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Abstract

Label bias occurs when the outcome of interest is not directly observable and instead, modelling is performed
with proxy labels. When the difference between the true outcome and the proxy label is correlated with
predictors, this can yield systematic disparities in predictions for different groups of interest. We propose
Bayesian hierarchical measurement models to address these issues. When strong prior information about
the measurement process is available, our approach improves accuracy and helps with algorithmic fairness.
If prior knowledge is limited, our approach allows assessment of the sensitivity of predictions to the
unknown specifications of the measurement process. This can help practitioners gauge if enough
substantive information is available to guarantee the desired accuracy and avoid disparate predictions when
using proxy outcomes. We demonstrate our approach through practical examples.
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1 Introduction

In the social sciences, measurement is often indirect, and researchers use proxy outcomes (Adcock &
Collier, 2001; Knox et al., 2022). Even seemingly objective outcomes such as suicide rates can be sys-
tematically distorted (Douglas, 1967). Sociological accounts of the processes with which data are col-
lected highlight the unavoidable imperfections of data more broadly (Starr, 1987). The use of
imperfect proxies for the outcome can reduce the accuracy of predictions that are relevant to down-
stream decisions, possibly underserving specific subgroups of the population (Fogliato et al., 2020;
Mullainathan & Obermeyer, 2021; Obermeyer et al., 2019). We propose to mitigate these problems
by modelling the relationship between proxy and true outcomes with Bayesian measurement models.

Consider the example of building a statistical model to predict diabetes risk using demographic and
health information from survey data. The goal of building such a model is to be able to cheaply iden-
tify patients who are at risk of diabetes and who should undergo more costly and time-consuming
testing. The model should be accurate and calibrated. If the model underpredicts the risk for certain
groups of people, then decisions based on it can lead to these groups being underserved.

One challenge in this example is that we are only given the diagnosis, not true underlying disease
status. There are several potential sources of error (usually referred to as label bias) that this proxy
outcome may introduce into a model. If the measurement error—the difference between the proxy
outcome (survey response) and the true outcome (being diabetic)—is correlated with a predictor,
then prediction errors can be correlated with that predictor. We demonstrate with a simple ex-
ample in a linear regression setting in Section 2.1 and return to the example of diabetes risk in
Section 4.
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There are various ways of dealing with label bias in specific contexts (Jiang & Nachum, 2020;
Knoxetal., 2022; Wang et al., 2021). Label bias often degrades prediction accuracy and, when the
measurement errors are correlated with the covariates, leads to systematic errors in prediction. In
the context of predicting risk, these systematic disparities in prediction are referred to as miscali-
bration (Rothblum & Yona, 2023) and have been shown to negatively impact the utility of down-
stream decisions (Parastouei et al., 2021; Van Calster & Vickers, 2015). Label bias is especially
problematic when measurement errors are correlated with membership to a protected group,
which is often the case in social science applications (Biderman & Reiss, 1967; Fang et al.,
2022; Zanger-Tishler et al., 2024) or the healthcare sector (Basu, 2023; Cerdena et al., 2020;
Diao et al., 2021; Eneanya et al., 2019). In this situation, decisions based on these predictions
can lead to some communities being under-served on average, thus violating certain conceptions
of algorithmic fairness (Corbett-Davies et al., 2023; Dwork et al., 2012; Hardt et al., 2016).

Zanger-Tishler et al. (2024) show that in the presence of label bias, the addition of features may
deteriorate prediction accuracy on the true labels of interest. In particular, if a feature’s correlation
with the true outcome and proxy outcome, conditional on the other covariates, have different
signs, then including that feature in a regression will deteriorate predictive accuracy. This can oc-
cur when a feature is only weakly related with the true outcome but both this feature and the out-
come are causally constitutive of the remaining features. Zanger-Tishler et al. (2024) demonstrate
this situation with the relationship between criminal behaviour (the outcome of interest), arrests
(the proxy outcome), and the level of policing in a neighbourhood; we continue studying this ex-
ample in Section 2.2.

