
Journal of the Royal Statistical Society Series A: 
Statistics in Society, 2024, 00, 1–14 
https://doi.org/10.1093/jrsssa/qnae142

Original Article

Hierarchical Bayesian models to mitigate 
systematic disparities in prediction with 
proxy outcomes
Jonas M. Mikhaeil1 , Andrew Gelman1,2 and Philip Greengard1

1Department of Statistics, Columbia University, New York 10027, USA
2Department of Political Science, Columbia University, New York, USA
Address for correspondence: Jonas M. Mikhaeil, Department of Statistics, Columbia University, New York, NY 10027, USA. 
Email: j.mikhaeil@columbia.edu

Abstract
Label bias occurs when the outcome of interest is not directly observable and instead, modelling is performed 
with proxy labels. When the difference between the true outcome and the proxy label is correlated with 
predictors, this can yield systematic disparities in predictions for different groups of interest. We propose 
Bayesian hierarchical measurement models to address these issues. When strong prior information about 
the measurement process is available, our approach improves accuracy and helps with algorithmic fairness. 
If prior knowledge is limited, our approach allows assessment of the sensitivity of predictions to the 
unknown specifications of the measurement process. This can help practitioners gauge if enough 
substantive information is available to guarantee the desired accuracy and avoid disparate predictions when 
using proxy outcomes. We demonstrate our approach through practical examples.
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1 Introduction
In the social sciences, measurement is often indirect, and researchers use proxy outcomes (Adcock & 
Collier, 2001; Knox et al., 2022). Even seemingly objective outcomes such as suicide rates can be sys-
tematically distorted (Douglas, 1967). Sociological accounts of the processes with which data are col-
lected highlight the unavoidable imperfections of data more broadly (Starr, 1987). The use of 
imperfect proxies for the outcome can reduce the accuracy of predictions that are relevant to down-
stream decisions, possibly underserving speci)c subgroups of the population (Fogliato et al., 2020; 
Mullainathan & Obermeyer, 2021; Obermeyer et al., 2019). We propose to mitigate these problems 
by modelling the relationship between proxy and true outcomes with Bayesian measurement models.

Consider the example of building a statistical model to predict diabetes risk using demographic and 
health information from survey data. The goal of building such a model is to be able to cheaply iden-
tify patients who are at risk of diabetes and who should undergo more costly and time-consuming 
testing. The model should be accurate and calibrated. If the model underpredicts the risk for certain 
groups of people, then decisions based on it can lead to these groups being underserved.

One challenge in this example is that we are only given the diagnosis, not true underlying disease 
status. There are several potential sources of error (usually referred to as label bias) that this proxy 
outcome may introduce into a model. If the measurement error—the difference between the proxy 
outcome (survey response) and the true outcome (being diabetic)—is correlated with a predictor, 
then prediction errors can be correlated with that predictor. We demonstrate with a simple ex-
ample in a linear regression setting in Section 2.1 and return to the example of diabetes risk in 
Section 4.
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There are various ways of dealing with label bias in speci)c contexts (Jiang & Nachum, 2020; 
Knox et al., 2022; Wang et al., 2021). Label bias often degrades prediction accuracy and, when the 
measurement errors are correlated with the covariates, leads to systematic errors in prediction. In 
the context of predicting risk, these systematic disparities in prediction are referred to as miscali-
bration (Rothblum & Yona, 2023) and have been shown to negatively impact the utility of down-
stream decisions (Parastouei et al., 2021; Van Calster & Vickers, 2015). Label bias is especially 
problematic when measurement errors are correlated with membership to a protected group, 
which is often the case in social science applications (Biderman & Reiss, 1967; Fang et al., 
2022; Zanger-Tishler et al., 2024) or the healthcare sector (Basu, 2023; Cerdeña et al., 2020; 
Diao et al., 2021; Eneanya et al., 2019). In this situation, decisions based on these predictions 
can lead to some communities being under-served on average, thus violating certain conceptions 
of algorithmic fairness (Corbett-Davies et al., 2023; Dwork et al., 2012; Hardt et al., 2016).

Zanger-Tishler et al. (2024) show that in the presence of label bias, the addition of features may 
deteriorate prediction accuracy on the true labels of interest. In particular, if a feature’s correlation 
with the true outcome and proxy outcome, conditional on the other covariates, have different 
signs, then including that feature in a regression will deteriorate predictive accuracy. This can oc-
cur when a feature is only weakly related with the true outcome but both this feature and the out-
come are causally constitutive of the remaining features. Zanger-Tishler et al. (2024) demonstrate 
this situation with the relationship between criminal behaviour (the outcome of interest), arrests 
(the proxy outcome), and the level of policing in a neighbourhood; we continue studying this ex-
ample in Section 2.2.

