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CONSTRAINED LOCAL APPROXIMATE IDEAL RESTRICTION FOR
ADVECTION-DIFFUSION PROBLEMS*
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Abstract. This paper focuses on developing a reduction-based algebraic multigrid (AMG) method that is suitable
for solving general (non)symmetric linear systems and is naturally robust from pure advection to pure diffusion. Initial
motivation comes from a new reduction-based algebraic multigrid approach, AIR (local approximate ideal restriction),
that was developed for solving advection-dominated problems. Though this new solver is very effective in the advection
dominated regime, its performance degrades in cases where diffusion becomes dominant. This is consistent with the fact
that in general, reduction-based AMG methods tend to suffer from growth in complexity and/or convergence rates as the
problem size is increased, especially for diffusion dominated problems in two or three dimensions. Motivated by the success
of /AIR in the advective regime, our aim in this paper is to generalize the AIR framework with the goal of improving the
performance of the solver in diffusion dominated regimes. To do so, we propose a novel way to combine mode constraints
as used commonly in energy minimization AMG methods with the local approximation of ideal operators used in £AIR.
The resulting constrained /AIR (C¢AIR) algorithm is able to achieve fast scalable convergence on advective and diffusive
problems. In addition, it is able to achieve standard low complexity hierarchies in the diffusive regime through aggressive
coarsening, something that has been previously difficult for reduction-based methods.
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1. Introduction. We design and analyze a reduction-based algebraic multigrid (rAMG) algorithm
for linear systems of algebraic equations

(1.1) Au=f,

where A € R™*" is assumed to be a sparse nonsymmetric matrix. Our focus in this paper is on solving
(1.1) arising from discretizations of advection-diffusion-reaction partial differential equations (PDEs),
which arise in various practical applications and also serve as interesting initial model problems for
testing nonsymmetric AMG solvers. Ultimately, our objective is a method that is naturally robust and
efficient in both the advection and diffusion limits.

Multigrid methods for solving (1.1) use a relaxation process or smoother, defined in this paper
by M, as a local solver for a sequence of coarse-level systems of equations to reduce the global error
resulting from applying relaxation on the finest level. In AMG, a recursive two-level point of view is
often used, both in terms of the development of the AMG setup algorithm as well as the analysis of
the solver it produces. In this two-level context, the idea is to analyze two complementary processes
to efficiently solve sparse linear systems, a relaxation scheme on the fine-level, with corresponding error
propagation matrix given by I — M 1A, and a coarse-level correction, with error propagation matrix
given by I — PAZ1RA. Here, P € R"*" n, < n, denotes the interpolation matrix that maps corrections
from the coarse-level, R € R™=*" is the restriction matrix that maps residuals to the coarse-level, and
A. = RAP is the coarse-level operator. The error propagation matrix of the resulting two-level method,
from which a multilevel method is defined recursively, reads

(1.2) Erg = (I - M 1'A)(I - PA_'RA).

The AMG solver is then defined from this two-level scheme by recursively applying it on the coarse-level
to approximate A !, and reduce the errors remaining after applying relaxation on the finer levels.

In AMG, the smoother M is typically fixed to be a simple point-wise method and then R and P are
constructed in an automated setup algorithm that takes as input the system matrix A. In this paper,
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since we consider a reduction-based AMG framework, we assume that the smoother is a point-wise F-
relaxation scheme, where the set F' denotes the set of fine variables in the coarse-fine (C/F) splitting
of the degrees of freedom  such that CUF = Q and C N F = (). In this setting, the main tasks
in the AMG setup algorithm are to construct the restriction and interpolation matrices R and P such
that certain approzimation properties hold and R and P (and thus A. = RAP) are sparse matrices.
The latter sparsity requirement implies that the setup procedure can be efficiently applied recursively
to A. = RAP in order to construct an optimal multilevel AMG solver.

In the SPD case, the variational choice R = PT is used and the weak approximation property for P
bounds the convergence rate of the two-level method in the A-norm. Notably, the weak approximation
property has as its minimizer the so-called ideal interpolation matrix [12]. This ideal form of interpolation
gives rise to the Schur-complement of A as the coarse-level system matrix and, thus, coincides with block
Gaussian elimination based on the given coarse-fine splitting. In contrast to classical AMG methods
that use a global smoother in the AMG solver (e.g., weighted-Jacobi or lexicographic Gauss-Seidel),
reduction based methods that are motivated by this block factorization interpretation choose smoothers
that focus on the subspace defined by the fine variables F'.

Traditionally, classical AMG methods are very effective for sparse SPD problems, e.g., discretiza-
tions of various diffusion and heat conduction problems, and not as effective for nonsymmetric problems,
whereas, reduction-based AMG methods have been developed that work well for nonsymmetric prob-
lems with a near-triangular (upwinded) structure, e.g., space-time discretizations [26] and advection-
dominated PDEs [20, 18]. The parallel-in-time method called multigrid reduction in time (MGRIT) [11]
is another recent application of reduction-based multigrid methods, where time integration is recognized
as suitable for reduction-based approaches because time is one-dimensional and optimal coarsening is
practical; however, MGRIT differs from rAMG methods in using a non-Galerkin coarse grid typically
based on rediscretization in time. Interestingly, theory [27, 10, 29] (and practice) has indicated that
without special care (e.g., [9]) MGRIT is effective on space-time PDEs with parabolic problems, partic-
ularly SPD spatial discretizations, but struggles with hyperbolic PDEs and highly nonsymmetric spatial
discretizations.

Indeed, solving more general non-symmetric systems arising from higher dimensional spatial PDEs
or space-time PDEs is more complicated in terms of balancing the convergence and complexity of a
multilevel solver. A viable approach for solving the latter higher dimensional problems is given by
the ¢AIR solver [20]. The approach has been extensively studied and tested for analogous advection-
diffusion-reaction model problems we consider here [21, 18, 20], and also demonstrated on more complex
advection-dominated physics, e.g., [28, 8]. In general, /AIR performs very well for advection-dominated
problems, with performance more mixed for diffusive problems, i.e., for problems with strong diffusion
(AIR suffers from degraded convergence and similar complexity issues as other reduction-based AMG
methods for diffusion type problems in higher dimensions. We mention the recent paper [32] which
represents the state-of-the-art in research on techniques for improving the performance of reduction-
based AMG solvers for diffusion problems. There, the traditional approach of constructing a row-wise
approximation of ideal interpolation is considered and the focus is on improving approximations to A7}
using sparse approximate inverse techniques, similar to the sparse Krylov approximations that have been
studied, and very recently used for a highly efficient parallel variation of ¢AIR [8].

In this paper, we combine the reduction-based principles of /AIR with the mode constraints of energy-
minimization AMG [17, 31, 6, 22, 25, 19]. The (AIR algorithm offers sparse, accurate approximations of
ideal transfer operators in the strongly advective regime, which also yields excellent AMG approximation
properties [21]. In contrast, in diffusive regimes, accurate and sparse approximations of ideal transfer
operators are generally not viable due to the density of AJTJ}; because no other information is taken into
account, the AMG approximation properties of /AIR also suffer or the complexity must dramatically
increase. Classical and energy-minimization AMG methods suffer from the opposite problem — they tend
to offer excellent AMG approximation properties for diffusive problems, but very poor approximation
properties in the advective regime [21]. On a high level, this is because the near nullspace of advective
operators cannot be represented simply by smoothed constant vectors, the basis for almost all classical
AMG and energy minimization methods. Energy minimization methods inadvertently further block their
potential by using some form of normal equations to perform energy minimization in the nonsymmetric
setting (wherein the nonsymmetric matrix A does not define a natural energy or minimization). Such
minimization converges to the ideal transfer operators of the normal equations [19], even though a sparse
accurate approximation of ideal transfer operators is often viable for matrix A, which AIR successfully
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Here, we recognize this subtlety in approximation properties that guides the success of different
AMG methods in different regimes, and define a new constrained variation of the ¢AIR algorithm.
Constrained ¢AIR (C/AIR) directly approximates the ideal transfer operators using a similar objective
as in /AIR, while constraining the range of P or RT to include known or expected near-null space
mode(s), thereby harnessing the power of reduction-based and energy-minimization methods in their
respective regimes. In relaxation, we restrict ourselves to simple F- and C-point Jacobi relaxation,
demonstrating that with careful construction of transfer operators, we are able to apply an efficient
reduction-based method for diffusive-dominated problems. As it turns out, the construction of sparsity
patterns for transfer operators in /AIR and root-node based energy minimization [19] are very similar
in principle, namely that they are defined column-wise for P and row-wise for R. As a result, we are
also able to naturally incorporate an aggressive root-node approach to choosing coarse variables [25, 19]
for diffusion dominated problems, ameliorating the (necessarily) high complexity that tends to arise in
reduction-based and advective solvers [20].

