
1318

2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDCS60910.2024.00124

2
0

2
4

 I
E

E
E

 4
4

t
h

 I
n

t
e

r
n

a
t
io

n
a

l
C

o
n

fe
r
e

n
c
e

 o
n

 D
is

t
r
ib

u
t
e

d
 C

o
m

p
u

t
in

g
 S

y
s
t
e

m
s
 (

IC
D

C
S

)
|

 9
7

9
-8

-3
5

0
3

-8
6

0
5

-9
/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
IC

D
C

S
6

0
9

1
0

.2
0

2
4

.0
0

1
2

4

SPOT: Structure Patching and Overlap Tweaking
for Effective Pipelining in Privacy-Preserving

MLaaS with Tiny Clients
Xiangrui Xu

Department of Computer Science
Old Dominion University

Norfolk, USA
xxu002@odu.edu

Qiao Zhang
Department of Computer Science

Chongqing University
Chongqing, China

qiaozhang@cqu.edu.cn

Rui Ning
Department of Computer Science

Old Dominion University
Norfolk, USA

ming@cs.odu.edu

Chunsheng Xin
Department of Electrical & Computer Engineering

Old Dominion University
Norfolk, USA
cxin@odu.edu

Abstract-Machine Learning as a Service (MLaaS) has paved
the way for numerous applications for resource-limited clients,
such as IoT/mobile users. However, it raises a great challenge
for privacy, including both the data privacy of clients and
model privacy of the server. While there have been extensive
studies on privacy-preserving MLaaS, a direct adoption of
current frameworks leads to intractable efficiency bottleneck
for MLaaS with resource constrained clients. In this paper, we
focus on MLaaS with resource constrained clients and propose
a novel privacy-preserving framework called SPOT to address a
unique challenge, the memory constraint of such clients, such as
IoT/mobile devices, which results in significant computation stalls
at the server in privacy-preserving MLaaS. We develop 1) a novel
structure patching scheme to enable independent computations
for sequential inputs at the server to eliminate the computation
stall, and 2) a patch overlap tweaking scheme to minimize
overlapped data between adjacent patches and thus enable more
efficient computation with flexible cryptographic parameters .
SPOT demonstrates significant improvement on computation
efficiency for MLaaS with IoT/mobile clients. Compared with the
state-of-the-art framework for privacy-preserving MLaaS, SPOT
achieves up to 2 x memory utilization boost and a speedup up
to 3 x on computation time for modem neural networks such
as ResNet and VGG.

Index Terms-Mobile Computing, Privacy-preserving, Ma-
chine Learning as a Service, Structure Patching, Homomorphic
Encryption.

I. INTRODUCTION

The prevalence and widespread adoption of Deep Leam-
ing (DL) techniques are evident in various domains, e.g.,
telehealth [l], [2], where patients can conveniently upload
their pathology images for diagnosis. However, designing and
training deep neural network models usually require substan-
tial expertise in DL and significant data and computational
resources, posing technical barriers for most end-users. To
address such challenges, cloud providers have introduced

Hongyi Wu
Department of Electrical & Computer Engineering

University of Ariwna
Tucson, USA

mhwu@arizona.edu

MLaaS [3], as illustrated in Fig. 1, where a proprietary DL
model is well-trained and hosted on the cloud, and clients only
need to submit queries (i.e., inference requests) to the cloud
and receive the inference results (i.e., model outputs) through
a web portal.

mobile client

. @] I

loT client .,/;iJ ú = mobile client

•
encryptM atal f enc~pted result r.:]
ú = ~ ú =
ú = • ú =

IOT client loT client

• <3 •
Fig. l. System architecture of MLaaS with mobile clients.

While MLaaS is a valuable tool for efficiency and produc-
tivity, privacy has emerged as a fundamental concern for both
clients and servers. From the clients' standpoint, there is an
urgent need to safeguard their sensitive information, such as a
patient's medical records, against unauthorized access by any
entity, including the server. On the other hand, servers strive
to prevent the disclosure of proprietary model parameters,
developed through significant investments, to clients. Legal
frameworks such as the General Data Protection Regulation
(GDPR) in the European Union and the Personal Data Protec-
tion Act (PDPA) in Singapore mandate the protection of data
from unauthorized disclosure. The Health Insurance Portability
and Accountability Act (HIPAA) specifically removes sensi-

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

1319

tive information to protect clients' privacy. While these efforts
are instrumental for privacy protection, they may potentially
sacrifice valuable information, thus degrading performance.
Moreover, recent studies have show that even under the pro-
tection of these regulations, attackers may still infer privacy-
sensitive data by exploiting available plaintext information [4].
Consequently, there is a pressing requirement to establish
secure mechanisms that guarantee the confidentiality of both
client's data and server's model parameters in MLaaS.

At the same time, the ubiquity of embedded devices
and smartphones makes them ideal devices for end-users in
MLaaS. For example, there was over a 101 billion USO market
in 2022 and is expected to hit around USO 178.33 billion by
2032 for the embedded system market [5]. A 2020 survey by
Ooxirnity also showed that 45% of patients use mobile phones
for telehealth services [6]. Various MLaaS applications are
often involved with IoT clients (e.g., wearable devices), such
as surveillance object detection [7], gesture recognition [8],
user verification [9], human activity monitoring [10], and
medical health monitoring [11]. To this end, we study MLaaS
with IoT/mobile clients in this paper and aim to address the
unique challenges raised by loT/mobile clients in privacy-
preserving MLaaS.

A. Our Contributions

To tackle the challenges posed by mobile clients in the
context of privacy-preserving MLaaS, we introduce an inno-
vative scheme called SPOT (Structure Patching and Overlap
Tweaking). This approach focuses on optimizing the convolu-
tion computation, which is widely adopted as a key module
in a wide range of modem deep learning models. It not only
addresses the challenges of linear computation stall arising
from the memory constraints but also enables the utilization
of smaller-parameter HE operations tailored for small-footprint
clients, as in Sec. 11-F. This, in tum, leads to a reduction in
computing time under a guaranteed security level.

As illustrated in Fig. 2, SPOT splices the input of linear
functions into a number of patches, each of which consists of
a portion of all channels. It can adapt the patch size (i.e., length
and width) to fit the slot capacity of the HE ciphertext. This
is in a sharp contrast to the traditional channel-wise packing
in current frameworks, where an entire channel or multiple
channels must be packed into a ciphertext. The benefit of our
design lies in two folds. First, the convolution-independent
nature between the patches enables parallel pipelining using
multi-threading, thus mitigating the problem of linear compu-
tation stall and achieving high computation efficiency. Second,
the ability of flexibly adapting patch size enables SPOT to
choose smaller-parameter HE to calculate the linear function,
thus further reducing the computation time.

While the proposed patching scheme is promising, it re-
mains nontrivial to implement for achieving optimal perfor-
mance. First, the computation procedures (such as convolu-
tion) must be revamped to effectively leverage the patches
to obtain correct results. This will be further discussed in
Sec. Ill-A. Second, the patches must overlap with each other

Channel-wise packi ng

~--- In-Memory

cs Encrypt

StruPatching packing

Encrypt

feature maps

ú =
l-11 c,

feature m aps

Fig. 2. Channel-wise HE packing versus structure patching based HE packing.

to perform the correct convolution computation, resulting in
additional overhead. To mitigate such a problem, we pro-
pose tweaking the patch overlaps by carefully crafting a
small number of auxiliary ciphertexts that encrypt overlapped
data between patches, aiming to reduce the overlap between
patches and decrease the cryptographic parameters used for
ciphertexts, thus improving the efficiency of the involved HE
computation. The details will be discussed in Sec. Ill-B

We implement SPOT based on the SEAL library for con-
volution computation and SCI-Nonlinear module from
CrypTFlow2 for the non-linear computation such as ReLU.
We conduct extensive experiments on different small-footprint
devices over various neural networks such as ResNet and
VGG. SPOT demonstrates up to 3x speedup in inference
time and 2 x improvements in memory utilization compared
to state-of-the-art frameworks.

