service rate is b(t) = > ;" bi(t).

Online Problem Formulation: Our goal is to minimize the
time-averaged energy consumption of training tasks in the sys-
tem,

P2: liqujip % tzzl ; E[P;(t)] ©)
S.t.
1 T n
li;nj;clp T ; ; Gt—7it < Gm (10)
1 T n
111Tnj;1pﬁ22di(t) < Dy, an

t=1 i=1
Constraints (10), (11) bound the gradient gaps and performance
slowdown from all the users in a time-averaged sense. P2 can be
transformed into the queue stability problem under the Lyapunov
optimization framework. Given the arrival rate A(t) and service
rate b(t), the queueing dynamics is,
Q(t + 1) = max (Q(t) — b(1),0) + A(t)  (12)
with the initial Q(0) = 0. We define virtual queues H (t), J(t)
for the two constraints,
H(t+1) =max (H(t) + G(t) — nGy,,0)

J(t+1) =max (J(t) + D(t) —nDy,0)

13)
(14)
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where G(t) = Y1 | Gt—rit, D(t) = > i1 d;(t), and the ini-
tial H(0),J(0) = 0. We concatenate the actual and virtual
queues into O(t) = [Q(t), H(t), J(t)]. The Lyapunov function
L(©(t)) for the backlogged training tasks is,

LOW) 2 S QWP + HH? + J(@?), (9
and the Lyapunov drift function A(O(t)) is:
AO() 2E[LO( +1)) - LO®)OM] (16

It represents the change in the Lyapunov function in ¢ as the
scalar volume of queue congestion and transforms P2 into a
new problem of minimizing the drift-plus-penalty:

P3: minA(O(t)) + VE[P(t)|O(t)] (17)

V' is the control parameter to balance energy and stale-
ness/performance slowdown. According to the Lyapunov frame-
work, the key is to obtain the upper bound of the drift as described
in the following Lemma.

Lemma 1: Given the queue backlogs O(t), arrival rates A(t),
service rate b(t), gradient gaps and performance slowdown, the
upper bound for the drift-plus penalty term is defined as,

A(O(t) + VE[P(t)|O(t)] < B+ VE[P(t)|0(t)]
+ QME[A(t) — b(t)|O(t)] + HHE[G(t) — nG,,|O(1)]
+ J(E[D(t) — nD,,|O(t)] (18)

where the constant B = 1(n®+ G2, + D2, +n*G% +
n2D?2)) is a positive constant.
Proof: Applying (15) to (16) we have,

O(t) =E[L(O(t +1)) — L(O(1))|O(1)]

= %E[@(t +1)° - 0(t)?%]

%E[Q(t + 12+ HE+1)2+ Tt +1)2—Q(t)* — H(t)?

— J()?]

Since max?{z,0} < 22, from (12) and (13) we have,

QX (t+ 1)+ H2(t+1) + J(t +1)* < Q*(t)+(A(t)~b(1))
+2Q(t)(A(t) — b(t)) + H2(t) + G(t)* + 2H(H)G(t)
+n2G2, + J(t) + D*(t) + 2J(t)D(t) + n*D2,

Combine (19) and (20),

O(t) < B+E[Q(t)(A(t) — b(1)|Q(t)| +E[H()G(t)|H(1)]

+E[J(t)D(t)]J(1)] (21)

where the constant B = (A2, + G%, + D2, +n’G2, +
n?D?). Amax is the maximum of A(t) — b(t), which equals
to the total number of users n. G and D, are the maximum
gradient gap and performance slowdown in the system. Thus,
(21) completes the proof of Lemma 1. O

Our algorithm observes the queue backlogs of
Q(t), H(t),J(t) and the current application usage s(t) to

(19)

2

(20)
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make a decision of a(t) = {‘schedule’, “idle’ } that minimizes
the right-hand side (R.H.S.) of the drift bound (18), which is
equivalent to the following objective.

min (vz Pit) = Q) Yo bi(t) + HO'S gioro,
i=1 =1 i=1

HIHY di<t>>

This formulation makes online decisions based on the current
observations and does not need a-priori knowledge of the arrival
rates. With the information of application usage, scheduling
decisions can be made at the parameter server in a centralized
manner within O(n). However, centralization carries certain
privacy risks since it requires private information of application
usage, which can be used to re-identify specific users [47].

(22)

A. Distributed Implementation

To preserve privacy, we transform the scheme into a dis-
tributed implementation as described below. The server main-
tains a checkpoint for each user ¢’s most recent update 6;_., and
the queue backlogs. In each time slot, it computes the gradient
gap based on all the previous updates 0;_,, and the current
model 6,, then transmits the values of gradient gaps and queue
backlogs to the users. Each user calculates to minimize (22)
based on application usage and the information received from
the server. Hence, application status is retained on-device and
the information shared are gradient gaps and queue backlogs,
which reveal little private information. It also reduces the uplink
communication overhead from the users. If the control decision
is «a(t) = {‘schedule’}, the user performs training and the
global model is updated as,

Nt

0y =0y, — —V I,  (0; 1) (23)

Mt
where 6 is the model time-stamped from the previous model
update at . 0, is the staled model. -y; is a variable to penalize
the staled updates, which can have various forms in the imple-
mentation. For example, set the penalty to the lag from delayed
updates [18], cosine similarity of gradient directions [20] or
gradient gaps [49]. The entire procedure on the server and user
side are described in Algorithms 1 and 2.

