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Abstract-Machine Learning as a Service (MLaaS) has paved 
the way for numerous applications for resource-limited clients, 
such as IoT/mobile users. However, it raises a great challenge 
for privacy, including both the data privacy of clients and 
model privacy of the server. While there have been extensive 
studies on privacy-preserving MLaaS, a direct adoption of 
current frameworks leads to intractable efficiency bottleneck 
for MLaaS with resource constrained clients. In this paper, we 
focus on MLaaS with resource constrained clients and propose 
a novel privacy-preserving framework called SPOT to address a 
unique challenge, the memory constraint of such clients, such as 
IoT/mobile devices, which results in significant computation stalls 
at the server in privacy-preserving MLaaS. We develop 1) a novel 
structure patching scheme to enable independent computations 
for sequential inputs at the server to eliminate the computation 
stall, and 2) a patch overlap tweaking scheme to minimize 
overlapped data between adjacent patches and thus enable more 
efficient computation with flexible cryptographic parameters . 
SPOT demonstrates significant improvement on computation 
efficiency for MLaaS with IoT/mobile clients. Compared with the 
state-of-the-art framework for privacy-preserving MLaaS, SPOT 
achieves up to 2 x memory utilization boost and a speedup up 
to 3 x on computation time for modem neural networks such 
as ResNet and VGG. 

Index Terms-Mobile Computing, Privacy-preserving, Ma-
chine Learning as a Service, Structure Patching, Homomorphic 
Encryption. 

I. INTRODUCTION 

The prevalence and widespread adoption of Deep Leam-
ing (DL) techniques are evident in various domains, e.g., 
telehealth [l], [2], where patients can conveniently upload 
their pathology images for diagnosis. However, designing and 
training deep neural network models usually require substan-
tial expertise in DL and significant data and computational 
resources, posing technical barriers for most end-users. To 
address such challenges, cloud providers have introduced 
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MLaaS [3], as illustrated in Fig. 1, where a proprietary DL 
model is well-trained and hosted on the cloud, and clients only 
need to submit queries (i.e., inference requests) to the cloud 
and receive the inference results (i.e., model outputs) through 
a web portal. 

mobile client 

. @] I 

loT client .,/;iJ ú = mobile client 

• 
encryptM atal f enc~pted result r.:] 
ú = ~ ú =
ú = • ú =

IOT client loT client 

• <3 • 
Fig. l. System architecture of MLaaS with mobile clients. 

While MLaaS is a valuable tool for efficiency and produc-
tivity, privacy has emerged as a fundamental concern for both 
clients and servers. From the clients' standpoint, there is an 
urgent need to safeguard their sensitive information, such as a 
patient's medical records, against unauthorized access by any 
entity, including the server. On the other hand, servers strive 
to prevent the disclosure of proprietary model parameters, 
developed through significant investments, to clients. Legal 
frameworks such as the General Data Protection Regulation 
(GDPR) in the European Union and the Personal Data Protec-
tion Act (PDPA) in Singapore mandate the protection of data 
from unauthorized disclosure. The Health Insurance Portability 
and Accountability Act (HIPAA) specifically removes sensi-
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tive information to protect clients' privacy. While these efforts 
are instrumental for privacy protection, they may potentially 
sacrifice valuable information, thus degrading performance. 
Moreover, recent studies have show that even under the pro-
tection of these regulations, attackers may still infer privacy-
sensitive data by exploiting available plaintext information [4]. 
Consequently, there is a pressing requirement to establish 
secure mechanisms that guarantee the confidentiality of both 
client's data and server's model parameters in MLaaS. 

At the same time, the ubiquity of embedded devices 
and smartphones makes them ideal devices for end-users in 
MLaaS. For example, there was over a 101 billion USO market 
in 2022 and is expected to hit around USO 178.33 billion by 
2032 for the embedded system market [5]. A 2020 survey by 
Ooxirnity also showed that 45% of patients use mobile phones 
for telehealth services [6]. Various MLaaS applications are 
often involved with IoT clients (e.g., wearable devices), such 
as surveillance object detection [7], gesture recognition [8], 
user verification [9], human activity monitoring [10], and 
medical health monitoring [11]. To this end, we study MLaaS 
with IoT/mobile clients in this paper and aim to address the 
unique challenges raised by loT/mobile clients in privacy-
preserving MLaaS. 

A. Our Contributions 

To tackle the challenges posed by mobile clients in the 
context of privacy-preserving MLaaS, we introduce an inno-
vative scheme called SPOT (Structure Patching and Overlap 
Tweaking). This approach focuses on optimizing the convolu-
tion computation, which is widely adopted as a key module 
in a wide range of modem deep learning models. It not only 
addresses the challenges of linear computation stall arising 
from the memory constraints but also enables the utilization 
of smaller-parameter HE operations tailored for small-footprint 
clients, as in Sec. 11-F. This, in tum, leads to a reduction in 
computing time under a guaranteed security level. 

As illustrated in Fig. 2, SPOT splices the input of linear 
functions into a number of patches, each of which consists of 
a portion of all channels. It can adapt the patch size (i.e., length 
and width) to fit the slot capacity of the HE ciphertext. This 
is in a sharp contrast to the traditional channel-wise packing 
in current frameworks, where an entire channel or multiple 
channels must be packed into a ciphertext. The benefit of our 
design lies in two folds. First, the convolution-independent 
nature between the patches enables parallel pipelining using 
multi-threading, thus mitigating the problem of linear compu-
tation stall and achieving high computation efficiency. Second, 
the ability of flexibly adapting patch size enables SPOT to 
choose smaller-parameter HE to calculate the linear function, 
thus further reducing the computation time. 

While the proposed patching scheme is promising, it re-
mains nontrivial to implement for achieving optimal perfor-
mance. First, the computation procedures (such as convolu-
tion) must be revamped to effectively leverage the patches 
to obtain correct results. This will be further discussed in 
Sec. Ill-A. Second, the patches must overlap with each other 

Channel-wise packi ng 

~--- In-Memory 

cs Encrypt 

StruPatching packing 

Encrypt 

feature maps 

ú =
l-11 c, 

feature m aps 

Fig. 2. Channel-wise HE packing versus structure patching based HE packing. 

to perform the correct convolution computation, resulting in 
additional overhead. To mitigate such a problem, we pro-
pose tweaking the patch overlaps by carefully crafting a 
small number of auxiliary ciphertexts that encrypt overlapped 
data between patches, aiming to reduce the overlap between 
patches and decrease the cryptographic parameters used for 
ciphertexts, thus improving the efficiency of the involved HE 
computation. The details will be discussed in Sec. Ill-B 

We implement SPOT based on the SEAL library for con-
volution computation and SCI-Nonlinear module from 
CrypTFlow2 for the non-linear computation such as ReLU. 
We conduct extensive experiments on different small-footprint 
devices over various neural networks such as ResNet and 
VGG. SPOT demonstrates up to 3x speedup in inference 
time and 2 x improvements in memory utilization compared 
to state-of-the-art frameworks. 