The rest of the paper is organized as follows. Section 11
introduces the system framework and cryptographic tools
adopted in SPOT. The details of SPOT are elaborated in Sec-
tion Ill. The experimental results are illustrated in Section IV.
Finally, Section V concludes the paper.

II . BACKGROUND AND RELATED WORKS

Notation. We use C; and C0 to denote the number of
input and output channels, respectively. Cn is the number
of channels packed in a single ciphertext. (A) P denotes the
additive secret share of message A for party PE {0, 1 }. [A]c is
the ciphertext of A. S' is the number of slots in a ciphertext
under given cryptographic parameters. D is the polynomial
modulus degree of HE.

A. System Framework
We focus on the MLaaS system as depicted in Fig. 1.

Specifically, the client C possesses sensitive data, such as
pathology images of a patient, while the server S holds a
well-trained OL model and outputs the model prediction given

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

1320

the client's input. As discussed in Section I, privacy concerns
arise during the interaction between C and S. Specifically, the
client attempts to prevent any third party, including the server,
from accessing its private data, while the server is unwilling
to disclose its proprietary model parameters, such as weights
and kernels, to the client. As such, privacy-preserving MLaaS
aims to ensure that the client's input remains fully protected
from the server, while the server's model parameters keep
completely concealed from the client. Although the computing
efficiency acts as a bottleneck for practical applications of
privacy-preserving MLaaS and a series of works have made
encouraging progress for efficiency enhancement with pow-
erful client, we have observed two key challenges namely
memory constraints and cryptographic parameter selection for
mobile clients, as pointed out in Section 11-F. In this paper, we
aim to address these challenges through the SPOT framework.

As for the proprietary model at S, we concentrate on
Convolutional Neural Networks (CNNs) that have exhibited
remarkable performance in various deep learning tasks [12].
Generally, a CNN includes a stack of layers to capture intricate
properties of the input data, such as the spatial relationships
among pixels within an image. A layer always contains linear
and non-linear functions. The linear functions include dot
product and convolution, while the non-linear ones contain
activation functions such as the Rectified Linear Unit (ReLU)
and pooling (e.g., max pooling and mean pooling). Since
the computation overhead for linear functions dominates the
overall cost for privacy-preserving MLaaS with mobile clients,
as discussed in Section 11-F, our proposed SPOT addresses the
efficiency optimization for linear computation in the inference
process.

B. Packed Homomorphic Encryption

The Homomorphic Encryption (HE) is a class of crypto-
graphic primitives that allow linear computations on encrypted
data without decryption, and is primarily used to compute the
linear functions in privacy-preserving MLaaS [13]-[15]. Mod-
em HE techniques [16], [17] are able to pack a vector of values
into one ciphertext, and perform HE operations in a Single-
Instruction-Multiple-Data (SIMD) manner [18] to amortize
operation cost. In this work, we adopt the SIMD-style BFV
scheme [16] to compute linear functions in CNNs. The main
HE operations include HE Multiplication (Mult), HE Addition
(Add), and HE Rotation (Rot). Mult performs multiplication
between a ciphertext [x]c and plaintext y, and produces the
ciphertext [x0y]c = [x]c 0y where x = { xo, x1, • • • , xs,-1},
Y = {yo,Y1, • • • ,Ys1-1}, and 0 is the element-wise multi-
plication between encrypted/plaintext vectors. Add conducts
the summation between a ciphertext [x]c and plaintext y

(or ciphertext [Y]c), and outputs [x + Y]c = [x]c + y (or
[x + Y]c = [x]c + [Y]c) where + is the element-wise addition
between encrypted/plaintext vectors. Rot does cyclic rotation
of l positions over ciphertext [x]c and yields [x]c where
x = {xi,··· ,xs1 -1,xo,X1-d- The efficiency of HE oper-
ations depends on pre-determined cryptographic parameters
such as S' and smaller cryptographic parameters enable faster

HE operations [19], [20]. Our proposed SPOT features with
a flexible adoption of small cryptographic parameters under
guaranteed security level to accelerate the linear computation
in CNNs.

C. Additive Secret Sharing

Given an original message mat party PE {O, 1}, one of the
two Additive Secret Shares (ASS) is constructed by uniformly
sampling randomness rand setting (m) P = r, while the other
share is formed as (m) l-P = m - r. To reconstruct the
message, one can simply add two shares m = (m) p+(m) 1_p•
In this work, we utilize ASS to share the encrypted output of
linear functions within CNNs to enable subsequent OT-based
computation for non-linear functions.

D. Threat Model

Sinillar to the previous works such as CrypTFlow2 [15],
GAZELLE [13], GALA [21] and Cheetah [22], SPOT follows
the two-party semi-honest threat model. To be more precise,
the client C and the server S follow the protocol but attempt
to infer each other's input, namely the client's input data and
the server's model parameters, during the inference process.
Our protocol, like CrypTFlow2, demonstrates the security
of network framework based on the cryptographic tool of
ideal/real security, in which the semantic security of PHE and
secret sharing scheme.

E. Deep Leaming with Tiny Devices

On-device deep learning aims to enable efficient infer-
ence/training process given compact models at IoT/mobile
client [23]-[26]. Although it deals with model computation
under client's resource limitation, straightforward application
to privacy-preserving scenarios encounters fundamental prob-
lems. On the one hand, releasing the model to IoT/mobile
client invades server's data privacy for model parameters.
On the other hand, there is no direct solutions to tackle the
two unique challenges for privacy-preserving MLaaS with
loT/mobile client, as in Section 11-F. By structure patching and
overlap tweaking towards the computation process of linear
and non-linear functions in neural models, the proposed SPOT
enables efficient privacy-preserving inference with loT/mobile
clients. It is worth mentioning that a Channel-By-Channel
Packing approach was introduced in [27]. It focuses on im-
proving the throughput and amortizing the expensive key-
switching of batch inference by packing multiple images of
same channel into single ciphertext in fully homomorphic
encryption scheme where the client is not involved in compu-
tation. It is based on different design compared with SPOT. It
does not address the computation stall issue caused by output
ciphertext dependency, which is the bottleneck in our IoT
device-based clients scenario. In addition, it does not consider
the speedup benefit of smaller cryptographic parameter while
SPOT can further improve its efficiency by more flexible
parameter selection.

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

1321

TABLE I
MICROBENCHMARKS RUNTIME FOR CONVOLUTION LAYERS OF

DIFFERENT INPUT DATA SIZES (w X h) AND NUMBER OF INPUT/OUTPUT
FEATURE MAPS (Ci , C0) . THE NUMBERS HIGHLIGHTED IN RED INDICATE

THE PERCENTAGE INCREASE OF THE RUNTIME BY THE MOBILE CLIENT
COMPARED TO THE DESKTOP COUNTERPART.