B. Illustration of Control Decisions

To minimize (22), H(t) > " | gi—r,.c and J(t) > i d;(t)
can be viewed as penalty terms when there are backlogs
in the virtual queues. When there is no backlog at all
(Q(t), H(t), J(t) = 0), we only have the first term in (22) and
the control decision is to always set the device to idle because
idling has the minimum power consumption. This matches with
the intuition to wait for better co-running opportunities if there
is enough space for backlogged workloads.

Without Virtual Queue: There could be cases that there are
queue backlogs in Q(t), but for the virtual queue H (t), the cu-
mulative gradient gap and performance slowdown are within the

10241

Algorithm 1: Online Algorithm (Parameter Server).

1 Input: Control decision «;(t), model checkpoints
0+_+,, Vi, learning rate 7, and staleness penalty ;.

2 Output: Updated model 6;.

3 fori=1ton do

4 | Compute queue backlogs based on «;(?).

Compute gradient gap gi—, 1 = ||01—r, — 6,1,

Transmit queue backlogs and gradient gap to the

corresponding users.

7 | Receive gradient updates F¢, _ (0;—r,) from the

user and update the global model:

8 Ht — Htp — %VF&*U (Qt_ﬂ).

5
6

Algorithm 2: Online Algorithm (User ¢).

1 Input: Receive queue backlogs Q(t), H(t), J(t) and
gradient gap g(t — 7;,¢) from server, control
parameter V/, and action space 2.

2 Output: Scheduling decisions.

3 o;(t) <~ argmin  VPi(t) — Q(t)bi(t) + H(t)g(t —

is0isgt—7;,t,0i
Tis t) + J(t)dz(t)
4 Inform control decision «;(t) to server.
5 if a;(t) = ‘schedule’ then

6 Update the local model for all N batches:
N
9,5 — 975,7—1. — Nt Z VFft—ri,b(et*Ti)
b=1
7 | Upload the gradients to the server.

bounds of nG,, n.D,,,. Using (13) and (14), both H (t), J(t) = 0
so the only backlogs are from Q(¢),

(VPf=Q(1),VP]), s(t) = ‘app’

{(Vpib —Q(1), Vpid)v s(t) = ‘no app’
(24)

The decision can be made by simply observing Q(t): for s(t) =
‘app’, the decision is to co-execute if Q(t) > V(Pf — Pf);
otherwise, the decision is idling. This can be interpreted as the
control decision is to always back off until the queue exceeds
the power difference between co-running and separate execution
scaled by the control knob V. Similarly, for s(¢) = ‘no app’,
the decision is to execute background training when Q(t) >
V(P — P?) or remain idle otherwise. Hence, without virtual
queue backlogs, the decision is to prioritize energy conservation.

With Virtual Queue: When H (t), J(t) > 0, the penalty terms
are activated,

a;(t) = argmin

a;(t)

a;(t)
(VPiC —Q(t) 4+ J(t)ds(t), VP + H(t)gt_,“t),
= argmin s(t) = “app’
a;(t) (Vpib - Q(t)a szd + H(t)gt—n,t)7
s(t) = ‘no app’
(25)
If there is an application, the decision is to co-execute if
Q) = V(P7 = P) + J(1)di(t) — H(t)ge—r, 1; (26)
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otherwise, the decision is to run the application only. Similarly,
if there is no application, the decision is to run training if,

Q(t) Z V(sz H<t)gt7‘ri,t;

otherwise, the decision is idling and waiting for better opportuni-
ties. The control decision is to observe the power difference be-
tween different actions scaled by the control knob V' plus/minus
the relaxation terms from the virtual queue of staleness and per-
formance slowdown. In the above two conditions, if Q(t) — n
and is full, but still less than R.H.S in order to schedule training,
the negative term from the staleness queue H(t)gi—r, + Grows
to reduce the R.H.S. such that training would be scheduled if
staleness rises.

For each user 7, Thax is the maximum delay until the next
schedule. From the conditions above, we have the following
property.

Property 2: The maximum delay 7y,,x is bounded if the
control knob V' is selected such that the R.H.S. of both (26)
and (27) are less than the maximum queue length of Q(¢) = n.
Hence, training would be always scheduled and 7,4« is bounded.

- P - 27)

C. Optimality of Control Decisions

The optimality of online scheduling is derived in Theorem 1.