In the present paper, we demonstrate that, in the setting where dropping a predictor would
increase prediction accuracy, we can increase prediction accuracy even further using a measure-
ment model and that, with sufficient knowledge about the data-generating process, measurement
models can mitigate systematic disparities in prediction. Our work highlights the benefits of
making explicit assumptions about measurement errors, even in purely predictive settings.
Measurement models are a way to make these assumptions transparent and allow users to critic-
ally question if enough domain knowledge is at hand to make the proxies valid and to ensure that
downstream decisions based on them do not underserve specific groups of interest. While meas-
urement models, in principle, allow researchers to adjust predictions to mitigate disparities and
achieve decisions that improve outcomes for particular groups, the inclusion of membership infor-
mation to protected groups may be problematic in itself (Goel et al., 2017) and violate the legal
doctrine of ‘no disparate treatment’. We do not address this tension here; in any application
with label bias of this sort, both societal and legal considerations will be crucial.

Building measurement models tailored to specific applications has been made easier by recent
advances in probabilistic programming languages such as Stan (Stan Development Team,
2023), where reasonably general Bayesian models can be set up in simple, user-friendly
language, allowing researchers to represent prior knowledge, including uncertainty, about
the measurement process and any discrepancy between the proxy and the true outcome in a stat-
istical model.

In Section 2, we introduce hierarchical Bayesian measurement models and discuss general meth-
odological considerations. We go on to discuss pitfalls of correlated measurement error in the sim-
ple case of linear regression, where label bias can be studied analytically (see Section 2.1). After
presenting our proposed methodology, we demonstrate the use of Bayesian measurement models
in two applications. In Section 3, we study the simulated criminal justice model considered in
Zanger-Tishler et al. (2024). Next, in Section 4, we consider the problem of predicting diabetes
risk based on diagnosis information. We use public health research on diabetes prevalence to ad-
just for the fact that among diabetics, diagnoses are more likely to be made in those with healthcare
access. By adjusting predictions for healthcare status, we achieve more accurate and equitable pre-
dictions than possible with regression on the proxy labels. While the examples are chosen to re-
semble real-world applications, they are not supposed to be case studies. Rather, they are
chosen to showcase how our proposed methodology—Bayesian measurement models—might
improve on classical techniques dealing with label bias.

1 All models and code to reproduce our results are available under https:/github.com/JonasMikhaeil/

HierarchicalBayesianMeasurementModels.
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Figure 1. Some measurement models for label bias.

2 Measurement models for label bias

In situations in which only a noisy proxy y of the desired outcome of interest « is available, some
model, explicit or implicit, of the measurement process is necessary for accurate and reliable pre-
diction. The classical approach of using regression E(y | X) on the proxy labels to predict the true
outcome # implicitly equates the outcome of interest and the observed proxy outcome. In the case
of linear regression, this yields accurate inference if the measurement error is mean independent of
the covariates X, see Section 2.1. Often, there is good reason to believe this is not the case.
Measurement models in general, and Bayesian hierarchical models, in particular, are a useful
tool to model more complicated measuring processes and account for noise that is not independent
of the covariates.

The general idea behind measurement models (see Figure 1) is to introduce the true outcome # as
a latent (unobserved) quantity. Prior knowledge about the application is then used to model the
relationship between the covariates X, the latent outcomes of interest #, and the observed proxies
y. Because parts of the variables remain unobserved, some of the model parameters are not (or only
partially) identified (Gustafson, 2015). Measurement models thus rely on domain knowledge in
two ways: The measurement process has to be sufficiently understood to supply a model structure
(which includes distributional assumptions about the latent outcomes) as well as reasonable values
of the nonidentified parameters of the model. We give guidance on how to determine which pa-
rameters require strong priors in online supplementary material Appendix C.

For the identified part of the model, classical advice about Bayesian workflow applies. In par-
ticular, posterior predictive checks (Gelman et al., 1996; Rubin, 1984) can be used to asses model
fit. If parametric assumptions are too rigid, nonparametric components (such as Gaussian proc-
esses or splines) can be used. Another way of adding flexibility and moving beyond the limitations
of parametric models is to add unit-specific error terms (such as in the threshold model of Section
2.3).

