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A B S T R A C T 

Rings and gaps are routinely observed in the dust continuum emission of protoplanetary discs (PPDs). How they form and 

evolve remains debated. Previous studies have demonstrated the possibility of spontaneous gas rings and gaps formation in 

wind-launching discs. Here, we show that such gas substructures are unstable to the Rossby wave instability (RWI) through 

numerical simulations. Specifically, shorter wavelength azimuthal modes develop earlier, and longer wavelength ones dominate 

later, forming elongated (arc-like) anticyclonic vortices in the rings and (strongly magnetized) cyclonic vortices in the gaps that 

persist until the end of the simulation. Highly elongated vortices with aspect ratios of 10 or more are found to decay with time 

in our non-ideal magnetohydrodynamic (MHD) simulation, in contrast with the hydro case. This difference could be caused 

by magnetically induced motions, particularly strong meridional circulations with large values of the azimuthal component of 

the vorticity, which may be incompatible with the columnar structure preferred by vortices. The c yclonic and antic yclonic RWI 

vortices saturate at moderate levels, modifying but not destroying the rings and gaps in the radial gas distribution of the disc. In 

particular, they do not shut-off the poloidal magnetic flux accumulation in low-density regions and the characteristic meridional 

flow patterns that are crucial to the ring and gap formation in wind-launching discs. Nevertheless, the RWI and their associated 

vortices open up the possibility of producing non-axisymmetric dust features observed in a small fraction of PPDs through 

non-ideal MHD, although detailed dust treatment is needed to explore this possibility. 
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1  I N T RO D U C T I O N  

The detection of substructures is a watershed event in protoplanetary 

disc research (PPDs, e.g. ALMA Partnership et al. 2015 ; Andrews 

et al. 2018 ). While axisymmetric rings, gaps, and cavities are 

the most common features, non-axisymmetric structures such as 

spiral arms, lobes, and arcs are also observed. A particular type 

of non-axisymmetric feature is vortices, which are detected in, 

for example, HD 142527 using CO emission lines (Boehler et al. 

2021 ) and possibly through near-infrared scattered light (Marr & 

Dong 2022 ). Several mechanisms are proposed to produce the 

substructures, including planet–disc interactions (e.g. Dong, Zhu & 

Whitney 2015 ; Bae, Zhu & Hartmann 2017 ), sintering of volatile 

ices outside snow lines (Okuzumi et al. 2016 ), sharp change of 

disc properties at the dead zone boundary (e.g. Flock et al. 2015 ; 

Ruge et al. 2016 ), secular gravitational instability (e.g. Takahashi 

& Inutsuka 2016 ; T ominaga, T akahashi & Inutsuka 2020 ), zonal 

flows arising in magnetorotational instability (MRI) turbulence (e.g. 

Johansen, Youdin & Klahr 2009 ; Krapp et al. 2018 ), and non-ideal 

� E-mail: kdj8qp@virginia.edu 

magnetohydrodynamic (MHD) effects and magnetic disc winds (e.g. 

Suriano et al. 2017 ; Riols & Lesur 2019 ; Cui & Bai 2021 ). 

Magnetic fields have been observed in dense star-forming cores 

of molecular clouds that collapse to form stars and circumstellar 

discs (e.g. Galametz et al. 2018 ; Maury et al. 2018 ; Le Gouellec 

et al. 2020 ). The magnetic field is widely believed to drive the 

disc evolution, particularly through a magnetized disc wind (e.g. 

Bai & Stone 2013 ; Lesur et al. 2022 ), which remo v es angular 

momentum through a laminar torque. Two-dimensional (2D) non- 

ideal MHD numerical simulations have shown that axisymmetric 

discs may evolve into stable rings and gaps in wind-launching discs 

(e.g. Suriano et al. 2017 , 2018 ). More recent 2D non-ideal MHD 

simulations included detailed chemistry networks in computing the 

non-ideal MHD coefficients, finding that stable rings and gaps still 

form robustly, as long as the dimensionless Elsasser number � 

(which measures the degree of field-neutral coupling) is of order unity 

or larger (e.g. Nolan et al. 2023 ). The question that naturally arises 

is: are such axisymmetric rings and gaps stable in three dimensions 

(3D), particularly to the Rossby wave instability (RWI, Lo v elace 

et al. 1999 ; Li et al. 2000 )? 

The RWI occurs when the local Rossby wave is trapped in the non- 

self-gravitating discs. It may allow non-axisymmetric perturbations 
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to grow into well-defined vortices (e.g. Zaqarashvili et al. 2021 ). 

