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Abstract. This paper focuses on developing a reduction-based algebraic multigrid (AMG) method that is suitable5
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as used commonly in energy minimization AMG methods with the local approximation of ideal operators used in ℓAIR.14
The resulting constrained ℓAIR (CℓAIR) algorithm is able to achieve fast scalable convergence on advective and diffusive15
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coarsening, something that has been previously difficult for reduction-based methods.17
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1. Introduction. We design and analyze a reduction-based algebraic multigrid (rAMG) algorithm20

for linear systems of algebraic equations21

(1.1) Au = f ,22

where A ∈ Rn×n is assumed to be a sparse nonsymmetric matrix. Our focus in this paper is on solving23

(1.1) arising from discretizations of advection-diffusion-reaction partial differential equations (PDEs),24

which arise in various practical applications and also serve as interesting initial model problems for25

testing nonsymmetric AMG solvers. Ultimately, our objective is a method that is naturally robust and26

efficient in both the advection and diffusion limits.27

Multigrid methods for solving (1.1) use a relaxation process or smoother, defined in this paper28

by M , as a local solver for a sequence of coarse-level systems of equations to reduce the global error29

resulting from applying relaxation on the finest level. In AMG, a recursive two-level point of view is30

often used, both in terms of the development of the AMG setup algorithm as well as the analysis of31

the solver it produces. In this two-level context, the idea is to analyze two complementary processes32

to efficiently solve sparse linear systems, a relaxation scheme on the fine-level, with corresponding error33

propagation matrix given by I −M−1A, and a coarse-level correction, with error propagation matrix34

given by I−PA−1
c RA. Here, P ∈ Rn×nc , nc < n, denotes the interpolation matrix that maps corrections35

from the coarse-level, R ∈ Rnc×n is the restriction matrix that maps residuals to the coarse-level, and36

Ac = RAP is the coarse-level operator. The error propagation matrix of the resulting two-level method,37

from which a multilevel method is defined recursively, reads38

(1.2) ETG = (I −M−1A)(I − PA−1
c RA).39

The AMG solver is then defined from this two-level scheme by recursively applying it on the coarse-level40

to approximate A−1
c , and reduce the errors remaining after applying relaxation on the finer levels.41

In AMG, the smoother M is typically fixed to be a simple point-wise method and then R and P are42

constructed in an automated setup algorithm that takes as input the system matrix A. In this paper,43
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since we consider a reduction-based AMG framework, we assume that the smoother is a point-wise F -44

relaxation scheme, where the set F denotes the set of fine variables in the coarse-fine (C/F ) splitting45

of the degrees of freedom Ω such that C ∪ F = Ω and C ∩ F = ∅. In this setting, the main tasks46

in the AMG setup algorithm are to construct the restriction and interpolation matrices R and P such47

that certain approximation properties hold and R and P (and thus Ac = RAP ) are sparse matrices.48

The latter sparsity requirement implies that the setup procedure can be efficiently applied recursively49

to Ac = RAP in order to construct an optimal multilevel AMG solver.50

In the SPD case, the variational choice R = PT is used and the weak approximation property for P51

bounds the convergence rate of the two-level method in the A-norm. Notably, the weak approximation52

property has as its minimizer the so-called ideal interpolation matrix [12]. This ideal form of interpolation53

gives rise to the Schur-complement of A as the coarse-level system matrix and, thus, coincides with block54

Gaussian elimination based on the given coarse-fine splitting. In contrast to classical AMG methods55

that use a global smoother in the AMG solver (e.g., weighted-Jacobi or lexicographic Gauss-Seidel),56

reduction based methods that are motivated by this block factorization interpretation choose smoothers57

that focus on the subspace defined by the fine variables F .58

Traditionally, classical AMG methods are very effective for sparse SPD problems, e.g., discretiza-59

tions of various diffusion and heat conduction problems, and not as effective for nonsymmetric problems,60

whereas, reduction-based AMG methods have been developed that work well for nonsymmetric prob-61

lems with a near-triangular (upwinded) structure, e.g., space-time discretizations [26] and advection-62

dominated PDEs [20, 18]. The parallel-in-time method called multigrid reduction in time (MGRIT) [11]63

is another recent application of reduction-based multigrid methods, where time integration is recognized64

as suitable for reduction-based approaches because time is one-dimensional and optimal coarsening is65

practical; however, MGRIT differs from rAMG methods in using a non-Galerkin coarse grid typically66

based on rediscretization in time. Interestingly, theory [27, 10, 29] (and practice) has indicated that67

without special care (e.g., [9]) MGRIT is effective on space-time PDEs with parabolic problems, partic-68

ularly SPD spatial discretizations, but struggles with hyperbolic PDEs and highly nonsymmetric spatial69

discretizations.70

Indeed, solving more general non-symmetric systems arising from higher dimensional spatial PDEs71

or space-time PDEs is more complicated in terms of balancing the convergence and complexity of a72

multilevel solver. A viable approach for solving the latter higher dimensional problems is given by73

the ℓAIR solver [20]. The approach has been extensively studied and tested for analogous advection-74

diffusion-reaction model problems we consider here [21, 18, 20], and also demonstrated on more complex75

advection-dominated physics, e.g., [28, 8]. In general, ℓAIR performs very well for advection-dominated76

problems, with performance more mixed for diffusive problems, i.e., for problems with strong diffusion77

ℓAIR suffers from degraded convergence and similar complexity issues as other reduction-based AMG78

methods for diffusion type problems in higher dimensions. We mention the recent paper [32] which79

represents the state-of-the-art in research on techniques for improving the performance of reduction-80

based AMG solvers for diffusion problems. There, the traditional approach of constructing a row-wise81

approximation of ideal interpolation is considered and the focus is on improving approximations to A−1
ff82

using sparse approximate inverse techniques, similar to the sparse Krylov approximations that have been83

studied, and very recently used for a highly efficient parallel variation of ℓAIR [8].84

In this paper, we combine the reduction-based principles of ℓAIR with the mode constraints of energy-85

minimization AMG [17, 31, 6, 22, 25, 19]. The ℓAIR algorithm offers sparse, accurate approximations of86

ideal transfer operators in the strongly advective regime, which also yields excellent AMG approximation87

properties [21]. In contrast, in diffusive regimes, accurate and sparse approximations of ideal transfer88

operators are generally not viable due to the density of A−1
ff ; because no other information is taken into89

account, the AMG approximation properties of ℓAIR also suffer or the complexity must dramatically90

increase. Classical and energy-minimization AMG methods suffer from the opposite problem – they tend91

to offer excellent AMG approximation properties for diffusive problems, but very poor approximation92

properties in the advective regime [21]. On a high level, this is because the near nullspace of advective93

operators cannot be represented simply by smoothed constant vectors, the basis for almost all classical94

AMG and energy minimization methods. Energy minimization methods inadvertently further block their95

potential by using some form of normal equations to perform energy minimization in the nonsymmetric96

setting (wherein the nonsymmetric matrix A does not define a natural energy or minimization). Such97

minimization converges to the ideal transfer operators of the normal equations [19], even though a sparse98

accurate approximation of ideal transfer operators is often viable for matrix A, which ℓAIR successfully99
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targets.100

Here, we recognize this subtlety in approximation properties that guides the success of different101

AMG methods in different regimes, and define a new constrained variation of the ℓAIR algorithm.102

Constrained ℓAIR (CℓAIR) directly approximates the ideal transfer operators using a similar objective103

as in ℓAIR, while constraining the range of P or RT to include known or expected near-null space104

mode(s), thereby harnessing the power of reduction-based and energy-minimization methods in their105

respective regimes. In relaxation, we restrict ourselves to simple F - and C-point Jacobi relaxation,106

demonstrating that with careful construction of transfer operators, we are able to apply an efficient107

reduction-based method for diffusive-dominated problems. As it turns out, the construction of sparsity108

patterns for transfer operators in ℓAIR and root-node based energy minimization [19] are very similar109

in principle, namely that they are defined column-wise for P and row-wise for R. As a result, we are110

also able to naturally incorporate an aggressive root-node approach to choosing coarse variables [25, 19]111

for diffusion dominated problems, ameliorating the (necessarily) high complexity that tends to arise in112

reduction-based and advective solvers [20].113

In the case of anisotropic diffusion, we observe that the energy minimization approach depends114

crucially on the aggressive root-node coarsening technique [25]. In this case, the aggressive coarsening115

selects a relatively small number of coarse variables to compensate for the complexity of the long-116

range interpolation required for the non-grid aligned anisotropy [25]. The outcome is a low-complexity,117

effective AMG solver. By combining neighborhoods of fine degrees of freedom (DOFs) into a single118

coarse variable, root-node accomplishes this by greedy aggregation [30], in which the seed point of each119

aggregate becomes the C-point (root-node) and the remaining degrees of freedom become F -points.120