The rest of the paper is organized as follows. Section 11 
introduces the system framework and cryptographic tools 
adopted in SPOT. The details of SPOT are elaborated in Sec-
tion Ill. The experimental results are illustrated in Section IV. 
Finally, Section V concludes the paper. 

II . BACKGROUND AND RELATED WORKS 

Notation. We use C; and C0 to denote the number of 
input and output channels, respectively. Cn is the number 
of channels packed in a single ciphertext. (A) P denotes the 
additive secret share of message A for party PE {0, 1 }. [A]c is 
the ciphertext of A. S' is the number of slots in a ciphertext 
under given cryptographic parameters. D is the polynomial 
modulus degree of HE. 

A. System Framework 
We focus on the MLaaS system as depicted in Fig. 1. 

Specifically, the client C possesses sensitive data, such as 
pathology images of a patient, while the server S holds a 
well-trained OL model and outputs the model prediction given 
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the client's input. As discussed in Section I, privacy concerns 
arise during the interaction between C and S. Specifically, the 
client attempts to prevent any third party, including the server, 
from accessing its private data, while the server is unwilling 
to disclose its proprietary model parameters, such as weights 
and kernels, to the client. As such, privacy-preserving MLaaS 
aims to ensure that the client's input remains fully protected 
from the server, while the server's model parameters keep 
completely concealed from the client. Although the computing 
efficiency acts as a bottleneck for practical applications of 
privacy-preserving MLaaS and a series of works have made 
encouraging progress for efficiency enhancement with pow-
erful client, we have observed two key challenges namely 
memory constraints and cryptographic parameter selection for 
mobile clients, as pointed out in Section 11-F. In this paper, we 
aim to address these challenges through the SPOT framework. 

As for the proprietary model at S, we concentrate on 
Convolutional Neural Networks (CNNs) that have exhibited 
remarkable performance in various deep learning tasks [12]. 
Generally, a CNN includes a stack of layers to capture intricate 
properties of the input data, such as the spatial relationships 
among pixels within an image. A layer always contains linear 
and non-linear functions. The linear functions include dot 
product and convolution, while the non-linear ones contain 
activation functions such as the Rectified Linear Unit (ReLU) 
and pooling (e.g., max pooling and mean pooling). Since 
the computation overhead for linear functions dominates the 
overall cost for privacy-preserving MLaaS with mobile clients, 
as discussed in Section 11-F, our proposed SPOT addresses the 
efficiency optimization for linear computation in the inference 
process. 

B. Packed Homomorphic Encryption 

The Homomorphic Encryption (HE) is a class of crypto-
graphic primitives that allow linear computations on encrypted 
data without decryption, and is primarily used to compute the 
linear functions in privacy-preserving MLaaS [13]-[15]. Mod-
em HE techniques [16], [17] are able to pack a vector of values 
into one ciphertext, and perform HE operations in a Single-
Instruction-Multiple-Data (SIMD) manner [18] to amortize 
operation cost. In this work, we adopt the SIMD-style BFV 
scheme [16] to compute linear functions in CNNs. The main 
HE operations include HE Multiplication (Mult), HE Addition 
(Add), and HE Rotation (Rot). Mult performs multiplication 
between a ciphertext [x]c and plaintext y, and produces the 
ciphertext [x0y]c = [x]c 0y where x = { xo, x1, • • • , xs,-1}, 
Y = {yo,Y1, • • • ,Ys1-1}, and 0 is the element-wise multi-
plication between encrypted/plaintext vectors. Add conducts 
the summation between a ciphertext [x]c and plaintext y 

(or ciphertext [Y]c), and outputs [x + Y]c = [x]c + y (or 
[x + Y]c = [x]c + [Y]c) where + is the element-wise addition 
between encrypted/plaintext vectors. Rot does cyclic rotation 
of l positions over ciphertext [x]c and yields [x]c where 
x = {xi,··· ,xs1 -1,xo,X1-d- The efficiency of HE oper-
ations depends on pre-determined cryptographic parameters 
such as S' and smaller cryptographic parameters enable faster 

HE operations [19], [20]. Our proposed SPOT features with 
a flexible adoption of small cryptographic parameters under 
guaranteed security level to accelerate the linear computation 
in CNNs. 

C. Additive Secret Sharing 

Given an original message mat party PE {O, 1}, one of the 
two Additive Secret Shares (ASS) is constructed by uniformly 
sampling randomness rand setting (m) P = r, while the other 
share is formed as ( m) l-P = m - r. To reconstruct the 
message, one can simply add two shares m = (m) p+(m) 1_p• 
In this work, we utilize ASS to share the encrypted output of 
linear functions within CNNs to enable subsequent OT-based 
computation for non-linear functions. 

D. Threat Model 

Sinillar to the previous works such as CrypTFlow2 [15], 
GAZELLE [13], GALA [21] and Cheetah [22], SPOT follows 
the two-party semi-honest threat model. To be more precise, 
the client C and the server S follow the protocol but attempt 
to infer each other's input, namely the client's input data and 
the server's model parameters, during the inference process. 
Our protocol, like CrypTFlow2, demonstrates the security 
of network framework based on the cryptographic tool of 
ideal/real security, in which the semantic security of PHE and 
secret sharing scheme. 

