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Abstract

Accurate representation of soft tissue material properties plays a crucial role
in computational biomechanics. Several material models have been used for
knee ligaments in finite element (FE) studies, including the neo-Hookean
model (widely used) and the Holzapfel-Gasser-Ogden (HGO) model (seldom
used). While the coefficients of neo-Hookean models for the knee ligaments
are available in the literature, limited data exists for the HGO model. Fur-
thermore, no peer-reviewed comparison of these two material models for the
knee ligaments while including the 3D representation of the ligaments for
both material models is present in the literature. We used mechanical proper-
ties from the tensile test experiments in the literature for each ligament to
obtain the HGO material coefficients while accounting for the ligaments’ vis-
coelastic behavior. Resultant coefficients were then used in an Abaqus/explicit
knee model to simulate bipedal landing from a jump. The simulations were
repeated with neo-Hookean values from the literature. Knee kinematics plus
ACL and MCL strains were evaluated and compared for these two material
models. The outputs from the simulations with HGO properties were predo-
minantly within 1.5 standard deviations from the mean in-vitro data. When
the material properties changed to Neo-Hookean, the outputs for kinematics
and strain values were higher than the HGO case, and in most instances, they
were outside the experimental range for ACL and MCL strains (by up to
11.35 SD) as well as some ITR angles (by up to 2.86 SD). Reported HGO ma-
terial model with optimized coefficients produces a more realistic representa-
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tion of the ligaments’ material properties, and will help improve the outcomes
of FE models for more accurate predictions of knee behavior.
Keywords

Soft Tissue, Material Properties, Holzapfel-Gasser-Ogden Constitutive
Model, Dynamic Finite Element Analysis, Knee Ligaments

1. Introduction

Computational biomechanics, specifically FE analysis, has become an indispensa-
ble tool that assisted in-vivo and in-vitro experiments over the past few decades.
Moreover, factors such as increased cost-effectiveness, the non-invasive nature of
the studies, and ethical purposes of reducing the risk to human subjects have
complemented its ability to decode the behavior of complex biological tissues [1]
[2]. Nevertheless, a reliable FE model should accurately represent the joint geo-
metry and material properties [3]. Determining the material properties, especially
those for the soft tissues, has been a challenge in the biomechanical FE studies [4].
Knee joint computational modeling is not an exception; kinematics and the over-
all biomechanics of a knee joint are directly correlated to the properties assigned
to the respective cruciate and collateral ligaments. Hence, it is essential to use an
appropriate material model to capture the constitutive behavior of the ligaments.
A wide range of material properties has been used for ligament modeling in
the literature [5]. Earlier ligament models employed one-dimensional elements
with nonlinear elastic force-elongation equations for the ligaments’ behavior
[6]-[11]. Other studies have used the neo-Hookean [12] [13] [14] [15] [16] or
Mooney-Rivlin [17] [18] material models, which are mainly isotropic and might
not accurately represent the direction dependency of the ligaments. Lately, ani-
sotropic properties based on the strain energy density function were used in sev-
eral studies to suitably represent the ligaments” anisotropic behavior [19]-[25]. The
equation consists of an incompressible neo-Hookean component to represent
the ground substance of the connective tissues [26] and a component to model
the fibrous behavior, such as in Holzapfel-Gasser-Ogden (HGO) [27] and other
custom-developed constitutive models [21] [22] [23] [24]. However, none of the
studies [19] [20] that used HGO-based constitutive models for the knee liga-
ments have accounted for the ligaments’ viscoelastic behavior [28] [29] [30].
This work aimed to overcome these limitations by obtaining the HGO coeffi-
cients through optimization while considering the ligaments’ viscoelastic prop-
erties and comparing knee behavior using the optimized properties and Neo-
Hookean materials. This work differs from Kiapour ef al [19] and Beidikhti et
al. [25] in that they both investigated the effect of ligament modeling techniques,
Le., using different ligament geometry representations and materials, on knee FE
simulations, which makes it challenging to decide what portion of the changes in

outcomes attributes to the geometry selection and what portion is related to the
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applied material model. The former [19] compared isotropic non-linear elastic
properties while modeling the ligaments as a group of 2D truss elements and
HGO material models applied to 3D knee ligaments. The latter [25] compared
HGO in knee FE with 3D ligaments and simplified spring elements with non-linear
stiffness. This study uses the same 3D geometries of the ligaments to better deli-
neate the effect of different material models for both Neo-Hookean and HGO
models. Viscoelastic effects were also included in both cases.

