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Abstract In this paper, we give a broad overview of the intersection of partial dif-
ferential equations (PDEs) and graph-based semi-supervised learning. The overview
is focused on a large body of recent work on PDE continuum limits of graph-based
learning, which have been used to prove well-posedness of semi-supervised learning
algorithms in the large data limit. We highlight some interesting research directions
revolving around consistency of graph-based semi-supervised learning and present
some new results on the consistency of p-Laplacian semi-supervised learning using
the stochastic tug-of-war game interpretation of the p-Laplacian. We also present
the results of some numerical experiments that illustrate our results and suggest
directions for future work.

1 Introduction

Machine learning refers to algorithms that learn how to perform tasks, like image
classification or text generation, from examples or experience, and are not explicitly
programmed with step-by-step instructions in the way a human may be instructed
to perform a similar task. The recent surge in machine learning and artificial
intelligence is being driven by deep learning, which uses deep artificial neural
networks and has found applications in nearly all areas of science, engineering,
and everyday life [53]. Modern deep learning excels when provided with massive
amounts of training data and computational resources. However, there are many
applications, specifically with real-world problems, where labeled training data is
hard to come by and number in the hundreds or thousands, instead of millions. For

J. Calder (�)
School of Mathematics, University of Minnesota, Minneapolis, MN, USA
e-mail: jcalder@umn.edu

N. Drenska
Department of Mathematics, Louisiana State University, Baton Rouge, LA, USA
e-mail: ndrenska@lsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Carrillo, E. Tadmor (eds.), Active Particles, Volume 4, Modeling and
Simulation in Science, Engineering and Technology,
https://doi.org/10.1007/978-3-031-73423-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-73423-6_1&domain=pdf
mailto:jcalder@umn.edu
mailto:ndrenska@lsu.edu
https://doi.org/10.1007/978-3-031-73423-6_1


2 J. Calder and N. Drenska

example, in medical image analysis, a human expert, i.e., a highly trained doctor,
must annotate images in order to provide data for machine learning algorithms to
train in. Obtaining labeled data is thus costly, and there is a tremendous interest
in developing machine learning algorithms that perform well with as few labeled
examples as possible.

There are many frameworks for learning from limited data. One effective method
is semi-supervised learning, which makes use of both labeled and unlabeled data in
the learning task. In contrast, the most common type of machine learning, called
fully supervised learning, makes use of only labeled training data. The labeled
training data for a fully supervised classification task includes data/label pairs
(x1, y1), . . . , (xn, yn), where xi ∈ R

d and yi ∈ R
k . The goal of fully supervised

learning can generally be stated as finding, or “learning,” a function f : Rd → R
k

so that f (xi) ≈ yi for all i. This can be viewed as an ill-posed problem, especially
when the number of labeled training points n is small, since there are many possible
functions f that fit the training data. Furthermore, the ultimate goal is not just to
fit the training data but to learn a function that generalizes well to new data that
has not been seen before. Semi-supervised learning uses unlabeled data to improve
the performance of classification algorithms in the context of small training sets.
In many applications, unlabeled data is abundant and easy to obtain. In medical
image analysis, for example, unlabeled data would correspond to medical images of
a similar type and modality that have not been labeled or annotated by an expert.

An effective technique for exploiting unlabeled data in semi-supervised learning
is to utilize a graph structure, which may be intrinsic to the data, or constructed based
on similarities between data points. Graphs encode interdependencies between
constituent data points that have proven useful for analyzing and representing
high-dimensional data. There has been a surge of interest recently in graph-based
semi-supervised learning techniques for problems where very few labeled examples
are available, which is a setting that is challenging for existing techniques based
on Laplacian regularization and harmonic extension. Various methods have been
proposed, including p-Laplacian regularization, higher-order Laplacian methods,
Poisson learning, and many others. Many of these algorithms are inspired by
insights from the theory of partial differential equations (PDEs) or the calculus of
variations, by examining the PDE-continuum limits of discrete graph-based learning
algorithms, and their well-posedness properties, or lack thereof.

While there has been a substantial amount of work on PDE-continuum limits
of graph-based learning, there has been relatively little work on the question of
consistency of graph-based learning, using these well-developed PDE tools. The
basic question of consistency is whether the machine learning algorithm is making
the correct predictions, under a simplified model for the data. The current PDE-
continuum limit results simply describe how the algorithms behave in the large data
limit, but have not yet, with few exceptions, been used to prove that they work
properly—that is, that they are consistent. It is arguably the case that consistency
is more important than well-posedness in the continuum limit, yet the question
has rarely been studied, which we suspect is due to the difficulty in defining what
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consistency means, and the difficulty in obtaining meaningful results outside of toy
settings.

In this paper, we provide a broad overview of semi-supervised learning and
its connections to PDEs, and we present some new consistency results for p-
Laplacian-based semi-supervised learning. Our new results make use of the tug
of war with noise interpretation of the p-Laplacian, for which we also provide a
brief literature survey. In particular, one of our results uses the tug-of-war game
on a stochastic block model graph, which does not have the geometric structure
that is usually required for PDE-based analysis. Our consistency results for the p-
Laplacian are preliminary results meant to spark new work, and they certainly leave
many questions unanswered. Our overall goal in this paper is to highlight a number
of open research problems that will benefit from fruitful collaboration between PDE
analysts and more theoretically minded machine learning researchers. It would be
interesting in future work to improve these results and extend them to other graph-
based semi-supervised learning algorithms and other graph structures.

1.1 Outline

This paper is organized as follows. In Sect. 2, we provide a brief overview of the
p-Laplacian and the stochastic tug-of-war game interpretation. In Sect. 3, we give
a thorough survey of graph-based semi-supervised learning, and its connections to
PDEs and tug-of-war games, with a particular emphasis on the p-Laplacian. Then
in Sect. 4, we present some preliminary results on consistency properties of the p-
Laplacian using the tug-of-war game interpretation. This includes results both on
geometric graphs and stochastic block models, as well as some numerical results to
illustrate the main theorems. Finally, we conclude and discuss directions for future
work in Sect. 5.

2 Tug-of-War Games and the p-Laplacian

In this section, we provide a brief overview of the p-Laplacian and the connection
to stochastic tug-of-war games.

2.1 The p-Laplacian

The p-Laplacian arises as the Euler-Lagrange equation, or necessary conditions, for
the nonlinear potential problem in the calculus of variations

min
u∈W 1,p(�)

∫
�

|∇u|p dx, (2.1)
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where p ≥ 1 and � ⊂ R
d , subject to some boundary conditions, such as a Dirichlet

condition u = g on ∂�. The Euler-Lagrange equation [46] for (2.1) is

�pu := div
(
|∇u|p−2∇u

)
= 0 in �, (2.2)

and we call �pu the p-Laplacian of u. We must take p ≥ 1 to ensure (2.1) is convex
and admits a minimizer. The case of p = 2 corresponds to the usual Laplacian�p =
�. When 1 ≤ p < 2 the diffusion is singular when ∇u = 0, while for p > 2, the
diffusion becomes degenerate when ∇u = 0; both cases lead to drastically different
properties and regularity theory compared to the uniformly elliptic case of p = 2
[45]. Functions that satisfy �pu = 0 are called p harmonic.

If we expand the divergence in (2.2), we find that any p-harmonic function u

satisfies (provided ∇u 	= 0 when p < 2)

�pu = |∇u|p−2(�u + (p − 2)�∞u) = 0 in �, (2.3)

where �∞u is the ∞-Laplacian, defined by

�∞u = 1

|∇u|2∇u · ∇2u∇u = 1

|∇u|2
d∑

i,j=1

uxixj
uxi

uxj
, (2.4)

and∇2u is the Hessian of u. The∞-Laplacian is so named, because it is the p → ∞
limit of the p-Laplacian in the sense that

�∞u = lim
p→∞

1

p − 2
|∇u|2−p�pu,

provided again that ∇u 	= 0, which follows directly from (2.3). It is possible to
interpret the ∞-Laplacian as the Euler-Lagrange equation for a variational problem
like (2.1) with p = ∞; we refer the reader to [4] for more details. For a more
detailed overview of the p-Laplacian, we also refer to [82].

2.2 Tug-of-War Games

When p = 2, there is a well-established classical connection between random
walks, or Brownian motions, and harmonic functions. Indeed, any harmonic
function u satisfies the mean value property [46]

u(x0) = −
∫

B(x0,ε)

u(y) dy, (2.5)
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where ε > 0 is any value for which B(x0, ε) ⊂ �, and the notation −
∫
means

−
∫

V

u dx = 1

|V |
∫

V

u dx.

We can interpret the right-hand side of (2.5) as the expectation of u(X), where X is
a random variable uniformly distributed on the ball B(x0, ε). Thus, if we define a
random walk X1, X2, . . . , on �, which is a sequence of random variables for which
X0 = x0 ∈ � and, conditioned on Xk , Xk+1 is uniformly distributed on B(Xk, ε),
we have

E [u(Xk+1) | Xk] = −
∫

B(Xk,ε)

u(y) dy = u(Xk),

provided B(Xk, ε) ⊂ �, provided we, for the moment, ignore the boundary ∂�.
Thus, since u is harmonic, we have that Zk = u(Xk) is a martingale [120].
This connection to probability theory allows simple alternative proofs of various
estimates in harmonic function theory, such as Harnack’s inequality and gradient
estimates [79, 80], and has found applications in proving gradient estimates on
graphs as well [26].

Over the past 15 years, there has been significant interest in extending these
martingale techniques to the p-Laplacian. To do this, however, the definition (2.2)
of the p-Laplacian is not very useful. Instead, provided that ∇u 	= 0, we can drop
the |∇u|p−2 term in (2.3) to obtain the equation

�u + (p − 2)�∞u = 0, (2.6)

and restrict our attention to p ≥ 2. Given a smooth function u, we can average the
Taylor expansion for u about x0 to obtain

−
∫

B(x0,ε)

u(y) dy = u(x0) + ε2

2(d + 2)
�u(x0) + O(ε3),

and so

ε2�u(x0) = 2(d + 2)−
∫

B(x0,ε)

u(y) dy − 2(d + 2)u(x0) + O(ε3). (2.7)

Noting that the ∞-Laplacian is the second derivative of u in the direction of the
gradient v = ∇u(x0)|∇u(x0)| , we have

ε2�∞u(x0) = [u (x0 + εv) − u(x0)] − [u(x0) − u (x0 − εv)] + O(ε3) (2.8)

= max
B(x0,ε)

u + min
B(x0,ε)

u − 2u(x0) + O(ε3).
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Inserting (2.7) and (2.8) into (2.6), we see that if u is a smooth p-harmonic function,
i.e., satisfying (2.6), then

u(x0) = α −
∫

B(x0,ε)

u(y) dy + 1 − α

2

(
max

B(x0,ε)
u + min

B(x0,ε)
u

)
+ O(ε3). (2.9)

as ε → 0 where α = d+2
d+p

∈ [0, 1] since p ≥ 2. Thus, while p-harmonic
functions do not satisfy a mean value property for any size ball, (2.9) gives an
asymptotic version of a mean value property, with min and max terms arising from
the ∞-Laplacian. In fact, the asymptotic mean value property (2.9) characterizes p-
harmonic functions [89]. It is also an interesting equation to study in its own right;
when the O(ε3) is dropped, the functions are called p-harmonious and studied in
detail in [91].

The mean value property (2.9) suggests a way to adapt the random walk
construction earlier to p-harmonic functions. We simply define a stochastic process
X0, X1, X2, . . . so that, given Xk , Xk+1 is defined in the following way: With
probability α, we take a random walk step, so Xk+1 is uniformly distributed on
B(Xk, ε); with probability 1−α

2 , we set Xk+1 = argmaxB(Xk,ε)
u, and likewise with

probability 1−α
2 , we set Xk+1 = argminB(Xk,ε)

u. When the argmax or argmin is not
unique, we make a rule to break ties, which can be deterministic or random. By the
definition of this stochastic process, for any continuous function u, we have

E[u(Xk+1) | Xk] = α −
∫

B(Xk,ε)

u(y) dy + 1 − α

2

(
max

B(Xk,ε)
u + min

B(Xk,ε)
u

)
.

In particular, if u is smooth and p-harmonic, then the discussion above shows that

E[u(Xk+1) | Xk] = u(Xk) + O(ε3).