E. Deep Leaming with Tiny Devices 

On-device deep learning aims to enable efficient infer-
ence/training process given compact models at IoT/mobile 
client [23]-[26]. Although it deals with model computation 
under client's resource limitation, straightforward application 
to privacy-preserving scenarios encounters fundamental prob-
lems. On the one hand, releasing the model to IoT/mobile 
client invades server's data privacy for model parameters. 
On the other hand, there is no direct solutions to tackle the 
two unique challenges for privacy-preserving MLaaS with 
loT/mobile client, as in Section 11-F. By structure patching and 
overlap tweaking towards the computation process of linear 
and non-linear functions in neural models, the proposed SPOT 
enables efficient privacy-preserving inference with loT/mobile 
clients. It is worth mentioning that a Channel-By-Channel 
Packing approach was introduced in [27]. It focuses on im-
proving the throughput and amortizing the expensive key-
switching of batch inference by packing multiple images of 
same channel into single ciphertext in fully homomorphic 
encryption scheme where the client is not involved in compu-
tation. It is based on different design compared with SPOT. It 
does not address the computation stall issue caused by output 
ciphertext dependency, which is the bottleneck in our IoT 
device-based clients scenario. In addition, it does not consider 
the speedup benefit of smaller cryptographic parameter while 
SPOT can further improve its efficiency by more flexible 
parameter selection. 
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TABLE I 
MICROBENCHMARKS RUNTIME FOR CONVOLUTION LAYERS OF 

DIFFERENT INPUT DATA SIZES (w X h) AND NUMBER OF INPUT/OUTPUT 
FEATURE MAPS (Ci , C0 ) . THE NUMBERS HIGHLIGHTED IN RED INDICATE 

THE PERCENTAGE INCREASE OF THE RUNTIME BY THE MOBILE CLIENT 
COMPARED TO THE DESKTOP COUNTERPART. 

Conv size Desktop client Mobile client 
(wlh lC,ICo) 3 ciphertext 2 ciphertext 1 ciphertext 

561561641256 3.405s 5.14ls(51.08%t) 6.0ls(76.5%t) 7.797s(l 28.98%t) 
2s12sp2s1512 7.243s 8. l 67s( l 2.75%t) 8.503s( J7.39%t) J0.073s(39.07%t) 
14114125611024 21.814s 22.234s(1.92%t) 22.42s(2. 77%t) 22.07s(5.75%t) 

717151212048 73.245s 73.476s(0.31 %t) 73.497s(0.34%t) 73.9s(0.89%t) 

F. Challenges in Privacy-Preserving MLaaS with Tiny Clients 

To address the privacy concerns of the client and pro-
tect the ML models of the server, several privacy-preserving 
MLaaS frameworks have been proposed [14], [21], [28]-[30] 
to employ cryptographic primitives such as Homomorphic 
Encryption [16], [17], Garbled Circuits (GC) [31], Oblivious 
Transfer (OT) [32], and Secret Sharing (SS) [33], in the 
computation process of DL models, so that the client data 
is encrypted and the server conducts computation in the 
cryptographic domain. Among these cryptographic primitives, 
HE is widely used for linear functions as it inherently supports 
linear computation [16], [34], while SS and OT are commonly 
used to compute nonlinear functions [28]. 

Observation 1: Memory Constraint of Mobile/IoT 
Clients. Despite significant progress in improving the com-
putation efficiency of privacy-preserving MLaaS, the existing 
secure inference protocols assume that the client possesses 
sufficient computation power. Our preliminary experiments 
show that the computation efficiency drops significantly if the 
client is an IoT/mobile device with limited memory capacity. 
Specifically, we performed an evaluation of the convolution 
layer, which is a primary building block of many modem 
DL models, by using a desktop client versus a mobile client 
(Nexus 6), and their CPUs' clock speed are comparable 
3.2GHz (AMD EPYC 7413) and 2.7GHz (Snapdragon 805), 
respectively. However, the execution time of the mobile client 
is approximately twice as long as that of the desktop counter-
part, as shown in Table I that compares the running time for 
convolution layers with different sizes in ResNet. 

Our careful analysis reveals that, given the memory con-
straint, a mobile client can only hold a limited number of 
ciphertexts. For example, the average memory budget of a 
typical Android device like Nexus 6 can be up to 100MB 
for each running application. However, the size of HE public 
and secret keys can be substantial, occupying approximately 
80.23MB of memory. A ciphertext encrypted in polynomial 
form is often around 0.7-l.5MB. Considering other necessary 
memory consumption (usually around 10MB or more), the 
device can only carry one ciphertext at one time, depending on 
the fluctuation of other system memory usage. Notwithstand-
ing the IoT devices usually do not have strict memory limits 
on each application, most IoT devices have much less memory 
available than mobile phones, which is about l-2MB of SRAM 
for holding at most one ciphertext at one time. Fig. 3 illustrates 

Desktop Client 

Seiver 

loTClient 

Server 

Stall time 

Performance 
degradation 

a HE encryption for one ciphertext o ReLU process 

0 convolution process ---• ciphertext from client to server 

! =HE decryption for one ciphertext ---• ciphertext from server to client 

O output ciphertext addition -----+- secert share transmission 

Time 

Fig. 3. Channel-wise packing on desktop client versus mobile client. 

TABLE II 
TOTAL EXECUTION TIME ON RESNET-5O ON DESKTOP CLIENT VERSUS 

lOT CLIENT(DESKTOP CLIENT STATS ARE FROM [22]) . 

Model Desktop Client IoT Client 

CrypTFlow2 Cheetah (Speedup) CrypTFlow2 Cheetah (Speedup) 

ResNet50 295.7s 80.3s (260%) 428.2s 348.2s (20%) 

the impact of memory constraints based on the state-of-the-
art frameworks such as CrypTFlow2 [15] and Cheetah [22]. 
The desktop client, with its abundant memory resources, can 
generate all input ciphertexts instantly and perform involved 
computation by leveraging multi-threading [23], [35]. This 
allows for seamless execution of subsequent Convolution and 
ReLU operations with minimal additional delay. Similarly, 
the corresponding decryption for several ciphertexts can be 
processed by the desktop client at once. In contrast, the 
mobile client, which is limited in terms of memory, has to 
generate each input ciphertext sequentially, thus limiting the 
efficiency of multi-threading since all of the ciphertexts are 
needed to compute the linear function (e.g., convolution). We 
name this problem as linear computation stall, which results 
in a significant delay. Although a series of works [15], [22] 
have been introduced to improve the execution speed, they 
focus on powerful clients and their the speedup is significantly 
decreased for a memory-constrained client. As shown in 
Table II, the speedup of Cheetah over CrypTFlow2 (two recent 
approaches that are often considered as the state-of-the-art 
in the literature) is reduced from 260% to only 20% when 
switching from a desktop client to an IoT device. 

