
MOSAIC: A Prune-and-Assemble Approach for E!icient Model
Pruning in Privacy-Preserving Deep Learning

Yifei Cai
ycai001@odu.edu

Old Dominion University

Qiao Zhang
qiaozhang@cqu.edu.cn
Chongqing University

Rui Ning
rning@cs.odu.edu

Old Dominion University

Chunsheng Xin
cxin@odu.edu

Old Dominion University

Hongyi Wu
mhwu@arizona.edu
University of Arizona

ABSTRACT
To enable common users to capitalize on the power of deep learning,
Machine Learning as a Service (MLaaS) has been proposed in the
literature, which opens powerful deep learning models of service
providers to the public. To protect the data privacy of end users,
as well as the model privacy of the server, several state-of-the-art
privacy-preserving MLaaS frameworks have also been proposed.
Nevertheless, despite the exquisite design of these frameworks to
enhance computation e!ciency, the computational cost remains
expensive for practical applications. To improve the computation
e!ciency of deep learning (DL) models, model pruning has been
adopted as a strategic approach to remarkably compress DL mod-
els. However, for practical deep neural networks, a problem called
pruning structure in!ation signi"cantly limits the pruning e!ciency,
as it can seriously hurt the model accuracy. In this paper, we pro-
pose MOSAIC, a highly #exible pruning framework, to address this
critical challenge. By "rst pruning the network with the carefully
selected basic pruning units, then assembling the pruned units into
suitable HE Pruning Structures through smart channel transfor-
mations, MOSAIC achieves a high pruning ratio while avoiding
accuracy reduction, eliminating the problem plagued by the pruning
structure in#ation. We apply MOSAIC to popular DL models such
as VGG and ResNet series on classic datasets such as CIFAR-10 and
Tiny ImageNet. Experimental results demonstrate that MOSAIC
e$ectively and #exibly conducts pruning on those models, signi"-
cantly reducing the Perm, Mult, and Add operations to achieve the
global cost reduction without any loss in accuracy. For instance, in
VGG-16 on Tiny ImageNet, the total cost is reduced to 21.14% and
29.49% under the MLaaS frameworks GAZELLE and CrypTFlow2,
respectively.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0482-6/24/07.
https://doi.org/10.1145/3634737.3637680

KEYWORDS
Model Pruning, Machine Learning as a Service, Privacy-Preserving
Computation, Homomorphic Encryption

ACM Reference Format:
Yifei Cai, Qiao Zhang, Rui Ning, Chunsheng Xin, and Hongyi Wu. 2024.
MOSAIC: A Prune-and-Assemble Approach for E!cient Model Pruning in
Privacy-PreservingDeep Learning. InACMAsia Conference on Computer and
Communications Security (ASIA CCS ’24), July 1–5, 2024, Singapore, Singapore.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3634737.3637680

1 INTRODUCTION
Today, deep learning (DL) is widely used to improve productivity
and solve challenging problems that have profound societal im-
pacts. However, building a DL model requires access to extensive
amounts of data, signi"cant computing power, and professional
expertise, which are a daunting challenge and often not possible for
most users/organizations. To address this challenge, the Machine
Learning as a Service (MLaaS) has been proposed as a practical
solution [50]. MLaaS empowers technology giants with abundant
resources to create well-trained advanced DLmodels and o$er them
as a service to a broad range of users.

However, privacy is a critical concern in MLaaS. On the one
hand, the clients of MLaaS do not want the server to have access
to their private data that can be precious business data or sensi-
tive information, such as personal medical records. On the other
hand, the server does not want to share its model parameters as
they are considered valuable intellectual property that has been
trained with tremendous computing resource and expertise. To
e$ectively address the critical privacy issue, privacy-preserving
MLaaS strategically integrates cryptographic primitives into the
computation process of the DL model. Several ingeniously designed
privacy-preserving frameworks havemade inspiring e$orts to bring
MLaaS into practice [3, 10, 12, 21, 22, 25, 27, 29–31, 33, 36–41, 47–
49, 52, 53]. The most commonly adopted cryptographic primitives
in these frameworks include Homomorphic Encryption (HE) [11],
Garbled Circuits (GC) [2], Oblivious Transfer (OT) [6], and Se-
cret Sharing (SS) [44]. Of these cryptographic primitives, HE is
more e!cient for linear computation [4, 11]. On the other hand,
GC and OT are more computationally-e!cient for nonlinear op-
erations [10]. As the DL model is the combination of linear and
nonlinear functions, privacy-preserving DL frameworks typically
adopt HE for linear operations and GC/OT for nonlinear operations.
Examples of such frameworks include HE-GC-based frameworks
like GAZELLE [22] and DELPHI [29], as well as the HE-OT-based

1044

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3634737.3637680
https://doi.org/10.1145/3634737.3637680
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3634737.3637680&domain=pdf&date_stamp=2024-07-01

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Yifei Cai, et al.

framework CrypTFlow2 [38]. Despite the e$orts to improve e!-
ciency, the computation cost of these frameworks is still too high
for practical applications. For instance, in our evaluations utiliz-
ing the CrypTFlow2 framework and the CKKS algorithm [9], the
execution time for VGG-16 is approximately 248 seconds. This is
observed even with just one CIFAR-10 image as input on an Intel
i5 2.9GHz CPU. Such a duration is considered unacceptable for a
majority of applications.

To improve the computation e!ciency of DL models, model
pruning [16, 28, 51] has been adopted as a strategic approach to
remarkably compress DL models such as ResNet, which are usually
very large and complex. The computational cost of a DL model
arises from the calculations performed between its parameters and
the input vectors. Model pruning eliminates a large number of
model parameters, thereby eradicating the associated calculations.
There are generally two types of pruning methods: unstructured
pruning [13, 15] and structured pruning [28, 51]. Unstructured prun-
ing removes individual model weights, while structured pruning
removes model structures such as "lters and even layers [28, 51].
Challenges for HE-based Model Pruning: Unfortunately, while
existing model pruning methods have demonstrated a superior per-
formance in reducing the computation time of DL models [13, 16,
28, 51], it was found that directly applying those plaintext model
pruning methods onto privacy-preserving MLaaS frameworks pro-
vides little or no help in reducing their computation time [7]. The
reason is summarized as follows. The privacy-preserving MLaaS
frameworks are based on packed HE, which performs calculation
by using three basic HE operations: Homomorphic Addition (Add),
Homomorphic Multiplication (Mult), and Homomorphic Permuta-
tion (Perm). In the packed calculation between a ciphertext (the
input features) and a plaintext vector (model parameters), the Perm
operation over the ciphertext and the subsequent Mult or Add op-
eration can be eliminated only if all the parameters in the plaintext
vector are pruned. However, the plaintext model pruning schemes
are oblivious to the packing structures and hence rarely obtain the
desired pruning structures, resulting in marginal or no reduction in
the corresponding HE-based computation, even though themodel is
signi"cantly pruned. For example, experiments show that although
the well-known pruning algorithm [16] can prune up to 65% of
parameters in a convolution layer from AlexNet, it only results
in a 3.6% reduction in HE operations. Moreover, pruning 90.8% of
weights in a fully connected (FC) layer would not even reduce a
single Perm operation out of the total 4096 Perm operations [7].

To address the above challenge, an HE-friendly structured prun-
ing method, Hunter [7], was proposed to identify the novel HE
Pruning Structures. It shows that an HE operation can be elimi-
nated if all the elements in the corresponding HE Pruning Structure
are pruned. Hunter performs pruning on these HE Pruning Struc-
tures in order to minimize the number of Perm operations and
subsequent Mult and Add operations, which leads to a reduction in
computing cost.
Limitation of Existing HE-friendly Pruning Schemes: How-
ever, our recent study has shown that Hunter cannot scale well
to very deep networks. In privacy-preserving MLaaS frameworks,
multiple input channels are often encrypted and packed into a sin-
gle ciphertext for e!ciency [1, 32, 39]. As we know, the size of

input features generally decreases from the "rst layer to deeper
layers in a DL model. For instance, in our experiments with the
VGG-16 model on the CIFAR-10 dataset, the input size changes from
32 ↑ 32 at the "rst layer to 8 ↑ 8 at the 13th layer. For both safety
and e!ciency reasons, the length of a single ciphertext is typically
set as 8192 slots (4096 slots for the "rst layer) in privacy-preserving
MLaaS frameworks [1, 32, 39]. Thus, the number of input features
that one ciphertext contains, denoted as 𝐿𝐿 , increases signi"cantly
from 4 at the "rst layer to 128 at the 13th layer. Larger values of 𝐿𝐿
correspond to larger HE Pruning Structures, which is called prun-
ing structure in!ation. An immediate consequence of such pruning
structure in#ation is that the pruning granularity becomes coarse,
i.e., one HE Pruning Structure contains a large number of elements
that must be removed altogether in order to eliminate the corre-
sponding expensive HE operations [7]. However, this often hurts the
DL model’s accuracy because this aggressive pruning can damage the
essential model structures.

(A) (B) (C)

Figure 1: Pruned Convolutional Layers based on (a) tradi-
tional plaintext pruning, (b) Hunter with 𝑀𝐿 = 8, and (c)
Hunter with 𝑀𝐿 = 32.

Figure 1 illustrates the binary representation of three pruned
convolutional layers, where pruned parameters are shown in black,
while unpruned parameters are shown in white. In Figure 1(A), we
present the result of the so-called natural pruning, used in some
plaintext model pruning schemes. For a well-trained model, unim-
portant parameters that fall below the de"ned threshold are pruned.
Consequently, the remaining parameters represent essential model
structures. Figure 1(B) and (C) depict the layers pruned by the HE
Pruning Structures adopted by Hunter with di$erent 𝐿𝐿 values: 8
and 32, respectively. It is evident that the remaining parameters,
shown in white, exhibit a distinct pattern from those in Figure 1(A).
While many HE Pruning Structures are eliminated to result in cost
reduction, a comparison with the essential model structures reveals
that numerous important parameters have been pruned as well. As
a consequence, the model’s functionality is bound to be a$ected and
may not be completely restored even with subsequent retraining.

In general, as 𝐿𝐿 increases, the size of the HE Pruning Struc-
ture becomes larger, resulting in a coarser granularity for pruning,
which, however, may lead to signi"cant accuracy loss. Our experi-
ments have shown that models become very sensitive to pruning
when 𝐿𝐿 is greater than 4 and pruning can easily cause signi"cant
accuracy loss. To avoid such accuracy loss, Hunter has to limit
pruning e!ciency, resulting in a sub-optimal pruning. Additionally,
deep layers with large 𝐿𝐿 usually contain dense computation, which
also limits the potential reduction of the model’s overall computa-
tional cost. For example, in our experiments with VGG-16 on the

1045

MOSAIC: A Prune-and-Assemble Approach for E!icient Model Pruning in Privacy-Preserving Deep Learning ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

CIFAR-10 dataset, to maintain the model accuracy, only 47.29% cost
reduction can be achieved by Hunter’s method. While it is possible
to decrease 𝐿𝐿 by reducing the size of the ciphertext, this also de-
creases the computation e!ciency. More importantly, decreasing
the number of slots of a ciphertext may result in safety issue of the
encryption [1, 32, 39].
Our Contributions: To address the critical challenge of pruning
structure in#ation, in this paper, we propose a highly #exible prun-
ing strategy, called MOSAIC, which is able to achieve "ne-grained
pruning in all layers, enabling a high pruning ratio while avoiding
accuracy loss. MOSAIC employs a novel “Prune-and-Assemble” ap-
proach, which "rst prunes the convolutional layer with tessellated
basic units, and then assembles the pruned units into HE Pruning
Structures through a channel transformation scheme. (This process
can be likened to creating a mosaic pattern by assembling small reg-
ular units.) As a result, the operations related to these HE Pruning
Structures can be eliminated.