When only limited prior knowledge is available, nonidentified parameters should be treated as
sensitivity parameters in a sensitivity analysis (Richardson et al., 2011; Depaoli et al., 2020;
Kallioinen et al., 2024). Such an analysis is performed in Section 3.3, which details the impact
of misspecification of the parameters in a stylized example where the data-generating process is
known. Gelman and Hennig (2017) discuss the use of informative priors in Bayesian practice
more generally and the value of transparency in scientific endeavours.

Measurement models are flexible and can be tailored to the application of interest. Here, we pre-
sent two models, a leakage model for linear regression, which we will use to model a stylized ex-
ample of arrests and crime (see Section 3), and a threshold model for logistic regression, which we
will apply to estimate diabetes risk based on diagnosis data (see Section 4). Before we do so, we will
illustrate the pitfalls of dependent label bias explicitly in the case of linear regression.
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2.1 Simple illustration: label bias in linear regression

In this section, we use the simple case of linear regression to analytically demonstrate issues that
can arise when using regression on proxy outcomes to predict true outcomes. The validity of this
classical approach rests on the assumption that the measurement error is uncorrelated with the co-
variates. We demonstrate that if this assumption is inaccurate, predictions can be systematically
inaccurate. Throughout this section, we treat the covariates X as random (Buja et al., 2016,
2019; Rosset & Tibshirani, 2020) allowing them to be correlated with the measurement errors.

We provide three main formulas. First, in Proposition 1, we provide a formula for the error of
the linear regression solution when fitting on a proxy as opposed to the true outcome. While our
proposition is focused on regression on proxies, it is similar to the well-known omitted variable
bias (Wooldridge, 2010). Proposition 2 demonstrates that when the proxy is correlated with pre-
dictors, then the prediction error is also correlated with the predictors. Finally, Proposition 3 pro-
vides a lower bound on the prediction error when using a proxy outcome in terms of the prediction
error when using the true outcome. The primary purpose of these propositions is to demonstrate
the systematic errors that can arise when using proxy labels in a simple setting that can be studied
analytically. Proofs can be found in online supplementary material Appendix A.

We start by assuming that some true outcome, #, and a proxy outcome, y, are #-dimensional random
vectors. We also assume that X is an 7 X m random matrix of centred covariates with a leading column
of ones such that E(X"X) is full rank, i.e. the covariates are not multicollinear. We assume
(X, u, y) ~ P, where P is some probability distribution over the covariates, true outcome, and proxy
outcome.” We define S to be the expected solution to linear regression with covariates X and data .
That is,

£ =argmin E(|| Xt — u))?). (1)

The expected solution to the linear regression changes when using the proxy outcome y and the same
covariates X. The expected solution with a proxy outcome is given by the following proposition.

Proposition 1 ((Proxy outcome regression solution)). Let (X, #, y) ~ P. Then,

argminE(| Xw — y|*) = (1 + )8+ a, (2)

where the vector [ay] € R"™*! is the expected solution to the linear regres-
sion with outcome # — y (the measurement error) and 7 X (7 + 1) matrix
of covariates [X u]. That is,

[o y] = arg minE(| Mw — e||?), (3)

where e is the measurement error defined by e = # — y and where M is de-
fined to be the 7 X (m + 1) random matrix [X u].

That is, if the measurement error e is uncorrelated with the covariates and the outcome, then, in
expectation, /3 is recovered from the proxies. On the other hand, correlation between the measure-
ment error and the covariates or the outcome will introduce error in the approximation of . That
error, y8 + a, is obtained from combining (1) and (2). This can pose problems in causal investiga-
tions (Knox et al., 2022) and even in predictive settings. The right panels of Figure 2 provide an
illustrative example of error introduced by the use of a proxy outcome in the linear regression set-
ting. We demonstrate the case where m = 2, i.e. X consists of an intercept and one predictor.

When label bias introduces error into the solution to a linear regression, the predictions made
using that linear regression will be systematically distorted. We define the predictions as
E(y| X) = X(XTX)"'XTy. The following proposition provides a formula for the covariance be-
tween the covariates, X, and prediction error, u — E(y | X).

2 We assume that the expectations taken with respect to P in the proofs of Section A all exist.
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Figure 2. lllustration of label bias in linear regression. (Left) If the measurement errors are uncorrelated with the
covariate, regression yields unbiased and consistent estimates. (Right) In the case of dependent measurement
errors, regression estimates are biased and inconsistent. Prediction accuracy is degraded.