Mechanical tests have been used in the literature to obtain stress-strain curves
for different hard and soft tissues, e.g., bones, ligaments, menisci, and cartilages
[31]. Utilizing the accurate properties from mechanical tests for modeling liga-
ment behavior in FE software platforms such as Abaqus requires three essential
steps: 1) finding the appropriate test data, 2) choosing the proper material model
to represent the anisotropic hyper-elastic behavior of the ligaments, and 3) ob-
taining the coefficients to use in the selected material model using curve fitting
techniques. This study chose the HGO model for the main four tibiofemoral liga-
ments. HGO model coefficients for both pairs of cruciate and collateral ligaments
were obtained using optimization schemes which utilized load-displacement da-
ta from three separate mechanical test studies for ACL [32], PCL [24], and MCL
[33]. Limited representative test data were available for the LCL; thus, the data
from the MCL mechanical tests were adopted to determine LCL coefficients.

The purpose of this study was to identify the coefficients in HGO model for
the knee joint cruciate and collateral ligaments based on the mechanical test re-
sults. Viscoelastic behavior was also taken into account for a closer representa-
tion of the physiological biomechanics of the knee joint. The obtained material
properties were then used in a dynamic FE model of the knee joint [34] under
loading conditions from an in-vitro experiment [35]. Resultant joint kinematics
and ligament strains were compared with FE model which uses neo-Hookean
properties for the ligaments. We hypothesized that the FE model with optimized
ligament properties would better match the experimental joint kinematics and
ligament strains when used in a dynamic finite element model entailing other
properties and characteristics from the literature. Having access to these opti-
mized coefficients will help other researchers to be able to speed up their analys-
es by directly applying these values to the ligaments in their knee finite element
simulations whenever they are using the HGO material model in combination
with the ligaments’ visco-elastic properties, without having to perform the cum-

bersome optimization steps for all these four knee ligaments.

2. Materials and Methods
2.1. Material Property Optimization

MR images of the knee cruciate and collateral ligaments from a healthy female
subject (23 yr, 1.71 m, 60.3 kg) were segmented in Mimics v15.0 (Materialise,
Leuven, Belgium), smoothened in Geomagics Studio (3D Systems, Rock Hill,
South Carolina), and meshed in Hypermesh v12.0 (Altair, Troy, MI, USA) using
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four-node tetrahedral elements. The 3D meshes were then imported to Abaqus/
explicit 6.14-5 (SIMULIA, Providence, RI, USA) for mesh convergence. Mesh
was refined in localized regions until the stress and strain differences between
two subsequent meshes were less than 5%. Mechanical test data from literature
were used to optimize the hyper-elastic coefficients for the HGO material model
[36]. For ACL, Woo et al. [32] experimental data was used, Wan ef al [24] data
was used for PCL. In order to obtain MCL coefficients, Quapp and Weiss’s [33]
experimental results were used, and for LCL same experimental data as MCL
was used to derive the coefficients.

Ligaments were modeled as bone-ligament-bone structures in the FE simula-
tions to replicate mechanical test conditions (Figure 1). Two block geometries
were created in Abaqus to simulate the bone attachment sites for each end of the
ligament. The distal bone block was fixed and the proximal block was placed
under a controlled displacement via a reference point coupled to the nodes of
the bone block. If literature test curves reported load-displacement data, they
were converted to stress-strain curves based on the length and area of each liga-
ment in the experiments to be applicable for optimizing the properties of liga-
ments with different lengths and geometries. Then they were converted back to
load-displacement format based on the geometries of the ligaments used in the
FE for optimizations. The displacement was applied in the same direction and
orientation as per each experiment. Step time for applying the displacement in
each case was calculated to reproduce the same loading rates as in the experi-
ments. Reaction force outputs acting on the reference point were extracted to

generate load-displacement curves for each ligament.