The RWI has been investigated in the 2D (vertically integrated) linear 

theories (e.g. Lo v elace et al. 1999 ; Li et al. 2000 ; Umurhan 2010 ; Ono 

et al. 2016 ) and numerical simulations (e.g. Li et al. 2001 ; Varni ̀ere & 

Tagger 2006 ; Lyra et al. 2008 ; Ono et al. 2018 ; Cimerman & Rafikov 

2023 ). In the 3D disc (where the vertical structure is accounted for), 

the RWI has also been studied using both linear theories (e.g. Lin 

2012 , 2013 ) and numerical simulations (e.g. Lyra & Mac Low 2012 ; 

Richard, Barge & Le Diz ̀es 2013 ), mostly with a prescribed initially 

axisymmetric substructure that is observationally motivated but not 

formed self-consistently. RWI has also been studied in magnetized 

discs, with toroidal magnetic fields (e.g. Yu & Li 2009 ), large-scale 

poloidal magnetic fields (e.g. Yu & Lai 2013 ), and non-ideal MHD 

effects (e.g. Cui et al. 2024 ). The spontaneous formation of rings and 

gaps in 2D (axisymmetric) non-ideal MHD simulations (e.g. Suriano 

et al. 2017 , 2018 ; Nolan et al. 2023 ) provides a rare opportunity 

to examine the RWI of axisymmetric structures produced through 

consistent dynamics using 3D simulations. Just as importantly, such 

3D simulations also allow us to investigate the formation of disc 

substructures and the development of RWI in them simultaneously. In 

this paper, we seek to determine whether the non-linear development 

of RWI in the rings and gaps formed in the non-ideal MHD wind- 

launching discs can lead to the formation of vortices and, if so, 

ho w they af fect the rings and gaps in the radial gas distribution. 

Vortices are important to investigate because of their potential for 

dust trapping (see e.g. a recent re vie w by Bae et al. 2023 ), which 

may facilitate planetesimal formation. 

This paper is organized as follows. We present our simulation setup 

in Section 2 , including the go v erning equations. Section 3 describes 

our chemistry model for computing the abundances of charged 

species, which are used to determine the non-ideal MHD coefficients. 

In Section 4 , we show results of both 2D and 3D simulations, focusing 

on RWI and its effects on the disc substructure formation. Our results 

are briefly discussed and summarized in Section 5 . 

2  SIMULATION  SETUP  

We use ATHENA ++ (Stone et al. 2020 ) to solve the non-ideal MHD 

equations: 

∂ρ

∂t 
+ ∇ · ( ρV ) = 0 , (1) 

∂( ρV ) 

∂t 
+ ∇ ·

(

ρV V + P 
∗ −

B B 

4 π

)

= −ρ∇�, (2) 

∂e d 

∂t 
+ ∇ ·

[

( e d + P 
∗) V −

B ( B · V ) 

4 π
+ 

1 

c 
( ηO J + ηAD J ⊥ ) × B 

]

= −ρ( V · ∇� ) − � c , (3) 

and the induction equation 

∂ B 

∂t 
= ∇ × ( V × B ) −

4 π

c 
∇ × [ ηO J + ηAD J ⊥ ] , (4) 

where ρ and V are gas mass density and velocity, B is the magnetic 

field, P 
∗ = P + B 

2 / (8 π ) is the total (thermal [ P ] and magnetic) 

pressure, � = −GM/r is the gravitational potential of the central 

star, e d = ρV 
2 / 2 + P / ( γ − 1) + B 

2 / (8 π ) is the energy density, γ

is the adiabatic index, J is the current density, J ⊥ = B × ( J ×
B ) / ( B 

2 ) is the component of J perpendicular to the magnetic field, 

ηO and ηAD are the Ohmic and ambipolar dif fusi vities, and � c is the 

cooling term. 

Figure 1. The inner part of the 3D grid, showing three levels of SMR. 

2.1 Simulation domain 

We use spherical coordinates ( r, θ, φ) to perform the 2D (axisym- 

metric, with quantities independent of φ) and 3D simulations. The 

simulation domain goes from 1 to 316 au in the radial direction, 0.05 

to π − 0.05 in the polar direction, and, for 3D simulations, from 0 to 

2 π in the azimuthal direction. We use a logarithmic grid in the radial 

direction, with 80 base cells and a ratio of 1.07416 for the sizes of 

two adjacent cells. The grid is uniform in the polar direction, with 96 

cells at the root lev el. F or 3D simulations, we use 32 base cells in the 

azimuthal direction. Three levels of static mesh refinement (SMR) 

are used, with the grid size changing by a factor of two between 

adjacent levels, as indicated in Fig. 1 . Specifically, the finest level 

extends from 10 to 100 au in the radial direction and about 2.5 scale 

heights ( ∼ 0.13 rad) below to abo v e the mid-plane. The disc scale 

height is resolved by about 12.6 grids. The second and third finest 

lev els co v er, respectiv ely, 5.57 to 176 au and 3.14 to 316 au radially 

and a polar region within 0.25 and 0.5 rad of the mid-plane. 