In our experiments1, MOSAIC has been applied to popular DL
models such as the VGG [45] and ResNet [18] series, utilizing classic
datasets including CIFAR-10 [23] and Tiny ImageNet [46]. Experi-
mental results demonstrate that MOSAIC can perform e!cient and
precise pruning, thus signi"cantly reducing the computation costs
of HE Perm and subsequently Mult and Add without sacri"cing
model accuracy. The cost reduction is remarkable, for instance, in
the GAZELLE framework [22], MOSAIC can reduce the total cost
by 78.86% in VGG-16 on Tiny ImageNet and save 91.27% of com-
putational cost in ResNet-50 on Tiny ImageNet. Even under the
deep optimized framework CrypTFlow2 [38], MOSAIC achieves a
further cost reduction of up to 70.51%.

Note that in this paper, we often give examples for MOSAIC
under the GAZELLE and CrypTFlow2 frameworks, which are two
state-of-the-art privacy-preserving MLaaS frameworks. However,
it is noteworthy that MOSAIC can also be applied on other frame-
works as long as they use similar Multiple Input Multiple Output
(MIMO) schemes for the HE computation, such as DELPHI [29] and
GALA [53].

The remainder of this paper is organized as follows: Section 2
introduces the systemmodel, threat model, packed HE, and state-of-
the-art HE-friendly pruning schemes. Section 3 proposes MOSAIC,
our e!cient and #exible pruning schemes, including prune-and-
assemble strategy, corresponding inter-layer channel transforma-
tion coordination, followed by the security analysis. In Section 4,
we discuss the experimental results. Finally, Section 5 concludes
the paper.

2 PRELIMINARIES
2.1 System Model
In this paper, we consider MLaaS, as shown in Figure 2, which
involves two parties: the client (C) and the server (S). The client
owns sensitive data, such as medical records from a medical practi-
tioner, while the server has a well-performed DL model that can
provide prediction results for the client. However, privacy issues
arise during the interaction between the two parties. The client
does not want any other parties, including the server, to know its

1The pruned model and source code are available at github.com/caiyifei2008/MOSAIC.

Chest
X-ray

Pruned DL Model

DL Model
Diagnosis

Figure 2: MLaaS with a Model Pruning Phase.

private data. Meanwhile, the server is unwilling to make its model
parameters public, as training that model involves signi"cant re-
sources. To this end, privacy-preserving MLaaS aims to guarantee
that the client’s input is fully protected from the server, while the
server’s model parameters are entirely blind to the client.

In line with the existing works on privacy-preserving MLaaS [3,
10, 12, 21, 22, 25, 27, 29–31, 33, 36–41, 47–49, 52, 53], we focus on
deep Convolutional Neural Networks (CNNs), which are one of
the most important and successful DL models widely used in vari-
ous applications [24, 42, 45]. Convolution and dot product are two
fundamental linear functions in CNNs. Convolution involves con-
volving the input feature map with the kernels of the convolutional
layer, while the dot product is calculated between an input vector
and the weight matrix of the FC layer. In MLaaS, the kernels and
weight matrices are located in the server, whereas the input feature
map and input vector are sourced from the client.

Please note that this paper primarily focuses on optimizing the
computation e!ciency of linear computations, which constitutes
over 90% of the total cost of a DL model [53]. Meanwhile, we follow
the e!cient privacy-preserving nonlinear computation, such as
max-pooling and ReLU, introduced in the state-of-the-art frame-
works such as GAZELLE [22] and CrypTFlow2 [38]. Within the
realm of linear computations, our emphasis is on convolution since
it dominates the linear computations in the HE-based scenario. For
instance, according to our experimental results, in VGG-16, convo-
lution accounts for approximately 97.8% of the linear cost, and this
ratio is even higher, reaching 99.05%, for ResNet-50.

2.2 Threat Model
MOSAIC follows the semi-honest adversary model, which is used
in many state-of-the-art frameworks, such as GAZELLE [22], DEL-
PHI [29], CrypTFlow2 [38] and MiniONN [27]. Under this model,
both the client and the server follow the protocol while attempting
to deduce extra information from the exchanged messages. For ex-
ample, during the interaction in MLaaS, the server tries to discern
the client’s private input. In Section 3.5, we analyze and demon-
strate that MOSAIC is secure under the semi-honest assumption.

2.3 Packed HE
Homomorphic Encryption (HE) has been hailed as cryptography’s
holy grail due to its ability to achieve linear computation between
ciphertexts without the need for decryption. This means that results
can be directly exported in the encrypted form of the corresponding
plaintext result. HE’s crucial featuremakes it a promising dominator
in the "eld of privacy-preserving MLaaS. For instance, a client (C)
can encrypt its private data before sending it to the server (S). The

1046

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Yifei Cai, et al.

latter can then perform computations over the ciphertext using
its DL model and obtain the result without gaining access to the
client’s secrets. Traditional HE algorithms encrypt each value of the
plaintext individually, such as in the Paillier encryption scheme [34].
In contrast, packed HE encrypts the entire vector of plaintext, with
multiple values, into one ciphertext. It then performs computations
over that ciphertext in a Single Instruction Multiple Data (SIMD)
manner [5]. As a result, packed HE achieves signi"cantly higher
e!ciency and has been widely adopted in state-of-the-art MLaaS
frameworks [50].

Di$erent from the plaintext deep learning which applied by nor-
mal multiply-adds operations, in the packed HE-based scenario, all
linear operations, convolution operations in convolutional layers
and dot product operations in FC layers, are achieved through the
combination of three basic HE linear operations: Homomorphic
Addition (Add), Homomorphic Multiplication (Mult), and Homo-
morphic Permutation (Perm). Speci"cally, let’s consider two plain-
text vectors 𝜴1 and 𝜴2, which are respectively packed encrypted
into [𝜴1] C and [𝜴2] C . Here, we de"ne [·] C as the ciphertext en-
crypted by the C. The Add operation between ciphertext [𝜴1] C and
[𝜴2] C can be regarded as the regular addition but in element-wise
manner, which outputs the sum as ciphertext [𝜴1 + 𝜴2] C . The Mult
operation between ciphertext [𝜴1] C and plaintext 𝜴2 can be per-
formed as element-wise multiplication which outputs the product
as ciphertext [𝜴1 ↓ 𝜴2] C . The Perm operation performs a cyclic
rotation of the elements in one ciphertext. For example, given a
ciphertext [𝜴] C , rotating the ciphertext [𝜴] C in the 𝑁-th position
moves all elements of [𝜴] C reversely by 𝑁-th position in a loop.
This results in another ciphertext, denoted as [𝜴 (+𝑀)] C . Notice that
Add and Mult operations are both performed in an element-wise
manner. Therefore, it is not possible to directly sum up the values
of a vector, since these elements are in the di$erent slots. Thus, the
Perm operation can solve this problem by rotating the ciphertext
to align internal elements.

2.4 State-of-the-Art HE-based Convolution and
HE-friendly Pruning Schemes

In this part, let’s "rst introduce the HE-based convolution, which
is achieved by the combination of three basic HE operations: Perm,
Mult, and Add. We will then explore how the HE-friendly pruning
scheme, named Hunter, e!ciently prunes the model structures.

In Figure 3, we can see that the client C packs and encrypts its 𝐿𝐿
(assuming 𝐿𝐿 = 2 here) input channels 𝜶1 and 𝜶2 as [𝜶1, 𝜶2] C , where
the size of each channel is 𝐿𝑁 ↑ 𝐿𝑂 . This ciphertext is then sent to
the server S to convolve with the corresponding plaintext kernels
𝜷1 and 𝜷2, where the size of each kernel is 𝑂𝑁 ↑ 𝑂𝑂 . The encrypted
output [𝜷1𝜶1, 𝜷2𝜶2] C is obtained, where 𝜷1𝜶1 and 𝜷2𝜶2 can be seen
as the outputs of two convolutions performed in parallel and in
a SIMD fashion [5], and ↔ in the "gure denotes the convolution
operator. More speci"cally, the convolution operation is realized
by "rst placing the kernel at each location of the input feature and
then summing up all the element-wise products between the kernel
values and the input values covered by the kernel window. However,
as previously discussed, it is not possible for server S to directly
sum up the element-wise products since the Add operation also
works element-wise in the HE-base scenario. Add can only sum

k11 k12 k13
k14 k15 k16
k17 k18 k19

*

{k1,k2}
Expected Convolution Output

HE operations to obtain the convolution output

k21 k22 k23
k24 k25 k26
k27 k28 k29

0 0 0

0 k11 k11

0 k11 k11

u26 u27 u28
u29 u21 u22
u23 u24 u25

0 0 0

0 k21 k21

0 k21 k21

{k1(-4),k2(-4)}

+
u17 u18 u19
u11 u12 u13
u14 u15 u16

0 0 0

k12 k12 k12

k12 k12 k12

u27 u28 u29
u21 u22 u23
u24 u25 u26

0 0 0

k22 k22 k22

k22 k22 k22

{k1(-3),k2(-3)}

+
u18 u19 u11
u12 u13 u14
u15 u16 u17

0 0 0

k13 k13 0

k13 k13 0

u28 u29 u21
u22 u23 u24
u25 u26 u27

0 0 0

k23 k23 0

k23 k23 0

{k1(-2),k2(-2)}

+

0 k14 k14

0 k14 k14

0 k14 k14

0 k24 k24

0 k24 k24

0 k24 k24

{k1(-1),k2(-1)}
k15 k15 k15

k15 k15 k15

k15 k15 k15

k25 k25 k25

k25 k25 k25

k25 k25 k25

{k1(0),k2(0)}
k16 k16 0

k16 k16 0

k16 k16 0

k26 k26 0

k26 k26 0

k26 k26 0

{k1(+1),k2(+1)}

0 k17 k17

0 k17 k17

0 0 0

0 k27 k27

0 k27 k27

0 0 0

{k1(+2),k2(+2)}
k18 k18 k18

k18 k18 k18

0 0 0

k28 k28 k28

k28 k28 k28

0 0 0

{k1(+3),k2(+3)}
k19 k19 0

k19 k19 0

0 0 0

k29 k29 0

k29 k29 0

0 0 0

{k1(+4),k2(+4)}

u11 u12 u13
u14 u15 u16
u17 u18 u19

u19 u11 u12
u13 u14 u15
u16 u17 u18

u12 u13 u14
u15 u16 u17
u18 u19 u11

u16 u17 u18
u19 u11 u12
u13 u14 u15

u13 u14 u15
u16 u17 u18
u19 u11 u12

u14 u15 u16
u17 u18 u19
u11 u12 u13

u15 u16 u17
u18 u19 u11
u12 u13 u14

u29 u21 u22
u23 u24 u25
u26 u27 u28

u21 u22 u23
u24 u25 u26
u27 u28 u29

u22 u23 u24
u25 u26 u27
u28 u29 u21

u23 u24 u25
u26 u27 u28
u29 u21 u22

u24 u25 u26
u27 u28 u29
u21 u22 u23

u25 u26 u27
u28 u29 u21
u22 u23 u24

+ + +

+ +

u11 u12 u13
u14 u15 u16
u17 u18 u19

k1c1

[c1,c2]C

u21 u22 u23
u24 u25 u26
u27 u28 u29

k2c2

[k1c1,k2c2]C

3×3 3×3

[c1(-4),c2(-4)]C [c1(-3),c2(-3)]C [c1(-2),c2(-2)]C

[c1(-1),c2(-1)]C [c1(0),c2(0)]C [c1(+1),c2(+1)]C

[c1(+2),c2(+2)]C [c1(+3),c2(+3)]C [c1(+4),c2(+4)]C

Figure 3: HE-based Convolution Operation.

up the values at the same location (de"ned as a slot) of multiple
ciphertexts but not the values at di$erent slots within a given
ciphertext. To solve this issue, the Perm operation is adopted to
rotate the ciphertext.

