

Temperature-Dependent Recombination Dynamics of Photocarriers in CsPbBr_3 Microcrystals Revealed by Ultrafast Terahertz Spectroscopy

Sheng Lee¹, Kyeongdeuk Moon², Muhammad Shoaib², Charles N. B. Pedorella³, Kellen O'Brien³, Meng-Ju Sher³, Seokhyoung Kim², Tyler L. Cocker^{1,}*

¹Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

²Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA

³Department of Physics, Wesleyan University, Middletown, CT 06459, USA

*cockerty@msu.edu

Abstract

We study the ultrafast dynamics of photoexcited charge carriers in micron-scale crystals composed of the inorganic perovskite CsPbBr_3 with time-resolved terahertz spectroscopy. Exciting with photon energy close to the band edge, we find that a fast (< 10 ps) decay emerges in the terahertz photoconductivity with increasing pump fluence and decreasing temperature, dominating the dynamics at 4 K. The fluence-dependent dynamics can be globally fit by a nonlinear recombination model, which reveals that the influence of different nonlinear recombination mechanisms in the studied pump fluence range depends on temperature. Whereas the Auger scattering rate decreases with decreasing temperature from 77 K to 4 K, the radiative recombination rate increases by three orders of magnitude. Spectroscopically, the terahertz photoconductivity resembles a Drude response at all delays, yet an additional Lorentz component due to an above-bandwidth resonance is needed to fully reproduce the data.

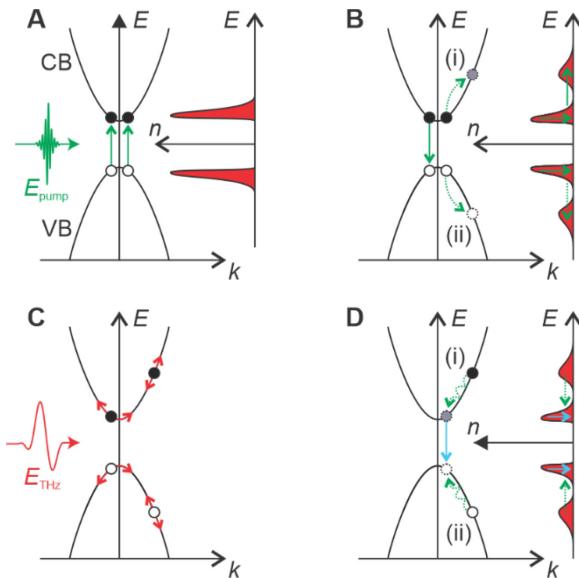
26 **Introduction**

27 The dynamics of carrier recombination and hot-carrier cooling in halide perovskites are important
28 considerations for improving solar energy and light emission devices based on these materials. For
29 example, for a single-junction solar cell, the Shockley-Queisser limit establishes a maximum
30 energy conversion efficiency of ~30% [1], assuming photogenerated charge carriers cool to the
31 band edge of the absorbing material (with a band gap of 1.1 eV) before being extracted. Whereas
32 multi-junction solar cells exceed this limit by incorporating many absorbing materials with
33 different band gaps [2], another strategy is to extract the carriers before they cool to the band edge
34 [3]. The corresponding device is known as a hot-carrier solar cell and has a maximum energy
35 conversion efficiency of 66% (under one sun illumination) for a single-junction cell [4]. Halide
36 perovskites have emerged as a promising absorber for next-generation solar cells thanks to their
37 ease of processing [5], low cost [6], efficient absorption [7], and outstanding carrier transport
38 properties [8,9], with solar cells based on perovskite compounds reaching energy conversion
39 efficiencies >25% [10]. The discovery of slow hot-carrier cooling in halide perovskites [11–16]
40 has opened additional avenues, including the possibility of perovskite-based hot-carrier solar cells
41 [3,17,18].

42 The key to realizing a hot-carrier solar cell is to engineer a device in which carrier cooling to the
43 band edge is slower than the carrier extraction process. This is a significant obstacle due to the
44 typical relaxation timescales of semiconductors following photoexcitation: (i) the nonequilibrium
45 carrier population first reaches a Boltzmann distribution at elevated temperature (i.e., with energy
46 well above the conduction band minimum) on the 10-fs timescale via carrier-carrier scattering; (ii)
47 the carrier temperature subsequently decreases via scattering with optical phonons, cooling to the
48 lattice temperature on the 100-fs timescale [19]. The dynamics can be even faster in organic
49 materials used for solar cells [20,21]. In halide perovskites, however, including mixed organic-
50 inorganic compounds, the carrier cooling time can be extended, with the specific mechanism
51 impacting the dynamics determined by the photoexcited carrier density [17]. At high carrier
52 density ($\sim 10^{18} \text{ cm}^{-3}$), the slow decay of optical phonons into acoustic phonons leads to a saturation
53 of the optical phonon population and, consequently, a suppression of carrier cooling through
54 optical phonon emission [22]. This effect is known as the hot-phonon bottleneck and has been
55 observed in lead-halide perovskites [12–16], leading to fluence-dependent carrier cooling times

56 that reach the picosecond timescale [17]. Auger recombination also plays an important role in
57 perovskite dynamics for carrier densities of $\sim 10^{18} \text{ cm}^{-3}$ by enhancing electron-hole recombination
58 on the sub-10-ps timescale while simultaneously creating a hot-carrier population [16]. Meanwhile,
59 at lower carrier densities ($< 10^{18} \text{ cm}^{-3}$), the formation of large polarons slows carrier cooling
60 [17,23,24]. Thus, the photoexcited carrier density is a critical parameter for understanding the
61 evolution of hot carriers in perovskites. The dynamics of the photoexcited carrier population is
62 similarly critical. Mobile charge carriers may decay via trapping into defect sites (a 1-particle
63 process), direct electron-hole recombination (2-particle process), or Auger recombination (3-
64 particle process). Of these processes, only electron-hole recombination produces
65 photoluminescence, which is useful for light-emitting devices. Conversely, although the Auger
66 process results in an electron and hole recombining, the third charge carrier receives the excess
67 energy, and thus may be extracted as a hot carrier with potentially high efficiency in a solar energy
68 device. Therefore, unravelling the importance of each recombination mechanism in a given
69 scenario (i.e., at different temperatures, fluences, etc.) is of paramount importance for optimizing
70 different types of devices based on halide perovskites.

71 Ultrafast terahertz (THz) spectroscopy has been employed to study charge carrier dynamics in both
72 hybrid organic-inorganic [24–32] and all-inorganic [32-35] halide perovskites. In the pump-probe
73 modality known as time-resolved THz spectroscopy (TRTS), an optical pump pulse photoexcites
74 the sample and the THz photoconductivity (i.e., the transient complex conductivity at THz
75 frequencies) is measured with sub-picosecond temporal resolution by a time-delayed, single-cycle
76 THz probe pulse. TRTS applied to thin films of $\text{CH}_3\text{NH}_3\text{PbI}_3$ has revealed fluence-dependent
77 recombination dynamics following photoexcitation with pump fluences in the $1 - 100 \text{ } \mu\text{J/cm}^2$
78 range. These dynamics changed with decreasing temperature, with Auger recombination highly
79 dependent on a structural phase transition [27]. In single-crystal $\text{CH}_3\text{NH}_3\text{PbI}_3$, ultrabroadband
80 TRTS has been used to simultaneously track the coherent motion of charge carriers and the
81 correlated motion of the polar lattice, thereby resolving polaron formation on the timescale of the
82 longitudinal optical phonon period following band-edge excitation [24]. Other ultrafast
83 experimental schemes using THz pulses have also been employed, including a pump-push-probe
84 approach to study carrier cooling [36], THz emission spectroscopy to study coherent vibrational
85 dynamics [37], and nonlinear THz spectroscopy to control the perovskite lattice [38]. Most
86 recently, a saturation of the THz photoconductivity at optical-pump/THz-probe delays greater than


87 10 ps was identified for increasing optical pump fluence in halide perovskite (CsPbBr_3 , CH_3NH_3
88 and $\gamma\text{-CsPbI}_3$) films at temperatures down to 77 K. This effect was attributed to the formation of a
89 stable Mott polaron density in the $10^{17} - 10^{18} \text{ cm}^{-3}$ range [32], which decreases with decreasing
90 temperature. It was proposed that a stable Mott polaron density explains the relatively strong Auger
91 recombination in these materials [32].

92 Here, we explore micrometer-scale single crystals of CsPbBr_3 with TRTS as a function of
93 temperature, extending the range of study down to liquid helium temperatures. By examining
94 structures larger than the quantum or mesoscopic confinement regimes, we exclude structural
95 effects on the conductivity and dynamics. Meanwhile, the high crystalline quality of the
96 microcrystals minimizes defect-related effects that may dominate the dynamics of thin films. The
97 absence of a structural phase transition in CsPbBr_3 between room temperature and 4 K [39,40]
98 further simplifies the comparison of dynamics at different temperatures. We excite the samples
99 with pump photon energies close to the band edge and find that a <10 ps decay emerges in the THz
100 photoconductivity with increasing pump fluence and decreasing temperature, dominating the
101 dynamics at 4 K. The complex photoconductivity is best described at all temperatures and delay
102 times by a Drude-Lorentz model, where the Drude and Lorentz contributions correspond to
103 photoexcited free charge carriers and the tail of an above-bandwidth resonance, respectively. The
104 decay of the THz photoconductivity is primarily determined by the dynamics of the free charge
105 carrier population. At a given temperature (77 K or 4 K), the fluence-dependent decays may be
106 globally fit by a nonlinear recombination model with universal rate parameters. These rate
107 parameters reveal the mechanism that dominates the fast decay in our samples at each temperature
108 for 515 nm pump fluence in the range of $1.8 - 16.6 \mu\text{J/cm}^2$ (corresponding to carrier densities in
109 the range of $10^{16} - 10^{18} \text{ cm}^{-3}$). Whereas the Auger recombination rate is slightly lower at 4 K than
110 at 77 K, direct electron-hole recombination is at least three orders of magnitude larger at 4 K than
111 at 77 K, and thus becomes the dominant nonlinear recombination mechanism at 4 K for carrier
112 densities less than 10^{18} cm^{-3} .