Figure 1. Bone-ligament-bone setup for ACL to simulate tension test experiments in Ab-
aqus.
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ACL and PCL were modeled with two fiber families, while one fiber family
was considered for MCL and LCL. Simulia products (Abaqus and Isight) were
used to perform the optimizations. Hooke-Jeeves optimization algorithm [37]
was selected to fit the load-displacement curve to that of the literature by mini-
mizing the root mean square error and achieving a correlation greater than 0.95.
Hooke-Jeeves optimization algorithm was previously used to estimate material
model coefficients of biological tissues, such as liver tissue [38] and residual limb
bulk soft tissue [39]. The strain energy potential equation used in Abaqus for the
anisotropic hyper-elastic HGO material model is based on Holzapfel et al. 2000
[27], and Gasser et al. 2006 [36] as follows.

_ 7Y -1 _
U=C10(11—3)+% %_mﬂ +%i{exp[szj]—1}

2 =1

with E, € (T =3)+(1-3)(L ) -1)
where the five coefficients of C10, D, K1, K2, and « are temperature-dependent
material parameters that are the user-defined inputs to the software. C10 is the
Neo-Hookean constant, D is the inverse of bulk modulus and controls the in-
compressibility, and x determines the dispersion of the fibers.

Initially, the values of the C10 (Neo-Hookean constant) and D (the inverse of
the bulk modulus) were kept fixed to the values available in the literature (Table
1), and optimizations were performed by varying the other three parameters.
This approach worked well for both ACL and PCL. However, this did not allow
for an appropriate fit for the load-displacement curves of the collateral ligaments
so C10 and D were allowed to vary during the optimization process to obtain a
satisfactory fit. The optimized coefficients were also tested in a simulated com-
pression to monitor the ligaments’ behaviors under compressive loads. The vo-
lumes of the ligaments used in this study are also reported in Table 2 to give the

reader an idea of how close they are to their models’.

2.2. FE Model Development

Details on the FE models’ development and validation were presented in our

Table 1. Neo-Hookean material coefficients for the knee ligaments (Pena et al, 2006).

Ligament C10 D
ACL 1.95 0.00683
PCL 3.25 0.0041

MCL/LCL 1.44 0.00126

Table 2. Ligaments volumes in mm?® for the model used in optimizations.

Ligament ACL PCL MCL LCL

Volume (mm?) 1119 1873 2272 899

DOI: 10.4236/am.2021.1212075

1170 Applied Mathematics


https://doi.org/10.4236/am.2021.1212075

S. Sadegqi et al.

previous work [34] and is briefly described in this section. Following IRB ap-
proval, MR images of a healthy female subject (23 yr, 1.71 m, 60.3 kg) were used
for creating the 3D geometry. All bony structures and soft tissues including fe-
mur, tibia, patella, fibula, medial and lateral menisci (MM & LM), articular car-
tilages (femoral; FC, medial tibial; MTC, lateral tibial; LTC, patellar; PC), and li-
gaments (anterior and posterior cruciate; ACL & PCL and medial and lateral
collateral; MCL & LCL) were manually segmented in Mimics. The smoothing
process of the 3D surfaces was performed in Geomagics Studio. Hypermesh was
used for the subsequent mesh generation. Four-node tetrahedral elements were
created and assessed for mesh quality [40] in Hypermesh, factoring into consid-
eration the elements warpage, aspect ratio, Jacobean, and tet collapse. The final
meshes had only less than 1% of elements for each part possessing warpage > 5,
aspect ratio > 3, Jacobean < 0.7, and tet collapse < 0.3. Model assembly (Figure
2) and mesh convergence analysis were performed using Abaqus/explicit. The
four main ligaments (ACL, PCL, MCL, and LCL) were coupled at their insertion
sites to the bones. Femoral, tibial, and patellar cartilages were tied to the bones
underneath them. Seven frictionless surface-to-surface interactions were defined
at the contact between articular cartilages, among each other and with the me-
nisci. Additional surface-to-surface interactions were assigned to contacts be-
tween ACL-PCL, ACL-femoral notch, and tibia-MCL. Meniscal horn attachments
were modeled as kinematic couplings between the horns and the insertion site
on the tibial plateau. Connector elements were used as peripheral attachments
connecting the menisci to the tibia articular surface. Other capsule structures
were modeled as connectors with nonlinear load-displacement data. Material
properties were derived from the literature. In brief, bones were modeled as li-
nearly elastic materials with different properties for cortical and cancellous
bones [3]. Menisci were modeled as transversely isotropic materials [41]. The