Proposition 2 ((Covariance of covariates and prediction error)). Let (X, #, y) ~ P. Then,
El(ee = E(y 1 X)) X] = =(f + @) 'E(X" X), (4)

where f is defined in (1), and a, y are defined in (3).

That s, if there is a correlation between the covariates and the measurement error # — y, then the
prediction error will also be correlated with the covariates. This shows that the use of proxy labels
may introduce systematic disparities in predictions. These disparities are liable to negatively affect
downstream decisions based on them (Parastouei et al., 2021; Van Calster & Vickers, 2015) and
may lead to protected groups being underserved, thus violating certain conceptions of algorithmic
fairness (Corbett-Davies et al., 2023; Dwork et al., 2012; Hardt et al., 2016).

In our last proposition, we compare prediction error when fitting with the true outcome to pre-
diction error when using a proxy. In particular, we provide a lower bound for the mean squared
error (MSE) in the true outcome using linear regression predictions trained on a proxy in terms of
the MSE in the true outcome using linear regression trained on the true outcome. We show that
label bias degrades prediction accuracy when using linear regression because of the systematic dis-
parities in prediction caused by the correlation between the measurement error and the outcome u
and covariates X.

Proposition 3  ((Prediction error with true outcome versus proxy)). Let (X, u, y) ~ P.
Then we have

MSE(u, E(y | X)) > MSE(u, £t | X)) + (38 + o) "E(X"X) (38 + @),

where f is defined in (1), and a, y are defined in (3).
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X

Figure 3. Data-generating process for Zanger-Tishler et al. (2024) stylized example of criminal behaviour (true
outcome) and arrest (proxy outcome). Observed variables are marked with a box.

In Section 3 and 4, we will see that given sufficient domain knowledge these systematic dispar-
ities in prediction can be mitigated, improving both overall prediction accuracy and reducing the
risk of exacerbating disparate outcomes of downstream decisions.

2.2 Leakage model for linear regression

Measurement models are tailored to specific applications and depend on both knowledge about
the structure and the parameters of the measurement process. In this section, we describe a leakage
model for linear regression based on the stylized criminal justice example we will study in
Section 3. Suppose we observe a proxy label y; at two different time points ¢ € {1, 2}. These proxies
depend both on the observed covariates X and the true outcomes #,. In the criminal justice ex-
ample, arrests are proxies y; for the true outcome #; of crime. Not all crime leads to arrests, so there
is a degree of leakage between proxies and latent outcomes of interest. We assume that the proxies
do not influence each other; that is, the entire temporal relationships in the model are driven by the
dependence of #, on u1.> We are interested in learning this relationship and inferring %, based on y,
and X. This assumption is based on our knowledge of the data-generating process for the example
we are studying here (see Figure 3). In other situations, we might assume that the proxies at time
t=1 influence the outcome at time t=2, for example, arrests might deter future crime.
Measurement models are flexible enough to allow for this and our model is easily extended to
this case.

This situation studied here is illustrated in the centre panel of Figure 1 and can be modelled by
the following Bayesian hierarchical model:

y1|u1, a5y, oy ~ normal(Xa + yu1, o)

(
y2 | 42, 0, y, 0 ~ normal(Xa + yuz, o)
u1 | Bo,, ~ normal(Xp, o,)
(

up |1/ll, ﬂs Ny Oy ~ normal Xﬁ-"- 71(141 - Xﬁ)) Ouv 1- 712)5

with appropriate priors on all parameters. Because the true outcomes (#1, #) remain unobserved,
this model is only partially identified (Gustafson, 2015). We give guidance on identifying param-
eters that require strong priors in online supplementary material Appendix C. In this example,

3 The centre panel of Figure 1 has an arrow from u; to u,, implying a causal relationship if the figure is understood as

a directed acyclic graph. Our model, however, does not rest on this assumption and is still applicable if #; and u; are just
assumed to be correlated.
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weak priors suffice for (a, #,0,) when we use strong priors on (8,y, g,). We will use this model for a
stylized example of criminal behaviour and arrests in Section 3.