Conv size Desktop client Mobile client
(wlh lC,ICo) 3 ciphertext 2 ciphertext 1 ciphertext

561561641256 3.405s 5.14ls(51.08%t) 6.0ls(76.5%t) 7.797s(l 28.98%t)
2s12sp2s1512 7.243s 8. l 67s(l 2.75%t) 8.503s(J7.39%t) J0.073s(39.07%t)
14114125611024 21.814s 22.234s(1.92%t) 22.42s(2. 77%t) 22.07s(5.75%t)

717151212048 73.245s 73.476s(0.31 %t) 73.497s(0.34%t) 73.9s(0.89%t)

F. Challenges in Privacy-Preserving MLaaS with Tiny Clients

To address the privacy concerns of the client and pro-
tect the ML models of the server, several privacy-preserving
MLaaS frameworks have been proposed [14], [21], [28]-[30]
to employ cryptographic primitives such as Homomorphic
Encryption [16], [17], Garbled Circuits (GC) [31], Oblivious
Transfer (OT) [32], and Secret Sharing (SS) [33], in the
computation process of DL models, so that the client data
is encrypted and the server conducts computation in the
cryptographic domain. Among these cryptographic primitives,
HE is widely used for linear functions as it inherently supports
linear computation [16], [34], while SS and OT are commonly
used to compute nonlinear functions [28].

Observation 1: Memory Constraint of Mobile/IoT
Clients. Despite significant progress in improving the com-
putation efficiency of privacy-preserving MLaaS, the existing
secure inference protocols assume that the client possesses
sufficient computation power. Our preliminary experiments
show that the computation efficiency drops significantly if the
client is an IoT/mobile device with limited memory capacity.
Specifically, we performed an evaluation of the convolution
layer, which is a primary building block of many modem
DL models, by using a desktop client versus a mobile client
(Nexus 6), and their CPUs' clock speed are comparable
3.2GHz (AMD EPYC 7413) and 2.7GHz (Snapdragon 805),
respectively. However, the execution time of the mobile client
is approximately twice as long as that of the desktop counter-
part, as shown in Table I that compares the running time for
convolution layers with different sizes in ResNet.

Our careful analysis reveals that, given the memory con-
straint, a mobile client can only hold a limited number of
ciphertexts. For example, the average memory budget of a
typical Android device like Nexus 6 can be up to 100MB
for each running application. However, the size of HE public
and secret keys can be substantial, occupying approximately
80.23MB of memory. A ciphertext encrypted in polynomial
form is often around 0.7-l.5MB. Considering other necessary
memory consumption (usually around 10MB or more), the
device can only carry one ciphertext at one time, depending on
the fluctuation of other system memory usage. Notwithstand-
ing the IoT devices usually do not have strict memory limits
on each application, most IoT devices have much less memory
available than mobile phones, which is about l-2MB of SRAM
for holding at most one ciphertext at one time. Fig. 3 illustrates

Desktop Client

Seiver

loTClient

Server

Stall time

Performance
degradation

a HE encryption for one ciphertext o ReLU process

0 convolution process ---• ciphertext from client to server

! =HE decryption for one ciphertext ---• ciphertext from server to client

O output ciphertext addition -----+- secert share transmission

Time

Fig. 3. Channel-wise packing on desktop client versus mobile client.

TABLE II
TOTAL EXECUTION TIME ON RESNET-5O ON DESKTOP CLIENT VERSUS

lOT CLIENT(DESKTOP CLIENT STATS ARE FROM [22]) .

Model Desktop Client IoT Client

CrypTFlow2 Cheetah (Speedup) CrypTFlow2 Cheetah (Speedup)

ResNet50 295.7s 80.3s (260%) 428.2s 348.2s (20%)

the impact of memory constraints based on the state-of-the-
art frameworks such as CrypTFlow2 [15] and Cheetah [22].
The desktop client, with its abundant memory resources, can
generate all input ciphertexts instantly and perform involved
computation by leveraging multi-threading [23], [35]. This
allows for seamless execution of subsequent Convolution and
ReLU operations with minimal additional delay. Similarly,
the corresponding decryption for several ciphertexts can be
processed by the desktop client at once. In contrast, the
mobile client, which is limited in terms of memory, has to
generate each input ciphertext sequentially, thus limiting the
efficiency of multi-threading since all of the ciphertexts are
needed to compute the linear function (e.g., convolution). We
name this problem as linear computation stall, which results
in a significant delay. Although a series of works [15], [22]
have been introduced to improve the execution speed, they
focus on powerful clients and their the speedup is significantly
decreased for a memory-constrained client. As shown in
Table II, the speedup of Cheetah over CrypTFlow2 (two recent
approaches that are often considered as the state-of-the-art
in the literature) is reduced from 260% to only 20% when
switching from a desktop client to an IoT device.

Observation 2: Impact of Cryptographic Parameters Se-
lection. We break down the computation time into three parts,
shown in Table III: 1) client-HE operations, namely encryption
and decryption at the client; 2) server-HE operations, namely
HE addition, HE Multiplication, and HE Rotation at the server;
and 3) nonlinear or ReLU operations, namely the OT-based

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

1322

ReLU computation. The results are based on the assumption
that the IoT/mobile client holds only one ciphertext. As we
can see, the HE operations dominate the computation cost for
the whole layer. To accelerate the overall performance, it is
key to optimize the efficiency of HE operations.

An important feature of HE operations is that smaller
cryptographic parameters (e.g., a smaller number of slots in a
ciphertext) enable faster computation [19]. For example, given
the 128-bit security level, the cost of one HE operation using
the CKKS scheme (to be discussed in Sec 11-B) with 4096 slots
can be 2 to 4 times faster than that with 8192 slots [16], [19].
Such speedup is particularly valuable for loT/mobile clients
given its limited computation power. However, the state-of-
the-art approaches such as CrypTFlow2 [15] do not have
much flexibility on cryptographic parameters selection, e.g.,
the number of slots for the ciphertext cannot be smaller than
the size of one input channel, as their design packs one or
more channels into a ciphertext to optimize performance.

As the size of one input channel can be very large in various
practical applications, the state-of-the-art frameworks have to
choose large cryptographic parameters to guarantee a desired
security level. For instance, CrypTFlow2 sets its number of
slots in BFV no smaller than 8192 [15]. Such constraint
on cryptographic parameter selection significantly limits the
flexibility of current frameworks. This limitation hinders the
ability to efficiently decrease the computation time of MLaaS
by incorporating smaller-parameter HE operations.

TABLE ill
A BREAKDOWN OF COMPUTATION TIME OF THE CONVOLUTION LAYER

INTO THE THREE COMPONENTS OF MLAAS, TOGETHER WITH THE
PERCENTAGE AMONG THE TOTAL EXECUTION TIME. THE MOBILE CLIENT
MEMORY IS ASSUMED TO BE ABLE TO ACCOMMODATE ONE CIPHERTEXT.

Conv size(wlhlCilCo) client-HE server-HE ReLU

561561641256 5.376s(61 %) 3.03s(34%) 0.29s(3%)
2812811281512 2.688s(27%) 6.86s(69%) 0.34s(3%)

14114125611024 1.344s(6%) 21.06s(93%) 0.24s(1%)
717151212048 0.672s(1%) 72.1s(98%) 0.18s(l %)

Ill. PROPOSED SPOT SCHEME

In this section, we present the SPOT framework which
supports secure inference with resource-constrained clients.
First, we introduce the channel-wise packing that is adopted
in the state-of-the-art privacy-preserving frameworks. Specif-
ically, Cn out of Ci input feature maps are packed into one
ciphertext where Cn = l S' / HW J, S' is the number of slots
in a ciphertext, and H and W are the height and width of a
feature map, respectively. Fig. 2 shows an example of channel-
wise packing with Ci = 4 and Cn = 2.