To be speci"c, initially, (𝑂𝑁𝑂𝑂↗1) Perm operations are performed
over [𝜶1, 𝜶2] C to obtain 𝑂𝑁𝑂𝑂 rotated ciphertexts (including the
original [𝜶1, 𝜶2] C). Among these rotated ciphertexts, (𝑂𝑁𝑂𝑂 ↗ 1)/2
are rotated in the forward (left) direction and (𝑂𝑁𝑂𝑂 ↗ 1)/2 are
rotated in the backward (right) direction. This ensures that all the
elements that need to be added up are relocated to the same slot of
each ciphertext. For example, by 4 Perm operations in the forward
direction2, we obtain 4 rotated ciphertexts, as [𝜶1(+1) , 𝜶2(+1)] C ,
[𝜶1(+2) , 𝜶2(+2)] C , [𝜶1(+3) , 𝜶2(+3)] C and [𝜶1(+4) , 𝜶2(+4)] C shown in
Figure 3.We obtain another 4 rotated ciphertexts: [𝜶1(↗1) , 𝜶2(↗1)] C ,
[𝜶1(↗2) , 𝜶2(↗2)] C , [𝜶1(↗3) , 𝜶2(↗3)] C and [𝜶1(↗4) , 𝜶2(↗4)] C by per-
forming 4 Perm operations in the backward direction. Together with
[𝜶1(0) , 𝜶2(0)] C (i.e., the original [𝜶1, 𝜶2] C), we have 9 ciphertexts
ready for the subsequent calculations.

Then Mult and Add operations are performed between the 9 ci-
phertexts and the corresponding transformed plaintext kernels (see
{𝜷1(↗4) , 𝜷2(↗4) } to {𝜷1(+4) , 𝜷2(+4) }, which are transformed from
the original plaintext kernels) to "nally calculate the convolution
output. Notice that, the cyclic e$ect of Perm operation on elements
in each rotated ciphertext makes the values in the corresponding
transformed plaintext kernels associate with only “single” kernel
value from the original kernel {𝜷1, 𝜷2} (since multiple kernel val-
ues at the same position behave like single value in SIMD manner
). For example, the values in {𝜷1(0) , 𝜷2(0) } are only associate with
𝑂15,𝑂25 from {𝜷1, 𝜷2}, and the values in {𝜷1(+1) , 𝜷2(+1) } are only
associated with 𝑂16,𝑂26 from {𝜷1, 𝜷2}, so on and so forth.

A major contribution of Hunter [7] is the interesting "nding that
each rotated ciphertext (that requires one Perm operation) is multi-
plied with a transformed plaintext kernel that includes only one
kernel value. Thus, one Perm operation for obtaining one rotated
ciphertext is no more needed and can be eliminated if the kernel
value in that to-be-multiplied transformed kernel is zero. Based
on this observation, one Perm operation is eliminated when one
kernel value (excluding the central one) in {𝜷1, 𝜷2} is zero. There-
fore, Hunter prunes the individual value (at the same position) in
{𝜷1, 𝜷2} such that there is no need to rotate the corresponding
2In this paper, we use the positive and negative symbols “+” and “↗” to denote the
forward and backward directions, respectively. The same convention is applied to the
subscript of the transformed kernel we will describe later.

1047

MOSAIC: A Prune-and-Assemble Approach for E!icient Model Pruning in Privacy-Preserving Deep Learning ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

ciphertext by one expensive Perm operation [7]. For example, as
shown in Figure 3, one Perm operations for obtaining the rotated ci-
phertext [𝜶1(+1) , 𝜶2(+1)] C is eliminated if the kernel values 𝑂16,𝑂26
are pruned. Then Hunter de"nes the Internal Structure as the kernel
values at the same location of all the plaintext kernels that are
convolved with the same input ciphertext, and pruning an Inter-
nal Structure correspondingly eliminates one Perm operation (and
subsequent Mult and Add operations) over the input ciphertext.

Most state-of-the-art DL models, such as VGG and ResNet, uti-
lize multiple "lters and kernels (also known as multiple input and
multiple output channels, MIMO) within each convolutional layer.
Hunter also identi"es another HE Pruning Structures, i.e., External
Structure for pruning in MIMO case, following the same rule that
the HE linear operation can be eliminated if all the elements in
corresponding HE Pruning Structure are pruned. Thus, by pruning
these HE Pruning Structures, Hunter aims to minimize the num-
ber of Perm and the subsequent Mult and Add operations, thereby
reducing the overall computational cost.

Hunter sheds a light on HE-friendly structured pruning. How-
ever, in practical scenarios, the e$ectiveness of directly pruning
the HE Pruning Structure is hindered by the problem of pruning
structure in#ation, which arises due to the shrinking size of the in-
put feature map. Removing the in#ating pruning structure causes a
signi"cant accuracy loss because it involves many important model
parameters and damages essential model structures. To preserve
the model accuracy, pruning ratio will be limited. This presents a
key challenge that must be addressed.

3 PROPOSED PRUNE-AND-ASSEMBLE
APPROACH, MOSAIC

We introduce MOSAIC, a #exible HE-friendly model pruning strat-
egy to tackle the challenge discussed in the previous section. The
MOSAIC approach involves two main steps. First, it prunes the
convolutional layer using tessellated basic units. Next, it assem-
bles the pruned units into HE Pruning Structures via a channel
transformation. This way, the computationally expensive HE oper-
ations associated with these Pruning Structures can be eliminated.
Moreover, we introduce the channel transformation coordination
strategy to ensure that these channel transformations serve two
important purposes. Firstly, they e$ectively assemble numerous
pruned units into HE Pruning Structures, and secondly, they do not
interfere with the overall model functions, preserving the model’s
accuracy and functionality. Our primary emphasis is on optimiz-
ing Convolutional layers since they contribute signi"cantly to the
overall cost, accounting for up to 99% of the linear cost.

The following subsections will elaborate on our adaptive pruning
strategies tailored for three distinct MIMO schemes: (1) Ungrouped
Output Rotation (Out-Rot) MIMO, (2) Input Rotation (In-Rot) MIMO,
and (3) Grouped Out-Rot MIMO. Notably, the "rst two schemes
"nd application within the frameworks like GAZELLE [22] and
DELPHI [29], while the latter two are employed within the frame-
works such as CrypTFlow2 [38] and GALA [53]. Subsequently, we
will introduce the inter-layer channel transformation coordination,
followed by a comprehensive security analysis.

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

k11 k22

k21 k12

k13 k24

k23 k14

C1

C2

C3

C4

C1k21 C2k12

C1k11 C2k22

C2k12 C1k21

C3k23 C4k14

C3k13 C4k24

C4k14 C3k23

C1

C2

C3

C4

C1k11 + (C2k12) +C3k13 + C4k14

C2k22 + (C1k21)+ C4k24 + C3k23

Perm

Perm

C1k31 + C2k32 + C3k33+ C4k34

C2k42 + C1k41 + C4k44+ C3k43

*

+

+

+

[v1]C

k31 k42

k41 k32

k33 k44

k43 k34

C1

C2

C3

C4

C1k41 C2k32

C1k31 C2k42

C2k32 C1k41

C3k43 C4k34

C3k33 C4k44

C4k34 C3k43

Perm

Perm

+

+

+

[v2]C

O
ut
pu

t-
1

O
ut
pu

t-
2

Output-1

Output-2

B
1

B
2

B
4

B
3

B
1

B
2

B
3

B
4

*

*

*

*

*

*

*

*

C1k31 + C2k32 + C3k33+ C4k34

C2k42 + C1k41 + C4k44+ C3k43

C1k11 + (C2k12) +C3k13 + C4k14

C2k22 + (C1k21)+ C4k24 + C3k23

Figure 4: Ungrouped Out-Rot MIMO (𝐿𝐿 = 2).

3.1 MOSAIC’s Pruning for Ungrouped Output
Rotation MIMO Scheme

We begin with the Ungrouped Out-Rot MIMO scheme, which is
the default scheme of GAZELLE frameworks [22] and current HE-
friendly pruning method Hunter [7]. Figure 4 illustrates an ex-
ample when 𝐿𝐿 = 2. Four input channels to a convolution layer,
𝜶1, 𝜶2, 𝜶3, 𝜶4, are packed and encrypted into two ciphertexts [𝜴1] C
and [𝜴2] C , and then convolved with four "lters, one at a row, each
of which has four kernels (corresponding to the four input chan-
nels). Finally, the output is two encrypted ciphertexts, i.e., Output-1
and Output-2. Each output ciphertext includes two output channels.
More speci"cally, to obtain the "rst output ciphertext Output-1
in the HE computation, we "rst convolve input ciphertext [𝜴1] C
with the main-diagonal kernels group {𝜷11, 𝜷22} in the SIMD man-
ner described earlier, which gives the ciphertext [𝜶1𝜷11, 𝜶2𝜷22] C
named as intermediate ciphertext. Then, input ciphertext [𝜴1] C
is convolved with the kernels group {𝜷21, 𝜷12} to produce the ci-
phertext [𝜶1𝜷21, 𝜶2𝜷12] C . We cannot directly add these two con-
volved ciphertexts, since the "rst elements of [𝜶1𝜷11, 𝜶2𝜷22] C and
[𝜶1𝜷21, 𝜶2𝜷12] C are actually partial results of output channel 1 and
2, respectively, and hence adding them does notmake sense. To over-
come this problem, a Perm operation is conducted to rotate cipher-
text [𝜶1𝜷21, 𝜶2𝜷12] C into [𝜶2𝜷12, 𝜶1𝜷21] C which is regarded as an
intermediate ciphertext and can then be added to [𝜶1𝜷11, 𝜶2𝜷22] C .
Similarly, we get twomore intermediate ciphertexts [𝜶3𝜷13, 𝜶4𝜷24] C
and [𝜶4𝜷14, 𝜶3𝜷23] C . Finally, the "rst output ciphertext, Output-1,
is produced by summing up all four intermediate ciphertexts using
the Add operation. The second output ciphertext, Output-2, can be
obtained similarly.

As we can see, certain kernel groups involved in the convolution
require the expensive Perm operation to rotate the resulting con-
volved ciphertext into the intermediate ciphertext. If these kernel

1048

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Yifei Cai, et al.

(A) Pruning (B) Assemble with Output &
Input Channel Transformation

k11 k14k13k12

k44k43k42k41

k31 k32 k33 k34

k21 k22 k23 k24

k11 k14 k13k12

k44 k43k42k41

k31 k32 k33k34

k21 k22 k23k24

Ci1 Ci2 Ci3 Ci4

Co1

Co2

Co3

Co4Co1

Co2

Co3

Co4

Ci1 Ci2 Ci3Ci4

k11 k14 k13k12

k44 k43k42k41

k31 k32 k33k34

k21 k22 k23k24

Co1

Co2

Co3

Co4

Ci1 Ci2 Ci3Ci4

(C) Eliminate HE
Pruning Structure

unpruned pruned HE pruning
structurePruning Unit:

Figure 5: MOSAIC’s Pruning for Ungrouped Out-Rot MIMO
(𝐿𝐿 = 2).

groups are all zeros, there is no need to rotate the convolved cipher-
text to resequence associated "lters. For example, the Perm oper-
ation over the convolved ciphertext [𝜶1𝜷21, 𝜶2𝜷12] C can be elimi-
nated if the involved kernels group {𝜷21, 𝜷12} are all zeros since the
value of the corresponding intermediate ciphertext [𝜶2𝜷12, 𝜶1𝜷21] C
must be all zero. In fact, Hunter de"nes the External Structure based
on these kernel groups, which requires the expensive Perm operation
to rotate the resulting convolved ciphertext. In summary, pruning
an External Structure can eliminate one Perm (and subsequent
Mult and Add operations) over a convolved ciphertext [7]. But as
discussed in Section 1, in practical scenarios, the opportunity of
pruning the HE Pruning Structure, like the External Structure, is
hindered by the problem of pruning structure in#ation. Removing
the in#ated pruning structure can cause signi"cant accuracy loss
because it damages essential model structures.