The member points (F and C) of each aggregate define the initial nonzero pattern of the corresponding121

column of P . Generally speaking, this greedy aggregation procedure places C-points farther apart than122

the traditional Ruge-Stüben (RS) C/F -splitting of the fine degrees of freedom. This results in a more123

aggressive coarsening and fewer coarse variables (i.e., lower complexity) for root-node [25, 19]. The124

column-wise viewpoint that we employ in the definition of CℓAIR interpolation allows us to similarly125

use aggressive root-node coarsening to control complexity, particularly for diffusive problems, and to126

also incorporate constraint vectors for improved AMG convergence that are fit into span(P ) (similar to127

smoothed aggregation methods [30, 19]).128

This paper is organized as follows. The next section reviews reduction-based AMG and the ℓAIR129

framework that motivates our new method, and provides practical connections to energy minimization130

AMG methods that facilitate our method design. Our new method CℓAIR is presented in Section 3,131

and Section 4 contains numerical results that illustrate the performance of our algorithms applied to132

various discretizations of our model advection-diffusion problem. In particular, CℓAIR is able to maintain133

fast robust convergence on advection-dominated problems, while also yielding low-complexity scalable134

solutions for diffusion dominated problems. To complement the numerical results for the proposed135

method CℓAIR, we present a study of classical AMG weak and strong approximation properties in136

Appendix A.137

2. Reduction based AMG and ℓAIR interpolation. Let A ∈ Rn×n and assume that the138

degrees of freedom Ω = {1, ..., n} are partitioned in the classical sense such that we have nc C-points139

and nf F -points. Then, A can be represented in the following block form:140

A =

(
Aff Afc

Acf Acc

)
.(2.1)141

142

As before, define P : Rnc 7→ Rn and R : Rn 7→ Rnc as interpolation and restriction respectively. Further,143

assume that C-points are interpolated and restricted by injection in the classical AMG sense; then, the144

transfer operators P and R in reduction based AMG can be written in the following block form:145

P =

(
W
I

)
, R =

(
Z I

)
,(2.2)146

147

where the ordering here is useful in formalizing a reduction-based AMG method. Design of classical148

reduction based AMG methods is motivated by the observation that the ideal interpolation operator is149

the unique operator150

Pideal =

(
−A−1

ff Afc

I

)
(2.3)151

152
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that eliminates the contribution of the coarse-grid correction ec to the F -point residual:153

APec =

(
0

Sec

)
.(2.4)154

155

Assuming R and P take the form of (2.2), we have independent of A that the Petrov-Galerkin coarse156

grid satisfies RAP = S := Acc −AcfA
−1
ff Afc, where S is the Schur complement [12, 20].157

Reduction based methods for diffusion type problems have traditionally assumed the classical AMG158

form of interpolation in (2.3) and approximate −A−1
ff Afc by solving for each i ∈ C159

AffW
[i] = −A[i]

fc,(2.5)160
161

for the nc columns of the interpolation weight matrix W defined as in (2.2). Here, we use the notation162

X{i} to refer to the ith row of a matrix X, whereas, X [i] will denote a column of the matrix. In this163

classical reduction-based setting, choosing the coarse grid degrees of freedom C as well as choosing the164

sparsity structure of the rows of W are done using classical AMG coarsening and strength of connection165

heuristics and the resulting algorithms typically lead to high grid and operator complexities, even when166

very simple approximations of A−1
ff are used. We mention that various approximations to A−1

ff in the167

computation of P and in relaxation are possible and have been considered in the literature, and we168

reiterate that in our development we focus on designing an approach that achieves both low grid and169

operator complexities while at the same time only requiring the simplest diagonal (Jacobi) F-relaxation170

scheme for fast convergence.171

2.1. Review of ℓAIR. The ℓAIR approach that we build our new method around is based on the172

similar observation that the ideal restriction operator is the unique operator [20]173

Rideal =
(
−AcfA

−1
ff I

)
(2.6)174

175

that eliminates all error at F -points:176

RA

(
δef
0

)
= 0 ∀δef .(2.7)177

178

Here, the ordering of the equations is again based on a splitting of Ω = C ∪ F . The ℓAIR approach is179

then based on setting RA equal to zero in (2.7) within a pre-determined F -point sparsity pattern for Z.180

A similar method to approximate ideal interpolation can be expressed as satisfying AP = 0 exactly a181

specified sparsity pattern for W . Note that the AIR approach can also be seen as directly approximating182

the action of Rideal on F-points, where RidealA = (0, S), for the Schur complement S. Expressing this183

result in terms of some matrix Z, the approach is equivalent to satisfying184

(2.8) ZAff = −Acf185

within a predetermined sparsity pattern for Z. Here, the AIR approach is clearly different from the186

classical (reduction) AMG [4, 24, 16, 13] approach in that (2.8) involves solving for the nc rows of Z (or187

R), which now gives a column-wise view of computing RT and thereby an ℓAIR style form of P . 1188

Denoting indices of the sparsity pattern for the ith row of Z as Zi = {ℓ1, ..., ℓSi}, where Si = |Zi| is189

the size of the sparsity pattern, the resulting (transposed) linear system for Z takes the form190 
aℓ1ℓ1 aℓ2ℓ1 ... aℓSi

ℓ1

aℓ1ℓ2 aℓ2ℓ2 ... aℓSi
ℓ2

...
. . .

...
aℓ1ℓSi

aℓ2ℓSi
... aℓSi

ℓSi




ziℓ1
ziℓ2
...

ziℓSi

 = −


aiℓ1
aiℓ2
...

aiℓSi

 .(2.9)191

192

1We note that the reduction-based AMG approaches [16, 13] have also previously explored the use of constraint vec-
tor(s), however in addition to our different column-wise view of computing RT , these approaches use cheap approximations
to A−1

ff (e.g., diagonal) with a more expensive multilevel adaptive approach for generating the constraint vector. In this

work, we take the more expensive ℓAIR approach to approximating A−1
ff based on small block inverses, but combine that

with a cheap constraint vector similar to energy-minimization methods, which require only a few relaxation sweeps on each
level for improvement.
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As demonstrated in [20, 18], for upwinded advection-dominated problems, very good sparse approxi-193

mations to A−1
ff can be made, which means that satisfying (2.8) within a sparsity pattern provides an194

accurate approximation to Rideal. For advection-dominated problems, this approach also provides very195

good approximation properties of the resulting restriction operator, as demonstrated in [21] and the196

numerical results. In contrast, relying only on solving (2.8) for a diffusion dominated problem is unlikely197

to be effective, because A−1
ff is generally more dense in this setting and not well approximated by a sparse198

matrix. Hand-in-hand with this, the resulting approximation properties are also poor. This has been199

mitigated reasonably well by combining ℓAIR restriction with classical AMG interpolation for problems200

with strong diffusion, but the complexity remains high and convergence sub-par compared with classical201