Theorem 1: Let L(O(t)) defined by (15) and L(©(0)) = 0.
P* is the optimal power consumption. For constants B,V > 0,
the queues of O(t) are mean rate stable and the time-averaged
power consumption and queue backlogs are bounded by:

B
lim sup — E < — + pr* (28)
T~>ocp Z
B P* — Py
lim sup — Z E[0(t)] < = + VI in) (29)
T—o00 €

Proof: Given that the optimal decision " (t) can stabilize the

queue,
E[P(a*(t))] = P*. (30)

and the power consumption is lower-bounded by a finite value
Puin (idling power of P{)
E[P(t)] > Prin 31

Assume there exists ¢ > 0 such that the difference of the service
and arrival rates of all queues are larger than e.

E[b(t) — A(t)|Q(1)],E[nGyn — G(t)|H ()],
E[nD,, — D(t)|J(t)] > €
Plug the above equations into (18), we have
)+ V[P®)|O®)] < B+ VP —e(E[Q()]
[H®] +E[I®)])

(32)

A(©

—~

T-1

A(O(t) + > VE[P(t)|O(t)] <T(B+VP")
t=0

M ;

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 11, NOVEMBER 2024

(33)

The second inequality takes the summation over ¢ &
{0,...,T — 1}. The third inequality plugs in (16), and divides
both sides by T'V. The last inequality takes 7" — oo and be-
cause L(©(0)) = 0. Thus, (28) of Theorem 1 is proved. The
time-averaged queue length can be derived by dividing both
sides of the second inequality by €7" and re-arranging the terms,

1S

t=0

E[H(t)] +E[J()])

L BHV(P - 3 S E[PO))
B E[L(O(T - 16))] N E[L(©(0))]
el el
1 B P*— Pun)  E[L(©(0
S < 2. 1222 Kt
lerIljip T TZ:_SE[@(t)] < g + w (34)

The left-hand side of the second step summarizes all the queues
using O(t) = [Q(¢), H(t), J(t)]. The R.H.S. uses (31) and re-
moves the negative term for the upper bound. The last step takes
the limits of 7' — oo. Thus, (29) of Theorem 1 is proved. U

The performance bounds (28), (29) demonstrate
[O(1/V),O(V)] energy-staleness and slowdown trade-offs:
by arbitrarily increasing V', we can make g — 0 and the
time-averaged power consumption close to the optimal
value, whereas the staleness and slowdown grow linearly
with V.

D. Convergence Analysis

Theorem 2: If Assumption 1 (see below), Property 2 and the
following condition holds,

T’H’LL2 2 L
72% + < (35)
Vi Vi
the iteration satisfies,
ol
i B[V
Ln2 | T, L%n?
F01) = £60.) + 1 (525 + Tt )o?
= e . (36)
Zk 1 29,
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Proof: To facilitate the convergence proofs, we migrate the
previous notation in continuous time ¢ into discrete update steps
k towards the global model. With a little abuse of notation, we
redefine 7y, as the delay at the k-th step, where delay is the sum
of application wait time, training time and communication time.
&) is the mini-batch from the data samples {1, ..., B} and the
gradient VF'(0),_,, ) is computed on the parameters 0y, . Vi is
the penalty at the k-th step. We re-write the update rule in (23)
using step k,

Ops1 = 0p — %VF&W (Or,)- 37)

Assumption 1: We make the following common assumptions,
L-Smoothness.

fly) = f(x) <V f(x),y —x)+

Bounded Delay: According to Property 2, the control knob V' is
selected such that the maximum delay is bounded (denote the
bound by T,,).

L
Sly—al*  G8

ml?x{ﬁ, Toy ooy T} < Ty (39)
Bounded variance: The variance is bounded,
E[|[VF(0) — V()] < o (40)

Unbiased gradient: The stochastic gradient is an unbiased esti-
mator of the full gradient,

E[VF(0)] = Vf(0) (41)
From the L-smoothness property in (38), we have
L
FO1) = F(Ok) < (VF(O8), 041 = Ok) + 5 1041 — O]l
= — (T f(6r), VFe, ., (Br,)
Tk
L 2
+ ot [ VFe O “2)

Taking expectations on both sides of (42), we have

E[f (0x41)] — E[f(0x)] < —Z B[V £(01), V(0 r))]

’ 43)

Ln2
+ g];:JE{HVFg,W (Or_r,)
Using (a,b) = 3(||al|> + [|b]* —
L (03)]EIF(00)] <~ B[IVF600)1*+1970sn)I
J

(44)

la — b||?), we have

- (9100 - VO] + SRV E, 0-0)

A

Az

Let us compute As first so the partial results can be applied
to A; as well.
i

Ay = E[[(VFe, Onn) = VI Orr)) + VF(0rr,)
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2
= B[|[VFe ., On-r) = VIO + 195000

vf(ak,—Tk)7 vf(ak—ﬂc»

+2(VFe, . () —

2 2
|+ 195 O

(45)

E H‘VF&—W (Ok—r,) = VI(Or—r,)

< o® +E[|Vf (O]

where the last inequality takes the bounded variance property.
A1 bounds the norm difference of the parameters during delay 7.