Channel-wise packing needs to pack each entire input
feature map into a ciphertext, which requires a large S' for
a large input feature map, and thus makes it infeasible for
IoT/mobile clients with limited resources. The direct non-
overlap patching divides the original feature maps into a series
of patches, each with size H' x W' x Ci where usually

H' «: H and W' «: W, as shown in Fig. 2. Then each
patch is encrypted into one ciphertext. However, as patches
must overlap with each other to make sure the following
convolution with respect to all patches is equivalent to the
result of the original convolution, such vanilla patching leads
to a fixed overlap size towards the kernel dimensions, which
disables the patching-based packing in layers with large Ci to
adopt faster HE with small cryptographic parameters. To make
patching-based packing truly advantageous, we first propose in
Section III-A a structure-patching-based pipelining that packs
N patches into one ciphertext such that H'W'CiN ú = S'
by adapting H', W', and N. Then the overlap tweaking
is designed in Section III-B to minimize the overlap size
and enable efficient computation with small cryptographic
parameters in layers with large Ci,

A. Structure Patching Pipelining

Recall that we focus on privacy-preserving MLaaS with
IoT/mobile clients where the linear and non-linear functions
in CNN models are computed by packed HE and OT, respec-
tively. Based on the adaptive packing for patches, we intend
to compute the convolution efficiently by first performing the
proposed structure patching pipelining. For a lucid description,
we first present mainstream HE-based convolution based on
channel-wise packing namely Single Input and Single Output
(SISO), and Multiple Input Multiple Output (MIMO). Direct
application of SISO and MIMO to MLaaS with loT/mobile
clients causes linear computation stall as discussed in Sec-
tion 11-F. As such, we propose the structure-patching-based
computation to address this challenge.

SISO: SISO computes the convolution with Ci= C0 = 1.
Specifically, given a kernel with size kH x kw, each value
of the convolution output is the weighted sum of elements
in the input feature map that are within the kernel window.
For example, the first value of the convolution output in
Fig. 4 is obtained by placing the central element of kernel
K namely F5 at the first number of input feature map X
namely Ml, and the resultant value is the sum of correspond-
ingly multiplied numbers in X within K's window namely
(F5Ml +F6M2+F8M4+F9M5), so on and so forth. Therefore,
the value of the convolution output is the sum of at most
kHkw ambient numbers of input feature map which are
weighted by kHkw elements in kernel.

As such, we get the convolution output of SISO by rotating
[X]c multiple times, to produce kHkw ciphertexts such that
the kHkw ambient numbers from [X]c, which correspond to
the i-th value of the convolution output, are able to appear at
the i-th location of those kHkw rotated ciphertexts, as shown
in Fig. 4. By properly assigning the to-be-multiplied kernel
values for the number at the i-th location in each of those
kHkw ciphertexts, which results in kHkw kernel plaintexts,
the convolution output is obtained by multiplying each of
kHkw pairs of rotated ciphertext and kernel plaintext, and then
summing these kHkw multiplied ciphertexts. For example, the
fifth value of the convolution output in Fig. 4 is the sum of
FlMl, ... , F9M9. In order to get this sum at the fifth location

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

1323

Ml M2 M3

M4 MS M6

M7 MS M9

F1 F2 F3

F4 FS F6

F7 FB F9

Fig. 4. Computation of SISO.

in [X]c, [X]c is rotated to form kHkw = 9 ciphertexts, each
of which makes one of nine values in the kernel, namely
Ml to M9, located at the fifth location in X. By multiplying
those nine rotated ciphertexts with nine value-assigned kernel
plaintexts and summing up the multiplied ciphertexts, the fifth
value of the convolution output is obtained. Since each rotation
works on all numbers of [X]c, the i-th (i =/ 5) value of
convolution output is obtained simultaneously in that resulted
ciphertext.

MIMO: MlMO deals with more general convolution where
Ci and C0 are larger than one. In such case, the kernel
is with size kH x kw x Ci x C0 , and each of the C0

convolution outputs is the sum of Ci SISO convolution. MlMO
first packs Cn out of the Ci feature maps in one ciphertext
which produces r CdCn l ciphertexts in total. For each of
those r CdCn l ciphertexts, it produces partial SISO for all
of the C0 convolution output and the final convolution is
obtained by adding SISO corresponding to the same output
channels. The computation is described as follows. 1) For
the i-th (1 :S i :S (rCd Cn l)) input ciphertext, it packs
(i - l)Cn-th to (iCn - 1)-th feature maps. 2) For each group
of Cn convolution output, Cn SISO ciphertexts are produced
between i-th input ciphertext and each of Cn diagonally-
formed kernel sets. 3) Such Cn SISO ciphertexts are rotated to
make them correspond to the same output channels, and these
rotated ciphertexts are added to form partial SISO for a group
of Cn output convolution. 4) All partial SISO corresponding
to the same output channels are summed up to finally obtain
Cn out of C0 convolution.

Fig. 5 shows an example of MIMO with C; = C0 = 4
and Cn = 2. As for the ciphertext [Ct1]c containing input
feature maps Cl and C2, it first produces Cn = 2 SISO ci-
phertexts with diagonally-formed kernel sets {Kll , K22} and
{K21, K12}. Since the ciphertext with respect to {Kll, K22}
corresponds to partial SISO for the first and the second convo-
lution output while the other one with respect to {K21 , K12}
corresponds to partial SISO for the second and the first convo-
lution output, the latter ciphertext is rotated to make the rotated

Fig. 5. Computation of MIMO.

ciphertext correspond to partial SISO for the first and the
second convolution output. After that, the rotated ciphertext is
added with the ciphertext with respect to {Kll, K22} to form
the partial SISO for the the first and the second convolution
output. [Ct1]c similarly forms partial SISO for the third and the
fourth convolution output with diagonally-formed kernel sets
{K31, K42} and {K41, K32} . Similar logic is applied to ci-
phertext [Ct2]c with diagonally-formed kernel sets {K13, K24}
and {K23, K14}, and {K33,K44} and {K43, K34}. Finally,
the partial SISO for the same output channels are added
together to get the desired convolution.

Structure Patching: Since MIMO needs to add all SISO
ciphertexts for the same output channels to finally obtain the
desired result, as described in step 4 above, it poses noticeable
stall time to get those SISO ciphertexts with a tiny client
because it is not feasible to encrypt all input ciphertexts
simultaneously given the memory constraint of tiny clients, as
discussed in Section 11-F. Such memory constraint forces tiny
clients to generate and send r CdCn l input ciphertexts to the
server sequentially, as shown in the left part of Fig. 6, and the
server thus has to sequentially get needed SISO ciphertexts
to obtain the final convolution output, which leads to stall
inevitably.

Such stall time is due to the dependency between input
ciphertexts to get SISO ciphertexts that correspond to the
same output channel. Therefore we are motivated to remove
such dependency to reduce the stall time. Having observed the
issue of incomplete channels within each ciphertext leading to
dependency, we slice the input with size H x W x C; into a
series of smaller patches with size H' x W' x Ci. Since each
patch contains values from all input channels, the convolution
with a single patch is able to obtain a group of final values
in an output channel, while the stall can be eliminated as
this operation can be completed within the memory constraint
of a mobile client by selecting a sufficiently small patch
size H' x W' x Ci to fit the memory size. Moreover, the
convolutions with different patches are independent from each
other.