113 **Results and discussion**

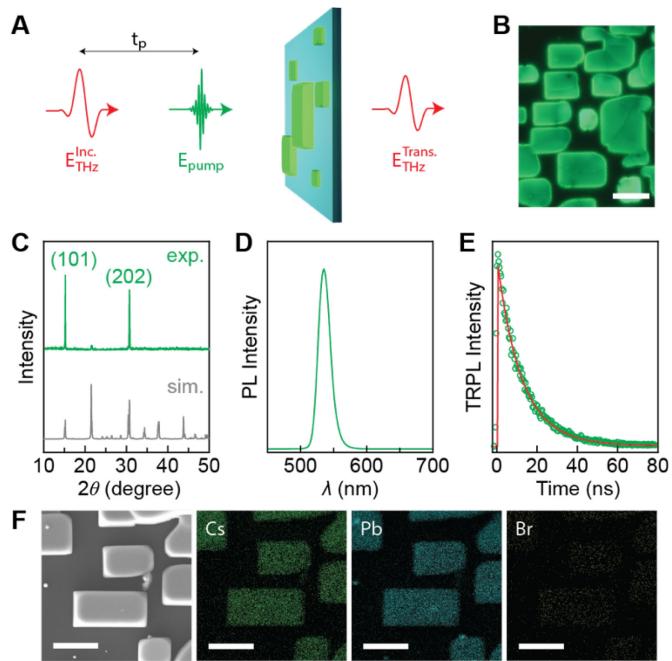
114 Figure 1 illustrates the general concept of a TRTS experiment on a semiconducting sample for
115 high optical pump fluences (for CsPbBr_3 , carrier densities in the $10^{17} - 10^{18} \text{ cm}^{-3}$ range).
116 Employing an optical pump pulse with photon energy close to the band gap, photoexcitation

117 promotes electrons into the conduction band near the conduction band minimum, leaving holes in
 118 the valence band near its maximum, as shown in Fig. 1A. The right side of Fig. 1A represents this
 119 situation schematically in terms of the density of photoexcited free carriers, n , which are measured
 120 by a THz probe pulse. Photoexcited electrons and holes may recombine, but scattering (e.g., with
 121 phonons) restricts this process because an electron-hole pair must have approximately zero net
 122 momentum to recombine radiatively. Thus, temperature may affect the decay dynamics of
 123 photoexcited carriers through the phonon population. When n is sufficiently large (as defined by
 124 the Auger scattering cross section) efficient electron-hole recombination can proceed via a three-
 125 particle process. Specifically, an electron and hole recombine while donating their excess energy

126
 127 **Figure 1. Probing ultrafast high-density carrier dynamics with THz pulses.** (A) An ultrafast
 128 optical pump pulse, E_{pump} , with energy (2.4 eV) near the direct band gap of CsPbBr_3 excites (green
 129 arrows) free charge carriers, i.e., electrons (black-filled circles) in the conduction band (CB) and
 130 holes (white-filled circles) in the valence band (VB). Right: schematic representation of
 131 photoexcited free charge carrier density, n . (B) At high carrier densities, Auger recombination
 132 plays a prominent role in the evolution of the free charge carrier density. Left: an electron and
 133 hole may recombine and give the resulting energy to a third particle – either an electron (i) or a
 134 hole (ii) – rather than emitting a photon. Right: the charge carrier density near the band edges
 135 decreases during the Auger process (solid green arrows) while simultaneously generating
 136 secondary hot charge carrier peaks in the CB and/or VB (dashed green arrows). (C) A time-
 137 delayed THz pulse, E_{THz} , probes the intraband conductivity of all photoexcited free charge carriers,

138 *both at the band extrema and at elevated points in the band structure. (D) Hot electrons (i) and*
139 *hot holes (ii) cool to the band edges via many optical phonon scattering events (green dashed lines,*
140 *not to scale) before ultimately recombining (solid cyan arrow). Right: carrier cooling to the lattice*
141 *temperature shifts the hot carrier peaks towards the band extrema (dashed green arrows), while*
142 *ongoing electron-hole recombination at the band edge continues to decrease the primary peaks at*
143 *the band edges.*

144

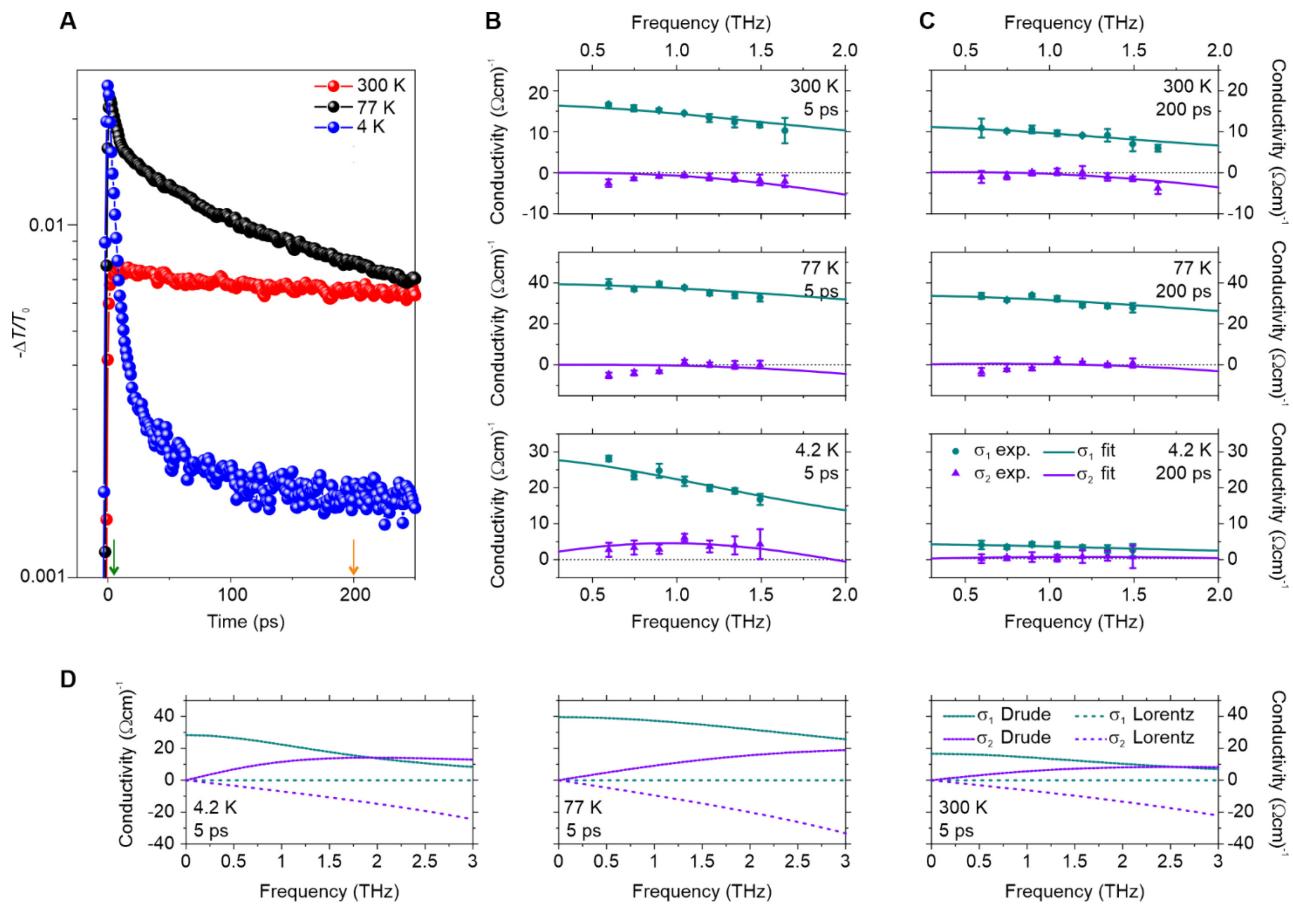

145 and momentum to the third particle (either an electron or a hole), thereby promoting it to an
146 elevated state in the band structure. Two examples are shown in Fig. 1B: (i) an electron is excited
147 within the conduction band or (ii) a hole is excited within the valence band. Only one valence and
148 conduction band are shown in the schematic, but an electron (hole) may also be excited to a higher-
149 lying conduction band (lower-lying valence band). Therefore, Auger recombination not only
150 reduces the photoexcited carrier density near the band extrema, but also creates secondary carrier
151 density peaks at elevated carrier temperature (i.e., at higher energy; Fig. 1B, right). In the case of
152 CsPbBr₃, this corresponds to carriers with 2.3 eV of excess energy (which is the energy of a 540
153 nm photon from the suppressed PL process). Incidentally, this is almost equal to the initial pump
154 photon energy of 2.4 eV in our experiments.

155 In a TRTS experiment, the THz pulse arrives after the pump excitation and probes the intraband
156 conductivity of the photoexcited electrons and holes. Unlike the optical pulse, the THz pulse does
157 not move the carriers to a new band (since its center photon energy is only ~4 meV) but rather
158 “sloshes” the carriers within the band, as shown in Fig. 1C. Higher mobility carriers, such as those
159 with lower scattering rate and lower effective mass, absorb the THz probe field more effectively.
160 Hence, carriers that are heated beyond the parabolic region of the band extrema or into satellite
161 valleys, where the effective mass is larger, have less influence on the THz field [41,42].
162 Nevertheless, they are still probed by the THz pulse, so the THz photoconductivity is in principle
163 sensitive to both carriers at the band extrema and those at elevated temperatures. Hot carriers
164 typically cool to the band extrema via optical phonon scattering before recombining, as shown in
165 Fig. 1D.

