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Real-Time Transfer Active Learning for Functional
Regression and Prediction Based on Multi-Output

Gaussian Process
Zengchenghao Xia, Zhiyong Hu , Qingbo He , Senior Member, IEEE, and Chao Wang

Abstract—Active learning provides guidance for the design
and modeling of systems with highly expensive sampling costs.
However, existing active learning approaches suffer from cold-
start concerns, where the performance is impaired due to the
initial few experiments designed by active learning. In this paper,
we propose using transfer learning to solve the cold-start problem
of functional regression by leveraging knowledge from related
and data-rich signals to achieve robust and superior performance,
especially when only a few experiments are available in the
signal of interest. More specifically, we construct a multi-output
Gaussian process (MGP) to model the between-signal functional
relationship. This MGP features unique innovations that distin-
guish the proposed transfer active learning from existing works:
i) a specially designed covariance structure is proposed for
characterizing within-and between-signal inter-relationships and
facilitating interpretable transfer learning, and ii) an iterative
Bayesian framework is proposed to update the parameters and
prediction of the MGP in real-time, which significantly reduces
the computational load and facilitates the iterative active learn-
ing. The inter-relationship captured by this novel MGP is then
fed into active learning using the integrated mean-squared error
(IMSE) as the objective. We provide theoretical justifications for
this active learning mechanism, which demonstrates the objective
(IMSE) is monotonically decreasing as we gather more data from
the proposed transfer active learning. The real-time updating
and the monotonically decreasing objective together provide both
practical efficiency and theoretical guarantees for solving the
cold-start concern in active learning. The proposed method is
compared with benchmark methods through various numerical
and real case studies, and the results demonstrate the superiority
of the method, especially when limited experiments are available
at the initial stage of design.
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I. INTRODUCTION

ACTIVE learning is a sub-field of machine learning that
maximizes information acquisition to train models in a

data-efficient way [1]. Different with passive learning such as
Latin hypercude design and factorial design [2] that select or
design the experiment settings before signal acquisition, ac-
tive learning determines the most informative signal points or
streams during the acquisition process. The basic idea of active
learning is to iteratively select future data points by modeling
and maximizing the information gain based on already collected
data, where the newly selected data points will serve as the
already collected data in the next round of active learning.
The unique advantage of active learning is to expedite the
efficiency of signal acquisition by concentrating on most infor-
mative data set, which significantly saves data collection costs.
As a result, the active learning has been widely used in various
applications where signal acquisition is timely and/or costly
demanding, such as quality engineering, signal processing, and
image recognition [3], [4], [5].

Nevertheless, existing active learning techniques suffer a
common issued called cold-start [6], [7], which means the per-
formance of active learning is impaired at early stage due to the
small amount of collected data. This issue is widely observed
in practice [8], [9] because it is accompanied with the intrinsic
working principle of active learning: the selection of future data
points is based on the modeling of already collected data. As
a result, the less data on hand, the worse the modeling and
active learning performance. In engineering practice, the cold-
start problem can cause not only waste of data but also mis-
interpretation of learning results. For example, in one of our
case studies of calibrating reduced graphene oxide (RGO) field-
effect transistors (FET), a high-accuracy nano-sensor for detect-
ing contamination in water, it is important to learn the current
vs. voltage functional relationship so that the FET character-
istics can be calibrated [10]. However, the current vs. voltage
data can only be measured by disposable FET sensors, which
requires to use as few sensors as possible to reduce cost during
the learning process [11], [12]. We demonstrate the cold-start
problem of this example in Fig. 1, where three collected sensor
measurements are shown as hollow circles and the underlying
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Fig. 1. Cold-start problem in active learning of functional relationship.

truth of the relationship (unknown in practice) is shown as
dashed line. Each data point is the current reading (unit μA)
from a disposable field-effect transistor (FET) sensor. The FET
sensor can provide different current readings under different
voltages, and it is important to find the voltage that generates the
minimum current for sensor calibration purpose [13]. The active
learning is thus implemented to find the minimum value in
the current-voltage function, and the Gaussian process model
is used to fit three available data points. The 95% confidence
interval is constructed based on the predicted variance at each
voltage value. The results of active learning guide the next ex-
periment at the lowest value of predicted curve (solid diamond
at left edge). It is clear in Fig. 1 that with only three data points,
the active learning fails to locate the minimum point (solid red)
and wastes the new sensor (hollow diamond). Moreover, the
fitted curve (dash-dotted line) provides misleading relationship
between current and voltage due to the lack of data. As a result,
it is imperative to overcome the cold-start issue and achieve
interpretable and efficient solution of active learning.

In literature, transfer learning has been proposed and applied
for cold-start problem in active learning [14], [15]. The rationale
is that transfer learning can extract shared information from
different but related signals or processes (source domains) to
“warm-up” and benefit the active learning in the process of in-
terest (target domain). The transferred information from sources
serves as virtually implemented experiments (data points) for
the target signal. For example, the model can be first pre-trained
by rich data in the source domain, which is then applied in the
target domain for active learning [16] to achieve better perfor-
mance than only using data from the target. The data in source
and target can also be trained together to facilitate information
transfer for active learning, where domain adaptation indices,
e.g., maximum mean discrepancy and domain entropy, are used
to formulate the joint objective function between sources and

the target [17], [18]. There are also works formulating the
transfer active learning as a weighted empirical risk, and the
objective is to minimize the risk bound for both source and
target domains [19], [20].

However, these existing transfer active learning techniques
mainly focus on classification problems [21] and cannot be
directly applied to deal with cold-start in regression prob-
lems, e.g., learning of functional relationship in Fig. 1. More
specifically, there are two key limitations in existing meth-
ods. First, the learning task in existing transfer active learning
focuses on adapting inputs, rather than input-output relation-
ship, among different signals. In these methods, a transforma-
tion of inputs from N signals, i.e., q(x1, · · · , xN ), is usually
developed to facilitate the joint training with outputs in N
signals, i.e., y1, · · · , yN . In this case, the transfer learning is
realized by modeling and sharing the same relationship be-
tween q(x1, · · · , xN ) and yn for n= 1, · · · , N . In other words,
the specific input-output relationship between xn and yn in
the nth signal, n= 1, · · · , N , is not learned, and the signal-
to-signal interactions among these functional relationships are
not considered. On the other hand, the transfer learning of
functional relationship focuses on the input-output representa-
tion of each signal, i.e., q′(f1(x1), · · · ,fN (xN )), where yn =
fn(xn) + εn. The fn(·) represents the relationship between xn
and yn (with an additive noise εn), and the transformation q′(·)
represents the interactions among N functions. The key dif-
ference between q(x1, · · · , xn) and q′(f1(x1), · · · ,fN (xN ))
is that q(x1, · · · , xN ) maps inputs from all signals to yn thus
the learning of input-output relationship in every individual
signal becomes infeasible, while the q′(f1(x1), · · · ,fN (xN ))
facilitates the learning of both individual input-output rela-
tionship and interactions among these relationships. Second,
there lacks quantification of uncertainties during training. It is
well documented that the uncertainty guides the implementa-
tion of active learning [22]. However, many existing transfer
active learning methods, especially those used for classifica-
tion, only involve the uncertainty in active learning stage and
ignore it during transfer learning or training stage [23]. This is
because the loss of classification problems can be formulated
by an indicator function without any noise. In fact, there are
two types of uncertainties to be quantified in transfer active
learning of functional relationship [24]. The first type is the
measurement/data uncertainty, which is represented by the εn
for the nth process. The second type is modeling uncertainty,
which represents the functional discrepancy between the esti-
mated relationship model and the unknown underlying truth.
The quantification of modeling uncertainty is especially critical
for learning functional relationship because the underlying truth
is usually highly nonlinear, and it is almost impossible to find
a model that performs exactly the same as the underlying truth
[25]. Unfortunately, in the field of transfer active learning, to
the best of our knowledge, there are few methods that consider
both data and modeling uncertainty.