Next, we first discuss the convolution where C~ = Ci
namely each ciphertext packs one patch. This can be divided

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

1324

Channel-wise packing

channell to channel4 Stall time
ú =ú =

Client

Server

---- ,..
- -,-------+---'-,,......;-+-----'====;.;... Time --- ½--' -· -

waiting for all SISO convolutions
ReLU process
Convolution process

! =HE Encryption for one ciphertext

Client

Server

Structure patching pipelining

patch I to patch4

ú =----
·1 ... _ speedup

J J " = --~

------+---;---;----•• Time

L:;:::::: • •.l :
' . I

! =HE Decryption for one ciphertext
... .,. ciphertext transmission from server to client
$ =ciphertext transmission from client to server

$ = sercert share transmission

Fig. 6. Left: channel-wise HE packing with mobile client. Right: Structure patching based HE packing with mobile client. Both cases compute convolution
and subsequent ReLU.

r---. ,,.-------------. I

á ! h ! ä = i¢![mei
: :; : (ii
á ! ! ä Å ì F =
l K31 K32 ! !~~-----~-----~~
:;,:-"-:Q : K31 K42
' ' '
: K41 K42 : : 1---+--1 .;l
' ' ' ' ' ' I 1 IK41K32
I K2 I I

EB
+ - ~-

I C1K31 I C2K42 I

+

.. -- -- -- ----- _.. [~_~_-_-=_-= __ :::_= __ =_-_~_~ __ ------- --- ------- --- --- -- ---- --- ----
EB¢ I C2K3+ 1K41 I Rot

'

(a) Computation in the case C0 c". C;.

(b) Computation in the case C0 < C; .

Fig. 7. Convolution with structure patching.

into two cases, 1) C0 2: C; and 2) C0 < C;. For the case
of C0 2 C;, we revamp the convolution process by dividing
the kernels into blocks with a size equal to C;. We then apply
the MIMO logic of convolution between [Ct1]c and kernel
sets to obtain the result. The ciphertext [Ct1]c, containing all
C; input channels, is the only input ciphertext required to
calculate the two output ciphertexts, as shown in Fig. 7 (a).
As for the computation with C0 < C;, we design to split the
kernels into the blocks with its size equal to C0 • To produce
the needed ciphertext, we concatenate all the same direction
diagonally-formed kernel sets into one set. After C0 SISO

TABLE IV
CIPHERTEXT SIZE AND OPERATION COST ON DIFFERENT PARAMETER

LEVELS.

Parameter level(D)

16384
8192
4096

Ciphertext size (Byte)

789617
394865
131697

Mult cost (s)

0.0015
0.0007
0.00014

ciphertexts are produced between the input ciphertext and C0

kernel sets, we align and add the rotated SISO ciphertexts
to produce the output ciphertext with C; - 1 rotations. An
example of the overall process is illustrated in Fig. 7 (b).
Note that each row of kernel sets produces one output channel
through convolution with the input data, and the number of
rows is C0 • The number of elements in a row is equal to C;, the
number of input channels. To fit the convolution with the input
ciphertexts, the kernel sets are transformed into a diagonal
form and concatenated according to the input channels in
input ciphertexts as illustrated in Fig. 7 (b) Step (a). The final
convolution result is then obtained through a sequence of SISO
Rot for aligning the same row SISO convolutions and Add
operations as shown in Step (b).

In this way, each incoming ciphertext to the server, which
represents a patch of all input channels as illustrated in Fig. 2,
is eligible to complete the convolution computation to get
a group of final values in the output channels, which can
be also seen as a 'patch' of the output channels, without
waiting for other input ciphertexts (i.e., the ciphertexts for
other patches) as we use only one input ciphertext to produce
output ciphertexts for various kernel blocks. Hence SPOT
effectively eradicates the stall time, as demonstrated in the
right part of Fig. 6.

Note that we are able to extend above computation for one
patch to N patches namely C~ = NC;. By adapting H' , W',
and N of the patch size, the slots in each ciphertext can be
fully utilized, which contributes to producing fewer cipher-

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

1325

texts and thus reduces computation overhead. Meanwhile, a
ciphertext encrypted with smaller cryptographic parameters
features faster HE operations. For example, Table IV shows
the relationship between different parameter levels and the
corresponding cost of BFV in the SEAL library [19]. Here the
higher the parameter level is, the larger the associated crypto-
graphic parameters are. Under the 128-bit security level, the
HE cost such as Mult with smaller cryptographic parameters
is significantly smaller, as listed in Table IV.

Therefore, we are motivated to set smaller cryptographic
parameters to enable faster convolution. On the one hand, the
channel-wise packing makes it not possible to utilize HE with
smaller cryptographic parameters because the input size H and
W for practical data often needs large cryptographic parame-
ters such as S'. In contrast, H' , W', and N are adjustable in
our structure patching pipelining scheme. Thus a smaller S' is
possible such that H'W' NCi ú =S', which further boosts the
computation efficiency of the patching-based HE computation.
For example, by splitting the input with size 56 x 56 from
ResNet [12] into a series of patches with size 4 x 4, we are able
to reduce the cryptographic parameter S' from D = 16384
with C~ = 2 to D = 2048 and other corresponding parameters
accordingly, which reduces the computation time.

B. Patch Overlap Tweaking

Recall that a convolution is to align the center of a kernel
with a certain size, say 3 x 3, to a specific location in the input
feature map, and then perform the corresponding dot-product,
followed by a summation. Since each patch contains only part
of the input feature map, the convolution corresponding to a
boundary location of a patch would run into a problem, as
part of the surrounding areas of that location is not in this
patch, but in the adjacent patch. We shown an example of the
problem in Fig. 8. To generate the convolution result of e, the
filter center K5 is placed on top of e in patch [b]c and results
in {bK2 + cK3 + eK5 + f K6 + hKs + iKg} in the position
of e of the share (b * K - r)c, where r denotes the random
number share generated by the server. Same for patch [a]c,
the convolution result is { aK2 + dK5 + gK8} by placing the
center of the filter K on top of d. Both convolution results are
incorrect since some needed feature map values are missing for
a kernel size of 3. It is clear that applying the simple patching
scheme does not recover the correct convolution result for the
values at the edge of each patch.

In order to get all desired convolution values among all
patches, the patches must overlap. For instance, we can set the
overlap size, namely the number of overlapped columns/rows
between two adjacent patches, to be r(kH + s)/21, wheres
denotes the stride size. In the example shown in Fig. 9, the
kernel K has size kH = kw = 3 with stride = 1, which
indicates the overlap size of two. In this way, the server
performs convolution for each patching-packed ciphertext in-
dependently and shares the output with the mobile client,
which is able to assemble the received share to get its right
share of convolution. Fig. 9 shows an example to get the
convolution share with patch overlap. Two adjacent patches,

Kl K2 K3
a b C

d e f *
K4 KS K6

ale
g h I [b]c

K7 KS K9

K .D,. Client received and decrypted

<a* K-r >c ---·---• I
I ---•---
' I
I ---•---
' I
I

aK2 +dKs +gKs X '

< b * K-r >c
I
I
I

---4
I
I
I

---4
I
I
I

Fig. 8. An example of incorrect results based on non-overlapping patches to
compute convolution ate and d with kH = kw = 3.

[a]c and [b]c, are encrypted by a mobile client and sent to
the server, respectively. The server conducts convolution for
each ciphertext and shares the result with the mobile client.
Upon receiving the convolution shares of the patches, the
mobile client assembles these values to form its final share of
convolution by picking out the shares of correct convolution
values (e.g., the share at the location of e in (b * K - r) c is
chosen as the final share of convolution value at that location
rather than the one in (a* K - r)c, since the latter is missing
some feature map values). Note that there is no need for two
patches to overlap when a kernel has a size of 1 x 1.