Thus, we have recovered the martingale property, at least asymptotically as ε → 0.
The stochastic process introduced above is often described as a two player tug-

of-war game with noise. The game involves a token Xk that is moved by two players
and by random noise. Player I is trying to move the token to locations that maximize
u, while the goal of player II is to move the token to places that minimize u. The
game is played by flipping two coins. The first comes up heads with probability α

and tails with probability 1 − α. If the first coin comes up heads, the token Xk is
moved to a uniformly random pointXk+1 in the ballB(Xk, ε). If the first coin comes
up tails, then the game switches to a tug-of-war game, where a second unbiased coin
is flipped to decide which player gets to move the token to decide Xk+1. Whichever
player wins the second coin flip is allowed to move the token wherever they like
in the ball B(Xk, ε); the idea being that player I will move the token to maximize
u, while player II will minimize. The exact goal of each player depends on the
boundary condition; they may want to maximize/minimize the value of u when the
game stops by hitting the boundary ∂�, in which case only the values of u on or
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near the boundary need to be specified in the game and the players are assumed to
play optimal strategies to maximize or minimize the payoff—the value of u—at the
end of the game. The random walk step, and the randomness in choosing between
players, is interpreted as noise, hence the term tug of war with noise.

There is a close connection between tug-of-war games and nonlocal elliptic
equations. Let us define the nonlocal 2 and ∞ Laplacians by

�ε
2u(x) = −

∫
B(x0,ε)

u(y) dy−u(x), and �ε∞u(x) = 1

2

(
max
B(x,ε)

u + min
B(x,ε)

u

)
−u(x).

Then if we drop the error term in (2.9) and rearrange, we arrive at the equation

�ε
pu := α�ε

2u + (1 − α)�ε∞u = 0. (2.10)

The operator �ε
p on the left above is a nonlocal approximation to the p-Laplacian

that arises from the tug-of-war game perspective and is closely related to the graph
p-Laplacian discussed in Sect. 3. We can also consider a corresponding nonlocal
boundary value problem

{
�ε

pu = 0, in �ε

u = g, on ∂ε�,
(2.11)

where g is given, ∂ε� = ∂�+B(0, ε) and �ε = �\∂ε�. If we choose the stopping
time τ to be the first time that the tug-of-war game hits the boundary strip ∂ε�, then
the martingale property and the optional stopping theorem yield

u(x) = E[u(Xτ ) | X1 = x].

This gives a representation formula for solutions of the nonlocal p-Laplace equation
(2.10) that is useful for studying properties of the solution through martingale
techniques. Properties that are independent of the nonlocal scale ε > 0 are inherited
by p-harmonic functions by sending ε → 0.

Tug-of-war games for the p-Laplacian were originally introduced in [105, 106]
with a version that holds for 1 ≤ p ≤ ∞ using ideas from earlier work on
deterministic games for the 1-Laplacian [69]. The version for p ≥ 2 described
above was introduced and studied in [90]. This work motivated a study of the game-
theoretic p-Laplacian on graphs [92] as well as finite difference approaches for
numerically approximating solutions [3, 102, 103]. The tug-of-war interpretation of
the p-Laplacian has led to simple alternative proofs of regularity for p-harmonic
functions, including the Harnack inequality and gradient estimates [5, 83]. In
addition, many variants of tug-of-war games have been introduced, including games
with bias [107], mixed Neumann/Dirichlet boundary conditions [32], obstacle
problems [78], nonlocal tug-of-war for the fractional p-Laplacian [76], time-
dependent equations [56], and variants on the core structure of the game [74]. We
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also refer the reader to the survey article [77] and two recent books on tug-of-war
games [75, 104] for more details.

3 Semi-supervised Learning and PDEs

In this section, we overview graph-based semi-supervised learning and the recent
connections to PDEs in the continuum limit, with a specific focus on the p-
Laplacian and tug-of-war games.

3.1 Graph-Based Semi-supervised Learning

Semi-supervised learning uses both labeled and unlabeled data. As a toy example,
in Fig. 1a, we show the famous two-moons data set with two labeled data points,
the blue circle and green square. The black points are the unlabeled data, which are
not used by fully supervised learning, and will be discussed momentarily. With only
two labeled data points, it is difficult to learn a general function f that will correctly
classify new data points. In Fig. 1b, we show the result of training a linear kernel
support vector machine (SVM) with these two data points, which finds the linear
decision boundary with maximal margin—in this case, the line equidistant1 from
the two training points. Given no other information, this may be a reasonable thing
to do. However, suppose now that we also have access to the black points, which
are unlabeled data points. That is, we have access to the coordinates xi ∈ R

2 but
not the label yi , which in this case is yi ∈ {0, 1} for binary classification, and these
unlabeled data points are the only data points we will want to apply our classifier to
in the future. In this case, the linear SVM decision boundary is a poor choice, since
it cuts through a dense region of the unlabeled data—the lower moon—where we
may not expect a true decision boundary to lie. Instead, we should seek to place the
decision boundary in sparse regions between clusters. In Fig. 1c, we show the result
of using a semi-supervised learning algorithm on the same data set, which correctly
separates the two moons.2

There are many ways to incorporate unlabeled data into a machine learning
algorithm. One common and successful approach is to utilize graph-based learning,
where each node in the graph corresponds to a data point, and the edges in the
graph correspond to either intrinsic relationships between data points or record some

1 The line does not appear orthogonal to the vector between the training points, because the axes
are scaled differently.
2 To be precise, we applied graph-based Poisson learning, described below, to obtain label
predictions for all unlabeled points, and then we trained a radial basis kernel SVM using the label
predictions.
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Fig. 1 A toy example comparing fully and semi-supervised learning. In (a), we show a data set
with two labeled examples—the blue circle and green square—along with 98 unlabeled data points,
the black dots. In (b), we show the decision regions from training a fully supervised classification
algorithm, while in (c), we show the decision regions for a semi-supervised learning algorithm,
which uses the unlabeled data to inform the decision boundary

notion of similarity between data points. Many types of data have intrinsic graph
structures, like molecules in drug discovery problems, citation data sets, or networks
like the internet. In other problems, like image classification, the graph structure is
not intrinsic but can be constructed as a similarity graph, in which similar data points
are connected by an edge with a weight that encodes the degree of similarity. Let
X = {x1, . . . , xn} be a set of data points, where xi ∈ R

d . Here, we assume we have a
graph with vertex set X described by a symmetric weight matrix W = WT ∈ R

n×n

in which each entry wxy , for x, y ∈ X , is nonnegative and encodes a notion of
similarity between x and y. A zero weight wxy = 0 indicates there is no edge
between x and y, while a positive weight wxy > 0 indicates the presence of an
edge, and the larger the value the stronger the edge. We let Nx ⊂ X denote the
graph neighbors of the vertex x ∈ X , which is defined by

Nx = {y ∈ X : wxy > 0}. (3.1)

A common way to construct a graph over a data set is the geometric graph
construction

wxy = η

( |x − y|
ε

)
, (3.2)

where ε > 0 is the graph bandwidth and η : [0,∞) → [0,∞) is a nonnegative
function that is typically decreasing with compact support. A common choice is
Gaussian weights where η(t) = e−t2 , with a possible truncation to zero at some
distance t = τ . One issue with the geometric graph construction is that one has
to choose a very large value for the graph bandwidth ε > 0 to ensure the graph is
connected, even in the sparsest regions of the data set, which leads to a very non-
sparse weight matrix W that is difficult to work with computationally. To address
this, it is common to adjust the bandwidth ε locally to reflect the density (or sparsity)
of the data set, which results in various types of k-nearest neighbor graphs. One
common construction is
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wxy = η

(
|x − y|√

εxεy

)
,

where εi is the distance from x to its kth nearest neighbor, though other choices are
possible. Throughout this section, we’ll generally assume a graph with geometric
weights of the form (3.2).

3.2 Laplacian Regularization

Suppose now that we have a graph structure over our data set, given by a weight
matrix W = (wxy) ∈ R

n×n along with a subset of graph nodes 	 ⊂ X
that are labeled, with corresponding labels y = g(x) ∈ R for g : 	 → R

a given labeling function, which we are taking to be scalar only for simplicity
of discussion. The seminal approach in graph-based semi-supervised learning is
Laplacian regularization, initially proposed in [135], which propagates the labels
from 	 to the rest of the graph by solving the optimization problem

min
u:X→R

∑
x,y∈X

wxy(u(x) − u(y))2, (3.3)

subject to the constraint that u(x) = g(x) for x ∈ 	. The real-valued solution u(x) is
then thresholded to the nearest label to make a class prediction. The energy in (3.3)
is called the graph Dirichlet energy, and the minimizer u : X → R is exactly the
harmonic extension of the labeled data, which satisfies the boundary value problem

{
Lu(x) = 0, if x ∈ X \ 	

u(x) = g(x), if x ∈ 	,
(3.4)

where L is the graph Laplacian defined by

Lu(x) =
∑
y∈X

wxy(u(x) − u(y)). (3.5)

In other words, we are seeking the smoothest function—in this case harmonic—
that correctly classifies the labeled data points. In semi-supervised learning, this
is often called the semi-supervised smoothness assumption [30], which stipulates
that the labeling is smooth in high density regions of the data set. Since the initial
development in [134, 135], graph-based learning using Laplacian regularization,
and variations thereof, has grown into a wide class of useful techniques in machine
learning [2, 8, 10–12, 15, 24, 25, 29, 55, 57, 58, 73, 117, 118, 121, 123, 128, 129, 131–
133].
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Graph harmonic functions satisfy a mean value property, similar to harmonic
functions on R

d . Indeed, if we rearrange the condition Lu(x) = 0, we obtain

u(x) = 1

dx

∑
y∈X

wxyu(y), (3.6)

where dx = ∑
y∈X wxy is the degree of vertex x. This is a local version of the

continuous mean value property for harmonic functions. It says that the value u(x)

of a graph harmonic function at a node x is equal to the weighted average of the
values u(y) at neighboring nodes y, weighted by the graph edge weights wxy . In
fact, one way to solve equation (3.4) is by iterating the mean value property

uk+1(x) = 1

dx

∑
y∈X

wxyuk(y), (3.7)

for x ∈ X \ 	, fixing uk(x) = g(x) for x ∈ 	. This is exactly the classical Jacobi
iteration for solving a linear system, and while it is not the fastest technique—the
preconditioned conjugate gradient method is much faster—it has a nice interpre-
tation as propagating labels using the neighborhood structure of the graph and is
thus called label propagation in the literature; see [134]. Equation (3.7) can also be
viewed as a diffusion equation on the graph.

Laplacian regularized learning has an important connection to random walks on
graphs. Let X1, X2, . . . be a random walk on the vertices X of the graph, with
transition probabilities P = D−1W , where D = diag(dx1 , . . . , dxn). That is, the
probability pxy of the random walker moving from vertex x to vertex y is given by
pxy = d−1

x wxy . Given a function u : X → R on the vertices of the graph, we can
compute

E[u(Xk+1) − u(Xk) | Xk = x] =
∑
y∈X

pxy(u(y) − u(x)) = − 1

dx

Lu(x).

The object on the right-hand side is called the random walk graph Laplacian, and
we denote it by Lrw; that is,

Lrwu(x) = 1

dx

Lu(x).

The computation above thus yields

E[u(Xk+1) | Xk] = u(Xk) − Lrwu(Xk), (3.8)

and thus, the random walk graph Laplacian is the generator for the random walk. In
particular, if u is graph harmonic, so that Lu(x) = 0, then u(Xk) is a martingale.
Defining the stopping time τ as the first time the random walk hits the labeled data
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set 	, the optional stopping theorem yields that the solution u of Laplace learning
(3.4) satisfies

u(x) = E[u(Xτ ) | X1 = x] =
∑
y∈	

P(Xτ = y | X1 = x)g(y). (3.9)

Thus, the solution of Laplacian regularized graph-based learning (3.4) can be
interpreted as a weighted average of the given labels g(y), weighted by the
probability of the random walk hitting y ∈ 	 first, before hitting any other labeled
data point. This is a reasonable thing to do for semi-supervised learning at an
intuitive level as well. Indeed, if each cluster in the data set is well separated from
the others, then provided the label rate is not too low, the random walk is likely to
stay in the cluster it started in long enough to hit a labeled data point in that cluster,
giving the correct label and propagating labels well within clusters.