2.3 Threshold model for logistic regression
Here, we develop a threshold model for logistic regression. We deploy this model for diabetes pre-
diction in Section 4.

Suppose we observe binary proxy labels y € {0, 1} instead of a binary outcome of interest #3.
The proxies are indicative of the true outcome but they are not fully reliable, that is there are cases
of u3 that y does not indicate. In our diabetes example, u3 indicates diabetes disease status. Not
everyone with diabetes is diagnosed, however, so diagnosis y is not a fully reliable proxy.

This situation can be modelled by introducing two (continuous) latent characteristics #1 and #,
that cause u#3 and v, respectively, by crossing a threshold:

_ 11f uy ZO
Y=\ 0else
u1 | B ~ logistic(Xp, 1)
uy=u; —tX)—e (6)
Y { Lif uy > 0
3710 else

e ~normal*(0, 0.1).

The thresholds #(X) can depend on covariates X allowing for disparities in how accurate the prox-
ies are for different subpopulations. The structure of the model is illustrated in the right panel of
Figure 1.

In the diabetes example of Section 4, the latent variable #; can be understood as quantifying the
severity of diabetes. We assume that for uninsured people symptoms have to be more severe to be
diagnosed. This is modelled by introducing insurance-dependent thresholds #(health insurance) that
offset the latent characteristic #, that determines diagnosis. By introducing e > 0, we allow for idio-
syncratic behaviour that impacts the proxy, e.g. patient’s personal propensity to visit a doctor.

We assume that there are no false positives, that is, #3 > y. In essence, this assumes that people
are not mistakenly diagnosed with diabetes and that their response about their diagnosis is truth-
ful. If we have reasons to believe this to be false, we could allow ¢(health insurance) to be random,
leading to false positive diagnoses for a fraction of the population.

The latent characteristic #; depends linearly on the covariates, so the threshold model closely
resembles ordinary logistic regression (Gelman et al., 2014) but allows for discrepancies between
the outcomes of interest #3 and the observed labels y.

In Section 4, we use this model to predict diabetes risk based on diabetes diagnosis with varying
thresholds based on health insurance status.

3 Stylized example: criminal behaviour and arrests

Figure 3 portrays the data-generating process for a stylized example of label bias in
(Zanger-Tishler et al., 2024). This model simulates individual-level behaviour (#y and #;) and ar-
rest outcomes (yo and y1) at two time points. Arrests depend both on an individual’s behaviour and
the individual’s neighbourhood (X). This is a linear structural equation model,

X ~ normal(0, ox)

[Z?] XNMVN(MQ’ [i; oi]) 7)

yo | X, ug ~ normal(aX + yuo, o)
y1 | X, u1 ~ normal(aX + yuy, o).

Zanger-Tishler et al. (2024) show how to set the variances of the exogenous variables such that the
remaining variables (X, u, #1, yo, and y1) are standardized and can be interpreted as the extent to
which an individual differs from the population average. For example, # is interpreted as how
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criminal an individual is compared with the population, and X as the level of police enforcement in
a neighbourhood.

The label bias in this problem arises because only arrests (yy and y;) and neighbourhood (X) are
observable. Criminal behaviour, (g, #1), which is the true outcome of interest, is not observable
and therefore arrests are used as a proxy for criminal behaviour. We have two regression models, a
simple one E(y; |yo) and a complex one E(y; |yo, X). Zanger-Tishler et al. (2024) show (see
Corollary 1) that it is preferable (in terms of expected squared difference between true and pre-
dicted outcome) to not include an additional feature if the correlation of that feature with the
true and proxy outcome conditional on other covariates have differing signs. For the stylized ex-
ample here, they show that this is the case for the inclusion of neighbourhood, X, in a model for
predicting criminal behaviour based on arrests yo when the correlation between neighbourhood
and criminal behaviour, g, is small.

This simple example illustrates the theoretical insight of Zanger-Tishler et al. (2024), that the
inclusion of additional features can degrade the predictive accuracy of regression models in the
presence of label bias.