2.2 Boundary conditions 

We use modified outflow boundary conditions at both inner and 

outer radial boundaries. At the inner boundary, instead of copying 

gas density and pressure from the innermost active zone to ghost 

zones, we apply the same power law used in the gas initialization to 

extend gas density and pressure to ghost zones. For gas velocity, 

the azimuthal velocity follows a Keplerian curve, and the other 

two components are copied from the innermost active zone while 

preventing mass from outside from entering the simulation domain. 

Reflective conditions are used for the θ boundaries, and periodic 

boundary conditions are applied in the azimuthal direction. 

2.3 Initial conditions 

We perform two types of simulations: (i) 2D simulations with an 

initial hydrostatic equilibrium state and a magnetic field generated 

from vector potential to ensure a divergence-free B field (i.e. ∇ · B = 
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0) and (ii) 3D simulations that restart from 2D simulations either at 

relatively late times or near the beginning. 

We adopt the initial temperature and density profiles used in Hu 

et al. ( 2022 ). Specifically, we divide the simulation domain into 

a cold, dense disc and a hot, low-density corona, with a constant 

aspect ratio, h/r = 0 . 05, where h is the disc scale height. We limit 

the cold, dense portion to two scale heights abo v e (and below) the 

mid-plane, that is, in the region π/ 2 − θ0 < θ < π/ 2 + θ0 , where 

θ0 = arctan (2 h/r) . The gas density and temperature in the disc mid- 

plane both follow a power law with index p = −1 . 5 and q = −1, 

respectively: 

ρ( r, π/ 2) = ρ0 ( r/r 0 ) 
p (5) 

T ( r, π/ 2) = T 0 ( r/r 0 ) 
q , 

where r 0 = 1 au is the radius of the inner boundary of the computa- 

tional domain, and ρ0 = 2 . 667 × 10 −10 g (cm 
−3 ) −1 and T 0 = 570 K 

are the density and temperature at r 0 . To ensure a smooth transition 

between the cold disc and hot corona, we adopt the following vertical 

profile for the temperature: 

T ( r, θ ) = 

⎧ 

⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎩ 

T ( r, π/ 2) if | θ − π/ 2 | < θ0 

T ( r, π/ 2) exp [( | θ − π/ 2 | 
−θ0 ) /θ0 × ln (160)] if θ0 ≤ | θ − π/ 2 | ≤ 2 θ0 

160 T ( r, π/ 2); if | θ − π/ 2 | > 2 θ0 . 

(6) 

We use a quick βcool cooling scheme with a cooling time-scale of 

only 10 −10 of the local orbital period, so the temperature profile is 

ef fecti v ely fix ed o v er time. The v ertical density profile is generated 

based on hydrostatic equilibrium, that is, v r = v θ = 0. 

The initial magnetic field is computed from the magnetic vector 

potential used in Zanni et al. ( 2007 ): 

B r ( r, θ ) = 
1 

r 2 sin θ

∂A φ
∂θ

, (7) 

B θ ( r, θ ) = − 1 
r sin θ

∂A φ
∂r , (8) 

B φ = 0 , (9) 

with 

A φ( r , θ ) = 
4 
3 r 

2 
0 B p , 0 

(

r sin θ
r 0 

)
3 
4 1 

(1 + 2 cot 2 θ) 5 / 8 
, (10) 

where B p , 0 sets the scale for the poloidal field strength. The magnetic 

field setup is the same as that of Bai & Stone ( 2017 ), Suriano et al. 

( 2018 ), and Hu et al. ( 2022 ). In all our simulations, B p , 0 is set by 

plasma β = 10 3 in the mid-plane. 

We perform two types of 3D simulations to investigate (1) 

whether axisymmetric substructures formed in 2D simulations are 

stable to RWI and (2) how disc substructures and RWI develop 

simultaneously. For the first type, we restart in 3D a 2D simulation 

after it has evolved for a certain amount of time (typically t st = 2000 

yr) when prominent rings and gaps hav e formed. F or the second type, 

we restart from the beginning of the simulation ( t st = 0). Since the 

focus of the 3D simulations is on RWI, we add a random perturbation 

to the radial velocity up to 10 per cent of the local sound speed at 

the time of restart to seed the instability. 