neo-Hookean material model was used for the articular cartilage with values

Figure 2. Knee finite element model including 3D structures for bones, cartilages, menis-
ci, and four main ligaments, and 2D connectors for patellofemoral attachments and knee
capsule.
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calculated from young’s modulus and Poisson’s ratio [42]. The four main liga-
ments were modeled as hyper-elastic materials according to HGO [36], with
coefficients obtained through the curve fitting process based on experimental
data, as is described above in the material properties optimization section. Last-
ly, viscoelastic properties were applied to cruciate and collateral ligaments by as-

signing stress relaxation data using time-based prony series [43].

2.3. FE Simulations

Load cases examined included various combinations of knee abduction moment
(KAM), internal tibial rotation moment (ITR), and anterior tibial shear force
(ATYS) followed by an axial compression force equal to the impact load of half a
bodyweight dropping from a 30 cm height, simulating bipedal landing from a
jump (Table 3). All analyses were done with the knee flexed to 25 degrees. Mus-
cle forces of 441N were applied to quadriceps; for counterbalance, the same
amount of force (441N) was considered for hamstring muscles, equally distri-
buted among the lateral and medial hamstring groups. The biceps femoris long
head was used for applying the lateral hamstring load, and the semitendinosus,
semimembranosus, and gracilis were used for the medial side. Analyses were
done using Abaqus explicit solver [44]. Readers may refer to Erbulut e a/ 2021
[34] for more details on the loads and boundary conditions.

FE simulations were performed once using the optimized properties and once
using the Neo-Hookean properties; viscoelastic behavior was considered in both
cases. Outputs for knee kinematics (valgus/varus angle, internal/external tibial
rotation angle, anterior/posterior tibial translation, and superior/inferior tibial

translation) along with ACL and MCL strains were extracted and compared.

3. Results
3.1. Ligament Material Property Optimization

Comparison between the load-displacement curves obtained from literature with
those of the optimized properties showed a high correlation (r > 0.95) for all the
four knee ligaments (Table 4 & Figures 3-6). Moreover, these properties were

Table 3. Loading scenarios simulating sub-failure loadings of knee abduction moment (KAM), anterior tibial shear force (ATS),

and internal tibial rotation moment (ITR), determined with regard to the in vivo population percentage (%) (Bates et al, 2017),

followed by the axial impact of a drop load equal to half a bodyweight.

Anterior tibial shear force  Internal tibial rotation moment

Knee abduction moment (KAM)

Loading Cases (Nm)—corresponding to the in

(ATS) (N)—corresponding  (ITR) (Nm)—corresponding Vertical impact

. . to the in vivo population to the in vivo population load
vivo population percentage (%)
percentage (%) percentage (%)
Case #1 26.76 Nm - 67% 80.35N - 67% 18.62 Nm - 67% 0.5* BW
Case #2 57.34 Nm - 100% 80.35N - 67% 9.73 Nm - 33% 0.5* BW
Case #3 57.34 Nm - 100% 80.35N - 67% 18.62 Nm - 67% 0.5*BW
Case #4 57.34 Nm - 100% 196.13 N - 100% 18.62 Nm - 67% 0.5* BW
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Table 4. Holzapfel-Gasser-Ogden material model coefficients for the knee main ligaments
obtained via optimization, and the correlation coefficients.

Ligament C10 D K1 K2 kappa  Correlation
ACL 1.95 0.00683 22.627 471.255 0.0048 0.977
PCL 3.25 0.0041 4.836 139.750 0.000556 0.956
MCL 3.48 0.000287 21.489 179.544 0 0.962
LCL 1.35 0.000745 33.641 14.378 0 0.959

Load-Displacements Curves for ACL Material Model

/"
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0 1 2 & 4 5
Elongation (mm)
Figure 3. ACL curve fitting from Simulia iSight. The horizontal axis shows displacement

in mm, and the vertical axis displays force in N. The black curve is the experimental data
from the literature, and the blue curve is the load-displacement curve from the optimization.