AMG or energy minimization methods.202

2.2. Review of Root-node AMG. One way to conceptualize root-node AMG [19] is as a combi-203

nation of classical and aggregation-based multigrid methods. Root-node AMG employs a hybrid strategy204

in which smoothed aggregation type strength-of-connection is used and aggregates are created using stan-205

dard aggregation routines. One node is selected as the ‘root-node’ in each aggregate which corresponds206

to a C-point, while all other nodes in the aggregate are identified as F -points. After that, transfer207

operators are created in the following manner.208

Root-node utilizes algebraicaly smoothed candidates B, which are fit into the span of interpolation,209

and in order to recurse, coarse versions, Bc, of the candidates are obtained by injecting B to the C-210

points. Next, the initial tentative interpolation T is formed by injecting only the first q candidates over211

each aggregate, where q is the block size of the original matrix (q = 1 for a scalar problem). On the212

coarse grid, each root-node thus represents q DOFs. On T , a further step is taken to normalize every213

column. This procedure produces the following form214

(2.10) T =

(
W
I

)
} Non Root-nodes
} Root-nodes215

For q = 1, T has non-overlapping columns; for q > 1, W is block diagonal.216

The remaining candidates are projected into range(T ) in the Euclidean inner-product if there are217

more than q candidates. It is expected in root-node AMG that the allowed sparsity pattern of T has218

enough DOFs to make this an underdetermined problem. The sparsity pattern of T is typically grown219

with strength of connection information, as we later do for CℓAIR. Consequently, a minimal norm update220

is applied to each row of T , guaranteeing that TBc = B and T adheres to the sparsity pattern. The221

interpolation P is then generated using subsequent energy-minimization updates to T (briefly covered222

in the following subsection). Root-node minimizes energy by solving A

(
W
I

)
= 0 subject to the mode223

interpolation constraints so that the solution is non zero.224

2.3. Energy minimization and mode constraints. Another well-known class of AMG methods225

is that of energy-minimization. We will particularly focus on root-node energy-minimization [19], which226

shares the CF-splitting design of reduction-based methods. One key part of energy-minimization is the227

use of constraints during the minimization process. For efficiency reasons, the sparsity pattern of P is228

constrained. Let W be the sparsity pattern for the F-rows in P . We denote that P obeys the sparsity229

pattern constraint with230

(2.11) P ∈
[
W I

]
or W ∈ W.231

For approximation property reasons, a near nullspace mode constraint is also typically enforced where232

(2.12) B ∈ span(P ),233

and B ∈ Rn,k is a set of k global near nullspace modes. With P of the form (2.2) and equation (2.12),234

this then implies that Bc = [0 I]B, i.e., the fine-grid B is injected to the coarse-grid, along with the235

constraint,236

(2.13) PBc = B.237

Similar to ℓAIR, energy-minimization AMG takes a column-oriented view. Letting P [j] denote238

column j, construction of transfer operators is based around a minimization along the lines of239

(2.14) P = argmin
P

∑
j

∥P [j]∥2X , such that constraints (2.13) and (2.11) are satisfied,240
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where X denotes some norm, usually A for SPD operators or A∗A for nonsymmetric matrices. This241

column-oriented view is analogous to ℓAIR in (2.9), but here we are minimizing in some energy-induced242

inner product, rather than solving each block equation exactly as in ℓAIR.243

Interestingly, this distinction has more profound consequences for the efficacy of the methods. For244

SPD operators, root-node uses projected conjugate gradients (CG) for equation (2.14); without con-245

straints (2.13) and (2.11), such a minimization procedure converges to Pideal for A [19, Lemma 4.2].246

However in the nonsymmetric case, root-node uses a projected generalized minimal residual (GMRES)247

for equation (2.14), which in turn (without constraints (2.13) and (2.11)), converges to Pideal for A∗A248

[19, Lemma 4.6]. Indeed, by posing the unconstrained problem as an (overdetermined) minimization,249

root-node is required to define an energy-induced inner product through the normal equations, which in250

turn leads to the approximation of Pideal for the normal equations rather than directly for the operator of251

interest. In contrast, the base algorithm of ℓAIR directly approximates (and converges to) Pideal for the252

original operator A. This is possible because the algorithm is built around local matrix approximation253

(2.8) rather than a matrix-induced norm, which does not naturally exist for non-SPD matrices.254

As it turns out, which ideal operators we are trying to approximate (without constraints) is an255

important distinction for highly advective problems, which typically generate discretization matrices256

that are close to block lower-triangular in some ordering [18]. For such cases [18], ℓAIR achieves good257

sparse approximations to A−1
ff for computing Rideal and overall excellent AMG convergence. However if258

one were to approximate ideal transfer operators based on A∗A instead of A, the block lower-triangular259

structure that is key to achieving sparse and accurate approximations to A−1
ff and Rideal is completely260

lost. The natural result is that a good sparse approximation to A−1
ff becomes more difficult to compute261

(see [18], Section 4 for more discussion), and the resulting AMG method is significantly less effective.262

Thus although the underlying problem that energy-minimization is based around, namely approximating263

AP = 0, is almost equivalent to ℓAIR, by formulating via energy minimization the resulting class of264

methods yield lackluster performance on highly advective problems.265

2.4. The best of both worlds. Looking carefully at the ℓAIR and energy-minimization ap-266

proaches leads us to consider a new interpretation combining the best of both worlds. By directly267

approximating Rideal of the original operator A, ℓAIR is able to construct highly effective transfer oper-268

ators for advection-dominated problems; in contrast, mode constraints are fundamental to the efficacy269

of energy-minimization methods for diffusion dominated problems (indeed, without constraints energy270

minimization alone is generally not effective). Although ℓAIR is based around approximation of ideal271

transfer operators, we can also think in terms of approximation properties – consider each row of R as272

the local fine-grid mode being restricted to a given C-point, where these modes should be local represen-273

tations of the smooth error. This is exactly what happens in classical smoothed aggregation [30], as well274

as when bilinear interpolation is used in geometric MG for diffusion. Thus we propose a new constrained275

ℓAIR (CℓAIR) method that is built around directly approximating the ideal transfer operators of A in276

an ℓAIR framework, regardless of whether A is SPD or nonsymmetric, while also incorporating mode277

constraints as in energy minimization to improve robustness in diffusion dominated problems.278

In summary, the proposed CℓAIR approach combines strengths of root-node and ℓAIR, with the goal279

of a robust solver in both the advective and diffusive regimes. The CℓAIR approach for constructing ℓAIR280

interpolation with constraints is directly related to solving (2.8) and thus is a constrained approximation281

of Pideal for the original operator, in contrast to root-node, which targets the normal equations in the282

nonsymmetric setting. Also, all of our proposed generalizations can be used to build R and/or P .283

3. Constrained ℓAIR transfer operators. The main goals of our new reduction-based AMG284

method built around ℓAIR-style interpolation, is to have a solver that (i) works well for both advection285

and diffusion problems, (ii) allows for the incorporation of mode interpolation constraints (local or286

global), and (iii) controls complexity in a reduction setting for diffusive problems through an aggressive287

root-node coarsening. To achieve these goals, we consider mixing ideas from ℓAIR, which works well for288

advection, with energy-minimization and smoothed aggregation (SA) [30], which work well for anisotropic289

diffusion problems and allow for mode constraints. Another key component of the algorithm for diffusion290

dominated problems, described in detail in a latter section, is our use of a root-node aggregation-based291

coarsening algorithm.292

The overall ℓAIR interpolation scheme we consider is described as follows. Similar to the energy-293

minimization discussion above, we will enforce that P obeys the sparsity pattern constraint (2.11).294

Regarding the sparsity pattern W for the F -rows, let Wi denote the sparsity pattern for the ith column295
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of W , that is Wi = {m1, . . . ,mTi} and the number of nonzeros in column i equals Ti = |Wi|. Define296

A
(i)
ff as Aff restricted (in rows and columns) to the sparsity pattern Wi, and a

[i]
fc and w[i] as Afc and297

W restricted to column i, respectively, with rows restricted to the sparsity pattern of Wi. The standard298

ℓAIR approach for finding each w[i] is then equivalent to solving: for each i ∈ nc solve299

(3.1) A
(i)
ffw

[i] = −a[i]fc.300

If we consider solving (3.1) at each i, we can rewrite the procedure as the following global block diagonal301

system, where we assume nc points on the coarse grid:302

(3.2) A
(∗)
ff w

[∗] :=


A

(0)
ff

A
(1)
ff

. . .