3  N O N - I D E A L  M H D  EFFECTS  

3.1 Chemical network for charge abundances 

To determine the non-ideal MHD coefficients in equation ( 4 ), the 

abundances of charged species must be computed first. We use a 

reduced chemical network similar to those of Umebayashi & Nakano 

( 1990 ) and Nishi, Nakano & Umebayashi ( 1991 ). Specifically, we 

include the following elements: H, He, C, O, and Mg. Table A1 in 

Appendix A lists their initial abundances. 

We include cosmic-ray ionization, which dominates the ionization 

in the bulk of the disc. We adopt a total ionization rate (including 

ionization of H 2 and He, Umebayashi & Nakano 1990 ) of ξ = 

10 −17 s −1 . The rate equation for species i of the fractional abundance, 

x i ≡ n i /n H , can be written as: 

1 
n H 

d x i 
d t = 

1 
n H 

∑ 

j k cr x j + 
∑ 

j,k k jk x j x k − x i 
∑ 

m k i,m x m , (11) 

where k cr is the cosmic-ray ionization rate, and k jk and k i,m are the 

formation and destruction rates by two-body reactions, respectively. 

We include three types of reactions in the paper: gas-phase, 

gas–grain, and grain–grain. Table A2 lists all gas-phase reaction 

rates used in the paper. The gas-phase reaction rates are adapted from 

UMIST database (McElroy et al. 2013 ), with the rate coefficient 

represented by: 

k( T ) = αc 

(

T 
300K 

)βc 
exp 

(

− γc 
T 

)

, (12) 

where αc is the constant factor, βc is the power-index of the tempera- 

ture dependence, and γc measures the energy barrier of the reaction. 

We adopt a power law of n ( a) ∝ a −3 . 5 for the grain size distribu- 

tion, with the power index of the standard MRN distribution (Mathis, 

Rumpl & Nordsieck 1977 ). There are 30 size bins logarithmically 

distributed from the minimum a min to the maximum a max . A grain 

material density of 3 g ( cm 
3 ) −1 is adopted. The dust-to-gas mass 

ratio is set to 0.01. The gas–grain and grain–grain reaction rates are 

calculated as average reaction rates following Grassi et al. ( 2019 ): 

〈 k c,g ( T ) 〉 = 

∫ a max 
a min ϕ( a ) k c,g ( a ,T )d a 

∫ a max 
a min ϕ( a)d a 

, (13) 

〈 k g,g ( T ) 〉 = 

∫ a max 
a min 

∫ a max 
a min ϕ( a ) k g,g ( a ,a 

′ 
,T ) ϕ( a 

′ 
)d a d a 

′ 

∫ a max 
a min 

∫ a max 
a min ϕ ( a) ϕ ( a 

′ 
)d ad a 

′ , (14) 

where k c,g ( a, T ) denotes the rate coefficient for gas–grain reactions, 

and k g,g ( a , a 
′ 
, T ) is the grain–grain interaction rate coefficient. To 

simplify the symbol, we note a s = a i + a j as the sum of the grain 

sizes for the grain–grain interaction. We assume a negligible radius 

for the gas-phase species compared to the grains, so a s = a j when 

we calculate k c,g ( a, T ). Following Nishi et al. ( 1991 ) and Grassi 

et al. ( 2019 ), we consider up to two elemental charges sticking on 

the grains (e.g. Z = 0 , ±1 , ±2). Following Draine & Sutin ( 1987 ) 

and Zhao, Caselli & Li ( 2018 ), we consider three cases for k c,g ( a, T ) 

and k g,g ( a , a 
′ 
, T ): 

k 0 i,j ( a s , T ) = πa 2 s 

(

8 k B T 
πm r 

)1 / 2 
[

1 + 

(

πe 2 

2 a s k B T 

)1 / 2 
]

S( T , Z j ) , (15) 

k −i,j ( a s , T ) = πa 2 s 

(

8 k B T 

πm r 

)1 / 2 (

1 −
Z j 

Z i 

e 2 

a s k B T 

)

·

⎡ 

⎣ 1 + 

( 

2 

a s k B T 
e 2 

− 2 
Z j 
Z i 

) 1 / 2 
⎤ 

⎦ S( T , Z j ) , (16) 

k + 
i,j ( a s , T ) = πa 2 s 

(

8 k B T 

πm r 

)1 / 2 

·

[ 

1 + 

(

4 a s k B T 

e 2 
+ 3 

Z j 

Z i 

)−1 / 2 
] 2 

exp 

(

−
θνe 

2 

a s k B T 

)