The key to address the pruning structure in#ation is a break-
through scheme that can apply "ne-granularity pruning even in the
deep layers with the pruning structure in#ation problem. To achieve
this objective, MOSAIC smartly divides a convolutional layer into
tessellated tiny pruning units. During pruning, the weights within
the same unit are removed synchronously. Di$erent units are pruned
individually and separately. As a result, MOSAIC accomplishes
pruning with a "ne granularity that closely resembles unstructured
pruning, thereby mitigating the impact on the model’s accuracy.
The selection of the basic pruning units plays a critical role, and
generally two factors need to be taken into account. On the one
hand, they should be small enough to minimize the damage to the
model performance caused by pruning these units. On the other
hand, the units should "t well with the subsequent assembly to
form more HE Pruning Structures, in order to achieve maximal cost
reduction.

For example, for Ungrouped Out-Rot MIMO scheme, the individ-
ual kernels are a good choice for the basic pruning unit given those
two factors. As illustrated in Figure 5, the original layer is divided
into 16 tessellated basic pruning units from 𝜷11 to 𝜷44. These units
are independent of each other in pruning. The strategy of MOSAIC
is to remove the unessential basic pruning units3, resulting in the
pruned layer (A).

After removing the unessential basic pruning units, MOSAIC
applies the output and input channel transformations to reorder

3There aremany approaches to determining the importance ofmodel structure, ranging
from the most straightforward approach that compares the absolute value of the
weights with a given threshold [16] to advanced approach focused on the e$ect of
certain structure on the model objective function [8]. In this work, we do not intend to
reinvent the pruning criteria. The proposed MOSAIC can adopt any existing pruning
criteria. Our experimental results are based on a pruning criteria: HSPG [8].

Co1

Co2

Co3

Co4

Co1

Co2

Co3

Co4

(A) Pruning

(B) Assemble with Output Channel Transformation

Ci1 Ci2 Ci3 Ci4 Ci2 Ci4 Ci1 Ci3

(α) Pruning (β) Input Channel
Transformation

unpruned
pruned
HE pruning
structure

Co1

Co2

Co3

Co4

(C) Eliminate HE Pruning Structure

Ci2 Ci4 Ci1 Ci3

(γ) Eliminate HE
Pruning Structure

Pruning Unit
(Cn×1)

(1×Cn)

Figure 6: MOSAIC’s Pruning for Ungrouped Out-Rot MIMO,
ResBlock (𝐿𝐿 = 2).
the output and input channels, which correspond to interchange of
the rows and columns of the kernel matrix, respectively. The "nal
channel transformation result is illustrated in Figure 5(B), where
the row and column indices indicate the original row and column
number, respectively. For example, the indices of the 3rd and 4th
columns are Ci4 and Ci3, respectively, which indicate they were
obtained by interchanging the 4th and 3rd columns of the kernel
matrix in Figure 5(A). The objective of channel transformation, i.e.,
reordering rows and columns of the kernel matrix, is to assemble
pruned units into as many HE Pruning Structures as possible, mak-
ing it possible to prune those structures to eliminate the Perm and
subsequent HE Mult/Add operations.

A local optimal search algorithm based on the greedy search
method or a global optimal search algorithm based on the ex-
haustion method can be used to obtain the optimal kernel matrix
row/column reordering. To conduct the greedy search, we could
"rst select the row with the largest number of pruned units. We
then search the remaining rows to pick up another 𝐿𝐿 ↗ 1 rows
that can assemble the largest number of HE Pruning Structures
with that selected row. We "x these 𝐿𝐿 rows and then search for
another 𝐿𝐿 rows from the remaining rows of the kernel matrix. This
process is repeated until all rows have been "xed, resulting in a
sequence of rows that represent the local optimal solution. The
same approach is used to obtain the sequence of the kernel matrix’s
columns. The global optimal search method involves exhaustively
testing all possible sequences of rows or columns of the kernel ma-
trix and selecting the one with the largest number of HE Pruning
Structures. However, this approach requires massive computing
power. In this work, we adopt the local optimal search algorithm
for MOSAIC, to carry out channel transformation. Figure 5(C) il-
lustrates the result of channel transformation on the kernel matrix
that form two External Structures, which leads to the elimination
of two Perm operations and subsequent HE operations. At last, to
gain more insights into MOSAIC’s pruning approach, the visual-
ization of the prune-and-assemble process we discussed above is
also shown in Figure 15 by applying MOSAIC onto a large kernel
matrix.

A special case of MOSAIC’s pruning on the Ungrouped Out-Rot
MIMO is for the DL model built by ResBlocks, which can be found
in the ResNet series and many other networks. In the ResBlock, the
"rst layer only undergoes output channel transformation while the
last layer only undergoes input channel transformation, according
to our inter-layer transformation coordination (to be discussed in
Subsection 3.4). To this end, the "rst layer of ResBlocks is divided

1049

MOSAIC: A Prune-and-Assemble Approach for E!icient Model Pruning in Privacy-Preserving Deep Learning ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

k11 k22

k12 k21

k13 k24

k14 k23

C1k11 C2k22

C2k12 C1k21

C3k13 C4k24

C4k14 C3k23

C1

C2

C3

C4

Perm

*

+

+

[v1]C

k31 k42

k32 k41

k33 k44

k34 k43

C1k31 C2k42

C2k32 C1k41

C3k33 C4k44

C4k34 C3k43

+

+

+

C1k11 + C2k12 + C3k13 + C4k14

C2k22 + C1k21 + C4k24 + C3k23

C1k31 + C2k32 + C3k33 + C4k34

C2k42 + C1k41 + C4k44 + C3k43

[v2]C

Output-1

Output-2

*

*

*

*

*

*

*

Perm

C2

C1

[v'1]C

C4

C3

[v'2]C

+

C1 C2

C3 C4

C2 C1

C4 C3

C1 C2

C3 C4

C2 C1

C4 C3

B
1

B
2

B
3

B
4

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

C1

C2

C3

C4

C1k11 + C2k12 + C3k13 + C4k14

C2k22 + C1k21 + C4k24 + C3k23

C1k31 + C2k32 + C3k33 + C4k34

C2k42 + C1k41 + C4k44 + C3k43

*

[v1]C

[v2]C

O
ut
pu

t-
1

O
ut
pu

t-
2

B
1

B
2

B
4

B
3

Figure 7: In-Rot MIMO (𝐿𝐿 = 2).
using a 1 ↑ 𝐿𝐿 kernel set as the pruning unit, and the last layer is
divided using a 𝐿𝐿 ↑ 1 kernel set. These pruning units are more
e!cient for assembly than individual kernels for ResBlocks. Fig-
ure 6(A) shows that the "rst layer of a ResBlock is divided into 32
tessellated 1 ↑ 𝐿𝐿 basic pruning units and some unessential units
are pruned. In Figure 6(B), the output channel transformation is
conducted to assemble the pruned units, resulting in the elimina-
tion of eight External Structures and corresponding Perm shown
in (C). The lack of input channel transformation in the "rst layer
prevents adjustment of the sequence of the kernel matrix’s columns.
To ensure the formation of more External Structures, each of which
involves a 𝐿𝐿 ↑ 𝐿𝐿 area of the kernel matrix. This basic unit already
covers the kernels from adjacent 𝐿𝐿 columns, allowing for many
External Structures to be formed even without column transfor-
mation. The same reasoning applies to the selection of the 𝐿𝐿 ↑ 1
basic units for the last layer of ResBlock. The prune-and-assemble
processes are illustrated in (𝑃), (𝑄) and (𝑅).

3.2 MOSAIC’s Pruning for Input Rotation
MIMO Scheme

The input rotation MIMO scheme, In-Rot, rotates the input of convo-
lution. Figure 7 demonstrates the In-Rot MIMO scheme, where the
input of the convolution, ciphertext [𝜴1] C , is rotated into [𝜴→1] C
and then convolved with the kernels group {𝜷12, 𝜷21} to obtain
the intermediate ciphertext [𝜶2𝜷12, 𝜶1𝜷21] C directly. Similarly, we
can obtain three more intermediate ciphertexts: [𝜶1𝜷11, 𝜶2𝜷22] C ,
[𝜶3𝜷13, 𝜶4𝜷24] C , and [𝜶4𝜷14, 𝜶3𝜷23] C . Finally, the "rst output ci-
phertext, Output-1, is produced by summing up all four intermedi-
ate ciphertexts using the Add operation. The second output cipher-
text, Output-2, can be obtained similarly.

Actually, in Figure 7, each ↔ symbol represents the convolution
operator associated with one HE-based convolution, as discussed

k1x

k4x

k3x

k2x

Pruning
Unit

(A) Pruning

Ci1 Ci2 Ci3 Ci4 Ci1 Ci3 Ci2 Ci4

unpruned pruned HE pruning
structure

(C) Eliminate HE
Pruning Structure

Ci1 Ci3 Ci2 Ci4

k11 k14k13k12

k44k43k42k41

k31 k32 k33 k34

k21 k22 k23 k24

Cix

(B) Assemble with Input Channel
Transformation

Figure 8: MOSAIC’s Pruning for In-Rot MIMO (𝐿𝐿 = 2).

in Figure 3. Combining Figure 7 and Figure 3, we could obtain
some observations. The In-Rot MIMO scheme converts Perm op-
eration associated with External Structure (denoted as ex-Perm)
to the Perm operation associated with Internal Structure (denoted
as in-Perm). It eliminates the cost of ex-Perm at the expense of
increasing in-Perm. Obviously, one Perm conversion is involved
with converting input ciphertext [𝜴1] C into [𝜴→1] C , and then ad-
ditional (𝑂𝑁𝑂𝑂 ↗ 1) in-Perm operations performed over [𝜴→1] C to
obtain the rotated ciphertext for the convolution between [𝜴→1] C
and the kernels group {𝜷12, 𝜷21} (and all other kernels group to be
convolved with [𝜴→1] C).

For the In-Rot MIMO scheme, a basic pruning unit of MOSAIC
consists of the weights located at the same position of all the kernels
associated with the same input channel. For example, as illustrated
in Figure 8, the four weights located at the top-left corner of each
of the four kernels in the same column, which are associated with
the same input channel, form one basic pruning unit.

In Figure 8, the original layer is divided into 36 tessellated basic
pruning units, with 9 units for each column of the kernel matrix. The
pruning process then removes 4, 4, 5 and 3 units for each column,
resulting in the pruned layer in Figure 8(A). Next, the input channel
transformation is performed to reorder the input channels, which
corresponds to the column transformation of the kernel matrix, as
shown in Figure 8(B). Thus, the pruned units are assembled into
7 Internal Structures, with 4 related to the "rst input ciphertext
(corresponding to the 1st and 2nd columns of the kernel matrix)
and 3 related to the second input ciphertext (corresponding to the
3rd and 4th columns of the kernel matrix). This assembly results in
a reduction of 13 in-Perms4, shown in Figure 8(C).