In the present paper, we demonstrate that, in the setting where dropping a predictor would 
increase prediction accuracy, we can increase prediction accuracy even further using a measure-
ment model and that, with suf)cient knowledge about the data-generating process, measurement 
models can mitigate systematic disparities in prediction. Our work highlights the bene)ts of 
making explicit assumptions about measurement errors, even in purely predictive settings. 
Measurement models are a way to make these assumptions transparent and allow users to critic-
ally question if enough domain knowledge is at hand to make the proxies valid and to ensure that 
downstream decisions based on them do not underserve speci)c groups of interest. While meas-
urement models, in principle, allow researchers to adjust predictions to mitigate disparities and 
achieve decisions that improve outcomes for particular groups, the inclusion of membership infor-
mation to protected groups may be problematic in itself (Goel et al., 2017) and violate the legal 
doctrine of ‘no disparate treatment’. We do not address this tension here; in any application 
with label bias of this sort, both societal and legal considerations will be crucial.

Building measurement models tailored to speci)c applications has been made easier by recent 
advances in probabilistic programming languages such as Stan (Stan Development Team, 
2023), where reasonably general Bayesian models can be set up in simple, user-friendly 
language, allowing researchers to represent prior knowledge, including uncertainty, about 
the measurement process and any discrepancy between the proxy and the true outcome in a stat-
istical model.1

In Section 2, we introduce hierarchical Bayesian measurement models and discuss general meth-
odological considerations. We go on to discuss pitfalls of correlated measurement error in the sim-
ple case of linear regression, where label bias can be studied analytically (see Section 2.1). After 
presenting our proposed methodology, we demonstrate the use of Bayesian measurement models 
in two applications. In Section 3, we study the simulated criminal justice model considered in 
Zanger-Tishler et al. (2024). Next, in Section 4, we consider the problem of predicting diabetes 
risk based on diagnosis information. We use public health research on diabetes prevalence to ad-
just for the fact that among diabetics, diagnoses are more likely to be made in those with healthcare 
access. By adjusting predictions for healthcare status, we achieve more accurate and equitable pre-
dictions than possible with regression on the proxy labels. While the examples are chosen to re-
semble real-world applications, they are not supposed to be case studies. Rather, they are 
chosen to showcase how our proposed methodology—Bayesian measurement models—might 
improve on classical techniques dealing with label bias.

1 All models and code to reproduce our results are available under https://github.com/JonasMikhaeil/ 
HierarchicalBayesianMeasurementModels.
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2 Measurement models for label bias
In situations in which only a noisy proxy y of the desired outcome of interest u is available, some 
model, explicit or implicit, of the measurement process is necessary for accurate and reliable pre-
diction. The classical approach of using regression E(y | X) on the proxy labels to predict the true 
outcome u implicitly equates the outcome of interest and the observed proxy outcome. In the case 
of linear regression, this yields accurate inference if the measurement error is mean independent of 
the covariates X, see Section 2.1. Often, there is good reason to believe this is not the case. 
Measurement models in general, and Bayesian hierarchical models, in particular, are a useful 
tool to model more complicated measuring processes and account for noise that is not independent 
of the covariates.

The general idea behind measurement models (see Figure 1) is to introduce the true outcome u as 
a latent (unobserved) quantity. Prior knowledge about the application is then used to model the 
relationship between the covariates X, the latent outcomes of interest u, and the observed proxies 
y. Because parts of the variables remain unobserved, some of the model parameters are not (or only 
partially) identi)ed (Gustafson, 2015). Measurement models thus rely on domain knowledge in 
two ways: The measurement process has to be suf)ciently understood to supply a model structure 
(which includes distributional assumptions about the latent outcomes) as well as reasonable values 
of the nonidenti)ed parameters of the model. We give guidance on how to determine which pa-
rameters require strong priors in online supplementary material Appendix C.

For the identi)ed part of the model, classical advice about Bayesian workEow applies. In par-
ticular, posterior predictive checks (Gelman et al., 1996; Rubin, 1984) can be used to asses model 
)t. If parametric assumptions are too rigid, nonparametric components (such as Gaussian proc-
esses or splines) can be used. Another way of adding Eexibility and moving beyond the limitations 
of parametric models is to add unit-speci)c error terms (such as in the threshold model of Section 
2.3).