Observation 2: Impact of Cryptographic Parameters Se-
lection. We break down the computation time into three parts, 
shown in Table III: 1) client-HE operations, namely encryption 
and decryption at the client; 2) server-HE operations, namely 
HE addition, HE Multiplication, and HE Rotation at the server; 
and 3) nonlinear or ReLU operations, namely the OT-based 
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ReLU computation. The results are based on the assumption 
that the IoT/mobile client holds only one ciphertext. As we 
can see, the HE operations dominate the computation cost for 
the whole layer. To accelerate the overall performance, it is 
key to optimize the efficiency of HE operations. 

An important feature of HE operations is that smaller 
cryptographic parameters (e.g., a smaller number of slots in a 
ciphertext) enable faster computation [19]. For example, given 
the 128-bit security level, the cost of one HE operation using 
the CKKS scheme (to be discussed in Sec 11-B) with 4096 slots 
can be 2 to 4 times faster than that with 8192 slots [16], [19]. 
Such speedup is particularly valuable for loT/mobile clients 
given its limited computation power. However, the state-of-
the-art approaches such as CrypTFlow2 [15] do not have 
much flexibility on cryptographic parameters selection, e.g., 
the number of slots for the ciphertext cannot be smaller than 
the size of one input channel, as their design packs one or 
more channels into a ciphertext to optimize performance. 

As the size of one input channel can be very large in various 
practical applications, the state-of-the-art frameworks have to 
choose large cryptographic parameters to guarantee a desired 
security level. For instance, CrypTFlow2 sets its number of 
slots in BFV no smaller than 8192 [15]. Such constraint 
on cryptographic parameter selection significantly limits the 
flexibility of current frameworks. This limitation hinders the 
ability to efficiently decrease the computation time of MLaaS 
by incorporating smaller-parameter HE operations. 

TABLE ill 
A BREAKDOWN OF COMPUTATION TIME OF THE CONVOLUTION LAYER 

INTO THE THREE COMPONENTS OF MLAAS, TOGETHER WITH THE 
PERCENTAGE AMONG THE TOTAL EXECUTION TIME. THE MOBILE CLIENT 
MEMORY IS ASSUMED TO BE ABLE TO ACCOMMODATE ONE CIPHERTEXT. 

Conv size(wlhlCilCo) client-HE server-HE ReLU 

561561641256 5.376s(61 %) 3.03s(34%) 0.29s(3%) 
2812811281512 2.688s(27%) 6.86s(69%) 0.34s(3%) 

14114125611024 1.344s(6%) 21.06s(93%) 0.24s(1%) 
717151212048 0.672s(1%) 72.1s(98%) 0.18s(l %) 

Ill. PROPOSED SPOT SCHEME 

In this section, we present the SPOT framework which 
supports secure inference with resource-constrained clients. 
First, we introduce the channel-wise packing that is adopted 
in the state-of-the-art privacy-preserving frameworks. Specif-
ically, Cn out of Ci input feature maps are packed into one 
ciphertext where Cn = l S' / HW J, S' is the number of slots 
in a ciphertext, and H and W are the height and width of a 
feature map, respectively. Fig. 2 shows an example of channel-
wise packing with Ci = 4 and Cn = 2. 

Channel-wise packing needs to pack each entire input 
feature map into a ciphertext, which requires a large S' for 
a large input feature map, and thus makes it infeasible for 
IoT/mobile clients with limited resources. The direct non-
overlap patching divides the original feature maps into a series 
of patches, each with size H' x W' x Ci where usually 

H' «: H and W' «: W, as shown in Fig. 2. Then each 
patch is encrypted into one ciphertext. However, as patches 
must overlap with each other to make sure the following 
convolution with respect to all patches is equivalent to the 
result of the original convolution, such vanilla patching leads 
to a fixed overlap size towards the kernel dimensions, which 
disables the patching-based packing in layers with large Ci to 
adopt faster HE with small cryptographic parameters. To make 
patching-based packing truly advantageous, we first propose in 
Section III-A a structure-patching-based pipelining that packs 
N patches into one ciphertext such that H'W'CiN ú = S' 
by adapting H', W', and N. Then the overlap tweaking 
is designed in Section III-B to minimize the overlap size 
and enable efficient computation with small cryptographic 
parameters in layers with large Ci, 

A. Structure Patching Pipelining 

Recall that we focus on privacy-preserving MLaaS with 
IoT/mobile clients where the linear and non-linear functions 
in CNN models are computed by packed HE and OT, respec-
tively. Based on the adaptive packing for patches, we intend 
to compute the convolution efficiently by first performing the 
proposed structure patching pipelining. For a lucid description, 
we first present mainstream HE-based convolution based on 
channel-wise packing namely Single Input and Single Output 
(SISO), and Multiple Input Multiple Output (MIMO). Direct 
application of SISO and MIMO to MLaaS with loT/mobile 
clients causes linear computation stall as discussed in Sec-
tion 11-F. As such, we propose the structure-patching-based 
computation to address this challenge. 

SISO: SISO computes the convolution with Ci= C0 = 1. 
Specifically, given a kernel with size kH x kw, each value 
of the convolution output is the weighted sum of elements 
in the input feature map that are within the kernel window. 
For example, the first value of the convolution output in 
Fig. 4 is obtained by placing the central element of kernel 
K namely F5 at the first number of input feature map X 
namely Ml, and the resultant value is the sum of correspond-
ingly multiplied numbers in X within K's window namely 
(F5Ml +F6M2+F8M4+F9M5), so on and so forth. Therefore, 
the value of the convolution output is the sum of at most 
kHkw ambient numbers of input feature map which are 
weighted by kHkw elements in kernel. 

As such, we get the convolution output of SISO by rotating 
[X]c multiple times, to produce kHkw ciphertexts such that 
the kHkw ambient numbers from [X]c, which correspond to 
the i-th value of the convolution output, are able to appear at 
the i-th location of those kHkw rotated ciphertexts, as shown 
in Fig. 4. By properly assigning the to-be-multiplied kernel 
values for the number at the i-th location in each of those 
kHkw ciphertexts, which results in kHkw kernel plaintexts, 
the convolution output is obtained by multiplying each of 
kHkw pairs of rotated ciphertext and kernel plaintext, and then 
summing these kHkw multiplied ciphertexts. For example, the 
fifth value of the convolution output in Fig. 4 is the sum of 
FlMl, ... , F9M9. In order to get this sum at the fifth location 
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Ml M2 M3 

M4 MS M6 

M7 MS M9 

F1 F2 F3 

F4 FS F6 

F7 FB F9 

Fig. 4. Computation of SISO. 

in [X]c, [X]c is rotated to form kHkw = 9 ciphertexts, each 
of which makes one of nine values in the kernel, namely 
Ml to M9, located at the fifth location in X. By multiplying 
those nine rotated ciphertexts with nine value-assigned kernel 
plaintexts and summing up the multiplied ciphertexts, the fifth 
value of the convolution output is obtained. Since each rotation 
works on all numbers of [X]c, the i-th (i =/ 5) value of 
convolution output is obtained simultaneously in that resulted 
ciphertext. 