3.3 MOSAIC’s Pruning for Grouped Output
Rotation MIMO Scheme

Figure 9 illustrates the Grouped Out-Rot MIMO scheme when
𝐿𝐿 = 2. Most of the operations are the same as the Ungrouped
Out-Rot MIMO introduced before, except that the Perm operation
is not applied to each of convolved ciphertext immediately. Instead,
all convolved ciphertexts that require the same Perm operation are
added together "rst and then one Perm is performed. For instance,
in Figure 9, the input ciphertext [𝜴1] C is convolved with the kernels
group {𝜷21, 𝜷12} to produce the ciphertext [𝜶1𝜷21, 𝜶2𝜷12] C . Next,
add this convolved ciphertext with another convolved ciphertext
[𝜶3𝜷23, 𝜶4𝜷14] C via Add operation. The resultant sum is rotated

4Internal Structure with weights at the center position of the kernel is involved with
(𝑃𝐿 ↗ 1) in-Perm, while the other Internal Structures are involved with 𝑃𝐿 in-Perm.
So, when 𝑃𝐿 = 2, the number of in-Perm eliminated is: 4↑ 2+ 1↑ (2↗ 1) + 2↑ 2 = 13.

1050

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Yifei Cai, et al.

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

k11 k22

k21 k12

k13 k24

k23 k14

C1

C2

C3

C4

C1k21 C2k12

C1k11 C2k22

C3k23 C4k14

C3k13 C4k24

C1

C2

C3

C4

C1k11 + (C2k12) +C3k13 + C4k14

C2k22 + (C1k21)+ C4k24 + C3k23

Perm

C1k31 + C2k32 + C3k33+ C4k34

C2k42 + C1k41 + C4k44+ C3k43

*

+

+

[v1]C

k31 k42

k41 k32

k33 k44

k43 k34

C1

C2

C3

C4

C1k41 C2k32

C3k43 C4k34

[v2]C

O
ut
pu

t-
1

O
ut
pu

t-
2

Output-1

Output-2

B
1

B
2

B
4

B
3

B
1

B
2

B
3

B
4

*
*

*
*

*
*

*
*

C1k31 + C2k32 + C3k33+ C4k34

C2k42 + C1k41 + C4k44+ C3k43

C1k21+ C3k23

C2k12+ C4k14

+ C1k11 +C3k13

C2k22 + C4k24

C2k12+ C4k14

C1k21+ C3k23

C1k11 + (C2k12) +C3k13 + (C4k14)

C2k22 + (C1k21)+ C4k24 + (C3k23)

Perm+

+

C1k41 + C3k43

C2k32 + C4k34

+ C1k31 + C3k33

C2k42 + C4k44

C2k32 + C4k34

C1k41 + C3k43

C1k31 C2k42

C3k33 C4k44

C
1k

11
 +

 (C
2k

12
) +
C

3k
13

 +
 (C

4k
14
)

C
2k

22
 +

 (C
1k

21
)+

 C
4k

24
 +

 (C
3k

23
)

C
1k

31
 +

 C
2k

32
 +

 C
3k

33
+
C

4k
34

C
2k

42
 +

 C
1k

41
 +

 C
4k

44
+
C

3k
43

Figure 9: Grouped Out-Rot MIMO (𝐿𝐿 = 2).

(A) Pruning (B) Assemble with Output
Channel Transformation

k11 k14k13k12

k44k43k42k41

k31 k32 k33 k34

k21 k22 k23 k24

Co1

Co2

Co3

Co4Co1

Co2

Co3

Co4

Co3

Co2

Co1

Co4

(C) Eliminate HE
Pruning Structure

unpruned pruned HE pruning
structure

Pruning Unit:
(1×Ci)

Figure 10: MOSAIC’s Pruning for Grouped Out-Rot MIMO
(𝐿𝐿 = 2).

into the intermediate ciphertexts [𝜶2𝜷12 + 𝜶4𝜷14, 𝜶1𝜷21 + 𝜶3𝜷23] C by
a Perm at last. Added to another intermediate ciphertexts [𝜶1𝜷11 +
𝜶3𝜷13, 𝜶2𝜷22 + 𝜶4𝜷24] C , the "rst output ciphertext Output-1 is ob-
tained. The second output ciphertext, Output-2, can be calculated
in a similar manner.

As we can observe, certain kernel groups involved in the calcu-
lation require the expensive Perm operation. For example, during
the process to calculate output ciphertext Output-1, the kernels
group {𝜷21, 𝜷12} and {𝜷23, 𝜷14}, marked by the red dashed boxes,
are involved with Perm operation. Thus, if these kernel groups
are all zeros, there is no need to perform the Perm since the "nal
result of the following calculations must also be zero. In this way,
we could eliminate one Perm operation by pruning these involved
kernel groups, treating them as an HE Pruning Structure. However,
as previously discussed, the challenge of pruning structure in#ation
impedes the removal of the in#ating HE Pruning Structure, as such
removal can lead to substantial accuracy loss due to the disrup-
tion of essential model structures. Next, we re"ne our adaptable
prune-and-assemble framework, MOSAIC, to e$ectively work on
the Grouped Out-Rot MIMO scheme, while avoiding the pruning
structure in#ation problem.

For the Grouped Out-Rot MIMO scheme, the basic pruning unit
of MOSAIC is the entire "lter, which corresponds to a row in the

Conv1_1

Conv1_2

1x1

3x3

Conv1_3
1x1

Conv1_1

Conv1_2

Conv1

Conv2

Conv3

3x3

3x3
PIT

AOT

AIT

POT

AIT

POT

POT

AIT

AIT

POT

POT

AIT

3x3

3x3

3x3
(A) (B) (C)

Figure 11: MOSAIC’s Channel Transformation Coordination
Strategies: (A) VGG-like model. (B) 2-layer ResBlock. (C) 3-
layer bottleneck block.

kernel matrix. As shown in Figure 10, the original layer is divided
into 4 tessellated basic pruning units. Then pruning is conducted to
remove unessential units, e.g., the two rows of the kernel matrix in
Figure 10(A). Then, the output channel transformation is performed
to reorder the output channels, which correspond to the rows of
the kernel matrix, as shown in Figure 10(B). Lastly, in Figure 10(C),
the assembled pruned units constitute an HE Pruning Structure.
This eliminates one Perm operation and subsequent HE Mult/Add
operations.

3.4 MOSAIC’s Channel Transformation
Coordination

So far, we have discussed MOSAIC’s prune-and-assemble approach
for Ungrouped Out-Rot MIMO scheme, In-Rot MIMO scheme and
Grouped Out-Rot MIMO scheme. As we know, a DL model is a stack
of layers. The output channels of a layer are the input channels of
the following layer [26, 45]. The channel transformation is used to
reorder the input or the output channel for assembling the basic
pruning units into HE Pruning Structures. It is crucial to ensure that
the channel transformation conforms to the channel logic between
the layers to maintain the function of the model. When an output
channel transformation is made on a layer, the order of the layer’s
output channels changes. Therefore, a corresponding input channel
transformation must be performed on the next layer to align its
input channels. Similarly, when an input channel transformation
is made on a layer, it must lead to another output channel trans-
formation on the previous layer. The active and passive channel
transformations must be applied in pair.

Next, we discuss how MOSAIC coordinates the channel transfor-
mations between the neighboring layers of a DL model. We propose
three inter-layer channel transformation coordination schemes
speci"cally designed for (A) VGG-like model, (B) 2-layer ResBlock,
and (C) 3-layer ResBlock. These three coordination schemes cover
the most popular CNN models and o$er comprehensive and e!-
cient pruning, while maintaining the functionality of the model.
Channel transformation coordination for VGG-like model:
As shown in Figure 11 (A), for VGG-like model with sequentially
stacked convolutional layers, we perform the active input channel
transformation (AIT) on each layer, followed by the corresponding
passive output channel transformation (POT) on the previous layer.
The AIT is performed with the objective to maximize the number of
HE pruning structures to be obtained. On the other hand, the POT
is performed with a simple objective that is to align the order of the

1051

MOSAIC: A Prune-and-Assemble Approach for E!icient Model Pruning in Privacy-Preserving Deep Learning ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

(output) channels to match the desired order of the immediately
following AIT. Note that the output channels of a POT become the
input channels of the following AIT.
Channel transformation coordination for 2-layer ResBlock:
Some DL models are built with ResBlocks, which have “shortcuts”
to connect the head and tail of each ResBlock. While the “shortcut”
has many bene"ts for the performance of deep networks, it presents
a great challenge in channel order alignment, or coordination of
channel transformation. Assume that there is one node between
every two adjacent ResBlocks, and the shortcuts connect all nodes
together. Thus, all nodes share the same channel orders. Moreover,
any output channel transformation on the last layer of a ResBlock
or input channel transformation on the "rst layer of a ResBlock
will a$ect the channel order of all these nodes. Consequently, we
are compelled to align the "rst and last layers of each ResBlock to
match the same channel order, even though this is actually what
we aim to evade.

The MOSAIC channel transformation coordination scheme for
ResBlock is devised with those constraints. Speci"cally, in DL mod-
els with 2-layer ResBlocks, all channel transformations are per-
formed inside the ResBlock. There is no cross-ResBlocks channel
transformation. As shown in Figure 11(B), only AIT is conducted
on the last layer, while the corresponding POT is performed on the
"rst layer of the ResBlock.
Channel transformation coordination for 3-layer ResBlocks:
The 3-layer ResBlock is typically found in some large-scale net-
works such as ResNet-50, ResNet-101 and ResNet-152. This Res-
Block consists of a stack of three layers: 1 ↑ 1, 3 ↑ 3, and 1 ↑ 1
convolutional layers. The 3↑ 3 layer serves as the feature extractor,
while the 1↑1 layers are responsible for expanding and compressing
dimensions [18]. We make slight adjustments to the coordination
scheme for 2-layer ResBlocks to make it suitable for 3-layer Res-
Blocks. Given the dominant contribution of the 3 ↑ 3 layer to the
model functionality and calculation density, we perform both the
AIT and active output channel transformation (AOT) on the 3 ↑ 3
layer, as shown in Figure 11(C). We then conduct the corresponding
POT and the passive input channel transformation (PIT) on the
"rst and last 1 ↑ 1 layers, respectively.

By integrating these transformation coordination schemes with
the pruning scheme for the three MIMO schemes: (1) Ungrouped
Out-Rot MIMO, (2) In-Rot MIMO, and (3) Grouped Out-Rot MIMO,
as detailed earlier, we can achieve remarkable cost reduction for
DL models in privacy-preserving MLaaS. For instance, the cost is
reduced by 91.27% for ResNet-50 on the Tiny ImageNet dataset
under the GAZELLE framework on which the "rst two MIMO
schemes are applied. We also achieve a 58.59% cost reduction un-
der CrypTFlow2 which employs the latter two MIMO schemes.
While this pruning ratio might be lower compared to the one for
GAZELLE, it is important to recognize that CrypTFlow2 is already
an extensively optimized framework, resulting in a signi"cantly
lower baseline cost. Hence, this achieved pruning ratio remains
noteworthy, given its ability to further compress an already highly
optimized computation cost.

Note that, the selection of MIMO schemes usually varies from
layer to layer in a DL model, to achieve optimal performance. In
Section A of the Appendix, we conduct a comprehensive analysis

of the intricacies and complexities associated with Ungrouped Out-
Rot, In-Rot MIMO and Grouped Out-Rot schemes. This analysis
can help to determine for a particular layer, which of these schemes
can bene"t most, considering factors like complexity and actual
computational cost.

3.5 Security Analysis
Similar to GAZELLE [22] and CrypTFlow2 [38], the security of
MOSAIC relies on the semantic security of packed homomorphic
encryption algorithms, such as BFV [11] and CKKS [9], for linear
computations, including convolution. Speci"cally, MOSAIC prunes
the original model by setting some weights to zero and performs
channel transformation by reordering the input and output chan-
nels of the convolutional layer. The pruned models are then used by
the server for the MLaaS service. For linear computations, MOSAIC
uses a more e!cient homomorphic encryption-based computation
method with lower complexity during the MLaaS process, com-
pared to other frameworks like GAZELLE. Therefore, MOSAIC
does not introduce any extra computational modules. Moreover,
for nonlinear computations, MOSAIC follows the same paradigm
as GAZELLE or CrypTFlow2, which is based on Garbled Circuits
(GC) [2] or Oblivious Transfer (OT) [6] for ReLU computation.
Overall, under the semi-honest assumption, MOSAIC is considered
secure.