To address the uncertainty quantification issue in active
learning, researchers resort to the Gaussian process (GP), a
non-parametric method, to characterize both data and model-
ing uncertainty in a single process [26], [27]. Recently, the
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multi-output Gaussian process (MGP) has also been proposed
and applied in active learning to facilitate modeling of inter-
actions among different signals [28], [29]. Nevertheless, these
existing GP/MGP based methods deal with the above men-
tioned two issues separately thus cannot provide a comprehen-
sive solution for cold-start problem in transfer active learning.
More specifically, when dealing with the first issue, i.e., learning
of functional relationships among signals, existing methods
usually resort to a linear model of coregionalization (LMC) to
characterize the interactions among different functional interac-
tions [30]. However, the LMC poses a strong assumption that
all functions should be linearly correlated. This significantly
limits the flexibility and application scenarios of LMC [31],
[32] since most of functional data in practice is non-linearly
correlated. When dealing with the second issue, i.e., uncertainty
quantification, existing methods usually treat the uncertainty
in training and active learning in an independent manner [33],
[34]. For example, the estimated/predicted uncertainty from
training data needs to be re-calculated from scratch whenever
a new data (identified by active learning) is added [35], [36].
This means the uncertainty before and after implementing the
active learning is conditionally independent given the new data
obtained by active learning. Such operation actually contradicts
with the intrinsic philosophy of active learning because active
learning seeks new data for iterative improvement over the
information on hand rather than re-calculation of everything
[22]. More importantly, almost all existing MGP methods for
active learning suffer the expensive computational complexity,
which scales cubically with the number of data points [37].
Such computational limitation not only poses concerns for real-
time active learning (due to the re-calculation and expensive
complexity in existing methods), but also restricts the applica-
tion of MGP in transfer learning. This is because the transfer
learning usually works in a context that there is much more data
in sources than that in target, thus the computational/modeling
tools must be efficient to deal with large amount of data in
source domains to facilitate a successful transfer learning.

In this paper, we propose an efficient transfer active learning
framework and a real-time MGP to address the above men-
tioned concerns and resolve the cold-start problem in active
learning of functional relationship. In this framework, we first
use convolution process (CP) to construct a tailored MGP struc-
ture for transfer learning of non-linear functional relationships.
This structure features less computational complexity and bet-
ter interpretability of modeling non-linear relationship among
signals, which are superior than the commonly used LMC struc-
ture. Then, to facilitate the iterative prediction and uncertainty
quantification of transfer active learning, an iterative Bayesian
algorithm is developed to update parameters of the proposed
MGP whenever new (batch of) data is available. The iterative
updating plays a critical role in our transfer active learning
framework because this marks the first time, to our knowledge,
that it has revolutionized the traditional integration of MGP
with active learning, which typically involves recalculating in
each iteration. It also aligns the iterative updating of MGP
with the iterative improvement of active learning. Moreover, the
iterative updating further reduces the computational load since

the updating only needs to take care of the newly incoming
data instead of re-calculating all data accumulated on hand.
Finally, the transferred and updated uncertainty in the target
signal feeds into active learning by using the integrated mean-
square error (IMSE) as the objective, and we provide theoretical
justifications that the objective is monotonically decreasing as
we get more data from the proposed transfer active learning
framework. This theoretical property shows the performance of
active learning will become better as more data is fed into the
proposed transfer active learning framework, which provides
mathematical guarantees for the iterative improvement of our
framework. The major contributions of this work include:

• A novel MGP structure is proposed to facilitate trans-
fer active learning of functional relationship, where two
fundamental challenges, i.e., interactions and uncertain-
ties among different functions, are resolved in a holistic
framework.

• The critical concern of computational complexity of MGP
is remarkably alleviated by the proposed iterative Bayesian
estimation method, which not only expedites the real-time
calculation but also accommodates the MGP to iterative
active learning for the first time.

• We provide theoretical justifications for the objective
and performance of the proposed transfer active learning
framework.

Both numerical and case studies demonstrate the effective-
ness of the proposed framework in terms of transfer learning
accuracy, time efficiency, and active learning performance in
comparison with various benchmark methods. The results show
the proposed method is a superior approach for resolving the
cold-start problem in learning functional relationship.

The rest of the paper is organized as follows. Section II
provides a general formulation of the transfer active learning
problem, which includes the formulation of MGP and the ob-
jective in active learning. In Section III, details about modeling,
iterative updating, and transfer active learning will be presented,
where the theoretical justifications of the selected objective will
also be provided under the proposed framework. Section IV
conducts numerical studies and comparisons to demonstrate
the superiority of the proposed framework, where the model-
ing accuracy, time efficiency, and active learning performance
are investigated. Two real case studies that suffer cold-start
problems are demonstrated in Section V to further validate the
effectiveness of the proposed framework. Finally, Section VI
draws conclusion remarks and discusses future works.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation of Transfer Active Learning

In this paper, we focus on solving the cold-start prob-
lem of active learning in a target signal by transferring data
from readily available source signals in a real-time manner.
Without loss of generality, we assume there are N signals
and treat the N th signal as the target signal. For the nth
signal, the observations are taken at Ln input points xn =
[xn1, xn2, · · · , xnLn

]T , where xnl is the input for the lth
observation in the nth signal, n= 1, 2, · · · , N, l = 1, 2, .., Ln.

Authorized licensed use limited to: The University of Iowa. Downloaded on June 24,2025 at 15:22:28 UTC from IEEE Xplore.  Restrictions apply. 



4166 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Accordingly, we define the data observations from the nth sig-
nal as yn = [yn(xn1), yn(xn2), · · · , yn(xnLn

)]T , and the inputs
and observations from all N signals are x = [xT

1 , xT
2 , · · · , xT

N ]T

and y = [yT
1 , yT

2 , · · · , yT
N ]T , respectively. In our work, we have

LN � Ln for n= 1, · · · , N − 1 to represent the cold-start
problem in the target signal.