MIMO: MlMO deals with more general convolution where 
Ci and C0 are larger than one. In such case, the kernel 
is with size kH x kw x Ci x C0 , and each of the C0 

convolution outputs is the sum of Ci SISO convolution. MlMO 
first packs Cn out of the Ci feature maps in one ciphertext 
which produces r CdCn l ciphertexts in total. For each of 
those r CdCn l ciphertexts, it produces partial SISO for all 
of the C0 convolution output and the final convolution is 
obtained by adding SISO corresponding to the same output 
channels. The computation is described as follows. 1) For 
the i-th (1 :S i :S (rCd Cn l)) input ciphertext, it packs 
(i - l)Cn-th to (iCn - 1)-th feature maps. 2) For each group 
of Cn convolution output, Cn SISO ciphertexts are produced 
between i-th input ciphertext and each of Cn diagonally-
formed kernel sets. 3) Such Cn SISO ciphertexts are rotated to 
make them correspond to the same output channels, and these 
rotated ciphertexts are added to form partial SISO for a group 
of Cn output convolution. 4) All partial SISO corresponding 
to the same output channels are summed up to finally obtain 
Cn out of C0 convolution. 

Fig. 5 shows an example of MIMO with C; = C0 = 4 
and Cn = 2. As for the ciphertext [Ct1]c containing input 
feature maps Cl and C2, it first produces Cn = 2 SISO ci-
phertexts with diagonally-formed kernel sets {Kll , K22} and 
{K21, K12}. Since the ciphertext with respect to {Kll, K22} 
corresponds to partial SISO for the first and the second convo-
lution output while the other one with respect to {K21 , K12} 
corresponds to partial SISO for the second and the first convo-
lution output, the latter ciphertext is rotated to make the rotated 

Fig. 5. Computation of MIMO. 

ciphertext correspond to partial SISO for the first and the 
second convolution output. After that, the rotated ciphertext is 
added with the ciphertext with respect to {Kll, K22} to form 
the partial SISO for the the first and the second convolution 
output. [Ct1]c similarly forms partial SISO for the third and the 
fourth convolution output with diagonally-formed kernel sets 
{K31, K42} and {K41, K32} . Similar logic is applied to ci-
phertext [Ct2]c with diagonally-formed kernel sets {K13, K24} 
and {K23, K14}, and {K33,K44} and {K43, K34}. Finally, 
the partial SISO for the same output channels are added 
together to get the desired convolution. 

Structure Patching: Since MIMO needs to add all SISO 
ciphertexts for the same output channels to finally obtain the 
desired result, as described in step 4 above, it poses noticeable 
stall time to get those SISO ciphertexts with a tiny client 
because it is not feasible to encrypt all input ciphertexts 
simultaneously given the memory constraint of tiny clients, as 
discussed in Section 11-F. Such memory constraint forces tiny 
clients to generate and send r CdCn l input ciphertexts to the 
server sequentially, as shown in the left part of Fig. 6, and the 
server thus has to sequentially get needed SISO ciphertexts 
to obtain the final convolution output, which leads to stall 
inevitably. 

Such stall time is due to the dependency between input 
ciphertexts to get SISO ciphertexts that correspond to the 
same output channel. Therefore we are motivated to remove 
such dependency to reduce the stall time. Having observed the 
issue of incomplete channels within each ciphertext leading to 
dependency, we slice the input with size H x W x C; into a 
series of smaller patches with size H' x W' x Ci. Since each 
patch contains values from all input channels, the convolution 
with a single patch is able to obtain a group of final values 
in an output channel, while the stall can be eliminated as 
this operation can be completed within the memory constraint 
of a mobile client by selecting a sufficiently small patch 
size H' x W' x Ci to fit the memory size. Moreover, the 
convolutions with different patches are independent from each 
other. 

Next, we first discuss the convolution where C~ = Ci 
namely each ciphertext packs one patch. This can be divided 
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Fig. 7. Convolution with structure patching. 

into two cases, 1) C0 2: C; and 2) C0 < C;. For the case 
of C0 2 C;, we revamp the convolution process by dividing 
the kernels into blocks with a size equal to C;. We then apply 
the MIMO logic of convolution between [Ct1]c and kernel 
sets to obtain the result. The ciphertext [Ct1]c, containing all 
C; input channels, is the only input ciphertext required to 
calculate the two output ciphertexts, as shown in Fig. 7 (a). 
As for the computation with C0 < C;, we design to split the 
kernels into the blocks with its size equal to C0 • To produce 
the needed ciphertext, we concatenate all the same direction 
diagonally-formed kernel sets into one set. After C0 SISO 

TABLE IV 
CIPHERTEXT SIZE AND OPERATION COST ON DIFFERENT PARAMETER 

LEVELS. 

Parameter level(D) 

16384 
8192 
4096 

Ciphertext size (Byte) 

789617 
394865 
131697 

Mult cost (s) 

0.0015 
0.0007 
0.00014 

ciphertexts are produced between the input ciphertext and C0 

kernel sets, we align and add the rotated SISO ciphertexts 
to produce the output ciphertext with C; - 1 rotations. An 
example of the overall process is illustrated in Fig. 7 (b). 
Note that each row of kernel sets produces one output channel 
through convolution with the input data, and the number of 
rows is C0 • The number of elements in a row is equal to C;, the 
number of input channels. To fit the convolution with the input 
ciphertexts, the kernel sets are transformed into a diagonal 
form and concatenated according to the input channels in 
input ciphertexts as illustrated in Fig. 7 (b) Step (a). The final 
convolution result is then obtained through a sequence of SISO 
Rot for aligning the same row SISO convolutions and Add 
operations as shown in Step (b). 

