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Sagittal Imbalance May Lead to Higher Risks of Vertebral Compression Fractures and Disc

Degeneration—A Finite Element Analysis
Koji Matsumoto1,2, Anoli Shah1, Amey Kelkar1, Muzammil Mumtaz1, Yogesh Kumaran1, Vijay K. Goel1
-BACKGROUND: Sagittal balance is an important clin-
ical parameter of the spine for its normal function. Main-
tenance of the sagittal balance is crucial in the clinical
management of spinal problems.

-METHODS: Three different finite element models with
spinal alignments based on Schwab’s classification were
developed: (1) Balanced/Normal model (sagittal vertical axis
[SVA] [ 0 mm, lumbar lordosis [LL] [ 50�, thoracic
kyphosis [TK] [ 25�, pelvic incidence [PI] [ 45�, pelvic tilt
[PT] [ 10�, sacral slope [SS] [ 35�); (2) Balanced with
compensatory mechanisms/Flatback model (SVA [ 50 mm,
LL [ 20�, TK [ 20�, PI [ 45�, PT [ 30�, SS [ 15�); and (3)
Imbalanced/Hyperkyphotic model (SVA[ 150 mm, LL[ -5�,
TK [ 25�, PI[ 45�, PT [ 40�, SS[ 5�). All 3 models were
subjected to the follower loads simulating bodyweight/
muscular contractions along with the moments to simulate
flexion, extension, lateral bending, and axial rotation. The
maximum cortical vertebral stress, annular stress, and
intradiscal pressure (IDP) were calculated and compared.

-RESULTS: The results showed that the hyperkyphotic
model had higher stresses in the vertebrae (25% higher),
the annulus fibrosus (48% higher) and the IDP (8% higher)
than the normal models in flexion. The segments near the
thoracolumbar junction (T10-L1) showed the highest
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Abbreviations and Acronyms
3D: 3-dimensional
ASD: Adult spinal deformity
CT: computed tomography
DDD: degenerative disc disease
FE: finite element
HK: Hyperkyphotic
IDP: intradiscal pressure
LL: lumbar lordosis
MRI: magnetic resonance imaging
PI: pelvic incidence
PT: pelvic tilt
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increase in the vertebral body stress, the annulus fibrosus
stress, and the IDP.

-CONCLUSIONS: This study showed that the imbalance
in sagittal alignment might be responsible for disc
degeneration and atraumatic vertebral fractures at the
thoracolumbar regions, supporting clinical findings.
INTRODUCTION
he sagittal balance of the spine is vital for its normal
function. It is one of the essential clinical parameters for
Tthe management of spinal problems.1 Sagittal balance

largely contributes to the quality of life (QOL) compared to the
coronal balance.2,3 There are variations on the degree of normal
curvature, but balanced spinal alignment allows optimal
distribution of forces across the spinal column. The disruption
of this equilibrium by pathologic processes, primarily aging,
results in deformity.4 Adult spinal deformity (ASD) significantly
impairs patients’ QOL due to low back pain, gastroesophageal
reflux disease, and deterioration of appearance, which are
serious problems.2,3,5-9 Schwab et al. described the concept of
using spinopelvic parameters such as sagittal vertical axis (SVA),
lumbar lordosis (LL), thoracic kyphosis (TK), pelvic incidence (PI),
pelvic tilt (PT), and sacral slope (SS) to classify ASD.3,8,9 With
QOL: quality of life
ROM: range of motion
SS: sacral slope
SVA: sagittal vertical axis
TK: thoracic kyphosis
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increase in age, SVA, TK, and PT tend to increase while LL tends
to decrease. These changes in the spinopelvic parameters lead to a
rise in the incidence of spinal deformities in the aging
population.10

Global sagittal imbalance consumes substantial energy and
often results in painful compensatory mechanisms that can
negatively influence a person’s QOL.11 Several parameters such as
TK, LL, PI, and hip and leg positions can influence spinal
alignment and thus sagittal balance.11 During an imbalance, the
compensation mechanism occurs by the muscle activation to
keep spinal balance within normal limits. Further loss in spinal
balance leads to the loss of LL, TK also reduces along with
pelvis retroversion and flexion of knees to maintain sagittal
balance.12