Then using the L-Lipchitz property on Ay, we have
Ay =1V f(0k) = Vf (O )II* < L2 0k = Orr |* - (46)

By telescoping i from k& — 75 + 1 to k on the update rule in (37),
we have

k
Oh=bir— > LVF, (6in) @D
i=k—Tr+1
Plugging (47) into (46), we have
5 2
A, < L2 Ygp, (6,
1< }_kz " tr, (0iry)
i=k—1+1
T LG 2
Tl ok 6|
RWLL
<DL jvsoe ) @
k

where the second inequality comes from the bounded maximum
delay 7;,,. The last inequality applies the results from (45). Then
plug in A; and As into (44), and rearrange the terms, we have

273
E[f(ekﬂ)]—m:[f(ak)y_i [”vf( )||2}+<1W

k

Lni Nk 2 Lnk T L? 77k
+ 2 VRV O o )I?] + (2 + )o?
22 2, IV f(O—7) 27 277

< g2 B[107001] + (5 + T35 )?

(49)

in which the second inequality follows under the condition that,

TmL277k Lnk

<1
B

(50)

By telescoping k from 1 to K,

K
f(0h) < —

k=1

K

Z(Lnk

2’y,C

F(Oxc41) — 2 E[IVF@017]

T, L*n3
nk)UQ (51)

272
and denote Ok 11 as 0., we can conclude that,

E[IV/00I°] <

min
ke{l,...,K}
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(£00) = 10.)) + 25_1(52: + Dot} o2

Zk 1 2’yk

This finishes the proof of Theorem 2 and we have the following
corollary. O

Corollary 1: When we set the ratio between step size and
staleness penalty as '% = m, the online scheme converges

1
at the rate of T
Proof: We set Z—i =

(52)

1
T LvR (52) becomes,

min E||[V/(60)] <

ke{l,....K}
2(£(60) = 1(0.)) + iy 1+ &)
< 74 i
Zk:l TmL\/E
2(f(91) f(0 >)+Zk 1T2 T
B T TmLf
2TmL<f(91) — f(9*)) + 2 Jog K
< (53)
VK
where the second inequality takes the fact that (1 + T) 2 for
ke{l,...,K +1}andlast step uses > =2 K==

VK. O

The 1/ V'K convergence rate is consistent with the previous
studies of asynchronous paralleled SGD [19], [20]. Note that the
analysis is under the assumption of bounded delay of scheduling
decisions in Property 2. There are also some recent works that
provide tighter convergence analysis without the bounded-delay
assumption [21], [22], [23], where the convergence rate is a
function of the maximum or average delay, e.g., the improved
convergence O(‘:—j + ) in [22], where € is the bound of
the squared gradient norm. We aim to investigate how these
theoretical analysis can shed light on system-level designs in
the future.

VII. SYSTEM IMPLEMENTATION

To conduct training on Android, we adopt DL4J [41], a Java-
based Deep Learning framework for Android. The backend neu-
ral computations are conducted by OpenBLAS cross-compiled
for the ARM platforms. We pre-load CIFAR10 datasets [52]
into the flash storage. Background training is implemented
with JobScheduler, originally designed for long-running
operations in the background. Execution time window such
as networking connectivity (Wifi/4 G), device status (idling or
charging) can be specified to offer fine-grained control. Once the
job scheduler is started using onStart, a new thread is created
to initialize the neural network. We enable the 1largeHeap to
give the App 512 MB memory to avoid memory errors. Since the
DLA4]J libraries and dependencies are not optimized, the training
app occupies more than 300 MB, leaving the neural network
little less than 200 MB space during runtime. To this end, the
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current implementation can only support lightweight training
such as LeNet5 with small batch sizes at this point.

The number of CPU cores designated for background ser-
vices is specified by the vendor, which can be found un-
der /dev/cpuset/background/cpus. E.g., Pixel2 and
Mate10 utilize the two little cores; Nexus6P, Hikey970 only run
on the one little core and the rest of the three little cores are
reserved for system processes. The default kernel (e.g., CPU
affinity, priority, frequency scaling) is used and no root access
is required for our framework. We set the number of training
threads to 2 or 1 based on the vendor specifics, because a
large value would conversely lead to potential contentions and
coherence overhead.

The Android kernel might kill the background training pro-
cess to save memory and optimize battery lifetime. We do not
find the service being killed while training, but introducing
more convolutional layers with large filter size would invoke
the automatic background limitation because those layers are
the major resource consumers. In practice, there also exists a
few “diehard” tricks such as escalating the app priority, service
binding [53], whereas a fundamental solution on the OS level is
out of the scope of this paper.