Based on the defined notations, the transfer active learning
problem can be formulated as:

x∗
N = argmin

xN

g(xN |x, y) (1)

where the goal is to identify a vector of D optimal in-
put(s) of the next experiment in the N th signal, i.e., x∗N =
[x∗

N1, · · · , x∗
ND]T , D ≥ 1, based on the available data in target

and sources (x, y) and the acquisition function g(·). ThexN |x, y
represents the predicted information of the N th signal at input
values xN . Note the difference between xN and xN , where
the xN ∈ R

LN is the vector of inputs of available data in the
N th signal (part of x) while the xN ∈ R

D represents D ar-
bitrary inputs of the N th signal for the acquisition function
g(·). The learning results of Eq. 1 is to obtain D observations
from the N th signal, i.e., y∗N , at inputs values x∗N . Then, the
(x∗

N , y∗
N ) will be incorporated into (x, y), and the updated (x, y)

will be used in Eq. 1 to acquire more observation inputs from
the N th signal. Note the acquired number of new data points
D might be different in each round of active learning. In this
paper, we will use non-italic variables, e.g., x and yn(xnl), to
represent data that is already determined or collected, while the
italic variables, e.g., xN and yn, represent arbitrary inputs and
corresponding data variables to be optimized.

The formulation in Eq. 1 shows there are two key compo-
nents for the success of transfer active learning. The first is to
facilitate an efficient prediction of xN |x, y, which requires a
comprehensive framework to transfer knowledge from (x, y)
to the prediction of the N th signal at arbitrary inputs xN .
The second is the acquisition function g(·), which defines the
active learning behavior and dominates the effectiveness of
transfer active learning. In our work, we will develop a novel
multi-output Gaussian process to expedite transfer learning and
prediction of xN |x, y. We also demonstrate through theoretical
analysis that the integrated mean of square error (IMSE) is an
appropriate choice for g(·) to guarantee the accuracy of the
transfer active learning in our framework.

We will briefly review the conventional MGP and the IMSE
based active learning in Section II-B and Section II-C, respec-
tively, and point out the limitations of existing methods for
achieving a successful transfer active learning. To facilitate our
proposed framework, we list some assumptions/clarifications as
follows:

A1 Each signal is from stationary Gaussian process.
A2 Measurement noise is assumed to be independent and

identically distributed.
A3 There are similarities among different signals for facili-

tating transfer learning. The similarities can be modeled
by the kernel functions and their parameters.

C1 We allow different signals to have different numbers
and values of inputs in the same input space. That is,

xnl, n= 1, 2, · · · , N, l = 1, 2, .., Ln, can have different
values, and the number of inputs Ln can be different
across different n. But all xnl should be from the same
space, i.e., xnl ∈ [a b], where a and b are real numbers
that define the lower and upper bound of the input space.

It is worth noting the A1 and A2 are widely used for MGP
related modeling and prediction [29], [38]. The A3 is also a nec-
essary assumption for the success of transfer learning. The C1
demonstrates the adaptability of the proposed transfer active
learning framework, highlighting its capability to accommodate
the heterogeneity in the number of observations.

B. Multi-Output Gaussian Process

In this section, we introduce the popular multi-output Gaus-
sian process model, which is used for modeling the within-and
between-signal correlations. This model serves as the founda-
tion for our proposed method.

The relationship between xn and yn in the nth signal can be
represented by Gaussian process as:

yn(xnl) = fn(xnl) + ε(xnl)

fn(xnl)∼ GP
(
μn(xnl), γnn(xnl, xnl′)

)
(2)

where fn(·) is the Gaussian process for modeling input-
output relationship in the nth signal, the μn(·) and γnn(·, ·)
are mean function and covariance function for fn(·),
respectively, and ε(xnl) is the measurement noise with
independent and identically distributed (i.i.d.) Normal
distribution N(0, σ2). Based on the formulation in Eq. 2,
the data in the nth signal follows a Ln-dimension Normal
distribution, i.e., yn ∼MVN(μn,γnn

(
xn, xn) + σ2ILn

)
,

where μn = [μn(xn1), · · · , μn(xnLn
)]T is the mean vector,

γnn

(
xn, xn) is a Ln-by-Ln matrix that characterizes the data

correlation within the nth signal, and the ILn
is a Ln-by-

Ln identity matrix. Accordingly, the multi-output Gaussian
process models the data from N signals as a multivariate
Normal distribution:

y ∼MVN(μ,Ω)

μ= [μT
1 , · · · ,μT

N ]T

Ω= Γ(x, x) + σ2IL

=

⎡
⎢⎣
γ11(x1, x1) · · · γ1N (x1, xN )

...
. . .

...
γN1(xN , x1) · · · γNN (xN , xN )

⎤
⎥⎦+ σ2IL (3)

where γnn′(xn, xn′) is the covariance between the nth
and n′th signal, n, n′ = 1, · · · , N , and L=

∑N
n=1 Ln.

The γnn′(xn, xn′) characterizes the within-and between-
signal correlation when n= n′ and n �= n′, respectively,
and it is a Ln-by-Ln′ matrix with the (l, l′) component
as γnn′(xnl, xn′l′) = Cov(fn(xnl), fn′(xn′l′)). We want to
point out that the Γ(·, ·) will be used as a general operator
to represent covariance matrix based on its vector-to-vector
inputs. For example, Γ(xn, x) is a Ln-by-L matrix that
represents the covariance between data in the nth signal and
data in all signals.
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The unique feature of MGP is that it can provide a closed-
form prediction for arbitrary signal at arbitrary input values:

yn(xn)|x, y

∼N
(
μn(xn) + Γ(xn, x)Ω−1(y − μ),

γnn(xn,xn)− Γ(xn, x)Ω−1ΓT (xn, x) + σ2ID
)

(4)

wherexn ∈ R
D is a vector of inputs in the nth signal at arbitrary

D locations.
Equation 4 provides a constructive option for using MGP to

formulate the xN |x, y in Eq. 1. However, the direct use of Eq. 4
poses both methodological and practical concerns for transfer
active learning. First, the modeling of relationship among N
signals should be flexible and interpretable for transfer learning.
Most of existing methods, however, used LMC to construct
Ω and represent within-and between-signal relationship, which
limits modeling flexibility because the Kronecker product only
facilitates linear correlation between signals [31], [32], [39].
Second, the calculation of yn(xn)|x, y in Eq. 4 requires the
involvement of all data y. This means the yn(xn)|x, y needs
to be re-calculated from scratch whenever new data in the
target signal is available. Such operation clearly raises concerns
for the robustness of the parameter estimation and prediction,
especially when the target has very small amount of data, where
the over-fitting is often observed [37]. As a result, the restriction
of re-calculating all data in Eq. 4 not only consumes additional
computational resource but also conflicts with the iterative na-
ture of active learning [40], which impairs the performance of
transfer active learning. Finally, the computational complexity
in Eq. 4 is unaffordable for transfer active learning. The calcu-
lation of Eq. 4 requires the inverse of a L-by-L matrix Ω thus
has computational complexity O(L3), where L=

∑N
n=1 Ln.