In the case of anisotropic diffusion, we observe that the energy minimization approach depends
crucially on the aggressive root-node coarsening technique [25]. In this case, the aggressive coarsening
selects a relatively small number of coarse variables to compensate for the complexity of the long-
range interpolation required for the non-grid aligned anisotropy [25]. The outcome is a low-complexity,
effective AMG solver. By combining neighborhoods of fine degrees of freedom (DOFs) into a single
coarse variable, root-node accomplishes this by greedy aggregation [30], in which the seed point of each
aggregate becomes the C-point (root-node) and the remaining degrees of freedom become F-points.
The member points (F' and C) of each aggregate define the initial nonzero pattern of the corresponding
column of P. Generally speaking, this greedy aggregation procedure places C-points farther apart than
the traditional Ruge-Stiiben (RS) C/F-splitting of the fine degrees of freedom. This results in a more
aggressive coarsening and fewer coarse variables (i.e., lower complexity) for root-node [25, 19]. The
column-wise viewpoint that we employ in the definition of C/AIR interpolation allows us to similarly
use aggressive root-node coarsening to control complexity, particularly for diffusive problems, and to
also incorporate constraint vectors for improved AMG convergence that are fit into span(P) (similar to
smoothed aggregation methods [30, 19]).

This paper is organized as follows. The next section reviews reduction-based AMG and the /AIR
framework that motivates our new method, and provides practical connections to energy minimization
AMG methods that facilitate our method design. Our new method C/AIR is presented in Section 3,
and Section 4 contains numerical results that illustrate the performance of our algorithms applied to
various discretizations of our model advection-diffusion problem. In particular, C/AIR is able to maintain
fast robust convergence on advection-dominated problems, while also yielding low-complexity scalable
solutions for diffusion dominated problems. To complement the numerical results for the proposed
method C/AIR, we present a study of classical AMG weak and strong approximation properties in
Appendix A.

2. Reduction based AMG and /AIR interpolation. Let A € R"*" and assume that the
degrees of freedom Q = {1,...,n} are partitioned in the classical sense such that we have n. C-points
and ny F-points. Then, A can be represented in the following block form:

_ (Asr Age
(2.1) A= <Acf Al
As before, define P : R +— R™ and R : R" — R"™ as interpolation and restriction respectively. Further,

assume that C-points are interpolated and restricted by injection in the classical AMG sense; then, the
transfer operators P and R in reduction based AMG can be written in the following block form:

(2.2) P= (VD R=(z 1),

where the ordering here is useful in formalizing a reduction-based AMG method. Design of classical
reduction based AMG methods is motivated by the observation that the ideal interpolation operator is
the unique operator

-1
(23) Raea = (747
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that eliminates the contribution of the coarse-grid correction e. to the F-point residual:

(2.4) APe, — < S‘;) .

Assuming R and P take the form of (2.2), we have independent of A that the Petrov-Galerkin coarse
grid satisfies RAP = S = A.. — AcfA;;AfC, where S is the Schur complement [12, 20].

Reduction based methods for diffusion type problems have traditionally assumed the classical AMG
form of interpolation in (2.3) and approximate —A;;A e by solving for each i € C

(2.5) Ag Wl = —afl,

for the n. columns of the interpolation weight matrix W defined as in (2.2). Here, we use the notation
X1} to refer to the ith row of a matrix X, whereas, X!/ will denote a column of the matrix. In this
classical reduction-based setting, choosing the coarse grid degrees of freedom C' as well as choosing the
sparsity structure of the rows of W are done using classical AMG coarsening and strength of connection
heuristics and the resulting algorithms typically lead to high grid and operator complexities, even when
very simple approximations of A;; are used. We mention that various approximations to A]?; in the
computation of P and in relaxation are possible and have been considered in the literature, and we
reiterate that in our development we focus on designing an approach that achieves both low grid and
operator complexities while at the same time only requiring the simplest diagonal (Jacobi) F-relaxation
scheme for fast convergence.

2.1. Review of /ATR. The fAIR approach that we build our new method around is based on the
similar observation that the ideal restriction operator is the unique operator [20]

(2.6) Rigeal = (—AcsA7; 1)

that eliminates all error at F-points:

e

(2.7) RA (50f) =0 Vdey.

Here, the ordering of the equations is again based on a splitting of Q@ = C'U F. The ¢AIR approach is
then based on setting RA equal to zero in (2.7) within a pre-determined F-point sparsity pattern for Z.
A similar method to approximate ideal interpolation can be expressed as satisfying AP = 0 exactly a
specified sparsity pattern for W. Note that the AIR approach can also be seen as directly approximating
the action of Rjgeal on F-points, where Rigea1A = (0, S), for the Schur complement S. Expressing this
result in terms of some matrix Z, the approach is equivalent to satisfying

(2.8) ZApyp=—Acy

within a predetermined sparsity pattern for Z. Here, the AIR approach is clearly different from the
classical (reduction) AMG [4, 24, 16, 13] approach in that (2.8) involves solving for the n. rows of Z (or
R), which now gives a column-wise view of computing R? and thereby an /AIR style form of P. !

Denoting indices of the sparsity pattern for the ith row of Z as Z; = {{1, ..., Lgs,}, where S; = |Z;] is
the size of the sparsity pattern, the resulting (transposed) linear system for Z takes the form

aglgl ag2¢1 agsizl Zily Ai0q
(2 9) a£1l2 QEQEQ A alsiZQ Zieg ai[g
(A Ls, afgési aési Ls, Ziﬁsi aiési

1We note that the reduction-based AMG approaches [16, 13] have also previously explored the use of constraint vec-
tor(s), however in addition to our different column-wise view of computing RT, these approaches use cheap approximations
to A;fl (e.g., diagonal) with a more expensive multilevel adaptive approach for generating the constraint vector. In this

work, we take the more expensive (AIR approach to approximating A7} based on small block inverses, but combine that

with a cheap constraint vector similar to energy-minimization methods, which require only a few relaxation sweeps on each
level for improvement.
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As demonstrated in [20, 18], for upwinded advection-dominated problems, very good sparse approxi-
mations to A;} can be made, which means that satisfying (2.8) within a sparsity pattern provides an
accurate approximation to Rjqeal. For advection-dominated problems, this approach also provides very
good approximation properties of the resulting restriction operator, as demonstrated in [21] and the
numerical results. In contrast, relying only on solving (2.8) for a diffusion dominated problem is unlikely
to be effective, because A7} is generally more dense in this setting and not well approximated by a sparse
matrix. Hand-in-hand with this, the resulting approximation properties are also poor. This has been
mitigated reasonably well by combining /AIR restriction with classical AMG interpolation for problems
with strong diffusion, but the complexity remains high and convergence sub-par compared with classical
AMG or energy minimization methods.