When only limited prior knowledge is available, nonidenti)ed parameters should be treated as 
sensitivity parameters in a sensitivity analysis (Richardson et al., 2011; Depaoli et al., 2020; 
Kallioinen et al., 2024). Such an analysis is performed in Section 3.3, which details the impact 
of misspeci)cation of the parameters in a stylized example where the data-generating process is 
known. Gelman and Hennig (2017) discuss the use of informative priors in Bayesian practice 
more generally and the value of transparency in scienti)c endeavours.

Measurement models are Eexible and can be tailored to the application of interest. Here, we pre-
sent two models, a leakage model for linear regression, which we will use to model a stylized ex-
ample of arrests and crime (see Section 3), and a threshold model for logistic regression, which we 
will apply to estimate diabetes risk based on diagnosis data (see Section 4). Before we do so, we will 
illustrate the pitfalls of dependent label bias explicitly in the case of linear regression.

Figure 1. Some measurement models for label bias.
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2.1 Simple illustration: label bias in linear regression
In this section, we use the simple case of linear regression to analytically demonstrate issues that 
can arise when using regression on proxy outcomes to predict true outcomes. The validity of this 
classical approach rests on the assumption that the measurement error is uncorrelated with the co-
variates. We demonstrate that if this assumption is inaccurate, predictions can be systematically 
inaccurate. Throughout this section, we treat the covariates X as random (Buja et al., 2016, 
2019; Rosset & Tibshirani, 2020) allowing them to be correlated with the measurement errors.

We provide three main formulas. First, in Proposition 1, we provide a formula for the error of 
the linear regression solution when )tting on a proxy as opposed to the true outcome. While our 
proposition is focused on regression on proxies, it is similar to the well-known omitted variable 
bias (Wooldridge, 2010). Proposition 2 demonstrates that when the proxy is correlated with pre-
dictors, then the prediction error is also correlated with the predictors. Finally, Proposition 3 pro-
vides a lower bound on the prediction error when using a proxy outcome in terms of the prediction 
error when using the true outcome. The primary purpose of these propositions is to demonstrate 
the systematic errors that can arise when using proxy labels in a simple setting that can be studied 
analytically. Proofs can be found in online supplementary material Appendix A.

We start by assuming that some true outcome, u, and a proxy outcome, y, are n-dimensional random 
vectors. We also assume that X is an n × m random matrix of centred covariates with a leading column 
of ones such that E(X⊤X) is full rank, i.e. the covariates are not multicollinear. We assume 
(X, u, y) ∼ P, where P is some probability distribution over the covariates, true outcome, and proxy 
outcome.2 We de)ne β to be the expected solution to linear regression with covariates X and data u. 
That is,

β = arg min
w

E(→Xw − u→2). (1) 

The expected solution to the linear regression changes when using the proxy outcome y and the same 
covariates X. The expected solution with a proxy outcome is given by the following proposition.

Proposition 1 ((Proxy outcome regression solution)). Let (X, u, y) ∼ P. Then,

arg min
w

E(→Xw − y→2) = (1 + γ)β + α, (2) 

where the vector [αγ] ∈ Rm+1 is the expected solution to the linear regres-
sion with outcome u − y (the measurement error) and n × (m + 1) matrix 
of covariates [X u]. That is,

[α γ] = arg min
w

E(→Mw − e→2), (3) 

where e is the measurement error de)ned by e = u − y and where M is de-
)ned to be the n × (m + 1) random matrix [X u].

That is, if the measurement error e is uncorrelated with the covariates and the outcome, then, in 
expectation, β is recovered from the proxies. On the other hand, correlation between the measure-
ment error and the covariates or the outcome will introduce error in the approximation of β. That 
error, γβ + α, is obtained from combining (1) and (2). This can pose problems in causal investiga-
tions (Knox et al., 2022) and even in predictive settings. The right panels of Figure 2 provide an 
illustrative example of error introduced by the use of a proxy outcome in the linear regression set-
ting. We demonstrate the case where m = 2, i.e. X consists of an intercept and one predictor.

When label bias introduces error into the solution to a linear regression, the predictions made 
using that linear regression will be systematically distorted. We de)ne the predictions as 
Ê(y | X) = X(X⊤X)−1X⊤y. The following proposition provides a formula for the covariance be-
tween the covariates, X, and prediction error, u − Ê(y | X).