A
(nc)
ff



w[0]

w[1]

...
w[nc]

 = −


a
[0]
fc

a
[1]
fc
...

a
[nc]
fc

 = −a[∗]fc .303

The solution of system (3.2) gives us classic AIR interpolation. As a side note, let W be stored in a304

sparse matrix format, then the global vector of all the nonzeros of W , denoted w[∗], corresponds to the305

data array for the sparse representation of W when stored in compressed column format.306

3.1. Proposed Method with Global Constraints. Given the above formulation of ℓAIR in307

(3.2), we define the procedure for incorporating a global mode interpolation constraint into the approach.308

To enforce the mode interpolation constraint (2.13), define the matrix Q, such that Qw[∗] is equivalent309

to PBc, i.e., the entries of Bc populate Q such that the constraint equation (2.13) is equivalent to saying310

(3.3) Qw[∗] =


B[0]|F
B[1]|F

...
B[k]|F

 = B[∗]|F ,311

where B[i] is the ith column of B, B[∗] represents the columns of B stacked vertically, and B[∗]|F312

represents columns of B stacked vertically, but restricted to the fine-grid points F . Equation (3.3) is313

also equivalent to the constraint that WBc = B|F .314

Thus our constrained minimization problem is315

min
w[∗]

∥∥∥a[∗]fc +A
(∗)
ff w

[∗]
∥∥∥
2

(3.4a)316

subject to Qw[∗] = B[∗]|F .(3.4b)317318

This is an equality constrained minimization problem, with various solution approaches [14].319

3.1.1. Direct Solution to Minimization Problem. The minimization problem (3.4a)–(3.4b)320

can be solved directly via the following Karush–Kuhn–Tucker (KKT) system321

(3.5)

[
(A

(∗)
ff )

TA
(∗)
ff QT

Q 0

] [
w[∗]

λ

]
=

[
−(A(∗)

ff )
Ta

[∗]
fc

B[∗]|F

]
.322

The (1,1) block of equation (3.5) uses the normal equations, as the minimization principle requires an323

SPD matrix and we do not assume that A
(∗)
ff is SPD.324

System (3.5) could be solved exactly via a Schur complement approach. If this is done, letting325

Ā−1 =
(
(A

(∗)
ff )

TA
(∗)
ff

)−1

, the solution is326

w[∗] =
(
I − Ā−1QT (QĀ−1QT )−1Q

)
Ā−1(A

(∗)
ff )

Ta
[∗]
fc +

(
Ā−1QT (QĀ−1QT )−1QT

)−1
B[∗]|F ,(3.6)327

328

where Q is the rectangular constraint matrix from above. Upon inspection, computing (3.6) is an329

expensive endeavour, especially (QĀ−1QT )−1 and potentially, the transpose of A
(∗)
ff . To avoid these330

costs, we consider an iterative approach related to energy-minimization AMG [22].331
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3.1.2. Iterative Solution to Minimization problem. A review of approaches for obtaining332

an inexpensive iterative solution to (3.5) is given in [14]. One option previously used for AMG (e.g.,333

for root-node) is projected Krylov methods. Here, an initial guess (tentative interpolation) w[∗],t that334

satisfies the constraints is constructed, so that Qw[∗],t = B[∗]|F . Then, a projected Krylov method using335

Q is applied to solve the interpolation equation (3.2). The inverse (QĀ−1QT )−1 is not required and the336

transpose is not needed, because we only compute the residual for the interpolation equation (3.2) when337

computing a descent direction for equation (3.4a). The previous works [22, 19] use such a projected CG338

and GMRES approach for the symmetric and nonsymmetric cases, respectively. However as noted in339

Section 2.3, the nonsymmetric GMRES approach will approximate Pideal in the constraint space for the340

normal equations, which is not desirable.341

Thus here, we consider a simpler and cheaper linear iteration for minimizing (3.4a) that approximates342

Pideal for the original operator in the constraint space. We find that this approach yields effective343

restriction and interpolation operators.344

An additional cost consideration is whether or not to precondition such an iterative solve. Since345

the matrix A
(∗)
ff is block diagonal, each block could be inverted (or approximately inverted). Thus, we346

consider the use of approximate inverse preconditioners of the following form:347

(3.7) A
(∗),−1
ff ≈ Â

(∗),−1
ff =


Â

(0),−1
ff

Â
(1),−1
ff

. . .

Â
(nc),−1
ff

 ,348

where Â
(i),−1
ff represents an approximate inverse to that block. Importantly, this inverse is local and can349

be generated in a variety of ways, e.g., diagonal, GMRES, or ILU approximations to each individual350

block inverse. This is in contrast to the “classic” energy-minimization which uses a single global Krylov351

polynomial to simultaneously approximate all block inverses. It is our belief that the block inverse352

approach is more effective. In particular, a global Krylov polynomial effectively assumes that each353

block has the same minimizing polynomial, whereas in reality each block will likely have its own unique354

minimizing polynomial (distinct from other blocks). The local approach allows us to calculate more355

accurate local inverses faster through locally accurate approximations and polynomials, or to solve each356

local equation directly.357

3.1.3. Proposed Algorithm for Computing R and P . We now present our simple iterative358

scheme for minimizing (3.4a)–(3.4b) in Algorithm 3.1. The approach is a projected one-step iteration,359

which iteratively finds AIR-like interpolation operators with constraints. For restriction, the simplest360

approach on paper applies Algorithm 3.1 to AT . However if forming a transpose is computationally361

expensive, one can also reformulate Algorithm 3.1 relative to RA = 0, as in the original ℓAIR method [20].362

Then, the algorithm will still extract small submatrices A
(i)
ff , but after the extraction these submatrices363

will be transposed.364

As input, the algorithm takes the operator A and corresponding strength of connection matrix S.365

Unless noted otherwise, we use the classical strength measure [24]. The input sparsity degree pattern366

m determines how wide the sparsity pattern in P will be, with m = 1 corresponding to distance-one367

interpolation based on the sparsity pattern of Sfc. Most commonly, we will use m = 2, which expands368

the sparsity to consider degree-two connections, similarly to ℓAIR and root-node. Next, the input369

“Coarsen type” considers whether a classical “FC” coarsening, e.g., Ruge-Stüben coarsening [24], or an370

aggregation-based coarsening is used.371

The coarsen type controls the base sparsity pattern for P . If classical FC coarsening is used, then the372

base pattern T comes from the FC rows of the strength matrix, Sfc. If an aggregation-based coarsening373

is used, which is significantly more aggressive, then the “Aggregation Operator”2 is used for T . This374

2 The “Aggregation Operator” is generated by the algorithm from [30]. First, an aggregation (disjoint splitting) is
computed with a greedy graph algorithm that finds the next degree-of-freedom (root node) with all unmarked neighbors
and places those degrees-of-freedom in an aggregate and then marks them. A clean-up phase takes all unmarked degrees-
of-freedom and places them in an adjacent aggregate. The root node of each aggregate is treated as a C-point. This
procedure produces a CF-splitting that is significantly more aggressive (fewer C-points) than is typical for classical AMG
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base pattern T is then expanded based on the strength of connection matrix S via m−1 multiplications375

in line 13. We note that basing the interpolation pattern on strong connections is the same strategy as376

used by ℓAIR and root-node, and this approach allows us to generate nearly identical patterns.377

The least squares solution for line 15 is computed using a psuedoinverse based on Bc restricted to378

the sparsity pattern of row i, w{i},t. These pseudoinverses can be locally precomputed for efficiency and379

are typically small.380

The projection operation in line 19 takes each new update w̄[∗] and projects it so that Qw̄[∗] = 0.381

That is, this operation ensures that each update w̄[∗] does not disturb the mode interpolation relationship382

Qw[∗],t = B[∗]|F . The projection operation with Q can be implemented locally using the same strategy383

as for line 15 (see [22]).384

Algorithm 3.1 CℓAIR Algorithm

1: Input:A: Matrix
2: S: Strength matrix for interpolation
3: B: User supplied mode constraint vector(s)
4: m: Sparsity pattern degree
5: FC or Agg: Coarsening type
6: Output: P : Interpolation in the form of the weight block w[∗],t

7: set tentative prolongation w[∗],t, corresponding to [−Afc, I]
8: set base sparsity pattern T based on coarsening type
9: if Coarsen type is FC

10: T ← [Sfc, I]
11: else if Coarsen type is Agg
12: T ← Aggregation Operator

13: set expanded sparsity pattern to match F-row structure of Sm−1T
W ← sparsity pattern

(
(Sm−1T )|F

)
14: expand w[∗],t to store (possibly zero) entries for every nonzero in W
15: enforce constraints on w[∗],t such that Qw[∗],t = B[∗]|F , by taking row i, w{i},t, and computing

w{i},t ← least squares solution to w{i},tBc = B

16: compute exact or approximate block inverses for Â
(∗),−1
ff

17: for k = 1, 2, ... do
18: compute residual update to minimize equation (3.4a), using 0 initial guess for w̄[∗] :

w̄[∗] ← Â
(∗),−1
ff

((
−a[∗]fc −A

(∗)
ff w[∗],t

)
−A

(∗)
ff 0

)
19: project update: w̄[∗] ← (I −QT (QQT )−1Q)w̄[∗]

20: update interp: w[∗],t ← w[∗],t + w̄[∗]

21: end for
22: set final interpolation weights: w[∗] ← w[∗],t

23: Return w[∗]