In transfer active learning, although LN is usually small, the
L1, · · · , LN−1 are typically large to provide sufficient knowl-
edge for transfer learning. Moreover, the inverse of large di-
mension matrix not only exhausts time and storage resources
but also raises concerns about numerical issues, e.g., singularity
during decomposition [41], which poses difficulties for training
or parameter estimation. Although there are methods proposed
for alleviating GP/MGP computational complexity, these meth-
ods are either offline (suffer the second concern), e.g., varia-
tional inference [42], or not feasible for capturing within-and
between-signal correlation for transfer learning [43], [44]. To
the best of our knowledge, there is no MGP framework designed
specifically for real-time transfer active learning.

C. IMSE Based Active Learning

In literature, there are two categories of active learning
strategies, i.e., active learning cohn (ALC) and active learning
mackay (ALM) [45], [46], where the ALC employs the inte-
grated mean squared error (IMSE) to acquire information while
the ALM uses variance based criterion to determine informative
data points. The key difference between the IMSE and vari-
ance based criterion is that the IMSE criterion considers the
uncertainty across the entire design/learning space (by using
integration) while the variance based criterion only focuses

on uncertainty at specific locations in the space. As a result,
although the IMSE is constructed in a more complicated way
than variance based criterion, it is well documented that the
IMSE (and its ALC) can achieve more efficient and robust
learning performance [47], [48], [49].

Conventional IMSE based active learning is for a single
signal, e.g., the N th signal, and it is formulated based on the
special case of Eq. 4 [27], i.e., x = xN and y = yN :

x∗N = argmin
xN

g(xN |xN , yN )

g(xN |xN , yN ) =

∫
γNN (x, x)− Γ(x, [xN , xN ])

·
(
Γ([xN , xN ], [xN , xN ])

+ σ2I(LN+D)

)−1
ΓT (x, [xN , xN ])dx (5)

where x is an arbitrary input value in the N th signal. Note the
x will be integrated out, and the optimization variable is xN .

Although the IMSE based active learning is widely used in
practice, it still suffers the cold-start problem [8], [9]. An in-
tuitive solution to this issue is to plug Eq. 4 to Eq. 5 so that
data in (x1, y1), · · · , (xN−1, yN−1) can be transferred to the
N th signal. In this way, the IMSE function g(·) will apply to
xN |x, y. However, as we mentioned in Section II-B, the Eq. 4
cannot be applied directly due to its inappropriate formulation
for active learning. It is also reported that an inappropriate
transfer learning framework may even result in worse modeling
and prediction performance [50], [51], which can aggravate the
cold-start problem in active learning. As a result, theoretical
investigations of impacts of the developed transfer learning
framework on the active learning is desired for demonstrating
the effectiveness of transfer learning.

III. PROPOSED FRAMEWORK

A. Transfer Learning Framework Based on Tailored
Multi-Output Gaussian Process

As we mentioned in Section II-B, the structure of Γ domi-
nates the within-and between-signal correlation, thus it is crit-
ical to construct an intepretable and efficient Γ for transfer
active learning. In this section, we propose to construct such
Γ by convolution process (CP), which is a commonly used
method to construct covariance for uni-variate GP [52]. In CP,
the Gaussian process for the nth signal can be formulated as
the convolution between Gaussian white noise processes and
kernels [52]:

fn(xnl) =
∑
i

kin(xnl) ∗ ψi(xnl)

Cov(fn(xnl), fn′(xn′l′))

=
∑
i

∫ +∞

−∞
kin(xnl − u)kin′(xn′l′ − u)du (6)

where ψi(·) and kin(·) are the ith Gaussian white noise process
and the corresponding kernel contributing to the nth signal, and
∗ is the convolution operator.

Based on the formulation in Eq. 6, we propose a specially
designed MGP structure in Fig. 2. In this structure, N different
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Fig. 2. The proposed transfer learning structure.

Gaussian processes, i.e., f1(x), · · · , fN (x) are all constructed
by CP:

fn(xnl) =

⎧
⎨
⎩

N∑
i=1

kin(xnl) ∗ ψi(xnl) n=N

knn(xnl) ∗ ψn(xnl) n �=N
(7)

where the N th signal (target signal) consists of N different CPs,
and other N − 1 signals are constructed by their corresponding
CP. Such structure facilitates a unique correlation relationship
within and between each signal, which can be represented by
the covariance of data in N signals:

Cov(y, y) =Ω= Γ(x, x) + σ2IL

=

⎡
⎢⎢⎢⎢⎢⎣

γ11 0 · · · 0 γ1N

0 γ22 · · · 0 γ2N

...
...

. . .
...

...
0 0 · · · γ(N−1)(N−1) γ(N−1)N

γN1 γN2 · · · γN(N−1) γNN

⎤
⎥⎥⎥⎥⎥⎦
+ σ2IL

(8)

where γnn′ is an abbreviation for γnn′(xn, xn′), i.e., the
block covariance matrix between nth and n′th signals, n, n′ =
1, · · · , N . The block matrices in the diagonal represents the
within-signal correlation, and the non-diagonal block matrices
represent the correlation between each source signal and the
target signal. More specifically, the proposed structure in Fig. 2
enjoys the following features:

First, it provides an interpretable structure for transfer learn-
ing, where the information in source signals is shared with
the target signal through kennels knN , n= 1, · · · , N − 1. Such
information sharing is further quantified by the non-diagonal
block covariance matrix in Eq. 8, i.e., γnN . We denote η
as the vector of all unknown parameters associated with the
kernel function and the measurement noise σ2 for construct-
ing Eq. 8 from Fig. 2. In this work, we will use Gaussian
kernels, and the closed-form of Eq. 8 are provided in Sec-
tion A of supplementary materials. Second, the computational
complexity of the constructed MGP reduces significantly due

to the sparse covariance matrix in Eq. 8. Specifically, the
computational complexity of inversing the Ω reduces from
O((

∑N
n=1 Ln)

3) to O(
∑N

n=1 L
3
n). Such reduction makes the

complexity linear to the numbers of signals (N ), which facili-
tates the incorporation of large number of signals into transfer
learning. Finally, the CP structure in Fig. 2 explains its more
superior modeling flexibility than the widely used LMC. We use
the construction of the target signal under two-signal case, i.e.,
N = 2, as an example to illustrate:

fCP
2 (x2l) = k12(x2l) ∗ ψ1(x2l) + k22(x2l) ∗ ψ2(x2l)

fLMC
2 (x2l) = a12ψ1(x2l) + a22ψ2(x2l) (9)

where the fCP
2 (x2l) is the CP-constructed target signal (based

on Eq. 7 when N = 2), and the fLMC
2 (x2l) is the LMC-

constructed target signal (linear combination of Gaussian white
noise process). It is clear in Eq. 9 that the coefficients a in LMC
apply to the whole functional space of ψ, i.e., the a is the same
for different x in ψ, while the kernels k in CP serve as changing
coefficients at different x. In other words, by carefully setting
the kernels in CP, the LMC is a special case of CP by fixing
the k as constant values. This feature makes CP-constructed
MGP more flexible in modeling the within-and between-
signal relationship.