166 The TRTS experimental geometry for this study is illustrated in Fig. 2A. An ultrafast optical pump
167 pulse (515 nm wavelength, 230 fs pulse duration) excites the sample, which is comprised of

168 CsPbBr₃ microcrystals on an M-cut sapphire substrate. A THz probe pulse is transmitted through
169 the sample at a delay time t_p after optical photoexcitation and detected coherently by electro-optic
170 sampling. The M-cut sapphire substrate was rotated to orient the THz polarization along the fast
171 axis of the substrate, thereby avoiding artifacts related to substrate birefringence. The pump
172 polarization was oriented parallel to the THz polarization.

173 An optical PL image (see Optical Characterization for further details) of a typical region of the
174 sample is shown in Fig. 2B. Rectangular-shaped microcrystals with edge lengths on the 10- μ m
175



176 **Figure 2. $CsPbBr_3$ microcrystals characterization.** (A) Schematic illustration of measurement
177 geometry. (B) Optical PL image of the $CsPbBr_3$ microcrystals; scale bar, 10 μ m. (C) Experimental
178 (top) and simulated (bottom) XRD patterns of orthorhombic $CsPbBr_3$. (D-E) PL spectrum (D) and
179 time-resolved PL decay spectrum of $CsPbBr_3$ microcrystals. (F) SEM image and elemental
180 distribution maps; all scale bars, 5 μ m.
181

182 length scale are observed across the sample surface. The in-plane alignment of the microcrystals
183 is not universal, i.e., the orientation of the nominally rectangular-shaped microcrystals varies
184 across the substrate. The uniformity of the microcrystals apparent in PL images suggests most are
185 either single crystals or composed of no more than two to three 10- μ m-scale crystallites (see, e.g.,

186 large crystals containing faint dark lines in Fig. 2B). The crystalline quality of the sample is further
 187 supported by powder XRD measurements and simulations (Fig. 2C).

188 Figure 2D shows an example PL spectrum for the sample, with an emission peak near 540 nm; the
 189 corresponding absorption, for comparison, is reported in reference [43]. Complementary time-
 190 resolved photoluminescence measurements are shown in Fig. 1E. The data in both Fig. 2D and
 191 Fig. 2E correspond to spatial averages over many microcrystals, not the response of a single
 192 microcrystal. Similarly, the TRTS measurements average over the 1-mm-diameter focal spot of
 193 the probing THz pulse (and the sample is mounted on a metallic 1-mm-
 194

195

196 **Figure 3. Time-resolved terahertz spectroscopy of CsPbBr_3 microcrystals.** (A) Optical-pump /
 197 terahertz-probe dynamics following photoexcitation by a 515 nm (230 fs long) pump pulse. Circles:
 198 relative change to the peak of the transmitted terahertz field. (B,C) Time-resolved terahertz
 199 spectroscopy 5 ps (B) and 200 ps (C) following optical excitation, at 4.2 K, 77 K, and 300 K

200 (bottom to top). Dark cyan circles: real part of the experimental complex conductivity, σ_1 ; purple
201 triangles: imaginary part of the experimental complex conductivity, σ_2 ; dark cyan lines: fits to
202 experimental σ_1 based on a Drude + Lorentz model (see text); purple lines: simultaneous fits to
203 experimental σ_2 based on a Drude + Lorentz model. (D) Contributions of the Drude component
204 (σ_1 : short-dashed dark cyan curves; σ_2 : short-dashed purple curves) and Lorentz component
205 (σ_1 : long-dashed dark cyan curves; σ_2 : long-dashed purple curves) to the Drude + Lorentz model
206 fits in (B).

207

208 diameter aperture for ease of alignment and fluence calibration). Finally, an SEM image and
209 (color-coded) elemental map distributions are shown in Fig. 2F, confirming the expected
210 stoichiometry.

211 The interaction of the THz probe with the sample is detected through changes to the electric-field
212 waveform of the transmitted pulse. Differential changes to the peak field ($-\Delta T/T_0$), specifically,
213 may be associated with the spectrally averaged THz photoconductivity. Figure 3A shows $-\Delta T/T_0$
214 as a function of pump-probe delay time for three temperatures (300 K, 77 K, 4 K) and the same
215 optical pump fluence of $16.6 \mu\text{J}/\text{cm}^2$.

216 We highlight that the dynamics of $-\Delta T/T_0$ change significantly with temperature. At 300 K, the
217 THz photoconductivity decays exponentially, which appears linear when visualized on a log-linear
218 plot (e.g., Fig. 3A). An exponential fit yields a decay time of 2.5 ns. Decreasing the pump fluence
219 leads to an increasing decay time (not shown). For fluences of $3 \mu\text{J}/\text{cm}^2$ and below, the decay time
220 reaches ≥ 10 ns, which is the longest decay time that can be reasonably fit for our (full) scan range
221 of 500 ps. This is consistent with the previously reported photoluminescence decay time of 8.7 ns
222 observed in CsPbBr_3 single-crystal nanowires synthesized by the same method [43].

223 Cooling the sample to 77 K, the dynamics change significantly: the charge carriers show an
224 emerging fast, non-exponential decay component within the initial 30 ps following optical
225 excitation. We investigate the fast decay dynamics further by lowering the sample temperature
226 down to liquid helium temperature. At 4 K, the amplitude of the fast decay is dramatically
227 enhanced. It comprises 90% of the decay from the peak photoconductivity to the equilibrium state

228 for a pump fluence of $16.6 \mu\text{J}/\text{cm}^2$ at 4 K, whereas it constitutes $\sim 30\%$ of the decay at 77 K for the
229 same pump fluence.

230 To better understand the dynamics, we perform TRTS at 5 ps (Fig. 3B) and 200 ps (Fig 3C) at all
231 three temperatures for a pump fluence of $16.6 \mu\text{J}/\text{cm}^2$. The real (σ_1) and imaginary (σ_2)
232 components of the complex THz photoconductivity were extracted in each case. At all
233 temperatures and delays, the complex THz conductivity exhibits a Drude-like shape; however, a
234 pure Drude model fit is insufficient to quantitatively fit the data. Slightly negative values of σ_2 for
235 some spectra present a particular challenge to Drude model fitting. We considered a number of
236 conventional modifications to the Drude model to capture these observations: (i) Although the
237 morphology of the sample (i.e., separated microcrystals; see Fig. 2B) suggests that effective
238 medium theory (EMT) may be necessary to describe the conductivity, neither Bruggeman nor
239 Maxwell-Garnett EMT provides an improved agreement with the experimental data, indicating the
240 structure size is large enough to neglect depolarization (plasmonic) effects, to first order. (ii)
241 Similarly, the microcrystal sizes are too large to provide weak carrier confinement of the type
242 described by the Drude-Smith model [44-46]. Still, we tested the Drude-Smith model fitting, but
243 found that it did not adequately improve agreement with the experimental data. (iii) σ_1 was not
244 better reproduced by a modified power law corresponding to a large polaron [24]. (iv) Finally, we
245 achieved improved agreement with the experimental data (see Fig. 3B and 3C) by adding a Lorentz
246 term to the Drude model fit, such that the total complex conductivity is given by

$$247 \quad \tilde{\sigma}(\omega) = \frac{n_{\text{Drude}} e^2 \tau_{\text{Drude}}}{m^*} \left(\frac{1}{1 - i\omega\tau_{\text{Drude}}} \right) + \frac{n_{\text{Lorentz}} e^2}{m^*} \left(\frac{\omega}{\omega/\tau_{\text{Lorentz}} + i(\omega_0^2 - \omega^2)} \right) \quad , \quad (1)$$

248 where n_{Drude} is the photoexcited density of free charge carriers in the Drude model, τ_{Drude} is the
249 scattering time of the free charge carriers, $1/\tau_{\text{Lorentz}}$ is the damping parameter of a resonator with
250 frequency $f_0 = \omega_0/2\pi$, e is the elementary charge, m^* is the charge-carrier effective mass, and
251 n_{Lorentz} parameterizes the spectral weight of the Lorentz oscillator, as is discussed further below.
252 We find that the resonance peak is well above the spectral bandwidth of our probe pulses, such
253 that the Lorentz component has minimal effect on σ_1 . However, it contributes significantly to σ_2 ,
254 as shown in Fig. 3D. This below-resonance Lorentzian conductivity is largely insensitive to the
255 damping parameter of the resonator, but scales linearly with n_{Lorentz} . A similar fit to the
256 conductivity may be obtained by keeping the ratio n_{Lorentz}/f_0^2 constant, provided $f_0 > 2.5 \text{ THz}$.

257 Parameter degeneracy can be addressed in the Drude-Lorentz fitting procedure by fixing some of
258 the parameters in Equation (1) using known physical values. However, this necessitates a physical
259 interpretation of the Lorentz oscillator. Two possibilities are described below:

260 (I) The Lorentzian conductivity may be attributed to the polarizability of photoexcited excitons in
261 the material. Exciton binding energies of ~ 40 meV have been reported in the literature [39, 47 -
262 53], which is consistent with the strong photoluminescence in our samples at room temperature
263 (Fig. 2) and the spacing we observe between the PL peak (Fig. 2D) and absorption onset (reference
264 [43]) at room temperature. We note that an Elliott fit to low-temperature absorption data would be
265 a useful further point of comparison [54] but was not available for this study. In THz spectroscopy,
266 the primary signature of excitons is a Lorentz resonance at their $1s-2p$ intra-excitonic transition
267 frequency [30,55,56], i.e., 7.5 THz. Setting $f_0 = 7.5$ THz and assuming the effective mass to be
268 $m^* = m_e \approx m_h \approx 0.2 \times 9.11 \times 10^{-31}$ kg [57] for all delay times and temperatures, Drude-Lorentz fits
269 to the experimental data may be obtained using three free parameters: n_{Drude} , n_{Lorentz} , and τ_{Drude} , as
270 shown in Fig. 3B and 3C. Table 1 summarizes the extracted fit parameters; uncertainties were
271 determined through an automated fitting procedure.