Remark 3.1. If the constraints are removed from Algorithm 3.1 and the exact inverse A
(∗),−1
ff is used,385

then ℓAIR is recovered. That is, removing the constraint lines 15 and 19 and assuming k = 1 yields the386

final update in line 20 of387

w[∗],t ← w[∗],t + w[∗],1
388

← w[∗],t +A
(∗),−1
ff

(
−a[∗]fc −A

(∗)
ff w[∗],t

)
389

← −A(∗),−1
ff a

[∗]
fc390

391

or rAMG. The “Aggregation Operator” is then a binary matrix where column i corresponds to aggregate i (i.e., the ith
C-point) and this column is nonzero only for the degrees-of-freedom in aggregate i. See also [19] which constructs initial
sparsity patterns in this manner.
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However, we always use the constraints in Algorithm 3.1, making CℓAIR distinct from ℓAIR.392

Remark 3.2. We will most often use the exact inverse A
(∗),−1
ff for Â

(∗),−1
ff in line 16, similar to ℓAIR.393

In this case, Algorithm 3.1 is run with k = 1, i.e., the output of the algorithm does not change for k > 1.394

3.1.4. Comparison to Root-node. We now clearly distinguish the similarities and differences395

between CℓAIR and root-node. The CℓAIR approach shares with root-node (i) the same mode and396

sparsity constraints (2.13) and (2.11), (ii) the ability to iteratively find P , and (iii) approximates some397

form of Pideal.398

Regarding differences, root-node uses a simple diagonal approximation to A−1
ff , whereas CℓAIR uses399

a potentially much more powerful approximation Â
(∗),−1
ff , where each block is often inverted exactly3.400

The proposed CℓAIR method also uses a simple one-step iteration that is cheaper computationally401

than root-node, with no required global storage of Krylov vectors or the additional computations and402

communications required to maintain the (globally) orthogonal Krylov basis. Lastly, root-node has only403

considered fast aggregation-based coarsening, whereas CℓAIR will support and explore both fast and404

slow coarsening, targeting diffusive and advective problems, respectively.405

4. Numerical Results. We now present supporting numerical results for CℓAIR, comparing406

against root-node and ℓAIR for a variety of classic model diffusion problems and for advection-diffusion407

problems over a range of diffusion parameters. The proposed solver is shown to (i) achieve more de-408

sirable operator complexities than ℓAIR, (ii) compare well against the root-node solver for symmetric409

diffusion problems, where root-node is already known to perform well, and (iii) be more robust regarding410

parameter tuning when compared to ℓAIR, e.g., for the advection-diffusion problems when going from411

the purely advective to highly diffusive regimes.412

Our basic test framework is as follows. The ℓAIR and root-node solvers use the library implementa-413

tions in PyAMG [3] and CℓAIR is also implemented in PyAMG4. We use V(1,1) cycles as a preconditioner414

for CG and GMRES in the symmetric and nonsymmetric settings, respectively. The smoother choices415

respect the reduction framework. For presmoothing, we use 1 iteration of CFF-weighted-Jacobi, i.e.,416

one Jacobi sweep on the C-points, followed by two Jacobi sweeps on the F-points. The weight is equal417

to 1/ρ(D−1A). (Here, ρ(·) denotes the spectral radius, which is approximated numerically by 15 it-418

erations of Arnoldi.) For postsmoothing, we use 1 iteration of FFC-weighted-Jacobi, which is defined419

analogously to CFF. Such relaxation methods are chosen for simplicity, parallelism, and the preserva-420

tion of a symmetric preconditioner when A is symmetric, so that CG can be used. The absolute halting421

criteria is 10−9 for the smallest problem size, and is then scaled to simulate a discrete L2-norm5. We422

report preconditioned Krylov iterations and work-per-digit of accuracy. One work unit is defined to be423

the cost of a fine-grid matrix-vector product, and work-per-digit of accuracy estimates how many work424

units are required to reduce the residual by one order of magnitude. Work measurements allow for easy425

comparison across methods. To derive our work-per-digit measure, we first estimate the total cost of426

doing one matrix-vector product at each level in the hierarchy, relative to one matrix-vector product on427

the finest level. This yields the operator complexity measure428

(4.1) OC =
∑
k

nnz(Ak)/nnz(A0),429

where Ak is the operator on level k in the multigrid hierarchy and nnz(·) stands for the number of430

nonzero entries. To account for the cost of doing relaxation at each level, we multiply OC by 3.5 because431

we estimate (roughly) the cost of CFF- and FFC-Jacobi to be slightly less than 4 matrix-vector products.432

Thus work-per-digit of accuracy is estimated as433

(4.2) wpd = 3.5 OC/ log10(γ),434

where the average residual convergence factor is γ = (∥r∥k/∥r0∥)1/k, rk is the final residual, and r0 is435

the initial residual.436

3Note that CℓAIR also supports using a diagonal inverse similar to root-node, where each block of Â
(∗),−1
ff would be the

local diagonal inverse. However, this approximation does not always lead to effective AMG hierarchies in our experiments,
e.g., for the 3D Poisson problem. Developing more effective approximations is future research.

4The CℓAIR implementation is in the CF rootnode branch, commit bf56195b55a27bd99625c385ee9ba1df8814f764.
5In 2D, the tolerance is scaled by 2 each grid refinement, and in 3D, by

√
8.
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4.1. Diffusion Tests. For the symmetric case, we consider a variety of classic diffusion tests.437

2D Poisson. The PDE here is −uxx − uyy = f , with Dirichlet boundary conditions on the unit438

box. The discretization is classic second-order 5-point finite differencing on a regular grid.439

3D Poisson. The PDE here is −uxx − uyy − uzz = f , with Dirichlet boundary conditions on the440

unit box. The discretization is classic second-order 7-point finite differencing on a regular grid.441

2D Grid-Aligned Anisotropic Diffusion. The PDE here is442

−∇ ·QTDQ∇u = f for Ω = [0, 1]2,(4.3a)443

u = 0 on ∂Ω,(4.3b)444445

where Ω is the unit box domain and446

(4.4) Q =

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
, D =

[
1 0
0 ϵ

]
447

represent the rotation by angle φ and the strength of anisotropy ϵ. The discretization uses a regular grid448

and bilinear (Q1) finite elements. For this problem φ = 0 and ϵ = 0.001, representing strong grid-aligned449

anisotropy in the x-direction.450

2D Rotated Anisotropic Diffusion. Here the PDE and discretization are the same as for equa-451

tions (4.3a)–(4.3b), but φ = π/8 and ϵ remains 0.001. This represents strong non-grid-aligned anisotropy452

at the angle of π/8. As noted in [25, 15, 5], this is a difficult discretization and angle of anisotropy for453

AMG.454

Box-in-Box Coefficient Jump. The PDE here is455

−∇ · d(x, y)∇u = f for Ω,(4.5a)456

u = 0 on ∂Ω,(4.5b)457458

where d(x, y) is the jumping coefficient. Here, Ω = [0, 1]2, d(x, y) = 1 if (x, y) /∈ [0.44, 0.52]2, and459

d(x, y) = 104 if (x, y) ∈ [0.44, 0.52]2. The grid is regular and the coefficient jumps are grid-aligned460

on the finest level, but will not be grid-aligned at coarser levels due to the algebraic coarsening. The461

discretization is classic second-order 5-point finite differencing from [1] for coefficient jump problems.462

Sawtooth Coefficient Jump. Here, the PDE and discretization are the same as for equations463

(4.5a)–(4.5b), but Ω = [0, 16]2, d(x, y) = 1 for points outside the shaded region of Figure 1, and464

d(x, y) = 104 for points inside the shaded region [1].

161513119753100
1

3

5

7

9

11

13

15
16

Fig. 1: Sawtooth coefficient jump domain, d(x, y) = 104 in shaded region and d(x, y) = 1 outside.

465

Laplace Problem with Adaptive Mesh Refinement (AMR). Here, we consider a finite ele-466

ment discretization of the Laplace problem −∆u = 1 with homogeneous Dirichlet boundary conditions.467

This problem is solved on a sequence of meshes in an H1-conforming finite element space which are468
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locally refined in accordance with a simple Zienkiewicz-Zhu [33] error estimator. We save the stiffness469

matrix A throughout each iteration of the AMR loop and use this matrix to further illustrate differences470

in outcomes across various AMG solvers. This example is identical to PyMFEM library example 6471

[2, 23]. AMR stages for the star mesh file used in this problem are shown in Figure 2.472

(a) Initial star mesh
(b) Re-entrant corner after 5th

refinement
(c) Re-entrant corner after 10th

refinement

Fig. 2: AMR throughout different stages for the Laplace problem.