It is worth noting that the zeros posed in Eq. 8 will cause
some information loss due to the ignorance of interactions
among source signals. However, the performance of the pro-
posed method will not be influenced significantly by this infor-
mation loss. The key reason is because we only care about active
learning of the target signal, rather than all signals. Although the
zeros posed in the covariance matrix will influence the modeling
of the interactions among the N − 1 source signals, we are
performing the transfer learning to borrow information from
each source signal (not their interactions) to the target. More-
over, the interaction term will influence the transfer learning
result indirectly through influencing the modeling accuracy of
source signals, which will happen when the number of data
points in source signals is small. Fortunately, in the context of
transfer learning, the data availability in sources is usually suf-
ficient to accurately learn the covariance in each source signal.
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As a result, the impact of posing zeros among sources becomes
negligible on the transfer learning.

B. Iterative Transfer Active Learning

The proposed structure of MGP in Section III-A needs to be
adapted with active learning, which requires an iterative proce-
dure to estimate parameters η and predict mean and covariance
at arbitrary inputs xN . To facilitate this procedure, we split the
data into small batches. In the tth batch, there will be Dn data in
the nth signal, which is denoted as x(t)n = [x(t)

n1 , · · · , x(t)
nDn

]T and

y(t)
n = [y(t)

n1 , · · · , y(t)
nDn

]T . Similar to the notation system for x
and y, the x(t) and y(t) represent all data in the tth batch, where
Dn � Ln. In this case, the transfer active learning in Eq. 1 can
be re-formulated as:

x∗(t+1)
N = argmin

x
(t+1)
N

g(x
(t+1)
N |x(1:t), y(1:t)) (10)

where x∗(t+1)
N is a DN -dimension input vector for collecting

data in the (t+ 1)th round of active learning, x(1:t) and y(1:t) are
the data collected from t batches. The key difference between
Eq. 1 and Eq. 10 is that Eq. 10 provides an iterative learning
procedure by introducing the batch t. In this case, the learn-
ing and prediction of x(t+1)

N |x(1:t), y(1:t) must be implemented
batch-by-batch iteratively. It is also worth noting that the Eq. 1
is a special case of Eq. 10, where we can set t= 1 and Dn = Ln

in Eq. 10 to represent Eq. 1. This special relationship explains
why and how Eq. 10 solves the computational challenge in Eq. 1
by splitting all training data into batches.

To achieve iterative transfer learning formulated in Eq. 10,
we introduce inducing points for parameter estimation and pre-
diction. The inducing points serve as the bridge to link data
in each batch with the parameter estimation and prediction of
functional relationships. In this case, the data from each batch is
used to update the joint distribution of inducing points, whose
information can then be propagated to the prediction results.
More specifically, we denote Qn inducing points and their MGP
based outputs in the nth signal as x̃n = [x̃n1, ..., x̃nQn

]T and
hn = [fn(x̃n1), ..., fn(x̃nQn

)]T , respectively. Similarly, the x̃
and h are denoted for inducing points and their outputs in all
N signals. Note the inducing points do not have superscript t
because they will not change in each batch.

As a result, the iterative parameter estimation and prediction
can be formulated in a Bayesian strategy:

p(fN (xN ), h,η(t)|x(1:t), y(1:t))

= p(fN (xN )|h,η(t))p(h|x(1:t), y(1:t),η(t))p(η(t)|x(1:t), y(1:t))
(11)

where p(·) is the probability density function, and η(t) repre-
sents the updated parameters after observing t batches of data.
Equation 11 succinctly encapsulates the iterative procedures of
our framework, where p(η(t)|x(1:t), y(1:t)) facilities the iterative
estimation of model parameters and the inducing points h links
the updated parameters p(η(t)|x(1:t), y(1:t)) with the iterative
prediction p(fN (xN )|h,η(t)). In this case, the iterative up-
dating hinges on the formulation of p(η(t)|x(1:t), y(1:t)) and
p(h|x(1:t), y(1:t),η(t)).

The key to facilitating the iterative parameter
estimation is to construct the p(η(t)|x(1:t), y(1:t)) from
p(η(t−1)|x(1:t−1), y(1:t−1)), which is formulated as follows:

p
(
η(t)|x(1:t), y(1:t)

)

∝ p(y(t)|x(1:t−1), y(1:t−1),η(t))·∫
p(η(t)|η(t−1))p(η(t−1)|x(1:t−1), y(1:t−1))dη(t−1) (12)

where the p(y(t)|x(1:t−1), y(1:t−1),η(t)) serves as the predic-
tion part, and it follows a Normal distribution with explicit
mean and variance expression. The detailed derivation of
p(y(t)|x(1:t−1), y(1:t−1),η(t)) is provided in Section B of sup-
plementary materials. The p(η(t)|η(t−1)) in Eq. 12 represents
the transition from parameters at the (t− 1)th batch to the tth
batch. Such transition aims to explore appropriate parameter
distributions to represent the p

(
η(t)|x(1:t), y(1:t)

)
. We employ

the widely used marginalized particle filter [53] to formulate
the p(η(t)|η(t−1)) and complete the integration in Eq. 12:

p(η(t)|η(t−1)) = ϑη(t−1) + (1− ϑ)η̄(t−1) + rt−1 (13)

where ϑ is the smoothing effect, rt−1 is a sample from
N(0, (1− ϑ2)Rt−1) that represents the random fluctuation
during parameter estimation in the previous iteration, and
η̄(t−1) and Rt−1 are the sample mean and covariance of η(t−1),
respectively. The detailed procedures of the marginalized par-
ticle filter for obtaining p

(
η(t)|x(1:t), y(1:t)

)
are provided in

Section C of supplementary materials for the completeness of
the paper.

Similar to the calculation of p
(
η(t)|x(1:t), y(1:t)

)
, the key to

facilitating iterative prediction is to get p(h|x(1:t), y(1:t),η(t))
from p(h|x(1:t−1), y(1:t−1),η(t)). To facilitate this procedure,
we propose a lemma as follows:

Lemma 1: If h|x(1:t−1), y(1:t−1),η(t) ∼MVN(αt−1,Ct−1)
(t > 1), then h|x(1:t), y(1:t),η(t) ∼MVN(αt,Ct), and the
mean vector and covariance matrix can be calculated as:

αt =αt−1 + Ct−1GT
t P−1

t (y(t) − ζt)

Ct = Ct−1 − Ct−1GT
t P−1

t GtCt−1 (14)

where Gt = Γ(x(t), x̃)Γ−1(x̃, x̃), ζt = Gtαt−1, Pt =
Γ(x(t), x(t)) + Gt(Ct−1 − Γ(x̃, x̃))GT

t + σ2IL(t) , and L(t) =
ΣnDn is the total number of observations at the tth
batch. It is worth noting that the h|x(1:t), y(1:t),η(t) and
h|x(1:t−1), y(1:t−1),η(t) both follow multi-variate Normal
(MVN) distribution is a direct result from the assumption
A1. The proof of Lemma 1 is provided in Section B of
supplementary materials. The direct impact of Lemma 1 on
the proposed MGP is to reduce the computational complexity
in each data batch to O(

∑
n D

3
n), which is much less than

directly inversing the Eq. 8, i.e., O(
∑

n L
3
n), There are also

some insights resulting from Lemma 1, which are provided in
the following remark.