Temperature (K)	$n_{\text{Drude}}(5\text{ps})$ (10^{18} cm^{-3})	$n_{\text{Lorentz}}(5\text{ps})$ (10^{18} cm^{-3})	$\tau_{\text{Drude}}(5\text{ps})$ (fs)	$n_{\text{Drude}}(200\text{ps})$ (10^{18} cm^{-3})	$n_{\text{Lorentz}}(200\text{ps})$ (10^{18} cm^{-3})	$\tau_{\text{Drude}}(200\text{ps})$ (fs)
4	0.25 ± 0.02	1.7 ± 0.2	82 ± 8	0.045 ± 0.007	0.20 ± 0.07	68 ± 14
77	0.72 ± 0.25	2.3 ± 0.8	39 ± 15	0.56 ± 0.15	2.0 ± 0.6	43 ± 13
300	0.19 ± 0.02	1.6 ± 0.2	62 ± 10	0.12 ± 0.01	1.1 ± 0.1	67 ± 10

272

273 *Table 1: Carrier density parameters for Drude + Lorentz fits to the complex THz conductivities in*
274 *Fig. 3B and Fig. 3C.*

275

276 Associating n_{Lorentz} with the transient density of excitons following photoexcitation allows us to
277 compare our Drude-Lorentz fitting results with the absorbed pump photon density. For a fluence
278 of $16.6 \mu\text{J}/\text{cm}^2$ and penetration depth of 100 nm [58], the absorbed photon density is 4.3×10^{18}
279 cm^{-3} . Table 1 shows that not only is n_{Lorentz} below this value for all fits, as expected, but also that
280 the majority of photoexcited charge carriers are created as excitons. This potentially explains the

281 surprisingly low photon-to-free-carrier branching ratio observed here and in a previous study [32].

282 Although it is challenging to definitively associate the Lorentzian conductivity with excitons, there
283 is precedent in the literature. For example, a TRTS study of $\text{CH}_3\text{NH}_3\text{PbI}_3$ has reported intra-
284 excitonic Rydberg transitions and an exciton binding energy of 13.5 meV below 160 K [30]; our
285 results indicate that similar resonances may be expected for ultrabroadband TRTS of CsPbBr_3
286 microcrystals, as the oscillator in our Drude-Lorentz model would be the lowest of these Rydberg
287 transitions. Meanwhile, recent studies of quasi-two-dimensional lead-halide perovskites – which
288 have exciton binding energies greater than 200 meV due to reduced dielectric screening – have
289 combined TRTS with optical spectroscopy to quantify charge carrier and exciton populations as a
290 function of pump-probe delay, fluence, temperature, and pump wavelength [59-61]. Notably,
291 Burgos-Caminal *et al.* also fit their ultrabroadband THz photoconductivities with a Drude-Lorentz
292 model [59]. The Lorentz oscillator peak in their study was well above the measurement bandwidth
293 and was attributed to the polarizability of excitons, as in the present case, which allowed them to
294 extract the exciton and free charge carrier densities. In references [59-61], the measured ratios of
295 free charge carriers to excitons were compared to the temperature-dependent predictions of the
296 Saha equation. Surprisingly, the low-temperature density of free charge carriers in quasi-two-
297 dimensional perovskites significantly exceeds the Saha equation predictions. This is consistent
298 with our observations, summarized in Table 1, where ratios at 4 K of $15\pm2\%$ and $23\pm9\%$ were
299 found at 5 ps and 200 ps, respectively, compared to a vanishingly small ratio predicted by the Saha
300 equation. A potential reason for this difference is discussed later.

301 Although it has previously been observed that the Saha equation fails to accurately predict free
302 charge carrier densities in perovskites with large exciton binding energies at low temperature, the
303 general trend predicted by the Saha equation of decreasing charge carrier density relative to exciton
304 density with decreasing temperature is still expected. In Table 1, the fit parameters at 4 K and 77 K
305 follow this trend, but the parameters at 300 K do not. This may be due to a lower absorbed photon
306 density at 300 K. As can be seen in Fig. 2A, the initial photoconductivity is lower at 300 K than at
307 the other two temperatures despite identical excitation conditions. This likely stems from a longer
308 pump penetration depth at 300 K than at 4 K or 77 K, as a redshift of the absorption onset is
309 expected with decreasing temperature [58].

310 (II) A possible alternate explanation for the Lorentz oscillator arises due to the strong electron-

phonon coupling in lead-halide perovskites. In transmission-mode THz spectroscopy studies of CsPbBr₃ nanocrystals, it has been reported that a phonon mode observed in the absence of photoexcitation may be enhanced by optical photoexcitation [33-35]. To the best of our knowledge, signatures of this type have not been reported in larger single crystals to date. However, they have been observed in CsPbBr₃ colloidal nanocrystals [33,34] and CsPbBr₃ nanocrystal thin films [35] (though at different frequencies in the two cases), as well as in CH₃NH₃PbI₃ [25], CH₃NH₃PbI₃-xCl_x [26], and CH₃NH₃PbI₃(Cl) [29] thin films. The photoconductivity is typically fit with a Drude-Lorentz (or Drude-Smith-Lorentz) model in these studies [26,29,33,34]. We therefore performed THz time-domain spectroscopy of our CsPbBr₃ microcrystal samples to determine whether the Lorentz oscillator component in our measured photoconductivities is also present in the absence of photoexcitation, but the results were inconclusive due to substrate thickness variations.

The mechanism leading to the photo-enhancement of phonon resonances in TRTS of lead-halide perovskites merits further discussion, since this is not typically observed in conventional semiconductors, as has been noted elsewhere [35]. In ultrabroadband THz spectroscopy performed in reflection mode, Lan *et al.* have demonstrated that photoexcited charge carriers in CH₃NH₃PbI₃ single crystals form polarons by coupling to a single effective longitudinal optical phonon at 3.7 THz, which is a mixture of a Pb-I stretch mode and a translational and vibrational motion of the CH₃NH₃ cation [24]. The key observation in these experiments was coherent beating along the pump-probe time axis that changed phase at a probe frequency matching the effective phonon frequency, rather than an enhanced phonon mode in spectroscopy. Conversely, the photo-enhanced resonances in transmission-mode TRTS of thin films of CH₃NH₃PbI₃ and similar compounds have been observed near 1 and 2 THz [26,27,29]. It is also worth noting that transmission-mode THz time-domain spectroscopy of the unexcited sample is sensitive to transverse optical modes rather than longitudinal optical modes [60].

Meanwhile, Cinquanta *et al.* have attributed three Lorentzian peaks between 0.5 THz and 2.0 THz in transmission-mode TRTS of CsPbBr₃ nanocrystal thin films to phonon modes enhanced by polaronic coupling through comparison with density functional theory calculations [35]. Similar (ultrabroadband) experiments on CsPbBr₃ colloidal nanocrystal solutions have observed weaker peaks near 2 THz and 3 THz [33,34]. The size and shape of small nanocrystals may also affect which modes participate in the coupling, and how strongly. Thus, although electron-phonon

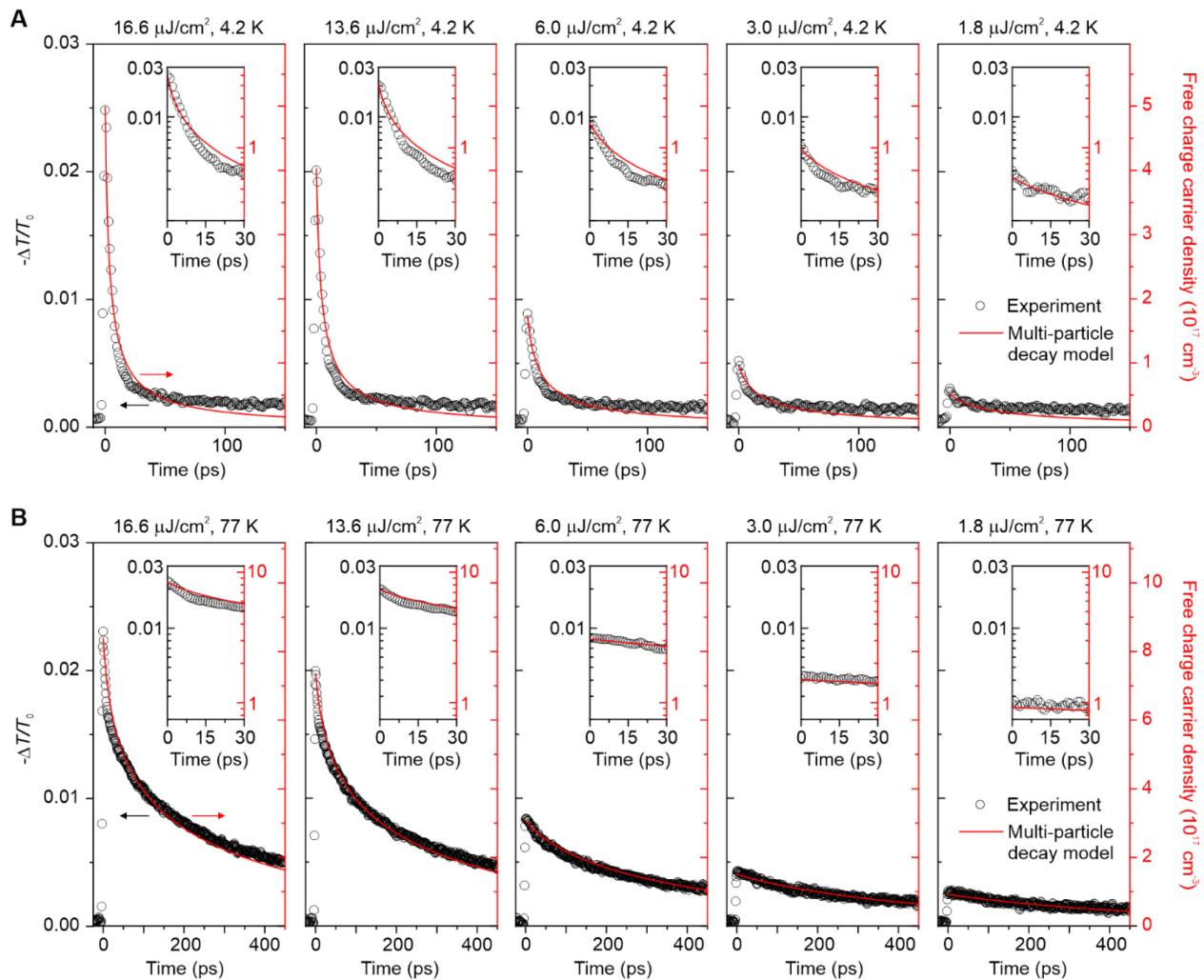
coupling and polaronic effects are important considerations for lead-halide perovskites, the variation of photo-enhanced Lorentzian peaks across samples and the relative sparsity of analogous signatures in transmission-mode TRTS of single-crystal samples makes direct comparison to our results challenging. Nevertheless, we note that many TRTS studies of lead-halide perovskites have been performed with a bandwidth of $\sim 0.5 - 2$ THz, as in this study, and hence above-bandwidth resonances may have escaped attention.

