
From Individual Computation to Allied Optimization: Remodeling
Privacy-Preserving Neural Inference with Function Input Tuning

Qiao Zhang†, Tao Xiang†∗, Chunsheng Xin‡, and Hongyi Wu!
†College of Computer Science, Chongqing University, Chongqing, 400044, China

‡Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23529, USA
!Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ, 85721, USA

E-mails: qiaozhang@cqu.edu.cn, txiang@cqu.edu.cn, cxin@odu.edu, mhwu@arizona.edu

Abstract—Privacy-preserving Machine Learning as a Service
(MLaaS) enables the resource-limited client to cost-efficiently
obtain inference output of a well-trained neural model that
is possessed by the cloud server, with both client’s input
and server’s model parameters protected. While efficiency
plays a core role for practical implementation of privacy-
preserving MLaaS and it is encouraging to witness recent
advances towards efficiency improvement, there still exists a
significant performance gap to real-world applications. The
basic logic in state-of-the-art frameworks involves an individual
computation for each function of the neural model, based on
specific cryptographic primitives. While it is definitely logical,
we look back to the necessity of this function-wise methodol-
ogy and initiate the comprehensive exploration towards allied
optimization for efficient privacy-preserving MLaaS. Under
such fresh perspective, we remodel the computation process
that is always from input to output of the same function in
mainstream works, to the allied counterpart that is from one
function’s input associated with the start of expensive overhead
to another function’s output enabling effective circumvention
of unnecessary cost within the procedure. As such we propose
FIT (Function Input Tuning) which features by a computation
module for composite function with a series of joint optimiza-
tion strategies. Theoretically, FIT not only eliminates the most
expensive crypto operations without invoking extra encryption
enabler, but also makes the running-time crypto complexity
independent of filter size. Experimentally, FIT demonstrates
tens of times speedup over various function dimensions from
modern models, and 4.5× to 35.5× speedup on the total
computation time when plugged in neural networks with data
from small-scale MNIST to large-scale ImageNet.

1. Introduction

Deep Learning (DL) has undergone a remarkable evo-
lution in the past decade [1], [2], [3], [4] and has proven to
be highly effective in various smart services such as image
classification [5], voice recognition [6], and financial eval-
uation [7]. However, the extensive demand for substantial
training data and powerful computational resources [8] often

∗Corresponding author.

renders DL impractical for end users with limited resources
who want to train and apply DL models for their specific
needs. To this end, Machine Learning as a Service (MLaaS)
has emerged as a viable solution to alleviate such limitations.
MLaaS establishes a service mode where a cloud server S
owns a neural network that is well trained on plenty of data,
and the client C uploads her input to S which runs the neural
network and returns inference output to C.

However, the issue of data privacy presents a significant
challenge in the practical implementation of MLaaS, as it
requires the client to transmit her private data, which may
include sensitive information, to the server. This challenge
arises from two main factors. Firstly, clients naturally desire
to obtain the output of the MLaaS model without revealing
their input to any other parties, including the server S . In
fact, there are regulations in place that prohibit the disclosure
of private data in various domains, e.g., the Health Insurance
Portability and Accountability Act (HIPAA) [9] for medical
information and the General Data Protection Regulation
(GDPR) [10] for business records. Secondly, the server S
itself has an interest in protecting the proprietary parameters
of its well-trained neural network. It seeks to maintain the
confidentiality of these parameters and aims to only provide
the model output in response to the client’s inference query.
By keeping the parameters hidden, the server can safeguard
its intellectual property and prevent unauthorized access to
its trained model.

Privacy-preserving MLaaS takes into account both legal
and ethical concerns regarding the data privacy of both the
client and the server. Its primary goal is to ensure that 1)
the server remains oblivious to the client’s private input and
2) the client does not gain access to the proprietary model
parameters of the server beyond the necessary inference
output, e.g., the predicted class. While privacy-preserving
MLaaS offers a promising approach to reconcile MLaaS
with data protection, it also presents a key challenge that
must be addressed, i.e., how to efficiently embed crypto-
graphic primitives into function computation of neural net-
works, which otherwise may lead to prohibitively high com-
putation complexity and/or degraded prediction accuracy
due to large-size circuits and/or function approximations.

To achieve usable privacy-preserving MLaaS, a series
of recent works have made inspiring progress towards im-

4810

2024 IEEE Symposium on Security and Privacy (SP)

© 2024, Qiao Zhang. Under license to IEEE.
DOI 10.1109/SP54263.2024.00101

20
24

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
9-

8-
35

03
-3

13
0-

1/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

54
26

3.
20

24
.0

01
01

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

proving system efficiency [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27]. Notably, the inference speed has witnessed substantial
improvement, with several orders of magnitude increase
from early frameworks like CryptoNets [11] to more recent
approaches such as CrypTFlow2 [17] and Cheetah [27]. At
a high level, these privacy-preserving frameworks achieve
greater computational efficiency by carefully applying suit-
able cryptographic primitives to calculate the linear (e.g.,
dot product and convolution) and nonlinear (e.g. ReLU)
functions in a neural network. Among the cryptographic
primitives, commonly used ones in these frameworks are
Homomorphic Encryption (HE) [28], [29], [30], Oblivious
Transfer (OT) [31], Secret Sharing (SS) [32] and Garbled
Circuits (GC) [33], [34]. The mixed-primitive frameworks
which utilize HE to compute linear functions while adapting
Multi-Party Computation (MPC), such as GC and OT, for
nonlinear functions have demonstrated additional efficiency
advantages [12], [13], [17], [27]. This work makes a fur-
ther step towards efficiency optimization of mixed-primitive
frameworks.

In state-of-the-art privacy-preserving frameworks, partic-
ularly mixed-primitive frameworks, the core logic revolves
around the fundamental concept of individual computation
for each function. It first computes the output of a function,
based on specific cryptographic primitives. Such securely
computed output is in an “encrypted” form and is then
shared between C and S . The respective shares held by C and
S then serve as the input of next function. As a neural net-
work consists of stacked linear and nonlinear functions, this
individual computation is sequentially applied on functions
from beginning to the end. For example, the initial input of
CrypTFlow2 [17] is C’s private data, which is encrypted and
sent to S . S conducts HE-based computation for the linear
function where the HE addition, multiplication, and rotation
(which are three basic operators over encrypted data) are
performed between C-encrypted data and model parameters
of S . It produces an encrypted function output which is then
shared between C and S in plaintext, and those shares serve
as the input of the following OT-based computation, such as
most significant bit (MSB) and multiplexing, for subsequent
nonlinear function. Once again, the output shares from this
step act as the input for the next function. This computation
pattern continues in a function-wise manner until C obtains
the final model output. Figure 1(a) shows the basic diagram
of this process.

Key observations. While the individual computation for
each function is a logical approach followed by most state-
of-the-art privacy-preserving frameworks, there is a need to
reconsider the computational cost associated with calculat-
ing that “encrypted” function output, particularly the rota-
tions involved. The need to first compute such “encrypted”
function output introduces all rotations, which are the most
expensive HE operation among the three basic ones (addi-
tion, multiplication, and rotation). Minimizing the number
of rotations becomes crucial in improving the overall com-
putational efficiency of privacy-preserving frameworks [13],
[17], [18], [27], [35]. However, the cost of HE-based oper-

plaintext share

plaintext share

plaintext share

client server

linear function (e.g., conv)

nonlinear function (e.g., ReLU)

linear function (e.g., conv)

plaintext share

HE Add, HE Mult, (HE Extr), (HE Rot)

OT based MSB and multiplexing

HE Add, HE Mult, (HE Extr), (HE Rot)

nonlinear-linear computation

plaintext share

OT based MSB and multiplexing

nonlinear-linear computation
OT based MSB and multiplexing

Reduced HE Add, Reduced HE Mult,
(HE Extr), (HE Rot)

plaintext share

(a) Traditional function computation. (b) FIT’s joint computation.

client server

nonlinear function (e.g., ReLU)
OT based MSB and multiplexing

…

plaintext shareplaintext share
…

… …

… …

Reduced HE Add, Reduced HE Mult,
(HE Extr), (HE Rot)

Figure 1. Comparison between mainstream and FIT.

ations in linear functions remains a bottleneck compared
to the MPC-based operations in nonlinear functions. For in-
stance, our preliminary experiments show that the HE-based
convolution in VGG-16 [3] with input size 28 × 28@512,
kernel size 3×3@512, and stride size 1×1 takes about 153
seconds under CrypTFlow2 framework on the Intel Core
i7-11370H@3.30GHz CPU. In contrast, computing the OT-
based nonlinear ReLU with the same input, which is actually
the previous function to that convolution, only takes about
3.6 seconds, representing only around 2.3% of the time
taken by the HE-based convolution. As a neural network
consists of a stack of linear and nonlinear functions, this
disparity highlights HE operations as the main obstacle in
achieving efficient model computation for practical privacy-
preserving MLaaS. Therefore, we are motivated to totally
eliminate the involved rotations while minimize the amount
of HE multiplication and addition, expecting a significant
boost in the overall computation efficiency.

In our exploration, we intend to consider efficiency opti-
mization from the input of linear functions, which marks the
beginning of all HE operations. Specifically, we investigate
the convolution function denoted as fc(y) and its nonlinear
ReLU input denoted as y = fr(x), which form a basic
combination in modern networks [2], [3], [4]. Instead of
minimizing the MPC-based cost for calculating fr(x) with
respect to x and the HE cost for computing fc(y) with
respect to input y, which is the mainstream logic in state-
of-the-art schemes, we remodel such individual computation
for each function to the allied procedure of composite
function fc(fr(x)) with respect to input x. With this shift
in perspective, we can potentially break the limitations of
independently optimizing the efficiency of each function by
focusing on the optimization of combined function. To make
the computation of this composite function truly advanta-
geous, we need to determine the right terms for each party
to calculate, ensuring that the overall computation load for
fc(fr(x)) is significantly reduced.

Given the input-independent pregeneration of one share

4811

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

TABLE 1. RUNNING-TIME COMPLEXITIES COMPARED WITH STATE-OF-THE-ART PROTOCOLS FOR THE LINEAR AND NONLINEAR FUNCTIONS IN
NEURAL NETWORKS. THE LINEAR FUNCTIONS INCLUDE CONVOLUTION (CONV) AND FULLY CONNECTION (FC), WHILE THE NONLINEAR FUNCTION
IS RELU. THE CONV TAKES AS INPUT A 3-DIMENSION MATRIX WITH SIZE Ci ×Hi ×Wi . Co AND fh ARE THE NUMBER AND THE SIZE OF FILTERS,

RESPECTIVELY. Ho AND Wo ARE THE HEIGHT AND WIDTH OF EACH 2-DIMENSION CONVOLUTION OUTPUT. THE FULLY CONNECTION TAKES AS
INPUT A VECTOR WITH SIZE ni AND OUTPUTS A VECTOR WITH SIZE no . THE NONLINEAR FUNCTION ACTS AS THE INPUT OF CONV OR FC, WITH

DATA x IN SIZE Ci ×Hi ×Wi . rd IS THE NUMBER OF COMMUNICATION ROUNDS INVOLVED IN COMPUTATION FOR TARGET FUNCTIONS. f ′
r (x) AND

Mx(x) ARE THE DERIVATIVE OF RELU WITH INPUT x AND THE MULTIPLEXING TO PERFORM MULTIPLICATION BETWEEN f ′
r (x) AND x,

RESPECTIVELY. THE COMMUNICATION COST IN ALL SCHEMES EXCLUDES COMMON OVERHEAD FOR COMPUTING f ′
r (x).

Functions Schemes Computation Cost for HE Operations Communication Cost
Rot # Extr # Mult (Add) # Ciphertexts # Round

ReLU+Conv

DELPHI [16] O(CiCoHiWi(fh)
2) - O(CiCoHiWi(fh)

2) O(CiHiWi + CoHoWo) 1 + rd{f′
r (x),Mx(x)}

CrypTFlow2 [17] O(CiCoHiWi(fh)
2) - O(CiCoHiWi(fh)

2) O(CiHiWi + CoHoWo) 1 + rd{f′
r (x),Mx(x)}

Cheetah [27] 0 O(CoHoWo) O(CiCoHiWi) O(CiHiWi + CoHoWo) 1 + rd{f′
r (x),Mx(x)}

FIT 0 0 O(CiHiWi) O(CiHiWi) 1 + rd{f′
r (x)}

ReLU+FC

HElib [36] O(ni) - O(ni) O(ni) 1 + rd{f′
r (x),Mx(x)}

GAZELLE [13] O(nino − logno) - O(nino) O(nino) 1 + rd{f′
r (x),Mx(x)}

Cheetah [27] 0 O(no) O(nino) O(nino) 1 + rd{f′
r (x),Mx(x)}

FIT 0 0 O(ni) O(ni) 1 + rd{f′
r (x)}

of each function output, we design an online-offline assign-
ment of unfolded terms in fc(fr(x)), which results in a
total elimination of all rotations and a filter-independent
computation complexity of HE operations at running time.
The basic idea is to identify, utilize and construct a set of
pre-generated shares to form specific ciphertext and masked
intermediates in a client-data-independent offline phase,
while making the data-dependent online computation not
only escape part of MPC-based computation such as multi-
plexing, which is not possible under mainstream individual
computation, but also merely involve a small number of
HE addition and multiplication. We call such methodology
as Function Input Tuning (FIT) which tunes the unfolded
terms in composite function to form new terms that serve
as the underlying input, with computation efficiency highly
improved.

In contrast, the most recent Cheetah [27] removes rota-
tion by introducing a large amount of HE extraction (Extr)
and its complexity for HE addition and multiplication is
proportional to the number of output channels namely Co

from filter size. While Zhang et al. [35] escapes rotation
through an intensive ciphertext communication at running
time, which requires a scrupulous balance between band-
width and overall efficiency. The allied optimization for
composite function with filter-independent crypto complex-
ity at running time makes FIT distinguishable among current
works for efficient privacy-preserving MLaaS. For example,
computing adjacent ReLU and convolution with aforemen-
tioned sizes takes about 4.5 seconds by FIT, indicating
a speedup about 35 times compared to conventional ap-
proaches. A high-level idea of the proposed FIT is illustrated
in Figure 1(b).

Our contributions. Overall, the contributions of this
work are summarized as follows.

• We embark on a comprehensive exploration of ef-
ficient computation for composite function and in-
troduce our approach called FIT. FIT challenges
the individual computation for each function that
is followed by mainstream works and remodels
the function-wise process by an allied procedure.

As such, FIT devises a computation module for
fc(fr(x)) with lightweight HE complexity at run-
ning time, incorporating a series of joint optimiza-
tion strategies.

• The efficiency advantages of FIT are highlighted in
Table 1. One notable benefit is that FIT eliminates
rotations without HE extraction, and the running-
time complexity of HE multiplication and addition
is independent of filter size namely fh and Co. Such
reduction in complexity contributes to the overall
efficiency and effectiveness of FIT when integrated
into neural models.

• Through extensive experiments detailed in Section 4,
FIT surpasses the efficiency of function-wise com-
putation typically employed in the state-of-the-art
frameworks. The results showcase tens of times
speedup achieved by FIT across varying function di-
mensions from modern neural models. Furthermore,
when integrated into neural networks with datasets
from small-scale MNIST to large-scale ImageNet,
FIT achieves notable speed gains of 4.5× to 35.5×.
These experimental findings firmly establish the su-
periority of FIT in terms of computational efficiency
and overall performance.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce system setup and primitives that are
adopted in FIT. Section 3 elaborates the design of FIT
for computing fc(fr(x)) as well as the strategies that best
adapt FIT to neural networks. The experimental results are
illustrated and discussed in Section 4. Finally, we conclude
the paper in Section 5.

2. Preliminaries

Notations. We denote [[i]] = {0, 1, . . . , i− 1} for i ∈ N.
$·% and &·' are the ceiling and flooring functions, respec-
tively. 1{I} is the indicator function that is 1 when I is
true and 0 when I is false. r $← D randomly samples a
component r from a set D. The logical XOR is denoted as
⊕. Zp = Z ∩ [−&p/2', &p/2'] for p > 2, and Z2 = {0, 1}.

4812

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

Furthermore, +,−, and ! are element-wise addition, sub-
traction, and multiplication, respectively, in either ciphertext
or plaintext domain depending on whether ciphertext is
involved or not.

2.1. System Model

We consider the context of cryptographic inference as
shown in Figure 2 where C holds a private input and S
holds the neural network with proprietary model parameters.
After the inference, C learns two pieces of information: the
network architecture (such as the number, types and dimen-
sions of involved functions) and the network output, while
S learns nothing. These learnt information is commonly as-
sumed in state-of-the-art frameworks such as Cheetah [27].
Such scenario can be applied in assistant decision-making
system for clinical diagnosis, which has been deployed by
Ant Group. For example, a small clinic could obtain more
precise diagnostic analysis result from central hospitals that
possess more comprehensive DL models.

To complete such cryptographic inference, the server
processes C’s input through a sequence of linear and non-
linear functions of its neural network to finally classify that
input into one of the potential classes. Specifically, we target
at the widely-applied Convolutional Neural Network (CNN)
and describe in the following its functions that are mainly
investigated in this paper.

Linear functions. ① Convolution (Conv). The Conv
fc(·) operates between an input a ∈ ZCi×Hi×Wi

p and kernel
k ∈ ZCo×Ci×fh×fh

p with stride s ∈ N+. Here Ci and Co

are the number of input and output channels, respectively.
Hi and Wi are the height and width of each two-dimension
input channel, and fh is the size of each two-dimension
filter of kernel k. The output includes Co channels, each of
which is derived from computation between a and one of
Co filters in k. Specifically, a value in one output channel is
the sum of all Cifh

2 elements in one filter, each of which is
scaled by same-location value of a within the filter window.
The next value in that output channel is similarly obtained
by gradually moving the filter with stride s over a. The
summing process in Conv inevitably introduces a series of
expensive operations, such as rotation, in cryptographic in-
ference. In this paper, we take the previous function of Conv
as its input and propose to jointly optimize computation
efficiency of such composite function, which results in an
efficient computation module as stated in Section 3.2.

② Fully Connection (FC). The input to FC fw(·) is an
ni-sized vector a ∈ Zni

p and a weight matrix w ∈ Zno×ni
p .

The output is one no-sized vector where each value is the
sum of elements in vector obtained by multiplying one row

client � server ^

neural network

privacy-preserving
computationprivate input model

parameters
model output

Figure 2. Overview of Cryptographic Inference.

of w with a. Similar with Conv, we take the previous
function of fw(·) into account and propose an efficient
computation module for such composite function as stated in
Section 3.2. ③ Batch Normalization (BN). In the inference
of a neural network, BN fbn(·) scales and shifts each two-
dimension input channel by a constant, respectively. Here,
the input a ∈ ZCi×Hi×Wi

p . As BN always follows behind
Conv, we integrate it with Conv to facilitate the use of our
efficient computation module for fc(fr(x)). The detail of
such integration is presented in Section 3.3. ④ Mean Pooling
(MeanPool). Given the input a ∈ ZCi×Hi×Wi

p , MeanPool
fmn(·) sums and averages components of a in each sn-by-
sn pooling window where sn ∈ N+, and all averaged values
form the final output. In this way, the output size becomes
Ci ×

⌈
Hi
sn

⌉
×
⌈
Wi
sn

⌉
.

Nonlinear functions. ① ReLU. For a value a ∈ Zp,
the ReLU fr(·) is calculated as fr(a) = a ! 1{a}. Since
ReLU always serves as input of Conv and FC in a neural
network, we combine ReLU with Conv and FC, and aim
to jointly optimize the computation efficiency of fc(fr(x))
and fw(fr(x)). ② Max Pooling (MaxPool). the MaxPool
fmx(·) works similarly with MeanPool except that every
returned value is the maximum rather than the mean in each
pooling window. Since MeanPool and MaxPool always ap-
pear between Conv and ReLU, we make them merged with
adjacent functions, as described in Section 3.3, to enable
the utilization our joint computation module for fc(fr(x))
to realize a more efficient cryptographic inference.

2.2. Threat Model and Security

We prove security against a semi-honest adversary in
Section 3.4 under the simulation paradigm [37]. Specifically,
a computationally bounded adversary corrupts either C or S
at the beginning of the protocol while it follows the protocol
specification honestly. Security is modeled by defining two
interactions: a real-world interaction where the client and
the server execute protocol in presence of an adversary
and environment, and an ideal-world interaction where both
parties send their inputs to a trusted third party that computes
target functionality faithfully. Security requires that for every
adversary in real world, there is a simulator, in the ideal
world, which makes no environment be able to distinguish
between real-world and ideal-world interactions.

2.3. Cryptographic Primitives

We mainly rely on two cryptographic primitives in this
paper to develop FIT. The concrete description is as follows.

Homomorphic Encryption (HE). HE is a primitive
that supports various vector operations over encrypted data
without decryption. It produces an encrypted output which
matches the corresponding operations on plaintext [13].
Specifically, given a vector x = (x0, x1, . . . , xN−1) ∈ ZN

p ,
it is encrypted into a ciphertext [x] = E(pk,x) where pk
is the public key of either the client C or the server S .
The correctness of HE is firstly guaranteed by a decryption

4813

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

process such that x = D(sk, [x]) where sk is the secret key
of either C or S . Second, the HE system is able to securely
evaluate an arithmetic circuit consisting of addition and
multiplication gates by leveraging the following operations.
1) Homomorphic addition (+): D(sk, [u] + [v]) = u + v
and D(sk, [u] + v) = u+ v. 2) Homomorphic subtraction
(−): D(sk, [u]− [v]) = u−v and D(sk, [u]−v) = u−v.
3) Plaintext multiplication (!): D(sk, [u]! v) = u! v. 4)
Homomorphic rotation (Rot): D(sk,R([u], l)) = u" where
u" = (u", . . . , uN−1, u0, . . . , u"−1) and ! ∈ [[N]]. Note that
a rotation by (−!) is the same as a rotation by (N−!). Here
u = (u0, . . . , uN−1) ∈ ZN

p and v = (v0, . . . , vN−1) ∈ ZN
p .

Given above four operations, the running-time complex-
ity of Rot is significantly larger than that of others [13], [24].
Specifically, one Rot costs as much as performing a Number
Theoretic Transform (NTT) and a large number of inverse
NTTs which is proportional to the bitlength of ciphertext
modulus. While NTT and inverse NTT are computationally
expensive, with which other HE operations does not need
to involve, it makes Rot the most expensive one among
HE operations. Therefore, optimizing the complexity of
HE operations, especially Rot, with respect to fc(x) and
fw(x) is one of the mainstream solutions in cryptographic
inference to reduce computation cost for Conv and FC [13],
[27]. Different from current works that focus on independent
efficiency optimization for functions fc(x) and fw(x), we
take their previous functions into consideration to jointly
optimize crypto cost of fc(fr(x)) and fw(fr(x)). This shift
in perspective results in our efficient module as elaborated
in Section 3.2.

Additive Secret Sharing (ASS). ASS generates shares
of input x ∈ Zp as shr0 and shr1. Such shares are randomly
sampled in Zp while satisfy shr0 + shr1 = x mod p. By
sharing specifically-crafted intermediates in the process of
joint computation, we efficiently eliminate all Rot in the
cryptographic inference, with much less complexities of HE
multiplication and addition at running-time.

3. System Description

3.1. Overview

Figure 3 shows the overview of FIT’s methodology to
compute composite function fc(fr(x)). Instead of optimize
the computation efficiency in a function-wise manner, which
is the widely-adopted logic in mainstream works, FIT re-
models such procedure into an allied counterpart from one
function’s input that is associated with the start of expensive
operations to another function’s output that enables a much
efficient computation within the whole composite process-
ing. We begin such exploration by unfolding the composite
fc(fr(x)) where the fr(x) is the start of expensive HE oper-
ations. Our key idea is to decompose that composite function
into the sum of multipliers, each of which is expected to be
the multiplication between term that contains shares from
one party and single term that can be pregenerated from the
same or the other party. As such, by taking advantages of the

share pregeneration before the prediction query, we could
possibly eliminate computation for part or the whole of de-
composed multipliers at running time. Under such guidance,
we divide the whole process of getting fc(fr(x)) into two
phases namely offline computation and online computation.
The offline computation involves pregenerating specifically
crafted ciphertext as well as sharing the privately computed
secret, all based on pregenerated terms from either the client
and the server. While the online computation includes an
OT-based module to obtain the client’s share of derivative,
and an one-round interaction to finally obtain the share of
composite function fc(fr(x)).

Such specific design for offline and online derives from
our further investigation to make both online computation
and offline computation efficient. First, our offline com-
putation eliminates the expensive rotations through a row-
accumulated mechanism that makes full use of every slot
in a packed ciphertext. Second, by taking advantages of the
terms from offline computation, our online computation is
completed in a noticeably efficient way that the crypto com-
plexity is independent of kernel size and the communication
round after OT-based module is reduced from three to only
one. We elaborate the details of FIT’s joint optimization
for fc(fr(x)) as well as FIT’s complexity to calculate such
composite functions in Section 3.2. Furthermore, a neural
network always includes other functions besides composite
function fc(fr(x)), such as Maxpooling, Meanpooling and
Batch Normalization, we introduce in Section 3.3 a series
of model adjustments which equalize functions into another
form such that fc(fr(x)) appears as much as possible to en-
able best utilization of FIT’s computation modules. Finally,
Section 3.4 analyzes and proves the security of FIT under
semi-honest assumption.

3.2. Joint Optimization for fc(fr(x))

Recall that we aim to jointly optimize composite func-
tion fc(fr(x)) such that the computation is much more
efficient than first getting y = fr(x) and then obtaining
fc(y), which is the mainstream logic in state-of-the-art
approaches. We start such exploration by looking at the
unfolded expression of fc(fr(x)) as

fc(fr(x)) = k ∗ fr(x) = k ∗ {f ′
r (x)! x)} (1)

= k ∗ {h1 + h2 ! g1(x) + h3 ! g0(x)}+ k ∗ h4 (2)
= k ∗ h5 + k ∗ h4 (3)

where





h1 = x0 ! g0(x)

h2 = x0 ! {1− 2! g0(x)}
h3 = x1 ! {1− 2! g1(x)}
h4 = x1 ! g1(x)

h5 = h1 + h2 ! g1(x) + h3 ! g0(x)

(4)

kernel k ∈ ZCo×Ci×fh×fh
p , x,x0,x1,h1,h2,h3,h4 ∈

ZCi×Hi×Wi
p . x0 and x1 are shares at C and S satisfying

x0 + x1 = x, g0(x) and g1(x) are the respective Boolean

4814

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

ĐůŝĞŶƚ ƐĞƌǀĞƌ

ሾࢍଵሺ࢞ሻሿௌ͕�ሾࢎଷሿௌ

ሾෞ࢘଴ሿ஼ computess࢑ כ ሾෞ࢘଴ሿ஼ in a rotation-free manner
࢑ כ ሾෞ࢘଴ሿ஼െ ෪࢙࢘ࢎଵଶ୭୤୤

computesm ଵଵ୭୤୤࢘ࢎ࢙ ൌ ࢑ כ ସࢎ

masks with ࢙࢘ࢎ଴ଶ୭୤୤ ൌ ࢑ כ ࢘଴ െ ଵଶ୭୤୤gets࢘ࢎ࢙

offline computation
online computationon

࢞଴
ion
࢞ଵ͕ࢍ�ଵሺ࢞ሻ

଴ሺ࢞ሻࢍ OT-based s ୰݂Ԣሺ࢞ሻࢍ଴ࢎଵ ൅ ଶࢎ ٝ ሾࢍଵሺ࢞ሻሿௌ ൅ ሾࢎଷሿௌٝ ଴ሺ࢞ሻgetsࢍ

ଵࢎ ൅ ଶࢎ ٝ ሾࢍଵሺ࢞ሻሿௌ ൅ ሾࢎଷሿௌٝ ଴ሺ࢞ሻࢍ getsss࢑ כ ሼࢎଵ ൅ ଶࢎ ٝ ଵሺ࢞ሻࢍ ൅ ଷࢎ ٝ ଴ሺ࢞ሻࢍ ΃ െ࢙࢘ࢎଵଵ୭୬

gets ଵ࢘ࢎ࢙ ൌ ଵଵ୭୤୤࢘ࢎ࢙ ൅ ଵଶ୭୤୤࢘ࢎ࢙ ൅ ଵଵ୭୬࢘ࢎ࢙

଴ଵ୭୬getsg࢘ࢎ࢙ ଴࢘ࢎ࢙ ൌ ଴ଶ୭୤୤࢘ࢎ࢙ ൅ ଴ଵ୭୬࢘ࢎ࢙

s࢑ כ ሾෞ࢘଴ሿ஼ h ෪࢙࢘ࢎଵଶ୭୤୤

Figure 3. Overview of our proposed FIT to compute composite function fc(fr(x)).

shares of client and server, obtained from the OT-based
module for getting f ′

r (x) such that their XOR satisfies
g0(x) ⊕ g1(x) = f ′

r (x) ∈ ZCi×Hi×Wi
2 . Here we unfold

fc(fr(x)) by putting together the variables that belong to
either C or S .

Based on Eq. (3), we have the following observations
and analyses by prioritizing cheap computation (e.g., local
and plaintext calculation), which form the basic idea of FIT.
First, since the k and h4 are at the server, S is able to obtain
plaintext k ∗h4 in Eq. (3). Second, the server could further
compute k ∗ h4 independently if x1 and g1(x) were pre-
generated. Third, if S has a share of h5 namely h5 − r, it
could get k ∗ (h5 − r) in plaintext. Fourth, the client and
the server could get shares of k ∗ r in a input-independent
phase, if r were pre-generated by C namely r = r0. As
for the first and second points, we make x1 and g1(x) pre-
generated by S such that we are able to get k ∗ h4 in an
offline phase. It is doable since one of the shares of either x
or f ′

r (x) could be pre-determined by one party. As for the
third and fourth points, we reset h1 = {x0 ! g0(x) − r0}
and modify Eq. (3) as

k ∗ h5 + k ∗ h4 + k ∗ r0 (5)

where r0 is pre-determined by C. In this way, the server is
able to compute k ∗h5 in plaintext since h5 is now masked
by C’s r0, in the reset h1. Meanwhile, such computation
is completed in an online phase since h5 involves x0 and
g0(x). Therefore, the first thing we need to tackle is to
make the server efficiently obtain h5. Furthermore, the data-
independent nature of r0 makes k ∗ r0 to be computed in
the offline phase, and thus the second thing we need to
address is to efficiently compute k ∗ r0. Solving the above
two problems would allow us efficiently obtain the shares
of fc(fr(x)) at C and S .

We deal with above two issues through a carefully
designed online-offline mechanism. By fully utilizing the
pregeneration of x1, g1(x), r0, and the OT-based module
for getting shares of f ′

r (x), we are able to obtain shares
of fc(fr(x)) in a much more efficient way, under the joint
optimization logic. Generally, the offline phase involves a
rotation-free computation, with only HE addition and multi-

plication, to obtain shares of k ∗ r0. Given the S-encrypted
g1(x) and h3, our online phase makes the client obtain
encrypted h5, which is then decrypted by the server, in a
non-multiplexing and rotation-free way, with the complexi-
ties of HE addition and multiplication independent of kernel
sizes and only related to the number of input ciphertext.
The details of our online-offline computation is elaborated
as follows.

Rot-free sharing for k ∗ r0 at offline phase. Given
that the kernel k is at S and r0 is at C, state-of-the-
art frameworks usually let the client encrypt r0 and the
convolution is then performed at S through massive amount
of HE operations with both rotations and multiplications
in O(CiCoHiWi(fh)2) [17], or trading rotations by HE
extractions and decryptions both in O(CoHoWo) with multi-
plications in O(CiCoHiWi) [27]. By comparison, we elim-
inate rotations by decryptions in O(Co) and multiplications
in O(CiCoHiWi(fh)2), without extractions. While fh is
always small (e.g., one or three), HoWo could be hundreds
or thousands or even larger in modern networks [3], [4].
Therefore, our calculation for k ∗ r0 provides a noticeable
advantage over practical neural models by trading more HE
decryptions for much less HE multiplications, besides its
offline-computed nature as a time-saving remedy.

Specifically, our idea is based on the relationships among
convolution, dot product, and HE operations, as illustrated
in Figure 4. Since each number of convolution output is the
sum of kernel values scaled by input elements that are within
the kernel window, the overall convolution is equivalent to
the dot product between a flattened kernel matrix and a re-
organized input matrix [38]. More generally, the convolution
between k ∈ ZCo×Ci×fh×fh

p and r0 ∈ ZCi×Hi×Wi
p could

be viewed as the dot product between k̂ ∈ ZCo×Ci(fh)
2

p and
r̂0 ∈ ZCi(fh)

2×HoWo
p . For each of the Co rows in k̂, the

dot product with r̂0 corresponds to one of the Co Ho-by-
Wo channels in convolution output, and that dot product
is also the accumulation of all rows in r̂0 each of which
is scaled by one value in the row of k̂. For example, the
convolution between k ∈ Z1×1×3×3

p and r0 ∈ Z1×2×2
p in

Figure 4 is transformed into the dot product between k̂ ∈

4815

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

R11 R12

R21 R22

rϬ

כ

K11 K12 K13

K21 K22 K23

K31 K32 K33

k

K22R11+K23R12+
K32R21+K33R22

K21R11+K22R12+
K31R21+K32R22

K12R11+K13R12+
K22R21+K23R22

K11R11+K12R12+
K21R21+K22R22

convolution

K11K12K13K21K22K23K31K32K33

0 0 0 R11

0 0 R11 R12

0 0 R12 0
0 R11 0 R21

R11 R12 R21 R22

R12 0 R22 0
0 R21 0 0
R21 R22 0 0
R22 0 0 0

dot product

K22R11+
K23R12+
K32R21+
K33R22

K21R11+
K22R12+
K31R21+
K32R22

K12R11+
K13R12+
K22R21+
K23R22

K11R11+
K12R12+
K21R21+
K22R22

reshape

ȉ

෡࢑ ෞ࢘଴

re-sum

0 0 0 R11 0 0 R11 R12 0 0 R12 0

0 0 0 K11 0 0 K12 K12 0 0 K13 0

0

K21
R11
+
K31
R21

0

K11
R11
+
K21
R21

K22
R11
+
K32
R21

K22
R12
+
K32
R22

K12
R11
+
K22
R21

K12
R12
+
K22
R22

K23
R12
+
K33
R22

0

K13
R12
+
K23
R22

0

0 R11 0 R21 R11 R12 R21 R22 R12 0 R22 0

0 R21 0 0 R21 R22 0 0 R22 0 0 0

0 K21 0 K21 K22 K22 K22 K22 K23 0 K23 0

0 K31 0 0 K32 K32 0 0 K33 0 0 0

ٝ

11

൅

൅

Mult & Add

ٝ

ٝ

Figure 4. Relationships among convolution, dot product, and HE operations.

Z1×9
p and r̂0 ∈ Z9×4

p with Ho = Wo = Wi = 2, and the
dot product between first row of k̂ and r̂0 is equivalent to
the accumulation of all rows in r̂0, with j-th row scaled by
j-th value in first row of k̂.

On the other hand, the additive property of rows in r̂0
for getting each Ho-by-Wo channel of convolution output is
compatible with the HE additions among ciphertext, since if
we pack multiple rows of r̂0 into one ciphertext, multiply the
totally Ci(fh)2/Cn ciphertext with associated kernel values
in a row of k̂ by HE Mult where Cn = &N/HoWo' is the
number of rows that are packed in one ciphertext, and add
these multiplied ciphertext together by HE Mult, we finally
obtain a ciphertext which contains partial sums of one Ho-
by-Wo channel of convolution output, and a re-summing
of these decrypted values produces the desired convolution
output. For example, three rows of r̂0 in Figure 4 are
packed into one ciphertext and we thus obtain totally three
ciphertext, which are multiplied with kernel values of first
row in k̂ by HE Mult, and then added up by HE Add. The
resultant ciphertext contains partial sums of the convolution
output, and a re-summing of the decrypted values turns out
to be desired convolution output.

The above methodology applies to dot product between
each row of k̂ and r̂0, which forms FIT’s main process
to share k ∗ r0 in an efficient and privacy-preserving way:
the client encrypts rows of r̂0 and forms totally Ci(fh)2/Cn

ciphertext, which are sent to the server. For each row of k̂, S
multiplies each of the Ci(fh)2/Cn ciphertext with values in
that row of k̂, and adds the multiplied ciphertext to form an
intermediate one. The resultant Co intermediate ciphertext
are masked by s̃hr

off
12, which is re-summed into shroff

12, and
sent to the client, which performs the decryption and gets the
share of k ∗r0 namely shroff

02. The protocol of our Rot-free
sharing for k ∗ r0 at offline phase is described in Figure 5.

Additionally, there involves a unidirectional offline trans-
mission from S to C where the server respectively encrypts
g1(x) and h3 into Ci/Cn ciphertext as [g1(x)]S and [h3]S ,
and sends them to the client. The sharing for k∗r0 together
with the unidirectional offline transmission facilitate FIT’s
efficient online computation to be discussed next.

Input:
S:: ࢑ א Ժ௣

஼೚ൈ஼೔ൈ௙೓ൈ௙೓

C: ࢘଴ א Ժ௣
஼೔ൈு೔ൈௐ೔

Output:
S:

C:

a random share e ଵଶ୭୤୤࢘ࢎ࢙ א Ժ௣
஼೚ൈு೚ൈௐ೚Ǣ

: ଴ଶ୭୤୤࢘ࢎ࢙ א Ժ௣
஼೚ൈு೚ൈௐ೚ǡ s.t.ǡǡ ଵଶ୭୤୤࢘ࢎ࢙ ൅ ଴ଶ୭୤୤࢘ࢎ࢙ ��� ݌ ൌ ࢑ כ ࢘଴Ǥ

C: S:

ෞ࢘଴ א Ժ௣
஼೔ሺ௙೓ሻమൈு೚ௐ೚ ึ ࢘଴௣

ෞ࢘଴ ஼ ึ ܧ ஼ǡ݇݌ ෞ࢘଴
ෞ࢘଴ ஼

෡࢑ א Ժ௣
஼೚ൈ஼೔ሺ௙೓ሻమ ึ ࢑

෪࢙࢘ࢎଵଶ୭୤୤ ՚
̈́
Ժ௣
஼೚ൈே

෪࢙࢘ࢎ଴ଶ୭୤୤ ึ σሺ ෞ࢘଴ ஼ ٝ ෡࢑ሻ െ ෪࢙࢘ࢎଵଶ୭୤୤

ଵଶ୭୤୤࢘ࢎ࢙ ึ σ ෪࢙࢘ࢎଵଶ୭୤୤

Outputt ଵଶ୭୤୤࢘ࢎ࢙

෪࢙࢘ࢎ଴ଶ୭୤୤

଴ଶ୭୤୤࢘ࢎ࢙ ึ σሺܦሺ݇ݏ஼ǡ ෪࢙࢘ࢎ଴ଶ୭୤୤ሻሻ

Outputt ଴ଶ୭୤୤࢘ࢎ࢙

Figure 5. Rot-free sharing for k ∗ r0 at offline phase.

Rot-free computation for h5 at online phase. Recall
that we aim to privately get the shares of fc(fr(x)) in a
more efficient way than sequentially computing y = fr(x)
and fc(y). We equalize the problem to Eq. 5 and break
our goal into two concrete tasks: sharing of k ∗ r0 and
S’s acquisition of h5. While k ∗ h4 in Eq. 5 is locally
obtained by S and k∗r0 is shared according to FIT’s offline
mechanism described before, our remaining task is to make
S efficiently obtain h5 such that k ∗ h5 is computed and
the shares of fc(fr(x)) are thus formed. We achieve a light-
weight computation for h5 by making use of the OT-based
online sharing for f ′

r (x) and our offline computation mod-
ule. Specifically, given the shares of x namely x0 and x1, C
obtains the Boolean share of f ′

r (x) namely g0(x) based on
the optimized OT-based protocol for f ′

r (x) [17], while S’s
corresponding share g1(x) is pregenerated. Considering the
[g1(x)]S and [h3]S that are received by C at offline phase,
the client is able to compute an encrypted [h5]S right after
it gets g0(x) as

[h5]S = h1 + (h2 ! [g1(x)]S) + ([h3]S ! g0(x)) (6)

where there involve 2Ci/Cn HE Mult and 2Ci/Cn HE Add,
and [h5]S obviously includes Ci/Cn ciphertext since both

4816

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

Input:
S:

p
࢞ଵ א Ժ௣

஼೔ൈு೔ൈௐ೔͕ ଵࢍ ࢞ א Ժଶ
஼೔ൈு೔ൈௐ೔

C: ࢞଴ א Ժ௣
஼೔ൈு೔ൈௐ೔ǡ ࢘଴ א Ժ௣

஼೔ൈு೔ൈௐ೔ǡ ଵࢍ ࢞ ௌǡ ሾࢎଷሿௌ
Output:
S:

p
: ହࢎ א Ժ௣

஼೔ൈு೔ൈௐ೔Ǥ
C: S:

ହࢎ ௌ ึ ଵࢎ ൅ ଶࢎ ٝ ଵࢍ ࢞ ௌ
൅ሺሾࢎଷሿௌٝ ଴ࢍ ࢞ ሻ

ହࢎ ௌ

Outputt ହࢎ

ହࢎ ึ ௌǡ݇ݏሺܦ ହࢎ ௌ ሻ

OT-based ୰݂
ᇱሺ࢞ሻ

࢞଴ ࢞ଵǡ ଵࢍ ࢞

଴ࢍ ࢞
ଵࢎ ึ ࢞଴ ٝ ଴ࢍ ࢞ െ ࢘଴

ଶࢎ ึ ࢞଴ ٝ ሼ૚ െ ૛ٝ ଴ሺ࢞ሻሽࢍ

Figure 6. Rot-free computation for h5 at online phase.

[g1(x)]S and [h3]S contain ciphertext with that amount.
Then [h5]S is sent to S which performs the decryption to
get h5 and computes k∗h5 in plaintext. It is worth pointing
out that S obtains h5 through a unidirectional online trans-
mission from C, which not only eliminates the multiplexing
for getting f ′

r (x) ! x but also avoids HE rotations with
HE additions and multiplications both in O(Ci/Cn). This
makes the crypto complexity independent of kernel size (i.e.,
fh and Co), which contributes to significant cost reduction
for the linear function fc(y). The protocol for our Rot-free
computation for h5 at online phase is described in Figure 6.

Putting things together. Let’s put all pieces together to
streamline FIT’s joint optimization for fc(fr(x)) according
to Eq. 5. Specifically, our protocol is divided into two phases
namely offline computation and online computation. The
offline computation involves an input-independent process
that shares the k ∗ r0 and transmits prepared ciphertext
namely [g1(x)]S and [h3]S from S to C. Meanwhile, k∗h4

is locally computed by the server at offline phase. At online
phase, the client and the server first engage in the OT-
based module for getting f ′

r (x) where C obtains its Boolean
share g0(x) ∈ ZCi×Hi×Wi

2 . Then the client computes [h5]S
according to Eq. 6, based on the ciphertext that are received
at offline phase. Next C sends [h5]S to S which preforms HE
decryption and computes k∗h5. After that, the server shares
k ∗ h5 with the client by sampling shron

11
$← ZCo×Ho×Wo

p
and sending shron

01 = (k∗h5−shron
11) to the client. Finally,

S sets its share of fc(fr(x)) as

shr1 ∈ ZCo×Ho×Wo
p = shroff

11 + shroff
12 + shron

11

where shroff
11 ∈ ZCo×Ho×Wo

p = k∗h4, while C sets its share
of fc(fr(x)) as

shr0 ∈ ZCo×Ho×Wo
p = shroff

02 + shron
01

R1

R2

R3

R4

R5

R6

R7

R8

W11 W12 W13 W14 W15 W16 W17 W18

W21 W22 W23 W24 W25 W26 W27 W28

W31 W32 W33 W34 W35 W36 W37 W38

W41 W42 W43 W44 W45 W46 W47 W48

dot product

W11R1+
W12R2+
W13R3+
W14R4+
W15R5+
W16R6+
W17R7+
W18R8

W21R1+
W22R2+
W23R3+
W24R4+
W25R5+
W26R6+
W27R7+
W28R8

W31R1+
W32R2+
W33R3+
W34R4+
W35R5+
W36R6+
W37R7+
W38R8

W41R1+
W42R2+
W43R3+
W44R4+
W45R5+
W46R6+
W47R7+
W48R8

ȉ
࢘଴࢝

re-sum

R1 R1 R1 R1 R2 R2 R2 R2

W11 W21 W31 W41 W12 W22 W32 W42

W11
R1
+
W13
R3
+
W15
R5
+
W17
R7

W21
R1
+
W23
R3
+
W25
R5
+
W27
R7

W31
R1
+
W33
R3
+
W35
R5
+
W37
R7

W41
R1
+
W43
R3
+
W45
R5
+
W47
R7

W12
R2
+
W14
R4
+
W16
R6
+
W18
R8

W22
R2
+
W24
R4
+
W26
R6
+
W28
R8

W32
R2
+
W34
R4
+
W36
R6
+
W38
R8

W42
R2
+
W44
R4
+
W46
R6
+
W48
R8

R3 R3 R3 R3 R4 R4 R4 R4

W13 W23 W33 W43 W14 W24 W34 W44

ٝ

൅

Mult & Add

ٝ
3

൅

R5 R5 R5 R5 R6 R6 R6 R6

W15 W25 W35 W45 W16 W26 W36 W46

R7 R7 R7 R7 R8 R8 R8 R8

W17 W27 W37 W47 W18 W28 W38 W48

ٝ

൅

ٝ

Figure 7. Relationship between FC and HE operations.

and it is obvious to find that

shr1 + shr0

= shroff
11 + (shroff

12 + shroff
02) + (shron

11 + shron
01)

= k ∗ h4 + k ∗ r0 + k ∗ h5 = fc(fr(x)) mod p

The reason of sharing k ∗ h5 is to make shr1 hold
the pregeneration property as x1, which enables subsequent
calling of our joint optimization module for computing
another fc(fr(x)).

Additionally, the composite function of fully connection
and ReLU namely fw(fr(x)), with weight matrix w, is
computed similarly to fc(fr(x)) by replacing k and con-
volution “ ∗ ” with w and dot product “ · ”, respectively.
Specifically, the offline sharing of w · r0, in contrast to the
offline sharing of k ∗ r0 in fc(fr(x)), utilizes the column
accumulation of w for computing dot product, as shown in
Figure 7. Therefore, the client first packs &N/no' length-
no vectors, each of which contains copies of one element
in r0 ∈ Zni

p , and encrypts them into one ciphertext. The
total nino/N ciphertext are then sent to S . The server
performs HE multiplications and additions both in O(nino),
and produces a ciphertext that contains partial sums of
w · r0. That ciphertext is masked and sent to the client,
which conducts one decryption and plaintext re-summing
to get its share of w · r0. In comparison, state-of-the-art
frameworks usually let the client encrypt r0 and the fully
connection is then performed at S through massive amount
of HE operations with rotations in O(nino − log no) and
multiplications in O(nino) [13], or trading rotations by HE
extractions and decryptions both in O(no) with multiplica-
tions in O(nino) [27].

Complexity analysis. We now give concrete complexi-
ties of FIT’s computation for fc(fr(x)). In the offline phase,
[g1(x)]S and [h3]S , each includes $CiHiWi/N% ciphertext,
are sent from S to C. Meanwhile, to share k ∗ r0, the
client transforms r0 into r̂0 in accordance with Figure 4

4817

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

TABLE 2. COMPARISON OF COMPUTATION COMPLEXITY TO OBTAIN SHARES OF fc(fr(x)). THE COMMON PART TO GET SHARES OF DERIVATIVE OF
RELU IS EXCLUDED.

Frameworks Offline Computation Online Computation
#Enc #Mult #Dec #Add Mux #Rot #Enc #Mult #Dec #Add

CrypTFlow2 - - - - ! ≥ (f2
h−1)Ci
Cn

+ Co − Co
Cn

Ci
Cn

f2
hCiCo
Cn

Co
Cn

Ci+CoCif
2
h

Cn

FIT f2
hCi
Cn

f2
hCiCo
Cn

Co
f2
hCiCo
Cn

" - - 2
Ci
Cn

Ci
Cn

2
Ci
Cn

and encrypts r̂0 into [r̂0]C with $(fh)2Ci/&N/HoWo'%
ciphertext. The [r̂0]C is sent to the server, which conducts
$(fh)2Ci/&N/HoWo'% HE multiplications and additions to
form one shared ciphertext for each of Co filters. Those
Co ciphertext are transmitted from S to C, which does Co

decryptions and obtains shroff
02. In the online phase, C and S

first involve in the OT-based module for f ′
r (x) which outputs

g0(x) for C. After that, the client performs 2$CiHiWi/N%
HE multiplications and 2$CiHiWi/N% additions to form
[h5]S with $CiHiWi/N% ciphertext. [h5]S is then sent to
S . The server does $CiHiWi/N% decryptions and obtains
k ∗ h5, which is then shared with C and the client finally
gets its share of fc(fr(x)) as shr0 while S forms shr1.

As for the total computation complexity with both offline
and online considered, we compare FIT with state-of-the-
art CrypTFlow2 framework [17] as shown in Table 2. FIT
demonstrates comparable or even lower complexity accord-
ing to the following five observations. First, the number of
HE Mult of FIT is comparable with that of [17]. Second, the
number of HE Add of FIT is comparable with that of [17].
Third, the number of HE Dec of FIT at online computation
is comparable with that of [17]. Fourth, by offsetting the HE
Enc between FIT and [17], the remaining complexity of FIT
namely (f2

h−1)Ci

Cn
HE Enc plus Co HE Dec is comparable or

even lower than that of [17], namely the complexity of HE
Rot, as the HE Rot is much expensive than HE Enc and HE
Dec [13]. Finally, FIT also escapes the execution of OT-
based Multiplexing (Mux), which is indispensable in [17]
and thus brings another efficiency opportunity. Overall, FIT
features with a much efficient online computation while
makes the overall complexity comparable or even lower.
Such property is reasonable and more preferred because in
real-word MLaaS applications, the user always needs timely
online response and the offline cost is more tolerable.

Furthermore, the complexities for computing fw(fr(x))
is similarly analyzed as follows. As for the offline sharing
of w · r0, C encrypts $ni/&N/no'% ciphertext with respect
to r0 and sent them to S . The server performs $ni/&N/no'%
HE multiplications and $ni/&N/no'% to produces a masked
ciphertext that contains partial sums of w·r0. That ciphertext
is then sent to the client, which conducts one decryption and
plaintext re-summing to get its share of w · r0. As for the
online computation, after the OT-based module for getting
share of f ′

r (x) namely g0(x), the client performs $ni/N%
HE multiplications and $ni/N% additions to form [h5]S with
$ni/N% ciphertext. [h5]S is then sent to S . The server does
$ni/N% decryptions and obtains w ·h5, which is then shared
with C and the client finally gets its share of fw(fr(x)) as
shr0 while S forms shr1.

3.3. Model Adjustments for Best Utilization

A neural network always contains other functions than
fc(fr(x)) and fw(fr(x)) (e.g., maxpooling, meanpooling,
and batch normalization). Therefore, we propose to do the
network adjustments to maximize the utilization of FIT’s
joint optimization for fc(fr(x)) and fw(fr(x)). The basic
idea is to equivalently reassemble functions in the neural
network such that fc(fr(x)) and fw(fr(x)) appear as much
as possible. To this end, we identify three function blocks
where ReLU and Conv are usually separated by other
functions, and we aim to equalize such function blocks to
make ReLU and Conv adjacent. First, the maxpooling (Max-
Pool), fmx(x), usually appears between ReLU and Conv as
ReLU→MaxPool→Conv which is indeed equavalent with
MaxPool→ReLU→Conv since fr(fmx(x)) = fmx(fr(x)).
While this ReLU-MaxPool conversion has been applied in
optimizations for GC-based and SS-based nonlinear func-
tions [39], [40], as well as in plaintext computation for
neural networks [41], they only consider the sequential
computation for stacked functions in a neural network, and
we further gain efficiency boost on top of such conver-
sion via FIT’s joint optimization for fc(fr(x)). Second, the
meanpooling (MeanPool), fmn(x), usually appears between
ReLU and Conv as ReLU→MeanPool→Conv, and we sep-
arately perform MeanPool over h5, h4 and r0 based on
Eq. (5) in the joint optimization process since

fc(fmn(fr(x))) = k ∗ fmn(h5 + h4 + r0)

= k ∗ fmn(h5) + k ∗ fmn(h4) + k ∗ fmn(r0)

Specifically, the offline sharing for k ∗ r0 is replaced
by that for k ∗ fmn(r0) where the client first conducts
MeanPool over r0 to produce a new r0 with smaller di-
mensions, and that new r0 then acts as the r0 in Figure 5
to complete the sharing process. Meanwhile, the server
computes k ∗ fmn(h4) instead of k ∗ h4. In the online
phase, the server calculates k ∗ fmn(h5) instead of k ∗ h5

after it obtains h5. Third, the batch normalization, fbn(x),
usually appears after Conv as and is specified by a constant
tuple (µ,θ) ∈ ZCo

p × ZCo
p which scales and shifts each of

Co 2-dimension convolution output by one element in µ
and θ, respectively [27]. Since fbn(x) only involves scalar
multiplication and addition, it is easy to combine batch
normalization (BN) with Conv in FIT’s offline phase where
each of Co filters in k is multiplied with one element in µ,
and each of Co 2-dimension convolution output in k ∗h4 is
added with one element in θ. In this way, the Conv→BN is
able to integrate with ReLU based on our joint optimization
for fc(fr(x)) (or fw(fr(x))).

4818

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

Additionally, once C launches a query to get the output
of S’s neural model, the private input x is firstly fed to Conv
rather than ReLU, which makes us unable to directly utilize
optimization for fc(fr(x)). We address the Conv with C’s
input by computing k ∗ {(x − r0) + r0} where k ∗ r0 is
shared in a way similar with that in Figure 5, and x − r0
is sent, at online phase, from the client to the server which
calculates and shares k ∗ (x−r0) in a way similar with S’s
computation and sharing of k ∗ h5 in fc(fr(x)).

Last but not least, our joint optimization for composite
function fc(fr(x)) assumes the pregeneration property of
S’s shares with respect to input namely x1 and g1(x). We
deal with the non-pregeneration case, where the shares of
neither party towards x are input-independent, by running
fc(fr(x)) with an offline-included online phase and a final
sharing of k∗h5. In this way, S is able to form pregenerated
shares for fc(fr(x)), which are eligible to feed in our joint
optimization for computing subsequent fc(fr(·)).

3.4. Security Analysis

We aim to prove the security of Rot-free sharing for
k ∗ r0 at offline phase as shown in Figure 5 and Rot-free
computation for h5 at online phase as shown in Figure 6.
Since other functions are directly implemented based on
2PC protocols from [17] and the output of our offline
and online computation is either randomly shared or to be
randomly shared, the security of computing entire model
is guaranteed after composition because a protocol that
ends with secure re-sharing of output is universally com-
posable [12], [42].

THEOREM 1. The protocol in Figure 5 is secure in the
presence of semi-honest adversaries, if E(·) is semantically
secure.

Proof . Our security proof is based on the ideal/real-
world paradigm [37] discussed in Section 2.2: in the real
world, S and C interact with each other according to protocol
specification, while in the ideal world, parties have access to
a trusted third party TTP that implements F which returns
a random share shroff

12 ∈ ZCo×Ho×Wo
p to S and a share

shroff
02 ∈ ZCo×Ho×Wo

p satisfying shroff
12 + shroff

02 = k ∗ r0
mod p, given k ∈ ZCo×Ci×Hi×Wi

p from the server and r0 ∈
ZCi×Hi×Wi
p from the client. The execution in both worlds

are coordinated by environment E which selects inputs to
parties and acts as a distinguisher between real and ideal
executions. Our goal is to show that the adversary’s view in
real world is indistinguishable to that in ideal world.

Security against a semi-honest server. We prove security
against a semi-honest server by constructing an ideal-world
simulator Sim that performs as follows:

(1) receives k from E , Sim sends k to TTP;
(2) starts running S on input k;
(3) constructs [r̂0

′]Sim ← E(pkSim, {0}) where pkSim

is randomly generated by Sim;
(4) sends [r̂0

′]Sim to S;
(5) outputs whatever S outputs.
S’s view in real execution is E(pkC , r̂0), which is

computationally indistinguishable from its view in ideal

execution, E(pkSim, {0}), based on the semantic security of
E(·). Therefore the output distribution of E in real world is
computationally indistinguishable from that in ideal world.

Security against a semi-honest client. Next, we prove
security against a semi-honest client by constructing an
ideal-world simulator Sim that works as follows:

(1) receives r0 from environment E , Sim sends r0 to
TTP and gets the result shroff

02;
(2) starts running C on input r0, and receives [r̂0]C ;
(3) randomly splits shroff

02 into shr′off
02 subjected to

shroff
02 =

∑
shr′off

02;
(4) encrypts shr′off

02 using C’s public key and returns
[shr′off

02]C to C;
(5) outputs whatever C outputs.
C’s view in real execution is

∑
(r̂0 ! k̂) − s̃hr

off
12

while its view in ideal execution is shr′off
02. Thus we only

need to show that any element in
∑

(r̂0 ! k̂) − s̃hr
off
12 is

indistinguishable from a random number in shr′off
02. This

is clearly true since s̃hr
off
12 is randomly chosen. At the

end of simulation, C outputs shroff
02 =

∑
shr′off

02, which
is the same as real execution. Therefore we claim that the
output distribution of E in real world is computationally
indistinguishable from that in ideal world.

THEOREM 2. The protocol in Figure 6 is secure in the
presence of semi-honest adversaries, if OT and E(·) are
semantically secure.

Proof . Similar with THEOREM 1, our security proof
is based on the ideal/real-world paradigm: in real world,
S and C interact with each other according to protocol
specification, while in ideal world, parties have access to
a trusted third party TTP that implements F which returns
h5 to S , given the inputs from S and C as specified in
Figure 6. Our goal is to show that the adversary’s view in
real world is indistinguishable to that in ideal world.

Security against a semi-honest server. We prove security
against a semi-honest server by constructing an ideal-world
simulator Sim that performs as follows:

(1) receives x1 and g1(x) from environment E , Sim
sends x1 and g1(x) to TTP and gets the result h5;

(2) starts running S with x1 and g1(x), and receives
g0(x);

(3) encrypts h5 using S’s public key and returns [h5]S
to S;

(4) outputs whatever S outputs.
On the one hand, the semantic security of OT guarantees

the computational indistinguishability of messages to S for
computing f ′

r (x) in real and ideal executions. On the other
hand, S outputs h5 at the end of simulation, which is
the same as real execution. Therefore we claim that the
output distribution of E in real world is computationally
indistinguishable from that in ideal world.

Security against a semi-honest client. We prove security
against a semi-honest client by constructing an ideal-world
simulator Sim that performs as follows:

(1) receives x0, r0, [g1(x)]S , and [h3]S from environ-
ment E , Sim sends them to TTP;

4819

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

(2) starts running C on input x0, r0, [g1(x)]S , and [h3]S ;
(3) outputs whatever C outputs.
C’s view in real execution includes messages for comput-

ing f ′
r (x), which is computationally indistinguishable from

its view in ideal execution based on the semantic security of
OT. Therefore the output distribution of E in real world is
computationally indistinguishable from that in ideal world.

4. Evaluation

We present in this section the performance results of FIT.
Specifically, we implement FIT based on the open-sourced
code from CrypTFlow2 [17] and all experiments are run
in a LAN setting with gigabit bandwidth. Each machine
possesses a CPU with Intel Core i7-11370H@3.3GHz, and
the system memory is 38.9GB. Meanwhile, we evaluate
performance of making inference for MNIST-scale [43]
data over model from [44] which we denote as M1, and
CIFAR10-scale [45] and ImageNet-scale [46] data over
VGG-16 [3], VGG-19 [3], ResNet-18 [4], ResNet-34 [4],
DenseNet-161 [47], and DenseNet-169 [47] architectures.
The concrete model configurations are described in Ap-
pendix A.

Concretely, Section 4.1 illustrates the online perfor-
mance of FIT compared to state-of-the-art works, including
the cost of our composite module for computing fc(fr(x))
and the efficiency over modern networks that integrate com-
putation module of FIT. Section 4.2 breaks down the cost
over modern networks, including the offline overhead, and
discusses in detail the impact of FIT on various function
dimensions, which help to understand FIT’s adaptability
when applied to different neural models.

4.1. Online Performance

Recall that the proposed FIT features with light-weight
running-time complexity to compute composite function
fc(fr(x)), which is independent of filter size namely fh
and Co. As such we demonstrate in this section the concrete
performance, in the online phase, over individual function
blocks as well as complete neural models when plugging
in FIT’s composite modules. Specifically, the goal is to
output shares of fc(fr(x)) given the shares of x with size
of Hi × Wi@Ci. We measure the total communication
including all the messages sent by C and S and the end-to-
end running time including the time of transferring messages
through the LAN.

Microbenchmarks. Table 3 demonstrates the perfor-
mance of FIT’s composite module compared to the state-
of-the-art approaches, CrypTFlow2 [17], Cheetah [27], and
GAZELLE [13]. The tested dimensions are picked from
modern networks such as ResNet and DenseNet. Specifi-
cally, with the filter-independent crypto computation, FIT
shows up to 29.9× speedup, 3.7× speedup, and 300×
speedup on various function sizes, compared to CrypT-
Flow2, Cheetah, and GAZELLE, respectively. Meanwhile,
FIT removes two simultaneous communication rounds for
multiplexing, and reduces transmission load in terms of OT

for multiplexing and ciphertext for sharing. All together, FIT
computes composite functions in a much more efficient way,
without balancing the communication cost both in round and
transferred data.

Over modern networks. Table 4 shows the performance
over different modern networks, with various datasets, by
plugging in FIT’s composite modules as well as applying
the proposed network adaptations. The key takeaways are
summarized as follows. First, as for M1 with MNIST, FIT
demonstrates 35.5× speedup for computation and less cost
for communication. Such performance gain is attributed to
large kernel sizes (i.e., fh = 7) and large output channels
(e.g., Co = 144 and Co = 192) in M1, which makes
the cost of CrypTFlow2 much more than that of FIT as
indicated in Table 2. Second, as for VGG-16 and ResNet-
18 with CIFAR10, FIT shows 4.5× and 8.9× computational
speedup, respectively. As for the communication cost, FIT
transfers more data than [17] especially over VGG-16. The
main reason behind it is the inclusion of offline process
due to the non-pregenerated property of shares of MaxPool
functions after applying FIT’s network adaptation, which
introduces extra communication load. That offline inclusion
has less impact of communication cost on ResNet-18 since
there are less MaxPool functions. It implies that FIT is more
suitable with less Maxpool functions in terms of large-size
network with small-scale data.

Third, as for VGG-16 and ResNet-18 with ImageNet,
FIT shows 8.4× and 5.5× computational speedup with
reduced communication cost, respectively. The main reason
is that the efficiency harvest of FIT’s model adaptation to-
wards Maxpool functions is more significant than the cost of
corresponding offline inclusion. This property suggests that
FIT is applicable to large-size network with large-scale data.
Similar observations are found over VGG-19 and ResNet-
34. Finally, FIT is integrated into much deeper networks
DenseNet-161 and DenseNet-169 to evaluate its adaptability
with more complex architectures. Specifically, FIT demon-
strates 11× speedup and 18.2× speedup over DenseNet-161
and DenseNet-169, respectively. The BN→ReLU→Conv for
each “conv” layer from DenseNet makes FIT’s composite
module for fc(fr(x)) naturally suitable to accelerate the
privacy-preserving computation with almost no offline in-
clusion as needed in ResNet and VGG. Furthermore, the
relatively smaller input channels and output channels in
DenseNet-169 namely smaller Ci and Co result in less
computation cost of FIT compared with its overhead for
DenseNet-161, which contributes to more speedup over
DenseNet-169.

4.2. Offline Included Performance Breakdown

In order to concretely understand FIT’s adaptability over
different function dimensions, including the offline over-
head, we further break down the performance of tested
networks in function wise. As such, Figure 8 to Figure 10
demonstrate the accumulated time as well as accumulated
communication cost both in online and offline phases. Here
the value at each function is the cost of current function

4820

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

TABLE 3. ONLINE COMPUTATION OF fc(fr(x)) WITH VARIOUS SIZES. THE OT-BASED DERIVATIVE IS EXCLUDED FOR A FAIR COMPARISON.

Hi × Wi@Ci, s Time (ms) Communication (MB)
fh × fh@Co FIT CrypTFlow2 [17] Cheetah [27] GAZELLE [13] FIT CrypTFlow2 [17] Cheetah [27]
28×28@512, 1 207 4351 643 Speedup: 65× 19.57 29 10.471×1@128 Speedup: 21× Speedup: 3.1×
28×28@512, 1 283 8478 1060 Speedup: 110× 20.39 32.59 14.81×1@256 Speedup: 29.9× Speedup: 3.7×
14×14@1024, 1 246 4362 513 Speedup: 150× 9.8 14.91 10.811×1@256 Speedup: 17.7× Speedup: 2×
14×14@1024, 1 423 8728 1108 Speedup: 300× 10.24 16.29 18.541×1@512 Speedup: 20.6× Speedup: 2.6×
28×28@320, 1 152 2741 383 Speedup: 70× 12.44 19.68 8.141×1@128 Speedup: 18× Speedup: 2.5×
28×28@480, 1 211 4164 458 Speedup: 68× 18.07 28.14 10.051×1@128 Speedup: 19.7× Speedup: 2.1×

TABLE 4. ONLINE COMPUTATION OF VARIOUS NEURAL MODELS.

Dataset Model Time (s) Communication (MB)
FIT CrypTFlow2 [17] FIT CrypTFlow2 [17]

MNIST M1 4.2 149.49 323.11 347.2Speedup: 35.5×

CIFAR10

VGG-16 10.87 49.83 895.81 337.23Speedup: 4.5×
VGG-19 12.56 80.85 920.06 367.74Speedup: 6.4×

ResNet-18 7.931 70.89 188.96 157.33Speedup: 8.9×
ResNet-34 16.49 116.61 271.03 275.8Speedup: 7×

DenseNet-161 41.96 462.78 1762.3 1947.7Speedup: 11×
DenseNet-169 26.83 489.5 1171.23 1285.98Speedup: 18.2×

ImageNet

VGG-16 213 1790.181 15161.82 16311.65Speedup: 8.4×
VGG-19 235.84 2848.62 15910.08 17748.17Speedup: 12×

ResNet-18 51.6 284.095 3698.71 3944.66Speedup: 5.5×
ResNet-34 77.46 670.6 5331.75 5165.5Speedup: 8.6×

Ϭ

ϮϬϬϬϬ

ϰϬϬϬϬ

ϲϬϬϬϬ

ϴϬϬϬϬ

ϭϬϬϬϬϬ

ϭϮϬϬϬϬ

ϭϰϬϬϬϬ

ϭϲϬϬϬϬ

�Đ
ĐƵ

ŵ
Ƶů
Ăƚ
ĞĚ

�d
ŝŵ

Ğ�
;ŵ

ƐͿ

&/dͲŽŶůŝŶĞ &/dͲŽĨĨůŝŶĞ �ƌǇƉd&ůŽǁϮ

Ϭ

ϮϬϬ

ϰϬϬ

ϲϬϬ

ϴϬϬ

ϭϬϬϬ

ϭϮϬϬ

ϭ Ϯ ϯ ϰ ϱ ϲ ϳ ϴ ϵ

�Đ
ĐƵ

ŵ
Ƶů
Ăƚ
ĞĚ

��
Žŵ

ŵ
͘�;
D
�Ϳ

&ƵŶĐƚŝŽŶ�/ŶĚĞǆ

Figure 8. Performance breakdown of M1 with MNIST.

plus that of previous function. The variation of such accu-
mulation helps to identify how the cost of each function
contributes to the global overhead. Specifically, as for the

M1 with MNIST in Figure 8, FIT’s cost mainly comes from
its offline communication for the second function, which
takes 38.6MB. This is because the offline communication is
proportional to the number of output channels Co which is
100 in our case, which is in sharp contrast to that of the first
function namely one. This results in the sudden increase of
communication for the second function.

As for the VGG-16 with CIFAR10 in Figure 9(a), the
communication jump at online phase happens in fourth,
ninth, 16-th, 23-th and 30-th functions, which adopts offline
inclusion. The offline inclusion needs to incorporate the
whole offline cost in the online phase, which introduces
noticeable communication overhead. As for the communi-
cation cost in offline phase, the jump happens in functions
which involve the offline process. Meanwhile, as number of
output channel is large, such as 128, 256 and 512, these
jumps are non-negligible. As for the ResNet-18 with CI-
FAR10 in Figure 9(b), we pay attention to FIT’s offline com-
munication cost, which continuously increases as network
goes deeper. The reasons lie in two folds. First, ResNet-
18 mainly includes a stack of fc(fr(·)) namely convolution
layer, with few MaxPool functions. This structure enables
a wide application of our proposed module for fc(fr(·)).
Since the offline cost is proportional to the number of output

4821

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

濃

濅濃濃

濇濃濃

濉濃濃

濋濃濃

濄濃濃濃

濄濅濃濃

濄濇濃濃

濄 濅 濆 濇 濈 濉 濊 濋 濌 濄濃 濄濄 濄濅 濄濆 濄濇 濄濈 濄濉 濄濊 濄濋 濄濌 濅濃 濅濄 濅濅 濅濆 濅濇 濅濈 濅濉 濅濊 濅濋 濅濌 濆濃 濆濄 濆濅 濆濆 濆濇 濆濈 濆濉

澵
濗濗
濩濡

濩濠
濕濨
濙濘

澔澷
濣濡

濡
澢澔澜
濁
澶澝

澺濩濢濗濨濝濣濢澔澽濢濘濙濬

澝

濃

濄濃濃濃濃

濅濃濃濃濃

濆濃濃濃濃

濇濃濃濃濃

濈濃濃濃濃

濉濃濃濃濃
澵
濗濗
濩濡

濩濠
濕濨
濙濘

澔濈
濝濡

濙澔
澜濡

濧澝
澜濕澝澔濊澻澻澡澥澪澔濫濝濨濜澔澷澽澺澵濆澥澤

澺澽濈澡濣濢濠濝濢濙 澺澽濈澡濣濚濚濠濝濢濙 澷濦濭濤濈澺濠濣濫澦

濃
濄濃濃濃濃
濅濃濃濃濃
濆濃濃濃濃
濇濃濃濃濃
濈濃濃濃濃
濉濃濃濃濃
濊濃濃濃濃
濋濃濃濃濃

澜濖澝澔濆濙濧濂濙濨澡澥澬澔濫濝濨濜澔澷澽澺澵濆澥澤
澺澽濈澡濣濢濠濝濢濙 澺澽濈澡濣濚濚濠濝濢濙 澷濦濭濤濈澺濠濣濫澦

濃

濈濃濃

濄濃濃濃

濄濈濃濃

濅濃濃濃

濅濈濃濃

濆濃濃濃

濄 濅 濆 濇 濈 濉 濊 濋 濌 濄濃 濄濄 濄濅 濄濆 濄濇 濄濈 濄濉 濄濊 濄濋 濄濌 濅濃 濅濄 濅濅 濅濆 濅濇 濅濈 濅濉 濅濊 濅濋 濅濌 濆濃 濆濄 濆濅 濆濆 濆濇 濆濈 濆濉 濆濊 濆濋 濆濌 濇濃 濇濄

澺濩濢濗濨濝濣濢澔澽濢濘濙濬

Figure 9. Performance breakdown of VGG-16 and ResNet-18 with CIFAR10.

濃

濅濃濃濃濃濃

濇濃濃濃濃濃

濉濃濃濃濃濃

濋濃濃濃濃濃

濄濃濃濃濃濃濃

濄濅濃濃濃濃濃

濄濇濃濃濃濃濃

濄濉濃濃濃濃濃

濄濋濃濃濃濃濃

濅濃濃濃濃濃濃

澵
濗濗
濩濡

濩濠
濕濨
濙濘

澔濈
濝濡

濙澔
澜濡

濧澝

澜濕澝澔濊澻澻澡澥澪澔濫濝濨濜澔澽濡濕濛濙濂濙濨
澺澽濈澡濣濢濠濝濢濙 澺澽濈澡濣濚濚濠濝濢濙 澷濦濭濤濈澺濠濣濫澦

濃

濅濃濃濃

濇濃濃濃

濉濃濃濃

濋濃濃濃

濄濃濃濃濃

濄濅濃濃濃

濄濇濃濃濃

濄濉濃濃濃

濄濋濃濃濃

濄 濅 濆 濇 濈 濉 濊 濋 濌 濄濃 濄濄 濄濅 濄濆 濄濇 濄濈 濄濉 濄濊 濄濋 濄濌 濅濃 濅濄 濅濅 濅濆 濅濇 濅濈 濅濉 濅濊 濅濋 濅濌 濆濃 濆濄 濆濅 濆濆 濆濇 濆濈 濆濉

澵
濗濗
濩濡

濩濠
濕濨
濙濘

澔澷
濣濡

濡
澢澔澜
濁
澶澝

澺濩濢濗濨濝濣濢澔澽濢濘濙濬

濃

濈濃濃濃濃

濄濃濃濃濃濃

濄濈濃濃濃濃

濅濃濃濃濃濃

濅濈濃濃濃濃

濆濃濃濃濃濃
澜濖澝澔濆濙濧濂濙濨澡澥澬澔濫濝濨濜澔澽濡濕濛濙濂濙濨

澺澽濈澡濣濢濠濝濢濙 澺澽濈澡濣濚濚濠濝濢濙 澷濦濭濤濈澺濠濣濫澦

濃

濈濃濃

濄濃濃濃

濄濈濃濃

濅濃濃濃

濅濈濃濃

濆濃濃濃

濆濈濃濃

濇濃濃濃

濇濈濃濃

濈濃濃濃

濄 濅 濆 濇 濈 濉 濊 濋 濌 濄濃 濄濄 濄濅 濄濆 濄濇 濄濈 濄濉 濄濊 濄濋 濄濌 濅濃 濅濄 濅濅 濅濆 濅濇 濅濈 濅濉 濅濊 濅濋 濅濌 濆濃 濆濄 濆濅 濆濆 濆濇 濆濈 濆濉 濆濊 濆濋 濆濌 濇濃 濇濄 濇濅

澺濩濢濗濨濝濣濢澔澽濢濘濙濬

Figure 10. Performance breakdown of VGG-16 and ResNet-18 with ImageNet.

channels which is always several hundreds in our case,
the communication shows a persistent increase. Second, the
increase for 20-th, 30-th, 32-th, 34-th, 35-th, 36-th, 38-th
functions is more steep since these places either involve
bypass connection which needs double computation of our
composite module, or have maximum of output channel
which results in maximum number of ciphertext to be
transmitted.

Furthermore, we look at the performance breakdown
of networks with ImageNet. As for the VGG-16 shown in
Figure 10(a), the communication variation changes among
FIT-online, FIT-offline, and [17], compared with that using
CIFAR10. The main reason is due to increase of input
scale from CIFAR10 to ImageNet, which makes our network
adaptation for the five MaxPool functions, together with the
composite computation, benefits a lot from smaller input
size of subsequent ReLU, while [17] involves much larger
data scale to get corresponding ReLU and Conv. As for
the ResNet-18 in Figure 10(b), a similar communication
variation is also observed while the reason is not due to
network adaptation for MaxPool functions but due to strided
convolution and the relatively pure stake of Conv and ReLU.

First, the strided convolution leads to a series of decomposed
convolution in [17], which involves a series calls of indi-
vidual Conv computation. Although the data scale of such
decomposed convolution is smaller compared to the original
one, the large input size limits the computational benefit. In
contrast, FIT is naturally suitable for strided convolution
with less computation. Second, the large-size input itself
obviously increases the cost for computing each function
in [17], while FIT’s cost, especially the communication
overhead, is not highly sensitive with input scale, but with
the constant number of output channels, which helps to
mitigate the cost of in both online and offline phases. Similar
observations are found over VGG-19 and ResNet-34 as
shown in Figure 11 and Figure 12.

Finally, as for the performance breakdown over much
deeper networks DenseNet-161 and DenseNet-169, as
demonstrated in Figure 13 and Figure 14, FIT always keeps
its performance advantage at online phase with respect to
both computation and communication. While FIT needs
more offline communication at bottleneck layers such as the
communication cost for the 226-th function from DenseNet-
161 and the one for the 210-th function from DenseNet-169

4822

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

澻濴澼澳濩濚濚激濄濌澳瀊濼瀇濻澳濖濜濙濔濥濄濃

濃

濄濃濃濃

濅濃濃濃

濆濃濃濃

濇濃濃濃

濈濃濃濃

濉濃濃濃

濄 濅 濆 濇 濈 濉 濊 濋 濌 濄濃 濄濄 濄濅 濄濆 濄濇 濄濈 濄濉 濄濊 濄濋 濄濌 濅濃 濅濄 濅濅 濅濆 濅濇 濅濈 濅濉 濅濊 濅濋 濅濌 濆濃 濆濄 濆濅 濆濆 濆濇 濆濈 濆濉 濆濊 濆濋 濆濌 濇濃 濇濄 濇濅 濇濆 濇濇 濇濈 濇濉 濇濊 濇濋 濇濌 濈濃 濈濄 濈濅 濈濆 濈濇 濈濈 濈濉 濈濊 濈濋 濈濌 濉濃 濉濄 濉濅 濉濆 濉濇 濉濈 濉濉 濉濊 濉濋 濉濌 濊濃 濊濄 濊濅 濊濆濔
濶濶
瀈瀀

瀈濿
濴瀇
濸濷

澳濖
瀂瀀

瀀
濁澳澻
濠
濕澼

濙瀈瀁濶瀇濼瀂瀁澳濜瀁濷濸瀋

澻濵澼澳濥濸瀆濡濸瀇激濆濇澳瀊濼瀇濻澳濖濜濙濔濥濄濃濆

濃

濄濃濃濃濃

濅濃濃濃濃

濆濃濃濃濃

濇濃濃濃濃

濈濃濃濃濃

濉濃濃濃濃

濊濃濃濃濃

濋濃濃濃濃

濌濃濃濃濃

濄 濅 濆 濇 濈 濉 濊 濋 濌 濄濃 濄濄 濄濅 濄濆 濄濇 濄濈 濄濉 濄濊 濄濋 濄濌 濅濃 濅濄 濅濅 濅濆 濅濇 濅濈 濅濉 濅濊 濅濋 濅濌 濆濃 濆濄 濆濅 濆濆 濆濇 濆濈 濆濉 濆濊 濆濋 濆濌 濇濃

濔
濶濶
瀈瀀

瀈濿
濴瀇
濸濷

澳濧
濼瀀

濸澳
澻瀀

瀆澼

濙瀈瀁濶瀇濼瀂瀁澳濜瀁濷濸瀋

濨瀁濼瀇瀌激瀂瀁濿濼瀁濸 濨瀁濼瀇瀌激瀂濹濹濿濼瀁濸 濖瀅瀌瀃濧濙濿瀂瀊濅

瀇瀇

濃

濅濃濃

濇濃濃

濉濃濃

濋濃濃

濄濃濃濃

濄濅濃濃

濄濇濃濃

濄濉濃濃

濄濋濃濃

濄 濅 濆 濇 濈 濉 濊 濋 濌 濄濃 濄濄 濄濅 濄濆 濄濇 濄濈 濄濉 濄濊 濄濋 濄濌 濅濃 濅濄 濅濅 濅濆 濅濇 濅濈 濅濉 濅濊 濅濋 濅濌 濆濃 濆濄 濆濅 濆濆 濆濇 濆濈 濆濉 濆濊 濆濋 濆濌 濇濃

濔
濶濶
瀈瀀

瀈濿
濴瀇
濸濷

澳濖
瀂瀀

瀀
濁澳澻
濠
濕澼

濙瀈瀁濶瀇濼瀂瀁澳濜瀁濷濸瀋

濨瀁濼瀇瀌激瀂瀁濿濼瀁濸 濨瀁濼瀇瀌激瀂濹濹濿濼瀁濸 濖瀅瀌瀃濧濙濿瀂瀊濅

濈濃濃濃

澻濵澼 濥濸瀆濡濸瀇瀇激濆濇 瀊濼瀇濻 濖濜濙濔濥濄濃濆瀇

濃

濅濃濃濃濃

濇濃濃濃濃

濉濃濃濃濃

濋濃濃濃濃

濄濃濃濃濃濃

濄濅濃濃濃濃

濄濇濃濃濃濃

濔
濶濶
瀈瀀

瀈濿
濴瀇
濸濷

澳濧
濼瀀

濸澳
澻瀀

瀆澼 濨瀁濼瀇瀌激瀂瀁濿濼瀁濸 濨瀁濼瀇瀌激瀂濹濹濿濼瀁濸 濖瀅瀌瀃濧濙濿瀂瀊濅

濙濜濧激瀂瀁濿濼瀁濸 濙濜濧激瀂濹濹濿濼瀁濸 濙濜濧激瀂瀁濿濼瀁濸 濙濜濧激瀂濹濹濿濼瀁濸

濙濜濧激瀂瀁濿濼瀁濸 濙濜濧激瀂濹濹濿濼瀁濸

Figure 11. Performance Breakdown of VGG-19 and ResNet-34 with CIFAR10.

濃

濈濃濃濃濃濃

濄濃濃濃濃濃濃

濄濈濃濃濃濃濃

濅濃濃濃濃濃濃

濅濈濃濃濃濃濃

濆濃濃濃濃濃濃

濄 濅 濆 濇 濈 濉 濊 濋 濌 濄濃 濄濄 濄濅 濄濆 濄濇 濄濈 濄濉 濄濊 濄濋 濄濌 濅濃 濅濄 濅濅 濅濆 濅濇 濅濈 濅濉 濅濊 濅濋 濅濌 濆濃 濆濄 濆濅 濆濆 濆濇 濆濈 濆濉 濆濊 濆濋 濆濌 濇濃 濇濄 濇濅

濔
濶濶
瀈瀀

瀈濿
濴瀇
濸濷

澳濧
濼瀀

濸澳
澻瀀

瀆澼

濙瀈瀁濶瀇濼瀂瀁澳濜瀁濷濸瀋

濨瀁濼瀇瀌激瀂瀁濿濼瀁濸 濨瀁濼瀇瀌激瀂濹濹濿濼瀁濸 濖瀅瀌瀃濧濙濿瀂瀊濅

濃

濅濃濃濃

濇濃濃濃

濉濃濃濃

濋濃濃濃

濄濃濃濃濃

濄濅濃濃濃

濄濇濃濃濃

濄濉濃濃濃

濄濋濃濃濃

濅濃濃濃濃

濄 濅 濆 濇 濈 濉 濊 濋 濌 濄濃 濄濄 濄濅 濄濆 濄濇 濄濈 濄濉 濄濊 濄濋 濄濌 濅濃 濅濄 濅濅 濅濆 濅濇 濅濈 濅濉 濅濊 濅濋 濅濌 濆濃 濆濄 濆濅 濆濆 濆濇 濆濈 濆濉 濆濊 濆濋 濆濌 濇濃 濇濄 濇濅

濔
濶濶
瀈瀀

瀈濿
濴瀇
濸濷

澳濖
瀂瀀

瀀
濁澳澻
濠
濕澼

濙瀈瀁濶瀇濼瀂瀁澳濜瀁濷濸瀋

濨瀁濼瀇瀌激瀂瀁濿濼瀁濸 濨瀁濼瀇瀌激瀂濹濹濿濼瀁濸 濖瀅瀌瀃濧濙濿瀂瀊濅

澻濴澼澳濩濚濚激濄濌澳瀊濼瀇濻澳濜瀀濴濺濸濡濸瀇

澻濵澼澳濥濸瀆濡濸瀇激濆濇澳瀊濼瀇濻澳濜瀀濴濺濸濡濸瀇澻濵澼 濥濸瀆濡濸瀇 濇 瀊濼瀇濻 濜瀀濴濺濸濡濸瀇濆濇濇

濃

濄濃濃濃濃濃

濅濃濃濃濃濃

濆濃濃濃濃濃

濇濃濃濃濃濃

濈濃濃濃濃濃

濉濃濃濃濃濃

濊濃濃濃濃濃

濋濃濃濃濃濃

濔
濶濶
瀈瀀

瀈濿
濴瀇
濸濷

澳濧
濼瀀

濸澳
澻瀀

瀆澼 濨瀁濼瀇瀌激瀂瀁濿濼瀁濸 濨瀁濼瀇瀌激瀂濹濹濿濼瀁濸 濖瀅瀌瀃濧濙濿瀂瀊濅

濃
濄濃濃濃
濅濃濃濃
濆濃濃濃
濇濃濃濃
濈濃濃濃
濉濃濃濃
濊濃濃濃
濋濃濃濃
濌濃濃濃

濄 濅 濆 濇 濈 濉 濊 濋 濌 濄濃 濄濄 濄濅 濄濆 濄濇 濄濈 濄濉 濄濊 濄濋 濄濌 濅濃 濅濄 濅濅 濅濆 濅濇 濅濈 濅濉 濅濊 濅濋 濅濌 濆濃 濆濄 濆濅 濆濆 濆濇 濆濈 濆濉 濆濊 濆濋 濆濌 濇濃 濇濄 濇濅 濇濆 濇濇 濇濈 濇濉 濇濊 濇濋 濇濌 濈濃 濈濄 濈濅 濈濆 濈濇 濈濈 濈濉 濈濊 濈濋 濈濌 濉濃 濉濄 濉濅 濉濆 濉濇 濉濈 濉濉 濉濊 濉濋 濉濌 濊濃 濊濄 濊濅 濊濆 濊濇

濔
濶濶
瀈瀀

瀈濿
濴瀇
濸濷

澳濖
瀂瀀

瀀
濁澳澻
濠
濕澼

濙瀈瀁濶瀇濼瀂瀁澳濜瀁濷濸瀋

濙濜濧激瀂瀁濿濼瀁濸 濙濜濧激瀂濹濹濿濼瀁濸
濙濜濧激瀂瀁濿濼瀁濸 濙濜濧激瀂濹濹濿濼瀁濸

濙濜濧激瀂瀁濿濼瀁濸 濙濜濧激瀂濹濹濿濼瀁濸

Figure 12. Performance Breakdown of VGG-19 and ResNet-34 with ImageNet.

4823

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

Ϭ
ϱϬ

ϬϬ
Ϭ

ϭϬ
ϬϬ

ϬϬ
ϭϱ

ϬϬ
ϬϬ

ϮϬ
ϬϬ

ϬϬ
Ϯϱ

ϬϬ
ϬϬ

ϯϬ
ϬϬ

ϬϬ
ϯϱ

ϬϬ
ϬϬ

ϰϬ
ϬϬ

ϬϬ
ϰϱ

ϬϬ
ϬϬ

ϱϬ
ϬϬ

ϬϬ

ϭ
ϱ
ϵ

ϭϯ
ϭϳ
Ϯϭ
Ϯϱ
Ϯϵ
ϯϯ
ϯϳ
ϰϭ
ϰϱ
ϰϵ
ϱϯ
ϱϳ
ϲϭ
ϲϱ
ϲϵ
ϳϯ
ϳϳ
ϴϭ
ϴϱ
ϴϵ
ϵϯ
ϵϳ

ϭϬϭ
ϭϬϱ
ϭϬϵ
ϭϭϯ
ϭϭϳ
ϭϮϭ
ϭϮϱ
ϭϮϵ
ϭϯϯ
ϭϯϳ
ϭϰϭ
ϭϰϱ
ϭϰϵ
ϭϱϯ
ϭϱϳ
ϭϲϭ
ϭϲϱ
ϭϲϵ
ϭϳϯ
ϭϳϳ
ϭϴϭ
ϭϴϱ
ϭϴϵ
ϭϵϯ
ϭϵϳ
ϮϬϭ
ϮϬϱ
ϮϬϵ
Ϯϭϯ
Ϯϭϳ
ϮϮϭ
ϮϮϱ
ϮϮϵ
Ϯϯϯ
Ϯϯϳ
Ϯϰϭ
Ϯϰϱ
Ϯϰϵ
Ϯϱϯ
Ϯϱϳ
Ϯϲϭ
Ϯϲϱ
Ϯϲϵ
Ϯϳϯ
Ϯϳϳ
Ϯϴϭ
Ϯϴϱ
Ϯϴϵ
Ϯϵϯ
Ϯϵϳ
ϯϬϭ
ϯϬϱ
ϯϬϵ
ϯϭϯ
ϯϭϳ
ϯϮϭ
ϯϮϱ

�ĐĐƵŵƵůĂƚĞĚ�dŝŵĞ�;ŵƐͿ
&/
dͲ
ŽŶ

ůŝŶ
Ğ

&/
dͲ
ŽĨ
Ĩůŝ
ŶĞ

�ƌ
ǇƉ

d&
ůŽ
ǁ
Ϯ

Ϭ

ϭϬ
ϬϬ

ϮϬ
ϬϬ

ϯϬ
ϬϬ

ϰϬ
ϬϬ

ϱϬ
ϬϬ

ϲϬ
ϬϬ

ϳϬ
ϬϬ

ϴϬ
ϬϬ

ϵϬ
ϬϬ

ϭ
ϱ
ϵ

ϭϯ
ϭϳ
Ϯϭ
Ϯϱ
Ϯϵ
ϯϯ
ϯϳ
ϰϭ
ϰϱ
ϰϵ
ϱϯ
ϱϳ
ϲϭ
ϲϱ
ϲϵ
ϳϯ
ϳϳ
ϴϭ
ϴϱ
ϴϵ
ϵϯ
ϵϳ

ϭϬϭ
ϭϬϱ
ϭϬϵ
ϭϭϯ
ϭϭϳ
ϭϮϭ
ϭϮϱ
ϭϮϵ
ϭϯϯ
ϭϯϳ
ϭϰϭ
ϭϰϱ
ϭϰϵ
ϭϱϯ
ϭϱϳ
ϭϲϭ
ϭϲϱ
ϭϲϵ
ϭϳϯ
ϭϳϳ
ϭϴϭ
ϭϴϱ
ϭϴϵ
ϭϵϯ
ϭϵϳ
ϮϬϭ
ϮϬϱ
ϮϬϵ
Ϯϭϯ
Ϯϭϳ
ϮϮϭ
ϮϮϱ
ϮϮϵ
Ϯϯϯ
Ϯϯϳ
Ϯϰϭ
Ϯϰϱ
Ϯϰϵ
Ϯϱϯ
Ϯϱϳ
Ϯϲϭ
Ϯϲϱ
Ϯϲϵ
Ϯϳϯ
Ϯϳϳ
Ϯϴϭ
Ϯϴϱ
Ϯϴϵ
Ϯϵϯ
Ϯϵϳ
ϯϬϭ
ϯϬϱ
ϯϬϵ
ϯϭϯ
ϯϭϳ
ϯϮϭ
ϯϮϱ

�ĐĐƵŵƵůĂƚĞĚ��Žŵŵ͘�;D�Ϳ

&Ƶ
ŶĐ

ƚŝŽ
Ŷ�
/Ŷ
ĚĞ

ǆ

Fi
gu

re
13

.P
er

fo
rm

an
ce

B
re

ak
do

w
n

of
D

en
se

N
et

-1
61

w
ith

C
IF

A
R

10
.

Ϭ

ϭϬ
ϬϬ

ϬϬ

ϮϬ
ϬϬ

ϬϬ

ϯϬ
ϬϬ

ϬϬ

ϰϬ
ϬϬ

ϬϬ

ϱϬ
ϬϬ

ϬϬ

ϲϬ
ϬϬ

ϬϬ

ϭ
ϱ
ϵ

ϭϯ
ϭϳ
Ϯϭ
Ϯϱ
Ϯϵ
ϯϯ
ϯϳ
ϰϭ
ϰϱ
ϰϵ
ϱϯ
ϱϳ
ϲϭ
ϲϱ
ϲϵ
ϳϯ
ϳϳ
ϴϭ
ϴϱ
ϴϵ
ϵϯ
ϵϳ

ϭϬϭ
ϭϬϱ
ϭϬϵ
ϭϭϯ
ϭϭϳ
ϭϮϭ
ϭϮϱ
ϭϮϵ
ϭϯϯ
ϭϯϳ
ϭϰϭ
ϭϰϱ
ϭϰϵ
ϭϱϯ
ϭϱϳ
ϭϲϭ
ϭϲϱ
ϭϲϵ
ϭϳϯ
ϭϳϳ
ϭϴϭ
ϭϴϱ
ϭϴϵ
ϭϵϯ
ϭϵϳ
ϮϬϭ
ϮϬϱ
ϮϬϵ
Ϯϭϯ
Ϯϭϳ
ϮϮϭ
ϮϮϱ
ϮϮϵ
Ϯϯϯ
Ϯϯϳ
Ϯϰϭ
Ϯϰϱ
Ϯϰϵ
Ϯϱϯ
Ϯϱϳ
Ϯϲϭ
Ϯϲϱ
Ϯϲϵ
Ϯϳϯ
Ϯϳϳ
Ϯϴϭ
Ϯϴϱ
Ϯϴϵ
Ϯϵϯ
Ϯϵϳ
ϯϬϭ
ϯϬϱ
ϯϬϵ
ϯϭϯ
ϯϭϳ
ϯϮϭ
ϯϮϱ
ϯϮϵ
ϯϯϯ
ϯϯϳ
ϯϰϭ

�ĐĐƵŵƵůĂƚĞĚ�dŝŵĞ�;ŵƐͿ

&/
dͲ
ŽŶ

ůŝŶ
Ğ

&/
dͲ
ŽĨ
Ĩůŝ
ŶĞ

�ƌ
ǇƉ

d&
ůŽ
ǁ
Ϯ

Ϭ

ϭϬ
ϬϬ

ϮϬ
ϬϬ

ϯϬ
ϬϬ

ϰϬ
ϬϬ

ϱϬ
ϬϬ

ϲϬ
ϬϬ

ϳϬ
ϬϬ

ϭ
ϱ
ϵ

ϭϯ
ϭϳ
Ϯϭ
Ϯϱ
Ϯϵ
ϯϯ
ϯϳ
ϰϭ
ϰϱ
ϰϵ
ϱϯ
ϱϳ
ϲϭ
ϲϱ
ϲϵ
ϳϯ
ϳϳ
ϴϭ
ϴϱ
ϴϵ
ϵϯ
ϵϳ

ϭϬϭ
ϭϬϱ
ϭϬϵ
ϭϭϯ
ϭϭϳ
ϭϮϭ
ϭϮϱ
ϭϮϵ
ϭϯϯ
ϭϯϳ
ϭϰϭ
ϭϰϱ
ϭϰϵ
ϭϱϯ
ϭϱϳ
ϭϲϭ
ϭϲϱ
ϭϲϵ
ϭϳϯ
ϭϳϳ
ϭϴϭ
ϭϴϱ
ϭϴϵ
ϭϵϯ
ϭϵϳ
ϮϬϭ
ϮϬϱ
ϮϬϵ
Ϯϭϯ
Ϯϭϳ
ϮϮϭ
ϮϮϱ
ϮϮϵ
Ϯϯϯ
Ϯϯϳ
Ϯϰϭ
Ϯϰϱ
Ϯϰϵ
Ϯϱϯ
Ϯϱϳ
Ϯϲϭ
Ϯϲϱ
Ϯϲϵ
Ϯϳϯ
Ϯϳϳ
Ϯϴϭ
Ϯϴϱ
Ϯϴϵ
Ϯϵϯ
Ϯϵϳ
ϯϬϭ
ϯϬϱ
ϯϬϵ
ϯϭϯ
ϯϭϳ
ϯϮϭ
ϯϮϱ
ϯϮϵ
ϯϯϯ
ϯϯϳ
ϯϰϭ

�ĐĐƵŵƵůĂƚĞĚ��Žŵŵ͘�;D�Ϳ

&Ƶ
ŶĐ

ƚŝŽ
Ŷ�
/Ŷ
ĚĞ

ǆ

Fi
gu

re
14

.P
er

fo
rm

an
ce

B
re

ak
do

w
n

of
D

en
se

N
et

-1
69

w
ith

C
IF

A
R

10
.

4824

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

where the input channels and output channels are larger, the
input-independent data transmission provides a mitigation
for FIT’s adaptability of privacy-preserving computation
towards deeper networks.

Overall, the computation module of FIT, together with
its network adaptation strategies, are applicable for vari-
ous neural models with various input scales. Furthermore,
the input-channel-dependent online computation makes FIT
more appealing to be applied in large-size model with large-
scale input as indicated in Table 2. This is because the
increased number of output channels namely larger Co leads
to more speedup, while decreased number of channels in a
ciphertext namely smaller Cn has negligible impact on the
efficiency harvest.

5. Conclusion and Discussion

In this paper, we have looked back to the necessity of the
function-wise methodology in state-of-the-art frameworks,
and have initialized the formal investigation towards com-
puting composite function for efficient privacy-preserving
MLaaS. Under such fresh perspective, we have proposed
FIT which features by a computation module for composite
function with a series of joint optimization strategies. FIT
remodels the process from function wise to allied coun-
terpart that is from one function’s input associated with
the start of expensive overhead to another function’s output
enabling effective circumvention of unnecessary cost within
the procedure. Such methodology has resulted in significant
reduction of expensive overhead at running time. Theoret-
ically, FIT not only eliminates the most expensive crypto
operations without invoking extra encryption enabler, but
also makes the running-time crypto complexity independent
of filter size. Experimentally, FIT has demonstrated tens
of times speedup over various function dimensions from
modern networks, and 4.5× to 35.5× speedup for the total
computation time when plugged in neural networks with
data from small-scale MNIST to large-scale ImageNet.

While we have mainly investigated the performance
of FIT over various CNN models with ReLU activation
function, FIT can be readily integrated into other complex
network frameworks as well as other activation functions.
Specifically, in the popular network structures such as trans-
formers, two of the main blocks are attention block and
feed-forward block. While FIT is directly applicable to
feed-forward block where the form is in fw(fr(fw(x))), the
attention block is in form of fw(fs(fw(x))) where fs(·) is
the softmax function and it could give us an opportunity
to jointly optimize that block as long as the sum of expo-
nential value in fs(·) can be transformed into comparison-
based function. This is because FIT is directly applica-
ble to comparison-based functions such as leakyReLU and
piecewise-linear activation functions which are in form of
Eq. (1). On the other hand, recent work [48] has shown
that exponential activation functions such as SiLU, GeLU,
and Mish can be approximated into piece-wise ones which
provide us promising chances to adapt FIT to more complex
activations as well as attention blocks in transformers.

Last but not least, although FIT is designed under semi-
honest adversaries, it is adaptable to address security against
a malicious adversary based on several existing techniques
such as the mix-and-check approach [49]. The basic idea
is that the client mixes the public samples with their own
samples to be queried as the inputs to jointly perform the
secure inference by calling FIT. If the server uses a low-
quality model or deviates from the protocol, the client can
easily identify it based on those public samples.

Acknowledgments

The research of Q. Zhang and T. Xiang is supported
by the National Key R&D Program of China under Grant
2022YFB3103500, the National Natural Science Foun-
dation of China under Grants 62302067, 62072062 and
U20A20176, China Postdoctoral Science Foundation un-
der Grant 2023M730407, the Fundamental Research Funds
for the Central Universities under Grant 2022CDJXY-020,
CCF-AFSG Research Fund under Grant RF20220009, and
the Technology Innovation and Application Development
Key Project supported by Chongqing Science and Technol-
ogy Bureau under Grant CSTB2022TIAD-KPX0178.

References

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, pp. 1097–1105, 2012.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9.

[6] Y. Zhang, J. Qin, D. S. Park, W. Han, C.-C. Chiu, R. Pang, Q. V.
Le, and Y. Wu, “Pushing the limits of semi-supervised learning
for automatic speech recognition,” arXiv preprint arXiv:2010.10504,
2020.

[7] S. Sohangir, D. Wang, A. Pomeranets, and T. M. Khoshgoftaar, “Big
data: Deep learning for financial sentiment analysis,” Journal of Big
Data, vol. 5, no. 1, pp. 1–25, 2018.

[8] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya,
R. Wald, and E. Muharemagic, “Deep learning applications and
challenges in big data analytics,” Journal of big data, vol. 2, no. 1,
pp. 1–21, 2015.

[9] H. C. Assistance, “Summary of the HIPAA privacy rule,” Office for
Civil Rights, 2003.

[10] M. Goddard, “The EU general data protection regulation (GDPR):
European regulation that has a global impact,” International Journal
of Market Research, vol. 59, no. 6, pp. 703–705, 2017.

4825

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

[11] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig,
and J. Wernsing, “Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy,” in Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, pp. 201–210.

[12] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Secu-
rity, 2017, pp. 619–631.

[13] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A low latency framework for secure neural network inference,” in
27th USENIX Security Symposium (USENIX Security 18), 2018, pp.
1651–1669.

[14] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 19–38.

[15] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and
F. Koushanfar, “XONN: Xnor-based oblivious deep neural network
inference,” in 28th USENIX Security Symposium (USENIX Security
19), 2019, pp. 1501–1518.

[16] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“DELPHI: A cryptographic inference service for neural networks,” in
29th USENIX Security Symposium (USENIX Security 20), 2020, pp.
2505–2522.

[17] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow2: Practical 2-party secure inference,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 325–342.

[18] Q. Zhang, C. Xin, and H. Wu, “GALA: Greedy computation for linear
algebra in privacy-preserved neural networks,” in ISOC Network and
Distributed System Security Symposium, 2021.

[19] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0:
Improved mixed-protocol secure two-party computation,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021.

[20] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “CRYPTGPU: Fast
privacy-preserving machine learning on the gpu,” arXiv preprint
arXiv:2104.10949, 2021.

[21] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schnei-
der, and F. Koushanfar, “Chameleon: A hybrid secure computation
framework for machine learning applications,” in Proceedings of the
2018 on Asia Conference on Computer and Communications Security,
2018, pp. 707–721.

[22] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: Scalable
provably-secure deep learning,” in Proceedings of the 55th Annual
Design Automation Conference, 2018, pp. 1–6.

[23] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework
for machine learning,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp.
35–52.

[24] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: a mixed-protocol machine learning framework for private
inference,” in Proceedings of the 15th International Conference on
Availability, Reliability and Security, 2020, pp. 1–10.

[25] D. Demmler, T. Schneider, and M. Zohner, “ABY-a framework for
efficient mixed-protocol secure two-party computation.” in NDSS,
2015.

[26] S. U. Hussain, M. Javaheripi, M. Samragh, and F. Koushanfar,
“Coinn: Crypto/ml codesign for oblivious inference via neural net-
works,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 3266–3281.

[27] Z. Huang, W.-j. Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast
secure two-party deep neural network inference,” in 31th USENIX
Security Symposium (USENIX Security 22), 2022.

[28] Z. Brakerski, “Fully homomorphic encryption without modulus
switching from classical gapsvp,” in Annual Cryptology Conference.
Springer, 2012, pp. 868–886.

[29] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption.” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

[30] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryp-
tion for arithmetic of approximate numbers,” in International Confer-
ence on the Theory and Application of Cryptology and Information
Security. Springer, 2017, pp. 409–437.

[31] G. Brassard, C. Crépeau, and J.-M. Robert, “All-or-nothing disclosure
of secrets,” in Conference on the Theory and Application of Crypto-
graphic Techniques. Springer, 1986, pp. 234–238.

[32] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[33] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in Proceedings of the 2012 ACM conference on Computer
and communications security, 2012, pp. 784–796.

[34] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986). IEEE,
1986, pp. 162–167.

[35] Q. Zhang, T. Xiang, C. Xin, B. Chen, and H. Wu, “Joint
linear and nonlinear computation across functions for effi-
cient privacy-preserving neural network inference,” arXiv preprint
arXiv:2209.01637, 2022.

[36] S. Halevi and V. Shoup, “Algorithms in helib,” in CRYPTO, 2014,
pp. 554–571.

[37] Y. Lindell, “How to simulate it - a tutorial on the simulation proof
technique,” Cryptology ePrint Archive, Report 2016/046, 2016.

[38] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM interna-
tional conference on Multimedia, 2014, pp. 675–678.

[39] S. Li, K. Xue, B. Zhu, C. Ding, X. Gao, D. Wei, and T. Wan,
“Falcon: A fourier transform based approach for fast and secure
convolutional neural network predictions,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 8705–8714.

[40] X. Liu, Y. Zheng, X. Yuan, and X. Yi, “Securely outsourcing neural
network inference to the cloud with lightweight techniques,” IEEE
Transactions on Dependable and Secure Computing, 2022.

[41] https://github.com/tensorflow/tensorflow/issues/3180, 2022.

[42] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework
for fast privacy-preserving computations,” in European Symposium
on Research in Computer Security. Springer, 2008, pp. 192–206.

[43] “MNIST,” http://yann.lecun.com/exdb/mnist/, 2021.

[44] S. An, M. Lee, S. Park, H. Yang, and J. So, “An ensemble of simple
convolutional neural network models for mnist digit recognition,”
2020.

[45] “CIFAR10,” https://www.cs.toronto.edu/ kriz/cifar.html, 2021.

[46] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA,
2009, pp. 248–255.

[47] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” arXiv:1608.06993, 2018.

[48] M. Islam, S. S. Arora, R. Chatterjee, P. Rindal, and M. Shirvanian,
“Compact: Approximating complex activation functions for secure
computation,” CoRR, vol. abs/2309.04664, 2023.

[49] C. Dong, J. Weng, J.-N. Liu, Y. Zhang, Y. Tong, A. Yang, Y. Cheng,
and S. Hu, “Fusion: Efficient and secure inference resilient to mali-
cious servers,” in Proceedings of the 2023 Network and Distributed
System Security (NDSS) Symposium, 2023, pp. 1–18.

4826

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

[50] https://github.com/huyvnphan/PyTorch CIFAR10, 2023.

[51] https://pytorch.org/vision/stable/models.html, 2023.

[52] https://github.com/aaron-xichen/pytorch-playground/, 2023.

Appendix A.
Model Configurations

The M1 model is trained using the M7 architecture
in [44]. It contains four convolutions each of which is
followed by batch normalization and ReLU, and one fully
connection. The Adam optimizer is adopted with weight
decay and learning rate equal to 0.0001 and 0.01, re-
spectively. Meanwhile, the learning rate is lowered by 10
times at epoch 60 and 100. The batch size is set to 64
and the number of epochs is 200. As for the models
with CIFAR10, we utilize the pretrained models vgg16 bn,
vgg19 bn, resnet18, resnet34, densenet161 and densenet169
from [50]. As for the models with ImageNet, we use the
pretrained models vgg16 bn, vgg19, resnet18, resnet34 from
torchvision [51]. We quantize the above models based on
methodology from [52] to deal with the limited plaintext
space in FIT and the model accuracy is almost the same
compared to the baseline as shown in Table 5.

TABLE 5. COMPARISON OF ACCURACY BEFORE AND AFTER
QUANTIZATION (BEFORE IN % /AFTER IN %).

Models Datasets
CIFAR10 ImageNet MNIST

M1 - - 99.4/99.5
VGG-16 94.0/93.9 71.8/71.8 -
VGG-19 93.9/93.9 70.9/70.9 -

ResNet-18 93.0/93.0 68.4/68.4 -
ResNet-34 93.3/93.3 72.3/72.3 -

DenseNet-161 94.0/93.9 - -
DenseNet-169 94.0/93.9 - -

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

In this paper, the authors remodel the computation pro-
cess of the same function in mainstream works to the allied
counterpart, from one function’s input associated with the
start of expensive overhead to another function’s output,
effectively circumventing unnecessary costs within the pro-
cedure.

B.2. Scientific Contributions

• Addresses a Long-Known Issue.
• Provides a Valuable Step Forward in an Established

Field.

B.3. Reasons for Acceptance

1) The authors have proposed an interesting frame-
work to improve the computational efficiency of
privacy-preserving MLaaS. This framework also
reduces the total computational cost compared with
SOTA due to its unique design featuring joint op-
timization of composite functions.

2) In addition to the performance increase, this frame-
work eliminates all rotations and has a running time
independent of the convolutional layer filter size.

4827

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:07:43 UTC from IEEE Xplore. Restrictions apply.