The communication module is developed based on the Retrofit
Framework [54], which easily packages asynchronous HTTP
requests to a Python-based HTTP server. For Async-SGD, once
a device completes a local epoch, it creates a Retrofit Fileu-
ploadService to upload the local model with meta informa-
tion (device ID, round #) to the server. The server replaces the
current copy of the global model upon receiving it. When the
device becomes available, it downloads the current model using
the FileDownloadService as a starting point for the next
local epoch.

VIII. EVALUATION

Testbed/Parameter Settings: The evaluation is conducted on
devices from different vendors: Nexus 6/6P, HiKey970 Dev.
Board, Pixel2, Huawei P30 Pro and OnePlus9. We adopt the
LeNet5 architecture for training and each device trains on a
partition of 2 K images of the CIFAR 10 dataset with a mini-batch
size of 20.

A. Energy Measurement

First, we measure the energy consumptions of different con-
trol decisions as summarized in Table II: background training
only (1st row), application only (1st col) and co-running (2nd
col). To avoid breaking the devices while removing the battery
and screen connectors, we use a combination of software profil-
ers and power monitor: Trepn [42], Perfetto [43] and Monsoon
Power Monitor [44]. Trepn is used for Nexus6/6P and Perfetto
is built into Android 10 in Pixel2, P30 Pro and Oneplus9. For
the Hikey970 Dev. board, we directly power it with 12 V DC
input from the Monsoon Power Monitor.

We measure the system-wide energy consumption from the
device which includes all the system background threads. To
reduce the variances, we disable all irrelevant applications that
might have processes lingering in the background. We choose
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TABLE II
AVERAGED ENERGY MEASUREMENTS - BATTERY POWER (W), ENERGY SAVING RATIO T (NEGATIVE MEANS MORE ENERGY CONSUMPTION), EXECUTION TIME
(S) AND SLOWDOWN | (NEGATIVE MEANS PERFORMANCE SPEEDUP) RUNNING LENET-5 OF CIFAR10 DATASET

Nexus6 Nexus6P Hikey970
Apps app co-run saving time slowdown app co-run saving time slowdown app co-run saving time slowdown
Training 1.8 - - 204s - 0.9 - - 211s - 7.87 - - 213s -
Map 34 3.5 10% 274s 34% 0.5 1.3 1%  225s 6.6% 8.82 942 51% 186s -12%
News 1.7 22 26%  239s 17% 044 12 -54%  362s 71% 9.17 9.76 44%  210s -1.4%
Trading 14 24 13%  236s 16% 048 0.96 25% 228s 8% 850 9.15 49%  195s -8.4%
Youtube 0.5 19 -15% 284s 39% 0.53 1.2 13%  220s 4.2% 9.15 1145 34%  210s -1.4%
Tiktok 1.6 2.3 2%  296s 45% 1.0 1.1 -85% 675s 220% 11.0 11.2 24%  271s 27%
Zoom 1.2 2.1 -27% 370s 81% 14 1.6 -12%  340s 61% 7.89 853 47%  209s -1.8%
CandyCrush 1.3 2.3 -263% 997s 388% 0.7 1.3 -8%  280s 32% 111 11.26 35%  233s 9.4%
Angrybird 2.5 2.8 -28%  400s 96% 1.1 1.2 -76%  620s 193% 10.1 107 44%  200s -6.1%

Pixel2 P30 Pro OnePlus9

Apps app co-run saving time slowdown app co-run saving time slowdown app co-run saving time slowdown
Training 1.35 - - 223s - 0.776 - - 123s - 0.684 - - 129s -
Map 1.6 2.2 34%  196s -12% 248 276 -3% 154s 25.8% 1.04 1.12 35% 130s 0.77%
News 1.82 24 33% 197s -11% 2.61 3.02 1% 141s 14% 1.29 1.39 24%  138s 6.98%
Trading 1.72 223 33%  206s -8% 1.70 222 13% 125s 1.6% 091 1.09 26%  140s 8.52%
Youtube 2.04 221 34%  226s 1.3% 1.88 239 11% 127s 3.2% 0.94 1.14 25%  138s 6.98%
Tiktok 237 252 36% 212s -4.9% 294 337 4% 135s 9.7% 1.22 1.58 6% 146s  13.18%
Zoom 257 311 27%  206s -7.6% 436 441 2%  144s 17% 1.19 1.28 27%  138s 6.98%
CandyCrush 2.89 292 39% 199s -10.8% 312 322 11% 137s 11% 1.26 1.50 17%  139s 7.75%
Angrybird 2.86 2.88 13%  285s 27.8% 296 298 15% 135s 9.75% 1.18 1.31 26%  136s 5.42%

Each device conducts training on 4000 images with batchsize 20. The best value is marked in blue and the worst in red.

a number of 8 popular applications that users usually spend
considerable time. The percentage of energy saving is calculated
as, 1 — ﬁ, which involves the execution time #,, , .
for application, background training and co-execution. We may
have less power consumption but higher execution time (perfor-
mance slowdown). In these cases, the energy saving percentage
is diminished - e.g., P30 Pro were supposed to provide around
20-30% power saving as we measured in the experiment, but
the extra slowdown of the training execution actually reduces
the total energy saving to around 10% in Table II. If the perfor-
mance slowdown is too large, it would totally offset the energy
saving efforts such as some of the cases in Nexus 6/6P and the
optimal decision should be to execute the training alone without
co-execution.