2 We assume that the expectations taken with respect to P in the proofs of Section A all exist.
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Proposition 2 ((Covariance of covariates and prediction error)). Let (X, u, y) ∼ P. Then,

E[(u − Ê(y | X))⊤X] = −(γβ + α)⊤E(X⊤X), (4) 

where β is de)ned in (1), and α, γ are de)ned in (3).

That is, if there is a correlation between the covariates and the measurement error u − y, then the 
prediction error will also be correlated with the covariates. This shows that the use of proxy labels 
may introduce systematic disparities in predictions. These disparities are liable to negatively affect 
downstream decisions based on them (Parastouei et al., 2021; Van Calster & Vickers, 2015) and 
may lead to protected groups being underserved, thus violating certain conceptions of algorithmic 
fairness (Corbett-Davies et al., 2023; Dwork et al., 2012; Hardt et al., 2016).

In our last proposition, we compare prediction error when )tting with the true outcome to pre-
diction error when using a proxy. In particular, we provide a lower bound for the mean squared 
error (MSE) in the true outcome using linear regression predictions trained on a proxy in terms of 
the MSE in the true outcome using linear regression trained on the true outcome. We show that 
label bias degrades prediction accuracy when using linear regression because of the systematic dis-
parities in prediction caused by the correlation between the measurement error and the outcome u 
and covariates X.

Proposition 3 ((Prediction error with true outcome versus proxy)). Let (X, u, y) ∼ P. 
Then we have

MSE(u, Ê(y | X)) ≥ MSE(u, Ê(u | X)) + (γβ + α)⊤E(X⊤X)(γβ + α), 

where β is de)ned in (1), and α, γ are de)ned in (3).

Figure 2. Illustration of label bias in linear regression. (Left) If the measurement errors are uncorrelated with the 
covariate, regression yields unbiased and consistent estimates. (Right) In the case of dependent measurement 
errors, regression estimates are biased and inconsistent. Prediction accuracy is degraded.
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In Section 3 and 4, we will see that given suf)cient domain knowledge these systematic dispar-
ities in prediction can be mitigated, improving both overall prediction accuracy and reducing the 
risk of exacerbating disparate outcomes of downstream decisions.

2.2 Leakage model for linear regression
Measurement models are tailored to speci)c applications and depend on both knowledge about 
the structure and the parameters of the measurement process. In this section, we describe a leakage 
model for linear regression based on the stylized criminal justice example we will study in 
Section 3. Suppose we observe a proxy label yt at two different time points t ∈ {1, 2}. These proxies 
depend both on the observed covariates X and the true outcomes ut. In the criminal justice ex-
ample, arrests are proxies yt for the true outcome ut of crime. Not all crime leads to arrests, so there 
is a degree of leakage between proxies and latent outcomes of interest. We assume that the proxies 
do not inEuence each other; that is, the entire temporal relationships in the model are driven by the 
dependence of u2 on u1.3 We are interested in learning this relationship and inferring ut based on yt 
and X. This assumption is based on our knowledge of the data-generating process for the example 
we are studying here (see Figure 3). In other situations, we might assume that the proxies at time 
t = 1 inEuence the outcome at time t = 2, for example, arrests might deter future crime. 
Measurement models are Eexible enough to allow for this and our model is easily extended to 
this case.

This situation studied here is illustrated in the centre panel of Figure 1 and can be modelled by 
the following Bayesian hierarchical model:

y1 | u1, α, γ, σy ∼ normal(Xα + γu1, σy)
y2 | u2, α, γ, σy ∼ normal(Xα + γu2, σy)

u1 | βσu ∼ normal(Xβ, σu)

u2 | u1, β, η, σu ∼ normal(Xβ + η(u1 − Xβ), σu

􏼡􏼡􏼡􏼡􏼡􏼡􏼡􏼡
1 − η2

􏼢
),

(5) 

with appropriate priors on all parameters. Because the true outcomes (u1, u2) remain unobserved, 
this model is only partially identi)ed (Gustafson, 2015). We give guidance on identifying param-
eters that require strong priors in online supplementary material Appendix C. In this example, 

Figure 3. Data-generating process for Zanger-Tishler et al. (2024) stylized example of criminal behaviour (true 
outcome) and arrest (proxy outcome). Observed variables are marked with a box.