At all temperatures, the shape (i.e., curvature) of the THz complex conductivity in our experiments exhibits minimal changes between 5 ps and 200 ps, so the dynamics of the sample are captured almost entirely by the decay of n_{Drude} and n_{Lorentz} in our model. (In interpretation II, the fits are the same, but $n_{\text{Lorentz}}e^2/m^*$ would be replaced by a generic oscillator strength parameter.). The similarity of the conductivity at 5 ps and 200 ps further indicates that we do not observe a shift of spectral weight from n_{Drude} to n_{Lorentz} that would signify exciton formation between 5 ps and 200 ps. Moreover, inspection of the THz electric-field waveforms (not shown) reveals that the decay of $-\Delta T/T_0$ is primarily due to a decrease in the transmitted field peak (correlated with σ_1) rather than a shift of the peak (correlated with σ_2). Since σ_1 is dominated by the Drude component in our spectral bandwidth, $-\Delta T/T_0$ is approximately proportional to n_{Drude} , though the similarity of our spectroscopy results at 5 ps and 200 ps implies n_{Lorentz} decays at the same rate. We note that time-dependent changes to the effective mass may slightly modify the $-\Delta T/T_0$ dynamics [32], but we expect this effect to be minimal in our experiments due to our near-band-edge pump photon energy.

We explore the dynamics further in fluence-dependent $-\Delta T/T_0$ measurements, as shown in Fig. 4. At 4 K, the fast decay component dominates the dynamics (Fig. 4A). It is present at all pump fluences studied, with an estimated onset of $\sim 1 \mu\text{J}/\text{cm}^2$. This stands in contrast to the behavior observed at 77 K, where it only emerges above a fluence threshold $> 6 \mu\text{J}/\text{cm}^2$ and comprises a smaller fraction of the overall decay (Fig. 4B). We model the dynamics via a differential equation that describes the free carrier recombination rate [27],

$$dn_{\text{Drude}}/dt = -k_1 n_{\text{Drude}} - k_2 n_{\text{Drude}}^2 - k_3 n_{\text{Drude}}^3, \quad (2)$$

where k_1 corresponds to an exponential decay in $n_{\text{Drude}}(t)$, e.g., due to defect trapping, k_2 corresponds to a two-particle decay such as radiative recombination, and k_3 corresponds to a three-


370 particle decay such as Auger recombination. It is worth noting that the similar effective masses of
371 electrons and holes in CsPbBr_3 enables this clear distinction, unlike many other semiconductors.

372 Equation 2 can be solved numerically to yield $n_{\text{Drude}}(t)$ for a given set of coefficients, k_1 , k_2 , k_3 . A
373 nonuniform carrier density profile within the sample complicates this procedure, so the
374 experimental geometry must be carefully considered. The microcrystals studied here have an
375 average thickness of 1 μm , while the absorption depth of the 515 nm pump pulses is estimated to
376 be 100 nm [58], so the absorbed photon density is maximum at the surface and decays
377 exponentially into the material on a length scale shorter than the sample thickness (i.e., the carrier
378 density profile is nonuniform along the thickness of the material). We therefore model $n_{\text{Drude}}(t, z)$
379 using a series of infinitesimally thin cross sections of carrier density at depth z , each of which has
380 a time dependence governed by Equation (2) (see also, [28]). This procedure is necessary to obtain
381 a reasonable global fit to all $-\Delta T/T_0$ curves at a given temperature using a set of universal fit
382 parameters, k_1 , k_2 , and k_3 . In our model, we assume that the role of diffusion – which acts to spread
383 the initial carrier density profile into the bulk of the sample – is minimal within the relevant time
384 window. We set the initial spatially averaged carrier density, $n_{\text{Drude}}(t = 0)$, using the fixed point
385 determined from TRTS at 5 ps, i.e., $n_{\text{Drude}}(5 \text{ ps})$, for a pump fluence of $F = 16.6 \mu\text{J}/\text{cm}^2$. The initial
386 photoexcited carrier density (at $t = 0$) is assumed to scale linearly for other pump fluences. Global
387 fits to the $-\Delta T/T_0$ curves at a given temperature (Fig. 4A, B) thus yield the set of universal
388 parameters shown in Table 2. (For the 77 K data, $k_1 = (1.56 \pm 0.08) \times 10^9 \text{ s}^{-1}$, while at 4 K, the best
389 fit was obtained with a very small k_1 term, corresponding to a decay too slow to be measured
390 reliably in our experiments.) The resulting set of fluence-dependent carrier decays not only
391 exhibits a fast decay that emerges with increasing fluence, but also predicts a saturating carrier
392 density after the fast decay is complete, consistent with previous experimental observations [32].

Temperature (K)	k_2 (cm^3/s)	k_3 (cm^6/s)
4	$(1.17 \pm 0.06) \times 10^{-6}$	2.6×10^{-26} (upper bound)
77	1.03×10^{-9} (upper bound)	$(8.5 \pm 0.4) \times 10^{-26}$

393

394 *Table 2: Nonlinear parameters for global fits in Fig. 4A and Fig. 4B.*

397 **Figure 4. Ultrafast dynamics revealed by optical-pump / THz-probe experiments** (A) Optical-
398 pump / terahertz-probe dynamics at 4.2 K following photoexcitation by a 515 nm (230 fs long)
399 pump pulse, at a sequence of optical pump fluences (increasing right to left). Hollow black circles:
400 experimental change to the peak of the transmitted terahertz field ($-\Delta T/T_0$, left axis); solid red lines:
401 global fit to a nonlinear model of charge carrier density decay (right axis). (B) Optical-pump /
402 terahertz-probe dynamics at 77 K at the same pump fluences as in (A). Hollow black circles:
403 experimental data (left axis); solid red lines: fit to a nonlinear model of charge carrier density
404 decay (right axis). The decay parameters at each temperature are fit globally for all fluences.
405 Insets show a magnified view of fits to the fast decay at early times for each panel.

407

408 The parameters k_2 and k_3 define carrier densities above which fast, non-exponential terms
409 contribute significantly to $n_{\text{Drude}}(t)$. Rewriting Equation (2) as $dn_{\text{Drude}}/dt = -(k_1 + k_2 n_{\text{Drude}} +$
410 $k_3 n_{\text{Drude}}^2) n_{\text{Drude}}$, the slope of $n_{\text{Drude}}(t)$ over an infinitesimally short time at t is given by $k_1 +$
411 $k_2 n_{\text{Drude}} + k_3 n_{\text{Drude}}^2$. When n_{Drude} is large, e.g., at early times and high pump fluences, the slope
412 is dominated by the highest order term, but its significance drops off quickly with carrier density
413 (and hence t) due to the nonlinearity. More generally, calculating the slope based on a set of (k_1 ,
414 k_2 , k_3) parameters reveals which term (and hence physical process) contributes most strongly to
415 the instantaneous carrier density decay for a given n_{Drude} and the range of n_{Drude} over which each
416 term is most influential.

417 Although our global fits used one set of parameters (k_1 , k_2 , k_3) to fit the data at all fluences for a
418 given temperature, examining the time-dependent rate highlights the relative influence of the
419 various physical processes at different times, fluences, and temperatures. Additionally, we observe
420 a long-lived photoconductivity at 4 K that is not well captured by the nonlinear recombination
421 model (since its magnitude increases along with the non-exponential decay). To most accurately
422 quantify the competition between k_2 and k_3 we therefore prioritize the fit to $-\Delta T/T_0$ at early times
423 over the long tail at later times. Specifically, we fit the slope and fluence-dependence of the slope
424 over the first 30 ps of the decay using k_2 and k_3 (see insets of Fig. 4A,B), with k_1 subsequently used
425 to provide the best overall fit to the full range.

426 At 4 K, the decay rate, fluence dependence, and fluence onset of the fast dynamics are all best
427 captured by radiative recombination, which is parameterized by a relatively large k_2 term. The
428 fluence onset in Fig. 4A is a particularly clear marker of this dependence, as the fast decays are
429 observable even at the lowest fluences studied. In contrast, at 77 K (Fig. 4B), the fast decay
430 observed at early time disappears for fluences below $13.6 \mu\text{J}/\text{cm}^2$. The relatively strong nonlinear
431 fluence onset in this case indicates that the fast decay is dominated by the k_3 term, i.e., by the three-
432 particle Auger recombination process described in the Introduction. Thus, although all three decay
433 processes are in principle always present, the importance of each one in a given scenario may be
434 quantified, with the parameters in Table 2 determining their range of strongest influence. In
435 Table 2, the term “upper bound” indicates that the corresponding parameter cannot be made larger
436 than this value without degrading the quality of the fit; if k_2 or k_3 is an upper bound for a given fit,

437 it means the other term dominates the fast decay. The largest difference between 4 K and 77 K is
438 an increase in k_2 with decreasing temperature, whereas k_3 is roughly constant. This temperature-
439 dependence of k_2 agrees well with the calculations of Davies *et al.* based on the van Roosbroeck-
440 Shockley relation [54].