Thus, it is important to understand the mechanics of imbalance
and the limits of compensation mechanisms in certain patient
populations.11 These clinical assessments help in understanding
the progression of ASD. However, there are no biomechanical
studies to understand the stresses on various components of the
spine for 3 common sagittal alignments that a patient may
experience through their lifetime.
The purpose of this study is to investigate the biomechanics of

the relationship between the sagittal imbalance and its effect on
the important biomechanical parameters such as intradiscal
Figure 1. A nonlinear ligamentous validated finite element mo
cage.
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pressures, annulus stresses, and vertebral stresses. Thus, this
study will aid in recognizing the areas potentially at risk to frac-
tures or disc degeneration by studying the stresses as a function of
sagittal curves.

METHODS

Development of the Finite Element Model
A nonlinear spine bony/ligamentous finite element model from
T1-femur was developed and validated (Figure 1). The model was
developed from the computed tomography (CT) scans of a 55-year-
old healthy adult male cadaveric spine without any abnormalities,
deformities, tumors, or severe degeneration, based on radio-
graphs. The 3-dimensional (3D) geometry was generated from
1-mm slices of CT scans using MIMICS software (Materialise Inc.,
Leuven, Belgium). After the 3D reconstruction, the model was
imported into Geomagic Studio software (Raindrop Geomagic
Inc., Research Triangle Park, North Carolina, USA) to smoothen
the surfaces to create patches and grids for meshing. The
smoothened 3D geometry was meshed using the meshing soft-
ware’s IA-FE Mesh (University of Iowa, Iowa, USA) and Hyper-
mesh (Altair Engineering, Inc., Troy, Michigan, USA).13

The vertebral bodies were modeled as a cortical bone shell of
0.5 mm thickness and the core of cancellous bone.13 The cortical
del with normal alignment from T1 to femur without rib
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Table 1. Material Properties and Element Types Used in the Nonlinear Ligamentous T1-Pelvis Finite Element Model With Instrumentation
from T10-S113,14,16

Bony Structure Type of Element Modulus of Elasticity (MPa) Poisson’s Ratio

Cortical bone Isotropic, elastic hexahedral elements 12000 0.3

Cancellous bone Isotropic, elastic hexahedral elements 100 0.2

Intervertebral disc

Thoracic segment-annulus fibrosus Isotropic, elastic hexahedral elements 4.2 0.45

Thoracic segment-nucleus pulposus Incompressible fluid, hexahedral elements 9 0.4999

Lumbar segment-annulus fibrosus Neo Hookian, hexahedral elements C10¼0.348, D1¼0.3

Lumbar segment-nucleus pulposus Incompressible fluid, hexahedral elements 1 0.4999

Annulus (fibers) Rebar 357-550 0.3

Ligaments

Anterior longitudinal Tension-only, Truss elements 7.8(<12%), 20.0(>12%) 0.3

Posterior longitudinal Tension-only, Truss elements 10.0(<11%), 20.0(>11%) 0.3

Ligamentum flavum Tension-only, Truss elements 15.0(<6.2%), 19.5(>6.2%) 0.3

Intertransverse Tension-only, Truss elements 10.0(<18%), 58.7(>18%) 0.3

Interspinous Tension-only, Truss elements 10.0(<14%), 11.6(>14%) 0.3

Supraspinous Tension-only, Truss elements 8.0(<20%), 15.0(>20%)

Capsular Tension-only, Truss elements 7.5(<25%), 32.9(>25%) 0.3

Joint

Apophyseal joints Non-linear soft contact, GAPPUNI elements — —
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and cancellous bones were modeled as a linear elastic isotropic
material. The thoracic kyphotic angle for this model was 25�

and lumbar lordotic angle was 50�, representing normal spinal
alignment as per Schwab classification.14,15 The intervertebral
discs were composed of annulus and nucleus, the annulus was
simulated as a composite solid with alternating �30� collagen
fibers modeled using REBAR elements with “no compression”
property and nucleus was simulated as a linear elastic
material.13,14,16 The facet joints were modeled using 3D gap
elements with an initial defined clearance of 0.5 mm. All
ligamentous structures were modeled as hypoelastic materials
with “tension only” property. The material properties used for
modeling the human thoracic-pelvis finite element (FE) model
are listed in the Table 1.13,14,16

The model was validated using the range of motion (ROM) from
in vitro studies. To the best of our knowledge, there is a lack of
in vitro studies in the published literature with ROM data from T1
to S1 segments. Therefore, the validation study was carried out
separately on the thoracic and lumbar segments of the FE model
and with the data compared against literature data.17,18

The normal aligned spine model (SVA ¼ 0 mm, LL ¼ 50�,
TK ¼ 25�, PI ¼ 45�, PT ¼ 10�, SS ¼ 35�) was validated.

Thoracic FE Model Validation
The thoracic spine from T1-T12 was validated by comparing the
motion behavior of the finite element model with the in vitro ROM
e964 www.SCIENCEDIRECT.com WORLD NE
data from Watkins et al.17 Watkins et al. dissected the human
cadaveric spine specimens from T1-T12; potted the T12 vertebra
and applied a 2 Nm moment at T1 to simulate flexion, extension,
and lateral bending. A 5 Nm moment was applied at T1 with 100 N
of follower load for simulating the axial rotations in their in vitro
study.17 This technique simulates the compressive forces on the
spine in vivo and was applied onto the FE model by connecting
adjacent vertebral bodies by utilizing the wire feature in ABAQUS
(Dassault Systèmes, Vélizy-Villacoublay, France) and applying an
axial-compressive load on the connector feature, bilaterally (Table
2). The same loading scenarios were simulated on the FE model
from T1-T12 for validation of the model. T12 was fixed and the
loads were applied at T1. The ROM of T1-T12 was evaluated and
compared for the validation.17

Lumbar FE Model Validation
The lumbar spine from L1-S1 was validated by comparing the
motion behavior of the FE model with the in vitro ROM data from
Panjabi et al.18 Panjabi et al. dissected the human cadaveric spine
specimens from L1-S1; potted the S1 vertebra. 10 Nm moment was
applied at L1 to simulate flexion, extension, lateral bending, and
axial rotation in their in vitro study. The same loading scenarios
were simulated on the finite element model from L1 pelvis for
validation of the model. The pelvis was fixed, and the loads were
applied at L1. The ROM of L1-S1 was evaluated and compared for
the validation.18
UROSURGERY, https://doi.org/10.1016/j.wneu.2022.08.119
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Table 2. Follower Load on Each Vertebral Body Based on the
Body Weight of 80.7 kg

Vertebral Body % Value

T1 14 80.7(Kg)*0.14*9.8 ¼ 111

T2 16.6 131

T3 19.2 152

T4 21.8 172

T5 24.4 193

T6 27 214

T7 29.6 234

T8 32.2 255

T9 34.8 275

T10 37.4 296

T11 40 316

T12 42.6 337

L1 45.2 357

L2 47.8 378

L3 50.4 399

L4 53 419

L5 55.6 440

S1 58.2 460
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Development of Different Sagittal Alignment Models
The spinopelvic parameters such as SVA, LL, TK, PI, PT, and SS
were modified iteratively by applying loads in the sagittal plane to
develop 3 different sagittal alignment models, simulating the
Schwab adult spinal deformity classification and different
compensatory-mechanisms.8,12 As shown in Figure 2, these were
(1) Balanced/Normal (SVA ¼ 0 mm, LL ¼ 50�, TK ¼ 25�, PI ¼
45�, PT ¼ 10�, SS ¼ 35�), validated baseline model described
earlier; (2) Balanced with compensatory mechanisms/Flat back
(SVA ¼ 50 mm, LL ¼ 20�, TK ¼ 20�, PI ¼ 45�, PT ¼ 30�, SS ¼
15�); and (3) Imbalanced/Hyperkyphotic (HK) (SVA ¼ 150 mm,
LL ¼ -5�, TK ¼ 25�, PI ¼ 45�, PT ¼ 40�, SS ¼ 5�). The
compensatory mechanism was simulated by decreasing TK and
pelvic retroversion. The HK model represented an imbalanced
model in which the sagittal balance deteriorated due to the lack
of a compensation mechanism. Hip joints of all the models
simulated the standing posture and the distal femurs were fixed.
The follower load technique was used to simulate the load at
different vertebral levels due to upper body mass and muscle
contractions as described by Schultz et al.19-22 The loads were
applied from T1 to S1 levels as a percentage of the body weight of a
55-year-old healthy North American male (80.7 kg) (Table 2).23

Pure moments of 2 Nm and 5.5 Nm (total 7.5 Nm) were applied
at T1 and L1, respectively, to simulate flexion, extension, left/
right bending, and left/right axial rotation.17,24 The maximum
nodal von Mises stress values in the cortical portion of vertebral
bodies, annulus fibrosus, and nucleus pulposus (intradiscal
WORLD NEUROSURGERY 167: e962-e971, NOVEMBER 2022
pressure [IDP]) were calculated twice: after applying follower
load and follower load þ pure moment.

Data Analysis
The stresses of the normal, flat back and hyper-kyphotic align-
ments were obtained by using the mean of the segmental stress
values of maximum cortical vertebral stress, annular stresses and
intra discal pressures (IDP). The percentage changes for the
recorded cortical vertebral stress, annular stress and IDP for the
flat back and HK model at each segment were calculated with
respect to the normal model and compared to the different sagittal
alignments.
Percentage change of flat back (F) or HK models with respect to

normal (N) model were calculated as follows:

Percentage change ð%Þ ¼ ðF or HK � NÞ
N

*100
RESULTS

Model Validation
Thoracic FE Model Validation. All predicted ROMs were within the
experimental range (Watkins et al.): flexion-extension 14�

(experimental range: 3.11�e29.29�), left/right lateral bending 9.18�

(experimental range: 3.71�e27.96�), and left/right axial rotations
34.6� (experimental range: 11.95�e67.55�).17

Lumbar FE Model Validation. All predicted ROMs were within the
experimental ROM (Panjabi et al.): flexion-extension 35.8�

(experimental range: 25.2�e76�), left/right lateral bending 21�

(experimental range: 20�e67�), and left/right axial rotations 17.4�

(experimental range: 2.75�e21.6�).18

Stress Analyses
Maximum Cortical Vertebral Stress (MPa). The cortical vertebral
stresses for the HK model were higher for all the motions
compared with normal and flat back models (Figure 3), when only
the follower load was applied to the models. The stresses in the
HK model increased by 86% compared with the normal model
while the stresses for flat back model decreased by 3%
compared with the normal model. When bending motions were
applied along with the follower loads, the overall stresses for
the HK model increased by 4%, 25%, 21%, 20%, 26%, and 23%
compared with the normal model for extension, flexion, left
bending, right bending, left rotation, and right rotation,
respectively. Also, the stresses in the flat back model increased
by 5% for flexion and showed a decrease of 2%, 3%, 1%, 9%,
and 4% compared to normal model for extension, left bending,
right bending, left rotation, and rotation, respectively.
The maximum change in stresses was seen for flexion motion,

therefore the stress values observed at each level of the thor-
acolumbar spine were further analyzed to compare the 3 align-
ments. In particular, the stresses for the HK model increased by
40%, 54%, and 30% at T10, T11, and T12 compared with the
normal model, respectively. However, the stresses at these levels
for the flat back model were similar to the normal model.
www.journals.elsevier.com/world-neurosurgery e965
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Figure 2. Three different finite element models used to investigate the biomechanics of different sagittal alignments.
Red line indicates the C7 plumb line.
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Maximum Intradiscal Pressure (IDP). The IDP for the HK model
decreased by 8% compared with the normal model (Figure 4)
when only the follower load was applied. The IDP increased by
5%, 8%, and 7% for flexion, left rotation, and right rotation,
Figure 3. The maximum von Mises stress of the cortical bone
motions.

e966 www.SCIENCEDIRECT.com WORLD NE
respectively, and decreased by 6%, 2%, 5% for extension, left
bending, and right bending, respectively, compared with the
normal model when the follower load and the bending motions
were applied. The flat back model showed a decrease in IDP of
of 3 alignments subjected to follower load in simulated
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Figure 4. The intradiscal pressure of 3 alignments subjected to follower load in simulated motions.
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less than 2% when compared with the normal model for the
follower load only and follower load plus bending motion
loading scenarios.
The maximum change in IDP was seen for flexion motion,

therefore the IDPs at each level of the thoracolumbar spine for
flexion was analyzed to compare the 3 alignments. The IDP for the
HK model increased at T10-T11, L1-L2, and L2-L3 by 7%, 30%, and
18%, while decreased by 2% and 8% at T11-T12 and T12-L1
compared with the normal model, respectively. The flat back
model showed an increase of 12% at L1-L2 and decreased by less
than 1% for the other thoracolumbar spinal levels compared with
the normal model.

Maximum Annular Stress (MPa). The overall annular stresses for
the HK model showed an increase of 19% for the follower load
only scenario compared with the normal model (Figure 5). The
stresses increased by 48%, 22%, 14%, 34%, and 27% for flexion,
left bending, right bending, left rotation, and right rotation for
the HK model and decreased by 6% in extension compared with
the normal model, respectively. The stresses increased by 2%
for flexion for the flat back model and decreased by 21%, 21%,
13%, 11%, and 13% for extension, left bending, right bending,
left rotation, and right rotation compared with the normal
model, respectively.
The maximum change in annular stress was seen for the flexion

motion, therefore the annular stresses recorded at each level of the
thoracolumbar spine for flexion were used to compare the 3
alignments. For the HK model, the annular stress increased at
T10-T11, T12-L1, and L1-L2 increased by 38%, 92%, and 18%, and
showed 11% decrease at T11-T12 compared with the normal
model. The flat back model showed an increase of 6% at T12-L1,
and a decrease of 31% at L1-L2 compared with the normal model.
WORLD NEUROSURGERY 167: e962-e971, NOVEMBER 2022
The thoracolumbar region stress contours comparison for the
flexion motion showing the maximum effect as a function of
sagittal balance are shown in Figures 6 and 7. The higher stresses
are seen for the HK model compared with the flat back and
normal models at the thoracolumbar regions (Figure 6). The
sagittal stress contours (Figure 7) show the higher stresses at
the anterior and the middle regions of the vertebral bodies for
the HK model compared with the flat back and normal models.
DISCUSSION

Recently, the sagittal balance has become crucial for clinical
studies to understand adult spinal deformities. It has become
evident that good clinical outcomes in spinal deformity treatment
require proper alignment restoration.15 To minimize energy
expenditure, SVA should be restored.11 Understanding whole
spinal alignment and the dynamics of spinopelvic alignment is
essential to restore sagittal balance while minimizing the risk of
sagittal decompensation after surgical intervention.25 Before
these aspects can be explored, there is a need to understand
segmental spinal stresses for normal and imbalanced spinal
alignments for a possible treatment plan of a patient with spinal
deformity as it would require integration of the pelvis in the
preoperative evaluation and the treatment plan.15 According to
Rothenfluh et al., patients with sagittal imbalance exhibit a 10-
times higher risk for undergoing revision surgery if the sagittal
balance is not maintained after the lumbar fusion surgery.26

Galbusera et al. and Liu et al. conducted a finite element study
of a lumbar spine for standing and inflexed posture, and both
studies showed that an increase in the lumbar loads led to an
increase in spinal lordosis.27,28 However, no reports have
investigated the change in stress distribution across the spinal
www.journals.elsevier.com/world-neurosurgery e967
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Figure 5. The annular stress of 3 alignments subjected to follower load in simulated motions.
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column in ASD. To study the biomechanics of adult spine
deformity, we created the balanced model (Normal), the
balanced compensatory mechanism model (Flatback), and the
imbalanced model (HK) with reference to Schwab’s
classification.8,12 The results showed that the stresses increased
Figure 6. The von Mises stress contours of the thoracolumba
alignments during the simulation of the flexion motion showin
levels compared to normal model.

e968 www.SCIENCEDIRECT.com WORLD NE
on the spine with the deterioration of the sagittal balance from
normal model to flat back (with compensatory mechanism) and
imbalanced HK model.
The results for a person standing with only follower load

applied indicated that stresses at the flat back model were similar
r spine (T8-L2) in the coronal view of the 3 sagittal
g the higher stresses for the hyperkyphotic model at all
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Figure 7. The von Mises stress contours of the thoracolumbar spine (T8-L2) in the sagittal view of the 3 sagittal
alignments during the simulation of the flexion motion showing the higher stresses for the hyperkyphotic model
at all the levels compared to normal model.
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to the normal model, but for the HK model, the stresses were
higher for the vertebrae. The stresses at the annulus and IDP
showed a similar trend for the normal, flat back, and HK models.
The maximum impact on overall stresses as a function of sagittal
imbalance was observed for the flexion motion at all the spinal
segments. This shows that the sagittal imbalance affects overall
stresses on the spine due to the posture. The results for the fol-
lower load along with the motion showed that the increase in the
stresses on the HK model was higher compared with the flat back
model.
The deterioration of sagittal balance may be involved in osteo-