3.1 Bayesian measurement model

Here, we propose to use the leakage model for regression introduced in Section 2.2, which
improves on both the simple and complex estimators of Section 3. In this stylized example, the
data-generating process is known (see Figure 3) and corresponds to the model structure of our
measurement model; compare Equations (5) and (7). Making an informed decision about the
model structure is the first step when using a measurement model. The second step is the choice
of priors. While for some parameters weak priors are sufficient, the model is only partially iden-
tified (Gustafson, 2015) necessitating strong priors on the nonidentified part of the model (see
online supplementary material Appendix C).*

oy ~ normal® (0, 1)
1)

a ~ normal(0,

(0
n ~ normal(0, 0 2)
(

B ~ normal (B, 0.1)

y ~ normal(yyue, 0.1).

The strong priors are informed by our knowledge of the data-generating process. In general, when
prior knowledge is limited, the nonidentified parameters of the model should be treated as sensi-
tivity parameters in a sensitivity analysis. Section 3.3 performs such a sensitivity analysis and in-
vestigates the impact of misspecification of the nonidentifiable parameters.

Here, we have implicitly switched from a prediction setting, in which we are only interested in
E(21 | yo, X), to an inference setting where we are modelling the joint distribution P(ug, %1, yo, y1)-
If we require predictions on a set of new variables for which only the features are observed, we can
do so by incorporating the unobserved outcomes as missing variables.

Figure 4 shows that the error model performs better than both of the regression models with its
performance being comparable with a regression on the true labels.

In practice, the measurement process might be more complicated than in this stylized example.
For example, we might have a multitude of correlated covariates each impacting the measurement
error to varying degrees. Our approach is flexible enough to cover such cases, however, with increas-
ing complexity, it may become less likely that sufficient domain knowledge is available to tightly
constrain all nonidentifiable parameters. Gelman and Hennig (2017) discuss the value of transpar-
ency and the use of informative priors in practice more generally. While this may limit the efficacy of
our method, it also limits the applicability of classical methods. If the measurement process cannot
be accounted for, prediction accuracy can be arbitrarily degraded (see Proposition 3). Domain
knowledge is crucial for predictions with label bias. If the structure of the measurement process
is known but the values of its nonidentifiable parameters are not, our method offers two advantages

4 We assume g, is known.
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Figure 4. Root mean squared error for simple and complex regression models trained on proxy outcomes in
comparison with a Bayesian error model. The prediction accuracy of the error model is superior to both regression
models for all  and comparable to an oracle model (trained on the true outcomes).

over classical methods: For one, using wide priors, we can propagate our uncertainty about the
measurement process to the predictions. Secondly, we can vary these parameters systematically
to check the sensitivity of the predictions to them; see Section 3.3. Neither of these can easily be
done for classical methods, risking practitioners to be overly confident in their predictions under la-

bel bias.

3.2 Disparate predictions

In many applications systematic disparities in prediction between different subgroups can nega-
tively affect downstream decisions (Parastouei et al., 2021; Van Calster & Vickers, 2015), and,
depending on our decision process, lead to decreased fairness (Corbett-Davies et al., 2023;
Dwork et al., 2012; Hardt et al., 2016). For both the simple and complex regression models stud-
ied in (Zanger-Tishler et al., 2024), prediction errors are correlated with the degree of policing in a
neighbourhood X, i.e. they systematically under- or overpredict crime rates based on neighbour-
hood. This correlation strongly depends on the relationship between neighbourhood and behav-
iour as well as arrests. On the other hand, prediction errors of the Bayesian measurement model
are uncorrelated with neighbourhood X as long as the neighbourhood is accounted for in the mod-
el and priors are specified correctly (see Section 3.3). Removing neighbourhood information from
the model slightly decreases predictive performance but introduces dependence between predic-
tion errors and neighbourhood X. We plot correlations between prediction errors and neighbour-
hood in Figure 5.

This shows that modelling the measurement process is key for both overall accurate predictions
as well as minimizing systematic disparities in prediction.