To fulfill the minimum overlap size requirement among
adjacent patches, the minimum patch size should be larger
than the minimum overlap size, otherwise the adjacent patches
are coincided and do not cover the whole feature map. For the
example aforementioned, the minimum patch size H' = W'
should be 3. Meanwhile, we observe the efficiency of smaller
cryptographic parameters as shown in Table IV and are moti-
vated to choose the smallest practical cryptographic parameter,
which is D = 4096, to pack each patch for the computation
and memory efficiency. However such combination imposes
a conflict between available slot number and the number of
entry values of one patch for typical input channel in VGG and
ResNet, taking the aforementioned example when Ci = 512
and a patch with H' = W' = 3 (i.e., 3 * 3 * 512 > 4096),
if we pack all Ci to maintain the pipelining efficiency [12],
[16], [36]. Compromising to bigger cryptographic parameters
such as D = 8192 loses around 7x computation efficiency

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

1326

[ale

<a* K-r >c
I
I
I
..... -
I
I
I ., __ -
I
I
I

ú =

a

d

g

aK, +bK2 +dK4 X
+eK5+gK1+hKs

b C Kl K2 K3

e f * K4 K5 KG

h i fbL K7 KS K9

K

n Client received and decrypted

...t)r <b*K-r>c

Replace

¢::J
---1
---· I

I
I ---· I
I
I

aK, +bK2 +cK, +dK, % =
+eK5 + fK• +gK7 + hKs + iK9

Fig. 9. Patch overlapping to compute convolution ate with kH =kw= 3.

that brings by smaller cryptographic parameters.
To address this challenge, we propose a scheme to minimize

the overlap to be as small as one, thus malting it possible to
fit the patch into a ciphertext with the smallest cryptographic
parameters (subject to 128-bit security), to enable faster HE
operations. The main idea is to craft auxiliary patches such that
the final share of convolution at the mobile client is arithmeti-
cally assembled, rather than simply selected, among shares of
patch convolution. Under this design, we are able to reduce
the overlap size to be one, to get smaller patches. Specifically,
Fig. 10 demonstrates such overlap tweaking scheme with a
kernel size kH = kw = 3 which is widely adopted in
modern CNN models such as ResNet and VGG [36]. The
auxiliary patch C is encrypted by the mobile client as [C] c

and sent to the server along with encrypted patches [A]c and
[B]c. After the mobile client receives shares of (A* K - r) c,
(B*K -r)c, and (C*K -r)c from the server, it gets a share of
the desired convolution by summing the corresponding shares
from (A* K - r)c and (B * K -r)c, and then subtracting the
share of (C * K - r)c- While an additional ciphertext namely
[C]c is introduced, smaller patches and HE with smaller
cryptographic parameters bring more computation efficiency
compared with the extra cost. This novel design enables the
structure patching in deeper layers of modern CNNs with a
large C such as ResNet and VGG.

C. Complexity comparison
Table V compares the overall complexity of convolution

computations for channel-wise output rotation and patch,
where Cm and c;,. denotes the number of input ciphertexts
for CrypTFlow2 and SPOT.

IV. EVALUATION

A. Experimental Setup
We implement SPOT based on the SEAL library [19] for lin-

ear functions such as convolution, and the SCI-NonLinear

ú =

a b C
Kl K2 K3

d e f

* K4 K5 KG
g h i

K7 KS K9
rBl

K

[Ale Lfk.

,D. Received and decrypted by mobile client

< A * K - r >c < B * K - r >c < C * K - r >c
,----.---,

+

aK1 + bK2 + dK4 bK2 + cK3 + eKs bK2 + eKs + hKs aK1 + bK2 + cK3 % =
+~+~+~+~+~+~ +~+~+~

+gK1 +hKs +iK9
Fig. 10. Patch overlap tweaking to get convolution at location e.

TABLE V
COMPLEXITY COMPARISON BETWEEN CRYPTFLOW2 AND SPOT

Method Permutation SIMDMulti Add

CrypTFlow2
Cm• C0 (Cn-1)

Cm *CoKwKh
Co c,. Cm C,. (CnKwKh - 1)

+Cm(Kw • Kh - 1)
Cm(KwKh - 1)

Cm1 CoKw Kh
, Co

SPOT
+c;,, Co (C, - 1)

Cm C, (C,KwKh - 1)
C,

module from CrypTFlow2 [15] for non-linear functions such
as ReLU. We test the performance of SPOT with the lmageNet
dataset [37] on a series of widely-adopted CNN models such
as ResNet-34 [12], ResNet-50 [12], ResNet-101 [12], VGG-
11 [36], and VGG-13 [36]. We use Google Nexus 6 and
Kinetis K27 microcontroller to serve as mobile and IoT clients,
respectively. Nexus 6 is configured with a memory between
64MB and 128MB to run Android applications as well as
perform HE operations such as encryption and decryption.
The microcontroller is equipped with Cortex-M4 CPU with
1MB SRAM and 2MB flash memory with 80MB SD card
ROM. The server runs on Ubuntu and is equipped with an
AMD EPYC 7413 24-core Processor 2.65GHz base clock
and a 64GB RAM. Similar to current state-of-the-art privacy-
preserving frameworks, the 128-bit security level is assumed
in our experiments. We select the range of cryptographic
parameters for the BFV scheme of the SEAL library [19]
subject to this security level constraint, while optimizing the
specific parameter values within this range, to enable high
slot utilization, and balance the number of ciphertexts and
computation overhead. The patch size selection used in ex-
periments corresponding to different cryptographic parameters
are shown in Table VITI. In the following, we evaluate SPOT
with regard to performance metrics including the mobile/IoT

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

1327

150 150~,---~, -~~---~---.r,,
24 • 224~12 • 11~ 56 • 56 i 28 • 28

j
: 56 * 56 : 28 • 28 14 • 14 7* 7:

120 120 120

ú =
90 ú = 90

-§
>

i 60 60

"' 1 30 --+- SPOT-Nexus 6 30
ú =Cheetah-Nexus 6 - - - Cheetah-IoT controller
- crypTFlow2-Ncxus 6 - + - CrypTFlow2-loT controller

0
4 8 13 16 4 5 6 7

Index of bottleneck block in ResNet-50
Index of basic block in ResNet-18 Index of block in VGG-16

Fig. 11. Memory utilization in various CNN models.

client's memory utilization, the computation cost of the convo-
lution process, and the overall inference time on CNN models,
compared with CrypTFlow2 [15] and Cheetah framework [22]
in IoT device client settings.

TABLE VI
PATCH SIZE (H' * W') SELECTION FOR DIFFERENT EN<;:RYPTION

PARAMETERS AND CONVOLUTION LAYERS, WHERES IS THE
CYCLOTOMIC RING DEGREE AND co_mod DENOTES COEFFICIENT

MODULUS SIZE(PLAINTEXT MODULUS= 220) .

Network layers
s' = 4096 s' = 8192 s' = 16384

(WIHICilCo) co_mod=109 co mod= 218 co_mod = 438

56156164164 8*8 16*8 16*16
2812811281128 8*4 8*8 16*8
1411412561256 4*4 8*4 8*8

7171512 1512 2*4 4*4 8*4

B. Memory Utilization at Tiny Client
We define the in-memory value as the number of feature

map entry values that are stored in per megabyte (MB) mem-
ory of the mobile/IoT client, since different packing schemes
lead to various amounts of unused slots and the number of
loaded ciphertexts. In-memory value can reflect the amount of
valid entry values loaded into the client's memory. A larger
in-memory value indicates a higher slot utilization of each
ciphertext and a higher flexibility for structure patching to deal
with HE-based computation under resource constraints. Fig. 11
compares in-memory values of SPOT with that of CrypTFlow2
and Cheetali over different CNN models, including ResNet-50
with bottleneck blocks [12], ResNet-18 with basic blocks [12],
and VGG-16 with five types of blocks [36]. The bottleneck
block includes a stack of convolution layers with different
input/output channels in kernel sizes 1 x 1, 3 x 3, and 1 x 1.
The basic block contains convolution layers with various in-
put/output channels in kernel size 3 x 3, and the block in VGG-
16 has kernels in size 3 x 3 with different output channels.
We can see from Fig. 11 that SPITT significantly improves
the memory utilization of the mobile/IoT client. Specifically,
SPITT is capable of handling up to 2x more in-memory values
in both Nexus 6 and loT controller compared to CrypTFlow2
and Cheetah. Such capability is attributed to the flexible patch

TABLE VII
RUNNING-TIME MICROBENCHMARK ON BOTTLENECK BLOCKS IN

RESNET-50.