2.2. Review of Root-node AMG. One way to conceptualize root-node AMG [19] is as a combi-
nation of classical and aggregation-based multigrid methods. Root-node AMG employs a hybrid strategy
in which smoothed aggregation type strength-of-connection is used and aggregates are created using stan-
dard aggregation routines. One node is selected as the ‘root-node’ in each aggregate which corresponds
to a C-point, while all other nodes in the aggregate are identified as F-points. After that, transfer
operators are created in the following manner.

Root-node utilizes algebraicaly smoothed candidates B, which are fit into the span of interpolation,
and in order to recurse, coarse versions, B., of the candidates are obtained by injecting B to the C-
points. Next, the initial tentative interpolation T is formed by injecting only the first ¢ candidates over
each aggregate, where ¢ is the block size of the original matrix (¢ = 1 for a scalar problem). On the
coarse grid, each root-node thus represents ¢ DOFs. On T, a further step is taken to normalize every
column. This procedure produces the following form

<W> } Non Root-nodes
T = I

(2.10) } Root-nodes

For ¢ = 1, T has non-overlapping columns; for ¢ > 1, W is block diagonal.

The remaining candidates are projected into range(T") in the Euclidean inner-product if there are
more than g candidates. It is expected in root-node AMG that the allowed sparsity pattern of 71" has
enough DOFs to make this an underdetermined problem. The sparsity pattern of T is typically grown
with strength of connection information, as we later do for C/AIR. Consequently, a minimal norm update
is applied to each row of T, guaranteeing that T B, = B and T adheres to the sparsity pattern. The
interpolation P is then generated using subsequent energy-minimization updates to T (briefly covered

in the following subsection). Root-node minimizes energy by solving A ( 7 ) = 0 subject to the mode
interpolation constraints so that the solution is non zero.

2.3. Energy minimization and mode constraints. Another well-known class of AMG methods
is that of energy-minimization. We will particularly focus on root-node energy-minimization [19], which
shares the CF-splitting design of reduction-based methods. One key part of energy-minimization is the
use of constraints during the minimization process. For efficiency reasons, the sparsity pattern of P is
constrained. Let W be the sparsity pattern for the F-rows in P. We denote that P obeys the sparsity
pattern constraint with

(2.11) Pe[WI| or Wew.
For approximation property reasons, a near nullspace mode constraint is also typically enforced where
(2.12) B € span(P),

and B € R™* is a set of k global near nullspace modes. With P of the form (2.2) and equation (2.12),
this then implies that B. = [0 I] B, i.e., the fine-grid B is injected to the coarse-grid, along with the
constraint,

(2.13) PB.=B.

Similar to (AIR, energy-minimization AMG takes a column-oriented view. Letting PU! denote
column j, construction of transfer operators is based around a minimization along the lines of

(2.14) P = arglrgninz | PU1||%, such that constraints (2.13) and (2.11) are satisfied,
J
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where X denotes some norm, usually A for SPD operators or A*A for nonsymmetric matrices. This
column-oriented view is analogous to ZAIR in (2.9), but here we are minimizing in some energy-induced
inner product, rather than solving each block equation exactly as in £AIR.

Interestingly, this distinction has more profound consequences for the efficacy of the methods. For
SPD operators, root-node uses projected conjugate gradients (CG) for equation (2.14); without con-
straints (2.13) and (2.11), such a minimization procedure converges to Pieas for A [19, Lemma 4.2].
However in the nonsymmetric case, root-node uses a projected generalized minimal residual (GMRES)
for equation (2.14), which in turn (without constraints (2.13) and (2.11)), converges to Pigea for A*A
[19, Lemma 4.6]. Indeed, by posing the unconstrained problem as an (overdetermined) minimization,
root-node is required to define an energy-induced inner product through the normal equations, which in
turn leads to the approximation of Pgea; for the normal equations rather than directly for the operator of
interest. In contrast, the base algorithm of ¢AIR directly approximates (and converges to) Pigeal for the
original operator A. This is possible because the algorithm is built around local matrix approximation
(2.8) rather than a matrix-induced norm, which does not naturally exist for non-SPD matrices.

As it turns out, which ideal operators we are trying to approximate (without constraints) is an
important distinction for highly advective problems, which typically generate discretization matrices
that are close to block lower-triangular in some ordering [18]. For such cases [18], AIR achieves good
sparse approximations to A;} for computing Rjqea) and overall excellent AMG convergence. However if
one were to approximate ideal transfer operators based on A* A instead of A, the block lower-triangular
structure that is key to achieving sparse and accurate approximations to A]?; and Rjqea is completely

lost. The natural result is that a good sparse approximation to A7} becomes more difficult to compute
(see [18], Section 4 for more discussion), and the resulting AMG method is significantly less effective.
Thus although the underlying problem that energy-minimization is based around, namely approximating
AP = 0, is almost equivalent to ¢AIR, by formulating via energy minimization the resulting class of
methods yield lackluster performance on highly advective problems.

2.4. The best of both worlds. Looking carefully at the ¢AIR and energy-minimization ap-
proaches leads us to consider a new interpretation combining the best of both worlds. By directly
approximating Rjgea Of the original operator A, ¢AIR is able to construct highly effective transfer oper-
ators for advection-dominated problems; in contrast, mode constraints are fundamental to the efficacy
of energy-minimization methods for diffusion dominated problems (indeed, without constraints energy
minimization alone is generally not effective). Although ¢AIR is based around approximation of ideal
transfer operators, we can also think in terms of approximation properties — consider each row of R as
the local fine-grid mode being restricted to a given C-point, where these modes should be local represen-
tations of the smooth error. This is exactly what happens in classical smoothed aggregation [30], as well
as when bilinear interpolation is used in geometric MG for diffusion. Thus we propose a new constrained
¢AIR (CZAIR) method that is built around directly approximating the ideal transfer operators of A in
an (AIR framework, regardless of whether A is SPD or nonsymmetric, while also incorporating mode
constraints as in energy minimization to improve robustness in diffusion dominated problems.

In summary, the proposed C/AIR approach combines strengths of root-node and ¢AIR, with the goal
of a robust solver in both the advective and diffusive regimes. The C/AIR approach for constructing /AIR
interpolation with constraints is directly related to solving (2.8) and thus is a constrained approximation
of Pgeal for the original operator, in contrast to root-node, which targets the normal equations in the
nonsymmetric setting. Also, all of our proposed generalizations can be used to build R and/or P.

3. Constrained (AIR transfer operators. The main goals of our new reduction-based AMG
method built around ¢AIR-style interpolation, is to have a solver that (i) works well for both advection
and diffusion problems, (ii) allows for the incorporation of mode interpolation constraints (local or
global), and (iii) controls complexity in a reduction setting for diffusive problems through an aggressive
root-node coarsening. To achieve these goals, we consider mixing ideas from /AIR, which works well for
advection, with energy-minimization and smoothed aggregation (SA) [30], which work well for anisotropic
diffusion problems and allow for mode constraints. Another key component of the algorithm for diffusion
dominated problems, described in detail in a latter section, is our use of a root-node aggregation-based
coarsening algorithm.

The overall /AIR interpolation scheme we consider is described as follows. Similar to the energy-
minimization discussion above, we will enforce that P obeys the sparsity pattern constraint (2.11).
Regarding the sparsity pattern W for the F-rows, let W; denote the sparsity pattern for the ith column
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of W, that is W; = {ma,...,mr,} and the number of nonzeros in column i equals T; = |W;|. Define

Al } as Ay restricted (in rows and columns) to the sparsity pattern W;, and a?}z and wll as A fe and
W restricted to column 7, respectively, with rows restricted to the sparsity pattern of W;. The standard
¢AIR approach for finding each w!” is then equivalent to solving: for each i € n, solve

li)
(3.1) Affw = —ay,.