We notice that the newer generations of devices offer higher
energy saving about an average of 10-30% and even slight
speedup of background training. However, for older chipsets
such as Nexus 6 with homogeneous cores, co-running only offers
marginal energy improvements depending on the application.
Some applications even have energy surge due to contention
on cache resources, which further leads to CPU throttling and
elongated training time. In these cases, the online controller is
expected to avoid co-execution.

B. Simulation Evaluation

Evaluation Settings: We set the probability of application
arrival to 0.001 in each time slot, i.e., an average of 1 app arrival
for every 1000 s. The user randomly picks a device from the
list and chooses an app from the 8 representative apps. We set
the number of users to 25 (equal data partition) and slowdown
bound D,,, = 500. For non-IID settings, each user has a random
collection of 3 and 6 classes for MNIST and CIFAR10. The total
training time is set to 3 hours and each time slot is 1 s. We adopt

the offline scheduling and fixed policy of immediate scheduling
as the baselines. Immediate scheduling runs the background
training when a device is available regardless of the application
arrivals. A look-ahead time window is set for the offline solution,
which invokes the algorithm every 500 s. We also compare the
online scheme with FedAvg [6] and FedProx [7].

Control Knob V : The control knob V' can be considered as
a hyperparameter that balances the energy consumption and the
(virtual) queue length in the system. In principle, a small V' (near
zero) tend to schedule training more aggressively without wait-
ing for the foreground application, thus resulting in high energy
consumption with less backlog in the queues. As V' grows larger,
users would act conservatively to wait for co-running opportu-
nities, which corresponds to the decline of energy consumption
and the increase of the queue backlogs. This is observed in
Fig. 5(a-c) as the energy consumption drops quickly, and Q(t),
H(t) increase with a larger V. Meanwhile, Fig. 5(d) shows
that J(¢) of performance slowdown also exhibits an uprising
trend because of additional latency imposed by co-execution.
The staleness bound G,,, implies different levels of tolerance
to staleness. With a larger GG,,,, more devices are put into
idling to wait for applications, so the energy consumption is
lower. Since a larger V' would have marginally reduced energy
saving compared to the increase of queue length, practitioners
could focus on the values below 5000 to achieve a reasonable
energy-performance balance.

Energy and Gradient Staleness: Fig. 6(a) compares the en-
ergy consumption of different scheduling policies. Immedi-
ate scheduling has the maximum energy consumption as it
quickly turns on training regardless of application arrival. Offline
scheduling offers the minimum energy consumption by looking
ahead of time. Since FedProx is still a synchronous scheme,
the energy consumption is the same with FedAvg. Once we set
V' = 5000, by adjusting G, online scheduling could save more
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(c) MNIST with non-IID data; (d) CIFAR10 with non-IID data.

than 50% energy compared to FedProx/FedAvg and is only 10%
away from the optimal offline solution. Fig. 6(b) further validates
the [O(1/V), O(V)] energy-staleness/slowdown trade-offs as
the attempt of energy reduction would ultimately lead to con-
gestion of the virtual queues.

Then we use two sets of parameters for the online scheme:
G,, = 100 and V = 1000 denoted as Online-VI and G,,, =
1000 and V = 2 x 10° denoted as Online-V2, where Online-
V1 schedules training more aggressively with higher energy
consumption. Fig. 6(c) first shows that gradient staleness is
generally proportional to the lags. Since Online-V2 is more
conservative, the gradient staleness is much larger compared
to Online-V1. Note that the same lag value could correspond to
different staleness at different stages of training. Thus, gradient
gap provides a more accurate measure of staleness. Fig. 6(d)
compares the gradient staleness between different datasets and

Convergence speed of Non-IID MNIST Convergence speed of Non-IID CIFAR10
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Comparison of training convergence between the online method with FedAvg [6] and FedProx [7]. (a) MNIST with IID data; (b) CIFAR10 with IID data;

FedAvg. The staleness values of FedAvg are sampled at model
averaging with a declining trend. In contrast, the online scheme
forms an upward trend at the beginning but sideway movements
in the later iterations due to the difference between local param-
eters, and their values grow with the complexity of the datasets
(CIFAR10 has higher staleness compared to MNIST).