Block type Crypmow2 Cheetah SPOf

(W IHICilCo) loT controller Nexus 6 loT controller Newts 6 loT controller Nexus 6

561561641256 8.356s 7.797s 9.97s 7.92s 3.54s(2.35x) 2.9s(2.69x)
2s12s1 12s1512 9.73s 10.073s 10.52s 9.95 2.24s(4.34x) 2.6'(3.87 X)

14114125611024 22.53s 23.07s 20.93s 22.0ls 7.45s(2.80x) 8.618s(2.53 x)
717151212(),18 72.Ss 73.9s 70.51s 71.64s 25.73s(2.74x) 26.147s(2.74x)

TABLE vm
RUNNING-TIME MICROBENCHMARK ON BASIC BLOCKS IN RESNET-18 .

Block type CrypTFlow2 Cheetah SPOf

(WIH IC ilCo) Nexus 6 JoT controller Nexus 6 loT controller Nexus 6 JoT controller

56156164164 1.41s 1.593s 2.89s 2.962s 0.693s(2.03x) 0.784s(2.03x)
2s12s112s112s 2.34s 2.063s 4.0l s 3.24s 0.878s(2.66x) 0.918s(2.24x)
1411412561256 4.45s 4.804s 4.28s 4.53s 1.507s(2.84 x) 1.566s(2.90x)
71715121512 22.14s 22.30s 20.7s 21.94s 7. 764s(2.67 X) 7 .636s(2.87 X)

size which maximizes the utilization of slots in each ciphertext
for large input feature map size, as well as the overlap
tweaking which enables selection of cryptographic parameters
with higher HE efficiency. Meanwhile, channel-wise packing
wastes more slots for each ciphertext and has to compromise to
bigger ciphertext for more slots to pack two or more channels
of large feature map. We notice that Cheetah shows similar
high slot utilization as SPITT for encrypting input ciphertexts
due to the new encoding method. However, the extraction of
output ciphertexts generates a large amount of LWE output
ciphertexts with only one useful coefficient in each ciphertext,
which deteriorates the total slot and memory utilization. Note
that while the memory utilization of SPITT is much higher in
most of the blocks, the improvement drops in some deeper
blocks due to a larger number of input channels, namely Ci,

and the arithmetical computation in overlap tweaking. Mobile
clients' performance fluctuates affected by the actual memory
availability, compared with IoT devices in different blocks.

C. Running-time Performance On Convolutional Blocks
We then test the running-time performance over various con-

volutional blocks to demonstrate the computation efficiency of
SPITT compared to channel-wise computation in CrypTFlow2
and Cheetah. Tables VII and VIII compare the running time of
SPITT, Cheetah, and CrypTFlow2 on various bottleneck blocks
and basic blocks in ResNet models, respectively, and illustrates

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

1328

TABLE IX
RUNTIME MICROBENCHMARK ON BLOCKS IN VGG-16.

Block type
CrypTPlow2 Cheetah sror

(WIHICilCo) Nexus 6 loT controller Nexus 6 JoT controller Nexus 6 loT controller

2241224164164 30.83s 31.5s 33.9s 36.2s 8.88s(3.47x) 9.056s(3.47x)
112111211281128 18.8s 19.27s 19.6s 21.ls 6.39s(2.94x) 6.798s(2.83x)

5615612561256 4.21s 4.281s 5.16s 5.96s 2.55s(l.65 x) 2.S38s(l.68x)
2s12s15121512 3.12s 3.407s 3.82' 4.24s 2.32'(1.38x) 2.614s(1 .30x)
141 1415121512 4.40s 4.55s 3.92' 3. 12s 2.13s(2.06x) 2.266s(2.00x)

TABLEX
TOTAL EXECUTION TIME ON RESNET AND VGG.

Network model
CrypTFlow2 Cheetah sror

Nexus 6 loT controller Nexus 6 loT controller Nexus 6 loT controller

ResNet-101 811.2s 827.6s 721.6s 882. l s 279.7s(2.58x) 307 .3s(2.69x)
ResNel-50 428.2s 435.4s 348.2s 356.8s 153,0,(2.27 X) 160.8s(2.21 X)
ResNet-34 118.3s 112.3s 80.5s 89.5s 49.53s(l .62x) 41.8s(2.14x)
ResNet-18 IOI.6s 103.71s 83. ls 111.7s 47.78s(l .74x) 49.19s(2.llx)
VGG-11 65.29s 72.13s 65.8s 69.4s 33.29s(l.97x) 25.31s(2.75x)
VGG-16 151.23s 154.5s 163.2s 159.4s 64.54s(2.34x) 75.05s(2.05 X)

the speedup of SPOT. Since the blocks with larger feature map
contain more entry values and need more output ciphertexts to
be extracted, Cheetah shows less runtime performance boost
for mobile/loT clients in starter blocks. Thus, we compare
the best running-time performance with SPOT instead of
a specific method. Overall, SPOT achieves up to 4 x and
3 x speedup compared to CrypTFlow2 and Cheetah. With
structure patching and overlap tweaking, SPOT is able to
efficiently carry out HE computation under limited resources
at mobile/loT clients, by splitting the input into a series of
patches, and minimizing the overlap between two patches
to enable small cryptographic parameter selection for faster
HE operations. For example, SPOT demonstrates 4 x speedup
on IoT controller in a bottleneck block with an input size
28 x 28, and there is nearly 3 x speedup in a basic block
with the number of input channels Ci = 512. At last, a
significant speedup of SPOT over CrypTFlow2 and Cheetah
is also observed in Table IX for blocks in VGG-16.

D. End-to-End Performance on CNNs
We finally evaluate the total execution time on an en-

tire CNN model for SPOT. As shown in Table X, SPOT
achieves a speedup of up to 2.5 ~ 3x for the ResNet
series, and a speedup of 2.7 ~ 2.8x for the VGG series,
compared with Cheetah and CrypTFlow2, respectively. This
speedup is consistent with the ones reported for the various
individual blocks in the previous subsection. This running
time improvement demonstrates the efficiency of the novel
design of structure patching and patch overlap tweaking, which
work together to significantly reduce the computation time
of privacy-preserving MLaaS with memory-limited mobile
clients. Even though Cheetah shows large acceleration for
desktop clients by avoiding rotations, it still faces linear com-
putation stall problem due to ciphertext dependency. Moreover,
it extracts each useful polynomial coefficient into a ciphertext,
thus increasing the number of ciphertexts and corresponding
processing time. These two bottlenecks prolong the total ex-
ecution process, making Cheetah's performance improvement
negligible compared to CrypTFlow2 in the tiny client setting.

V. CONCLUSION

This paper has introduced SPOT, a novel framework for ma-
chine learning as a service (MLaaS) with resource-constrained
clients. SPOT features a novel design of structure patching and
patch overlap tweaking to resolve the problems of computation
stall at the server and inflexible cryptographic parameters
selection that are faced by the current state-of-the-art privacy-
preserving MLaaS frameworks. SPOT has demonstrated up
to 2 x higher memory utilization at the clients, and an overall
speedup of up to 3 x on modern CNN models such as ResNet
and VGG.