Remarks on Lemma 1: The calculation of Ct in Eq. 14 only
needs the input (i.e., no data is explicitly needed). This feature
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actually inspires the construction of Eq. 10 since it provides

an intrinsic way for incorporating x
(t+1)
N into the prediction of

variance for the (t+ 1)th batch. In other words, the Ct+1 can
be constructed with information x(1:t), y(1:t) and x

(t+1)
N , and it

can be used for the calculation of IMSE in the (t+ 1)th batch.
Based on Eqs. 13 and 14, the p(fN (xN ),h,η(t)|

x(1:t), y(1:t)) in Eq. 11 can be obtained by Woodbury
formula, and the marginalized results for prediction can be in
a closed-form:

fN (xN )|x(1:t), y (1:t)

∼N(Gαt,γNN (xN , xN ) + G
(

Ct − Γ(x̃, x̃)
)

GT ) (15)

where G = Γ(xN , x̃)Γ−1(x̃, x̃). The critical role of Eq. 15 is
that it facilitates the iterative calculation of IMSE and formu-
lates the transfer active learning through the inducing points.
Specifically, when the new batch of data is available, the data
is used to update/estimate the joint distribution of the inducing
points (through Lemma 1). Then, the updated joint distribution
of the inducing points is delivered to the prediction of the
target signal (Eq. 15). In other words, the information in the
sequentially incoming data batches is embedded or updated in
the joint distribution of inducing points. In this case, the iterative
updating is facilitated by inferring the target signal from the
updated inducing points. As a result, Eq. 10 can have a concrete
formulation with the proposed method:

x∗(t+1)
N = argmin

x
(t+1)
N

g(x
(t+1)
N |x(1:t), y(1:t))

g(x
(t+1)
N |x(1:t), y(1:t))

=

∫
γNN (x, x) + G

(
Ct+1 − Γ(x̃, x̃)

)
GT dx (16)

where G = Γ(x, x̃)Γ−1(x̃, x̃), Ct+1 = Ct −
CtG

T
t+1P−1

t+1Gt+1Ct, Gt+1 = Γ(x(t+1), x̃)Γ−1(x̃, x̃),
Pt+1 = Γ(x(t+1), x(t+1)) + Gt+1(Ct + Γ(x̃, x̃))GT

t+1 +
σ2IL(t+1) , and x is arbitrary input value in the N th signal. It is
worth noting that the formula inside the integration of Eq. 16
is different with the variance part in Eq. 15. This is because
Eq. 15 aims to predict the function value of fN at xN based
on information of x(1:t), y(1:t), while Eq. 16 treats x

(t+1)
N as

decision variable to optimize an objective that is a function
of x(t+1)

N . In other words, the g(·) in Eq. 16 generates IMSE
based on the value of x

(t+1)
N , i.e., different values of x

(t+1)
N

result in different IMSE values. This explains the rationale of
how the IMSE works: the impact of x(t+1)

N on the prediction
is evaluated by the predicted variance at every prediction
input. Comparing Eq. 16 with Eq. 5 can also reveal significant
differences, where the information from (N − 1) more signals
is incorporated and the whole procedure becomes iterative due
to the inclusion of data batches.

We also summarize the proposed transfer active learning in
Algorithm 1. Note the computational complexity in each itera-
tion of the offline and online stage is O(

∑
n D

3
n) and O(D3

N ),
respectively, where Dn � Ln < L, n= 1, · · · , N .

C. Properties of the Proposed Transfer Active Learning

The IMSE based transfer active learning in Algorithm 1
provides a feasible solution to transfer learning modeling, in-
terpretation, and real-time updating, which demonstrates strong
potential for solving the cold-start problem in active learning.
In this section, we will discuss the learning properties of the pro-
posed method and show that the proposed method can achieve a
strictly monotonically decreasing IMSE for each learning step.
To facilitate the demonstration of the property, we re-denote the
function g(·) in Eq. 16 as follows:

IMSEt+1

(
x
(t+1)
N

)
= g(x

(t+1)
N |x(1:t−1), y(1:t−1), x∗(t)

N , y∗(t)
N )
(17)

where x∗(t)N = argmin
x

(t)
N

g(x
(t)
N |x(1:t−1), y(1:t−1)) is the ac-

tively learned inputs in the previous batch, and the y∗(t)
N is

the corresponding data collected at x∗(t)N . It is worth noting
that the data x(1:t), y(1:t) is constructed by x(1:t−1), y(1:t−1) and
the x∗(t)N , y∗(t)

N because only the optimized data in the previous
batch can be incorporated in the current batch. Equation 17 thus
builds the relationship between active learning results at the
(t− 1)th batch, i.e., x∗(t)N , and the active learning formulation
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at the tth batch. Similarly, we can denote IMSEt

(
x
(t)
N

)
as

follows:

IMSEt

(
x
(t)
N

)
= g(x

(t)
N |x(1:t−2), y(1:t−2), x∗(t−1)

N , y∗(t−1)
N )

(18)

It is clear that the difference between IMSEt+1

(
x
(t+1)
N

)
and IMSEt

(
x
(t)
N

)
is the information gain or the reduction of

IMSE between consecutive learning steps, which depends on
the values of x

(t+1)
N and x

(t)
N . We provide a lemma that the

information gain (reduction of IMSE), under some regularity
conditions, is always positive:

Lemma 2: Under regularity conditions, if Lemma 1 holds,
then we have

ΔIMSEt+1(x
(t+1)
N , x∗(t)

N )

= IMSEt+1

(
x
(t+1)
N

)
− IMSEt

(
x∗(t)N

)
< 0 (19)

The proof of Lemma 2 is available in Section D of supple-
mentary materials.

Remarks on Lemma 2: The critical contribution of Lemma 2
is that it reveals a strictly monotonic trajectory of the IMSE
when getting more data from the proposed transfer active learn-
ing framework. Although it is widely known that the IMSE of
Gaussian process converges to 0 [54], the strictly monotonic
decreasing property provides more meaningful insights for the
active learning, which shows every data identified by the pro-
posed framework can contribute to a more accurate prediction
of functional relationship. This is intrinsically desired by active
learning. Moreover, Lemma 2 also provides theoretical justifi-
cations for the cold-start problem since it guarantees even data
identified at the very beginning in the target signal can still
contribute to the learning procedure.