In this way, each incoming ciphertext to the server, which 
represents a patch of all input channels as illustrated in Fig. 2, 
is eligible to complete the convolution computation to get 
a group of final values in the output channels, which can 
be also seen as a 'patch' of the output channels, without 
waiting for other input ciphertexts (i.e., the ciphertexts for 
other patches) as we use only one input ciphertext to produce 
output ciphertexts for various kernel blocks. Hence SPOT 
effectively eradicates the stall time, as demonstrated in the 
right part of Fig. 6. 

Note that we are able to extend above computation for one 
patch to N patches namely C~ = NC;. By adapting H' , W', 
and N of the patch size, the slots in each ciphertext can be 
fully utilized, which contributes to producing fewer cipher-
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texts and thus reduces computation overhead. Meanwhile, a 
ciphertext encrypted with smaller cryptographic parameters 
features faster HE operations. For example, Table IV shows 
the relationship between different parameter levels and the 
corresponding cost of BFV in the SEAL library [19]. Here the 
higher the parameter level is, the larger the associated crypto-
graphic parameters are. Under the 128-bit security level, the 
HE cost such as Mult with smaller cryptographic parameters 
is significantly smaller, as listed in Table IV. 

Therefore, we are motivated to set smaller cryptographic 
parameters to enable faster convolution. On the one hand, the 
channel-wise packing makes it not possible to utilize HE with 
smaller cryptographic parameters because the input size H and 
W for practical data often needs large cryptographic parame-
ters such as S'. In contrast, H' , W', and N are adjustable in 
our structure patching pipelining scheme. Thus a smaller S' is 
possible such that H'W' NCi ú =S', which further boosts the 
computation efficiency of the patching-based HE computation. 
For example, by splitting the input with size 56 x 56 from 
ResNet [12] into a series of patches with size 4 x 4, we are able 
to reduce the cryptographic parameter S' from D = 16384 
with C~ = 2 to D = 2048 and other corresponding parameters 
accordingly, which reduces the computation time. 

B. Patch Overlap Tweaking 

Recall that a convolution is to align the center of a kernel 
with a certain size, say 3 x 3, to a specific location in the input 
feature map, and then perform the corresponding dot-product, 
followed by a summation. Since each patch contains only part 
of the input feature map, the convolution corresponding to a 
boundary location of a patch would run into a problem, as 
part of the surrounding areas of that location is not in this 
patch, but in the adjacent patch. We shown an example of the 
problem in Fig. 8. To generate the convolution result of e, the 
filter center K5 is placed on top of e in patch [b]c and results 
in {bK2 + cK3 + eK5 + f K6 + hKs + iKg} in the position 
of e of the share (b * K - r)c, where r denotes the random 
number share generated by the server. Same for patch [a]c, 
the convolution result is { aK2 + dK5 + gK8} by placing the 
center of the filter K on top of d. Both convolution results are 
incorrect since some needed feature map values are missing for 
a kernel size of 3. It is clear that applying the simple patching 
scheme does not recover the correct convolution result for the 
values at the edge of each patch. 

In order to get all desired convolution values among all 
patches, the patches must overlap. For instance, we can set the 
overlap size, namely the number of overlapped columns/rows 
between two adjacent patches, to be r(kH + s)/21, wheres 
denotes the stride size. In the example shown in Fig. 9, the 
kernel K has size kH = kw = 3 with stride = 1, which 
indicates the overlap size of two. In this way, the server 
performs convolution for each patching-packed ciphertext in-
dependently and shares the output with the mobile client, 
which is able to assemble the received share to get its right 
share of convolution. Fig. 9 shows an example to get the 
convolution share with patch overlap. Two adjacent patches, 
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a b C 

d e f * 
K4 KS K6 
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g h I [b]c 
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I ---•---
' I 
I ---•---
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I 
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---4 
I 
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I 

Fig. 8. An example of incorrect results based on non-overlapping patches to 
compute convolution ate and d with kH = kw = 3. 

[a]c and [b]c, are encrypted by a mobile client and sent to 
the server, respectively. The server conducts convolution for 
each ciphertext and shares the result with the mobile client. 
Upon receiving the convolution shares of the patches, the 
mobile client assembles these values to form its final share of 
convolution by picking out the shares of correct convolution 
values (e.g., the share at the location of e in (b * K - r) c is 
chosen as the final share of convolution value at that location 
rather than the one in (a* K - r)c, since the latter is missing 
some feature map values). Note that there is no need for two 
patches to overlap when a kernel has a size of 1 x 1. 

To fulfill the minimum overlap size requirement among 
adjacent patches, the minimum patch size should be larger 
than the minimum overlap size, otherwise the adjacent patches 
are coincided and do not cover the whole feature map. For the 
example aforementioned, the minimum patch size H' = W' 
should be 3. Meanwhile, we observe the efficiency of smaller 
cryptographic parameters as shown in Table IV and are moti-
vated to choose the smallest practical cryptographic parameter, 
which is D = 4096, to pack each patch for the computation 
and memory efficiency. However such combination imposes 
a conflict between available slot number and the number of 
entry values of one patch for typical input channel in VGG and 
ResNet, taking the aforementioned example when Ci = 512 
and a patch with H' = W' = 3 (i.e., 3 * 3 * 512 > 4096), 
if we pack all Ci to maintain the pipelining efficiency [12], 
[16], [36]. Compromising to bigger cryptographic parameters 
such as D = 8192 loses around 7x computation efficiency 
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that brings by smaller cryptographic parameters. 
To address this challenge, we propose a scheme to minimize 

the overlap to be as small as one, thus malting it possible to 
fit the patch into a ciphertext with the smallest cryptographic 
parameters (subject to 128-bit security), to enable faster HE 
operations. The main idea is to craft auxiliary patches such that 
the final share of convolution at the mobile client is arithmeti-
cally assembled, rather than simply selected, among shares of 
patch convolution. Under this design, we are able to reduce 
the overlap size to be one, to get smaller patches. Specifically, 
Fig. 10 demonstrates such overlap tweaking scheme with a 
kernel size kH = kw = 3 which is widely adopted in 
modern CNN models such as ResNet and VGG [36]. The 
auxiliary patch C is encrypted by the mobile client as [ C] c 

and sent to the server along with encrypted patches [A]c and 
[B]c. After the mobile client receives shares of (A* K - r) c, 
(B*K -r)c, and (C*K -r)c from the server, it gets a share of 
the desired convolution by summing the corresponding shares 
from (A* K - r)c and (B * K -r)c, and then subtracting the 
share of (C * K - r)c- While an additional ciphertext namely 
[C]c is introduced, smaller patches and HE with smaller 
cryptographic parameters bring more computation efficiency 
compared with the extra cost. This novel design enables the 
structure patching in deeper layers of modern CNNs with a 
large C such as ResNet and VGG. 