Load-Displacements Curves for PCL Material Model
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Figure 4. PCL curve fitting from Simulia iSight. The horizontal axis shows displacement
in mm, and the vertical axis displays force in N. The black curve is the experimental data
from the literature, and the blue curve is the load-displacement curve from the optimization.
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Load-Displacements Curves for MCL Material Model
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Figure 5. MCL curve fitting from Simulia iSight. The horizontal axis shows displacement
in mm, and the vertical axis displays force in N. The black curve is the experimental data
from the literature, and the blue curve is the load-displacement curve from the optimization.

Load-Displacements Curves for LCL Material Model
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Figure 6. LCL curve fitting from Simulia iSight. The horizontal axis shows displacement
in mm, and the vertical axis displays force in N. The black curve is the experimental data
from the literature, and the blue curve is the load-displacement curve from the optimization.

used in five subject-specific FE knee models and produced the kinematics and
ligament strains largely in range of 1.5 standard deviation (SD) of the mean
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in-vitro data [35], which supports the initial hypothesis. The outcomes looked at
for validation included internal tibial rotation angles, knee abduction angles, an-
terior tibial translations, axial compressions and ACL and MCL strains. When
used in a simulated compression, these properties showed no resistance under
compressional loads, which ensures the incompressibility of the ligament beha-

vior.

3.2. FE Simulations of Bipedal Landings

Kinematic outputs from the experimental data were reported with respect to
baseline kinematics at 25° knee flexion. Results from the FE simulations follow
this same convention (Table 5 & Table 6, and Figures 7-10). Results are pre-
sented at 33 ms, 66 ms, and 100 ms after axial impact loading, the determined

time course for ACL rupture following landing [45] [46].

Table 5. Knee joint kinematics for load cases 1 - 4 at 33, 66, and 100 ms after initial ground contact. Green marks the values in the

range of one standard deviation from the mean in in-vitro experiments, blue marks the values within the 1.5 standard deviation

range, and orange marks the values outside this range.

ITR (deg.) Valgus (deg.) ATT (mm) Axial Compression (mm)

Time (ms) 33 66 100 33 66 100 33 66 100 33 66 100
Optimized HGO  6.12 4.88 4.68 1.17 1.06 0.93 0.39 0.75 0.49 0.7 0.2 0.16

Case 1 Neo-Hook 8.64 5.49 6.42 1.72 1.82 1.87 0.58 1.84 1.29 0.93 0.14 0.18
Optimized HGO  2.65 0.84 0.64 1.27 1.35 1.25 0.09 0.76 0.37 0.6 -0.002 -0.01

Case 2 Neo-Hook 7.52 1.88 0.68 1.78 2.59 4.93 0.56 2.82 3.43 0.9 -0.28 -13
Optimized HGO 5.38 391 3.68 1.57 1.57 1.45 0.42 0.9 0.59 0.69 0.14 0.11
Case 3 Neo-Hook 10.84 5.52 4.86 2.94 3.51 5.19 1.39 3.43 3.66 1.13 0.02 -0.78
Optimized HGO 5.53 4.14 3.75 1.62 1.63 1.49 0.62 1.08 0.76 0.69 0.16 0.12
Case 4 Neo-Hook 10.91 5.35 4.3 2.98 3.64 5.59 1.82 3.91 4.27 1.15 -0.003 -0.95

Table 6. Knee joint ligament strains for load cases 1 - 4 at 33, 66, and 100 ms after initial
ground contact. Green marks the values in the range of one standard deviation from the
mean in in-vitro experiments, blue marks the values within the 1.5 standard deviation
range, and orange marks the values outside this range.

ACL Strain (%) MCL Strain (%)
Time (ms) 33 66 100 33 66 100
Optimized HGO  0.01 2.4 1.75 -0.2 —0.07 —0.07
Case 1
Neo-Hook 7.22 11.96 10.34 13.26 12.3 12.59
Optimized HGO -1.34 2.18 1.07 -0.15 —-0.05 —0.04
Case 2
Neo-Hook 7.16 15.52 19.55 14.62 12.28 17.48
Optimized HGO -0.06 2.77 1.95 -0.18 —0.05 —-0.06
Case 3
Neo-Hook 9.86 17.58 19.84 16.87 14.15 17.93
Optimized HGO  0.57 3.33 2.48 —0.18 —0.04 —0.05
Case 4