4 PERFORMANCE EVALUATION
In this section, We utilize two state-of-the-art MLaaS frameworks,
GAZELLE [22] and CrypTFlow2 [38] as example, which encompass
all three MIMO schemes discussed earlier, to evaluate the perfor-
mance ofMOSAIC, and compare it withHunter [7]. Another notable
privacy-preserving MLaaS framework is Cheetah [19]. However,
Cheetah is highly sensitive and dependent on delicate adjustment
of encryption parameters [19]. Furthermore, concerns have been
raised by certain research studies about its communication over-
head [14, 17]. As of now, GAZELLE and CrypTFlow2 remain the
widely accepted frameworks for MLaaS. We train and prune the DL
model using MOSAIC’s #exible HE-friendly pruning strategy with
Pytorch [35] on a workstation with NVIDIA A6000 GPU and AMD
Ryzen3995 CPU. The experiments are conducted on "ve popular DL
models: VGG-11, VGG-13, VGG-16, ResNet-34, and ResNet-50, with
two mainstream datasets: CIFAR-10 [23] and Tiny ImageNet [46].
We then deploy MOSAIC’s pruned model with the Homomorphic
Encryption (HE) library SEAL-Python [20, 43] on a machine with
Intel Core i5-10400 CPU to evaluate the actual computational cost
under CKKS [9]. The performance evaluation focuses on the linear
computation cost of the convolutional layer. The nonlinear cost and
communication cost are the same as the baseline privacy-preserving
framework.

We train and prune all models from scratch without any other
improvement methods, such as Transfer Learning or Knowledge
Distillation. For all evaluations, we follow the Homomorphic En-
cryption Standard [1]. To ensure security and e!ciency, the slots of
ciphertext are set to 4096 for the "rst layer and 8192 for the subse-
quent layers of all models [1, 32, 39]. This results in the layer-wise
𝐿𝐿 breakdown shown in Table 1. As we can observe, 𝐿𝐿 in#ates
dramatically as the model goes deeper.

1052

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Yifei Cai, et al.

Table 1: Layer-wise 𝐿𝐿 breakdown of eight models

Method Layer-wise 𝐿𝐿 breakdown
CI
FA

R VGG16 4↑1 → 8↑3 → 32↑6 → 128↑3
VGG13 4↑1 → 8↑3 → 32↑4 → 128↑2
VGG11 4↑1 → 8↑1 → 32↑4 → 128↑2

Ti
ny

-IN

VGG16 1↑1 → 2↑3 → 8↑6 → 32↑3
VGG13 1↑1 → 2↑3 → 8↑4 → 32↑2
VGG11 1↑1 → 2↑1 → 8↑4 → 32↑2
ResNet34 1↑1 → 2↑6 → 8↑8 → 32↑12 → 128↑6
ResNet50 1↑1 → 2↑9 → 8↑12 → 32↑18 → 128↑9

Table 2: MOSAIC v.s. Hunter.

Method Baseline
Cost MOSAIC/Hunter Cost Accuracy

Baseline/MOSAIC/Hunter
VGG16-cifar 906.87s 168.93s/478.05s(35.3%) 94.50%/94.16%/94.19%
VGG13-cifar 583.40s 153.56s/347.11s(44.2%) 94.09%/94.01%/94.46%
VGG11-cifar 536.57s 130.02s/178.80s(72.7%) 93.80%/93.56%/93.35%
VGG16-tiny 2512.62s 531.09s/920.46s(57.7%) 65.00%/64.87%/64.68%
VGG13-tiny 1615.05s 409.01s/746.40s(54.8%) 64.36%/64.33%/64.70%
VGG11-tiny 1496.16s 400.12s/663.12s(60.3%) 63.00%/63.88%/63.75%

*The comparison in this table is conducted within the GAZELLE framework, which is
the Hunter was initially designed for.

MOSAIC’s !exible pruning strategy v.s. Hunter: Table 2 pro-
vides a comprehensive comparison between MOSAIC and Hunter.
This comparison illustrates, while aiming to maintain accuracy, di-
rectly removing the HE Pruning Structure doesn’t yield a desirable
pruning ratio for models with in#ating 𝐿𝐿 . This is due to the coarse
granularity of the pruning. In contrast, MOSAIC’s highly #exible
“Prune-and-Assemble” scheme pro"ciently reduces computational
cost. In the third column of the table, the value "168.93s/478.05s
(35.3%)" represents the practical time cost of MOSAIC’s pruned
model, which is 168.93s, in comparison to Hunter’s time cost of
478.05s. Therefore, MOSAIC’s cost stands at only 35.3% of Hunter’s.

MOSAIC’s performance compared with baseline: Table 3 and
Table 4 show that MOSAIC can e!ciently prune the original model
without sacri"cing accuracy, reducing the actual cost of Perm, Mult,
and Add operations within GAZELLE framework and CrypTFlow2
framework. For example, in the state-of-the-art ResNet-50 on Tiny
ImageNet within GAZELLE (Table 3), MOSAIC reduces the actual
cost of Perm by 92.42% and the overall cost by 91.27% while main-
taining accuracy. Within CrypTFlow2, which is a highly customized
HE framework, the attainable pruning ratio might be somewhat
lower compared to the GAZELLE framework due to lack of redun-
dancy and smaller pruning space. Nonetheless, bene"ting from its
lower baseline cost, the "nal cost of the pruned model through MO-
SAIC remains competitive with that of the GAZELLE framework.
The e$ectiveness of MOSAIC lies in its #exible and accurate prun-
ing approach that can overcome the pruning ratio limitation caused
by pruning structure in#ation. Overall, MOSAIC performs well in
all eleven experiments under two most widely accepted state-of-
the-art HE frameworks, e!ciently reducing the computational cost
of the model without any accuracy drop.

Layer-wise performance breakdown: We further analyze the
pruning performance by breaking down the entire model into a
series of layers. In Figure 12 and 13, we provide the layer-wise
breakdown of VGG-16 on the CIFAR-10 and Tiny ImageNet dataset,

VGG16-Cifar10-GAZELLE

VGG16-Cifar10-CrypTFlow2

Figure 12: VGG16 CIFAR-10 Layer-Wise Breakdown.

VGG16-TinyImageNet-GAZELLE

VGG16-TinyImageNet-CrypTFlow2

Figure 13: VGG16 TinyImageNet Layer-Wise Breakdown.

respectively. Additionally, Figure 14 illustrates the layer-wise break-
down of ResNet-50 on the Tiny ImageNet dataset. The breakdown
yields several noteworthy observations: Firstly, unlike the scenario
in plaintext, where the computational cost is relatively evenly dis-
tributed across layers, the privacy-preserving scenario (even with
the same model and dataset) exhibits a tendency for the model’s
cost to concentrate around speci"c layers. For instance, in Figure 12
and 13, this concentration is evident around Conv9 and Conv10.
The "gures also demonstrate that MOSAIC strategically targets
these layers to achieve e!cient model cost compression. Secondly,
the pruning ratio (indicated by the green line) exhibits distinct
trends between di$erent HE frameworks due to the variations in
the adopted MIMO scheme. The pruning ratio line for GAZELLE is
more consistent and smooth, while the CrypT#ow2 line displays
more #uctuations, and at times, even multiple spikes, shown in
Figure 14. Generally speaking, this indicates that the process of
pruning within the former has a larger space. These observations
hold true in our other experiments as well. The interested reader is
referred to Section B in the Appendix for more details.

1053

MOSAIC: A Prune-and-Assemble Approach for E!icient Model Pruning in Privacy-Preserving Deep Learning ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Table 3: MOSAIC’s computation performance compared with baseline on "ve popular DL models with two mainstream datasets
within the GAZELLE framework.

Dataset CIFAR10 Tiny ImageNet
Models VGG11 VGG13 VGG16 VGG11 VGG13 VGG16 ResNet34 ResNet50

Parameters 13M 13M 19M 161M 161M 166M 24M 38M
Computation Cost in Convolution

Perm(s) 110.56/458.49 131.91/495.59 142.02/772.29 219.04/1184 218.17/1263.91 299.89/1974.43 572.72/1157.08 367.5/4850.45
75.89%↘ 73.38%↘ 81.61%↘ 81.5%↘ 82.74%↘ 84.81%↘ 50.5%↘ 92.42%↘

Mult(s) 17.3/69.4 19.24/78.06 23.92/119.62 160.96/277.47 169.64/312.10 205.49/478.36 105.12/211.65 68.21/202.8
75.07%↘ 75.35%↘ 80%↘ 41.99%↘ 45.65%↘ 57.04%↘ 50.34%↘ 66.37%↘

Add(s) 2.16/8.68 2.4/9.76 2.99/14.96 20.12/34.7 21.2/39.03 25.71/59.83 13.13/26.46 7.79/25.31
75.1%↘ 75.38%↘ 80.03%↘ 42.01%↘ 45.68%↘ 57.03%↘ 50.38%↘ 69.20%↘

Overall
Cost(s)

130.02/536.57 153.56/583.4 168.93/906.87 400.12/1496.16 409.01/1615.05 531.09/2512.62 690.96/1395.19 443.51/5078.88
75.77%↘ 73.68%↘ 81.37%↘ 73.26%↘ 74.68%↘ 78.86%↘ 50.48%↘ 91.27%↘

Model Accuricy
Baseline 93.80% 94.09% 94.50% 63% 64.36% 65% 65.26% 65.50%
MOSAIC’s 93.56% 94.01% 94.16% 63.88% 64.33% 64.87% 65.55% 65.30%

*The pruned model maintains similar accuracy to the baseline model. Computation performance data entries show the actual time cost achieved by the pruned model compared to
the baseline. For example, a reduction from 485.49s to 110.56s is represented as 110.56/485.49 (75.89% ↘), indicating a 75.89% cost reduction for the Perm operation.

ResNet50-TinyImageNet-GAZELLE

ResNet50-TinyImageNet-CrypTFlow2

Figure 14: ResNet50 TinyImageNet Layer-Wise Performance Breakdown.

Table 4: MOSAIC’s computation performance compared with
baseline on VGG-16 and ResNet-50 with CIFAR-10 and Tiny
ImageNet dataset within the CrypTFlow2 frameworks.

Dataset CIFAR10 Tiny ImageNet
Models VGG16 VGG16 ResNet50

Computation Cost in Convolution

Perm(s) 49.31/113.83 80.65/151.88 137.07/293.85
56.68%↘ 46.90%↘ 53.35%↘

Mult(s) 31.98/119.62 109.22/478.36 70.46/202.80
73.27%↘ 77.17%↘ 65.26%↘

Add(s) 4/14.96 13.65/59.83 8.63/25.31
73.28%↘ 77.18%↘ 65.90%↘

Overall
Cost(s)

85.28/248.41 203.51/690.07 216.16/521.96
65.67%↘ 70.51%↘ 58.59%↘

Model Accuricy
Baseline 94.50% 65% 65.50%
MOSAIC’s 94.41% 64.94% 65.54%

Visualization of MOSAIC: To gain a deeper understanding of
the Prune-and-Assemble approach of MOSAIC, we have provided
visualizations of MOSAIC applied to various MIMO schemes. These
include: (1) Ungrouped Out-Rot MIMO, (2) Ungrouped Out-Rot
MIMO ResBlock, (3) In-Rot MIMO, and (4) Grouped Out-Rot MIMO.
These visualizations are presented in Figures 15, 16, 17, and 18. In
these binary representations, pruned values are depicted in black,
while unpruned values are represented in white. In each of the
"gures, (A) corresponds to the kernel matrix pruned by the basic
units, while (B) shows the kernel matrix where the pruned units are
assembled together into HE Pruning Structures using correspond-
ing channel transformations. As we can observe, the basic pruning
units have been cleverly designed to ful"ll two primary objectives.
Firstly, these units are tessellated and compact, ensuring minimal
model accuracy disruption during the pruning process. Secondly,
they seamlessly align with the subsequent channel transformations.