3 The centre panel of Figure 1 has an arrow from u1 to u2, implying a causal relationship if the )gure is understood as 
a directed acyclic graph. Our model, however, does not rest on this assumption and is still applicable if u1 and u2 are just 
assumed to be correlated.
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weak priors suf)ce for (α, η,σy) when we use strong priors on (β,γ, σu). We will use this model for a 
stylized example of criminal behaviour and arrests in Section 3.

2.3 Threshold model for logistic regression
Here, we develop a threshold model for logistic regression. We deploy this model for diabetes pre-
diction in Section 4.

Suppose we observe binary proxy labels y ∈ {0, 1} instead of a binary outcome of interest u3. 
The proxies are indicative of the true outcome but they are not fully reliable, that is there are cases 
of u3 that y does not indicate. In our diabetes example, u3 indicates diabetes disease status. Not 
everyone with diabetes is diagnosed, however, so diagnosis y is not a fully reliable proxy.

This situation can be modelled by introducing two (continuous) latent characteristics u1 and u2 
that cause u3 and y, respectively, by crossing a threshold:

y = 1 if u2 ≥ 0
0 else

􏼣

u1 | β ∼ logistic(Xβ, 1)
u2 = u1 − t(X) − e

u3 = 1 if u1 ≥ 0
0 else

􏼣

e ∼ normal+(0, 0.1).

(6) 

The thresholds t(X) can depend on covariates X allowing for disparities in how accurate the prox-
ies are for different subpopulations. The structure of the model is illustrated in the right panel of 
Figure 1.

In the diabetes example of Section 4, the latent variable u1 can be understood as quantifying the 
severity of diabetes. We assume that for uninsured people symptoms have to be more severe to be 
diagnosed. This is modelled by introducing insurance-dependent thresholds t(health insurance) that 
offset the latent characteristic u2 that determines diagnosis. By introducing e > 0, we allow for idio-
syncratic behaviour that impacts the proxy, e.g. patient’s personal propensity to visit a doctor.

We assume that there are no false positives, that is, u3 ≥ y. In essence, this assumes that people 
are not mistakenly diagnosed with diabetes and that their response about their diagnosis is truth-
ful. If we have reasons to believe this to be false, we could allow t(health insurance) to be random, 
leading to false positive diagnoses for a fraction of the population.

The latent characteristic u1 depends linearly on the covariates, so the threshold model closely 
resembles ordinary logistic regression (Gelman et al., 2014) but allows for discrepancies between 
the outcomes of interest u3 and the observed labels y.

In Section 4, we use this model to predict diabetes risk based on diabetes diagnosis with varying 
thresholds based on health insurance status.

3 Stylized example: criminal behaviour and arrests
Figure 3 portrays the data-generating process for a stylized example of label bias in 
(Zanger-Tishler et al., 2024). This model simulates individual-level behaviour (u0 and u1) and ar-
rest outcomes (y0 and y1) at two time points. Arrests depend both on an individual’s behaviour and 
the individual’s neighbourhood (X). This is a linear structural equation model,

X ∼ normal(0, σX)
u0
u1

􏼤 􏼥􏼦􏼦􏼦􏼦X ∼ MVN βX
βX

􏼤 􏼥
, σ2

u δ
δ σ2

u

􏼤 􏼥􏼧 􏼨

y0 | X, u0 ∼ normal(αX + γu0, σy)
y1 | X, u1 ∼ normal(αX + γu1, σy).

(7) 

Zanger-Tishler et al. (2024) show how to set the variances of the exogenous variables such that the 
remaining variables (X, u0, u1, y0, and y1) are standardized and can be interpreted as the extent to 
which an individual differs from the population average. For example, u0 is interpreted as how 
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criminal an individual is compared with the population, and X as the level of police enforcement in 
a neighbourhood.

The label bias in this problem arises because only arrests (y0 and y1) and neighbourhood (X) are 
observable. Criminal behaviour, (u0, u1), which is the true outcome of interest, is not observable 
and therefore arrests are used as a proxy for criminal behaviour. We have two regression models, a 
simple one E(y1 | y0) and a complex one E(y1 | y0, X). Zanger-Tishler et al. (2024) show (see 
Corollary 1) that it is preferable (in terms of expected squared difference between true and pre-
dicted outcome) to not include an additional feature if the correlation of that feature with the 
true and proxy outcome conditional on other covariates have differing signs. For the stylized ex-
ample here, they show that this is the case for the inclusion of neighbourhood, X, in a model for 
predicting criminal behaviour based on arrests y0 when the correlation between neighbourhood 
and criminal behaviour, β, is small.