3.3 The impact of misspecification

The reliability and accuracy of predictions based on proxies crucially depend on the validity of as-
sumptions we make about the measurement process. In the previous section, we have explored the
benefits of measurement models when we can correctly account for the measurement process.
While there are real-world examples in which this can be done (see Section 4), this may be unreal-
istic in the case of predicting crime rates. Despite various proxies being available (for example data
on self-reported criminal offending Bureau of Labor Statistics, 2019), the true crime rate is empir-
ically inaccessible. Predictions of the true crime rates thus hinge on untestable assumptions that are
often obscured by being stated only implicitly, as is often the case when using regression trained on
proxy labels.
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Figure 5. Correlation between prediction error u; — {; and neighbourhood police enforcement X for simple and
complex regression models trained on proxy outcomes in comparison with a Bayesian measurement model. While
both regression models produce predictions that are systematically biased based on neighbourhood, the
measurement model has prediction errors uncorrelated with neighbourhood. The dashed line shows that without
using neighbourhood information, the measurement model also produces biased predictions.
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Figure 6. Impact of multiplicative misspecification (mx true parameter) of y (upper row, y,,,c = 0.4) and 8 (lower row,
Biue = 0.2) on predictive performance and disparity in prediction accuracy with respect to neighbourhood police
enforcement.

Measurement models, however, force us to make our assumptions transparent and allow to test
the prediction’s sensitivity to them. Figure 6 shows the impact of misspecifying the (nonidentifi-
able) parameters 8 and y in our measurement model (5). While misspecification of either leads
to degraded prediction accuracy, correctly specifying f—the relationship between neighbourhood
policing and criminal behaviour—is paramount to mitigate systematic disparities in prediction. In
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the case of regression models that use proxies to predict crime, these assumptions are often only
implicit (and cannot be easily varied), with Zanger-Tishler et al. (2024) criterion being a step in
the direction of transparency. Assumptions being made only implicitly, however, neither implies
the results to be agnostic or robust with regards to the underlying measurement process. Figures 4
and 5 show that the accuracy and systematic disparities in prediction of both the simple and com-
plex model (as well as the decision which one to choose for prediction) depend on the underlying
relationship of crime and neighbourhood policing as well.

Given that criminal behaviour, let alone its relationship with policing, is virtually impossible to
quantify, predicting crime based on arrests is always skewed by our prior assumptions about crime
(Biderman & Reiss, 1967; Hinton, 2016).

4 Empirical example: health insurance and diabetes

It is estimated that more than 10% of the US population has some form of diabetes (Centers for
Disease Control and Prevention, 2021). While early identification of diabetes is crucial as behav-
ioural counselling, dietary interventions, increased physical activity, or pharmacologic therapy
may improve future health outcome (Davidson et al., 2021), testing for diabetes also comes
with monetary and personal costs. In practice, this necessitates risk-based screening decisions
(Duan et al., 2021). In the case that diagnosis information is used to infer the model, predictions
will suffer because of label bias. Due to a variety of factors, many people with diabetes have never
been diagnosed, making diagnosis an imperfect proxy. For example, it has been estimated that
29% of American diabetics without health insurance remain undiagnosed compared with only
16% with some kind of health insurance (Fang et al., 2022), a difference that can easily be ex-
plained by impeded access to healthcare services. Our analysis is based on publicly available
data from the National Health and Nutrition Examination Survey (Centers for Disease Control
and Prevention, 2022), which provides information about both diagnosed (self-reported informa-
tion of having been diagnosed with diabetes in the past) and undiagnosed diabetes based on meas-
ured blood sugar levels. A ready-to-analyse version of this dataset is provided by Coots et al.
(2024). This offers an empirically realistic situation of label bias with the necessary ground-truth
data to evaluate the advantages and disadvantages of a measurement model, when compared with
simple regression or the approach recommended by Zanger-Tishler et al. (2024) to drop a
predictor.

The left and centre panels of Figure 7 show that this situation suffers from the phenomenon de-
scribed in Zanger-Tishler et al. (2024): inclusion of information on the insurance status degrades
predictive power when using regression on the proxy labels. For both models, label bias leads to
underestimation of diabetes risk. If this bias is not taken into account, decisions based on an op-
timal treatment threshold are liable to be harmful (Rothblum & Yona, 2023) because people who
would benefit from treatment will not receive it. When insurance status is included as a covariate,
disparate predictions are prone to lead to decisions that further under-serve the uninsured
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Figure 7. Predicted diabetes risk against diabetes rate against observed diabetes rate estimated with logistic
regression on the true outcomes for a simple (left), complex (middle), and measurement model (right) by health
insurance status (darker shade: insured, lighter shade: uninsured). For both insured and uninsured people, our
measurement model performs better than both regression models closely matching predictions of logistic
regression on the true outcomes (dashed grey line).
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population, violating conceptions of algorithmic fairness (Corbett-Davies et al., 2023; Dwork
et al., 2012; Hardt et al., 2016).