If we consider solving (3.1) at each i, we can rewrite the procedure as the following global block diagonal
system, where we assume n. points on the coarse grid:

(0)
A v ﬁ
A w a
(o) [¥] . Ir _ fC []
(3.2) AT wh = . = | = —al
Nec [”C] ';LC
Agp'] Lo aye

The solution of system (3.2) gives us classic AIR interpolation. As a side note, let W be stored in a
sparse matrix format, then the global vector of all the nonzeros of W, denoted w!*!, corresponds to the
data array for the sparse representation of W when stored in compressed column format.

3.1. Proposed Method with Global Constraints. Given the above formulation of /AIR in
(3.2), we define the procedure for incorporating a global mode interpolation constraint into the approach.
To enforce the mode interpolation constraint (2.13), define the matrix @, such that Quwl is equivalent
to PB,, i.e., the entries of B, populate @) such that the constraint equation (2.13) is equivalent to saying

(3.3) Qut =1 " | =B,
B

where Bl is the ith column of B, B represents the columns of B stacked vertically, and B[*]| F
represents columns of B stacked vertically, but restricted to the fine-grid points F. Equation (3.3) is
also equivalent to the constraint that W B, = B|p.

Thus our constrained minimization problem is

(3.4a) Hl[lIl '
(3.4b) subject to Qul*! = *]|F.

This is an equality constrained minimization problem, with various solution approaches [14].

3.1.1. Direct Solution to Minimization Problem. The minimization problem (3.4a)—(3.4b)
can be solved directly via the following Karush-Kuhn—Tucker (KKT) system
(Agc*f))TAgjf) QT wl] _ (A( ))T [+] .

Q

(3.5) \ il

The (1,1) block of equation (3.5) uses the normal equations, as the minimization principle requires an
SPD matrix and we do not assume that Agp*f) is SPD.
System (3.5) could be solved exactly via a Schur complement approach. If this is done, letting

B -1
A1 = ((A%?)TAEZ})> , the solution is

(36) wll=(1-A71QTQATQT) Q) AT A AL + (A7QT(QATQN)TIQT) T BYp,

where @ is the rectangular constraint matrix from above. Upon inspection, computing (3.6) is an

expensive endeavour, especially (QA™'QT)~! and potentially, the transpose of Agff) To avoid these
costs, we consider an iterative approach related to energy-minimization AMG [22].
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3.1.2. Iterative Solution to Minimization problem. A review of approaches for obtaining
an inexpensive iterative solution to (3.5) is given in [14]. One option previously used for AMG (e.g.,
for root-node) is projected Krylov methods. Here, an initial guess (tentative interpolation) wl*}* that
satisfies the constraints is constructed, so that Qu** = BI*] |. Then, a projected Krylov method using
Q is applied to solve the interpolation equation (3.2). The inverse (QA~1QT)~! is not required and the
transpose is not needed, because we only compute the residual for the interpolation equation (3.2) when
computing a descent direction for equation (3.4a). The previous works [22, 19] use such a projected CG
and GMRES approach for the symmetric and nonsymmetric cases, respectively. However as noted in
Section 2.3, the nonsymmetric GMRES approach will approximate Piqea) in the constraint space for the
normal equations, which is not desirable.

Thus here, we consider a simpler and cheaper linear iteration for minimizing (3.4a) that approximates
P,gea1 for the original operator in the constraint space. We find that this approach yields effective
restriction and interpolation operators.

An additional cost consideration is whether or not to precondition such an iterative solve. Since
the matrix A(f*f) is block diagonal, each block could be inverted (or approximately inverted). Thus, we
consider the use of approximate inverse preconditioners of the following form:

(0)—1
Aff
. T AWt
(3.7) AW A < 11

i i N )
(ne)—1
Afy

where Asf}’_l represents an approximate inverse to that block. Importantly, this inverse is local and can
be generated in a variety of ways, e.g., diagonal, GMRES, or ILU approximations to each individual
block inverse. This is in contrast to the “classic” energy-minimization which uses a single global Krylov
polynomial to simultaneously approximate all block inverses. It is our belief that the block inverse
approach is more effective. In particular, a global Krylov polynomial effectively assumes that each
block has the same minimizing polynomial, whereas in reality each block will likely have its own unique
minimizing polynomial (distinct from other blocks). The local approach allows us to calculate more
accurate local inverses faster through locally accurate approximations and polynomials, or to solve each
local equation directly.

3.1.3. Proposed Algorithm for Computing R and P. We now present our simple iterative
scheme for minimizing (3.4a)—(3.4b) in Algorithm 3.1. The approach is a projected one-step iteration,
which iteratively finds AIR-like interpolation operators with constraints. For restriction, the simplest
approach on paper applies Algorithm 3.1 to A”. However if forming a transpose is computationally
expensive, one can also reformulate Algorithm 3.1 relative to RA = 0, as in the original AIR method [20].

Then, the algorithm will still extract small submatrices A(fl}, but after the extraction these submatrices
will be transposed.

As input, the algorithm takes the operator A and corresponding strength of connection matrix S.
Unless noted otherwise, we use the classical strength measure [24]. The input sparsity degree pattern
m determines how wide the sparsity pattern in P will be, with m = 1 corresponding to distance-one
interpolation based on the sparsity pattern of S¢.. Most commonly, we will use m = 2, which expands
the sparsity to consider degree-two connections, similarly to ZAIR and root-node. Next, the input
“Coarsen type” considers whether a classical “FC” coarsening, e.g., Ruge-Stiiben coarsening [24], or an
aggregation-based coarsening is used.

The coarsen type controls the base sparsity pattern for P. If classical FC coarsening is used, then the
base pattern 1" comes from the FC rows of the strength matrix, S¢.. If an aggregation-based coarsening
is used, which is significantly more aggressive, then the “Aggregation Operator”? is used for T. This

2 The “Aggregation Operator” is generated by the algorithm from [30]. First, an aggregation (disjoint splitting) is
computed with a greedy graph algorithm that finds the next degree-of-freedom (root node) with all unmarked neighbors
and places those degrees-of-freedom in an aggregate and then marks them. A clean-up phase takes all unmarked degrees-
of-freedom and places them in an adjacent aggregate. The root node of each aggregate is treated as a C-point. This
procedure produces a CF-splitting that is significantly more aggressive (fewer C-points) than is typical for classical AMG



base pattern T is then expanded based on the strength of connection matrix S via m — 1 multiplications
in line 13. We note that basing the interpolation pattern on strong connections is the same strategy as
used by ZAIR and root-node, and this approach allows us to generate nearly identical patterns.

The least squares solution for line 15 is computed using a psuedoinverse based on B, restricted to
the sparsity pattern of row i, wi’*. These pseudoinverses can be locally precomputed for efficiency and
are typically small.

The projection operation in line 19 takes each new update @ and projects it so that Quw!* = 0.
That is, this operation ensures that each update w*! does not disturb the mode interpolation relationship
Quw* = BF|p. The projection operation with @ can be implemented locally using the same strategy
as for line 15 (see [22]).