Neo-Hook 11.22 19.27 22.17 16.81 13.98 18.43
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Figure 7. Knee joint kinematics and ligaments strain values from FE simulations with opti-
mized HGO materials for ligaments (blue), FE simulations with Neo-Hookean materials for li-
gaments (orange), and in-vitro experiments (red) with standard deviations error bars for load
case #1 at 33, 66, and 100 ms after initial contact. (A) Internal tibial rotation angles, (B) Valgus
angles, (C) Anterior tibial translations, (D) Axial compressions, (E) ACL strains, and (F) MCL

strains.
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Figure 8. Knee joint kinematics and ligaments strain values from FE simulations with optimized
HGO materials for ligaments (blue), FE simulations with Neo-Hookean materials for ligaments
(orange), and in-vitro experiments (red) with standard deviations error bars for load case #2 at 33, 66,
and 100 ms after initial contact. (A) Internal tibial rotation angles, (B) Valgus angles, (C) Anterior tibi-
al translations, (D) Axial compressions, (E) ACL strains, and (F) MCL strains.
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Figure 9. Knee joint kinematics and ligaments strain values from FE simulations with opti-
mized HGO materials for ligaments (blue), FE simulations with Neo-Hookean materials for
ligaments (orange), and in-vitro experiments (red) with standard deviations error bars for
load case #3 at 33, 66, and 100 ms after initial contact. (A) Internal tibial rotation angles, (B)
Valgus angles, (C) Anterior tibial translations, (D) Axial compressions, (E) ACL strains, and (F)
MCL strains.
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Figure 10. Knee joint kinematics and ligaments strain values from FE simulations with optimized
HGO materials for ligaments (blue), FE simulations with Neo-Hookean materials for ligaments
(orange), and in-vitro experiments (red) with standard deviations error bars for load case #4 at 33,
66, and 100 ms after initial contact. (A) Internal tibial rotation angles, (B) Valgus angles, (C) Ante-
rior tibial translations, (D) Axial compressions, (E) ACL strains, and (F) MCL strains.
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Valgus angles and anterior tibial translations were within 1SD of experimental
mean data for both materials in all four examined load cases. In total, the simu-
lations with HGO materials led to a closer match with the outputs from in-vitro
experiments, with only four data points outside 1.5SD, compared to the simula-
tions with Neo-Hookean materials (22 data points outside 1.5SD).

For ITR angles, most data were in the range of experimental outputs for the
simulations with HGO materials, except for load case 1 at 33 ms and load case 2
at 100 ms, which lay outside the 1.5SD and 1SD from the experimental mean,
respectively. For the models with Neo-Hookean materials, most ITR angles were
in the range of experiments as well; except at 33 ms for load cases 1 & 3, which
were outside the 1.5SD range while load cases 2 & 4 at 33 ms, load cases 1 & 2 at
100 ms, and load case 1 at 66 ms time point had results outside 1SD from the
mean experiments.

In the case of axial compressions, all outputs at 33 ms time points for both
materials in all load cases were in the range of in-vitro outputs. At 66 ms after
initial contact, load cases 2 & 3 had outside 1SD data for both materials. At 100
ms, all data were outside the 1SD range for both HGO and Neo-Hook; however,
models with Neo-Hookean materials outputs at this time point were also outside
the 1.5SD margin for load cases 3 & 4.

None of the ACL and MCL outputs from the simulations with Neo-Hookean
materials were in the range of 1SD from the mean experimental values; and for load
case #4, the highest loads, all strain values from the models with Neo-Hookean

materials were outside the 1.5SD margin (orange cells in Table 6, bottom row).

4. Discussion

Accuracy in modeling soft tissues is of great importance in computational bio-
mechanics [47], and small variations in their properties will result in significant
changes in the FE outputs. Knee ligaments are not an exception, and their prop-
erties will directly affect the knee joint kinematics and soft and hard tissue
stresses and strains. The considerable differences in joint kinematics and liga-
ment strains after changing the hyper-elastic material model of the main knee
ligaments in this study proved this point and confirmed the sensitivity of joint
biomechanics to these properties in FE simulations.