At moderately low label rates, Laplacian regularization performs very well for
graph-based semi-supervised learning. However, the performance can become quite
poor at extremely low label rates, which was first noted in [101] and later in [39].
When there are very few labels, the solution of the Laplace learning problem (3.4)
prefers to be nearly constant over the whole graph, with sharp spikes at the labeled
data points, as depicted in Fig. 2a. This is the configuration that gives the least graph
Dirichlet energy, since the spikes are relatively inexpensive when the number of
labeled data points is small. From the random walk perspective, when there are
very few labels, the random walk takes very long to hit a labeled data point, so the
stopping time τ is very large, and the distribution of the random walker approaches
the limiting invariant distribution on the graph, which is proportional to the degree.
Thus, by (3.9) we have

u(x) ≈
∑

y∈	 dyg(y)∑
y∈	 dy

(3.10)

at very low label rates. When the labels are binary g(y) ∈ {−1, 1}, the sign of
the right-hand side of (3.10) is constant over the graph and simply chooses the
class whose labeled points have the largest cumulative degree, which is one way
to explain the very poor performance of Laplace learning at low label rates.

Even in settings where moderate amounts of labeled data will eventually be
acquired, it is often necessary to consider, at least initially, problems with very few
labels where Laplace learning is not useful. One of those areas is active learning,
which refers to machine learning algorithms that address the problem of choosing
the best data points to label in order to obtain superior model performance with
as few labels as possible [110]. Active learning methods incorporate a human-
in-the-loop that can be queried to label new data points as needed, and the goal
is to achieve the highest accuracy with as few labels as possible by intelligently
choosing the next point to label, often in a sequential manner. Active learning
procedures normally start out with extremely small labeled sets that slowly grow
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during the acquisition of new labeled data points, which requires graph-based semi-
supervised learning algorithms that perform well both with small and moderate
amounts of labeled data. A number of graph-based active learning methods have
been proposed [65, 85, 97, 100, 108, 136], including recent methods inspired by
the PDE-continuum limits discussed below [98], and recent applications have been
found in image classification problems [17, 31, 44, 99].

3.3 PDE-Inspired Insights and Algorithms

Another interpretation of the poor performance of Laplace learning at low label rates
is through PDE continuum limits. To explain this, we need to place some additional
assumptions on the graph construction. We assume the vertices X = {x1, . . . , xn}
of the graph are i.i.d. random variables distributed on a domain � ⊂ R

d with a
continuous and positive density ρ : � → (0,∞). We assume the random geometric
graph construction, which uses weights (3.2) for a given bandwidth ε > 0. This is
called a random geometric graph, and in this setting, the expectation of the graph
Dirichlet energy in (3.3) is

n2
∫

�

∫
�

η

( |x − y|
ε

)
(u(x) − u(y))2ρ(x)ρ(y) dxdy

≈ Cηn
2εd+2

∫
�

ρ2|∇u|2 dx, (3.11)

provided u : � → R is a smooth function and ρ is Lipschitz, where Cη is a
positive constant depending only on η. The asymptotics in (3.11) can be verified
formally with Taylor expansions of u and ρ and can also be established rigorously
in the language of Gamma convergence, as in [49]. Thus, the continuum version of
Laplace learning (3.4) is the boundary value problem

{
div(ρ2∇u) = 0, in � \ 	

u = g, on 	,
(3.12)

where 	 ⊂ � is purposely vaguely specified and should encode some notion of the
continuum limit of the labeled data set, and g : 	 → R the continuum limit of the
values of the labels. When 	 does not contain the entire boundary ∂�, we also must
impose homogeneous Neumann conditions on ∂� \ 	.

The presence of the squared density ρ2 as a diffusion coefficient in the PDE
continuum limit illustrates how Laplace learning is able to diffuse labels quickly
in high-density regions where ρ is large and place decision boundaries, which
correspond to sharp transitions in the label function u, in sparse regions where ρ

is small. However, the presence of the labeled set 	 as a boundary condition is
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Fig. 2 Comparison of different semi-supervised learning methods on a toy example with two
labeled data points with labels +1 and −1. The graph consists of n = 20,000 uniformly distributed
random variables on the unit box [0, 1]2 with geometric Gaussian kernel weights with ε = 0.05.
Here WNLL stands for Weighted NonLocal Laplacian [111], and PWLL stands for Poisson
Weighted Laplace Learning [27, 98]. (a) Laplace [135]. (b) p-Laplace, p = 2.05 [47]. (c) p-
Laplace, p = 2.25 [47]. (d) WNLL [111]. (e) High-order Laplace, m = 2 [128]. (f) PWLL
[27, 98]

problematic, since (3.12) is well-posed only when 	 is large enough, and regular
enough. This is due to the fact that the Sobolev function space H 1(�), like the
Lp(�) function spaces, consists of functions that are defined only up to sets of
measure zero. So the values of u(x) at particular points x ∈ � are not well-
defined. This means, for example, that 	 cannot be a collection of isolated points,
as in Fig. 2a; otherwise, (3.12) is ill-posed. In order for (3.12) to be well-posed, the
boundary set 	 must be large enough and sufficiently regular so that we can interpret
what it means to evaluate u(x) for x ∈ 	. Such results are called trace theorems in
the PDE literature, and the restriction u|� is the trace of u on 	; we refer to [46] for
more details.

The last decade has seen a surge of interest in developing graph-based learning
algorithms that are well-posed with arbitrarily small labeled data sets by considering
PDE continuum limits that are insensitive to the labeled data set. One natural idea
proposed in [40] is to consider the p-Dirichlet energy on the graph, given by

∑
x,y∈X

wxy |u(x) − u(y)|p. (3.13)
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In fact, the p-Laplacian was suggested in many other works as well [1, 16, 40–
43, 54, 66, 130] though not in the low label rate context. By a similar argument as
above, the continuum limit energy should be the weighted p-Dirichlet energy

∫
�

ρ2|∇u|p dx.

When p > d, we have the Sobolev embedding W 1,p(�) ⊂ C0,α(�) [46], which
ensures that solutions are Hölder continuous, spikes cannot form, and the continuum
boundary value problem

{
div(ρ2|∇u|p−2∇u) = 0, in � \ 	

u = g, on 	,
(3.14)

is well-posed without any conditions on 	. This well-posedness was established
rigorously in the continuum limit in [112] when p > d, and the number of labeled
points is finite and fixed as the number of unlabeled data points tends to infinity.
In this case, the authors of [112] identified an additional restriction on the length
scale ε > 0 that arises through the nonlocal nature of the graph Laplacian. Namely,
in addition to p > d , it is necessary that nεp � 1 to ensure that spikes do not
form. Since nεd 
 log n is necessary to ensure connectivity of the graph,3 this
condition can only be satisfied when p > d. The authors of [112] also proposed a
modification of p-Laplace learning for which the condition nεp � 1 is not required,
by essentially extending the labels to all nearest neighbors on the graph.

It is worthwhile to pause and note that the condition nεp � 1 comes from a
simple balancing of energy between “spiky” functions and smooth functions on the
graph. If we write (3.11) for the p-Laplacian, we see that the graph p-Dirichlet
energy of a smooth function scales like n2εp+d . On the other hand, the energy of a
constant function with spikes at the labeled nodes is

∑
x∈	

∑
y∈X

η

( |x − y|
ε

)
|g(y) − c|p ≈ C|	|Spnεd,

where C is a constant depending on η, c = u(x) is the constant value of u, S is the
size of the spikes, and |	| is the number of labeled points, all provided the label rate
is sufficiently low and the labeled points are sufficiently far apart. In order to ensure
that a smooth interpolating function has less energy than a spiky one, in the setting
where |	| is constant with n and ε, we require

n2εp+d � nεd ⇐⇒ nεp � 1.

3 The quantity nεd is the average number of neighbors of any nodes on the graph, up to a constant.
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If we allow the number of labels |	| to depend on n and ε, then the condition is

n2εp+d � |	|nεd ⇐⇒ β := 1

n
|	| 
 εp.

The quantity β above is the label rate—the ratio of labeled data points to all data
points—and simply energy balancing arguments show that the label rate β should
satisfy β 
 εp to ensure convergence to a well-posed continuum problem. The case
of finite labels as n → ∞ corresponds to β = n−1, which recovers the condition
nεp � 1. In [28], it was shown that β ∼ ε2 for p = 2 is the threshold for a
spiky versus smooth continuum limit in a setting that allowed the labeled data set to
grow as n → ∞. The proofs in [28] used the random walk interpretation of the 2-
Laplacian and martingale arguments. A negative result was also established in [28]
for p > 2 showing that spikes develop when β � εp. However, a positive result
for p > 2—that β 
 εp is sufficient to prevent spikes from forming—is currently
lacking, outside of the finite label regime covered in [112].

As in Sect. 2, we can take the limit as p → ∞ of the graph p-Dirichlet energy. It
is more illustrative to do this with the necessary conditions for minimizing the graph
p-Dirichlet energy (3.13), which is the graph p-Laplace equation

∑
y∈X

wxy |u(x) − u(y)|p−2(u(x) − u(y)) = 0 (3.15)

for each x ∈ X \ 	. To take the limit as p → ∞, we separate the terms in the
summation above by sign and take the pth root to obtain

⎛
⎝ n∑

y : gxy>0

wxy(u(x) − u(y))p−1

⎞
⎠

1/p

=
⎛
⎝ n∑

y : gyx>0

wxy(u(y) − u(x))p−1

⎞
⎠

1/p

.

where gxy = wxy(u(x) − u(y)). The terms with gxy = 0 do not contribute and can
be neglected. We assume neither sum above is empty; otherwise, all terms in (3.15)
are zero, which is trivial. Sending p → ∞ yields the equation

max
y : gxy>0

(u(x) − u(y)) = max
y : gyx>0

(u(y) − u(x)).

The maximums above are unchanged by replacing the conditions gxy > 0 and gyx >

0 with wxy > 0, as the graph is symmetric so wxy = wyx . Making this replacement,
dividing by two on both sides, and rearranging yield

L∞u(x) := u(x) − 1

2

(
max
Nx

u + min
Nx

u

)
= 0, (3.16)
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where L∞ is called the graph ∞-Laplacian, and we recall that Nx are the graph
neighbors of x defined in (3.1). Notice the maximum and minimum above are over
graph neighbors, which satisfy wxy > 0, but that the weights in the graph do not
enter directly into the operator otherwise. If we were to replacewxy byw

p
xy in (3.15),

then the weights would appear in the graph∞-Laplacian, which is more informative
of the graph structure and was the approach taken in [20]. We use the unweighted
∞-Laplacian here, since it connects more directly to the tug-of-war interpretation
of the graph p-Laplacian, discussed below in this section. It turns out, similar to
the continuum ∞-Laplace equation, that graph ∞-harmonic functions also solve
L∞-type variational problems on graphs (see, e.g., [71, 84]).

The graph ∞-Laplacian was first used for semi-supervised learning in [71, 84],
where it is called Lipschitz learning. In [21], it was shown rigorously using PDE-
continuum limits that solutions of the graph ∞-Laplace equation converged to ∞-
harmonic functions in the continuum, even for finite isolated labeled data points.
This established well-posedness of Lipschitz learning with arbitrarily few labeled
examples. Subsequent work [18, 19] established convergence rates of graph ∞-
harmonic functions to the continuum. As in Sect. 2, specifically (2.6), it is natural to
define a p-Laplacian operator on the graph that is a combination of the 2-Laplacian
and ∞-Laplacian. Here we use the definition

Lp = αLrw + (1 − α)L∞, (3.17)

where α = 1/(p − 1) and α = 1 when p = ∞. This type of graph p-Laplacian
is often called the game-theoretic p-Laplacian due to its connection to tug-of-war
games, as described in Sect. 2. The p-Laplace operator appearing earlier in (3.15), as
the necessary conditions for the p-Dirichlet energy, is usually called the variational
p-Laplacian and is a different operator on the graph, even though they agree in
the continuum. The game-theoretic p-Laplacian on graphs originally appeared in
[92] and was proposed for semi-supervised learning in [20], although the latter
work considered a weighted version of the ∞-Laplacian. In [20], it was shown that
the game-theoretic p-Laplacian is well-posed with arbitrarily few labeled examples
when p > d,4 by showing that the continuum limit was the well-posed continuum
p-Laplace equation with p > d. An interesting and important detail is that the
condition nεp � 1 is not required by the game-theoretic p-Laplacian due to the
strong regularization provided by the ∞-Laplacian.