Algorithm 3.1 C/AIR Algorithm
: Input: A: Matrix
: S: Strength matrix for interpolation

1

2

3 B: User supplied mode constraint vector(s)

4 m: Sparsity pattern degree

5: FC or Agg: Coarsening type

6: Output: P: Interpolation in the form of the weight block w!*)*
7
8
9

. set tentative prolongation w(*l*, corresponding to [—Afc, I]

: set base sparsity pattern T' based on coarsening type
: if Coarsen type is FC
10: T+ [Sfc, I]

11: else if Coarsen type is Agg
12: T + Aggregation Operator

13: set expanded sparsity pattern to match F-row structure of S™~!T
W < sparsity_pattern ((S™1T)|r)
14: expand wl** to store (possibly zero) entries for every nonzero in W
15: enforce constraints on wl*)* such that Qwl** = BM|x by taking row 4, wih*, and computing
wliht « least squares solution to wl*B, = B
16: compute exact or approximate block inverses for A}*f)’*l
17: for k=1,2,... do

18: compute residual update to minimize equation (3.4a), using 0 initial guess for wh

—

ol e AF ((—alil - 48w — 4G0)

T |k

20: update interp: w** « wlt 4
21: end for

22: set final interpolation weights: wl* < w!
23: Return w!*

19: project update: @l « (I — QT(QQ™)'Q)wl
(%]

*],t

Remark 3.1. If the constraints are removed from Algorithm 3.1 and the exact inverse Agp*f)’*l is used,
then ¢AIR is recovered. That is, removing the constraint lines 15 and 19 and assuming &k = 1 yields the
final update in line 20 of

w[*])t 4— w[*]7t + w[*]71
*],t (%),—1 [*] () ) [t
— wh + Ay} <—afc—Aff wl*! )

(%),=1_[+]
efAff aye

or rAMG. The “Aggregation Operator” is then a binary matrix where column ¢ corresponds to aggregate i (i.e., the ith
C-point) and this column is nonzero only for the degrees-of-freedom in aggregate i. See also [19] which constructs initial
sparsity patterns in this manner.
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However, we always use the constraints in Algorithm 3.1, making C/AIR distinct from ¢AIR.

Remark 3.2. We will most often use the exact inverse Agﬁ})’*l for Agf})’*l in line 16, similar to ¢AIR.
In this case, Algorithm 3.1 is run with k& = 1, i.e., the output of the algorithm does not change for k > 1.

3.1.4. Comparison to Root-node. We now clearly distinguish the similarities and differences
between C/AIR and root-node. The C/AIR approach shares with root-node (i) the same mode and
sparsity constraints (2.13) and (2.11), (ii) the ability to iteratively find P, and (iii) approximates some
form of Pgeal-

Regarding differences, root-node uses a simple diagonal approximation to A;fl, whereas C/AIR uses

a potentially much more powerful approximation Agf})’_l, where each block is often inverted exactly?.
The proposed C/AIR method also uses a simple one-step iteration that is cheaper computationally
than root-node, with no required global storage of Krylov vectors or the additional computations and
communications required to maintain the (globally) orthogonal Krylov basis. Lastly, root-node has only
considered fast aggregation-based coarsening, whereas C/AIR will support and explore both fast and
slow coarsening, targeting diffusive and advective problems, respectively.

4. Numerical Results. We now present supporting numerical results for C/AIR, comparing
against root-node and (AIR for a variety of classic model diffusion problems and for advection-diffusion
problems over a range of diffusion parameters. The proposed solver is shown to (i) achieve more de-
sirable operator complexities than ¢AIR, (ii) compare well against the root-node solver for symmetric
diffusion problems, where root-node is already known to perform well, and (iii) be more robust regarding
parameter tuning when compared to ¢AIR, e.g., for the advection-diffusion problems when going from
the purely advective to highly diffusive regimes.

Our basic test framework is as follows. The ZAIR and root-node solvers use the library implementa-
tions in PyAMG [3] and CZAIR is also implemented in PyAMG*. We use V(1,1) cycles as a preconditioner
for CG and GMRES in the symmetric and nonsymmetric settings, respectively. The smoother choices
respect the reduction framework. For presmoothing, we use 1 iteration of CFF-weighted-Jacobi, i.e.,
one Jacobi sweep on the C-points, followed by two Jacobi sweeps on the F-points. The weight is equal
to 1/p(D71A). (Here, p(-) denotes the spectral radius, which is approximated numerically by 15 it-
erations of Arnoldi.) For postsmoothing, we use 1 iteration of FFC-weighted-Jacobi, which is defined
analogously to CFF. Such relaxation methods are chosen for simplicity, parallelism, and the preserva-
tion of a symmetric preconditioner when A is symmetric, so that CG can be used. The absolute halting
criteria is 10™° for the smallest problem size, and is then scaled to simulate a discrete L2-norm®. We
report preconditioned Krylov iterations and work-per-digit of accuracy. One work unit is defined to be
the cost of a fine-grid matrix-vector product, and work-per-digit of accuracy estimates how many work
units are required to reduce the residual by one order of magnitude. Work measurements allow for easy
comparison across methods. To derive our work-per-digit measure, we first estimate the total cost of
doing one matrix-vector product at each level in the hierarchy, relative to one matrix-vector product on
the finest level. This yields the operator complexity measure

(4.1) OC =) " nnz(Ag)/nnz(Ay),
k

where Ay is the operator on level k in the multigrid hierarchy and nnz(-) stands for the number of
nonzero entries. To account for the cost of doing relaxation at each level, we multiply OC by 3.5 because
we estimate (roughly) the cost of CFF- and FFC-Jacobi to be slightly less than 4 matrix-vector products.
Thus work-per-digit of accuracy is estimated as

(4.2) wpd = 3.5 OC/ log,(7),

where the average residual convergence factor is v = (||r||x/||70]|)*/*, 7 is the final residual, and rq is
the initial residual.

3Note that CZAIR also supports using a diagonal inverse similar to root-node, where each block of A;})’_l would be the
local diagonal inverse. However, this approximation does not always lead to effective AMG hierarchies in our experiments,
e.g., for the 3D Poisson problem. Developing more effective approximations is future research.

4The CCAIR implementation is in the CF_rootnode branch, commit bf56195b55a27bd99625c385ee9baldf8814f764.

5In 2D, the tolerance is scaled by 2 each grid refinement, and in 3D, by v/8.
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4.1. Diffusion Tests. For the symmetric case, we consider a variety of classic diffusion tests.

2D Poisson. The PDE here is —uyz — uyy = f, with Dirichlet boundary conditions on the unit
box. The discretization is classic second-order 5-point finite differencing on a regular grid.

3D Poisson. The PDE here is —ugy — tyy — u.. = f, with Dirichlet boundary conditions on the
unit box. The discretization is classic second-order 7-point finite differencing on a regular grid.

2D Grid-Aligned Anisotropic Diffusion. The PDE here is

(4.3a) ~V-Q'DQVu=f for Q=10,1]?
(4.3b) u=0 on 09,

where € is the unit box domain and

» Q= [mte) o] b=

represent the rotation by angle ¢ and the strength of anisotropy €. The discretization uses a regular grid
and bilinear (Q1) finite elements. For this problem ¢ = 0 and € = 0.001, representing strong grid-aligned
anisotropy in the x-direction.

2D Rotated Anisotropic Diffusion. Here the PDE and discretization are the same as for equa-
tions (4.3a)—(4.3b), but ¢ = 7/8 and € remains 0.001. This represents strong non-grid-aligned anisotropy
at the angle of 7/8. As noted in [25, 15, 5], this is a difficult discretization and angle of anisotropy for
AMG.

Box-in-Box Coefficient Jump. The PDE here is

(4.5a) -V -d(z,y)Vu=f for Q,
(4.5b) u=0 on 09,

where d(x,y) is the jumping coefficient. Here, Q = [0,1]2, d(x,y) = 1if (x,y) ¢ [0.44,0.52], and
d(z,y) = 10%if (x,y) € [0.44,0.52]>. The grid is regular and the coefficient jumps are grid-aligned
on the finest level, but will not be grid-aligned at coarser levels due to the algebraic coarsening. The
discretization is classic second-order 5-point finite differencing from [1] for coefficient jump problems.

Sawtooth Coefficient Jump. Here, the PDE and discretization are the same as for equations
(4.5a)—(4.5b), but Q = [0,16])?, d(z,y) = 1 for points outside the shaded region of Figure 1, and
d(x,y) = 10* for points inside the shaded region [1].

16
15

0 | I |
01 3 5 7 9 11 13 1516

Fig. 1: Sawtooth coefficient jump domain, d(z,y) = 10* in shaded region and d(x,y) = 1 outside.