Standard Solver Parameters. We now list our standard solver parameters for all three methods,473

ℓAIR, CℓAIR, and root-node. We will occasionally tune the parameters (e.g., strength) for ℓAIR and474

root-node, in order to make the existing methods more competitive. The parameters for the proposed475

CℓAIR method will remain fixed for all symmetric test cases, except for the 2D Rotated Anisotropic476

Diffusion case, where we will follow the guidance of [25] and consider larger degree interpolation sparsity477

patterns. We use accelerated CG for CℓAIR and root-node and accelerated GMRES for ℓAIR, as the478

typical approach for ℓAIR is not symmetric (i.e., does not satisfy R = PT , see below parameter choices).479

Parameters for ℓAIR (see [20] for more details on parameter definitions)480

– Strength-of-connection tolerance for coarsening 0.25481

– Degree 2 ℓAIR restriction (sparsity pattern similar to m = 2 in Algorithm 3.1) with interpolation482

strength tolerance 0.05483

– Ruge-Stüben coarsening first-pass only [24] (coarsen type FC in Algorithm 3.1, relatively slow484

coarsening often used by ℓAIR)485

– Coarse-grid matrices filtered with drop-tolerance of 10−4486

– Classical interpolation formula used for P [24], which is typical for ℓAIR and diffusive problems487

Parameters for CℓAIR488

– Strength-of-connection tolerance for coarsening 0.5489

– Degree 2 sparsity pattern for P (m = 2 in Algorithm 3.1) with interpolation strength tolerance 0.5490

used to generate S in Algorithm 3.1491

– Mode constraint vector B = 1, presmoothed with 5 iterations of CFF-weighted-Jacobi at each level492

– R = PT used (see discussion below)493

– Aggregation based coarsening (coarsen type Agg in Algorithm 3.1)494

Parameters for root-node (see [19] for more parameter details)495

– Strength-of-connection tolerance for coarsening 0.25496

– P smoothed with energy-minimizing projected CG and a degree 2 sparsity pattern (sparsity pattern497

similar to m = 2 in Algorithm 3.1)498

– Mode constraint vector B = 1, presmoothed with 5 iterations of Jacobi at each level499

– R = PT used (see discussion below)500

– Aggregation based coarsening (standard coarsening for root-node)501

We note that the interpolation strength-of-connection tolerance for CℓAIR is different than that502

This manuscript is for review purposes only.



13

for ℓAIR (0.5 versus 0.05). Both of these tolerance were tuned individually for each method. We also503

note that CℓAIR and root-node both use R = PT , while ℓAIR uses classical interpolation. The use504

of classical interpolation (instead of RT , the transpose of ℓAIR restriction) with ℓAIR is typical for505

diffusive problems, and additionally, the use of RT as interpolation leads to undesirably large operator506

complexities.507

4.1.1. Poisson Results. We next examine convergence results for the 2D and 3D Poisson problems508

in Figure 3. Here, we tune ℓAIR to obtain a more challenging baseline solver and set the sparsity pattern509

in R to degree 1. For these simplest of problems, this choice reduces the operator complexity, while not510

affecting convergence. For our other test problems, such a parameter choice does not lead to the best511

performance. Operator complexities over all test problems, which are an advantage of CℓAIR, are512

discussed later in Section 4.1.3.513

Figures 3a and 3c depict results for the 2D and 3D Poisson problems, respectively. Overall, we514

see flat iteration counts for all methods, except a slight growth for ℓAIR in the 2D Poisson case. The515

chief performance difference is that ℓAIR has a significantly higher operator complexity than CℓAIR and516

root-node, which will be discussed in Section 4.1.3517

Figure 3b demonstrates that CℓAIR can also be run similar to ℓAIR with Ruge-Stüben coarsening518

with first-pass only and classical interpolation for P . In general, this setup does not lead to the most519

efficient solver for CℓAIR, due to the high operator complexity (OC ≈ 3.3).520

(a) Poisson 2D (b) Poisson 2D, showing high complexity CℓAIR

(c) Poisson 3D

Fig. 3: 2D and 3D Poisson, comparison of iterations and work-per-digit of accuracy for ℓAIR, CℓAIR,
and root-node.

This manuscript is for review purposes only.



14

4.1.2. Other Diffusion Results. We now consider our other diffusion test problems in Figure521

4, which again depicts iterations and work-per-digit of accuracy. For these tests, we tune root-node522

and ℓAIR on the 2D Grid-Aligned Anisotropic Diffusion problem, in order to obtain more challenging523

baseline solvers. Here, we set the coarsening and interpolation strength-of-connection tolerances to 0.5524

and note that using such a high interpolation strength tolerance typically hurts ℓAIR performance,525

with this case being the outlier. Thus, this is not a general parameter setting for ℓAIR and is used to526

highlight the greater flexibility of the untuned CℓAIR solver. Following the work [25], we also consider527

higher-degree interpolation for the 2D Rotated Anisotropic Diffusion case, for both root-node and CℓAIR.528

Unfortunately, prohibitive increases in operator complexity for ℓAIR do not allow for such an examination529

of higher-degree interpolation.530

Figure 4a depicts results for the 2D Grid-Aligned Anisotropic Diffusion problem, where we see similar531

performance for CℓAIR, root-node, and ℓAIR. Figure 4b depicts results for the 2D Rotated Anisotropic532

Diffusion problem where all three solvers produce similar work-per-digit numbers, and the root-node533

and CℓAIR solvers show flat, scalable iteration counts for the higher-degree interpolation option.534

Figures 4c and 4d depict results for the Box-in-Box Coefficient Jump and Sawtooth Coefficient Jump535

problems. All three solvers again show similar work-per-digit numbers, with the main difference being536

in operator complexity, which we discuss in the next subsection.537

Finally, results for the Laplace problem with AMR utilizing an unstructured star mesh are shown in538

Figure 4e. While CℓAIR and root-node performance are comparable in this instance, ℓAIR shows high539

preconditioned iterations and work-per-digit accuracy as problem size increases. ℓAIR performance may540

be improved by raising the strength-of-connection tolerance from 0.25 to 0.5 and adding the second pass541

of Ruge-Stüben coarsening, resulting in a maximum of 25 preconditioned iterations. However, in doing542

so, the operator complexity becomes prohibitively high at around 3.88. Lastly, we note that the work543

per digit for CℓAIR and root-node grows slowly for this problem as the mesh is adaptively refined, but544

we do not find this surprising given the re-entrant corners and adaptive refinement. We also observed a545

similar slow growth when using the benchmark classical Ruge-Stüben solver for this problem.546

4.1.3. Operator Complexity Comparison. One key advantage for CℓAIR when compared to547

other reduction-based approaches on diffusion problems is the ability to achieve moderate operator com-548

plexities with good convergence. To illustrate this, Table 1 depicts the operator complexity for all three549

solvers and the largest problem size for each of the diffusion test problems. Here, this advantage to CℓAIR550

becomes obvious. The faster aggregation-based coarsening, which only root-node and CℓAIR support,551

allows for dramatically lower operator complexities and the associated lower storage requirements.552

Importantly, one could not simply introduce the aggregation-based coarsening into ℓAIR and main-553

tain good convergence. The addition of the mode interpolation constraint vector B is needed for good554

convergence.555

We note that the operator complexity of 1.98 for CℓAIR and the 2D Rotated Anisotropic Diffusion556

case can easily be brought down to 1.78 without a meaningful effect on convergence by using 0.25 as the557

strength-of-connection tolerance, but we choose to maintain uniform parameters for CℓAIR.558

Test Problem ℓAIR OC CℓAIR OC Root-node OC

2D Poisson 2.20 1.40 1.34
3D Poisson 2.87 1.71 1.57

2D Grid-aligned Anisotropic Diffusion 4.92 1.52 1.51
2D Rotated Anisotropic Diffusion 2.89 1.98 1.52

Box-in-Box Coefficient Jump 2.73 1.40 1.34
Sawtooth Coefficient Jump 2.71 1.42 1.35
Laplace Problem with AMR 2.03 1.32 1.17

Table 1: Operator complexities of ℓAIR and CℓAIR for different diffusion test problems.