As in Sect. 2, we can develop a tug-of-war game interpretation for the game-
theoretic graph p-Laplacian. Any function u on the graph satisfying Lpu = 0 also
satisfies, by rearranging (3.17), the equation

u(x) = α

dx

∑
y∈X

wxyu(y) + 1 − α

2

(
max
Nx

u + min
Nx

u

)
, (3.18)

4 The definition of α differs by a constant in [20], so that p has the correct continuum interpretation.
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which is the discrete graph version of the continuous identity (2.9), without the
O(ε) error term. As we did in Sect. 2, we can define a discrete stochastic process
on the graph that produces the martingale property. We define X1, X2, . . . so that,
given Xk , the choice of Xk+1 is with probability α a random walk step from Xk ,
with probability 1−α

2 the vertex y maximizing u(y) over neighbors y of Xk and
with probability 1−α

2 the corresponding minimizing vertex. For the same reasons
as in Sect. 2, any graph p-harmonic function, satisfying Lpu(x) = 0 for all i, is a
martingale when applied to the process Xk , in the sense that

E[u(Xk+1) | Xk] = u(Xk).

This allows us to apply martingale techniques to study properties of the solution
to the game-theoretic p-Laplacian on the graph. The variational graph p-Laplacian
(3.15) does not have any such stochastic tug-of-war interpretation. To our knowl-
edge, no existing works have used the tug-of-war interpretation of the graph
p-Laplacian to study properties of semi-supervised p-Laplacian learning.

Figure 2b and c show the results of the game-theoretic p-Laplacian applied to
the toy two labeled point problem, illustrating how the p-Laplacian corrects the
spike phenomenon in Laplace learning. Note we only need p > 2 here since
d = 2. Many other approaches have been proposed for correcting the degeneracy
in Laplace learning. In [111], the authors proposed to reweight the edges of the
graph that connect to labels more strongly to discourage spike formation and to use
the ordinary graph Laplacian on the reweighted graph. The method is called the
Weighted Nonlocal Laplacian (WNLL). Figure 2d shows an example of the WNLL
on the two-point problem, where we can see that the method essentially just extends
the labels to nearest neighbors on the graph. However, it was shown in [24] that the
WNLL method remains ill-posed at arbitrarily low label rates. In [24], the authors
proposed the properly weighted graph Laplacian, which reweights the graph in a
nonlocal way that is singular near the labeled data, so that the continuum limit
is well-posed with arbitrarily few labels. In [128], it was proposed to use a higher-
order Laplace equation of the form Lmu = 0 for problems with very few labels. The
idea here is that in the continuum, the variational formulation of the equation would
involve u ∈ Hm(�), and when m > d

2 , the Sobolev embedding Hm ⊂ C0,α(�)

ensures that spikes do not form and the continuum limit is well-posed. Figure 2e
shows the two-point problem with higher-order Laplacian regularization. The well-
posedness of higher-order Laplace learning with finite labeled data in the continuum
limit was only very recently addressed in [119]. Finally, there is recent work on
using Poisson equations on graphs for semi-supervised learning in [25, 27, 98], some
of which connects to the earlier work on the properly weighted Laplacian [24]. In
particular, the Poisson Weighted Laplace Learning (PWLL) method from [27, 98]
involves reweighting the graph using the solution of a graph Poisson equation,
whose singularities are sufficient to invoke the results in [24], though the theory for
these methods is currently still under development. Figure 2f shows the behavior
of PWLL on the two-point problem. The volume-constrained MBO method based
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on auction dynamics developed in [64] has also proven to be effective at low label
rates, though we are not aware of any theory to explain this. Other methods at low
label rates include Hamilton-Jacobi equations on graphs [22] and the centered kernel
method [86–88]. We also mention here the work on MBO methods5 for graph-
based semi-supervised learning [14, 48, 62, 93–95] which consider approximations
of the p = 1 Laplacian for graph-based learning. The MBO methods perform semi-
supervised learning on graphs by alternating diffusion and thresholding to label
vectors until convergence, which has the effect of finding the partition of the graph
with the smallest perimeter that fits the labels correctly.

3.4 Consistency Versus Well-Posedness

Much of the work described above is aimed at establishing continuum PDE or
variational descriptions of graph-based machine learning algorithms, which can,
for example, prove that a method like p-Laplace learning provides a well-posed
method for propagating labels on graphs that does not develop spikes or other
degeneracies. Many other works have also considered the continuum limit of the
graph Laplacian, its spectrum, and regularity properties [23, 26, 38, 50, 59, 60].
However, this abundance of work fails to address the problem of whether the
machine learning methods work well or not; that is, they say little or nothing about
whether the predicted label is correct! This is the question of consistency, which is
more important and difficult, and thus less often studied.

As an example, in Fig. 3, we show the results of graph-based semi-supervised
learning applied to the same two-moons example as in Fig. 1. The p-Laplace and
higher-order Laplace methods are the only methods with rigorous well-posedness
results with very few labels, and Poisson learning is expected to enjoy such results,
which is the subject of a forthcoming paper by the first author. Laplace learning and
WNLL are ill-posed in the low-label regime. The best performing method is Poisson
learning [25], followed closely by high-order Laplace, which illustrates that well-
posedness does not always go hand in hand with good consistency properties, or at
least that the relation between consistency and having a well-posedness continuum
limit is not clear or well-understood.

To address the consistency problem, one has to make an assumption on the
underlying cluster structure of the graph, or the labeling function. Then the goal
is to prove that the machine learning algorithm can identify the clusters or correct
labels, under reasonable assumptions on the model and parameters. This kind of
consistency analysis was carried out in the context of spectral clustering in [61],
in which the probability density ρ was assumed to be highly concentrated on
disjoint clusters. Spectral clustering uses the eigenvectors of the graph Laplacian

5 MBO stands for Merriman-Bence-Osher, who originally proposed threshold dynamics
approaches for numerically approximating mean curvature motion [96].
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Fig. 3 Classification results using different graph-based semi-supervised learning algorithms on
the two-moons data set. There are two classes, the upper moon and the lower moon, and the label
function is binary g(x) ∈ {0, 1}. The red points are the only labeled data points. The p-Laplace
method used p = 3, while high-order Laplace learning used order m = 4, both of which gave the
best results over a reasonable search. (a) Data. (b) Laplace [135] (77%). (c) p-Laplace [47] (79%).
(d) WNLL [111] (61%). (e) High-order Laplace [128] (94%). (f) Poisson [25] (100%)

for clustering [116] and are closely related to spectral methods in data science
[9, 34, 37]. Another related work is [113], which assumes a well-separated mixture
model for the data and shows that the spectral embedding reflects the clusters in
the data [113]. Aside from these examples, there is a lack of consistency results for
many graph-based semi-supervised learning methods, which should be viewed as
an opportunity to utilize powerful PDE-continuum limit tools to establish important
and interesting results about machine learning algorithms. We begin such a study in
this paper.

3.5 Deep Semi-supervised Learning

There is a growing body of work on deep semi-supervised learning, which includes
many methods based on graph neural networks; see [125] for a survey. The data
science applications are somewhat different here; in addition to a graph, most
problem formulations assume that each node x ∈ X in the graph has an associated
feature vector v(x) ∈ R

k . An example application would be a citation network,
where each node in the graph is an academic paper and the edges represent citations
between papers. The feature vector v(x) for paper x may contain summary statistics
of key words appearing in the abstract of the paper. An example task is to classify



Consistency of Semi-supervised Learning, Stochastic Tug-of-War Games, and. . . 21

the subject of each paper, using both the graph structure and the feature vectors,
which in general provide complimentary information.6

Let us briefly describe how some graph neural networks work for semi-
supervised learning. A standard feed-forward neural network, or multilayer per-
ceptron, iteratively composes linear functions with nonlinear activation function,
uk+1 = σ(
kuk + bk), where uk ∈ R

nk is the input to the kth layer, 
k ∈ R
nk+1×nk

is the weight matrix for the kth layer, and bk ∈ R
nk+1 the bias vector. A common

choice for the activation σ is the rectified linear unit (ReLU) σ(t) = max{t, 0}, but
other choices are possible. The input to the network is u1, and the output is uL after
L layers.

Graph neural networks incorporate the graph information into the neural network
architecture. A very popular approach is the graph convolutional neural network
(GCN) proposed in [68], which combines the standard feed-forward neural network
with the graph structure as follows:

uk+1(x) = σ

⎛
⎝ 1

dx

∑
y∈X

wxy(
kuk(y) + bk)

⎞
⎠ , (3.19)

where uk : X → R
nk and 
k, bk are as before.7 The inputs are the node feature

vectors u1(x) = v(x), and the output after L layers is, after thresholding, the
network’s prediction of the label for each node in the graph. This output is fed into
a loss function that measures how well the network fits some training data, and the
weights 
k and biases bk are tuned by minimizing the loss function with gradient
descent.

We note that the GCN layer (3.19) is essentially a combination of a feed-forward
neural network with averaging over neighborhoods on the graph. These types of
networks are also called message passing graph neural networks. The reader can
compare this to label propagation, see (3.7), and notice that when σ is the identity
σ(t) = t , 
k = I , and bk = 0, this appears to be exactly label propagation.
The difference is that with graph neural networks, the operation acts on the feature
vectors of the nodes, while label propagation acts directly on the labels, since feature
vectors are not available. The graph convolutional layer (3.19) can be viewed as a
special case of a more general class of of graph neural networks based on a spectral
definition of convolution [35]. We also mention an important variant called graph
attention networks [115], which allows the weights in (3.19) to be learned using
an attention mechanism, in a similar way that transformers utilize the attention
mechanism in large language models [114].

The analysis of graph neural network models like the GCN given in (3.19) would
be substantially different from the analysis in this paper. The important problems

6 A standard test data set called PubMed [124] uses exactly this setup.
7 To be precise, the method in [68] divides by

√
dxdy in the sum, instead of dx , and adds self-loops

to the graph.
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concern how the learned weights 
k and biases bk interact with the graph structure
during training, especially for deeper networks, and whether the network relies
more on the graph structure or the node features for classification. Although there
is ostensibly a connection to label propagation (3.7), this is largely superficial,
since GCNs (3.19) usually only have a handful of layers, say 2 or 3, while label
propagation is often run for hundreds of steps or more, in order for the method to
converge to the solution of Laplace’s equation. Another difference with the setting
of this paper is that many recent graph neural network approaches are aimed at
tackling heterophily in graphs, in which adjacent nodes may very often belong to
different classes [81, 122, 127, 137]. In this case, the semi-supervised smoothness
assumption does not hold, and the question is how to combine information from
both the feature vectors and graph structure, when neither on their own is highly
informative.

There are, nevertheless, some settings where the analysis in this paper may be
relevant in deep graph neural networks. Many recent works have shown that one can
obtain effective methods by decoupling the graph diffusion or averaging in (3.19)
from the neural network weights 
k and biases bk [6, 36, 51, 63, 109]. One way
to do this, proposed in [51], is to first run the feature vectors v(x) for each node
through a standard feed-forward neural network to make label predictions for each
node x and then to diffuse those predictions over the graph before feeding them
into a loss function. In the case of [51], the authors used the PageRank algorithm
[52], which is essentially a graph reaction-diffusion equation [126], and the label
predictions entered through the source term. The particular choice of PageRank is
not essential, and other works have shown that various forms of graph diffusion
can easily substitute [6, 109]. Thus, improvements in graph-based semi-supervised
learning algorithms, especially theoretical guarantees, can have a direct impact on
deep semi-supervised learning methods that decouple the graph from the neural
network.

4 Consistency Results for the p-Laplacian

We present here a general framework for proving consistency results for graph-
based semi-supervised learning with the game-theoretic p-Laplacian. The frame-
work is based on the stochastic tug-of-war interpretation of the p-Laplacian on a
graph that was introduced in Sect. 3. We illustrate how to use the framework to
prove some preliminary consistency results on geometric graphs and stochastic
block model graphs and then highlight some open research questions for future
work.

As in Sect. 3, let X = {x1, . . . , xn} denote our data points, which are the vertices
of the graph, and let W = (wxy)x,y∈X be a symmetric (i.e., wxy = wyx) weight
matrix which encodes the graph structure. We assume the graph is connected. We
let dx = ∑

y∈X wxy be the degree of vertex x ∈ X , and we recall that Nx ⊂ X
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denotes the graph neighbors of x, as defined in (3.1). Let �2(X ) denote the space of
functions u : X → R, and define the game-theoretic p-Laplacian on the graph G is
the operator Lp : �2(X ) → �2(X ) defined in (3.17) in Sect. 3, where α = 1/(p−1)
and p ≥ 2. Let us denote by 	 ⊂ X the labeled data set and g : 	 → R the labels.
The game-theoretic p-Laplacian regularized semi-supervised learning problem is
given by the boundary value problem

{
Lpu = 0, in X \ 	

u = g, on 	.
(4.1)

Since the graph is connected, the p-Laplace equation (4.1) can be shown to have a
unique solution via the Perron method [20].

In this section, we address the question of consistency of p-Laplacian regulariza-
tion. That is, supposing that g is the restriction to 	 of a label function on the whole
graph g : X → R that is in some sense smooth with respect to the geometry of the
graph, we aim to give conditions under which the solution u of (4.1) is close to g at
the unlabeled vertices X \ 	. In other words, consistency asks the question: Under
what conditions on the underlying label function g, the graph structure W , and the
label set 	 does the solution of p-Laplacian regularization make the correct label
predictions? In this paper, we consider the noise-free setting, where we observe the
true labels without any noise or corruption. It would be interesting to consider the
setting of noisy labels in future work; we discuss this more in Sect. 5.

In consistency of graph-based learning, it is essential that the underlying label
function g is in some way regular or smooth with respect to the graph structure.
In other words, there should be some degree of correlation between the labels of
vertices and their nearby neighbors in the graph topology. Otherwise graph-based
learning is not useful and would not be expected to yield better results than fully
supervised learning that ignores the graph structure. In this section, we present
results for two different types of graph structures. In Sect. 4.2, we present results
for geometric graphs, where the vertices are sampled from a Euclidean domain and
nearby points are connected by edges. In this case, we assume that g has some
degree of regularity with respect to the underlying Euclidean geometry. In Sect. 4.3,
we present results for classification on stochastic block model graphs, where there
is no continuous geometric structure (SBM graphs can be thought of as having a
discrete geometric structure, but this is not directly related to continuous PDEs). In
this case, the label function is concentrated on the blocks, and only changes between
blocks where there are relatively few edges.

4.1 Results on General Graphs

Before presenting our main results in Sects. 4.2 and 4.3, we present our general
stochastic tug-of-war framework on general graphs in Sect. 4.1.1, which amounts to
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selecting suboptimal strategies in the tug-of-war game to produce tractable upper
and lower bounds on the solution u of the p-Laplace equation (4.1). It is interesting
to remark that we do not explicitly use the symmetry assumption wxy = wyx in our
results, and our results hold with minor modifications to the quantities involved for
directed (i.e., nonsymmetric) graphs.

4.1.1 The Tug-of-War Lemma

In this section, we present our main tug-of-war result (Lemma 4.3), which uses
the stochastic tug-of-war game and martingale techniques to bound the difference
u(x) − g(x), where u solves (4.1). These techniques are later applied to geometric
graphs in Sect. 4.2 and to stochastic block model (SBM) graphs in Sect. 4.3. The tug-
of-war game for the p-Laplacian is based on the following dynamic programming
principle associated with the p-Laplacian, which was discussed and established in
Sect. 3.

Proposition 4.1 (Dynamic Programming Principle) If u ∈ �2(X ) and x ∈ X
such that Lpu(x) = 0 then

u(x) = α

dx

∑
y∈X

wxyu(y) + 1 − α

2

(
min
Nx

u + max
Nx

u

)
, (4.2)

where we recall that α = 1/(p − 1) and p ≥ 2.

We call Eq. (4.2) a dynamic programming principle (DPP), because it expresses u

at a point via u at nearby points and is closely related to the DPPs that appear in
optimal control problems (see, e.g., [7]). In fact, the DPP arises from the stochastic
two player tug-of-war game described in Sect. 3. The game is played between two
players Paul and Carol. The game ends when the token of the game arrives at a
point x ∈ 	, and Paul pays Carol g(x). Thus, Paul wants the game to end where g is
smallest, while Carol wants the opposite. At each step of the game, with probability
α, the token moves from its current position x to a neighbor y ∈ Nx via a single step
of a random walk on the graph (i.e., the next position is chosen randomly according
to the distribution P(y) = wxy/dx). With probability (1 − α)/2, Paul chooses the
next position of the token, and with probability (1 − α)/2, Carol chooses the next
position. We will use this interpretation in the proofs of our main results, without
explicitly writing down the game or the appropriate spaces of strategies.

In order to use the tug-of-war game, we define a stochastic process that
corresponds to a suboptimal strategy for Paul. We recall that α = 1/(p−1) and pick
any p ≥ 2. Let u ∈ �2(X ) and x ∈ X , and consider the following stochastic process
defined on X associated with u and an initial point x ∈ X . We define the sequence
of random variables X0, X1, X2 as follows. We first set X0 = x. Then, conditioned
on Xi , we choose Xi+1 as follows: First, if Xi ∈ 	, then we set Xi+1 = Xi ,
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so the process gets stuck when it hits 	. If Xi 	∈ 	, then we choose Xi+1 by the
following:

1. With probability α, we take an independent random walk step, that is

P(Xi+1 = y | Xi = x) = wxy

dX

.

2. With probability 1
2 (1 − α), we choose Xi+1 ∈ argmax

y∈NXi

u.

3. With probability 1
2 (1 − α), we choose Xi+1 ∈ argmin

y∈NXi
∩	

g, when Nxi
∩ 	 	= ∅,

and Xi+1 ∈ argmin
y∈NXi

u, when Nxi
∩ 	 = ∅.

All the probabilistic ingredients are chosen independently. When there are multiple
choices for Xi+1 in steps 2 and 3, the particular choice is irrelevant to the analysis,
and any concrete choice will do (e.g., say, choose the vertex xi with the smallest
index). The stochastic process X0, X1, X2, . . . , defined above can be interpreted as
a realization of the two-player game where Carol plays optimally and our choice of
strategy for Paul is to move to 	 as soon as possible, which is the suboptimal part
of his strategy.

We now establish the sub-martingale property corresponding to our stochastic
process, which is a key ingredient in our analysis.

Lemma 4.2 Let u be the solution to (4.1). Then the random variables Zi = u(Xi)

form a sub-martingale with respect to Xi , that is E[Zi+1 | Xi] ≥ Zi .

Proof Conditioned on Xi ∈ 	, we have E[u(Xi+1) | Xi] = u(Xi), since Xi+1 =
Xi . Conditioned on Xi 	∈ 	, we further condition on steps 1–3 in the definition of
Xi+1 and use u = g on 	 to obtain

E[u(Xi+1) | Xi] = α

dXi

∑
y∈X

wXi,yu(y) + 1 − α

2

(
max
NXi

u + min
V

u(y)

)
, (4.3)

where V = Nxi
when NXi

∩ 	 = ∅ and V = NXi
∩ 	 when NXi

∩ 	 	= ∅. Using
Proposition 4.1, we have

E[u(Xi+1) | Xi] ≥ α

dXi

∑
y∈X

wXi,yu(y) + 1 − α

2

(
max
NXi

u + min
NXi

u

)
= u(Xi),

which completes the proof. ��
We now give the main tug-of-war lemma, which uses the sub-martingale property

to bound u(x).
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Lemma 4.3 Let u be the solution to (4.1). Define the stopping time

τ = inf{i ≥ 0 : Xi ∈ 	}. (4.4)

Then for any x ∈ X , it holds that

u(x) ≤ E[g(Xτ ) | X0 = x]. (4.5)

Proof By Lemma 4.2, Zi = u(Xi) is a sub-martingale, and so by Doob’s Optional
Stopping Theorem for sub-martingales, see, e.g., [120]; we have

u(x) = E[Z0 | X0 = x] ≤ E[Zτ | X0 = x] = E[u(Xτ ) | X0 = x]
= E[g(Xτ ) | X0 = x], (4.6)

since Xτ ∈ 	. ��
Let us give a brief preview of how Lemma 4.3 is used. We can subtract g(x) from

both sides of (4.5) to obtain

|u(x) − g(x)| ≤ E[|g(Xτ ) − g(X0)| | X0 = x].

If g is Lipschitz continuous, which is a reasonable assumption on a continuous
geometric graph, then the right-hand side is O(|Xτ − X0|), and so bounding
|u(x) − g(x)| amounts to estimating the stopping time τ . In this context, it is not
especially important that Paul chooses the point in Nxi

∩ 	 that minimizes g, and
the game could be modified so Paul picks, say, a random boundary point. However,
for SBM graphs, the arguments are different, and the key is to allow the noise to exit
the game, since the noise sees the block structure. In the SBM setting, it is important
for Paul to choose the minimizer of g over Nxi

∩ 	, since g cannot be Lipschitz in
any sense on an SBM graph. The interested reader can skip to Sect. 4.3 for the SBM
analysis, which is independent of much of the geometric results below.

Throughout the rest of the paper, we make the strong, but simplifying, assump-
tion that every vertex x ∈ X has a neighbor y ∈ Nx with y ∈ 	, meaning:

(A1) We assume that for every x ∈ X

	 ∩ Nx 	= ∅.

Assumption (A1) is a simplifying assumption that makes much of the analysis
tractable. Essentially, it allows us to estimate the stopping time τ defined in (4.4) in
many different settings by allowing Paul to end the game quickly. Depending on the
graph model, assumption (A1) is a fairly strong assumption on both the label rate
and the graph structure. In Sects. 4.2 and 4.3, we will give conditions under which
(A1) holds for geometric and SBM graphs. The results in this paper are preliminary,
and we discuss the importance of relaxing assumption (A1) in Sect. 5. This seems
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to us to be a nontrivial task that will require fine estimates on martingale stopping
times.

4.1.2 General Consistency Results

Here, we use the martingale lemma, Lemma 4.3, to establish some general
consistency results, which will rely on a Lipschitz or bounded derivative condition
on the label function g. Thus, for g : X → R, we need to construct a notion of
gradient that is consistent with the gradient in the continuum when working with
geometric graphs with a length scale ε. Given a graph described by a weight matrix
W , we let diam(W) denote the diameter of the graph, which is defined as the largest
number of hops required to get from any node to any other node in the graph. When
the graph is a random geometric graph with bandwidth ε > 0, then each hop travels
at most distance ε, and so we would expect to have diam(W) = O(ε−1). This
motivates the definition of the graph length scale.

Definition 4.4 Given a weighted graph W , the graph length scale εW is defined as

εW = 1

diam(W)
.

We can now define the gradient of g as

∇g(x, y) = g(x) − g(y)

εW

,

for any x, y ∈ X connected by an edge, so wxy > 0. We also define

‖g‖∞ = max
x∈X

|g(x)|,

and

‖∇g‖∞ = max
x,y∈X

{|∇g(x, y)| 1wxy>0
}
.

This is to say, the norm ‖∇g‖∞ is the maximal absolute difference of g across all
edges in the graph divided by the graph length scale εW .

Define the smallest weighted ratio of labeled neighbors to neighbors to be

δ := min
x∈X

Σy∈Xwxy1y∈	

Σz∈Xwxz

. (4.7)

Note that if (A1) holds, then δ > 0.
The following theorem gives our first consistency result on general graphs.
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Theorem 4.5 Assume (A1) holds. Then, for any x ∈ X ,

|u(x) − g(x)| ≤
(
2 log(‖g‖∞‖∇g‖−1∞ ε−1

W )

1 − α + 2αδ
+ 2

)
‖∇g‖∞εW . (4.8)

Proof Throughout the proof, let us write ζ = ‖∇g‖∞εW for simplicity. Define the
stopping time τ as in (4.4). By Lemma 4.3, we have that

u(x) − g(x) ≤ E[g(Xτ ) − g(x) | X0 = x].

Let us estimate the right-hand side above by fixing some k (which we will choose
shortly) and conditioning on τ > k or τ ≤ k. For simplicity of notation, we will
drop the conditioning X0 = x below. Then we have

u(x) − g(x) ≤ E[g(Xτ ) − g(x) | τ ≤ k]P(τ ≤ k)

+ E[g(Xτ ) − g(x) | τ > k]P(τ > k). (4.9)

First, we estimate the probability P(τ > k). Since each vertex has a labeled neighbor
(by Assumption (A1)), each step has probability at least 1

2 (1− α) + αδ of hitting 	

and exiting, so a general estimate is

P(τ > k) ≤
[
1 − 1

2 (1 − α) − αδ
]k ≤ e− k

2 (1−α)−αδk. (4.10)

For any k, we can use a telescoping series to obtain

g(Xk) − g(x) =
k−1∑
j=0

(g(Xj+1) − g(Xj )) ≤
k−1∑
j=0

‖∇g‖∞εW = kζ.

It follows that

E[g(Xτ ) − g(x) | τ ≤ k] ≤ kζ. (4.11)

Substituting (4.10) and (4.11) in (4.9), we have that

u(x) − g(x) ≤ kζP(τ ≤ k) + E[g(Xτ ) − g(x) | τ > k]e− k
2 (1−α)−αδk (4.12)

≤ kζ + 2‖g‖∞e− k
2 (1−α)−αδk.

We want to balance the two terms in the right-hand side of (4.12), so we choose k

so that

ζ = ‖g‖∞e− (1−α)k
2 −αδk,
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or equivalently

k = 2 log(‖g‖∞/ζ )

1 − α + 2αδ
.

Therefore, we have

u(x) − g(x) ≤ ζ(k + 2) =
(
2 log(‖g‖∞/ζ )

1 − α + 2αδ
+ 2

)
ζ. (4.13)

To estimate g − u, we use a similar argument, where we replace u by −u and g by
−g. This concludes the proof. ��

It turns out we can use the same argument to establish a gradient estimate on
the solution u of the p-Laplace equation, which shows that the gradient of u is
controlled by the gradient of g.

Theorem 4.6 Assume (A1) holds, and let x and y be two neighbors on the graph.
Then,

‖∇u‖∞ ≤
(
4 log(‖g‖∞‖∇g‖−1∞ ε−1

W )

1 − α + 2αδ
+ 5

)
‖∇g‖∞.

Proof We apply the triangle inequality

|u(x) − u(y)| ≤ |u(x) − g(x)| + |u(y) − g(y)| + |g(x) − g(y)|

and use the bound in Theorem 4.5 twice, noting that g(x) − g(y) = ∇g(x, y)εW .
��

4.1.3 Vertex Classification Consistency Results

We now turn to vertex classification results, where the label function g : X →
R takes constant values, and hence it will have sharp transitions across edges in
the graph. Thus, ‖∇g‖∞ may not be small, and so Theorems 4.5 and 4.6 are not
applicable. We will focus on binary classification, where every point x ∈ X has a
label zero or a label one, so g : X → {0, 1}. To use the p-Laplace equation (4.1), we
solve the equation with the binary values for the boundary condition g : 	 → {0, 1}
and threshold the solution u(x) at 1

2 to obtain a binary label prediction for each
vertex x ∈ X \ 	. Thus, we make the following definition.

Definition 4.7 Given g : X → {0, 1}, a point x ∈ X is classified correctly if
g(x) = 1

u(x)≥ 1
2
, where u is the solution to (4.1).

In this section, we focus on identifying which points in the graph are classified
correctly. This requires a few definitions.
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Definition 4.8 A path on the graph is a sequence of edges which joins a sequence
of vertices. The length of a path is the number of edges the path consists of.

Definition 4.9 The distance dist(x, y) between two vertices x, y ∈ X is the length
of the shortest path connecting the vertices. The distance between a vertex x and a
set of vertices A ⊂ X , denoted dist(x,A), is the smallest distance between x and
any of the vertices y ∈ A.

For i = 0, 1, we define

Xi = {x ∈ X : g(x) = i} (4.14)

and note that X = X0 ∪ X1. For any integer m ≥ 0 and i = 0, 1, we define

Ai
m = {x ∈ Xi : dist(x,X1−i ) ≤ m},

and note that Am = A0
m ∪A1

m. That is to say, A
0
m is the set of points from class 0 that

are at most m steps away from the set of class 1 points and vice versa for A1
m. This

means that when m is small, the set Am contains points that are sufficiently close to
the boundary between the two classes that we may expect data points in Am to be
misclassified.

Observe that for any x ∈ X , there is a positive probability of at least 1−α
2 +αδ =

p−2+2δ
2(p−1) of hitting the boundary 	.. Even when p = 2,, this probability is positive,
since it is exactly δ > 0. We use this to establish the classification bound below,
which shows that whenever a vertex x is sufficiently far, in terms of graph distance,
away from the true decision boundary, it will be classified correctly.

Theorem 4.10 Assume (A1). Let k be the smallest integer strictly larger than

2 log(2)

1 − α + 2αδ
= 2(p − 1) log(2)

p − 2 + 2δ
. (4.15)

Then every x 	∈ Ak is classified correctly.

Proof Let x ∈ X \ Ak , and assume X0 = x. Define the stopping time τ as in (4.4).
For any point x ∈ X , we have that

u(x) − g(x) ≤ E[g(Xτ ) − g(x) | τ ≤ k]P(τ ≤ k)

+ E[g(Xτ ) − g(x) | τ > k]P(τ > k). (4.16)

We want to classify x correctly whether it belongs toX0 or X1. Recall that the labels
of vertices in X0 are zeros and in X1 are ones.

Since x /∈ Ak , the labels of vertices reached by the stopping time τ ≤ k can only
be labels from the same class, so g(Xτ ) = g(x). Thus, when τ ≤ k, the first term
on the right-hand side of (4.16) is zero. Then, using that g is between zero and one,
and that Eq. (4.10) holds, we obtain
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u(x) − g(x) ≤ E[g(Xτ ) − g(x) | τ > k]P(τ > k) ≤ P(τ > k) ≤ e− k
2 (1−α)−αδk

(4.17)
The analogous estimate on g − u is similarly obtained, and so we have

|u(x) − g(x)| ≤ e− k
2 (1−α)−αδk.

For correct classification of x, we need precisely |u(x) − g(x)| < 1
2 , which is

equivalent to

e− k
2 (1−α)−αδk <

1

2
,

and is satisfied by the choice of k in (4.15)
��

4.2 Geometric Graphs

In this section, we specialize our results to geometric graphs, which include the
very commonly used random geometric ε-graphs and k-nearest neighbor (k-NN)
graphs. The purpose of this section is to provide conditions under which ε-graphs
and k-NN graphs, along with other graphs with geometric ε-scaling, fulfill the
general assumption (A1) in Sect. 4.1.1, so that we can apply the theory developed in
Sect. 4.1.1 to these graphs.

4.2.1 Main Assumptions

In order to construct ε-graphs and k-NN graphs and construct the labeled data set
	, we need the following assumptions. Note that assumptions (A2), (A3), and (A4)
also appear in [28].

(A2) Let d ≥ 2 and let � ⊂ R
d be an open, bounded, and connected domain with

a Lipschitz boundary. Let x1, x2, . . . , xn be i.i.d. with continuous density ρ

satisfying

0 < ρmin := inf
x∈�

ρ(x) ≤ sup
x∈�

p(x) =: ρmax < ∞.

We define X = {x1, x2, . . . , xn}.
(A3) We construct 	 in the following way. Let g ∈ Lip(�), where � is defined

as in (A2). Let β ∈ (0, 1). For each x ∈ X , define an independent random
variable z(x) ∼ Bernoulli(β), and assign x ∈ 	 whenever z(x) = 1. Each
training data point x ∈ 	 is assigned a label g(x).
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(A4) We define an interaction potential η : [0,∞) → [0,∞). The interaction
potential η(·) has support on the interval [0, 1], it is nonincreasing, and η

restricted to [0, 1] is Lipschitz continuous. For t ≥ 1 we extend η so that
η(t) = 0. Moreover, η( 12 ) > 0 and η integrate to 1 :

∫
Rd

η(|x|)dx = 1.

We define ηε(t) = 1
εd η(t/ε).

(A5) (Geometric graphs of length ε) There exist positive constants c1, c2, ε1, ε2
such that for every x, y ∈ X we have that

c1ε
−d
1 1|x−y|<ε1 ≤ wxy ≤ c2ε

−d
2 1|x−y|<ε2 .

We note that assumptions (A2) and (A4) are used in the ε−graph construction (see
Sect. 4.2.2). In Lemma 4.12, we prove that assumption (A5) holds for ε-graphs.
Assumption (A3) has to do with how the labeled data points are chosen, and we
note that the parameter β ∈ (0, 1) is the label rate.

Assumption (A2) is satisfied for k-NN-graphs by construction. In Lemma 4.16,
we prove that assumption (A5) holds with high probability for k-NN graphs.
Applying (A5), we prove (A1) holds with high probability, which means that
Theorems 4.5 and 4.6 hold. For x ∈ X we define dn(x) and pn(x) as follows:

dn(x) = Σy∈Xwxy, (4.18)

pn(x) = Σy∈Xwxy1y∈	. (4.19)

Then, as before, we define

δ = min
x∈X

pn(x)

dn(x)
= min

x∈X
Σy∈Xwxy1y∈	

Σz∈Xwxz

. (4.20)

4.2.2 The ε-Graphs

Let 0 < ε ≤ 1. We construct our ε-graph as follows.

Definition 4.11 We define an ε-graph according to the following rules. The vertices
X = {x1, . . . xn} are constructed according to (A2), and the labeled set 	 is chosen
according to (A3). We assume (A4), and the symmetric edges wxy = wyx are
obtained as follows:

wxy = ηε(|x − y|) (4.21)
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Lemma 4.12 ε-Graphs satisfy assumption (A5)with constants c1 = 2−dη( 12 ), c2 =
sup η, ε1 = ε

2 , and ε2 = ε.

Proof By their construction, ε−graphs have the following property:

wxy = ε−dη

( |x − y|
ε

)
∈[ε−dη( 12 )1|x−y|< ε

2
, ε−d sup η1|x−y|<ε] (4.22)

≡[(ε/2)−d(2−dη( 12 ))1|x−y|< ε
2
, ε−d sup η1|x−y|<ε].

(4.23)

So (A5) holds, with the constants stated in the Lemma. ��

4.2.3 The k-Nearest Neighbors Graphs

We follow [23] in constructing a k-NN graph. We fix a number k ∈ N, such that
1 ≤ k ≤ n − 1. The number of neighbors Nε(x) of x in an ε-ball is

Nε(x) :=
∑

j :0<|xj −x|≤ε

1

and the distance to the k-nearest neighbor is

εk(x) := min{ε > 0 : Nε(x) ≥ k}.

Definition 4.13 We define a relation ∼k on X × X by declaring

xi ∼k xj

if xj is among the k nearest neighbors of xi .

Definition 4.14 For the symmetric k-nearest neighbor graph, we construct the
vertices according to (A2). If xi ∼k xj or xj ∼k xi , we place an edge between
xi and xj . The edges are symmetric, meaning wxy = wyx and

wxy = ηmax{εk(x),εk(y)}(|x − y|).

Definition 4.15 In the mutual k-nearest neighbor graph, we construct the vertices
according to (A2). If xi ∼k xj and xj ∼k xi , we place an edge between xi and xj .
The edges are symmetric, meaning wxy = wyx and

wxy = ηmin{εk(x),εk(y)}(|x − y|).

In the following lemma, we verify that (A5) holds for k-NN graphs.
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Lemma 4.16 There exists a c > 0, such that symmetric k-NN graphs and mutual
k-NN graphs satisfy assumption (A5) with probability 1 − 4 exp(− c

2 (k/n)2/dk),

provided k is not too large, meaning

1 ≤ k ≤ cnεd

holds.

Proof Consider x ∈ X—a vertex in the k−NN graph. We set

γ = 1√
2
(k/n)1/d .

Let αd be the volume of the d-dimensional Euclidean unit ball.
We apply Lemma 3.8 from [23] to estimate the expected value of the number of

neighbors: we have that

P(|αdρ(x)nεk(x)d − k| ≥ 1
2k) ≤ 4 exp(−cγ 2k).

Thus, with probability 1 − 4 exp(−cγ 2k), we obtain

αdρ(x)nεd
k ∈ [ k2 , 3k

2

]
,

or equivalently

(
k

2αdρ(x)n

)1/d

≤ εk ≤
(

3k

2αdρ(x)n

)1/d

.

Denote m := infx∈X ( k
2αdρ(x)n

)1/d and M := supx∈X( 3k
2αdρ(x)n

)1/d . Thus, with

probability at least 1 − 4 exp(−cγ 2k), we have:

m ≤ εk ≤ M.

In order to obtain the constants in (A5), we bound wxy from below and above. Note
that εk comes from the vertex x or the vertex y and that η is a nonincreasing function.

We start with the lower bound of wxy :

wxy = 1

εd
k

η

( |x − y|
εk

)
= 1

εd
k

η

( |x − y|
εk

)
1|x−y|≤εk

= 1

εd
k

η

( |x − y|
εk

)
1|x−y|≤m/2

+ 1

εd
k

η

( |x − y|
εk

)
1|x−y|∈[m/2,εk]
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≥ 1

εd
k

η

(
m/2

εk

)
1|x−y|≤m/2

≥ 1

εd
k

η

(
1

2

)
1|x−y|≤m/2

= η

(
1

2

)(
m

2εk

)d (m

2

)−d

1|x−y|≤m/2

≥ η

(
1

2

)( m

2M

)d (m

2

)−d

1|x−y|≤m/2.