Laplace Problem with Adaptive Mesh Refinement (AMR). Here, we consider a finite ele-
ment discretization of the Laplace problem —Aw = 1 with homogeneous Dirichlet boundary conditions.
This problem is solved on a sequence of meshes in an H'-conforming finite element space which are
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locally refined in accordance with a simple Zienkiewicz-Zhu [33] error estimator. We save the stiffness
matrix A throughout each iteration of the AMR loop and use this matrix to further illustrate differences
in outcomes across various AMG solvers. This example is identical to PyMFEM library example 6
[2, 23]. AMR stages for the star mesh file used in this problem are shown in Figure 2.

(b) Re-entrant corner after 5 (c) Re-entrant corner after 10"
(a) Initial star mesh refinement refinement

Fig. 2: AMR throughout different stages for the Laplace problem.

Standard Solver Parameters. We now list our standard solver parameters for all three methods,
¢AIR, C/AIR, and root-node. We will occasionally tune the parameters (e.g., strength) for /AIR and
root-node, in order to make the existing methods more competitive. The parameters for the proposed
C/AIR method will remain fixed for all symmetric test cases, except for the 2D Rotated Anisotropic
Diffusion case, where we will follow the guidance of [25] and consider larger degree interpolation sparsity
patterns. We use accelerated CG for C/AIR and root-node and accelerated GMRES for ¢AIR, as the
typical approach for /AIR is not symmetric (i.e., does not satisfy R = PT, see below parameter choices).

Parameters for LAIR (see [20] for more details on parameter definitions)
— Strength-of-connection tolerance for coarsening 0.25

— Degree 2 (AIR restriction (sparsity pattern similar to m = 2 in Algorithm 3.1) with interpolation
strength tolerance 0.05

— Ruge-Stiiben coarsening first-pass only [24] (coarsen type FC in Algorithm 3.1, relatively slow
coarsening often used by /AIR)

— Coarse-grid matrices filtered with drop-tolerance of 10~%

— Classical interpolation formula used for P [24], which is typical for /AIR and diffusive problems

Parameters for CLAIR
— Strength-of-connection tolerance for coarsening 0.5
— Degree 2 sparsity pattern for P (m = 2 in Algorithm 3.1) with interpolation strength tolerance 0.5
used to generate S in Algorithm 3.1
— Mode constraint vector B = 1, presmoothed with 5 iterations of CFF-weighted-Jacobi at each level
— R = PT used (see discussion below)
— Aggregation based coarsening (coarsen type Agg in Algorithm 3.1)

Parameters for root-node (see [19] for more parameter details)
— Strength-of-connection tolerance for coarsening 0.25
— P smoothed with energy-minimizing projected CG and a degree 2 sparsity pattern (sparsity pattern
similar to m = 2 in Algorithm 3.1)
— Mode constraint vector B = 1, presmoothed with 5 iterations of Jacobi at each level
~ R = PT used (see discussion below)
— Aggregation based coarsening (standard coarsening for root-node)

We note that the interpolation strength-of-connection tolerance for C/AIR is different than that
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for /AIR (0.5 versus 0.05). Both of these tolerance were tuned individually for each method. We also
note that C/AIR and root-node both use R = PT, while /AIR uses classical interpolation. The use
of classical interpolation (instead of RT, the transpose of ZAIR restriction) with ¢AIR is typical for
diffusive problems, and additionally, the use of R” as interpolation leads to undesirably large operator
complexities.

4.1.1. Poisson Results. We next examine convergence results for the 2D and 3D Poisson problems
in Figure 3. Here, we tune ¢AIR to obtain a more challenging baseline solver and set the sparsity pattern
in R to degree 1. For these simplest of problems, this choice reduces the operator complexity, while not
affecting convergence. For our other test problems, such a parameter choice does not lead to the best
performance. Operator complexities over all test problems, which are an advantage of C/AIR, are
discussed later in Section 4.1.3.

Figures 3a and 3c depict results for the 2D and 3D Poisson problems, respectively. Overall, we
see flat iteration counts for all methods, except a slight growth for /AIR in the 2D Poisson case. The
chief performance difference is that /AIR has a significantly higher operator complexity than C/AIR and
root-node, which will be discussed in Section 4.1.3

Figure 3b demonstrates that C/AIR can also be run similar to /AIR with Ruge-Stiiben coarsening
with first-pass only and classical interpolation for P. In general, this setup does not lead to the most
efficient solver for C/AIR, due to the high operator complexity (OC ~ 3.3).

T 11 T 11
—e— (AIR * 11 1" —e— (AIR
16 L —*— CIAIR —#— C/AIR, High Complexity )
—*— Root-node 10 Lo
x
—_ 10 —— —
u o 2 AT 9 Z
z %= 2
n / = « | T 2
2 = 2 T =
S s 2 2 ad o 8 2
=g =
= il P B ] g 2 o P g
7 N Gl L7 g 7 7 [
-t e’ T 8= — =
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Fig. 3: 2D and 3D Poisson, comparison of iterations and work-per-digit of accuracy for /AIR, C/AIR,
and root-node.
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4.1.2. Other Diffusion Results. We now consider our other diffusion test problems in Figure
4, which again depicts iterations and work-per-digit of accuracy. For these tests, we tune root-node
and ZAIR on the 2D Grid-Aligned Anisotropic Diffusion problem, in order to obtain more challenging
baseline solvers. Here, we set the coarsening and interpolation strength-of-connection tolerances to 0.5
and note that using such a high interpolation strength tolerance typically hurts ¢AIR performance,
with this case being the outlier. Thus, this is not a general parameter setting for FAIR and is used to
highlight the greater flexibility of the untuned C/AIR solver. Following the work [25], we also consider
higher-degree interpolation for the 2D Rotated Anisotropic Diffusion case, for both root-node and C/AIR.
Unfortunately, prohibitive increases in operator complexity for /AIR do not allow for such an examination
of higher-degree interpolation.

Figure 4a depicts results for the 2D Grid-Aligned Anisotropic Diffusion problem, where we see similar
performance for C/AIR, root-node, and /AIR. Figure 4b depicts results for the 2D Rotated Anisotropic
Diffusion problem where all three solvers produce similar work-per-digit numbers, and the root-node
and ClAIR solvers show flat, scalable iteration counts for the higher-degree interpolation option.

Figures 4c and 4d depict results for the Box-in-Box Coefficient Jump and Sawtooth Coefficient Jump
problems. All three solvers again show similar work-per-digit numbers, with the main difference being
in operator complexity, which we discuss in the next subsection.

Finally, results for the Laplace problem with AMR utilizing an unstructured star mesh are shown in
Figure 4e. While C/AIR and root-node performance are comparable in this instance, £AIR shows high
preconditioned iterations and work-per-digit accuracy as problem size increases. /AIR performance may
be improved by raising the strength-of-connection tolerance from 0.25 to 0.5 and adding the second pass
of Ruge-Stiiben coarsening, resulting in a maximum of 25 preconditioned iterations. However, in doing
so, the operator complexity becomes prohibitively high at around 3.88. Lastly, we note that the work
per digit for C/AIR and root-node grows slowly for this problem as the mesh is adaptively refined, but
we do not find this surprising given the re-entrant corners and adaptive refinement. We also observed a
similar slow growth when using the benchmark classical Ruge-Stiiben solver for this problem.

4.1.3. Operator Complexity Comparison. One key advantage for C/AIR when compared to
other reduction-based approaches on diffusion problems is the ability to achieve moderate operator com-
plexities with good convergence. To illustrate this, Table 1 depicts the operator complexity for all three
solvers and the largest problem size for each of the diffusion test problems. Here, this advantage to C/AIR,
becomes obvious. The faster aggregation-based coarsening, which only root-node and C/AIR support,
allows for dramatically lower operator complexities and the associated lower storage requirements.