Remark 4.1. In summary, we have shown that CℓAIR performs similarly in terms of work-per-digit,559

operator complexity, and iterations on this suite of classic diffusion test problems when compared to560

root-node, an AMG method known to be efficient for such problems. Our goal is not to find a faster561

solver for the 5-point Poisson operator, which would be difficult and of questionable value, but instead to562

This manuscript is for review purposes only.



15

(a) 2D Grid-aligned Anisotropic Diffusion, when not
visible, the lines for CℓAIR are underneath root-node. (b) 2D Rotated Anisotropic Diffusion

(c) Box-in-Box Coefficient Jump
(d) Sawtooth Coefficient Jump, when not visible, the
lines for CℓAIR are underneath root-node.

(e) Laplace Problem with AMR.

Fig. 4: Various diffusion test problems, comparison of iterations and work-per-digit of accuracy for ℓAIR,
CℓAIR, and root-node.

verify the proposed solver. We have furthermore shown greater parameter insensitivity and dramatically563

lower operator complexities when compared to ℓAIR for these problems. Finally, it is important to564

highlight that CℓAIR retains good convergence and low operator complexity across a range of diffusion565
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problems, which has proven challenging for previous reduction-based approaches.566

4.2. Advection-Diffusion Tests. We now turn our attention to nonsymmetric tests and consider567

the following two advection-diffusion problems.568

2D Constant Direction Advection-Diffusion. Here the PDE is569

−α∇ · ∇u+ b(x, y) · ∇u = f for Ω = [−1, 1]2,(4.6a)570

u = 0 on ∂Ω,(4.6b)571572

where α is the diffusion constant and b(x, y) describes the advection. For this problem b(x, y) =573

[
√

2/3,
√
1/3] representing constant non-grid-aligned advection. The discretization is first-order up-574

winded discontinuous Galerkin (DG) for advection and the interior-penalty method for the DG dis-575

cretization of diffusion. The discretization was generating by utilizing examples 14 (diffusion) and 9576

(advection) with PyMFEM [2, 23]. For the case where α = 0, the boundary conditions are modified577

slightly such that an outflow now occurs on the North and East walls (u = 0 is still prescribed on578

the West and South walls). We use u = 0 for the inflow, so that we may test our solver with a zero579

right-hand-side and random initial guess, as is commonly done to verify AMG solvers.580

2D Recirculating Advection-Diffusion. Here the PDE and discretization is the same as for581

equations (4.6a)–(4.6b), except b(x, y) = [x(1− x)(2y− 1), −(2x− 1)(1− y)y], representing divergence-582

free recirculating advection about the origin. For α = 0, this problem is ill-defined, thus we demonstrate583

numerical results over a range of diffusion constants (α), starting from a smallest diffusion constant584

α = 10−4 and going to α = 10.0, so that we test the advective, mixed, and diffusive regimes.585

4.2.1. Advection-Diffusion Results. Our goal here is to test the solver’s robustness from the586

highly advective to highly diffusive regime and show improved performance and robustness relative to587

the current state ℓAIR. Similar to [20], we pre-scale the fine-grid matrices with the inverse of their588

diagonal block (block-size equals the DG element size of 4). Our solver parameters will remain fixed589

over these tests, and involve only minor changes to the symmetric parameters from Section 4.1. As590

the matrices are nonsymmetric, GMRES is accelerated with V(1,1)-cycles. The relaxation weight for591

postsmoothing with FFC-Jacobi is removed, as we no longer need symmetry for our preconditioner and592

this change slightly improves convergence for all methods.6 The parameters for ℓAIR were changed593

slightly to use the second pass of Ruge-Stüben coarsening. The parameters for CℓAIR changed slightly594

with the strength-of-connection parameters becoming the same as for ℓAIR (0.25 for coarsening and 0.05595

for interpolation). Additionally because of the nonsymmetry, P is generated separately from R using596

A and AT , respectively. We also again consider two variants of CℓAIR, a high complexity version that597

uses first pass only Ruge-Stüben coarsening, and lower complexity versions that uses aggregation-based598

coarsening. The parameters for root-node changed similarly, where GMRES is now used for the energy-599

minimization when computing P and P is generated separately from R using A and AT , respectively.600

Figure 5a depicts work-per-digit for the 2D Constant Direction Advection problem with no diffusion601

(α = 0). The purpose of this plot is to show that CℓAIR enjoys similar convergence to ℓAIR for this602

test problem, where we know that ℓAIR works well and is essentially the state-of-the-art [20].603

Figures 5c and 5d depict for all three solvers (with two different variants of CℓAIR) the work-per-604

digit of accuracy over a range of diffusion (α) values for the constant direction and recirculating test605

problems. The data points for root-node are omitted whenever the solver did not converge within 100606

iterations (typically for small α values). We plainly see that CℓAIR has the most consistent performance607

in terms of work-per-digit accuracy across all regimes.608

Table 2 highlights the operator complexity advantage of CℓAIR over ℓAIR for the constant advection609

case (the recirculating free case is similar). For the more advective cases (smaller α), the high complexity610

variant of CℓAIR, using first-pass only Ruge-Stüben coarsening, obtains lower operator complexities of611

roughly 15–30%, while for the more diffusive cases (larger α), the lower complexity variant of CℓAIR,612

using aggregation based coarsening, obtains operator complexities roughly 1.6x–2.5x smaller. In both613

settings, significant storage savings are achieved.614

Remark 4.2. For these plots, our goal is to highlight the robustness (lack of need for tuning) for615

the CℓAIR solver. Thus, we searched for good general parameters for each solver and held them fixed616

6The removal of the weight also more closely follows the reduction point-of-view in that post-smoothing should primarily
solve the F-equations, so the slight improvement of convergence is not surprising.
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α 10.0 1.0 0.1 0.01 0.001 0.0001 0.0

ℓAIR 3.19 3.19 3.20 3.19 3.70 3.19 4.28
CℓAIR, High Complexity 3.00 2.97 2.94 2.81 2.89 2.69 3.06

CℓAIR 1.28 1.29 1.29 1.96 DNC DNC DNC
Root-node 1.20 1.20 1.20 1.42 DNC DNC DNC

Table 2: Operator complexities of ℓAIR and CℓAIR for different diffusion α values and the constant
advection test problem. Entries “DNC” indicate the solver did not converge within 100 iterations.

(a) Solver performance for 2D Constant Direction Ad-
vection, but no diffusion (α = 0), comparing ℓAIR and
CℓAIR. Note, root-node does not converge within 100
iterations for this problem and is not shown.

(b) Solver performance for 2D Constant Direction Ad-
vection with diffusion (α = 10), comparing ℓAIR,
CℓAIR and Root-node.

(c) Constant advection with varying diffusion (d) Recirculating advection with varying diffusion

Fig. 5: Advection-diffusion problems, comparison of iterations, work-per-digit of accuracy and operator
complexity for ℓAIR, CℓAIR and Root-node.

over all tests. However, better parameters for individual problems and ℓAIR do exist. For instance, if617

the matrix is not block diagonally pre-scaled, then the solver iterations and work for ℓAIR in Figure618

5b (α = 10 case) improve and become 7, 8, 8, 9 and 10.35, 10.43, 11.60, 11.81, respectively, but with619

a prohibitively large operator complexity of ∼ 4.23. However with no pre-scaling, the ℓAIR then fails620

to converge within 100 iterations for the small α cases, e.g., Figure 5a. Another place where tuning is621
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beneficial for ℓAIR is the smallest α value for the recirculating advection-diffusion problem (α = 10−4),622

where using first-pass only Ruge-Stüben coarsening lowers the iterations and work from 88 and 85.34 to623

21 and 15.86, respectively. However, the use of first-pass only Ruge-Stüben coarsening then substantially624

degrades iterations and work-per-digit results for ℓAIR and other α values.625

Remark 4.3. For a subset of the advection-diffusion problems considered in this section, Appendix626

A considers AMG approximation properties of CℓAIR and ℓAIR, with the results indicating that CℓAIR627

either maintains or improves on the approximation properties of ℓAIR.628

In summary, the benefits of CℓAIR are as follows. The ℓAIR solver (i) requires more tuning for these629

problems than CℓAIR, (ii) requires more work-per-digit than CℓAIR for more diffusive problems (larger630