VI. ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under Grant OAC-2320999, CNS-2120279, IIS-
2236578, CNS-2153358, and DUE-2153358, DoD Center of
Excellence in AI and Machine Learning (CoE-AIML) under
Contract Number W911NF-20-2-0277, the National Natural
Science Foundation of China under Grant 62302067, the
Natural Science Foundation of Chongqing, China under Grant
CSTB2022NSCQ-MSX1217, and the Commonwealth Cyber
Initiative.

REFERENCES

[I] J.-D. Lin, H.-H. Lin, J. Dy, J.-C. Chen, M. Tanveer, I. Razzak, and
K.-L. Hua, "Lightweight face anti-spoofing network for telehealth ap-
plications," IEEE Journal of Biomedical and Health Informatics, vol. 26,
no. 5, pp. 1987-1996, 2022.

[2] Z. Wang, C. Saoud, S. Wangsiricharoen, A. W. James, A. S. Pope),
and J. Sulam, "Label cleaning multiple instance learning: Refining
coarse annotations on single whole-slide images," IEEE Transactions
on Medical Imaging , vol. 41 , no. 12, pp. 3952-3968, 2022.

[3] W. Wang, S. Wang, J. Gao, M. Zhang, G. Chen, T. K. Ng, and B. C.
Ooi, "Rafiki: Machine learning as an analytics service system," arXiv
preprint arXiv:1804.06087, 2018.

[4] H. Li, Y. He, L. Sun, X. Cheng, and J. Yu, "Side-channel information
leakage of encrypted video stream in video surveillance systems;• in
IEEE INFOCOM, pp. 1-9, 2016.

[5] "Embedded computing market." https://www.precedenceresearch.com/
embedded-computing-market, May 2022.

[6] "2020 state of telemedicine report." https://c8y.doxcdn.com/
image/upload/vl599769894/Press%20Blog/Research%20Reports/
2020-state-telemedicine-report.pdf, Sept. 2023.

[7] U. Subbiah, D. K. Kumar, S. K. Thangavel, and L. Parameswaran,
"An extensive study and comparison of the various approaches to
object detection using deep learning," 2020 Proc. IEEE ICOSEC, vol. 5,
pp. 183-194, Oct 2020.

[8] S. Xue, L. Zhang, A. Li, X.-Y. Li, C. Ruan, and W. Huang, "Appdna:
App behavior profiling via graph-based deep learning," in Proc. IEEE
Infocom, IEEE, 2018.

[9] B. Zhou, J. Lohokare, R. Gao, and F. Ye, "Echoprint: Two-factor
authentication using acoustics and vision on smartphones," in Proc.ACM
MobiCom, 2018.

[10] W. Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan, H. Xue, C. Song,
X. Ma, D. Koutsonikolas, et al., "Towards environment independent
device free human activity recognition," in Proc. ACM MobiCom, 2018.

[11] H. Zhang, C. Xu, H. Li, A. S. Rathore, C. Song, Z. Yan, D. Li,
F. Lin, K. Wang, and W. Xu, "Pdmove: Towards passive medication
adherence monitoring of parkinson 's disease using smartphone-based
gait assessment," in Proceedings of the ACM on interactive, mobile,
wearable and ubiquitous technologies, vol. 3, no. 3, pp. 1-23, 2019.

[12] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image
recognition," in Proc. IEEE CVPR, 2016.

[13] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, "Gazelle: A
low latency framework for secure neural network inference," in Proc.
USENIX Security, 2018.

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

1329

[14] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Shanna, "Cryptflow: Secure tensorfiow inference," in Proc. IEEE
Security and Privacy, IEEE, 2020.

[15] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Shanna, "Cryptflow2: Practical 2-party secure inference," in Proc.
ACM CCS, 2020.

[16] J. Fan and F. Vercauteren, "Somewhat practical fully homomorphic
encryption," Cryptology ePrint Archive, 2012.

[17] J. H. Cheon, A. Kim, M. Kim, and Y. Song, "Homomorphic encryption
for arithmetic of approximate numbers," in Proc. ASIACRYPT, 2017.

[18] Z. Brakerski, C. Gentry, and S. Halevi, "Packed ciphertexts in]we-based
homomorphic encryption;• in Proc. PKC, 2013.

[19] H. Chen, K. Laine, and R. Player, "Simple encrypted arithmetic library-
seal v2. 1," in Proc. Financial Cryptography and Data Security, 2017.

[20] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,
D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, "Homo-
morphic encryption security standard," tech. rep., HomomorphicEncryp-
tion.org, Toronto, Canada, November 2018.

[21] Q. Zhang, C. Xin, and H. Wu, "GALA: Greedy ComputAtion for Linear
Algebra in Privacy-Preserved Neural Networks," in Proc. NDSS, 2021.

[22] Z. Huang, W. jie Lu, C. Hong, and J. Ding, "Cheetah: Lean and fast
secure Two-Party deep neural network inference," in USENIX Security,
pp. 809-826, 2022.

[23] M. Wang, S. Ding, T. Cao, Y. Liu, and F. Xu, ''Asymo: scalable and
efficient deep-learning inference on asymmetric mobile cpus;• in Proc.
ACM MobiCom, 2021.

[24] C. Wang, B. Hu, and H. Wu, "Energy minimization for federated asyn-
chronous learning on battery-powered mobile devices via application
co-running," in Proc. IEEE ICDCS, 2022.

[25] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, "Mcunetv2: Memory-
efficient patch-based inference for tiny deep learning," in Proc. NeurlPS,
2021.

[26] M. Sandler, A. Howard, M. Zhu, A. Zhrnoginov, and L.-C. Chen,
"Mobilenetv2: Inverted residuals and linear bottlenecks," in Proc. CVPR,
2018.

[27] J. H. Cheon, M. Kang, T. Kim, J. Jung, and Y. Yeo, "High-throughput
deep convolutional neural networks on fully homomorphic encryption
using channel-by-channel packing." Cryptology ePrint Archive, Paper
2023/632, 2023.

[28] D. Demmler, T. Schneider, and M. Zohner, ''Aby-a framework for
efficient mixed-protocol secure two-party computation.;• in Proc. NDSS,
2015.

[29] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, "Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy," in Proc. ICML, pp. 201-210,
PMLR, 2016.

[30] S. Wagh, D. Gupta, and N. Chandran, "Securenn: 3-party secure com-
putation for neural network training.;• Proc. Priv. Enhancing Technol.,
2019.

[31] M. Bellare, V. T. Hoang, and P. Rogaway, "Foundations of garbled
circuits," in Proc. CCS, pp. 784--796, 2012.

[32] G. Brassard, C. Crepeau, and J.-M. Robert, ''All-or-nothing disclosure
of secrets," in Proc. CRYPTO, 1987.

[33] A. Shamir, "How to share a secret," Communications of the ACM,
vol. 22, no. 11, pp. 612-613, 1979.

[34] Z. Brakerski, "Fully homomorphic encryption without modulus switch-
ing from classical gapsvp," in Proc. CRYPTO, 2012.

[35] I. Jibaja, T. Cao, S. M. Blackburn, and K. S. McKinley, "Portable per-
formance on asymmetric multicore processors;• in Proc. International
Symposium on Code Generation and Optimization, 2016.

[36] K. Simonyan and A. Zisserman, ''Very deep convolutional networks for
large-scale image recognition," in Proc. ICLR, 2015.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification
with deep convolutional neural networks," in Proc. NeurlPS, 2017.

Authorized licensed use limited to: University of Arizona. Downloaded on June 24,2025 at 11:09:54 UTC from IEEE Xplore. Restrictions apply.