S( T , Z j ) , (17) 

where e is the elemental charge, m r = m i m j / ( m i + m j ) is 

the reduced mass, S( T ) is the sticking coefficient, and θν = 

Z 
3 / 2 
j / [ Z i ( 

√ 
Z i + 

√ 
Z j )]. k 

0 
i,j is for charged species colliding with 
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neutral grains (e.g. Z i Z j = 0). k −i,j is the rate for opposite charge 

reactions (e.g. Z i Z j < 0). k + 
i,j is the reaction rate between species 

with the same electrical properties (e.g. Z i Z j > 0). If the collisions 

are between charged species and grains, then the index i and j 

represent the charged species and grains, respectiv ely. The inde x i 

and j represent the lighter and heavier grains for grain–grain inter- 

actions. The sticking coefficients S( T , Z) of electrons on grains are 

taken from Grassi et al. ( 2019 , their table 3). Following Umebayashi 

& Nakano ( 1990 ), we set the sticking coefficients for non-electron 

charged species on grains to S( T , Z) = 1. 

3.2 Non-ideal MHD coefficients 

Once the charge abundances are known, the ambipolar, Hall, and 

Ohmic dif fusi vities can be computed using the standard procedure 

based on the parallel, Pedersen, and Hall conductivities (e.g. Wardle 

2007 ; Pinto, Galli & Bacciotti 2008 ): 

σO = 
ec 
B � j n j | Z j | βj,n , (18) 

σH = − ec 
B � j 

n j | Z j | β2 
j,n 

1 + β2 
j,n 

, (19) 

σP = 
ec 
B � j 

n j | Z j | βj,n 
1 + β2 

j,n 
(20) 

where 

βj,n = 
eZ j B 

m j c 

m j + m n 
ρn R j,n ( T ) 

(21) 

is the Hall parameter for collisions between the j th charged species 

and neutral hydrogen, n j is the number density of the j th species, ρn 

and m n are the neutral (molecular) hydrogen mass density and mass, 

respectively, and R j,n ( T ) is the momentum exchange rate coefficient, 

which is discussed in detail in Appendix B . 

From the conductivities, we can compute the Ohmic, Hall, and 

ambipolar dif fusi vities as follo ws: 

ηO = 
c 2 

4 πσO 
, (22) 

ηH = 
c 2 

4 πσ⊥ 
σH 
σ⊥ 

, (23) 

ηAD = 
c 2 

4 πσ⊥ 
σP 
σ⊥ 

− ηO , (24) 

where σ⊥ = 
√ 

σ 2 
H + σ 2 

P . 

The dimensionless Elsasser numbers for these dif fusi vities are 

given by � O = 
V A0 
�ηO 

, � H = 
V A0 
�ηH 

, and � AD = 
V A0 
�ηAD 

, where V A0 = 

B 
2 
0 / (4 πρ0 ) is the Alfv ́en speed, with the lower subscript ‘0’ denoting 

the local quantity at each location, and � is the Keplerian angular 

velocity. 

To mimic the better magnetic coupling (and thus reduced diffu- 

sivity) due to higher ionization levels expected in the lower density 

regions near the disc surface and in the disc wind, we follow Suriano 

et al. ( 2018 ) and multiply the magnetic dif fusi vities in equations 

( 22 )–( 24 ) by the following θ dependence: 

f ( θ ) = 

⎧ 

⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎩ 

exp 
(

− cos 2 ( θ+ θ0 ) 
2( h/r) 2 

)

if θ < 
π
2 − θ0 

1 if π
2 − θ0 ≤ θ ≤ π

2 + θ0 

exp 
(

− cos 2 ( θ−θ0 ) 
2( h/r) 2 

)

if θ > 
π
2 + θ0 

. (25) 

4  F O R M AT I O N  O F  G A S  R I N G S  A N D  GA PS  IN  

2 D  A N D  THEIR  STABILITY  IN  3 D  

We will mainly consider models with the charge abundances com- 

puted from the chemical network discussed in Section 3.1 . The 

Table 1. Models. 

Name Description Starting time t st 

S-2D Shu-type power-law ion abundance 0 

T-2D Chemical network 0 

T-3D −2000 Chemical network 2000 yr 

T-3D −0 Chemical network 0 

abundances are shown in Appendix A (Fig. A1 ) for an MRN- 

type grain size distribution from a min = 0 . 5 μm to a max = 25 μm. 

These abundances are saved as a lookup table and referenced during 

the simulation to compute the non-ideal MHD coefficients in each 

computational cell. These models are labelled by the letter ‘T ‘ (for 

‘T able’) in T able 1 , which lists all 2D and 3D models discussed in the 

paper. For comparison, we also consider a 2D model with the simple 

power-law prescription for the dominant molecular ion from Shu 

( 1992 ) that was used in previous work along a similar line (Suriano 

et al. 2018 ; Hu et al. 2022 ). This model is denoted by the letter ‘S’ 

(for ‘Shu’) in Table 1 . The initial Elsasser numbers for these two 

model types are shown in Fig. A2 of Appendix A for reference. 