This simple example illustrates the theoretical insight of Zanger-Tishler et al. (2024), that the 
inclusion of additional features can degrade the predictive accuracy of regression models in the 
presence of label bias.

3.1 Bayesian measurement model
Here, we propose to use the leakage model for regression introduced in Section 2.2, which 
improves on both the simple and complex estimators of Section 3. In this stylized example, the 
data-generating process is known (see Figure 3) and corresponds to the model structure of our 
measurement model; compare Equations (5) and (7). Making an informed decision about the 
model structure is the )rst step when using a measurement model. The second step is the choice 
of priors. While for some parameters weak priors are suf)cient, the model is only partially iden-
ti)ed (Gustafson, 2015) necessitating strong priors on the nonidenti)ed part of the model (see 
online supplementary material Appendix C).4

σy ∼ normal+(0, 1)
α ∼ normal(0, 1)
η ∼ normal(0, 0.2)
β ∼ normal(βtrue, 0.1)
γ ∼ normal(γtrue, 0.1).

The strong priors are informed by our knowledge of the data-generating process. In general, when 
prior knowledge is limited, the nonidenti)ed parameters of the model should be treated as sensi-
tivity parameters in a sensitivity analysis. Section 3.3 performs such a sensitivity analysis and in-
vestigates the impact of misspeci)cation of the nonidenti)able parameters.

Here, we have implicitly switched from a prediction setting, in which we are only interested in 
E(u1 | y0, X), to an inference setting where we are modelling the joint distribution P(u0, u1, y0, y1). 
If we require predictions on a set of new variables for which only the features are observed, we can 
do so by incorporating the unobserved outcomes as missing variables.

Figure 4 shows that the error model performs better than both of the regression models with its 
performance being comparable with a regression on the true labels.

In practice, the measurement process might be more complicated than in this stylized example. 
For example, we might have a multitude of correlated covariates each impacting the measurement 
error to varying degrees. Our approach is Eexible enough to cover such cases, however, with increas-
ing complexity, it may become less likely that suf)cient domain knowledge is available to tightly 
constrain all nonidenti)able parameters. Gelman and Hennig (2017) discuss the value of transpar-
ency and the use of informative priors in practice more generally. While this may limit the ef)cacy of 
our method, it also limits the applicability of classical methods. If the measurement process cannot 
be accounted for, prediction accuracy can be arbitrarily degraded (see Proposition 3). Domain 
knowledge is crucial for predictions with label bias. If the structure of the measurement process 
is known but the values of its nonidenti)able parameters are not, our method offers two advantages 

4 We assume σu is known.
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over classical methods: For one, using wide priors, we can propagate our uncertainty about the 
measurement process to the predictions. Secondly, we can vary these parameters systematically 
to check the sensitivity of the predictions to them; see Section 3.3. Neither of these can easily be 
done for classical methods, risking practitioners to be overly con)dent in their predictions under la-
bel bias.

3.2 Disparate predictions
In many applications systematic disparities in prediction between different subgroups can nega-
tively affect downstream decisions (Parastouei et al., 2021; Van Calster & Vickers, 2015), and, 
depending on our decision process, lead to decreased fairness (Corbett-Davies et al., 2023; 
Dwork et al., 2012; Hardt et al., 2016). For both the simple and complex regression models stud-
ied in (Zanger-Tishler et al., 2024), prediction errors are correlated with the degree of policing in a 
neighbourhood X, i.e. they systematically under- or overpredict crime rates based on neighbour-
hood. This correlation strongly depends on the relationship between neighbourhood and behav-
iour as well as arrests. On the other hand, prediction errors of the Bayesian measurement model 
are uncorrelated with neighbourhood X as long as the neighbourhood is accounted for in the mod-
el and priors are speci)ed correctly (see Section 3.3). Removing neighbourhood information from 
the model slightly decreases predictive performance but introduces dependence between predic-
tion errors and neighbourhood X. We plot correlations between prediction errors and neighbour-
hood in Figure 5.

This shows that modelling the measurement process is key for both overall accurate predictions 
as well as minimizing systematic disparities in prediction.