C. Complexity comparison 
Table V compares the overall complexity of convolution 

computations for channel-wise output rotation and patch, 
where Cm and c;,. denotes the number of input ciphertexts 
for CrypTFlow2 and SPOT. 

IV. EVALUATION 

A. Experimental Setup 
We implement SPOT based on the SEAL library [19] for lin-

ear functions such as convolution, and the SCI-NonLinear 

ú =
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Fig. 10. Patch overlap tweaking to get convolution at location e. 

TABLE V 
COMPLEXITY COMPARISON BETWEEN CRYPTFLOW2 AND SPOT 

Method Permutation SIMDMulti Add 

CrypTFlow2 
Cm• C0 (Cn-1) 

Cm *CoKwKh 
Co c,. Cm C,. (CnKwKh - 1) 

+Cm(Kw • Kh - 1) 
Cm(KwKh - 1) 

Cm1 CoKw Kh 
, Co 

SPOT 
+c;,, Co (C, - 1) 

Cm C, (C,KwKh - 1) 
C, 

module from CrypTFlow2 [15] for non-linear functions such 
as ReLU. We test the performance of SPOT with the lmageNet 
dataset [37] on a series of widely-adopted CNN models such 
as ResNet-34 [12], ResNet-50 [12], ResNet-101 [12], VGG-
11 [36], and VGG-13 [36]. We use Google Nexus 6 and 
Kinetis K27 microcontroller to serve as mobile and IoT clients, 
respectively. Nexus 6 is configured with a memory between 
64MB and 128MB to run Android applications as well as 
perform HE operations such as encryption and decryption. 
The microcontroller is equipped with Cortex-M4 CPU with 
1MB SRAM and 2MB flash memory with 80MB SD card 
ROM. The server runs on Ubuntu and is equipped with an 
AMD EPYC 7413 24-core Processor 2.65GHz base clock 
and a 64GB RAM. Similar to current state-of-the-art privacy-
preserving frameworks, the 128-bit security level is assumed 
in our experiments. We select the range of cryptographic 
parameters for the BFV scheme of the SEAL library [19] 
subject to this security level constraint, while optimizing the 
specific parameter values within this range, to enable high 
slot utilization, and balance the number of ciphertexts and 
computation overhead. The patch size selection used in ex-
periments corresponding to different cryptographic parameters 
are shown in Table VITI. In the following, we evaluate SPOT 
with regard to performance metrics including the mobile/IoT 
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Fig. 11. Memory utilization in various CNN models. 

client's memory utilization, the computation cost of the convo-
lution process, and the overall inference time on CNN models, 
compared with CrypTFlow2 [15] and Cheetah framework [22] 
in IoT device client settings. 

TABLE VI 
PATCH SIZE (H' * W') SELECTION FOR DIFFERENT EN<;:RYPTION 

PARAMETERS AND CONVOLUTION LAYERS, WHERES IS THE 
CYCLOTOMIC RING DEGREE AND co_mod DENOTES COEFFICIENT 

MODULUS SIZE(PLAINTEXT MODULUS= 220 ) . 

Network layers 
s' = 4096 s' = 8192 s' = 16384 

(WIHICilCo) co_mod=109 co mod= 218 co_mod = 438 

56156164164 8*8 16*8 16*16 
2812811281128 8*4 8*8 16*8 
1411412561256 4*4 8*4 8*8 

7171512 1512 2*4 4*4 8*4 

B. Memory Utilization at Tiny Client 
We define the in-memory value as the number of feature 

map entry values that are stored in per megabyte (MB) mem-
ory of the mobile/IoT client, since different packing schemes 
lead to various amounts of unused slots and the number of 
loaded ciphertexts. In-memory value can reflect the amount of 
valid entry values loaded into the client's memory. A larger 
in-memory value indicates a higher slot utilization of each 
ciphertext and a higher flexibility for structure patching to deal 
with HE-based computation under resource constraints. Fig. 11 
compares in-memory values of SPOT with that of CrypTFlow2 
and Cheetali over different CNN models, including ResNet-50 
with bottleneck blocks [12], ResNet-18 with basic blocks [12], 
and VGG-16 with five types of blocks [36]. The bottleneck 
block includes a stack of convolution layers with different 
input/output channels in kernel sizes 1 x 1, 3 x 3, and 1 x 1. 
The basic block contains convolution layers with various in-
put/output channels in kernel size 3 x 3, and the block in VGG-
16 has kernels in size 3 x 3 with different output channels. 
We can see from Fig. 11 that SPITT significantly improves 
the memory utilization of the mobile/IoT client. Specifically, 
SPITT is capable of handling up to 2x more in-memory values 
in both Nexus 6 and loT controller compared to CrypTFlow2 
and Cheetah. Such capability is attributed to the flexible patch 

TABLE VII 
RUNNING-TIME MICROBENCHMARK ON BOTTLENECK BLOCKS IN 

RESNET-50. 

Block type Crypmow2 Cheetah SPOf 

(W IHICilCo) loT controller Nexus 6 loT controller Newts 6 loT controller Nexus 6 

561561641256 8.356s 7.797s 9.97s 7.92s 3.54s(2.35x ) 2.9s(2.69x ) 
2s12s1 12s1512 9.73s 10.073s 10.52s 9.95 2.24s(4.34x) 2.6'(3.87 X) 

14114125611024 22.53s 23.07s 20.93s 22.0ls 7.45s(2.80x ) 8.618s(2.53 x ) 
717151212(),18 72.Ss 73.9s 70.51s 71.64s 25.73s(2.74x ) 26.147s(2.74x ) 

TABLE vm 
RUNNING-TIME MICROBENCHMARK ON BASIC BLOCKS IN RESNET-18 . 