1054

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Yifei Cai, et al.

(A) (B) (C)

Figure 15: Visualization ofMOSAIC’s Pruning for Ungrouped
Out-Rot MIMO.

(A)

(B)

Figure 16: Visualization ofMOSAIC’s Pruning for Ungrouped
Out-Rot MIMO, ResBlock.

(A) (B)

Figure 17: Visualization of MOSAIC’s Pruning for In-Rot
MIMO.

(A) (B) (C)

Figure 18: Visualization of MOSAIC’s Pruning for Grouped
Out-Rot MIMO.

This compatibility enables them to be e$ectively assembled into
more HE Pruning Structures, leading to enhanced cost reduction.

5 CONCLUSION
In this paper, we introduce "MOSAIC," a highly #exible pruning
framework characterized by its "ne pruning granularity. The core
of MOSAIC is based on a "Prune-and-Assemble" strategy. This
entails initially pruning the convolutional layer with numerous
tessellated basic units, followed by the assembly of these pruned
units into HE Pruning Structures through our proposed channel
transformations. By adopting this approach, MOSAIC attains a high
pruning ratio while circumventing accuracy drops that typically
accompany direct pruning of in#ated structures. Utilizing the state-
of-the-art HE-based frameworks GAZELLE and CrypTFlow2 as our
testbed, we successfully apply MOSAIC to popular DL models like
VGG and ResNet series on classic datasets including CIFAR-10 and
Tiny ImageNet. The experimental results show that MOSAIC can
perform e!cient and precise pruning, reducing the Perm, Mult,
and Add operations to achieve signi"cant cost reduction without
any loss in accuracy. For instance, when applied to VGG-16 on
Tiny ImageNet, MOSAIC achieves total cost reductions of 78.86%
and 70.51% within the GAZELLE and CrypTFlow2 frameworks,
respectively. This underscores the high e!ciency of MOSAIC’s
HE-friendly pruning approach.

ACKNOWLEDGMENTS
The authors would like to express thanks of gratitude to the lab
members for helping and collaborating on this work and anony-
mous reviewers for the constructive comments. The work of H. Wu
and R. Ning was supported in part by the National Science Foun-
dation under Grants OAC-2320999, CNS-2120279, CNS-2153358
and DUE-2153358, DoD Center of Excellence in AI and Machine
Learning (CoE-AIML) under Contract Number W911NF-20-2-0277,
and the Commonwealth Cyber Initiative.

REFERENCES
[1] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Sha" Goldwasser, Sergey

Gorbunov, Shai Halevi, Je$rey Ho$stein, Kim Laine, Kristin Lauter, et al. 2021.
Homomorphic encryption standard. Protecting privacy through homomorphic
encryption (2021), 31–62.

[2] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations of
garbled circuits. In Proceedings of the ACM CCS. 784–796.

[3] Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider, and
Hossein Yalame. 2020. MP2ML: a mixed-protocol machine learning framework
for private inference. In Proceedings of the ARES. 1–10.

[4] Zvika Brakerski. 2012. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In Annual Cryptology Conference. Springer, 868–886.

[5] Zvika Brakerski, Craig Gentry, and Shai Halevi. 2013. Packed ciphertexts in
LWE-based homomorphic encryption. In Proceedings of the PKC. 1–13.

[6] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. 1986. All-or-nothing
disclosure of secrets. In Proceedings of the EUROCRYPT. 234–238.

[7] Yifei Cai, Qiao Zhang, Rui Ning, Chunsheng Xin, and Hongyi Wu. 2022. Hunter:
He-friendly structured pruning for e!cient privacy-preserving deep learning. In
Proceedings of the 2022 ACM on Asia Conference on Computer and Communications
Security. 931–945.

[8] Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming
Liang, Yixin Shi, Sheng Yi, and Xiao Tu. 2021. Only train once: A one-shot
neural network training and pruning framework. Advances in Neural Information
Processing Systems 34 (2021), 19637–19651.

[9] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homomor-
phic encryption for arithmetic of approximate numbers. In Proceedings of the
ASIACRYPT. 409–437.

[10] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-
work for e!cient mixed-protocol secure two-party computation.. In Proceedings
of the NDSS.

[11] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homomor-
phic encryption. IACR Cryptol. ePrint Arch. (2012), 144.

1055

MOSAIC: A Prune-and-Assemble Approach for E!icient Model Pruning in Privacy-Preserving Deep Learning ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

[12] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In Proceedings of the ICML. 201–210.

[13] Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dynamic network surgery for
e!cient dnns. arXiv preprint arXiv:1608.04493 (2016).

[14] Kanav Gupta, Deepak Kumaraswamy, Nishanth Chandran, and Divya Gupta.
2022. Llama: A low latency math library for secure inference. Cryptology ePrint
Archive (2022).

[15] Song Han. 2017. E"cient methods and hardware for deep learning. Ph. D. Disser-
tation. Stanford University.

[16] Song Han, Je$ Pool, John Tran, and William J Dally. 2015. Learning both weights
and connections for e!cient neural networks. arXiv preprint arXiv:1506.02626
(2015).

[17] Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tian-
wei Zhang. 2022. Iron: Private inference on transformers. Advances in Neural
Information Processing Systems 35 (2022), 15718–15731.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE CVPR. 770–778.

[19] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Cheetah:
Lean and fast secure {two-party} deep neural network inference. In 31st USENIX
Security Symposium (USENIX Security 22). 809–826.

[20] Huelse. 2023. Microsoft SEAL 4.X For Python. https://github.com/Huelse/SEAL-
Python

[21] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. 2018. Secure out-
sourced matrix computation and application to neural networks. In Proceedings
of the ACM SIGSAC. 1209–1222.

[22] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
{GAZELLE}: A low latency framework for secure neural network inference. In
Proceedings of the USENIX Security. 1651–1669.

[23] Alex Krizhevsky, Geo$rey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[24] Alex Krizhevsky, Ilya Sutskever, and Geo$rey E Hinton. 2012. Imagenet classi"-
cation with deep convolutional neural networks. Proceedings of the NeurIPS 25
(2012), 1097–1105.

[25] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-
togi, and Rahul Sharma. 2020. Crypt#ow: Secure tensor#ow inference. In Pro-
ceedings of the IEEE S&P. 336–353.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha$ner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[27] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural
network predictions via minionn transformations. In Proceedings of the ACM
SIGSAC. 619–631.

[28] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. 2017. Learning e!cient convolutional networks through network
slimming. In Proceedings of the IEEE ICCV. 2736–2744.

[29] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. 2020. Delphi: A Cryptographic Inference Service for Neural
Networks. In Proceedings of the USENIX Security. 2505–2522.

[30] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework
for machine learning. In Proceedings of the ACM SIGSAC. 35–52.

[31] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable
privacy-preserving machine learning. In Proceedings of the IEEE S&P. 19–38.

[32] Deepika Natarajan and Wei Dai. 2021. Seal-embedded: A homomorphic en-
cryption library for the internet of things. IACR Transactions on Cryptographic
Hardware and Embedded Systems (2021), 756–779.

[33] Lucien KL Ng and Sherman SM Chow. 2021. GForce: GPU-Friendly Oblivious
and Rapid Neural Network Inference. In Proceedings of the USENIX Security.

[34] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree resid-
uosity classes. In Proceedings of the EUROCRYPT. 223–238.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, and
et al Chanan. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. InAdvances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[36] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.
0: Improved mixed-protocol secure two-party computation. In Proceedings of the
USENIX Security.

[37] Arpita Patra and Ajith Suresh. 2020. BLAZE: blazing fast privacy-preserving
machine learning. arXiv preprint arXiv:2005.09042 (2020).

[38] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-party
secure inference. In Proceedings of the ACM SIGSAC. 325–342.

[39] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E Lauter,
and Farinaz Koushanfar. 2019. XONN: XNOR-based Oblivious Deep Neural
Network Inference.. In USENIX Security Symposium. 1501–1518.

[40] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A hybrid secure

computation framework for machine learning applications. In Proceedings of the
ASIACCS. 707–721.

[41] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepsecure:
Scalable provably-secure deep learning. In Proceedings of the DAC. 1–6.

[42] Florian Schro$, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A uni"ed
embedding for face recognition and clustering. In Proceedings of the IEEE CVPR.
815–823.

[43] SEAL 2019. Microsoft SEAL (release 3.3). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA..

[44] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[45] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[46] Stanford.edu. 2015. Tiny ImageNet Dataset. http://cs231n.stanford.edu
[47] Sijun Tan, Brian Knott, Yuan Tian, and David J Wu. 2021. CRYPTGPU:

Fast Privacy-Preserving Machine Learning on the GPU. arXiv preprint
arXiv:2104.10949 (2021).

[48] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN: 3-Party
Secure Computation for Neural Network Training. Proc. Priv. Enhancing Technol.
2019, 3 (2019), 26–49.

[49] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mit-
tal, and Tal Rabin. 2020. Falcon: Honest-majority maliciously secure framework
for private deep learning. arXiv preprint arXiv:2004.02229 (2020).

[50] Wei Wang, Sheng Wang, Jinyang Gao, Meihui Zhang, Gang Chen, Teck Khim
Ng, and Beng Chin Ooi. 2018. Ra"ki: Machine learning as an analytics service
system. arXiv preprint arXiv:1804.06087 (2018).

[51] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. Proceedings of the NeurIPS 29 (2016),
2074–2082.

[52] Qiao Zhang, Cong Wang, Hongyi Wu, Chunsheng Xin, and Tran V Phuong. 2018.
GELU-Net: A Globally Encrypted, Locally Unencrypted Deep Neural Network
for Privacy-Preserved Learning.. In Proceedings of the IJCAI. 3933–3939.

[53] Qiao Zhang, Chunsheng Xin, and Hongyi Wu. 2021. GALA: Greedy ComputA-
tion for Linear Algebra in Privacy-Preserved Neural Networks. arXiv preprint
arXiv:2105.01827 (2021).

A ANALYSIS OF COMPLEXITY, ACTUAL COST
AND SELECTION GUIDELINES FOR THREE
MIMO SCHEMES

As previously mentioned, there are three schemes for calculating
convolution in the MIMO manner: (1) Ungrouped Out-Rot MIMO,
(2) In-Rot MIMO, and (3) Grouped Out-Rot MIMO. The "rst two
schemes "nd application within the frameworks like GAZELLE
and DELPHI, while the latter two are employed within some frame-
work such as CrypTFlow2 and GALA. However, existing privacy-
preserving pruning mechanisms [7], often tend to employ Un-
grouped Out-Rot MIMO without a comprehensive analysis. Our
research delves deeper into this issue by analyzing the complexity
and actual time cost of three schemes. Furthermore, we provide se-
lection guidelines to facilitate the determination of themost suitable
MIMO scheme for a given layer. This aids in maximizing the bene-
"ts derived from MOSAIC’s pruning method, ultimately leading to
the attainment of the most optimal cost reduction.

Table 5: Complexity of Three MIMO schemes.