441 Meanwhile, the onset carrier density for Auger recombination has important implications for the
442 physics of the material. Previously, Zhang *et al.* fit TRTS data with the Drude-Smith model to
443 define the onset carrier density for fast THz photoconductivity dynamics in CsPbBr_3 thin films at
444 78 K ($\sim 10^{17} \text{ cm}^{-3}$) and found that the result coincided with their calculation result for a Mott density
445 of polarons [32]. This approach implies an absorbed-photon-to-charge (branching) ratio below
446 10%. In contrast, Milot *et al.* and Rehman *et al.* used absorbed photon density to constrain the
447 initial photoinduced carrier density when solving Equation (2) to fit their THz photoconductivity
448 data for $\text{CH}_3\text{NH}_3\text{PbI}_3$ and similar thin films [27,28], noting that a branching ratio near unity is
449 expected [28]. In references [27] and [32], as in our experiments (Fig. 3B and 3C), the imaginary
450 part of the THz complex conductivity is suppressed relative to Drude model predictions. σ_2 also
451 includes negative regions that cannot be reproduced by the Drude model. Whereas the Drude-
452 Smith model can generate negative imaginary conductivities [32], it applies for systems in which
453 charge carriers are structurally confined on the length scale they diffuse during one oscillation of
454 the probing field [46]. Although such confinement may be present in some perovskite thin films,
455 we remove this possibility by studying large microcrystals, and hence may associate deviations
456 from the Drude model with a density of photoexcited excitons (I). It is important to reconsider the
457 concept of a Mott density of polarons within this context. Although the free charge carrier densities
458 from our TRTS measurements and fitting agree roughly with those of Zhang *et al.* [32], the
459 interaction between these carriers and a large background density of excitons would complicate
460 the picture. Recently, interactions between charge carriers and excitons – dubbed Fermi polarons
461 – has been reported for ultrafast two-dimensional optical measurements of monolayer transition
462 metal dichalcogenides [62,63]. A similar scenario merits further investigation in perovskites,
463 especially single crystals.

464 Finally, the low-temperature dynamics shown in Fig. 4A contains further evidence for the presence
465 of excitons. A long-lived free-carrier population has been observed in quasi-two-dimensional
466 halide perovskites [59,60], similar to the offset in Fig. 4A that is not captured by the solution to

467 Equation (2). A number of possible mechanisms have been discussed [59-61], but we find the
468 proposal of Burgos-Caminal *et al.* best describes our observations: exciton-exciton annihilation
469 leads to one electron-hole pair recombining and the other breaking apart through an Auger process,
470 thereby providing an ongoing source of free-charge-carriers [59]. This is consistent with the
471 increase of the long-lived photoconductivity in our experiments with increasing pump fluence (and
472 hence exciton density).

473 Conclusion

474 Time-resolved THz spectroscopy of CsPbBr_3 microcrystals reveals the emergence of a <10 ps,
475 non-exponential decay with increasing optical pump fluence and decreasing temperature. These
476 dynamics can be globally fit by a model incorporating multi-particle decay processes. We find that
477 the radiative recombination rate (k_2) increases by a factor of at least 10^3 with decreasing
478 temperature from 77 K to 4 K, whereas the Auger scattering rate (k_3) decreases slightly over the
479 same temperature range. As a result, the dominant nonlinear recombination mechanism changes
480 from Auger scattering at 77 K to radiative recombination at 4 K for carrier densities in the range
481 of $10^{16} - 10^{18} \text{ cm}^{-3}$. The THz complex conductivity at all temperatures and delays tested is well-
482 described by a Drude-Lorentz model. The Drude component of the photoconductivity corresponds
483 to free charge carriers, while we have presented two possible interpretations for the Lorentz
484 oscillator component: (I) a significant density of excitons that contribute primarily to the imaginary
485 part of the THz photoconductivity via the low-frequency tail of the $1s-2p$ intra-excitonic transition;
486 (II) an above-bandwidth phonon resonance that is enhanced by strong electron-phonon coupling.
487 Distinguishing these two effects should motivate future low-temperature studies of charge carrier
488 dynamics in highly crystalline lead-halide perovskites.

489 Methods

490 **CsPbBr₃ crystal growth.** CsPbBr_3 microcrystals were grown on M-plane sapphire (University
491 Wafer) cut in $1 \text{ cm} \times 1 \text{ cm}$ size in our home-built CVD system [43]. Growth substrates were
492 cleaned by sequentially sonicating in acetone (Sigma-Aldrich; ACS reagent, $\geq 99.5\%$) and iso-
493 propanol (Sigma-Aldrich; ACS reagent, $\geq 99.5\%$), blow-dried with nitrogen gas, treated in an
494 ozone cleaner (Samco UV-1) at 150 °C for 5 min, and placed 11 cm downstream from the furnace
495 center. PbBr_2 (Thermo-Scientific Chemicals; 99.998 % (metals basis)) and CsBr (Thermo-
496 Scientific Chemicals; 99 % (metals basis)) powders were placed in a quartz source boat at the

497 center of a single-zone tube furnace (Fisher Scientific; Lindberg/Blue M Mini-Mite). Prior to the
498 reaction, the quartz tube was baked at 950 °C for 1 hour with 50 sccm of Ar gas under vacuum and
499 then was allowed to cool down to the room temperature. After loading substrates and precursors,
500 pressure was raised to 0.13 Torr with a constant 100 sccm Ar flow and temperature was raised at
501 50 °C/min ramp rate to 420 °C. The reaction was allowed to run for 30 minutes. Heating was then
502 stopped and the sample was allowed to cool to 300 °C with the furnace closed. The furnace was
503 then opened to an Ar flow until the sample temperature dropped below 250 °C.

504 **Optical Characterization.** Optical images were acquired using a Zeiss upright optical microscope.
505 Dark-field (DF) images were acquired using micro-LED light with a dark filter cube (ZEISS), and
506 photoluminescence (PL) images were taken with a filter cube (BP 450-490 nm for excitation
507 (ZEISS), LP 500 nm for emission (Thorlabs)). Static PL spectra were collected by fiber-coupling
508 PL emission from the microscope to a grating spectrograph (Horiba iHR550) interfaced with
509 liquid-nitrogen-cooled CCD detector (Horiba Symphony II). Time-resolved photoluminescence
510 (TRPL) measurements were performed using a time-correlated single-photon counting (TCSPC)
511 detector with a 405 nm pulsed source (Picoquant, LDH-D-C-405M, CW-80 MHz). The data
512 acquisition card (Edinburgh Instrument, TCC900) and the photomultiplier tube detector
513 (Hamamatsu, H7422-40) were used to record the TRPL.

514 **Structural and elemental analysis.** Powder X-ray Diffraction (pXRD) was obtained on Bruker
515 D8 advance diffractometer using Cu K α radiation ($\lambda = 1.5418 \text{ \AA}$). Scanning electron microscope
516 (SEM) images were acquired using a JEOL 7500F with a cold field emission emitter in secondary
517 electron detection mode. The JEOL 7500F was equipped with an Oxford energy-dispersive
518 spectroscopy (EDS) system, which was used for elemental analysis and mapping.

519 **Time-resolved THz spectroscopy measurements.** The ultrafast time-resolved THz spectroscopy
520 (TRTS) setup is based on a Carbide laser from Light Conversion operating at 1 MHz repetition
521 rate, which generates near-infrared pulses with 230-fs pulse duration and 1030-nm center
522 frequency. In the home-built THz setup, the THz probe pulses are produced by tilted-pulse-front
523 optical rectification of 10- μJ near-infrared pulses in a lithium niobate crystal (Oxide Corporation).
524 The bandwidth of the pulses available for spectroscopy is approximately 0.5 – 2.0 THz, as
525 confirmed by TRTS of a GaAs test sample. The field of the THz pulses transmitted through the
526 sample is detected by electro-optic sampling in a ZnTe crystal (Del Mar Photonics) using a < 20

527 fs gate pulse centered at 800 nm. The gate pulse is produced by white-light generation in a YAG
528 crystal using 1030-nm laser pulses and subsequent compression and spectral filtering in a prism
529 compressor. The optical pump pulses used for TRTS are produced by second-harmonic generation
530 in a BBO crystal. The pump pulses have 515 nm center wavelength and approximately 230 fs pulse
531 duration. A maximum pulse energy of 2 μ J is available for pumping the CsPbBr_3 sample. The
532 sample was mounted on a 1-mm-diameter aperture and the pump spot diameter was larger than 3
533 mm to ensure uniform illumination. The highest pump fluence available in our setup is 16.6 μ J/cm².
534 Both the optical pump and THz probe pulse trains were modulated during TRTS experiments, such
535 that reference and sample THz waveforms were recorded simultaneously, and each set of
536 waveforms was repeated at least ten times and averaged to minimize drift-related artifacts.
537 Extraction of the complex THz conductivity, $\tilde{\sigma}(\omega) = \sigma_1(\omega) + i\sigma_2(\omega)$, from TRTS
538 measurements followed the standard procedure, using the thin-film formula, and is described in
539 detail elsewhere [64]. The uncertainties for the complex THz conductivity data were determined
540 using the standard deviation of the ten datasets. Evaluation of the sample under a wide-area optical
541 microscope showed the filling factor of the microcrystals to be 0.55; the extracted complex THz
542 conductivity was therefore divided by 0.55 to determine the conductivity within the microcrystals.
543 Pump-probe measurements of the THz-peak transmission change ($-\Delta T/T_0$) were recorded at the
544 modulation frequency of the pump for optimal signal-to-noise ratio and averaged over many scans
545 to minimize drift-related artifacts. Measurements of $-\Delta T/T_0$ were not normalized by the filling
546 factor.