We model this situation with the measurement model presented in Section 2.3. Here, y are bin-
ary indicator for diabetes diagnosis (proxy labels) and #3 indicates diabetes (true outcomes, as-
sumed to not be observed). #; is a latent variable that can be understood as the underlying
severity of diabetes. We assume that for uninsured people, the severity of symptoms has to be high-
er to be diagnosed. To account for that, we introduce health insurance-dependent thresholds
t(health insurance) that offset the latent characteristic #, that determines if a patient is diagnosed.

This measurement model critically depends on the thresholds #(health insurance), which cannot
be inferred from diagnosis data alone. We can, however, use prior knowledge, as in (Fang et al.,
2022), to inform our choice. In online supplementary material Appendix B.1, we discuss in detail
how we determine the thresholds. The right panel of Figure 7 shows that this measurement model
based on diabetes diagnosis correcting for impeded access to health care services is well calibrated
and predicts diabetes risk better than either a simple or complex regression model. Table 1 in
online supplementary material Appendix B shows improved prediction quality across a range of
metrics for classification.

5 Conclusion and discussion

The use of imperfect proxies as dependent variable is ubiquitous in quantitative research in the
social sciences. These analyses suffer from label bias, which is often assumed to be a minor prob-
lem. If the measurement error is correlated with covariates, label bias can have detrimental effects
even in purely predictive settings. In these situations, predictions will suffer from systematic
disparities—that is, we will over- or underpredict the outcome systematically based on the cova-
riates. If the measurement errors are correlated with membership in a protected group, these sys-
tematic disparities in prediction will not only lead to degraded prediction accuracy but may also be
a concern from an algorithmic fairness perspective. In our diabetes example, see Section 4, label
bias leads classical predictions of the diabetes risk to systematically underpredict true risk, and
more so for uninsured people. Decisions based on these estimates will consequently under-serve
uninsured people.

In this paper, we advocate the use of Bayesian measurement models to mitigate these problems.
We show that measurement models are preferable to classical regression models in two examples:
a stylized criminal justice example, in which the data-generating process is known (see Section 3),
and a real-world example where we estimate diabetes risk based on diagnosis information (see
Section 4).

We find that when sufficient knowledge about the measurement process is available, these models
can mitigate systematic disparities in prediction allowing for more accurate and fairer downstream
decisions. Our method explicitly requires the user to model the measurement process. This highlights
the importance of assumptions about the relationship between measurement error with covariates for
reliable, equitable, and accurate predictions. While these assumptions often remain implicit in clas-
sical regression methods, our measurement model helps users to make them more transparent.
With this transparency also comes the benefit of being able to test the sensitivity of the predictions
to the assumed measurement process. This kind of sensitivity analysis is not easily available for clas-
sical methods. Overall, this can allow users to better question if enough domain knowledge is at hand
to judge if the proxies are useful and to ensure the fairness of downstream decisions based on them.

While we advocate for modelling the measurement process to mitigate systematic disparities in
prediction to achieve fairer downstream decisions, we need to firmly state that this cannot be taken
as general advice. Using information necessary in the modelling of proxies, such as protected class
status, may be in itself problematic and violate the legal doctrine of ‘no disparate treatment’ (for
example the Equal Protection Clause of the U.S. Constitution’s Fourteenth Amendment). This is a
fundamental tension and cannot be resolved in general. Any application based on data that is
skewed by societal injustices will require careful political, social, and legal consideration. Our pa-
per should, however, be a general warning against the uncritical uses of classical regression meth-
ods when faced with this kind of data: in these situations, predictions can suffer from systematic
disparities, and decisions based on them can further exacerbate the social injustice that skewed the
data.
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