Block type CrypTFlow2 Cheetah SPOf 

(WIH IC ilCo) Nexus 6 JoT controller Nexus 6 loT controller Nexus 6 JoT controller 

56156164164 1.41s 1.593s 2.89s 2.962s 0.693s(2.03x ) 0.784s(2.03x) 
2s12s112s112s 2.34s 2.063s 4.0l s 3.24s 0.878s(2.66x ) 0.918s(2.24x) 
1411412561256 4.45s 4.804s 4.28s 4.53s 1.507s(2.84 x ) 1.566s(2.90x ) 
71715121512 22.14s 22.30s 20.7s 21.94s 7. 764s(2.67 X) 7 .636s(2.87 X) 

size which maximizes the utilization of slots in each ciphertext 
for large input feature map size, as well as the overlap 
tweaking which enables selection of cryptographic parameters 
with higher HE efficiency. Meanwhile, channel-wise packing 
wastes more slots for each ciphertext and has to compromise to 
bigger ciphertext for more slots to pack two or more channels 
of large feature map. We notice that Cheetah shows similar 
high slot utilization as SPITT for encrypting input ciphertexts 
due to the new encoding method. However, the extraction of 
output ciphertexts generates a large amount of LWE output 
ciphertexts with only one useful coefficient in each ciphertext, 
which deteriorates the total slot and memory utilization. Note 
that while the memory utilization of SPITT is much higher in 
most of the blocks, the improvement drops in some deeper 
blocks due to a larger number of input channels, namely Ci, 

and the arithmetical computation in overlap tweaking. Mobile 
clients' performance fluctuates affected by the actual memory 
availability, compared with IoT devices in different blocks. 

C. Running-time Performance On Convolutional Blocks 
We then test the running-time performance over various con-

volutional blocks to demonstrate the computation efficiency of 
SPITT compared to channel-wise computation in CrypTFlow2 
and Cheetah. Tables VII and VIII compare the running time of 
SPITT, Cheetah, and CrypTFlow2 on various bottleneck blocks 
and basic blocks in ResNet models, respectively, and illustrates 
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TABLE IX 
RUNTIME MICROBENCHMARK ON BLOCKS IN VGG-16. 

Block type 
CrypTPlow2 Cheetah sror 

(WIHICilCo) Nexus 6 loT controller Nexus 6 JoT controller Nexus 6 loT controller 

2241224164164 30.83s 31.5s 33.9s 36.2s 8.88s(3.47x) 9.056s(3.47x) 
112111211281128 18.8s 19.27s 19.6s 21.ls 6.39s(2.94x ) 6.798s(2.83x ) 

5615612561256 4.21s 4.281s 5.16s 5.96s 2.55s( l.65 x ) 2.S38s( l.68x ) 
2s12s15121512 3.12s 3.407s 3.82' 4.24s 2.32'(1.38x) 2.614s(1 .30x ) 
141 1415121512 4.40s 4.55s 3.92' 3. 12s 2.13s(2.06x ) 2.266s(2.00x ) 

TABLEX 
TOTAL EXECUTION TIME ON RESNET AND VGG. 

Network model 
CrypTFlow2 Cheetah sror 

Nexus 6 loT controller Nexus 6 loT controller Nexus 6 loT controller 

ResNet-101 811.2s 827.6s 721.6s 882. l s 279.7s(2.58x ) 307 .3s(2.69x ) 
ResNel-50 428.2s 435.4s 348.2s 356.8s 153,0,(2.27 X) 160.8s(2.21 X) 
ResNet-34 118.3s 112.3s 80.5s 89.5s 49.53s( l .62x ) 41.8s(2.14x ) 
ResNet-18 IOI.6s 103.71s 83. ls 111.7s 47.78s(l .74x ) 49.19s(2.llx ) 
VGG-11 65.29s 72.13s 65.8s 69.4s 33.29s( l.97x ) 25.31s(2.75x ) 
VGG-16 151.23s 154.5s 163.2s 159.4s 64.54s(2.34x ) 75.05s(2.05 X) 

the speedup of SPOT. Since the blocks with larger feature map 
contain more entry values and need more output ciphertexts to 
be extracted, Cheetah shows less runtime performance boost 
for mobile/loT clients in starter blocks. Thus, we compare 
the best running-time performance with SPOT instead of 
a specific method. Overall, SPOT achieves up to 4 x and 
3 x speedup compared to CrypTFlow2 and Cheetah. With 
structure patching and overlap tweaking, SPOT is able to 
efficiently carry out HE computation under limited resources 
at mobile/loT clients, by splitting the input into a series of 
patches, and minimizing the overlap between two patches 
to enable small cryptographic parameter selection for faster 
HE operations. For example, SPOT demonstrates 4 x speedup 
on IoT controller in a bottleneck block with an input size 
28 x 28, and there is nearly 3 x speedup in a basic block 
with the number of input channels Ci = 512. At last, a 
significant speedup of SPOT over CrypTFlow2 and Cheetah 
is also observed in Table IX for blocks in VGG-16. 

D. End-to-End Performance on CNNs 
We finally evaluate the total execution time on an en-

tire CNN model for SPOT. As shown in Table X, SPOT 
achieves a speedup of up to 2.5 ~ 3x for the ResNet 
series, and a speedup of 2.7 ~ 2.8x for the VGG series, 
compared with Cheetah and CrypTFlow2, respectively. This 
speedup is consistent with the ones reported for the various 
individual blocks in the previous subsection. This running 
time improvement demonstrates the efficiency of the novel 
design of structure patching and patch overlap tweaking, which 
work together to significantly reduce the computation time 
of privacy-preserving MLaaS with memory-limited mobile 
clients. Even though Cheetah shows large acceleration for 
desktop clients by avoiding rotations, it still faces linear com-
putation stall problem due to ciphertext dependency. Moreover, 
it extracts each useful polynomial coefficient into a ciphertext, 
thus increasing the number of ciphertexts and corresponding 
processing time. These two bottlenecks prolong the total ex-
ecution process, making Cheetah's performance improvement 
negligible compared to CrypTFlow2 in the tiny client setting. 

V. CONCLUSION 

This paper has introduced SPOT, a novel framework for ma-
chine learning as a service (MLaaS) with resource-constrained 
clients. SPOT features a novel design of structure patching and 
patch overlap tweaking to resolve the problems of computation 
stall at the server and inflexible cryptographic parameters 
selection that are faced by the current state-of-the-art privacy-
preserving MLaaS frameworks. SPOT has demonstrated up 
to 2 x higher memory utilization at the clients, and an overall 
speedup of up to 3 x on modern CNN models such as ResNet 
and VGG. 
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