Importantly, one could not simply introduce the aggregation-based coarsening into /AIR and main-
tain good convergence. The addition of the mode interpolation constraint vector B is needed for good
convergence.

We note that the operator complexity of 1.98 for C/AIR and the 2D Rotated Anisotropic Diffusion
case can easily be brought down to 1.78 without a meaningful effect on convergence by using 0.25 as the
strength-of-connection tolerance, but we choose to maintain uniform parameters for C/AIR.

Test Problem ‘ (AIR OC ‘ ClAIR OC ‘ Root-node OC
2D Poisson 2.20 1.40 1.34
3D Poisson 2.87 1.71 1.57
2D Grid-aligned Anisotropic Diffusion 4.92 1.52 1.51
2D Rotated Anisotropic Diffusion 2.89 1.98 1.52
Box-in-Box Coefficient Jump 2.73 1.40 1.34
Sawtooth Coefficient Jump 2.7 1.42 1.35
Laplace Problem with AMR 2.03 1.32 1.17

Table 1: Operator complexities of /AIR and C/AIR for different diffusion test problems.

Remark 4.1. In summary, we have shown that C/AIR performs similarly in terms of work-per-digit,
operator complexity, and iterations on this suite of classic diffusion test problems when compared to
root-node, an AMG method known to be efficient for such problems. Our goal is not to find a faster
solver for the 5-point Poisson operator, which would be difficult and of questionable value, but instead to
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Fig. 4: Various diffusion test problems, comparison of iterations and work-per-digit of accuracy for /AIR,
ClAIR, and root-node.

verify the proposed solver. We have furthermore shown greater parameter insensitivity and dramatically
lower operator complexities when compared to ¢AIR for these problems. Finally, it is important to
highlight that C/AIR retains good convergence and low operator complexity across a range of diffusion
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problems, which has proven challenging for previous reduction-based approaches.

4.2. Advection-Diffusion Tests. We now turn our attention to nonsymmetric tests and consider
the following two advection-diffusion problems.

2D Constant Direction Advection-Diffusion. Here the PDE is

(4.6a) —aV -Vu+b(z,y) - Vu=f for Q=[-1,1?
(4.6b) u=0 on 99,

where « is the diffusion constant and b(z,y) describes the advection. For this problem b(z,y) =
[v/2/3, \/1/73] representing constant non-grid-aligned advection. The discretization is first-order up-
winded discontinuous Galerkin (DG) for advection and the interior-penalty method for the DG dis-
cretization of diffusion. The discretization was generating by utilizing examples 14 (diffusion) and 9
(advection) with PyMFEM [2, 23]. For the case where a = 0, the boundary conditions are modified
slightly such that an outflow now occurs on the North and East walls (u = 0 is still prescribed on
the West and South walls). We use u = 0 for the inflow, so that we may test our solver with a zero
right-hand-side and random initial guess, as is commonly done to verify AMG solvers.

2D Recirculating Advection-Diffusion. Here the PDE and discretization is the same as for
equations (4.6a)—(4.6b), except b(z,y) = [z(1 —z)(2y — 1), —(22 — 1)(1 — y)y], representing divergence-
free recirculating advection about the origin. For a = 0, this problem is ill-defined, thus we demonstrate
numerical results over a range of diffusion constants («), starting from a smallest diffusion constant
a =10"* and going to a = 10.0, so that we test the advective, mixed, and diffusive regimes.

4.2.1. Advection-Diffusion Results. Our goal here is to test the solver’s robustness from the
highly advective to highly diffusive regime and show improved performance and robustness relative to
the current state ¢AIR. Similar to [20], we pre-scale the fine-grid matrices with the inverse of their
diagonal block (block-size equals the DG element size of 4). Our solver parameters will remain fixed
over these tests, and involve only minor changes to the symmetric parameters from Section 4.1. As
the matrices are nonsymmetric, GMRES is accelerated with V(1,1)-cycles. The relaxation weight for
postsmoothing with FFC-Jacobi is removed, as we no longer need symmetry for our preconditioner and
this change slightly improves convergence for all methods.® The parameters for /AIR were changed
slightly to use the second pass of Ruge-Stiiben coarsening. The parameters for C/AIR changed slightly
with the strength-of-connection parameters becoming the same as for /AIR (0.25 for coarsening and 0.05
for interpolation). Additionally because of the nonsymmetry, P is generated separately from R using
A and AT, respectively. We also again consider two variants of C/AIR, a high complexity version that
uses first pass only Ruge-Stiiben coarsening, and lower complexity versions that uses aggregation-based
coarsening. The parameters for root-node changed similarly, where GMRES is now used for the energy-
minimization when computing P and P is generated separately from R using A and AT, respectively.

Figure 5a depicts work-per-digit for the 2D Constant Direction Advection problem with no diffusion
(a = 0). The purpose of this plot is to show that C/AIR enjoys similar convergence to ¢AIR for this
test problem, where we know that /AIR works well and is essentially the state-of-the-art [20].

Figures 5¢ and 5d depict for all three solvers (with two different variants of C/AIR) the work-per-
digit of accuracy over a range of diffusion («) values for the constant direction and recirculating test
problems. The data points for root-node are omitted whenever the solver did not converge within 100
iterations (typically for small @ values). We plainly see that C/AIR has the most consistent performance
in terms of work-per-digit accuracy across all regimes.

Table 2 highlights the operator complexity advantage of C/AIR over /AIR for the constant advection
case (the recirculating free case is similar). For the more advective cases (smaller «/), the high complexity
variant of C/AIR, using first-pass only Ruge-Stiiben coarsening, obtains lower operator complexities of
roughly 15-30%, while for the more diffusive cases (larger «), the lower complexity variant of C/AIR,
using aggregation based coarsening, obtains operator complexities roughly 1.6x-2.5x smaller. In both
settings, significant storage savings are achieved.

Remark 4.2. For these plots, our goal is to highlight the robustness (lack of need for tuning) for
the CZAIR solver. Thus, we searched for good general parameters for each solver and held them fixed

6The removal of the weight also more closely follows the reduction point-of-view in that post-smoothing should primarily
solve the F-equations, so the slight improvement of convergence is not surprising.
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«|10.0] 1.0 | 0.1 |0.01 ] 0.001 | 0.0001 | 0.0

(AIR 3.19 | 3.19 | 3.20 | 3.19 | 3.70 3.19 4.28

C/AIR, High Complexity | 3.00 | 2.97 | 2.94 | 2.81 | 2.89 2.69 3.06
ClAIR 1.28 | 1.29 | 1.29 | 1.96 | DNC | DNC | DNC
Root-node 1.20 | 1.20 | 1.20 | 1.42 | DNC | DNC | DNC

Table 2: Operator complexities of ZAIR and CCAIR for different diffusion « values and the constant
advection test problem. Entries “DNC” indicate the solver did not converge within 100 iterations.
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Fig. 5: Advection-diffusion problems, comparison of iterations, work-per-digit of accuracy and operator
complexity for /AIR, C/AIR and Root-node.

over all tests. However, better parameters for individual problems and ¢AIR do exist. For instance, if
the matrix is not block diagonally pre-scaled, then the solver iterations and work for /AIR in Figure
5b (o = 10 case) improve and become 7, 8, 8, 9 and 10.35, 10.43, 11.60, 11.81, respectively, but with
a prohibitively large operator complexity of ~ 4.23. However with no pre-scaling, the /AIR then fails
to converge within 100 iterations for the small « cases, e.g., Figure 5a. Another place where tuning is
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beneficial for /AIR is the smallest o value for the recirculating advection-diffusion problem (a = 107%),
where using first-pass only Ruge-Stiiben coarsening lowers the iterations and work from 88 and 85.34 to
21 and 15.86, respectively. However, the use of first-pass only Ruge-Stiiben coarsening then substantially
degrades iterations and work-per-digit results for AIR and other « values.