547 **Acknowledgement**

548 The authors thank V. N. Breslin, R. Loloe, R. Bennett, and B. Bi for technical support. T.L.C.
549 acknowledge support from the Cowen Family Endowment. S.K. acknowledges startup support
550 from the Department of Chemistry at Michigan State University. Research at Wesleyan University
551 (M.-J.S., K.O. and C.N.B.P.) is supported by NSF DMR-2316827.

552

553 **References**

554 [1] W. Shockley. And H. J. Queisser, “Detailed balance limit of efficiency of p-n junction
555 solar cells.” *J. Appl. Phys.* **32**, 510–519 (1961).

556 [2] M. Yamaguchi, F. Dimroth, J. F. Geisz, N. J. Ekins-Daukes, “Multi-junction solar cells
557 paving the way for super high-efficiency.” *J. Appl. Phys.* **129**, 240901 (2021).

558 [3] S. Kahmann and M. A. Loi, “Hot carrier solar cells and the potential of perovskites for
559 breaking the Shockley–Queisser limit,” *J. Mater. Chem. C*, **7**, 2471 (2019)

560 [4] R. T. Ross and A. J. Nozik, “Efficiency of hot-carrier solar energy converters,” *J. Appl.*
561 *Phys.* **53**, 3813–3818 (1982).

562 [5] N. D. Park and K. Zhu, “Scalable fabrication and coating methods for perovskite solar
563 cells and solar modules,” *Nat. Rev. Mater.* **5**, 333–350 (2020).

564 [6] T. Brenner, D. Egger, L. Kronik, G. Hodes, and D. Cahen, “Hybrid organic–inorganic
565 perovskites: low-cost semiconductors with intriguing charge-transport properties,” *Nat.*
566 *Rev. Mater.* **1**, 15007 (2016).

567 [7] S. De Wolf, J. Holovsky, S.-J. Moon, P. Loepert, B. Niesen, M. Ledinsky, F.-J. Haug, J.-
568 H. Yum, and C. Ballif, “Organometallic Halide Perovskites: Sharp Optical Absorption
569 Edge and Its Relation to Photovoltaic Performance,” *J. Phys. Chem. Lett.* **5**, 1035–1039
570 (2014).

571 [8] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L.
572 M. Herz, A. Petrozza, and H. J. Snaith, “Electron–hole diffusion lengths exceeding 1
573 micrometer in an organometal trihalide perovskite absorber,” *Science* **342**, 341–344
574 (2013).

575 [9] L. M. Herz, “Charge-carrier mobilities in metal halide perovskites: fundamental
576 mechanisms and limits,” *ACS Energy Lett.* **2**, 1539–1548 (2017).

577 [10] Best Research-Cell Efficiency Chart. <https://www.nrel.gov/pv/cell-efficiency.html>.

578 [11] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C.
579 Sum, “Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-
580 Inorganic $\text{CH}_3\text{NH}_3\text{PbI}_3$,” *Science*. **342**, 344–347 (2013).

581 [12] M. B. Price, J. Butkus, T. C. Jellicoe, A. Sadhanala, A. Briane, J. E. Halpert, K. Broch, J.
582 M. Hodgkiss, R. H. Friend, and F. Deschler, “Hot-carrier cooling and photoinduced

583 refractive index changes in organic-inorganic lead halide perovskites," *Nat. Commun.* **6**,
584 8420 (2015).

585 [13] Y. Yang, D. Ostrowski, R. France, K. Zhu, J. Lagemaat, J. M. Luther and M. C.
586 Beard, "Observation of a hot-phonon bottleneck in lead-iodide perovskites," *Nature*
587 *Photon* **10**, 53–59 (2016).

588 [14] T. C. Sum, N. Mathews, G. Xing, S. S. Lim, W. K. Chong, D. Giovanni, and H. A. Dewi,
589 "Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and
590 Interpretations," *Acc. Chem. Res.* **49**, 294–302 (2016).

591 [15] J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F.
592 Huang, Y. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson and G.
593 Conibeer, "Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-
594 halide perovskites," *Nat. Commun.* **8**, 14120 (2017).

595 [16] J. Fu, Q. Xu, G. Han, B. Wu, C. H. A. Huan, M. L. Leek and T. C. Sum, "Hot carrier
596 cooling mechanisms in halide perovskites," *Nat. Commun.* **8**, 1300 (2017).

597 [17] M. Li, J. Fu, Q. Xu and T. C. Sum, "Slow Hot-Carrier Cooling in Halide Perovskites:
598 Prospects for Hot-Carrier Solar Cells," *Adv. Mater.* **31**, 1802486 (2019).

599 [18] I. Ahmed, L. Shi, H. Pasanen, P. Vivo, P. Maity, M. Hatamvand and Y. Zhan, "There is
600 plenty of room at the top: generation of hot charge carriers and their applications in
601 perovskite and other semiconductor-based optoelectronic devices," *Light Sci. Appl.* **10**,
602 174 (2021).

603 [19] S. Sundaram and E. Mazur, "Inducing and probing non-thermal transitions in
604 semiconductors using femtosecond laser pulses." *Nat. Mater.* **1**, 217–224 (2002).

605 [20] G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.-J. Egelhaaf, D. Brida, G. Cerullo, and
606 G. Lanzani, "Hot exciton dissociation in polymer solar cells," *Nat. Mater.* **12**, 29–33
607 (2013).

608 [21] A. E. Jallaubekov, A. P. Willard, J. R. Tritsch, W.-L. Chan, N. Sai, R. Gearba, L. G.
609 Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X.-Y. Zhu, "Hot charge-transfer
610 excitons set the time limit for charge separation at donor/acceptor interfaces in organic

611 photovoltaics," *Nat. Mater.* **12**, 66–73 (2013).

612 [22] B. Hejda and K. Kral, "Hot-electron cooling and second-generation phonons in polar
613 semiconductors," *Phys. Rev. B* **47**, 15554–15561 (1993).

614 [23] H. Zhu, K. Miyata, Y. Fu, J. Wang, P. P. Joshi, D. Niesner, K. W. Williams, S. Jin, and
615 X.-Y. Zhu, "Screening in crystalline liquids protects energetic carriers in hybrid
616 perovskites," *Science* **353**, 1409–1413 (2016).

617 [24] Y. Lan, B. J. Dringoli, D. A. Valverde-Chávez, C. S. Ponsenca Jr., M. Sutton, Y. He, M.
618 G. Kanatzidis and D. G. Cooke, "Ultrafast correlated charge and lattice motion in a
619 hybrid metal halide perovskite," *Sci. Adv.* **5**, eaaw5558 (2019).

620 [25] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, "High
621 Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites," *Adv.*
622 *Mater.* **26**, 1584–1589 (2014).

623 [26] C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, "Charge-carrier
624 dynamics in vapour-deposited films of organolead halide perovskite $\text{CH}_3\text{NH}_3\text{Pb}_{3-x}\text{Cl}_x$,"
625 *Energy Environ. Sci.* **7**, 2269 (2014).

626 [27] R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston and L. M. Herz, "Temperature-
627 Dependent Charge-Carrier Dynamics in $\text{CH}_3\text{NH}_3\text{PbI}_3$ Perovskite Thin Films," *Adv.*
628 *Func. Mater.* **25**, 6218–6227 (2015).

629 [28] W. Rehman, R. L. Milot, G. E. Eperon, C. Wehrenfennig, J. L. Boland, H. J. Snaith, M.
630 B. Johnston and L. M. Herz, "Charge-Carrier Dynamics and Mobilities in
631 Formamidinium Lead Mixed-Halide Perovksites," *Adv. Mater.* **27**, 7938 (2015).

632 [29] M. Karakus, S. A. Jensen, F. D'Angelo, D. Turchinovich, M. Bonn and E. Cánovas,
633 "Phonon-Electron Scattering Limits Free Charge Mobility in Methylammonium Lead
634 Iodide Perovskites," *J. Phys. Chem. Lett.* **6**, 4991–4996 (2015).

635 [30] L. Luo, L. Men, Z. Liu, Y. Mudryk, X. Zhao, Y. Yao, J. M. Park, R. Shinar, J. Shinar, K.-
636 M. Ho, I. E. Perakis, J. Vela and J. Wang, "Ultrafast terahertz snapshots of excitonic
637 Rydberg states and electronic coherence in an organometal halide perovskite," *Nat.*
638 *Commun.* **8**, 15565 (2017).

639 [31] M. P. Erodici, P. J. Pierone, N. T. P. Hartonon, J. Hidalgo, B. Laim T. Buonassisi, J.-P.
640 Correa-Baena and M.-J. Sher, “Enhanced charge carrier lifetime mobility as a result of
641 Rb and Cs incorporation in a halide perovskite,” *Appl. Phys. Lett.* **118**, 063901 (2021).

642 [32] H. Zhang, E. Debroye, B. Vina-Bausa, D. Valli, S. Fu, W. Zheng, L. Di Virgilio, L. Gao,
643 J. M. Frost, A. Walsh, J. Hofkens, H. I. Wang and M. Bonn, “Stable Mott Polaron State
644 Limits the Charge Density in Lead Halide Perovskites,” *ACS Energy Lett.* **8**, 420–428
645 (2023).

646 [33] G. R. Yettappu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, and P. Mandal,
647 “Terahertz Conductivity within Colloidal CsPbBr_3 Perovskite Nanocrystals: Remarkably
648 High Carrier Mobilities and Large Diffusion Lengths,” *Nano Lett.* **16**, 4838–4848 (2016).

649 [34] S. Sarkar, V. K. Ravi, S. Banerjee, G. R. Yettappu, G. B. Markad, A. Nag, and P. Mandal,
650 “Terahertz Spectroscopic Probe of Hot Electron and Hole Transfer from Colloidal
651 CsPbBr_3 Perovskite Nanocrystals,” *Nano Lett.* **17**, 5402–5407 (2017).