IV. NUMERICAL STUDIES

In this section, the performance of our proposed transfer
active learning will be investigated by comparing with bench-
marks under some commonly used signal settings. Specifically,
we introduce three different benchmarks for different compari-
son purposes under three different signal settings, i.e., trigono-
metric, polynomial, and a large number of signals. The three
benchmarks are as follows:

1) The first benchmark is “Single GP”, which only uses
data from the target signal thus cannot learn information
from source signals. This benchmark is to demonstrate
the difference between transfer learning and non-transfer
learning. It also provides the case that the kernels/models
are set as independent between signals while the func-
tions/signals are indeed correlated.

2) The second benchmark utilizes the linear model of core-
gionalization for constructing MGP, denoted as “LMC”.
This is a prevalent offline approach and is introduced in
Eq. 9. In this model, the data fed to the algorithm is the
same as the proposed method, but the “LMC” suffers
modeling flexibility. Besides, it needs to re-train all data
whenever the new batch is available. As a result, it pro-
vides a baseline for performance and time consumption
of most existing offline MGP method.

3) The third benchmark method is based on multi-task learn-
ing. It uses the same modeling and real-time updating
framework as our proposed method. The only difference
is that our method first learns all data batches in source
signals then applies the learned knowledge to target signal
in real-time, while the multi-task learning splits the data
in sources into multiple batches and learns each source
batch together with the target batch. The multi-task learn-
ing aims to provide a comparison of learning strategies
between transfer and simultaneous learning.

Some parameter and procedure setups for all methods are
as follows. We set ϑ in Eq. 13 as 0.98 for all real-time up-
dating methods, whose value is recommended in [55]. We use
40 evenly distributed inducing points for each signal in the
numerical studies, i.e., Qn = 40 for n= 1, · · · , N . In all nu-
merical studies, 17 data batches are generated (each batch has
5 observations for each signal, i.e., Ln = 5), and the first two
data batches are used to initialize parameters in Algorithm 1,
i.e., {η(0),α0,C0}. We have also investigated the impacts
of batch sizes on the performance of the proposed method,
which is available in Section E of the supplementary materials.
It should be noted that the result are robust to initial parameters
because the model parameters will be updated when new data
batches are collected. To evaluate the performance, we set 50
test points evenly distributed in the input space for each signal
and compare the root mean squared error (RMSE) between the
predicted and the true values at these 50 points. All experiments
are conducted 100 times to report the average performance of
each method.

The trigonometric signal settings are as follows:

y1(x) = 10cos(x) + ε1(x)

y2(x) = 10sin(x) + ε2(x)

y3(x) = 5exp
(
− x

10

)(
cos(x) + sin(x)

)
+ ε3(x) (20)

where x ∈ [−2, 2], εi(x)∼N(0, 0.52) for i= 1, 2, 3 is i.i.d.
noise. The third signal is designated as the target. To evaluate
the performance of transfer learning and active learning of our
proposed method, We provide two different evaluation settings.
In the first setting, the 17 data batches are randomly selected
and fed to each method, which aims to provide evaluations
of the proposed transfer learning framework (without active
learning). The second setting involves the proposed IMSE based
active learning, and the comparison between the first and second
setting demonstrates improvement from random sampling to
active learning. The performance (evaluated under RMSE) of
the first and second setting is demonstrated in Figs. 3 and
4, respectively. Please note that we only include the LMC
in the random sample setting because the LMC is an offline
MGP method, which cannot be directly applied in real-time
active learning.

Based on results in Figs. 3 and 4, some insights and discus-
sions are summarized as follows:

1) Evidence of cold-start. It is clear from Figs. 3 and 4 that
the single signal based learning (“Single GP”) suffers
cold-start issue, where the RMSE in initial batches is
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Fig. 3. RMSE results for the 3rd trigonometric signal (random training data
samples). (a) RMSE, (b) Time consumption.

Fig. 4. RMSE results for the 3rd trigonometric signal (actively learned
training data samples). (a) RMSE based on active learning using three
methods, (b)-(d) Random sample vs. Active learning sample using multi-task
learning, single GP, and the proposed method, respectively.

much higher than all other transfer learning based ap-
proaches. This is because the “Single GP” does not have
sufficient data to train the model parameters, especially
at the initial several batches. The better performance
of transfer learning based approaches also validates our
motivation that the cold-start issue can be alleviated by
transfer learning.

2) Effectiveness of transfer learning. The performance of
transfer learning varies among different approaches. This
is especially clear in Fig. 3(a), where the impact of active

learning is excluded (all methods use the same training
data) for evaluating the performance of transfer learning.
It is clear that the proposed method achieves the best
performance, especially at the initial batches. Specifi-
cally, comparing to “Multi-task learning”, the proposed
method already learns from all source data at the first
batch while the “Multi-task learning” only learns one
batch from each of the source signal. Such difference
in data availability provides reasonable justifications for
the superior performance of the proposed method. Com-
paring to “LMC”, the proposed method enjoys a more
flexible modeling framework (see justifications in Eq. 9),
which contributes to the superior performance under the
same data availability.

3) Time efficiency. The time consumption of each method in
each batch is depicted in Fig. 3(b), where the superiority
of the real-time updating is evidenced by observing the
larger and larger gap between offline LMC and other real-
time methods. More notably, our proposed method shares
very similar time consumption with the single GP method
but can achieve much better RMSE performance.

4) Effectiveness of active learning. The performance of ac-
tive learning is demonstrated in Fig. 4, where the RMSE
with and without active learning is compared. The RMSE
without active learning is the same as those in Fig. 3(a)
(by randomly sampling training data). It is clear that
the IMSE based active learning can effectively improve
the RMSE performance, and the proposed method again
achieves the best performance.

We also test the settings on polynomial signals, which are
formulated as follows:

y1(x) =
1

2
(x2 + x− 3) + ε1(x)

y2(x) =
1

2
(3x2 + 3x+ 5) + ε2(x)

y3(x) = x2 + 2x+ ε3(x) (21)

where x ∈ [−2, 2], εi(x)∼N(0, 0.52) for i= 1, 2, 3 is i.i.d.
noise. We also choose the third signal as the target signal.
The results are shown in Figs. 5 and 6.

It is clear that the Figs. 5 and 6 support and validate the
discoveries in the trigonometric case, which demonstrates the
superiority of the proposed transfer active learning in terms of
transfer learning accuracy, time efficiency, and active learning
performance.

To further evaluate the proficiency of the proposed method in
managing multiple signals, we configure 8 signals as follows:

y1(x) = x2 + 2x+ 5 + ε1(x)

y2(x) =−2x2 + x− 5 + ε2(x)

y3(x) = 3x3 − x2 + 4 + ε3(x)

y4(x) =−x3 +
x2

2
− 3 + ε4(x)

y5(x) =−3x3 + 2x+ ε5(x)

y6(x) = 2x3 + 3x+ ε6(x)

y7(x) = 2x3 + x2 + 2x+ ε7(x)

y8(x) = x3 − x2 − x+ 2 + ε8(x) (22)
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Fig. 5. RMSE results for the 3rd polynomial signal (random training data
samples). (a) RMSE, (b) Time consumption.