α values), and (iii) has significantly larger operator complexities.631

5. Conclusion. In this paper, we developed a new type of reduction-based AMG that is suitable632

for solving nonsymmetric linear systems coming from the discretization of advection-diffusion PDEs. By633

combining techniques from ℓAIR that have been effective for advective problems, with energy minimiza-634

tion and root node techniques that are well suited for diffusion problems, we have developed an efficient635

method for solving advection-diffusion problems in a general setting – the solver is insensitive to varying636

contribution of the diffusive part in the PDE. An important distinction between our proposed solver and637

existing reduction based methods is that we take a column-wise approach to computing an approximation638

to ideal restriction and interpolation, which more naturally allows us to incorporate energy minimiza-639

tion and mode constraint techniques into the process. Our future work focuses on deriving a two-grid640

convergence theory for the proposed approach applied to nonsymmetric systems and to incorporate the641

idea of compatible relaxation into the CℓAIR coarsening process.642

Appendix A. Classical AMG Weak and Strong Approximation Properties.643

A.1. Approximation Properties in the Nonsymmetric Setting. We consider convergence644

of ℓAIR and CℓAIR based on classical multigrid weak and strong approximation properties. Targeting645

nonsymmetric problems, we consider the generalization of the A-norm as
√
A∗A or

√
AA∗ [7, 21]. For646

a nonsingular matrix A ∈ Cn×n, consider the singular value decomposition (SVD) given by A = UΣV ∗647

where the singular values are 0 < σ1 ≤ σ2 ≤ ... ≤ σn. Then
√
A∗A = V ΣV ∗ = V U∗UΣV ∗ = QA where648

Q = V U∗. In a similar manner, we can also obtain
√
AA∗ = UΣU∗ = AQ. Since

√
A∗A or

√
AA∗ are649

SPD matrices, therefore we can still consider classical AMG approximation properties with respect to650

the SPD matrices QA and AQ corresponding to the right and left singular vectors, respectively. Such651

approximation properties measure, in a sense, how effective the coarse spaces are at capturing the near652

nullspace of the operator.653

For several test problems, we numerically evaluate approximation properties for ℓAIR and CℓAIR654

by making use of the generalized fractional approximation property (FAP) [21]. The FAP of a transfer655

operator T ∈ Rn×nc is with respect to the SPD matrix A, with powers β, η ≥ 0 and constant KT,β,η.656

Specifically, T is said to have a FAP if for every fine grid vector, v, there exists a coarse grid vector, vc,657

such that658

(A.1) ||v − Tvc||2Aη ≤
KT,β,η

||A||2β−η
⟨A2βv,v⟩,659

where A = QA (T = P ) or A = AQ (T = R∗). The classical multigrid weak approximation property660

(WAP) is a FAP(1/2, 0), that is661

(A.2) ||v − Tvc||22 ≤
KT,1/2,0

||A||
⟨Av,v⟩.662

Further, the classical multigrid strong approximation property (SAP) is a FAP(1,1), that is663

(A.3) ||v − Tvc||2A ≤
KT,1,1

||A||
⟨A2v,v⟩.664

For a given vector v, we compute the approximation constant KT,β,η(v) with665

(A.4) KT,β,η(v) =
||A||2β−η

||v||2A2β

min
vc

||v − Tvc||2Aη .666
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Let Πη denote the Aη-orthogonal projection onto the range of T , Πη = T (T ∗AηT )−1T ∗Aη. Substituting667

into (A.4) we obtain,668

(A.5) KT,β,η(v) =
||A||2β−η

||v||2A2β

||(I −Πη)v||2Aη .669

To compute the approximation constant Kmax that holds for all fine grid vectors v, we take maximum670

of the above expression over all v, which leads to671

(A.6) Kmax = max
v ̸=0

KT,β,η(v) = ||A||2β−η ||Aη/2(I −Πη)A−β ||22.672

A.2. Numerical Tests. To complement the numerical results in the main text, we now measure673

classical AMG approximation property constants for both ℓAIR and CℓAIR from the purely advective to674

diffusion dominated case. Specifically, we consider the 2D constant direction advection problem (4.6a)–675

(4.6b) for various diffusion coefficients α. For numerical tests, a 32×32 size spatial domain is considered,676

resulting in 1024 total DOFs. In the following numerical tests, we consider the approximation properties677

of the restriction operators from both ℓAIR and CℓAIR.678

(a) WAP for Constant Advection with zero diffusion
(α = 0) where constraint vector B = 1 is presmoothed
with 5 iterations of CFF-weighted-Jacobi.

(b) SAP for Constant Advection with zero diffusion
(α = 0) where constraint vector B = 1 is presmoothed
with 5 iterations of CFF-weighted-Jacobi.

Fig. 6: WAP and SAP constants for the restriction operators of ℓAIR and CℓAIR for the constant
advection with zero diffusion (α = 0) problem. Five (5) iterations of CFF-weighted-Jacobi relaxation
has been used to improve the mode constraint vector B = 1 in CℓAIR. Singular values are shown in
the dotted blue line and are associated with the right vertical axis, and the dot-dashed lines show the
approximation constant for each of the left singular vectors of A. Horizontal dashed lines show the
approximation constant for ℓAIR and CℓAIR that holds for all vectors.

Figure 6 shows the WAP (FAP(1/2, 0)) and SAP (FAP(1, 1)) approximation constants for the left679

singular vectors of A. Here, 5 iterations of CFF-weighted-Jacobi relaxation has been used to improve680

the mode constraint vector B = 1. From Figure 6a and 6b, we see that CℓAIR demonstrates moderately681

smaller (i.e., better) WAP and SAP constants than ℓAIR. Since ℓAIR is primarily designed for such682

purely advective problems these results indicate that CℓAIR is also effective for advection problems,683

with similar convergence properties. This is indeed what we see in Figures 5a and 5c. This motivates684

us to further study approximation properties of CℓAIR for diffusion dominated problems.685

Next, we consider a diffusion dominated case by setting the diffusion coefficient to be α = 10. First,686

as previously, we use 5 iterations of a CFF-weighted-Jacobi smoother to improve the mode constraint687

vector B = 1. Carefully investigating the results in Figure 7a, we observe that WAP constant for the688

new method CℓAIR is almost a factor of two smaller than that for ℓAIR. Now if we compare the SAP689
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constants in Figure 7b, Kmax is smaller for CℓAIR than for ℓAIR, although the constants are very large690

for both solvers (184 for CℓAIR and 2246 for ℓAIR). Somewhat surprisingly, while the SAP constant for691

CℓAIR in Figure 7b is quite large, we find that the iteration counts of the solver are mesh independent692

(as we have seen in Figure 5b for the α = 10 case). In this case, we suspect that the Krylov method693

is able to account for what the solver is lacking. We note that the significantly larger SAP constants694

for ℓAIR are consistent with the poorer scalability of ℓAIR seen in Figure 5b for the α = 10 case. A695

key advantage of CℓAIR is that it allows the flexibility to improve the approximation properties of the696

restriction operator by employing a suitable relaxation scheme for smoothing the mode constraint vector697

(such as weighted CFF-Jacobi). This type of flexibility is not available in ℓAIR. Therefore, further698

improvement of CℓAIR’s SAP constant can be obtained by increasing the number of iterations applied699

to B. In our experiments, we find that if the mode constraint vector B = 1 is presmoothed with 25700

iterations of CFF-weighted-Jacobi (instead of 5 iterations), the SAP approximation constant for CℓAIR701

decreases further to Kmax = 77 (Figure 7d). However, we do not find that these extra iterations lead to702

a meaningful improvement in practice for CℓAIR convergence on the tested problems.703
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(a) WAP for Constant Advection with added diffusion
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(b) SAP for Constant Advection with added diffusion
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with 5 iterations of CFF-weighted-Jacobi.

(c) WAP for Constant Advection with added diffusion
(α = 10) where constraint vector B = 1 is presmoothed
with 25 iterations of CFF-weighted-Jacobi.

(d) SAP for Constant Advection with added diffusion
(α = 10) where constraint vector B = 1 is presmoothed
with 25 iterations of CFF-weighted-Jacobi.

Fig. 7: WAP and SAP constants for the restriction operators of ℓAIR and CℓAIR for the constant
advection with added diffusion (α = 10) problem. Different number of iterations (5 and then 25) of
CFF-weighted-Jacobi relaxation has been used to improve the mode constraint vector B = 1 in CℓAIR.
Singular values are shown in the dotted blue line and are associated with the right vertical axis, and the
dot-dashed lines show the approximation constant for each of the left singular vectors of A. Horizontal
dashed lines show the approximation constant for ℓAIR and CℓAIR that holds for all vectors.
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