4.1 2D simulations 

We start with a comparison of the 2D (axisymmetric) simulations 

using the Shu-type power-law prescription (Model S-2D) and the 

more realistic charge abundances from a lookup table computed 

from a chemical network including dust grains (Model T-2D). In 

Fig. 2 , we plot a meridional (left panels) and face-on (right panels) 

view of the simulations at a representative time t = 2000 yr when 

stable rings and gaps are formed. We use cylindrical coordinates (R, 

φ, z) in the meridional plots. The rings and gaps in Model T-2D are 

more prominent than those in Model S-2D because the gas in the 

former is better coupled to the magnetic field than in the latter in 

the bulk of the disc material (see Fig. A2 ). Our results add weight 

to the conclusion based on previous work in the literature (e.g. Bai 

& Stone 2013 ; Lesur 2021 ), especially that of Nolan et al. ( 2023 ), 

that ring and gap formation is a robust phenomenon in 2D that is 

not sensitive to the detailed treatment of the ambipolar dif fusi vity as 

long as the disc gas is reasonably well coupled to the magnetic field, 

with an ambipolar Elsasser number � of order unity or larger. The 

question arises: are the rings (and gaps) formed in 2D stable in 3D, 

particularly regarding Rayleigh instability and RWI? 

One way to check the Rossby wave stability is to compute the 

quantity L ( r) defined in Lo v elace et al. ( 1999 ) as a function of 

radius: 

L ( r) ≡ F ( r)S 
2 /γ ( r) . (26) 

The result is shown in Fig. 3 . Panel (a) shows the radial profiles of 

the column density of Models S-2D and T-2D at the time shown in 

Fig. 2 . The column density contrast between the rings and gaps in 

Model T-2D is higher than in Model S-2D, consistent with Fig. 2 . 

Panel (b) of Fig. 3 shows the radial profiles of the quantity L ( r) of 

Models S-2D and T-2D, where F ( r) ≈ �/ (2 ω z ), ω z ≡ ˆ z · ( ∇ × V ), 

and S ≡ P /� 
γ with P denoting the v ertically inte grated pressure 

and γ is the adiabatic index. It is formally derived for an adiabatic 

flow for razor-thin discs, which differs from our case, where strong 

cooling keeps the flow nearly isothermal locally. In this case, the 

rele v ant quantity to e v aluate is the inverse of a generalized vortensity, 

defined as (Lin 2012 ): 

H( r ) ≡
2 ��c 2 s 

κ2 
= 

�c 2 s r 

∂ ( r v φ) /∂ r 
= 

�c 2 s 

ω z 
, (27) 
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Figure 2. Rings and gaps in 2D Models S-2D (top panels) and T-2D (bottom panels) at a representative time t = 2000 yr in the inner disc (up to 35 au in 

radius). Plotted in panels (a) and (c) are the mass density distribution (colour map), velocity streamlines (black lines with arrows), and magnetic field lines (red 

lines with arrows) on a meridional plane. A magnetized disc wind is clearly visible in both cases. Panels (b) and (d) display the surface density of the disc 

normalized to its initial value, highlighting the formation of prominent rings and gaps, especially in Model T-2D. 

where κ is the local epicycle frequency. This quantity is plotted in 

panel (c). In addition, we plot in panel (d) the distribution of the 

specific angular momentum r v φ on the disc mid-plane as a function 

of radius r . A few (limited) re gions hav e specific angular momentum 

decreasing with radius; they are prone to Rayleigh instability, which 

may quickly develop to limit the amplitude of the pressure gradient- 

induced deviation from the background Keplerian rotation in 3D (e.g. 

Ono et al. 2018 ). 

Lo v elace et al. ( 1999 ) and Lin ( 2012 ) found that a local extremum 

of L ( r) and H( r) is a necessary criterion for destabilizing the Rossby 

waves for adiabatic and locally isothermal flo ws, respecti vely. Panels 

(b) and (c) of Fig. 3 show local extrema are ubiquitous in our 

case. It indicates that the Rossby waves might grow throughout our 

simulation domain if there is an initial azimuthal variation to trigger 

them. Ho we ver, our simulations do not strictly follow the situation 

envisioned in Lo v elace et al. ( 1999 ) or Lin ( 2012 ) because of the 

inclusion of additional physical effects such as the magnetic field, 

non-ideal MHD effects, and disc winds. In what follows, we will 

determine whether the rings are indeed unstable to RWI through 

direct 3D simulations. 