Model Convergence: Since the control decisions also affect
the ML algorithms, the overall performance should be also
measured in terms of model convergence. For the online scheme,
the speedups are determined by: 1) the number of meaningful
updates contributed by individual users in fixed time intervals
(i.e., throughput); 2) the accumulation and variance of gradient
staleness. Fig. 7 compares the test accuracy of different schemes
in both IID and non-IID settings. For IID data, FedProx is
on par with FedAvg; for non-IID data, it offers about 3-4%
improvements of accuracy. The online scheme surpasses both
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FedProx and FedAvg by a large margin (5-10% on CIFAR10)
with additional 50% energy saving. For non-IID data, staled
updates from users would have large variance in their gradient
directions so asynchronous updates are inherently more noisy.
Although synchronous approaches such as FedAvg and FedProx
have faster and stable theoretical convergence, they face com-
putational heterogeneity especially in a mobile environment,
i.e., waiting for stragglers with slow execution. Asynchronous
method allows faster users to proceed without waiting for the
stragglers, thus having higher utilization and system through-
put. This is consistent with [20] that the trade-offs between
system throughput and gradient staleness are the keys in asyn-
chronous algorithms. Our empirical finding also supports that
the asynchronous primitive is more suitable for mobile devices
with heterogeneous computing power compared to FedAvg and
FedProx.

Impact of Application Arrival: Our strategy depends on the
intensity of application usage for energy saving. We further
evaluate the impact of different application arrival rates from
0 — 0.2 per time slot. Fig. 8(a) shows the application arrival rate
versus energy consumptions. With more running applications,
the general energy consumption follows an increasing trend
for all three schemes. Immediate scheduling is independent
of application arrivals and the energy saving comes from the
coincident co-execution. In contrast, the online scheme is able to
utilize the application arrival more wisely as we can see the initial
gap from immediate scheduling is large. As the application rate
rises, co-execution quickly saturates and the online scheme has
degraded to the immediate scheme.

Because the offline scheme foresees the co-running oppor-
tunities, it is able to achieve the lowest energy consumption
when applications are scarce but will aggressively schedule
with the applications when the arrival rate increases. Due to
random arrivals, the actual number of application arrivals is
different under various probabilities, hence the fluctuations in
the offline baseline. For the online setting, the scheduling deci-
sion is determined several analytical equations. The controller
schedules training according to a weighted balance, thus having
less fluctuations compared to the pure algorithmic dynamic
programming solution. Meanwhile, it is interesting to see that
sometimes the online approach even achieves lower energy than
the offline baseline. This is because the offline approach is also
sub-optimal because of Property 1 and other approximations.
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TABLE III
ENERGY OVERHEAD OF ONLINE OPTIMIZATION (W)

Nexus 6  Nexus 6P Pixel 2
Power(idle) 0.238 0.486 0.689
Power(comp.) 0.245 0.525 0.736
Overhead (0/0) 3.0% 7.4% 6.3%

HiKey970 P30 OnePlus9
Power(idle) 5.67 0.490 0.395
Power(comp.) 5.98 0.510 0.422
Overhead (%) 5.4% 4% 6.8%

As application usage depends on a variety of contextual cues
such as time and location, we conduct more experiments based
on the Sequential Mobile App usage dataset [28]. Fig. 8(b) shows
the number of devices in the training mode from 6AM-10PM
with certain events at specific time, e.g., watching video during
the breakfast/dinner and GPS Maps during commute. We can
see that the online schemes put more users into training while
there are more activities (during the lunch break and evening
time); otherwise, when application usage is scarce, it will adjust
the control decisions based on the virtual queue backlogs.

Scheduling Overhead: The online scheme involves
lightweight computation to evaluate (22). The energy overhead
is shown in Table III. Here, “idle” means the power with
no scheduling or training (as well as no apps running in
the background); “comp” means while the device is taking
extra computations to reach an online decision. The actual
implementation requires to sense the foreground apps with
getRunningTasksinActivity and afew if-else branches
with light computation. The results indicate that the overhead
is below 10% in each time slot. To reduce the overhead, we
can optimize the scheduling granularity with a larger decision
interval.

C. System Evaluation

1) CPU Utilization: We gather more system traces from
Matel0 (same SoC with HiKey970) and P30 Pro to validate
our design. Fig. 9 shows the CPU utilizations of all 8 cores
when perform training and co-running with CandyCrush on
Matel0. It is observed that the training threads are utilizing
the small cores 2,3 while the cores 0,1 are reserved for other
system processes. Similarly, during co-execution, CandyCrush
is running on the big cores 0,1 and the average utilization is
under 50%. This validates our multitasking design based on the
big. LITTLE microarchitecture. By taking a closer look at the
utilization of small cores, it periodically drops below 100% due
to access to the external memory in neural computations - a
common challenge in optimizing deep learning [56], [57]. Here,
the memory bottleneck becomes more prominent on mobile
devices.