3.3 The impact of misspecification
The reliability and accuracy of predictions based on proxies crucially depend on the validity of as-
sumptions we make about the measurement process. In the previous section, we have explored the 
bene)ts of measurement models when we can correctly account for the measurement process. 
While there are real-world examples in which this can be done (see Section 4), this may be unreal-
istic in the case of predicting crime rates. Despite various proxies being available (for example data 
on self-reported criminal offending Bureau of Labor Statistics, 2019), the true crime rate is empir-
ically inaccessible. Predictions of the true crime rates thus hinge on untestable assumptions that are 
often obscured by being stated only implicitly, as is often the case when using regression trained on 
proxy labels.

Figure 4. Root mean squared error for simple and complex regression models trained on proxy outcomes in 
comparison with a Bayesian error model. The prediction accuracy of the error model is superior to both regression 
models for all β and comparable to an oracle model (trained on the true outcomes).
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Measurement models, however, force us to make our assumptions transparent and allow to test 
the prediction’s sensitivity to them. Figure 6 shows the impact of misspecifying the (nonidenti)-
able) parameters β and γ in our measurement model (5). While misspeci)cation of either leads 
to degraded prediction accuracy, correctly specifying β—the relationship between neighbourhood 
policing and criminal behaviour—is paramount to mitigate systematic disparities in prediction. In 

Figure 5. Correlation between prediction error u1 − û1 and neighbourhood police enforcement X for simple and 
complex regression models trained on proxy outcomes in comparison with a Bayesian measurement model. While 
both regression models produce predictions that are systematically biased based on neighbourhood, the 
measurement model has prediction errors uncorrelated with neighbourhood. The dashed line shows that without 
using neighbourhood information, the measurement model also produces biased predictions.

A B

C D

Figure 6. Impact of multiplicative misspecification (m× true parameter) of γ (upper row, γtrue = 0.4) and β (lower row, 
βtrue = 0.2) on predictive performance and disparity in prediction accuracy with respect to neighbourhood police 
enforcement.
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the case of regression models that use proxies to predict crime, these assumptions are often only 
implicit (and cannot be easily varied), with Zanger-Tishler et al. (2024) criterion being a step in 
the direction of transparency. Assumptions being made only implicitly, however, neither implies 
the results to be agnostic or robust with regards to the underlying measurement process. Figures 4
and 5 show that the accuracy and systematic disparities in prediction of both the simple and com-
plex model (as well as the decision which one to choose for prediction) depend on the underlying 
relationship of crime and neighbourhood policing as well.

Given that criminal behaviour, let alone its relationship with policing, is virtually impossible to 
quantify, predicting crime based on arrests is always skewed by our prior assumptions about crime 
(Biderman & Reiss, 1967; Hinton, 2016).

4 Empirical example: health insurance and diabetes
It is estimated that more than 10% of the US population has some form of diabetes (Centers for 
Disease Control and Prevention, 2021). While early identi)cation of diabetes is crucial as behav-
ioural counselling, dietary interventions, increased physical activity, or pharmacologic therapy 
may improve future health outcome (Davidson et al., 2021), testing for diabetes also comes 
with monetary and personal costs. In practice, this necessitates risk-based screening decisions 
(Duan et al., 2021). In the case that diagnosis information is used to infer the model, predictions 
will suffer because of label bias. Due to a variety of factors, many people with diabetes have never 
been diagnosed, making diagnosis an imperfect proxy. For example, it has been estimated that 
29% of American diabetics without health insurance remain undiagnosed compared with only 
16% with some kind of health insurance (Fang et al., 2022), a difference that can easily be ex-
plained by impeded access to healthcare services. Our analysis is based on publicly available 
data from the National Health and Nutrition Examination Survey (Centers for Disease Control 
and Prevention, 2022), which provides information about both diagnosed (self-reported informa-
tion of having been diagnosed with diabetes in the past) and undiagnosed diabetes based on meas-
ured blood sugar levels. A ready-to-analyse version of this dataset is provided by Coots et al. 
(2024). This offers an empirically realistic situation of label bias with the necessary ground-truth 
data to evaluate the advantages and disadvantages of a measurement model, when compared with 
simple regression or the approach recommended by Zanger-Tishler et al. (2024) to drop a 
predictor.