We choose ε1 = m
2 and c1 = η( 12 )(

m
2M )d.

Next, we compute the upper bound for the edge weight:

wxy = 1

εd
k

η

( |x − y|
εk

)
= 1

εd
k

η

( |x − y|
εk

)
1|x−y|≤εk

≤ ε−d
k max η1|x−y|≤εk

= M−d

(
M

εk

)d

max η1|x−y|≤εk

≤ M−d

(
M

m

)d

max η1|x−y|≤M

≤ M−d1|x−y|≤M

{(
M

m

)d

max η

}
.

Now, we choose c2 =
{(

M
m

)d
max η

}
and ε2 = M . This establishes all the constants

in (A5), which concludes the proof. ��

4.2.4 General Geometric Graphs

Now that we have shown that ε-graphs and k-NN graphs satisfy (A5), and we
proceed to study general geometric graphs, which are essentially only assumed
to satisfy (A5). This covers a wide variety of geometrically constructed graphs,
including, but not limited to, ε-graphs and k-NN graphs.

Theorem 4.17 Assume that (A2),(A3), (A4), (A5) hold. Consider the labeling rate
β and δ defined as in (4.20). Then, there exist positive constants c3, c4, and c such
that δ ≥ cβ and (A1) hold with probability at least

1 − n exp(−c3nεd
2 ) − n exp(−c4βnεd

1 ).
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Here c3, c4, and c only depend on η, d,�, and ρ.

Proof Fix x ∈ X . Because of (A5), we have that:

dn(x) =
∑
y∈Nx

wxy ≤
∑

y∈X \x
c21|x−y|≤ε2ε

−d
2 := �

Let us consider all the vertices in X \ x and treat them as random variables, calling
them Y1, . . . , Yn−1. Define ψ1(Yi) = c21|x−Yi |≤ε2ε

−d
2 and then it follows that

� =
n−1∑
i=1

ψ1(Yi) =
n−1∑
i=1

c21|x−Yi |≤ε2ε
−d
2 .

Thus,

E[�] =
∑

Yi∈X \x
E[c21|x−Yi |≤ε2ε

−d
2 ] = (n − 1)c2

∫
�∩B(x,ε2)

ε−d
2 ρ(y)dy.

We apply Bernstein’s inequality (30) in [20] to � obtaining that

P(|� − E(�)| > cd(n − 1)) ≤ 2 exp
( −(n − 1)c2d
2(σ 2 + 1

3bcd)

)

for σ 2 = V ar(ψ1(Yi)) and b = sup |ψ1(Yi)|. We observe that b =
sup |c21|x−Yi |≤ε2ε

−d
2 | = c2ε

−d
2 and also

σ 2 = V ar(c21|x−Yi |≤ε2ε
−d
2 ) = c22ε

−2d
2 V ar(1|x−Yi |≤ε2) ∼ Cε−d

2 ,

because V ar(1|x−Yi |≤ε2) is of order ε
d
2 as we integrate over a ball of radius ε2. Thus,

σ 2 and b depend on �, ρ, c2, as well as on ε2 explicitly.
We union-bound, obtaining that there exists two positive constants c5 and c3 for

which

� ≤ cd(n − 1) + (n − 1)c2

∫
�∩B(x,ε2)

ε−d
2 ρ(y)dy = c5(n − 1)

holds with probability at least 1−n exp{−c3nεd
2 }. The same line of reasoning applies

to pn(x) defined in (4.19). We define

ψ2(Yi) := c11|x−Yi |≤ε1ε
−d
1 1z(Yi )=1

and �̂ =∑n
i=1 ψ2(Yi). We compute
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E[�̂] =
∑

Yi∈X \x
E[c11|x−Yi |≤ε1ε

−d
1 1z(Yi )=1] = (n − 1)c1β

∫
�∩B(x,ε1)

ε−d
1 ρ(y)dy.

Thus there exists two positive constants c6 and c4 such that with probability 1 −
n exp(−c4βnεd

1 ) we have

pn(x) ≥ (n − 1)βc6.

Thus, there exist constants c5, c6 such that

dn(x) < c5(n − 1) (4.24)

and

pn(x) ≥ c6β(n − 1) (4.25)

hold for all all x with probability 1 − n exp(−c3nεd
2 ) − n exp(−c4βnεd

1 ).

We use the results we just obtained for (4.24) and (4.25) to estimate that

δ = min
x∈X

pn(x)

dn(x)
≥ min

c5(n − 1)β

c6(n − 1)
≥ cβ. (4.26)

We now focus on proving (A1). Pick any vertex x ∈ X. Since by definition

pn(x) = Σy∈Xwxy1z(y)=1

is a sum of nonnegative quantities, and by (4.25), there exists a neighbor x� of x

such that

wxx�
1z(x�)=1 > 0.

Thus, z� = 1 for some vertex x�, therefore x� is labeled, and so x has a neighbor in
	. This is a restatement of (A1). This concludes the proof. ��
In particular, with probability at least 1 − n exp(−c3nεd

2 ) − n exp(−c4βnεd
1 )

assumption (A1) holds for k-NN graphs and ε-graphs. Therefore, Theorems 4.5
and 4.10 also hold (with the same probability) for ε-graphs and k-NN graphs.

Corollary 4.18 For an ε-graph and g ∈ Lip, we have that

|u(x) − g(x)| ≤ ε Lip(g)
( 2 log sup g

ε Lip(g)

1 − α + 2αδ
+ 2
)

holds with with probability at least 1 − n exp(−c3nεd) − n exp(−c4βnεd).
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Proof The statement of Corollary 4.18 holds from Theorem 4.5, the observation
|g(z) − g(y)| ≤ Lip(g)|z − y|, and the fact that the distance between nearby nodes
|z − y| is of size ε. ��

4.3 Stochastic Block Model Graphs

In this section, we apply our ideas and results from Sect. 4.1.1 to the stochastic
block model (SBM) graph. Since SBM graphs have discrete geometric structure, as
opposed to the continuous geometric structure of a random geometric graph, there
is no obvious relationship to a continuum PDE on an SBM graph. Nevertheless, the
tug-of-war lemma provides useful results in this setting.

We first define an SBM graph. The edge weights are binary wxy = 1 if there is an
edge between x and y and wxy = 0 if there is no edge. We partition the vertices X
of the SBM graph into two disjoint blocks X = X0 ∪X1 according to an underlying
binary label function g : X → {0, 1}, as in (4.14). We define r, q ∈ (0, 1) as the
two key probabilities for an SBM graph: r is the probability of an intra-class edge,
and q is the probability of an interclass edge. In other words,

P(wxy = 1) = r if x, y ∈ Xi for i = 0 or i = 1

P(wxy = 1) = q if x ∈ Xi and y ∈ X1−i for i = 0 or i = 1.

By (A3), the probability that any vertex is labeled is β; thus, only a portion 	 ∈ X
is labeled. The rest of X is unlabeled, and the goal is to label the points in X0 and
X1 correctly. We also define N0 = |X0|, N1 = |X1| and n = |X | = N0 + N1. Let
us set 	i = 	 ∩ Xi so that 	 = 	0 ∪ 	1.

Now, let u be the solution of the p-Laplace equation (4.1), and define the two
sets Y0 and Y1 as follows: We assign x to Y0 whenever u(x) ≤ 1

2 ,, and we assign
x to Y1 whenever u(x) > 1

2 . That is, Y0 is the set of vertices classified as class 0
by p-Laplace learning, and Y1 is the set classified as class 1. In order to classify
correctly, we need Y0 = X0 and Y1 = X1.

Consider a vertex xi ∈ X . Let γi be the ratio of the number of other-class
neighbors to the number of neighbors of vertex xi , that is, if xi ∈ Xj , j ∈ {0, 1},
then

γi =
∑

x∈X1−j
wxi ,x∑

x∈X wxi,x

. (4.27)

For a vertex xi , the quantity γi is exactly the probability that a random walk step
will jump to the opposite block. Let βi be the fraction of neighbors from the same
class that are labeled. Thus, if xi ∈ Xj with j ∈ {0, 1}, then
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βi =
∑

x∈Xj ∩	 wxi,x∑
x∈Xj

wxi ,x

. (4.28)

The term βi is the probability that the random walk exits at at labeled node in the
same class on the next step, conditioned on the event that the random walk remains
in the same class.

We now derive upper and lower bounds for γi and βi . The lower bound for βi

implies that (A1) holds with high probability, but we do not use (A1) directly in this
section.

Lemma 4.19 Let us consider an SBM graph with parameters N0, N1, r, q, and
label rate β. Let σ1 ≥ 0 and 0 ≤ σ2 < 1. Then, with probability of at least

1 −
1∑

j=0

Nj

{
exp

(
− qN1−j σ

2
1

2(1 + 1
3σ1)

)
− 3 exp

(
−1

8
βrNjσ

2
2

)}
. (4.29)

for any xi ∈ Xj , j ∈ {0, 1}, we have

γi ≤ (1 + σ1)qN1

(1 + σ1)qN1 + (1 − σ2)r(N0 − 1)
, (4.30)

and

βi ≥ 1 − σ2

1 + σ2
β. (4.31)

Proof Pick a vertex xi ∈ X0. Define the following notation:

Yj =
{
1, if xi is connected to xj ∈ X1

0, otherwise.

Zj =
{
1, if xi is connected to xj ∈ X0

0, otherwise.

Denote A =∑N1
j=1 Yj , B =∑N0

j=1 Zj , and note that by (4.27), we have

γi = A

A + B
= 1

1 + C
, C = B

A
.

We now apply the Chernoff bounds (see, e.g., [13]) for A and B to obtain
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P(A ≥ (1 + σ1)qN1) ≤ exp

(
− qN1σ

2
1

2(1 + 1
3σ1)

)

P (|B − r(N0 − 1)| ≤ σ2r(N0 − 1)) ≤ 2 exp

(
−3

8
r(N0 − 1)σ 2

2

)
,

for any σ1 > 0 and 0 ≤ σ2 < 1. Therefore,

C ≥ (1 − σ2)r(N0 − 1)

(1 + σ1)qN1

holds with probability at least

1 − exp

(
− qN1σ

2
1

2(1 + 1
3σ1)

)
− 2 exp

(
−3

8
r(N0 − 1)σ 2

2

)
.

Assuming this event holds, we then have

γi ≤ 1

1 + C
≤ (1 + σ1)qN1

(1 + σ1)qN1 + (1 − σ2)r(N0 − 1)
= (1 + σ)qN1

(1 + σ)qN1 + r(N0 − 1)
,

which establishes (4.30), upon union bounding over X0.
Now, let Vi be i.i.d. Bernoulli(β) for i = 1, . . . , n so that xi ∈ 	 if and only if

Vi = 1. Then

βi = 1

B

n∑
j=1

ZjVj .

Since ZjVj is Bernoulli(βr), we have

P

⎛
⎝ n∑

j=1

ZjVj ≤ (1 − σ2)βr(N0 − 1)

⎞
⎠ ≤ exp

(
−3

8
βr(N0 − 1)σ 2

2

)
.

Assuming this event holds as well yields

βi ≥ (1 − σ2)βr(N0 − 1)

(1 + σ2)r(N0 − 1)
= 1 − σ2

1 + σ2
β,

which establishes, with a union bound, (4.31). The argument is similar for xi ∈ X1.
The probabilities are simplified by combining like terms and using that Ni − 1 ≥
Ni/2 since Ni ≥ 2. ��

Now we prove the main result for SBM graphs.
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Theorem 4.20 Let 2 ≤ p < ∞, and consider an SBM graph with parameters
r, q,N0, N1, and label rate β. Let σ1 ≥ 0, 0 ≤ σ2 < 1, and assume that

r

q
β > (1 + σ)max

{
N0

N1−1 ,
N1

N0−1

}
, (4.32)

where

1 + σ = (1 + σ1)(1 + σ2)

(1 − σ2)2
. (4.33)

Then the solution u to (4.1) classifies all vertices correctly with probability at least
(4.29).

Remark 4.21 Note that the condition p < ∞ ensures that α > 0 in (4.2), and
thus there is always a positive probability of taking a random walk step. The proof
of Theorem 4.20 relies entirely on the random walk and allows the two players to
balance each other out. We expect this is suboptimal and is why the value of p does
not explicitly enter the condition on r

q
.