MIMO Scheme # Perm
Ungrouped Out-Rot 𝑃𝑀 (𝑄𝑁𝑄𝑂↗1)

𝑃𝐿
+ 𝑃𝑀𝑃𝑃 (𝑃𝐿↗1)

𝑃2𝐿

In-Rot 𝑃𝑀 (𝑄𝑁𝑄𝑂↗1)
𝑃𝐿

+ 𝑃𝑀 (𝑃𝐿↗1)𝑄𝑁𝑄𝑂
𝑃𝐿

Grouped Out-Rot 𝑃𝑀 (𝑄𝑁𝑄𝑂↗1)
𝑃𝐿

+ 𝑃𝑃 (𝑃𝐿↗1)
𝑃𝐿

*𝑃𝑀 : number of input channels, 𝑃𝑃 : number of output channels, 𝑃𝐿 : number of channels
packed in one ciphertext, 𝑄𝑁𝑄𝑂 : kernel size in the horizontal and vertical directions.

Let’s get straight to the point, the complexity of the three schemes
is outlined in Table 5. The complexity here is quanti"ed by the num-
ber of Perm operations for each scheme. Perm operation carries a
higher cost compared to Mult and Add operation, and since these

1056

https://github.com/Huelse/SEAL-Python
https://github.com/Huelse/SEAL-Python
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/Microsoft/SEAL
http://cs231n.stanford.edu

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Yifei Cai, et al.

three schemes exhibit a relatively similar number of Mult and Add
operations, the number of Perm operations becomes the determin-
ing factor in assessing complexity. Foremost, it’s indisputable that
the selected MIMO scheme should possess a lower complexity. Let’s
assume that our preference is to employ the In-Rot MIMO, rather
than Ungrouped Out-Rot MIMO or Grouped Out-Rot MIMO, for
GAZELLE and CrypTFlow2 frameworks respectively. This prefer-
ence is based on the following preconditions:

𝑆𝑇𝑈𝑉𝑊𝑊𝑉 :
𝐿𝑀𝐿𝑅 (𝐿𝐿 ↗ 1)

𝐿2𝐿
>

𝐿𝑀
𝐿𝐿

(𝐿𝐿 ↗ 1)𝑂𝑁𝑂𝑂
𝐿𝑅

𝑂𝑁𝑂𝑂
> 𝐿𝐿,

(1)

𝑀𝑋𝑌𝑍𝑎𝑏𝑐𝑑𝑒2 :
𝐿𝑅 (𝐿𝐿 ↗ 1)

𝐿𝐿
>

𝐿𝑀
𝐿𝐿

(𝐿𝐿 ↗ 1)𝑂𝑁𝑂𝑂
𝐿𝑅

𝑂𝑁𝑂𝑂
> 𝐿𝑀 ,

(2)

Thus far, Equation (1) and (2) can help to determine whether a
layer can bene"t from Out-Rot or In-Rot in terms of complexity.
Furthermore, we know complexity serves as an indicator that in#u-
ences cost. Ultimately, the real-world cost is rooted in the actual
time taken for operations to be executed.

In certain scenarios, despite having the same number of opera-
tions (equivalent complexity), the actual time can vary. For instance,
the actual time cost of a Perm operation hinges on two parameters:
the length of the ciphertext to be rotated and the number of posi-
tions by which it must be rotated. Let’s delve into an illustrative
example to better comprehend this concept.

In the input rotation scheme, as shown Figure 7, one conversion
Perm must be done to convert input ciphertext [𝜴1] C into [𝜴→1] C .
Additionally, (𝑂𝑁𝑂𝑂 ↗ 1) Perm operations are performed to obtain
the rotated ciphertext for the convolution between [𝜴→1] C and the
kernels groups. As illustrated in Figure 19, assuming that 𝐿𝐿 = 2,
the stride is 1 and the 3↑3 kernels are used (𝑂𝑁 = 𝑂𝑂 = 3), the input
ciphertext [𝜴] C will be "rstly rotated (𝑂𝑁𝑂𝑂 ↗1 = 8) times by Perm
(as indicated by the black arrows). As a result, we obtain nine ro-
tated ciphertexts from [𝜴 (↑4)] C to [𝜴 (4)] C , including the original
[𝜴 (0)] C . Furthermore, there are two methods for converting the
ciphertext: Method A and Method B. In Method A, [𝜴 (0)] C is "rst
converted to [𝜴→(0)] C (indicated by the red arrow), then [𝜴→(0)] C is
rotated eight times to generate [𝜴→(↑4)] C to [𝜴→(4)] C (indicated by
the green arrows). In Method B, the nine rotated ciphertexts, rang-
ing from [𝜴 (↑4)] C to [𝜴 (4)] C , are directly obtained by performing
nine convert Perm (indicated by the red arrows). Both methods
require nine additional Perms, but Method B is found out more
cheap in most cases.

As we mentioned, the cost of a Perm is determined by two pa-
rameters: the length of the ciphertext to be rotated and the number
of positions by which it needs to be rotated. Longer ciphertexts
require more time to be rotated. Regarding the latter parameter,
we found that rotating the ciphertext by a power of two positions
requires less computation time, based on our experiments. When
the size of the feature map of one input channel is 𝑓 ↑ 𝑓 , the
convert Perm (red) rotates the ciphertext by 𝑓 ↑ 𝑓 positions, and
the size of 𝑓 is typically a power of two for e!ciency reasons

k11 k22

k12 k21

k13 k24

k14 k23

C1k11 C2k22

C2k12 C1k21

C3k13 C4k24

C4k14 C3k23

C1

C2

C3

C4

Perm

*

+

+

[v1]C

k31 k42

k41 k32

k33 k44

k34 k43

C1k31 C2k42

C2k32 C1k41

C3k33 C4k44

C4k34 C3k43

+

+

+

C1k11 + C2k12 + C3k13 + C4k14

C2k22 + C1k21 + C4k24 + C3k23

C1k31 + C2k32 + C3k33 + C4k34

C2k42 + C1k41 + C4k44 + C3k43

[v2]C

Output-1

Output-2

*

*
*
*
*

*

*

Perm

C2

C1

[v'1]C

C4

C3

[v'2]C

+

C1 C2

C3 C4

C2 C1

C4 C3

C1 C2

C3 C4

C2 C1

C4 C3

[v(-4)]C

[v(-3)]C

[v(-2)]C

[v(-1)]C
[v(0)]C

[v(4)]C

[v(3)]C

[v(2)]C

[v(1)]C

[v'(-4)]C

[v'(-3)]C

[v'(-2)]C

[v'(-1)]C
[v'(0)]C

[v'(4)]C

[v'(3)]C

[v'(2)]C

[v'(1)]C

[v(-4)]C

[v(-3)]C

[v(-2)]C

[v(-1)]C
[v(0)]C

[v(4)]C

[v(3)]C

[v(2)]C

[v(1)]C

[v'(-4)]C

[v'(-3)]C

[v'(-2)]C

[v'(-1)]C
[v'(0)]C

[v'(4)]C

[v'(3)]C

[v'(2)]C

[v'(1)]C

A B

B
1

B
2

B
3

B
4

Figure 19: Input Ciphertext Conversion.

in HE-based scenarios [1]. Consequently, the cost of the convert
Perm (red) is low. However, the eight Perms (green) that rotate the
ciphertext by positions ↗(𝑓 + 1), ↗(𝑓), ↗(𝑓 ↗ 1), ↗1, +1, +(𝑓 ↗ 1),
+(𝑓) and +(𝑓 + 1), which are not the power of two. These Perms
(green) require more computation time than convert Perm (red).
This conclusion holds true for di$erent kernel sizes, strides, and 𝐿𝐿 .
Thus, Method B is selected to conduct the conversion.

Next, we analyse the selection guidelines in terms of actual time
cost. For Perm operation, "rst, we record the actual cost of each
type of Perm with di$erent lengths and rotation positions in the
experiments. Then, we count the number of each type of Perm in
the DL model, and the sum of their products is the model’s actual
Perm cost. The actual time cost of Mult and Add can be obtained
similarly. Thus, the actual time cost of a DL model can be expressed
at a high level as follows:

𝑎 = ω ↑ 𝑔 ↑ (1 ↗ 𝑄), (3)

Here, 𝑎 represents the overall actual time cost, ω denotes com-
plexity (i.e., the number of operations), 𝑔 signi"es the set of actual
time costs for each operation, and 𝑄 stands for the pruning ratio.
Through this approach, we can acquire the actual time cost of both
the original model and the pruned model employing each MIMO
scheme. This help us to identify the most optimal scheme. Certainly,
the determination of 𝑔 and 𝑄 demands signi"cant experimental ef-
fort. However, what we truly require are selection guidelines that
can assist in identifying the optimal MIMO scheme prior to the
commencement of training and pruning. This proactive approach is
essential for e!cient decision-making during the deployment phase.
As a result, we have distilled our comprehensive experimentation
along with Equations (1), (2), and (3) into the following heuristic
formulas for practical application:

𝑕1 =
𝐿𝑅

𝑂𝑁𝑂𝑂𝐿𝐿
, (4)

𝑕2 =
𝐿𝑅

𝑂𝑁𝑂𝑂𝐿𝑀
, (5)

where 𝑕1 and 𝑕2 function as indicators guiding the selection of the
appropriate MIMO scheme for speci"c layers within the GAZELLE
and CrypTFlow2 frameworks, respectively. If 𝑕1 < 1 or 𝑕2 < 1, it’s
advisable to opt for Ungrouped or Grouped Out-Rot MIMO within
their respective frameworks. Conversely, if 𝑕1 > 2 or 𝑕2 > 1.3, it
suggests that the model greatly bene"ts from In-Rot MIMO, with
a higher value indicating greater bene"ts. When 1 ≃ 𝑕1 ≃ 2 or
1 ≃ 𝑕2 ≃ 1.3, a relatively rare scenario, the e!ciency of Out-Rot
and In-Rot is nearly equivalent. In such cases, the optimal choice
should be veri"ed through actual validation. It’s worth noting that

1057

MOSAIC: A Prune-and-Assemble Approach for E!icient Model Pruning in Privacy-Preserving Deep Learning ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

ResNet34-TinyImageNet-GAZELLE

Figure 20: ResNet34 Layer-Wise Performance Breakdown.

the e!cacy and e!ciency of this formula have been thoroughly
validated across all our extensive experimentation.

B LAYER-WISE PERFORMANCE
BREAKDOWN OF MODEL PRUNED BY
MOSAIC:

We conduct the analysis of pruning performance by dissecting the
complete model into individual layers. In themain text, we have pro-
vided certain layer-wise breakdowns. Additionally, Figure 20, 21, 22
visually demonstrate the layer-wise breakdown for the remaining
experiments conducted within the GAZELLE framework. These
encompass VGG-11 and VGG-13 on CIFAR-10, VGG-11 and VGG-13
on Tiny ImageNet, as well as ResNet-34 on Tiny ImageNet.

VGG11-Cifar10-GAZELLE

VGG11-TinyImageNet-GAZELLE

Figure 21: VGG11 Layer-Wise Performance Breakdown.

VGG13-TinyImageNet-GAZELLE

VGG13-Cifar10-GAZELLE

Figure 22: VGG13 Layer-Wise Performance Breakdown.

1058

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 Threat Model
	2.3 Packed HE
	2.4 State-of-the-Art HE-based Convolution and HE-friendly Pruning Schemes

	3 Proposed Prune-and-Assemble Approach, MOSAIC
	3.1 MOSAIC's Pruning for Ungrouped Output Rotation MIMO Scheme
	3.2 MOSAIC's Pruning for Input Rotation MIMO Scheme
	3.3 MOSAIC's Pruning for Grouped Output Rotation MIMO Scheme
	3.4 MOSAIC's Channel Transformation Coordination
	3.5 Security Analysis

	4 Performance Evaluation
	5 Conclusion
	Acknowledgments
	References
	A Analysis of Complexity, Actual Cost and Selection Guidelines for Three MIMO Schemes
	B Layer-wise performance breakdown of model pruned by MOSAIC:

