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Abstract—Machine Learning as a Service (MLaaS) has paved
the way for numerous applications for resource-limited clients,
such as IoT/mobile users. However, it raises a great challenge
for privacy, including both the data privacy of clients and
model privacy of the server. While there have been extensive
studies on privacy-preserving MLaaS, a direct adoption of
current frameworks leads to intractable efficiency bottleneck
for MLaaS with resource constrained clients. In this paper, we
focus on MLaaS with resource constrained clients and propose
a novel privacy-preserving framework called SPOT to address a
unique challenge, the memory constraint of such clients, such as
IoT/mobile devices, which results in significant computation stalls
at the server in privacy-preserving MLaaS. We develop 1) a novel
structure patching scheme to enable independent computations
for sequential inputs at the server to eliminate the computation
stall, and 2) a patch overlap tweaking scheme to minimize
overlapped data between adjacent patches and thus enable more
efficient computation with flexible cryptographic parameters.
SPOT demonstrates significant improvement on computation
efficiency for MLaaS with IoT/mobile clients. Compared with the
state-of-the-art framework for privacy-preserving MLaaS, SPOT
achieves up to 2x memory utilization boost and a speedup up
to 3x on computation time for modern neural networks such
as ResNet and VGG.

Index Terms—Mobile Computing, Privacy-preserving, Ma-
chine Learning as a Service, Structure Patching, Homomorphic
Encryption.

[. INTRODUCTION

The prevalence and widespread adoption of Deep Learn-
ing (DL) techniques are evident in various domains, e.g.,
telehealth [1], [2], where patients can conveniently upload
their pathology images for diagnosis. However, designing and
training deep neural network models usually require substan-
tial expertise in DL and significant data and computational
resources, posing technical barriers for most end-users. To
address such challenges, cloud providers have introduced
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MLaaS [3], as illustrated in Fig. 1, where a proprietary DL
model is well-trained and hosted on the cloud, and clients only
need to submit queries (i.e., inference requests) to the cloud
and receive the inference results (i.e., model outputs) through
a web portal.
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Fig. 1. System architecture of MLaaS with mobile clients.

While MLaaS is a valuable tool for efficiency and produc-
tivity, privacy has emerged as a fundamental concern for both
clients and servers. From the clients’ standpoint, there is an
urgent need to safeguard their sensitive information, such as a
patient’s medical records, against unauthorized access by any
entity, including the server. On the other hand, servers strive
to prevent the disclosure of proprietary model parameters,
developed through significant investments, to clients. Legal
frameworks such as the General Data Protection Regulation
(GDPR) in the European Union and the Personal Data Protec-
tion Act (PDPA) in Singapore mandate the protection of data
from unauthorized disclosure. The Health Insurance Portability
and Accountability Act (HIPAA) specifically removes sensi-
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tive information to protect clients’ privacy. While these efforts
are instrumental for privacy protection, they may potentially
sacrifice valuable information, thus degrading performance.
Moreover, recent studies have show that even under the pro-
tection of these regulations, attackers may still infer privacy-
sensitive data by exploiting available plaintext information [4].
Consequently, there is a pressing requirement to establish
secure mechanisms that guarantee the confidentiality of both
client’s data and server’s model parameters in MLaaS.

At the same time, the ubiquity of embedded devices
and smartphones makes them ideal devices for end-users in
MLaaS. For example, there was over a 101 billion USD market
in 2022 and is expected to hit around USD 178.33 billion by
2032 for the embedded system market [5]. A 2020 survey by
Doximity also showed that 45% of patients use mobile phones
for telehealth services [6]. Various MLaaS applications are
often involved with IoT clients (e.g., wearable devices), such
as surveillance object detection [7], gesture recognition [8],
user verification [9], human activity monitoring [10], and
medical health monitoring [11]. To this end, we study MLaaS
with IoT/mobile clients in this paper and aim to address the
unique challenges raised by IoT/mobile clients in privacy-
preserving MLaaS.

A. Our Contributions

To tackle the challenges posed by mobile clients in the
context of privacy-preserving MLaaS, we introduce an inno-
vative scheme called SPOT (Structure Patching and Overlap
Tweaking). This approach focuses on optimizing the convolu-
tion computation, which is widely adopted as a key module
in a wide range of modern deep learning models. It not only
addresses the challenges of linear computation stall arising
from the memory constraints but also enables the utilization
of smaller-parameter HE operations tailored for small-footprint
clients, as in Sec. II-F. This, in turn, leads to a reduction in
computing time under a guaranteed security level.

As illustrated in Fig. 2, SPOT splices the input of linear
functions into a number of patches, each of which consists of
a portion of all channels. It can adapt the patch size (i.e., length
and width) to fit the slot capacity of the HE ciphertext. This
is in a sharp contrast to the traditional channel-wise packing
in current frameworks, where an entire channel or multiple
channels must be packed into a ciphertext. The benefit of our
design lies in two folds. First, the convolution-independent
nature between the patches enables parallel pipelining using
multi-threading, thus mitigating the problem of linear compu-
tation stall and achieving high computation efficiency. Second,
the ability of flexibly adapting patch size enables SPOT to
choose smaller-parameter HE to calculate the linear function,
thus further reducing the computation time.

While the proposed patching scheme is promising, it re-
mains nontrivial to implement for achieving optimal perfor-
mance. First, the computation procedures (such as convolu-
tion) must be revamped to effectively leverage the patches
to obtain correct results. This will be further discussed in
Sec. III-A. Second, the patches must overlap with each other
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Fig. 2. Channel-wise HE packing versus structure patching based HE packing.

to perform the correct convolution computation, resulting in
additional overhead. To mitigate such a problem, we pro-
pose tweaking the patch overlaps by carefully crafting a
small number of auxiliary ciphertexts that encrypt overlapped
data between patches, aiming to reduce the overlap between
patches and decrease the cryptographic parameters used for
ciphertexts, thus improving the efficiency of the involved HE
computation. The details will be discussed in Sec. III-B

We implement SPOT based on the SEAL library for con-
volution computation and SCI-Nonlinear module from
CrypTFlow2 for the non-linear computation such as ReLU.
We conduct extensive experiments on different small-footprint
devices over various neural networks such as ResNet and
VGG. SPOT demonstrates up to 3x speedup in inference
time and 2x improvements in memory utilization compared
to state-of-the-art frameworks.

The rest of the paper is organized as follows. Section II
introduces the system framework and cryptographic tools
adopted in SPOT. The details of SPOT are elaborated in Sec-
tion III. The experimental results are illustrated in Section I'V.
Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORKS

Notation. We use C; and C, to denote the number of
input and output channels, respectively. C,, is the number
of channels packed in a single ciphertext. (A), denotes the
additive secret share of message A for party P {0, 1}. [A]. is
the ciphertext of A. S’ is the number of slots in a ciphertext
under given cryptographic parameters. D is the polynomial
modulus degree of HE.

A. System Framework

We focus on the MLaaS system as depicted in Fig. 1.
Specifically, the client C possesses sensitive data, such as
pathology images of a patient, while the server S holds a
well-trained DL model and outputs the model prediction given
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the client’s input. As discussed in Section I, privacy concerns
arise during the interaction between C and S. Specifically, the
client attempts to prevent any third party, including the server,
from accessing its private data, while the server is unwilling
to disclose its proprietary model parameters, such as weights
and kernels, to the client. As such, privacy-preserving MLaaS
aims to ensure that the client’s input remains fully protected
from the server, while the server’s model parameters keep
completely concealed from the client. Although the computing
efficiency acts as a bottleneck for practical applications of
privacy-preserving MLaaS and a series of works have made
encouraging progress for efficiency enhancement with pow-
erful client, we have observed two key challenges namely
memory constraints and cryptographic parameter selection for
mobile clients, as pointed out in Section II-F. In this paper, we
aim to address these challenges through the SPOT framework.

As for the proprietary model at S, we concentrate on
Convolutional Neural Networks (CNNs) that have exhibited
remarkable performance in various deep learning tasks [12].
Generally, a CNN includes a stack of layers to capture intricate
properties of the input data, such as the spatial relationships
among pixels within an image. A layer always contains linear
and non-linear functions. The linear functions include dot
product and convolution, while the non-linear ones contain
activation functions such as the Rectified Linear Unit (ReLU)
and pooling (e.g., max pooling and mean pooling). Since
the computation overhead for linear functions dominates the
overall cost for privacy-preserving MLaaS with mobile clients,
as discussed in Section II-F, our proposed SPOT addresses the
efficiency optimization for linear computation in the inference
process.

B. Packed Homomorphic Encryption

The Homomorphic Encryption (HE) is a class of crypto-
graphic primitives that allow linear computations on encrypted
data without decryption, and is primarily used to compute the
linear functions in privacy-preserving MLaaS [13]-[15]. Mod-
ern HE techniques [16], [17] are able to pack a vector of values
into one ciphertext, and perform HE operations in a Single-
Instruction-Multiple-Data (SIMD) manner [18] to amortize
operation cost. In this work, we adopt the SIMD-style BFV
scheme [16] to compute linear functions in CNNs. The main
HE operations include HE Multiplication (Mult), HE Addition
(Add), and HE Rotation (Rot). Mult performs multiplication
between a ciphertext [z]. and plaintext y, and produces the
ciphertext [z ©y]. = [r]. ©y where x = {xg, 21, -+ , 25 -1},
y = {yo,¥1, - ,Ys'—1}, and © is the element-wise multi-
plication between encrypted/plaintext vectors. Add conducts
the summation between a ciphertext [z]. and plaintext y
(or ciphertext [y].), and outputs [z + y]. = [z]. + y (or
[z +yle = [z]c + [y].) where + is the element-wise addition
between encrypted/plaintext vectors. Rot does cyclic rotation
of [ positions over ciphertext [z]. and yields [Z]. where
Z = {x,- - ,xs-1,%0,21—1}. The efficiency of HE oper-
ations depends on pre-determined cryptographic parameters
such as S’ and smaller cryptographic parameters enable faster

HE operations [19], [20]. Our proposed SPOT features with
a flexible adoption of small cryptographic parameters under
guaranteed security level to accelerate the linear computation
in CNNs.

C. Additive Secret Sharing

Given an original message m at party P € {0, 1}, one of the
two Additive Secret Shares (ASS) is constructed by uniformly
sampling randomness 7 and setting (m) , = r, while the other
share is formed as (m); p = m — r. To reconstruct the
message, one can simply add two shares m = (m) p+(m),_p.
In this work, we utilize ASS to share the encrypted output of
linear functions within CNNs to enable subsequent OT-based
computation for non-linear functions.

D. Threat Model

Similar to the previous works such as CrypTFlow2 [15],
GAZELLE [13], GALA [21] and Cheetah [22], SPOT follows
the two-party semi-honest threat model. To be more precise,
the client C' and the server S follow the protocol but attempt
to infer each other’s input, namely the client’s input data and
the server’s model parameters, during the inference process.
Our protocol, like CrypTFlow2, demonstrates the security
of network framework based on the cryptographic tool of
ideal/real security, in which the semantic security of PHE and
secret sharing scheme.

E. Deep Learning with Tiny Devices

On-device deep learning aims to enable efficient infer-
ence/training process given compact models at IoT/mobile
client [23]-[26]. Although it deals with model computation
under client’s resource limitation, straightforward application
to privacy-preserving scenarios encounters fundamental prob-
lems. On the one hand, releasing the model to IoT/mobile
client invades server’s data privacy for model parameters.
On the other hand, there is no direct solutions to tackle the
two unique challenges for privacy-preserving MLaaS with
IoT/mobile client, as in Section II-F. By structure patching and
overlap tweaking towards the computation process of linear
and non-linear functions in neural models, the proposed SPOT
enables efficient privacy-preserving inference with IoT/mobile
clients. It is worth mentioning that a Channel-By-Channel
Packing approach was introduced in [27]. It focuses on im-
proving the throughput and amortizing the expensive key-
switching of batch inference by packing multiple images of
same channel into single ciphertext in fully homomorphic
encryption scheme where the client is not involved in compu-
tation. It is based on different design compared with SPOT. It
does not address the computation stall issue caused by output
ciphertext dependency, which is the bottleneck in our IoT
device-based clients scenario. In addition, it does not consider
the speedup benefit of smaller cryptographic parameter while
SPOT can further improve its efficiency by more flexible
parameter selection.
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TABLE 1
MICROBENCHMARKS RUNTIME FOR CONVOLUTION LAYERS OF
DIFFERENT INPUT DATA SIZES (w X h) AND NUMBER OF INPUT/OUTPUT
FEATURE MAPS (C;, C). THE NUMBERS HIGHLIGHTED IN RED INDICATE
THE PERCENTAGE INCREASE OF THE RUNTIME BY THE MOBILE CLIENT
COMPARED TO THE DESKTOP COUNTERPART.

Conv size " . Mobile client
(wlh|C;]Co) Desktop client - - -

3 ciphertext 2 ciphertext 1 ciphertext
56|56|64|256 3.405s 5.141s(51.08%7) 6.01s(76.5%7) 7.797s(128.98%1)
2828128|512 7.243s 8.167s(12.75%1)  8.503s(17.39%1)  10.073s(39.07%1)
14(14(256(1024 21.814s 22.234s(1.92%7) 22.425(2.77%7) 23.07s(5.75%71)
7|7]512(2048 73.245s 73.476s(0.31%1)  73.497s(0.34%1) 73.95(0.89%1)

F. Challenges in Privacy-Preserving MLaaS with Tiny Clients

To address the privacy concerns of the client and pro-
tect the ML models of the server, several privacy-preserving
MLaaS frameworks have been proposed [14], [21], [28]-[30]
to employ cryptographic primitives such as Homomorphic
Encryption [16], [17], Garbled Circuits (GC) [31], Oblivious
Transfer (OT) [32], and Secret Sharing (SS) [33], in the
computation process of DL models, so that the client data
is encrypted and the server conducts computation in the
cryptographic domain. Among these cryptographic primitives,
HE is widely used for linear functions as it inherently supports
linear computation [16], [34], while SS and OT are commonly
used to compute nonlinear functions [28].

Observation 1: Memory Constraint of Mobile/loT
Clients. Despite significant progress in improving the com-
putation efficiency of privacy-preserving MLaaS, the existing
secure inference protocols assume that the client possesses
sufficient computation power. Our preliminary experiments
show that the computation efficiency drops significantly if the
client is an IoT/mobile device with limited memory capacity.
Specifically, we performed an evaluation of the convolution
layer, which is a primary building block of many modern
DL models, by using a desktop client versus a mobile client
(Nexus 6), and their CPUs’ clock speed are comparable
3.2GHz (AMD EPYC 7413) and 2.7GHz (Snapdragon 805),
respectively. However, the execution time of the mobile client
is approximately twice as long as that of the desktop counter-
part, as shown in Table I that compares the running time for
convolution layers with different sizes in ResNet.

Our careful analysis reveals that, given the memory con-
straint, a mobile client can only hold a limited number of
ciphertexts. For example, the average memory budget of a
typical Android device like Nexus 6 can be up to 100MB
for each running application. However, the size of HE public
and secret keys can be substantial, occupying approximately
80.23MB of memory. A ciphertext encrypted in polynomial
form is often around 0.7-1.5MB. Considering other necessary
memory consumption (usually around 10MB or more), the
device can only carry one ciphertext at one time, depending on
the fluctuation of other system memory usage. Notwithstand-
ing the IoT devices usually do not have strict memory limits
on each application, most IoT devices have much less memory
available than mobile phones, which is about 1-2MB of SRAM
for holding at most one ciphertext at one time. Fig. 3 illustrates
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Fig. 3. Channel-wise packing on desktop client versus mobile client.

TABLE II
TOTAL EXECUTION TIME ON RESNET-50 ON DESKTOP CLIENT VERSUS
10T CLIENT(DESKTOP CLIENT STATS ARE FROM [22]).

Desktop Client ToT Client
Model

CrypTFlow2  Cheetah (Speedup)  CrypTFlow2  Cheetah (Speedup)
ResNet50 295.7s 80.3s (260%) 428.2s 348.2s (20%)

the impact of memory constraints based on the state-of-the-
art frameworks such as CrypTFlow?2 [15] and Cheetah [22].
The desktop client, with its abundant memory resources, can
generate all input ciphertexts instantly and perform involved
computation by leveraging multi-threading [23], [35]. This
allows for seamless execution of subsequent Convolution and
ReLU operations with minimal additional delay. Similarly,
the corresponding decryption for several ciphertexts can be
processed by the desktop client at once. In contrast, the
mobile client, which is limited in terms of memory, has to
generate each input ciphertext sequentially, thus limiting the
efficiency of multi-threading since all of the ciphertexts are
needed to compute the linear function (e.g., convolution). We
name this problem as linear computation stall, which results
in a significant delay. Although a series of works [15], [22]
have been introduced to improve the execution speed, they
focus on powerful clients and their the speedup is significantly
decreased for a memory-constrained client. As shown in
Table II, the speedup of Cheetah over CrypTFlow?2 (two recent
approaches that are often considered as the state-of-the-art
in the literature) is reduced from 260% to only 20% when
switching from a desktop client to an IoT device.
Observation 2: Impact of Cryptographic Parameters Se-
lection. We break down the computation time into three parts,
shown in Table III: 1) client-HE operations, namely encryption
and decryption at the client; 2) server-HE operations, namely
HE addition, HE Multiplication, and HE Rotation at the server;
and 3) nonlinear or ReLU operations, namely the OT-based
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ReLU computation. The results are based on the assumption
that the IoT/mobile client holds only one ciphertext. As we
can see, the HE operations dominate the computation cost for
the whole layer. To accelerate the overall performance, it is
key to optimize the efficiency of HE operations.

An important feature of HE operations is that smaller
cryptographic parameters (e.g., a smaller number of slots in a
ciphertext) enable faster computation [19]. For example, given
the 128-bit security level, the cost of one HE operation using
the CKKS scheme (to be discussed in Sec 1I-B) with 4096 slots
can be 2 to 4 times faster than that with 8192 slots [16], [19].
Such speedup is particularly valuable for IoT/mobile clients
given its limited computation power. However, the state-of-
the-art approaches such as CrypTFlow2 [15] do not have
much flexibility on cryptographic parameters selection, e.g.,
the number of slots for the ciphertext cannot be smaller than
the size of one input channel, as their design packs one or
more channels into a ciphertext to optimize performance.

As the size of one input channel can be very large in various
practical applications, the state-of-the-art frameworks have to
choose large cryptographic parameters to guarantee a desired
security level. For instance, CrypTFlow?2 sets its number of
slots in BFV no smaller than 8192 [15]. Such constraint
on cryptographic parameter selection significantly limits the
flexibility of current frameworks. This limitation hinders the
ability to efficiently decrease the computation time of MLaaS
by incorporating smaller-parameter HE operations.

TABLE III
A BREAKDOWN OF COMPUTATION TIME OF THE CONVOLUTION LAYER
INTO THE THREE COMPONENTS OF MLAAS, TOGETHER WITH THE
PERCENTAGE AMONG THE TOTAL EXECUTION TIME. THE MOBILE CLIENT
MEMORY IS ASSUMED TO BE ABLE TO ACCOMMODATE ONE CIPHERTEXT.

Conv size(w|h|C;|Co) client-HE server-HE ReLU
56|56]64|256 5.376s(61%) 3.035(34%)  0.29s(3%)
28/28|128|512 2.688s(27%) 6.865(69%)  0.34s(3%)
14|14|256]1024 1.3445(6%) 21.065(93%)  0.24s(1%)
7|7|512|2048 0.672s(1%)  72.1s(98%)  0.18s(1%)

ITII. PROPOSED SPOT SCHEME

In this section, we present the SPOT framework which
supports secure inference with resource-constrained clients.
First, we introduce the channel-wise packing that is adopted
in the state-of-the-art privacy-preserving frameworks. Specif-
ically, C,, out of C; input feature maps are packed into one
ciphertext where C,, = |\S’"/HW |, S’ is the number of slots
in a ciphertext, and H and W are the height and width of a
feature map, respectively. Fig. 2 shows an example of channel-
wise packing with C; =4 and C,, = 2.

Channel-wise packing needs to pack each entire input
feature map into a ciphertext, which requires a large S’ for
a large input feature map, and thus makes it infeasible for
IoT/mobile clients with limited resources. The direct non-
overlap patching divides the original feature maps into a series
of patches, each with size H' x W' x C; where usually

H <« H and W <« W, as shown in Fig. 2. Then each
patch is encrypted into one ciphertext. However, as patches
must overlap with each other to make sure the following
convolution with respect to all patches is equivalent to the
result of the original convolution, such vanilla patching leads
to a fixed overlap size towards the kernel dimensions, which
disables the patching-based packing in layers with large C; to
adopt faster HE with small cryptographic parameters. To make
patching-based packing truly advantageous, we first propose in
Section I1I-A a structure-patching-based pipelining that packs
N patches into one ciphertext such that H'W'C;N ~ S’
by adapting H’, W', and N. Then the overlap tweaking
is designed in Section III-B to minimize the overlap size
and enable efficient computation with small cryptographic
parameters in layers with large C;.

A. Structure Patching Pipelining

Recall that we focus on privacy-preserving MLaaS with
IoT/mobile clients where the linear and non-linear functions
in CNN models are computed by packed HE and OT, respec-
tively. Based on the adaptive packing for patches, we intend
to compute the convolution efficiently by first performing the
proposed structure patching pipelining. For a lucid description,
we first present mainstream HE-based convolution based on
channel-wise packing namely Single Input and Single Output
(SISO), and Multiple Input Multiple Output (MIMO). Direct
application of SISO and MIMO to MLaaS with IoT/mobile
clients causes linear computation stall as discussed in Sec-
tion II-F. As such, we propose the structure-patching-based
computation to address this challenge.

SISO: SISO computes the convolution with C; = C, = 1.
Specifically, given a kernel with size kg X kys, each value
of the convolution output is the weighted sum of elements
in the input feature map that are within the kernel window.
For example, the first value of the convolution output in
Fig. 4 is obtained by placing the central element of kernel
K namely F5 at the first number of input feature map X
namely M1, and the resultant value is the sum of correspond-
ingly multiplied numbers in X within K’s window namely
(FSM1+F6M2+F8M4+F9MS5), so on and so forth. Therefore,
the value of the convolution output is the sum of at most
kikw ambient numbers of input feature map which are
weighted by kpky elements in kernel.

As such, we get the convolution output of SISO by rotating
[X]. multiple times, to produce kpmkw ciphertexts such that
the kg ky ambient numbers from [X]., which correspond to
the i-th value of the convolution output, are able to appear at
the i-th location of those kg ks rotated ciphertexts, as shown
in Fig. 4. By properly assigning the to-be-multiplied kernel
values for the number at the i-th location in each of those
kg kw ciphertexts, which results in kyky kernel plaintexts,
the convolution output is obtained by multiplying each of
kg kw pairs of rotated ciphertext and kernel plaintext, and then
summing these kg ky multiplied ciphertexts. For example, the
fifth value of the convolution output in Fig. 4 is the sum of
FIM1, ..., FOMO. In order to get this sum at the fifth location
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Fig. 4. Computation of SISO.

in [X]., [X]. is rotated to form kyky = 9 ciphertexts, each
of which makes one of nine values in the kernel, namely
M1 to MO, located at the fifth location in X. By multiplying
those nine rotated ciphertexts with nine value-assigned kernel
plaintexts and summing up the multiplied ciphertexts, the fifth
value of the convolution output is obtained. Since each rotation
works on all numbers of [X]., the i-th (i # 5) value of
convolution output is obtained simultaneously in that resulted
ciphertext.

MIMO: MIMO deals with more general convolution where
C; and C, are larger than one. In such case, the kernel
is with size kg X kw x C; x C,, and each of the C,
convolution outputs is the sum of C; SISO convolution. MIMO
first packs C,, out of the C; feature maps in one ciphertext
which produces [C;/C,,] ciphertexts in total. For each of
those [C;/C,,] ciphertexts, it produces partial SISO for all
of the C, convolution output and the final convolution is
obtained by adding SISO corresponding to the same output
channels. The computation is described as follows. 1) For
the i-th (1 < ¢ < ([C;/C,])) input ciphertext, it packs
(i — 1)Cyy-th to (iC,, — 1)-th feature maps. 2) For each group
of C,, convolution output, C,, SISO ciphertexts are produced
between i-th input ciphertext and each of C,, diagonally-
formed kernel sets. 3) Such C,, SISO ciphertexts are rotated to
make them correspond to the same output channels, and these
rotated ciphertexts are added to form partial SISO for a group
of C,, output convolution. 4) All partial SISO corresponding
to the same output channels are summed up to finally obtain
C, out of C, convolution.

Fig. 5 shows an example of MIMO with C; = C, = 4
and C,, = 2. As for the ciphertext [Ct;]. containing input
feature maps C1 and C2, it first produces C,, = 2 SISO ci-
phertexts with diagonally-formed kernel sets {K11, K22} and
{K21,K12}. Since the ciphertext with respect to {K11,K22}
corresponds to partial SISO for the first and the second convo-
lution output while the other one with respect to {K21, K12}
corresponds to partial SISO for the second and the first convo-
lution output, the latter ciphertext is rotated to make the rotated

Fig. 5. Computation of MIMO.

ciphertext correspond to partial SISO for the first and the
second convolution output. After that, the rotated ciphertext is
added with the ciphertext with respect to {K11, K22} to form
the partial SISO for the the first and the second convolution
output. [Cty]. similarly forms partial SISO for the third and the
fourth convolution output with diagonally-formed kernel sets
{K31,K42} and {K41,K32}. Similar logic is applied to ci-
phertext [Cts]. with diagonally-formed kernel sets {K13, K24}
and {K23,K14}, and {K33,K44} and {K43,K34}. Finally,
the partial SISO for the same output channels are added
together to get the desired convolution.

Structure Patching: Since MIMO needs to add all SISO
ciphertexts for the same output channels to finally obtain the
desired result, as described in step 4 above, it poses noticeable
stall time to get those SISO ciphertexts with a tiny client
because it is not feasible to encrypt all input ciphertexts
simultaneously given the memory constraint of tiny clients, as
discussed in Section II-F. Such memory constraint forces tiny
clients to generate and send [C;/C,,| input ciphertexts to the
server sequentially, as shown in the left part of Fig. 6, and the
server thus has to sequentially get needed SISO ciphertexts
to obtain the final convolution output, which leads to stall
inevitably.

Such stall time is due to the dependency between input
ciphertexts to get SISO ciphertexts that correspond to the
same output channel. Therefore we are motivated to remove
such dependency to reduce the stall time. Having observed the
issue of incomplete channels within each ciphertext leading to
dependency, we slice the input with size H x W x C} into a
series of smaller patches with size H' x W' x C;. Since each
patch contains values from all input channels, the convolution
with a single patch is able to obtain a group of final values
in an output channel, while the stall can be eliminated as
this operation can be completed within the memory constraint
of a mobile client by selecting a sufficiently small patch
size H' x W' x C; to fit the memory size. Moreover, the
convolutions with different patches are independent from each
other.

Next, we first discuss the convolution where C,; = C;
namely each ciphertext packs one patch. This can be divided
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Fig. 7. Convolution with structure patching.

(b) Computation in the case C, < C;.

into two cases, 1) C, > C; and 2) C, < C;. For the case
of C, > C;, we revamp the convolution process by dividing
the kernels into blocks with a size equal to C;. We then apply
the MIMO logic of convolution between [Ct;]. and kernel
sets to obtain the result. The ciphertext [Ct;]., containing all
C; input channels, is the only input ciphertext required to
calculate the two output ciphertexts, as shown in Fig. 7 (a).
As for the computation with C, < C;, we design to split the
kernels into the blocks with its size equal to C,. To produce
the needed ciphertext, we concatenate all the same direction
diagonally-formed kernel sets into one set. After C, SISO

TABLE 1V
CIPHERTEXT SIZE AND OPERATION COST ON DIFFERENT PARAMETER
LEVELS.

Parameter level(D)  Ciphertext size (Byte) ~ Mult cost (s)

16384 789617 0.0015
8192 394865 0.0007
4096 131697 0.00014

ciphertexts are produced between the input ciphertext and C,
kernel sets, we align and add the rotated SISO ciphertexts
to produce the output ciphertext with C; — 1 rotations. An
example of the overall process is illustrated in Fig. 7 (b).
Note that each row of kernel sets produces one output channel
through convolution with the input data, and the number of
rows is C,. The number of elements in a row is equal to C;, the
number of input channels. To fit the convolution with the input
ciphertexts, the kernel sets are transformed into a diagonal
form and concatenated according to the input channels in
input ciphertexts as illustrated in Fig. 7 (b) Step (a). The final
convolution result is then obtained through a sequence of SISO
Rot for aligning the same row SISO convolutions and Add
operations as shown in Step (b).

In this way, each incoming ciphertext to the server, which
represents a patch of all input channels as illustrated in Fig. 2,
is eligible to complete the convolution computation to get
a group of final values in the output channels, which can
be also seen as a ‘patch’ of the output channels, without
waiting for other input ciphertexts (i.e., the ciphertexts for
other patches) as we use only one input ciphertext to produce
output ciphertexts for various kernel blocks. Hence SPOT
effectively eradicates the stall time, as demonstrated in the
right part of Fig. 6.

Note that we are able to extend above computation for one
patch to N patches namely C;l = NC;. By adapting H', W',
and N of the patch size, the slots in each ciphertext can be
fully utilized, which contributes to producing fewer cipher-

1324

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.



texts and thus reduces computation overhead. Meanwhile, a
ciphertext encrypted with smaller cryptographic parameters
features faster HE operations. For example, Table IV shows
the relationship between different parameter levels and the
corresponding cost of BFV in the SEAL library [19]. Here the
higher the parameter level is, the larger the associated crypto-
graphic parameters are. Under the 128-bit security level, the
HE cost such as Mult with smaller cryptographic parameters
is significantly smaller, as listed in Table IV.

Therefore, we are motivated to set smaller cryptographic
parameters to enable faster convolution. On the one hand, the
channel-wise packing makes it not possible to utilize HE with
smaller cryptographic parameters because the input size H and
W for practical data often needs large cryptographic parame-
ters such as S’. In contrast, H', W', and N are adjustable in
our structure patching pipelining scheme. Thus a smaller S’ is
possible such that H'W/'NC; = S’, which further boosts the
computation efficiency of the patching-based HE computation.
For example, by splitting the input with size 56 x 56 from
ResNet [12] into a series of patches with size 4 x4, we are able
to reduce the cryptographic parameter S’ from D = 16384
with C;L = 2 to D = 2048 and other corresponding parameters
accordingly, which reduces the computation time.

B. Patch Overlap Tweaking

Recall that a convolution is to align the center of a kernel
with a certain size, say 33, to a specific location in the input
feature map, and then perform the corresponding dot-product,
followed by a summation. Since each patch contains only part
of the input feature map, the convolution corresponding to a
boundary location of a patch would run into a problem, as
part of the surrounding areas of that location is not in this
patch, but in the adjacent patch. We shown an example of the
problem in Fig. 8. To generate the convolution result of e, the
filter center K5 is placed on top of e in patch [b]. and results
in {bKs + cK3+eKs + fK¢ + hKs + 1Ko} in the position
of e of the share (b K — r)., where r denotes the random
number share generated by the server. Same for patch [al,
the convolution result is {a K3 + dK5 + gKg} by placing the
center of the filter K on top of d. Both convolution results are
incorrect since some needed feature map values are missing for
a kernel size of 3. It is clear that applying the simple patching
scheme does not recover the correct convolution result for the
values at the edge of each patch.

In order to get all desired convolution values among all
patches, the patches must overlap. For instance, we can set the
overlap size, namely the number of overlapped columns/rows
between two adjacent patches, to be [(kg + s)/2], where s
denotes the stride size. In the example shown in Fig. 9, the
kernel K has size kg = ky = 3 with stride = 1, which
indicates the overlap size of two. In this way, the server
performs convolution for each patching-packed ciphertext in-
dependently and shares the output with the mobile client,
which is able to assemble the received share to get its right
share of convolution. Fig. 9 shows an example to get the
convolution share with patch overlap. Two adjacent patches,

K1|K2|K3
allblc
dlle 5 % | K4|K5|Ke
- K7 | K8 | K9
. L9
K

! | Client received and decrypted

<axK-r>,

L IR ]
1
1
1
LR R

v 3
aK, +dKs5 + gKg >< bK> + cK3 + eK5
+ fKe + hKg + iKg

Fig. 8. An example of incorrect results based on non-overlapping patches to
compute convolution at e and d with kg = ky = 3.

[a]. and [b]., are encrypted by a mobile client and sent to
the server, respectively. The server conducts convolution for
each ciphertext and shares the result with the mobile client.
Upon receiving the convolution shares of the patches, the
mobile client assembles these values to form its final share of
convolution by picking out the shares of correct convolution
values (e.g., the share at the location of e in (b* K — 7). is
chosen as the final share of convolution value at that location
rather than the one in {(a * K — ), since the latter is missing
some feature map values). Note that there is no need for two
patches to overlap when a kernel has a size of 1 x 1.

To fulfill the minimum overlap size requirement among
adjacent patches, the minimum patch size should be larger
than the minimum overlap size, otherwise the adjacent patches
are coincided and do not cover the whole feature map. For the
example aforementioned, the minimum patch size H' = W’
should be 3. Meanwhile, we observe the efficiency of smaller
cryptographic parameters as shown in Table IV and are moti-
vated to choose the smallest practical cryptographic parameter,
which is D = 4096, to pack each patch for the computation
and memory efficiency. However such combination imposes
a conflict between available slot number and the number of
entry values of one patch for typical input channel in VGG and
ResNet, taking the aforementioned example when C; = 512
and a patch with H' = W' = 3 (i.e., 3 % 3 x 512 > 4096),
if we pack all C; to maintain the pipelining efficiency [12],
[16], [36]. Compromising to bigger cryptographic parameters
such as D = 8192 loses around 7x computation efficiency
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Fig. 9. Patch overlapping to compute convolution at e with kg = kyy = 3.

that brings by smaller cryptographic parameters.

To address this challenge, we propose a scheme to minimize
the overlap to be as small as one, thus making it possible to
fit the patch into a ciphertext with the smallest cryptographic
parameters (subject to 128-bit security), to enable faster HE
operations. The main idea is to craft auxiliary patches such that
the final share of convolution at the mobile client is arithmeti-
cally assembled, rather than simply selected, among shares of
patch convolution. Under this design, we are able to reduce
the overlap size to be one, to get smaller patches. Specifically,
Fig. 10 demonstrates such overlap tweaking scheme with a
kernel size ky = kw = 3 which is widely adopted in
modern CNN models such as ResNet and VGG [36]. The
auxiliary patch C' is encrypted by the mobile client as [C].
and sent to the server along with encrypted patches [A]. and
[B].. After the mobile client receives shares of (A K — 7).,
(BxK —r),, and (Cx K —r), from the server, it gets a share of
the desired convolution by summing the corresponding shares
from (A% K —r). and (B* K —r)., and then subtracting the
share of (C x K —r).. While an additional ciphertext namely
[C]. is introduced, smaller patches and HE with smaller
cryptographic parameters bring more computation efficiency
compared with the extra cost. This novel design enables the
structure patching in deeper layers of modern CNNs with a
large C; such as ResNet and VGG.

C. Complexity comparison

Table V compares the overall complexity of convolution
computations for channel-wise output rotation and patch,
where C,, and C,, denotes the number of input ciphertexts
for CrypTFlow2 and SPOT.

IV. EVALUATION

A. Experimental Setup

We implement SPOT based on the SEAL library [19] for lin-
ear functions such as convolution, and the SCI-NonLinear

alflb|l|c
K1 | K2 | K3

e ||f
* |Ka4|Ks5|K6

gllh|][i
K7 | K8 | K9

[B]. %
(4], €
Received and decrypted by mobile client
<A%*K—-r> <BxK-r> <C*xK-r>.
+ - =

.......... andoa

v
bK> + cK3 + eKs
+ fKs + hKg +iKog

aK + bK; +dKy
+eKs + gK7 + hKy

bK, + eKs + hKs  aK; +bK; + K3
+dK, +eKs + [Kq
+ gK7 + hKg + iKy

Fig. 10. Patch overlap tweaking to get convolution at location e.

TABLE V
COMPLEXITY COMPARISON BETWEEN CRYPTFLOW2 AND SPOT

Method Permutation SIMDMulti Add
Co
Cmox —(Cp — 1 C,
CrypTFlow2 reni O CoKuwK),  Cm C—"(cn KuwKp —1)
+Cm (K * Kj — 1) i
Co(KwKp —1) , .,
SPOT Cm' CoKywK, Cy=2(CiKwKp — 1
+07’n%(0,,—1) m CoKuKp, mCz< Ky Kp — 1)
i

module from CrypTFlow2 [15] for non-linear functions such
as ReLLU. We test the performance of SPOT with the ImageNet
dataset [37] on a series of widely-adopted CNN models such
as ResNet-34 [12], ResNet-50 [12], ResNet-101 [12], VGG-
11 [36], and VGG-13 [36]. We use Google Nexus 6 and
Kinetis K27 microcontroller to serve as mobile and IoT clients,
respectively. Nexus 6 is configured with a memory between
64MB and 128MB to run Android applications as well as
perform HE operations such as encryption and decryption.
The microcontroller is equipped with Cortex-M4 CPU with
IMB SRAM and 2MB flash memory with 8OMB SD card
ROM. The server runs on Ubuntu and is equipped with an
AMD EPYC 7413 24-core Processor 2.65GHz base clock
and a 64GB RAM. Similar to current state-of-the-art privacy-
preserving frameworks, the 128-bit security level is assumed
in our experiments. We select the range of cryptographic
parameters for the BFV scheme of the SEAL library [19]
subject to this security level constraint, while optimizing the
specific parameter values within this range, to enable high
slot utilization, and balance the number of ciphertexts and
computation overhead. The patch size selection used in ex-
periments corresponding to different cryptographic parameters
are shown in Table VIIIL. In the following, we evaluate SPOT
with regard to performance metrics including the mobile/IoT
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Fig. 11. Memory utilization in various CNN models.
client’s memory utilization, the computation cost of the convo- TABLE VII
lution process, and the overall inference time on CNN models, RUNNING-TIME M‘CROBENRC““I{IARKSSN BOTTLENECK BLOCKS IN
. ESNET-50.
compared with CrypTFlow2 [15] and Cheetah framework [22]
in IoT device client settings. Block type CrypTHlow? Chectah spot
(W|H|Ci|Co) IoT controller ~ Nexus 6  IoT controller ~ Neuxs 6 IoT controller Nexus 6
56/56(64/256 8.3565 7.797s 9.97s 7925 3.545235%)  2.95(2.69%)
TABLE VI 2828128512 9.73s 10.073s 10.52s 9.95 2.245(4.34%) 2.65(3.87%)
4 4 14/14/256|1024 22.53s 23.07s 20.93s 22.01s 7.45s(2.80x) 8.618s(2.53x)
PATCH SIZE (H % W ) SELECTION FOR DIFFERENT EN?RYPTION 7}7\5‘12&04& 72.5; 73.9<S 70.51: 71 64.: 25.7?5(2 74Xx) 25.1147:(2.74Xx)
PARAMETERS AND CONVOLUTION LAYERS, WHERE S IS THE
CYCLOTOMIC RING DEGREE AND co_mod DENOTES COEFFICIENT
MODULUS SIZE(PLAINTEXT MODULUS = 220), TABLE VIII

N S’ = 4096 5" =8192 5" = 16384

etwork layers

(W|H|CiCo)  co_mod=109 co_mod = 218 co_mod = 438
56|56]64/64 88 16%8 16%16

28]28|128|128 %4 8*8 16*8

14]14/256]256 4%4 8+4 8*8
7]7|512|512 2%4 474 84

B. Memory Utilization at Tiny Client

We define the in-memory value as the number of feature
map entry values that are stored in per megabyte (MB) mem-
ory of the mobile/loT client, since different packing schemes
lead to various amounts of unused slots and the number of
loaded ciphertexts. In-memory value can reflect the amount of
valid entry values loaded into the client’s memory. A larger
in-memory value indicates a higher slot utilization of each
ciphertext and a higher flexibility for structure patching to deal
with HE-based computation under resource constraints. Fig. 11
compares in-memory values of SPOT with that of CrypTFlow2
and Cheetah over different CNN models, including ResNet-50
with bottleneck blocks [12], ResNet-18 with basic blocks [12],
and VGG-16 with five types of blocks [36]. The bottleneck
block includes a stack of convolution layers with different
input/output channels in kernel sizes 1 x 1, 3 x 3, and 1 x 1.
The basic block contains convolution layers with various in-
put/output channels in kernel size 3 x 3, and the block in VGG-
16 has kernels in size 3 x 3 with different output channels.
We can see from Fig. 11 that SPOT significantly improves
the memory utilization of the mobile/IoT client. Specifically,
SPOT is capable of handling up to 2x more in-memory values
in both Nexus 6 and IoT controller compared to CrypTFlow2
and Cheetah. Such capability is attributed to the flexible patch

RUNNING-TIME MICROBENCHMARK ON BASIC BLOCKS IN RESNET-18.

Block CrypTFlow2 Cheetah SPOT

ock type

(W|H|Ci|Co) Nexus 6 IoT controller Nexus 6  IoT controller ~ Nexus 6 IoT controller
56/56/64/64 141s 1593 2.895 2.9625 0.6935(2.03x)  0.784s(2.03%)

28[28(128[128 2345 20635 401s 3.24s 0.8785(2.66%)  0.9185(2.24x)

14[14/256]256 4.45s 4.804s 4.28s 4.53s 1.507s(2.84 %) 1.566s(2.90 <)
7|7]512[512 22.14s 22.30s 20.7s 21.94s 7.764s(2.67x)  7.636s(2.87x)

size which maximizes the utilization of slots in each ciphertext
for large input feature map size, as well as the overlap
tweaking which enables selection of cryptographic parameters
with higher HE efficiency. Meanwhile, channel-wise packing
wastes more slots for each ciphertext and has to compromise to
bigger ciphertext for more slots to pack two or more channels
of large feature map. We notice that Cheetah shows similar
high slot utilization as SPOT for encrypting input ciphertexts
due to the new encoding method. However, the extraction of
output ciphertexts generates a large amount of LWE output
ciphertexts with only one useful coefficient in each ciphertext,
which deteriorates the total slot and memory utilization. Note
that while the memory utilization of SPOT is much higher in
most of the blocks, the improvement drops in some deeper
blocks due to a larger number of input channels, namely C;,
and the arithmetical computation in overlap tweaking. Mobile
clients’ performance fluctuates affected by the actual memory
availability, compared with IoT devices in different blocks.

C. Running-time Performance On Convolutional Blocks

We then test the running-time performance over various con-
volutional blocks to demonstrate the computation efficiency of
SPOT compared to channel-wise computation in CrypTFlow?2
and Cheetah. Tables VII and VIII compare the running time of
SPOT, Cheetah, and CrypTFlow2 on various bottleneck blocks
and basic blocks in ResNet models, respectively, and illustrates
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TABLE IX
RUNTIME MICROBENCHMARK ON BLOCKS IN VGG-16.

CrypTFlow2 Cheetah SPOT

Block type
(W|H|Ci|Co)

224(224]64(64

Nexus 6 Nexus 6 ToT controller

9.056s(3.47 %)

Nexus 6

8.88s(3.47x)

ToT controller IoT controller

30.83s 31.5s 33.9s 36.2s

112[112[128]128 18.8s 19.27s 19.6s 21.1s 6.395(2.94%)  6.798s(2.83%)

56(56(256|256 4.21s 4.281s 5.16s 5.96s 2.55s(1.65%)  2.538s(1.68x)

28[28(512[512 3.12s 3.407s 3.82s 4.24s 2.325(1.38x)  2.614s(1.30x)

14|14]512|512 4.40s 4.55s 3.92s 3.12s 2.135(2.06x)  2.266s(2.00x)
TABLE X

TOTAL EXECUTION TIME ON RESNET AND VGG.

CrypTFlow2 Cheetah SPOT

Nexus 6

Network model

ToT controller ~ Nexus 6 0T controller Nexus 6 ToT controller

ResNet-101 811.2s 827.6s 721.6s 882.1s 279.75(2.58x)  307.3s(2.69x)
ResNet-50 428.2s 435.4s 348.2s 356.8s 153.05(2.27x)  160.8s(2.21 )
ResNet-34 118.3s 112.3s 80.5s 89.5s 49.53s(1.62x)  41.85(2.14x)
ResNet-18 101.6s 103.71s 83.1s 111.7s 47.78s(1.74x)  49.19s(2.11x)
VGG-11 65.29s 72.13s 65.8s 69.4s 33.29s(1.97x)  25.31s(2.75%)
VGG-16 151.23s 154.5s 163.2s 159.4s 64.545(2.34x)  75.055(2.05%)

the speedup of SPOT. Since the blocks with larger feature map
contain more entry values and need more output ciphertexts to
be extracted, Cheetah shows less runtime performance boost
for mobile/loT clients in starter blocks. Thus, we compare
the best running-time performance with SPOT instead of
a specific method. Overall, SPOT achieves up to 4x and
3x speedup compared to CrypTFlow2 and Cheetah. With
structure patching and overlap tweaking, SPOT is able to
efficiently carry out HE computation under limited resources
at mobile/loT clients, by splitting the input into a series of
patches, and minimizing the overlap between two patches
to enable small cryptographic parameter selection for faster
HE operations. For example, SPOT demonstrates 4x speedup
on IoT controller in a bottleneck block with an input size
28 x 28, and there is nearly 3x speedup in a basic block
with the number of input channels C; = 512. At last, a
significant speedup of SPOT over CrypTFlow2 and Cheetah
is also observed in Table IX for blocks in VGG-16.

D. End-to-End Performance on CNNs

We finally evaluate the total execution time on an en-
tire CNN model for SPOT. As shown in Table X, SPOT
achieves a speedup of up to 2.5 ~ 3x for the ResNet
series, and a speedup of 2.7 ~ 2.8x for the VGG series,
compared with Cheetah and CrypTFlow?2, respectively. This
speedup is consistent with the ones reported for the various
individual blocks in the previous subsection. This running
time improvement demonstrates the efficiency of the novel
design of structure patching and patch overlap tweaking, which
work together to significantly reduce the computation time
of privacy-preserving MLaaS with memory-limited mobile
clients. Even though Cheetah shows large acceleration for
desktop clients by avoiding rotations, it still faces linear com-
putation stall problem due to ciphertext dependency. Moreover,
it extracts each useful polynomial coefficient into a ciphertext,
thus increasing the number of ciphertexts and corresponding
processing time. These two bottlenecks prolong the total ex-

V. CONCLUSION

This paper has introduced SPOT, a novel framework for ma-
chine learning as a service (MLaaS) with resource-constrained
clients. SPOT features a novel design of structure patching and
patch overlap tweaking to resolve the problems of computation
stall at the server and inflexible cryptographic parameters
selection that are faced by the current state-of-the-art privacy-
preserving MLaaS frameworks. SPOT has demonstrated up
to 2x higher memory utilization at the clients, and an overall
speedup of up to 3x on modern CNN models such as ResNet
and VGG.
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