The left and centre panels of Figure 7 show that this situation suffers from the phenomenon de-
scribed in Zanger-Tishler et al. (2024): inclusion of information on the insurance status degrades 
predictive power when using regression on the proxy labels. For both models, label bias leads to 
underestimation of diabetes risk. If this bias is not taken into account, decisions based on an op-
timal treatment threshold are liable to be harmful (Rothblum & Yona, 2023) because people who 
would bene)t from treatment will not receive it. When insurance status is included as a covariate, 
disparate predictions are prone to lead to decisions that further under-serve the uninsured 

Figure 7. Predicted diabetes risk against diabetes rate against observed diabetes rate estimated with logistic 
regression on the true outcomes for a simple (left), complex (middle), and measurement model (right) by health 
insurance status (darker shade: insured, lighter shade: uninsured). For both insured and uninsured people, our 
measurement model performs better than both regression models closely matching predictions of logistic 
regression on the true outcomes (dashed grey line).
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population, violating conceptions of algorithmic fairness (Corbett-Davies et al., 2023; Dwork 
et al., 2012; Hardt et al., 2016).

We model this situation with the measurement model presented in Section 2.3. Here, y are bin-
ary indicator for diabetes diagnosis (proxy labels) and u3 indicates diabetes (true outcomes, as-
sumed to not be observed). u1 is a latent variable that can be understood as the underlying 
severity of diabetes. We assume that for uninsured people, the severity of symptoms has to be high-
er to be diagnosed. To account for that, we introduce health insurance-dependent thresholds 
t(health insurance) that offset the latent characteristic u2 that determines if a patient is diagnosed.

This measurement model critically depends on the thresholds t(health insurance), which cannot 
be inferred from diagnosis data alone. We can, however, use prior knowledge, as in (Fang et al., 
2022), to inform our choice. In online supplementary material Appendix B.1, we discuss in detail 
how we determine the thresholds. The right panel of Figure 7 shows that this measurement model 
based on diabetes diagnosis correcting for impeded access to health care services is well calibrated 
and predicts diabetes risk better than either a simple or complex regression model. Table 1 in 
online supplementary material Appendix B shows improved prediction quality across a range of 
metrics for classi)cation.

5 Conclusion and discussion
The use of imperfect proxies as dependent variable is ubiquitous in quantitative research in the 
social sciences. These analyses suffer from label bias, which is often assumed to be a minor prob-
lem. If the measurement error is correlated with covariates, label bias can have detrimental effects 
even in purely predictive settings. In these situations, predictions will suffer from systematic 
disparities—that is, we will over- or underpredict the outcome systematically based on the cova-
riates. If the measurement errors are correlated with membership in a protected group, these sys-
tematic disparities in prediction will not only lead to degraded prediction accuracy but may also be 
a concern from an algorithmic fairness perspective. In our diabetes example, see Section 4, label 
bias leads classical predictions of the diabetes risk to systematically underpredict true risk, and 
more so for uninsured people. Decisions based on these estimates will consequently under-serve 
uninsured people.

In this paper, we advocate the use of Bayesian measurement models to mitigate these problems. 
We show that measurement models are preferable to classical regression models in two examples: 
a stylized criminal justice example, in which the data-generating process is known (see Section 3), 
and a real-world example where we estimate diabetes risk based on diagnosis information (see 
Section 4).

We )nd that when suf)cient knowledge about the measurement process is available, these models 
can mitigate systematic disparities in prediction allowing for more accurate and fairer downstream 
decisions. Our method explicitly requires the user to model the measurement process. This highlights 
the importance of assumptions about the relationship between measurement error with covariates for 
reliable, equitable, and accurate predictions. While these assumptions often remain implicit in clas-
sical regression methods, our measurement model helps users to make them more transparent. 
With this transparency also comes the bene)t of being able to test the sensitivity of the predictions 
to the assumed measurement process. This kind of sensitivity analysis is not easily available for clas-
sical methods. Overall, this can allow users to better question if enough domain knowledge is at hand 
to judge if the proxies are useful and to ensure the fairness of downstream decisions based on them.

While we advocate for modelling the measurement process to mitigate systematic disparities in 
prediction to achieve fairer downstream decisions, we need to )rmly state that this cannot be taken 
as general advice. Using information necessary in the modelling of proxies, such as protected class 
status, may be in itself problematic and violate the legal doctrine of ‘no disparate treatment’ (for 
example the Equal Protection Clause of the U.S. Constitution’s Fourteenth Amendment). This is a 
fundamental tension and cannot be resolved in general. Any application based on data that is 
skewed by societal injustices will require careful political, social, and legal consideration. Our pa-
per should, however, be a general warning against the uncritical uses of classical regression meth-
ods when faced with this kind of data: in these situations, predictions can suffer from systematic 
disparities, and decisions based on them can further exacerbate the social injustice that skewed the 
data.
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