4.2 Stability of 2D rings and gaps in 3D 

To check the stability of the disc substructures formed in the 

2D simulations, we restart Model T-2D (which produced more 

prominent substructures than the other 2D model, Model S-2D) 

from the representative time shown in Fig. 2 . We include a random 

perturbation to the radial component of the velocity up to 10 per cent 

of the local sound speed to seed any potential instability that may 

grow. The results of the restarted 3D model, T-3D-2000, are shown 

in Fig. 4 . The figure plots the surface density distribution normalized 

to its initial value at the beginning of the 2D simulation ( t = 0), 

the mid-plane mass density normalized to its initial value, the midp- 

lane plasma- βz based on the vertical magnetic field component, and 

the mid-plane radial velocity normalized by the local sound speed 

at three representative times: t = 2340 (top panels), 2980 (middle), 

and 3490 yr (bottom panels). The link to an animated version of the 

figure can be found in its caption. 

Fig. 4 and its associated animation clearly show the development 

of non-axisymmetric structures, which follow the patterns expected 

for RWI; we will focus primarily on the rings since their azimuthal 



RWI in 3D non-ideal MHD discs 2985 

MNRAS 533, 2980–2996 (2024) 

Figure 3. Radial profiles of (a) the surface density of the disc normalized to 

its initial value, (b) the function L ( r) (defined in equation [ 26 ]) that controls 

the RWI for adiabatic flows, (c) the function H( r) (defined in equation [ 27 ]) 

that controls the RWI for locally isothermal flows, and (d) the specific angular 

momentum on the mid-plane, for the discs with rings and gaps shown in Fig. 2 . 

Note the local maximum and the local minimum in the L ( r) and H( r) profiles 

in panels (b) and (c) are the positions where the disc may be unstable to the 

RWI. Regions with specific angular momentum increasing with radius are 

stable to the Rayleigh instability for rotating flows. 

v ariations sho w up more clearly in the surface and mass density maps 

(RWI-induced structures in the gaps will be discussed towards the 

end of the next subsection). Specifically, the instability first develops 

in the inner disc and progressiv ely mo v es to larger radii with longer 

local dynamical times. For a given ring of roughly constant radius, 

the azimuthal mode number m of the dominant non-axisymmetric 

features decreases with time. For example, at the relatively early time 

of t = 2340 yr (or 340 yr after the 3D restart), there are eight well- 

defined o v erdense clumps in the midplane mass density distribution 

that are regularly spaced on the ring at ∼ 11 au (panel b), even 

though the clumps are less visible in the surface density at the 

same time (panel a). The m = 8 mode is even more prominent in 

the distribution of the mid-plane plasma- βz , which is much higher 

inside the o v erdense clumps than between them (panel c). The same 

mode also shows up in the midplane radial velocity distribution, with 

the fastest radial outward motion occurring between the o v erdense 

clumps and at a slightly smaller radius (panel d). We note that the 

time t = 2340 yr corresponds to about nine times the local orbital 

period at the unstable ring location, comparable to the saturation time 

for the fiducial model studied by Ono et al. ( 2018 ). 

Similar patterns are observed at the later time t = 2980 yr but for a 

ring at a larger radius of ∼ 20 au (compared to ∼ 11 au discussed in 

the last paragraph). Here, the m = 8 mode is the most prominent 

in the radial velocity distribution (panel h), with eight regularly 

spaced regions of fast inflow at approximately half of the local 

sound speed. The fast-inflow regions are located slightly outside 

the visibly perturbed 20 au radius ring, with the inflow apparently 

displacing the ring inward, producing a regularly spaced undulation 

in the radial direction, which is also evident in the surface density 

distribution (panel e). The undulation soon leads to the formation of 

eight o v erdense re gions similar to those for the inner ring near 11 au 

at the earlier time t = 2340 yr (see panel b), as can be seen from the 

animated version of the figure (see times around t = 3000 yr). There 

is, therefore, little doubt that the 20 au ring is RWI unstable, with a 

well-developed m = 8 mode at t = 2980 yr, corresponding to about 

11 local orbital periods, similar to the 11 au ring at a comparable 

local dynamical time (normalized by the orbital period). The mode 

is less evident in the mid-plane plasma- βz distribution because it has 

more radial substructures than the density distribution, which makes 

the high plasma- βz ring near 20 au stand out less than the high mass 

density ring at a similar radius. 