Fig. 6. RMSE results for the 3rd polynomial signal (actively learned training
data samples). (a) RMSE based on active learning using three methods, (b)-(d)
Random sample vs. Active learning sample using multi-task learning, single
GP, and the proposed method, respectively.

where x ∈ [−2, 2], εi(x)∼N(0, 0.52) for i= 1, · · · , 8 is i.i.d.
noise. Again, the eighth signal is set as the target, and we
transfer the information from y1, · · · , y7 to y8. The results
under random and active learning are shown in Figs. 7 and 8,
respectively. These results align with our earlier discussions,
especially for the time efficiency and active learning perfor-
mance, which again validates the effectiveness of the proposed

Fig. 7. RMSE results for the 8th polynomial signal (random training data
samples). (a) RMSE, (b) Time consumption.

Fig. 8. RMSE results for the 8th polynomial signal (actively learned training
data samples). (a) RMSE based on active learning using three methods, (b)-(d)
Random sample vs. Active learning sample using multi-task learning, single
GP, and the proposed method, respectively.

in dealing with the cold-start problem with a large number
of signals.

V. CASE STUDIES

In this section, we employ two sets of real-world data
to evaluate the performance of our proposed method. Both
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Fig. 9. Measurement diagram of battery impedance.

cases suffer cold-start issues when selecting new and costly
experiment settings. The first data set originates from electro-
chemical impedance spectroscopy (EIS) test pertaining to bat-
teries. The second dataset is from sensor calibration of reduced
graphene oxide field-effect transistors (RGO FET). For both
case studies presented, we maintained consistency in param-
eter settings, adhering to the configurations used in preceding
numerical analysis.

The EIS test is a widely adopted characterization technique
to estimate the internal state of electrochemical systems, such
as lithium ion batteries [56]. A measurement diagram of battery
impedance is shown in Fig. 9. During the measurement process,
a small disturbance current is utilized to excite the system, and
the impedance is then calculated with the response divided by
input. However, EIS test usually takes long time since it requires
to cover a wide frequency range [57], affecting its real-life
applications. In addition, the selection of specific frequency for
testing is difficult and requires strong domain knowledge. This
is because the battery state is unknown before the EIS test, i.e.,
a black-box problem. As a result, the EIS test requires efficient
selection of the most representative frequency locations to ob-
tain input-output curves.

To test the performance of transfer active learning of effective
frequency locations, we use 8 EIS curves, which are displayed
in Fig. 10(a). Each curve represents the relationship between
frequency and impedance of the battery under different aging
states. It is clear that these curves have strong correlations, thus
facilitate the transfer learning. We randomly pick one curve as
the target and use the rest as sources. Fig. 10(b) demonstrates
the progression of actively learned RMSE across increasing
batches. The results show the proposed method only use 2
batches to achieve a steadily low RMSE of the target curve,
which results in significant improvement over benchmark meth-
ods. Note we also provided the comprehensive results of 100
replications for the EIS data, which are available in Section E
of the supplementary materials.

The second case study is for calibrating reduced graphene
oxide field-effect transistors based sensors, which have wide ap-
plications in bio-engineering and environment protection [58],
[59]. The basic structure of a RGO FET is shown in Fig. 11,
where the Vgs is the gate voltage and the Vds is the drain-source
voltage. When a to be monitored object, e.g., protein molecule
or chemical ion, touches the RGO, the reaction between the
RGO and the object will change the resistant between the drain

Fig. 10. Transfer active learning of EIS relationship. (a) EIS data, (b) RMSE
results of transfer active learning.

Fig. 11. Cross-section view of RGO FET [13].

and the source so that the change in Ids can report the detection
of the object. Due to the different reaction mechanism between
the RGO and the to be monitored objects, different Vgs and
Vds values will be used for sensing different objects/materials
[60]. However, every RGO FET sensor is disposable, which
means the calibration of sensor will consume lots of sensors.
As a result, it is desired to use as few sensors as possible to
calibrate the Vgs vs. Ids relationship for a new detection task.

Such task is feasible using transfer learning because there
are many already calibrated Vgs vs. Ids relationship in previous
tasks. This is shown in Fig. 12(a), where each curve is a Vgs vs.
Ids relationship under a specific Vds. It is clear that these curves
have strong within-and between-signal correlation. To validate
the effectiveness of our proposed method, we randomly select
one curve as the target and treat the rest as sources. Fig. 12(b)
presents the transfer active learning results and comparisons,
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Fig. 12. Transfer active learning of RGO FET relationship. (a) Vgs vs. Ids
data, (b) RMSE results of transfer active learning.

where our proposed method can achieve the best calibration of
relationship with the minimum number of sensors, especially at
the initial stage. This case study again validates the efficiency
and superiority of the proposed method for dealing with the
cold-start problem in active learning. Note we also provided
the comprehensive results of 100 replications for the FET data,
which are available in Section E of the supplementary materials.

VI. CONCLUSION

In this paper, a real-time transfer active learning frame-
work is proposed to deal with cold-start problems in learning
functional relationship. The proposed framework features an
interpretable transfer learning structure that facilitates the mod-
eling of both within-and between-signal relationship. Moreover,
the Bayesian updating is developed to expedite the estimation
and prediction of the proposed MGP, which accommodates
the prediction results to iterative active learning. Finally, the
IMSE is used as the objective in transfer active learning, and
we provide theoretical justifications for the performance and su-
periority of the proposed framework. Various numerical studies
are conducted to evaluate and compare the performance of the
proposed framework in terms of transfer learning accuracy, time
efficiency, and the transfer active learning performance. Two
real-world case studies are also implemented to demonstrate the
effectiveness of the proposed method in practice. The superior
performance in both numerical and case studies provides solid
evidence that the proposed method is an effective solution to
cold-start issues when learning functional relationship.

There are several opening topics based on our proposed
framework. For example, in our work, we use evenly distributed
inducing points to store information accumulated from itera-
tively collected data. In practice, it would be desired to re-
distribute the inducing points based on the data collected in each
batch. In this case, the locations of inducing points become un-
known parameters and should be optimized accordingly. Such

operation is expected to generate better learning results, but
it also increases the optimization load. It would be interesting
to evaluate and balance the performance vs. time consumption
under such situation. Another interesting yet challenging topic
is to relax the stationary assumption (A1) so that the transfer
active learning can not only predict and guide experiments but
also track the underlying dynamics of input-output relationship.
Such model can be especially useful for applications with dy-
namically changing experiment environment. Finally, it is also
interesting to investigate the monotone decreasing properties
of the proposed updating mechanism in other active learning
strategies or acquisition functions. For example, it is easy to
derive that the IMSE would also be monotonically decreasing if
we select the next experiment input as the one reducing the most
variance. However, whether the property holds for many other
strategies or how the efficiency/performance in those strategies
are interesting topics worthy of further investigations. We will
study these topics in our future work.
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