2) Impact on Foreground Apps: To provide an overall as-
sessment of slowdown of the foreground apps, we gather more
statistics shown in Fig. 10. For different apps, there are two FPS
targets: 30 and 60 FPS. If the FPS rates fall below 24, there will
be a noticeable lag on the user’s end. In our experiment, most of
the frame drops are caused by frequent user interactions such as
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clicking, fast switching between web pages while the threads are
fetching the content or slowly responding due to system stall.
By judging the difference between the bars in Fig. 10, we see
that co-running has little impact on the foreground FPS as it
achieves comparable (above 24) or even higher FPS rates (e.g.
News, Trading and Maps). We conjecture the higher FPS is due
to more resources are activated such as higher memory frequency
by Dynamic Voltage and Frequency Scaling (DVFES), once the
foreground app is activated. On the other hand, gaming mainly
uses the Mali GPU with less memory requests, thus we do not
see much contention or FPS lags on the foreground games.

3) Memory Bandwidth: Finally, we measure the memory
bandwidth as shown in Fig. 11, where (a)(e) provide a base-
line of the background training only. For the rest plots, the
top subfigure is running the foreground app only and the
bottom one is co-running with training. Matel0 has 4 band-
width states at {4,8,12,18} Gbps and P30 Pro has 7 states
at {4,6.5,8,12,16,18,20.5} Gbps. We show the histogram of
bandwidth distributions in different states during execution. In
practice, the achievable bandwidth is determined by the row
buffer hit ratio of memory requests, which is a characteristic of
the spatial memory locality of the running apps [58]. Each app
has its own memory access patterns: in (a)(e), the foreground
and background training exhibit identical bandwidth distribu-
tions; for co-running, CandyCrush requires less memory access;
Tiktok/Trading involve more user interactions, thus resulting
in higher overall bandwidth. While co-running, the bandwidth
pattern is dominated by the foreground app because it is given
higher priority to access the shared resources. Background
training mainly resides at the low-bandwidth states. E.g., P30
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(a) and (b) Visualization of per-core CPU utilizations on Matel0 performing training on the background and (c) and (d) co-running training with

Pro and Matel0 have 86% and 100% of bandwidth states less
than 12 Gbps. To this end, compared with running the app alone,
co-execution only has slightly higher bandwidth (with some ex-
ceptions in (c)(e)), so an overall energy saving is accomplished.

IX. DISCUSSION

The generality of our design on ARM’s big.LITTLE
microarchitecture: As evidenced by [59], “over 99% of
the premium smartphones are powered by ARM”, because of
its extraordinary energy efficiency and thermal management
on battery-powered devices. The prevalent dominance of ARM
SoCs also extends to AIoT boards and other embedded devices.
Hence, we expect the applicability of the proposed scheme on
most of the mobile devices powered by ARM as experimented
on a wide range of devices in this paper. On the other hand,
the asymmetric/hybrid CPU technology is also transformative
to the world of desktops and servers. E.g., Intel’s Alder Lake
x86 CPUs featured the performance cores (big) and efficient
cores (small). AMD also releases the first series of hybrid CPU
processors Ryzen 7040 U mobile processors for notebook.
We believe this would be an ongoing trend with major chip
makers to commit resources in energy-efficient computing for
consumer electronics and data centers.

The support of our design on different neural network mod-
els: We have also experimented Mobilenet and VGG-4 in our
design. Although Mobilenet is known to have high inference
performance on mobile CPUs, training is much slower compared
to LeNet-5 (on the similar scale of FLOPs). This is consistent
with some reports that training Mobilenet is much slower on the
GPUs due to the depthwise convolution designs [13]. Training
these architectures on high-end mobile CPUs exhibits slowdown
as well. E.g., training with the foreground threads spends around
10 minutes per epoch compared to 2 minutes of LeNet-5 with
a slowdown of 5x. The background training on the little cores
almost tripled the execution time compared to the big cores. Due
to the extended execution time, the process (background service)
is more prone to be killed by the 1low memory killer, or
preempted by other background processes, thus having much
higher variance and fluctuations for different mini-batches. With
higher FLOP count, VGG-4 even executes faster on the big cores,
but the overall memory footprint is approaching the 500 MB
uplimit.
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X. CONCLUSION

In this paper, we combine asynchronous federated learning
with application co-execution to minimize energy consumptions
on consumer mobile devices. We motivate this work by real
measurements and explore the system dynamics for energy
saving. Based on the offline problem solution, we develop an
online scheme to address the energy-staleness/slowdown trade-

offs

with low computational overhead. We provide theoretical

proofs of such trade-off and training convergence. Our extensive
evaluation demonstrates that the online scheme achieves 50%
energy saving compared to FedAvg and FedProx, and only 10%
away from the optimal solution. The proposed scheme can adapt
to different application usage patterns based on daily activities,
while keeping the devices in low power state during the rest of
the time. System traces collected from the hardware counters
also validate our design.
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