Remark 4.3. For a subset of the advection-diffusion problems considered in this section, Appendix
A considers AMG approximation properties of C/AIR and £AIR, with the results indicating that CZAIR
either maintains or improves on the approximation properties of AIR.

In summary, the benefits of C/AIR are as follows. The ¢AIR solver (i) requires more tuning for these
problems than C/AIR, (ii) requires more work-per-digit than C/AIR for more diffusive problems (larger
a values), and (iii) has significantly larger operator complexities.

5. Conclusion. In this paper, we developed a new type of reduction-based AMG that is suitable
for solving nonsymmetric linear systems coming from the discretization of advection-diffusion PDEs. By
combining techniques from /AIR that have been effective for advective problems, with energy minimiza-
tion and root node techniques that are well suited for diffusion problems, we have developed an efficient
method for solving advection-diffusion problems in a general setting — the solver is insensitive to varying
contribution of the diffusive part in the PDE. An important distinction between our proposed solver and
existing reduction based methods is that we take a column-wise approach to computing an approximation
to ideal restriction and interpolation, which more naturally allows us to incorporate energy minimiza-
tion and mode constraint techniques into the process. Our future work focuses on deriving a two-grid
convergence theory for the proposed approach applied to nonsymmetric systems and to incorporate the
idea of compatible relaxation into the CZAIR coarsening process.

Appendix A. Classical AMG Weak and Strong Approximation Properties.

A.1. Approximation Properties in the Nonsymmetric Setting. We consider convergence
of /AIR and C/AIR based on classical multigrid weak and strong approximation properties. Targeting
nonsymmetric problems, we consider the generalization of the A-norm as v A*A or vV AA* [7, 21]. For
a nonsingular matrix A € C™*", consider the singular value decomposition (SVD) given by A = UXV*
where the singular values are 0 < 01 < 09 < ... < 0,. Then VA*A = VEV* = VU*ULV* = QA where
@Q = VU*. In a similar manner, we can also obtain VAA* = UXU* = AQ. Since vV A*A or VAA* are
SPD matrices, therefore we can still consider classical AMG approximation properties with respect to
the SPD matrices QA and AQ corresponding to the right and left singular vectors, respectively. Such
approximation properties measure, in a sense, how effective the coarse spaces are at capturing the near
nullspace of the operator.

For several test problems, we numerically evaluate approximation properties for /AIR and C/AIR
by making use of the generalized fractional approximation property (FAP) [21]. The FAP of a transfer
operator T € R"*" is with respect to the SPD matrix A, with powers 3,7 > 0 and constant Kz g .
Specifically, T is said to have a FAP if for every fine grid vector, v, there exists a coarse grid vector, v,
such that

Krpn (A%v,v),

2
(A1) v = Tvello < e

where A = QA (T = P) or A = AQ (T = R*). The classical multigrid weak approximation property
(WAP) is a FAP(1/2,0), that is

Kri20
(A.2) v = Tv||2 < ﬁmv,v).

Further, the classical multigrid strong approximation property (SAP) is a FAP(1,1), that is

(A.3) v = Tt < BLLL g2y oy

For a given vector v, we compute the approximation constant K g ,(v) with

_ AP

(A4 Kpgn(v) =
) (V) = R

min ||v — TVCH?L\,,.
Ve
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Let II,, denote the A"7-orthogonal projection onto the range of T, II,, = T(T*A"T)~'T*A". Substituting
into (A.4) we obtain,

N AP e
(A.5) Kr (V) 1= Tyl o

|[v] |?42ﬁ
To compute the approximation constant K, that holds for all fine grid vectors v, we take maximum
of the above expression over all v, which leads to

(4.6) Ko = maix Kr(v) = A7 || A72(1 = TL,) A

A.2. Numerical Tests. To complement the numerical results in the main text, we now measure
classical AMG approximation property constants for both /AIR and C/AIR from the purely advective to
diffusion dominated case. Specifically, we consider the 2D constant direction advection problem (4.6a)—
(4.6b) for various diffusion coefficients . For numerical tests, a 32 x 32 size spatial domain is considered,
resulting in 1024 total DOFs. In the following numerical tests, we consider the approximation properties
of the restriction operators from both ¢AIR and C/AIR.
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(a) WAP for Constant Advection with zero diffusion (b) SAP for Constant Advection with zero diffusion
(o = 0) where constraint vector B = 1 is presmoothed (a = 0) where constraint vector B = 1 is presmoothed
with 5 iterations of CFF-weighted-Jacobi. with 5 iterations of CFF-weighted-Jacobi.

Fig. 6: WAP and SAP constants for the restriction operators of /AIR and C/AIR for the constant
advection with zero diffusion (o« = 0) problem. Five (5) iterations of CFF-weighted-Jacobi relaxation
has been used to improve the mode constraint vector B = 1 in C/AIR. Singular values are shown in
the dotted blue line and are associated with the right vertical axis, and the dot-dashed lines show the
approximation constant for each of the left singular vectors of A. Horizontal dashed lines show the
approximation constant for /AIR and C/AIR that holds for all vectors.

Figure 6 shows the WAP (FAP(1/2,0)) and SAP (FAP(1,1)) approximation constants for the left
singular vectors of A. Here, 5 iterations of CFF-weighted-Jacobi relaxation has been used to improve
the mode constraint vector B = 1. From Figure 6a and 6b, we see that C/AIR demonstrates moderately
smaller (i.e., better) WAP and SAP constants than ¢AIR. Since ¢AIR is primarily designed for such
purely advective problems these results indicate that CAIR is also effective for advection problems,
with similar convergence properties. This is indeed what we see in Figures ba and 5c. This motivates
us to further study approximation properties of C/AIR, for diffusion dominated problems.

Next, we consider a diffusion dominated case by setting the diffusion coefficient to be a = 10. First,
as previously, we use 5 iterations of a CFF-weighted-Jacobi smoother to improve the mode constraint
vector B = 1. Carefully investigating the results in Figure 7a, we observe that WAP constant for the
new method C/AIR is almost a factor of two smaller than that for /AIR. Now if we compare the SAP
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constants in Figure 7b, K.« is smaller for C/AIR than for /AIR, although the constants are very large
for both solvers (184 for C/AIR and 2246 for /AIR). Somewhat surprisingly, while the SAP constant for
C(AIR in Figure 7b is quite large, we find that the iteration counts of the solver are mesh independent
(as we have seen in Figure 5b for the o = 10 case). In this case, we suspect that the Krylov method
is able to account for what the solver is lacking. We note that the significantly larger SAP constants
for /AIR are consistent with the poorer scalability of /AIR seen in Figure 5b for the a = 10 case. A
key advantage of C/AIR is that it allows the flexibility to improve the approximation properties of the
restriction operator by employing a suitable relaxation scheme for smoothing the mode constraint vector
(such as weighted CFF-Jacobi). This type of flexibility is not available in /AIR. Therefore, further
improvement of C/AIR’s SAP constant can be obtained by increasing the number of iterations applied
to B. In our experiments, we find that if the mode constraint vector B = 1 is presmoothed with 25
iterations of CFF-weighted-Jacobi (instead of 5 iterations), the SAP approximation constant for C/ATR
decreases further to Kpyax = 77 (Figure 7d). However, we do not find that these extra iterations lead to
a meaningful improvement in practice for C/AIR convergence on the tested problems.
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Fig. 7 WAP and SAP constants for the restriction operators of /AIR and C/AIR for the constant
advection with added diffusion (o = 10) problem. Different number of iterations (5 and then 25) of
CFF-weighted-Jacobi relaxation has been used to improve the mode constraint vector B = 1 in C/AIR.
Singular values are shown in the dotted blue line and are associated with the right vertical axis, and the
dot-dashed lines show the approximation constant for each of the left singular vectors of A. Horizontal
dashed lines show the approximation constant for AIR and C/AIR that holds for all vectors.
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