Proof of Theorem 4.20 We fix σ1 ≥ 0 and 0 ≤ σ2 ≤ 1
2 and assume that the

conclusions of Lemma 4.19 hold. We consider the stochastic tug-of-war process
X0, X1, . . . , starting from X0 = x ∈ X0. We define the associated random variables
Wk by

Wk =

⎧⎪⎪⎨
⎪⎪⎩
0, if Xk ∈ 	0

1, if Xk ∈ X1

2, if Xk ∈ X0 \ 	0.

The random variables Wk indicate whether the process stops at 	0, moves to X1 or
stays in X0 and does not exit. The probabilities of each of these transitions depend
on the vertex the process is currently at. If Xk−1 = xi ∈ X0, then

p0,i := P(Wk = 0) = 1 − α

2
+ α(1 − γi)βi,

p1,i := P(Wk = 1) ≤ 1 − α

2
+ αγi,

p2,i := P(Wk = 2) ≥ α(1 − γi)(1 − βi),

where γi is defined in (4.27), and βi > 0 is fraction of same-class neighbors of xi

that are labeled. Let τ be the stopping time defined by

τ = inf{k : Wk = 0 or Wk = 1}.
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Let us define

p0 = min
1≤i≤n

p0,i = 1 − α

2
+ α(1 − γmax)βmin and

p1 = max
1≤i≤n

p1,i = 1 − α

2
+ αγmax,

where we write

γmax = max
1≤i≤n

γi and βmin = min
1≤i≤n

βi .

By Doob’s optional stopping theorem and Lemma 4.2, we have u(x) ≤ E[u(Xτ )].
Note that the expected value of τ is finite, since the probability of stopping at each
step is p0,i + p1,i ≥ p0 > 0.

Let ik denote the vertex index of the stochastic tug-of-war process on the kth

step, so that Xk = xik . Then conditioned on iτ−1 = i, the probability of Wτ = 1 is
exactly p1,i/(p0,i + p1,i ). Therefore by the law of conditional probability, and the
fact that xiτ−1 ∈ X0, we have

u(x) ≤ E[u(Xτ )] ≤ P(Xτ ∈ X1) =
n∑

i=1

p1,i

p0,i + p1,i
P(iτ−1 = i)

=
∑

xi∈X0

p1,i

p0,i + p1,i
P(iτ−1 = i) ≤ p1

p0 + p1
.

Since x ∈ X0, its correct label is 0, so in order to classify x correctly, we need to
show that u(x) < 1

2 , which holds whenever p0/p1 > 1, or rather, p0 > p1. This is
equivalent to

βmin >
γmax

1 − γmax

. (4.34)

By Lemma 4.19, we have

γmax ≤ (1 + σ1)qN1

(1 + σ1)qN1 + (1 − σ2)r(N0 − 1)
,

and so

1 − γmax ≥ (1 − σ2)r(N0 − 1)

(1 + σ1)qN1 + (1 − σ2)r(N0 − 1)
.

Therefore,

γmax

1 − γmax

≤ (1 + σ1)qN1

(1 − σ2)r(N0 − 1)
.
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Also, by Lemma 4.19, we have

βmin ≥ 1 − σ2

1 + σ2
β.

Thus, a sufficient condition for (4.34) to hold is

1 − σ2

1 + σ2
β >

(1 + σ1)qN1

(1 − σ2)r(N0 − 1)
,

which is equivalent to

r

q
β > (1 + σ)

N1

N0 − 1
,

where σ is defined in (4.33). A similar argument holds for x ∈ X1, except with N0
and N1 reversed. This concludes its proof. ��

4.4 Numerical Results

We present here some numerical results with synthetic and real data, in order to
illustrate the main results established in this section, and the room for improvement
in future work. The Python code to reproduce the results in this section is available
on GitHub.8

Our first experiment is with a stochastic block model graph to illustrate Theo-
rem 4.20. We take a graph with n = 3000 vertices and consider the case of equal
block sizes N0 = N1 = 1500 and unbalanced block sizes N0 = 2000, N1 = 1000.
We take the intraclass probability to be r = 0.5, and we vary the interclass
probability q ≤ r . In Fig. 4, we show the error rates for binary classification using a
labeling rate of β = 0.2 as a function of the ratio r/q. For each value of r/q, we ran
100 randomized trials and averaged the error rates. For equal size blocks N0 = N1,
we see that the error rate decreases rapidly when r/q > 1. Theorem 4.20 guarantees
that all vertices are classified correctly when r/q > β−1 = 5, which is a pessimistic
bound in this case, since all values of p classify correctly when r/q = 2. For unequal
block sizes, N0/N1 = 2 in Fig. 4b, we see that for larger values of p, the error rate
decreases quickly when r/q > 2, while p = 2 requires r/q > 8 to see a similar
decrease and r/q = 10 to classify correctly. In this case, Theorem 4.20 guarantees
correct classification with high probability when r/q > 2β−1 = 10, which agrees
very closely with the p = 2 result but is pessimistic for p > 2. Thus, our results
may be tight for p = 2, but there is clearly much room for improvement in the
range p > 2. In particular, we currently cannot explain why the results in Fig. 4b

8 https://github.com/jwcalder/p-Laplace-consistency

https://github.com/jwcalder/p-Laplace-consistency
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Fig. 4 Example of the effect of r/q on the classification performance on stochastic block model
graphs for various values of p. (a) N0 = N1 = 1500. (b) N0 = 2000, N1 = 1000

Fig. 5 Sample of MNIST 4s and 9s, and Cifar-10 deer and dogs. (a) MNIST. (b) Cifar-10

are so dramatically better as p increases. An analysis of this sort would presumably
require a different approach to Theorem 4.20 that exploited the tug-of-war game as
well.

To illustrate our results on geometric graphs, we turn to real data. We consider
the MNIST data set which consists of 70,000 images of handwritten digits between
0 and 9 [72], with each image a 28×28 grayscale image. We also consider the Cifar-
10 data set [70] which contains 60,000 natural images from ten classes (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck). Each Cifar-10 image is a
32 × 32 pixel color image. To make the problem more similar to our setting, we
restrict the data sets from ten classes down to two, so we have a binary classification
problem. For MNIST, we use the 4s and 9s, which are one of the harder pairs of
digits to separate, while for Cifar-10, we use the deer and dogs. Figure 5 shows
some example images from each data set.

In order to obtain a good feature embedding for constructing the graph, we used
a variational autoencoder [67] for MNIST and the contrastive learning SimCLR
method [33] for Cifar-10. Both methods are unsupervised deep learning algorithm
that learn feature embeddings, or representations, of image data sets that maps the
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Fig. 6 Accuracy for binary classification of two classes in the MNIST and Cifar-10 data sets using
p-Laplacian regularization with different values of p. We used the 4s and 9s from MNIST, which
are one of the more difficult pairs to separate, and the deer and trucks from Cifar-10. (a) MNIST.
(b) Cifar-10

images into a latent space identified withRk where the similarity in latent features is
far more informative of image similarity than pixel-wise similarity. After embedding
the images into the feature space, we constructed a 10 nearest neighbor graph using
the angular similarity, as in [25].

For our experiment, we used 1 up to 64 labeled examples per class for each data
set, ran 100 trials at each label rate, and reported the average error rate. Figure 6
shows the error rates for different values of p as a function of label rate. We can
see that larger values of p give better classification performance at very low label
rates, as expected from previous work [47]. Once the label rate is sufficiently large,
the error rate becomes small. As predicted in Theorem 4.10, the only points that are
misclassified are those that are close to the boundary between classes in terms of
graph distance, which are a small fraction of the data points—based on Fig. 6 about
2–4% for MNIST and 5–10% for Cifar-10.

5 Conclusions and Future Work

In this paper, we gave a thorough overview of the intersection between graph-
based semi-supervised learning and PDEs and highlighted problems focused on
consistency of classification that have not received significant attention yet in
the community. We presented some preliminary results on consistency of p-
Laplacian-based semi-supervised learning. Our results use the stochastic tug-of-war
interpretation of the p-Laplacian on a graph, and we also provided a brief overview
of this field. We proved consistency results for general graphs, geometric graphs,
and stochastic block model graphs, the latter of which are not usually covered
by continuum PDE-based arguments. One of our findings is that the tug-of-war
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game transfers nicely between different graph structures and does not require the
geometric structure of the graph. We also presented numerical experiments on
synthetic and real data that illustrated our results and suggested directions for future
work.

We highlight below some open problems for future work.

1. Relaxing the assumption (A1). The assumption (A1) is a strong simplifying
assumption we made in order to obtain preliminary results. It asks that every
vertex on the graph has a labeled neighbor and is used to make our results
tractable. In practice, this means that, in the geometric graph setting, labels do not
propagate very far on the graph. It would be very interesting, and more practically
relevant, to extend these results to settings where (A1) does not hold. This would
require a far more delicate martingale analysis than we provided in this paper.

2. Stochastic blockmodels. Our proof technique in Theorem 4.20 for the stochastic
block model graph only exploited the random walk and ignored the tug-of-
war component of the game. The numerical results in Sect. 4.4 suggest that
the classification accuracy improves dramatically as p > 2 increases, even at
moderately large label rates—20% in this case. In order to explain this, it would
seem necessary to improve Theorem 4.20 by utilizing the tug-of-war game as
well, so that the condition (4.32) on r/q depends on p.

3. Noise and corruption: In real-world applications, we may observe noisy or
corrupted labels g = g† + ξ , where ξ(y) for y ∈ 	 are independent and
identically distributed random variables. For simplicity, assume they have mean
zero and variance σ 2 > 0. The results in this paper would establish that we
recover g, while the true goal is to recover the clean uncorrupted labels g†.
Applying the sub-martingale estimate Lemma 4.3 in this case and subtracting
g† from both sides, we obtain

|u(x) − g†(x)| ≤ E[|g†(Xτ ) − g†(x) | X0 = x] + |E[ξ(Xτ )| X0 = x]| ,

where the expectation is over the random walk, and not the independent noise ξ .
To recover g†, we need to be able to show that the last term above is small, either
in expectation or with high probability. Without the absolute values, it is given
by

E[ξ(Xτ ) | X0 = x] =
∑
y∈	

P(Xτ = y)ξ(y).

If we assume the distribution of the stopping vertex, Xτ is independent of the
noise ξ , then the variance of this term with respect to the noise is given by

VarE[ξ(Xτ ) | X0 = x] = σ 2
∑
y∈	

P(Xτ = y)2. (5.1)
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Thus, understanding the noisy setting requires a finer analysis of the stochastic
process, so that we can estimate the �2 norm of the probability distribution of
Xτ . If Xτ is well-spread out on 	, say P(Xτ = y) = 1

#	 , then the variance (5.1)
is small: σ 2/#	. On the other hand, if the distribution concentrates on a single
node, P(Xτ = y) = δy=z for some z ∈ 	, then the variance is σ 2; the same as
that of the noise ξ(z). Essentially, the more labels we average over to compute
u(x), the smaller the effect of noise. Estimating the variance in (5.1) appears
to be a nontrivial undertaking that we leave for future work. In particular, Xτ

will generally only be independent of ξ when p = 2; for p > 2, the variance
computation in (5.1) will also contain covariance terms that may be difficult to
control.

On the other hand, we expect the SBM analysis in Theorem 4.20 to extend in
a fairly direct way to the setting where some fraction θ ∈ (0, 1) of the labels are
corrupted by flipping to the opposite class. In this case, we expect a similar result
to hold where βi decreases and γi increases, by an amount proportional to θ , and
then the left-hand side of (4.32) is decreased by a factor like 1− θ . We leave this
to a future study as well.

4. Extension to other random-walk models. It would be interesting to extend
these results to other models that have random walk interpretations, including
Poisson learning [25], PWLL [27, 98], and the properly weighted Laplacian
[24]. Some of the same high level ideas may work, but we expect many of the
ingredients to be different. The case of Laplace learning was essentially already
studied in [28].

5. Similar results for other models. There are a number of models that do not
have random walk interpretations, such as the variational p-Laplacian [39, 112]
and the MBO methods [14, 48, 62, 93–95]. It would be interesting to prove
similar consistency results for these methods, though the techniques would be
substantially different, since as far as we are aware, there are no representation
formulas that express the solutions through stochastic processes in these works.
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49. N. García Trillos, D. Slepčev, Continuum limit of total variation on point clouds. Arch.
Ration. Mech. Analy. 220, 193–241 (2016)



50 J. Calder and N. Drenska

50. N. García Trillos, M. Gerlach, M. Hein, D. Slepčev, Error estimates for spectral convergence
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