porotic vertebral fractures and low back pain.29 The deterioration
of the sagittal balance had the greatest influence on the
thoracolumbar junction. Osteoporotic vertebral fractures are
more prevalent at the thoracolumbar junction, and about half
occur without obvious trauma.30 Significant relationships were
found between sagittal spinopelvic parameters in osteoporotic
patients of older age.29 An abnormal kyphotic posture is
considered a result of osteoporotic vertebral fractures
represented with an anterior wedge deformity, which is a cause
of local kyphosis in the elderly population.31 Our results indicate
that deterioration of sagittal balance due to aging (represented
by the HK model) may be one of the causes of atraumatic
vertebral fractures with the possibility of the bone fracture
occurring at the thoracolumbar junction, as shown by the stress
contours (Figures 6 and 7). The vertebral body fractures cause
kyphosis leading to lower health-related QOL.32-34

Several studies have found a correlation between thoracolumbar
and spinopelvic sagittal parameters and degenerative disc disease
(DDD). Liu et al. conducted a retrospective analysis on MRI
WORLD NEUROSURGERY 167: e962-e971, NOVEMBER 2022
images obtained from adult patients with DDD.35 They observed a
significant correlation between sagittal parameters and the
incidence of DDD at the thoracolumbar junction and
lumbosacral junction. They observed that high thoracolumbar
kyphosis was associated with the prevalence of DDD and
contributed significantly to the progression of DDD at the
thoracolumbar junction. The incidence of DDD at the
lumbosacral junction had a statistically significant correlation
with PI. Patients with a high PI had a predisposition towards
DDD at the lumbosacral junction. Similar observations were
found by the retrospective magnetic resonance imaging (MRI)
study conducted by Keorochana et al.36 Their group found a
significant correlation in the frequent incidence of DDD at the
thoracolumbar and lumbosacral junction and patients with high
kyphosis.
Farshad-Amacker et al. observed in their retrospective MRI

analysis study that maintenance of LL had a protective effect on
the incidence rate as well as the progression of lumbar DDD.37

Egrun et al. conducted a retrospective study on young female
patients showing that a decrease in LL had a statistically
significant effect on the progression/incidence of DDD as well
as the incidence of disc herniation.38 Adams et al. found that
degenerative disc disease shifts the compressive load-bearing ca-
pacity of the vertebral body posteriorly, reducing the trabecular
bone network in the anterior aspect of the vertebra.39 This may
predispose patients with degenerative disc disease to anterior
vertebral fractures.
The negative cascade seen in our study suggests that sagittal

imbalance induces a vertebral body fracture, which leads to
another vertebral fracture causing a severe sagittal imbalance,
www.journals.elsevier.com/world-neurosurgery e969
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which may drastically reduce patient QOL. To prevent this
cascade, it may be necessary to prevent the deterioration of the
sagittal balance by a proper treatment plan. The most crucial
finding of this study is that the influence of deterioration in
sagittal balance on the spinal stresses is expressed using numer-
ical values. The limitations of this study include the absence of the
ribcage and coronal deformities in the FE models. Nishida et al.
used the finite element method to study the effects of the presence
or absence of a rib cage on the spine.40 They reported that the
model with a rib cage suppressed the strain in the middle
thoracic spine compared to the model without it. Therefore,
they concluded that a rib cage increased the stability of the
thoracic spine. Because the rib cage has a great impact on the
spine, further study will be necessary using model with a rib
cage.40 Additionally, the FE model used in the current study
lacks the musculature surrounding the spine and does not take
the potential effects of these musculoskeletal forces into account.

CONCLUSIONS

The spinal column stresses increase with the increasing level of
sagittal imbalance. When the sagittal balance breaks down, the
e970 www.SCIENCEDIRECT.com WORLD NE
overall spinal stresses worsen, especially at the thoracolumbar
junction. Degradation of sagittal balance leads to an increase in
stresses near the thoracolumbar junction that may lead to atrau-
matic anterior fractures and disc degeneration.
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