652 [35] E. Cinquanta, D. Meggiolaro, S. G. Motti, M. Gandini, M. J. P. Alcocer, Q. A.
653 Akkerman, C. Vozzi, L. Manna, F. De Angelis, A. Petrozza and S. Stagira, “Ultrafast
654 THz Probe of Photoniuced Polarons in Lead-Halide Perovskites,” *Phys. Rev. Lett.* **122**,
655 166601 (2019).

656 [36] A. M. Ulatowski, M. D. Farrar, H. J. Snaith, M. B. Johnston and L. M. Herz, “Revealing
657 Ultrafast Charge-Carrier Thermalization in Tin-Iodide Perovskites through Novel Pump-
658 Push-Probe Terahertz Spectroscopy,” *ACS Photon.* **8**, 2509–2518 (2021).

659 [37] B. Guzelturk, R. A. Belisle, M. D. Smith, K. Bruening, R. Prasanna, Y. Yuan, V.
660 Gopalan, C. J. Tassone, H. I. Karunadasa, M. D. McGehee and A. M. Lindenberg,
661 “Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and
662 Strong Electron-Phonon Coupling,” *Adv. Mater.* **30**, 1704737 (2018).

663 [38] M. Frenzel, M. Cherasse, J. M. Urban, F. Wang, B. Xiang, L. Nest, L. Huber, L. Perfetti,
664 M. Wolf, T. Kampfrash, X.-Y. Zhu, and S. F. Maehrlein, “Nonlinear terahertz control of
665 the lead halide perovskite lattice,” *Sci. Adv.* **9**, eadg3856 (2023).

666 [39] Z. Yang, A. Surrente, K. Galkowski, A. Miyata, O. Portugall, R. J. Sutton, A. A.

667 Haghhighirad, H. J. Snaith, D. K. Maude, P. Plochocka, and R. J. Nicholas, "Impact of the
668 Halide Cage on the Electronic Properties of Fully Inorganic Cesium Lead Halide
669 Perovskites," *ACS Energy Lett.* **2**, 1621–1627 (2017).

670 [40] C. A. López, C. Abia, M. C. Alvarez-Galván, B.-K. Hong, M. V. Martínez-Huerta, F.
671 Serrano-Sánchez, F. Carrascoso, A. Castellanos-Gómez, M. T. Fernández-Díaz, and J. A.
672 Alonso, "Crystal Structure Features of CsPbBr_3 Perovskite Prepared by
673 Mechanochemical Synthesis," *ACS Omega* **5**, 5931–5938 (2020).

674 [41] F. H. Su, F. Blanchard, G. Sharma, L. Razzari, A. Ayesheshim, T. L. Cocker, L. V.
675 Titova, T. Ozaki, J.-C. Kieffer, R. Morandotti, M. Reid and F. A. Hegmann, "Terahertz
676 pulse induced intervalley scattering in photoexcited GaAs," *Opt. Express* **17**, 9620
677 (2009).

678 [42] F. Blanchard, D. Golde, F. H. Su, L. Razzari, G. Sharma, R. Morandotti, T. Ozaki, M.
679 Reid, M. Kira, S. W. Koch and F. A. Hegmann, "Effective Mass Anisotropy of Hot
680 Electrons in Nonparabolic Conduction Bands of *n*-Doped InGaAs Films Using Ultrafast
681 Terahertz Pump-Probe Techniques," *Phys. Rev. Lett.* **107**, 107401 (2011).

682 [43] P. Yadav, K. Moon, A. Biswas, C. K. Herrera, Y. Zhang, S. C. Barton, R. R. Lunt, G. J.
683 Blanchard, and S. Kim, "Morphology-Controlled Vapor-Phase Nanowire Growth with
684 Ruddlesden-Popper Lead Bromide Perovskite," *Chem. Mater.* **35**, 3300–3306 (2023).

685 [44] N. V. Smith, "Classical generalization of the Drude formula for the optical conductivity,"
686 *Phys. Rev. B* **64**, 155106 (2001).

687 [45] H. Nemec, P. Kuzel and V. Sundström, "Far-infrared response of free charge carriers
688 localized in semiconductor nanoparticles," *Phys. Rev. B* **79**, 115309 (2009).

689 [46] T. L. Cocker, D. Baillie, M. Buruma, L. V. Titova, R. D. Sydora, F. Marsiglio and F. A.
690 Hegmann, "Microscopic origin of the Drude-Smith model," *Phys. Rev. B* **96**, 205439
691 (2017).

692 [47] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X.
693 Yang, A. Walsh, and M. V. Kovalenko, "Nanocrystals of Cesium Lead Halide
694 Perovskites (CsPbX_3 , X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright

695 Emission with Wide Color Gamut," *Nano Lett.* **15**, 3692–3696 (2015).

696 [48] B. Ai, C. Liu, Z. Deng, J. Wang, J. Han, and X. Zhao, "Low temperature
697 photoluminescence properties of CsPbBr_3 quantum dots embedded in glasses," *Phys.*
698 *Chem. Chem. Phys.* **19**, 17349 (2017).

699 [49] J. Ramade, L. M. Andriambariarijaona, V. Steinmetz, N. Goubet, L. Legrand, T.
700 Barisien, F. Bernardot, C. Testelin, E. Lhuillier, A. Bramati, and M. Chamarro, "Fine
701 structure of excitons and electron-hole exchange energy in polymorphic CsPbBr_3 single
702 nanocrystals," *Nanoscale* **10**, 6393–6401 (2018).

703 [50] Y. Liu, J. Wang, L. Zhang, W. Lium C. Wu, C. Liu, Z. Wu, L. Xiao, Z. Chen, and S.
704 Wang, "Exciton and bi-exciton mechanisms in amplified spontaneous emission from
705 CsPbBr_3 perovskite thin films," *Opt. Express* **27**, 29125 (2019).

706 [51] W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Lu,
707 "Unveiling lasing mechanism in CsPbBr_3 microsphere cavities," *Nanoscale* **11**, 3145
708 (2019).

709 [52] X. Shen, M. Chen, L. Shi, F. Chen, Y. Liu, D. Cao, and C. Xu, "Lasing behaviors in
710 solution processed all-inorganic CsPbBr_3 perovskite microsized crystals," *Opt. Commun.*
711 **453**, 124354 (2019).

712 [53] L. Zhang, X. Li, Y. Song, and B. Zou, "Ultrafast Antisolvent Growth of Single-Crystal
713 CsPbBr_3 Microcavity for Whispering-Gallery-Mode Lasing," *Nanomaterials* **13**, 2116
714 (2023).

715 [54] C. L. Davies, M. R. Filip, J. B. Patel, T. W. Crothers, C. Verdi, A. D. Wright, R. L.
716 Milot, F. Giustino, M. B. Johnston, and L. M. Herz, "Bimolecular recombination in
717 methylammonium lead triiodide perovskite is an inverse absorption process," *Nat.*
718 *Commun.* **9**, 293 (2018).

719 [55] R. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, and D. S. Chemla, "Ultrafast
720 terahertz probes of transient conducting and insulating phases in an electron-hole gas,"
721 *Nature* **423**, 734–738 (2003).

722 [56] C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R.

723 Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions
724 and femtosecond radiative decay of excitons in monolayer WSe₂,” *Nat. Mater.* **14**, 889–
725 893 (2015).

726 [57] Y. Kang and S. Han, “Intrinsic Carrier Mobility of Cesium Lead Halide Perovskites,”
727 *Phys. Rev. Appl.* **10**, 044013 (2018).

728 [58] X. Chen, Y. Wang, J. Song, X. Li, J. Xu, H. Zeng, and H. Sun, “Temperature Dependent
729 Reflectance and Ellipsometry Studies on a CsPbBr₃ Single Crystal,” *J. Phys. Chem. C*
730 **123**, 10564 (2019).

731 [59] A. Burgos-Caminal, E. Socie, M. E. F. Bouduban, and J.-E. Moser, “Exciton and Carrier
732 Dynamics in Two-Dimensional Perovskites,” *J. Phys. Chem. Lett.* **11**, 7692–7701 (2020).

733 [60] S. G. Motti, M. Kober-Czerny, M. Righetto, P. Holzhey, J. Smith, H. Kraus, H. J. Snaith,
734 M. B. Johnston, and L. M. Herz, “Exciton Formation Dynamics and Band-Like Free
735 Charge-Carrier Transport in 2D Metal Halide Perovskite Semiconductors,” *Adv. Func.*
736 *Mater.* **33**, 2300263 (2023).

737 [61] F. H. Balogun, N. P. Gallop, D. Sirbu, J. D. Hutchinson, N. Hill, J. M. Woolley, D.
738 Walker, S. York, P. Docampo, and R. L. Milot, “Untangling free carrier and exciton
739 dynamics in layered hybrid perovskites using ultrafast optical and terahertz
740 spectroscopy,” *Mater. Res. Express* **11**, 025503 (2024).

741 [62] L. B. Tan, O. Cotlet, A. Bergschneider, R. Schmidt, P. Back, Y. Shimazaki, M. Kroner,
742 and Imamoglu, “Interacting Polaron-Polaritons,” *Phys. Rev. X* **10**, 021011 (2020).

743 [63] J. B. Muir, J. Levinsen, S. K. Earl, M. A. Conway, J. H. Cole, M. Wurdack, R. Mishra,
744 D. J. Ing, E. Estrecho, Y. Lu, D. K. Efimkin, J. O. Tollerud, E. A. Ostrovskaya, M. M.
745 Parish, and J. A. Davis, “Interactions between Fermi polarons in monolayer WS₂,” *Nat.*
746 *Commun.* **13**, 6164 (2022).

747 [64] P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern
748 techniques and applications,” *Laser Photon. Rev.* **5**, 124–166 (2011).