In this study, the HGO hyper-elastic material parameters for the main knee
ligaments were identified via optimization for use in finite element studies. The
ACL showed the best match among all the optimized properties, most likely due
to a more robust data set available in the literature for ACL mechanical testing.
For example, limited studies evaluated mechanical properties of the LCL, specif-
ically no mechanical test data could be found for the human LCL for the young
population in the literature. Most studies that reported LCL mechanical proper-
ties [48] [49] [50] [51] performed tensile test experiments on elderly cadavers,
e.g. (81 = 11 yrs. old) in [48] (74 £ 7 yrs. old) in [49], (77.1 £ 9.6 yrs. old) in [50],
and 71 yrs old in [51]. Therefore, we did not find those appropriate for this
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study that simulates landing from a jump in young athletes. Also, only a few stu-
dies were found for the PCL and MCL. Therefore, getting the accurate properties
would be more difficult for these three ligaments relative to ACL. Nevertheless,
all the four ligaments’ optimized coefficients presented high correlations (r >
0.95).

Special care should be given to using these properties in other knee FE models
if the modeling technique varies substantially, such as not applying viscoelastic
effects. Also, it should be considered that coefficients obtained from optimiza-
tion of material properties are not unique [52] and the purpose of this work was
to present a set of data that were validated against in-vitro experiments. Al-
though the proposed coefficients belong to one specific subject, they have been
tested in five different subject-specific models in the validation process. Other
modelers can apply these properties to help with their progress; they can also use
the tools presented here to perform optimizations of their own.

Another important aspect while simulating soft tissue material properties is
the conditions of experimental tension tests used. For instance, failure force, fail-
ure elongations, and other tensile properties of femur-ACL-tibia complex have
been compared for fresh cadaveric specimens versus formalin preserved or deep-
frozen preserved, and it has been demonstrated that the preservation method
causes significant changes in the ligaments’ mechanical properties [53]. The ex-
periments used in this study utilized fresh frozen samples for MCL [33], —20°C
frozen preserved for PCL [24], and ACL [32]. This study used more current test
data (2015) for PCL [24] and from younger specimens for both PCL (30 yr old)
[24] and ACL (mean = 29 yr old, 22 - 35 yr) [32] as opposed to the relatively
older data [54] used by other studies for ACL and PCL (38 yr old).

The comparison between our optimized HGO coefficients vs. Neo-Hookean
coefficients from the literature showed that HGO with optimized coefficients
could produce outputs closer to the experimental data; this was expected because
of the directionally dependent behavior of ligaments that the Neo-Hookean
model does not permit [55], along with the more physiologically relevant coupl-
ing of fiber and ground matrix contributions provided in the HGO model. Neo-
Hookean material led to larger strains in the FE simulations; this could be be-
cause there is less resistance to force in isotropic behavior due to the uniform
direction of material fibers. Therefore, Neo-Hookean material showed less resis-
tance leading to greater kinematics at the joint and higher strains in the liga-
ments.

One limitation of this study was that only one specific geometry for each li-
gament was used. While these materials properties have shown satisfactory re-
sults in five different models, future efforts can increase accuracy by optimizing
the properties for each model separately and using subject-specific material
coefficients, or providing a statistically relevant aggregate set of coefficients for
each ligament. Another limitation concerns the use of uniaxial tensile data for

determining the model coefficients where biaxial data may provide more robust
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coefficients by considering transverse properties of the ligaments in tension.
However, as has been shown by other researchers, there is a lack of biaxial test
data in the literature for knee ligaments [19]. Lastly, error sources are associated
with 3D geometry creation from medical images, such as inaccuracies in seg-

menting and smoothing, which could affect the results.

5. Conclusion

The coefficients of the HGO material model for the knee cruciate and collateral
ligaments were presented in this study using optimization techniques for the use
in the knee finite element models while including the viscoelastic properties.
When used in finite element simulations of bipedal landing, these coefficients
provided closer agreement with the in-vitro experiments for the joint kinematics
and ligaments strains relative to the Neo-Hookean materials. Future works may
expand upon this study by performing subject-specific optimizations. Also, hav-
ing access to the tensile test experiment data from a younger population will lead
to more accurate optimization results for investigating young athletes’ biome-
chanics. Therefore, future studies may perform updated tensile test experiments
and then redo the optimization to explore the effects on the optimized coeffi-

cients.
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