The lack of one-to-one correspondence between the substructures 

in the plasma- βz and density distributions is illustrated by the faint 

ring inside the prominent gap around 10 au, which is barely visible in 

the density map (panel f) but stands out clearly as a high plasma- βz 

ring against the lower plasma- βz adjacent gaps (panel g). This low- 

density but high βz ring is the 11 au ring showing prominent m = 8 

azimuthal mode at the earlier time t = 2340 yr (panel b). At this 

earlier time, at least seven well-defined rings were located inside the 

20 au ring discussed at the later time t = 2980 yr, with four outside 

the prominent 10 au gap and at least three inside. Visible azimuthal 

structures develop earlier in these (inner) rings than in the 20 au 

ring, with higher order modes at earlier times. By t = 2980 yr, only 

relati vely lo w-order azimuthal modes (with m of a few) are clearly 

visible in the density map (panel f). In particular, two prominent arcs 

(corresponding to the m = 2 azimuthal mode) develop in the ring 

immediately interior to the 10 au ring around t = 2700 yr (see the 

animation of the density map), which has been smeared into a long 

arc with moderate azimuthal density variation by the time shown 

in panel (f). The trend for lower order modes to dominate later is 

consistent with the expected evolution and saturation of RWI modes 

(see e.g. Ono et al. 2018 ). 

The trend is vividly illustrated by the last frame of the simulation 

when the surface density and mid-plane density of the 20 au ring 

become dominated by two well-defined, relatively short, overdense 

arcs (panels i and j) at t = 3490 yr, corresponding to approximately 

17 local orbital periods after the 3D restart. By this time, the 

azimuthal variations of the mid-plane density of the rings at larger 

radii remain dominated by higher m modes. In particular, an m = 7 

mode starts to show up clearly in the outermost ring (at ∼ 32 au) 

displayed at the time of panel (j), corresponding to approximately 

eight local orbital periods, similar to the times (normalized by the 

local orbit period) when the m = 8 mode becomes prominent for the 

inner 11 au (panel b) and 20 au (panel f) rings. 

It is unclear how long the low-order m = 2 mode for the 20 au ring 

at the last frame would survive. A hint for the longer-term evolution 

of RWI-induced structures comes from the rings at relatively small 

radii, which evolved for longer local dynamical times than their 

larger radius counterparts. For example, two prominent overdense 

(relatively long) arcs develop in the 7.5 au ring around 2650 yr 

(approximately 31 local orbital periods after the 3D restart), and 

last until 2760 yr for ∼ 110 yr or ∼ 5 local orbital periods (see 

the animated version of the mid-plane density). A single ( m = 1) 

o v erdense arc dominates the appearance of the ring at some of the 

later times (e.g. t = 3300 yr), in agreement with the expectations 

based on the simpler hydro case (e.g. Ono et al. 2018 ). Ho we ver, this 

is not the case at other times, for example, at the last frame shown 

in panel (j), where at least two, possibly three, arcs with moderate 

density enhancements exist. This deviation from the expectations 

is unsurprising since our simulated disc is more complex than the 

simplest hydro case (with, e.g. non-ideal MHD and disc wind). In 

particular, the rings and gaps in our simulation are highly dynamic 

structures that can gain or lose mass and angular momentum through 

spatially dependent mass accretion and (magnetized) outflow. 
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Figure 4. Evolution of 2D rings and gaps in 3D. Plotted in the first column are the surface density distribution normalized to its initial value at three 

representative times t = 2340 (panel a), 2980 (panel e), and 3490 yr (panel i) of Model T-3D-2000 restarted from Model T-2D at t = 2000 yr. Similarly, the 

second, third, and fourth columns sho w, respecti vely, the mid-plane mass density normalized to its initial value, the mid-plane plasma- βz based on the vertical 

field component B z alone, and the mid-plane radial velocity normalized by the sound speed. An animated version of the figure can be found on the website: 

https:// virginia.box.com/ s/ b1wxk512g1xzm371thk9h7w4l1sfl8qk. 

To quantify the late-time evolution of different azimuthal modes, 

we plot in Fig. 5 the mode amplitudes of the azimuthal surface density 

variations of three representative rings at approximately 5, 8, and 18 

au as a function of time normalized by their local orbital period. 

The low-order m = 2 mode (see the red curve) starts to dominate 

at a time between ∼ 15 and ∼ 30 local orbital periods; its further 

evolution is truncated by the termination of the simulation for the 18 

au ring (panel a). For the 8 au ring, the m = 2 mode decays after 

∼ 10 local orbital periods and is replaced by the e ven lo wer order 

m = 1 mode with a higher peak amplitude (panel b). The m = 1 

mode decays after ∼ 30 orbits. Its longer term evolution is unclear 

because of the simulation time limit, but a hint is offered by the 5 

au ring, which reached ∼ 130 orbits. In this case, the m = 1 mode 

is more important than the m = 2 mode most of the time after ∼ 65 

orbits, but the m = 2 remains significant and occasionally surpasses 

the m = 1 mode in amplitude. A caveat is that the 5 au ring is on a 

coarser grid than the other two rings and is resolved azimuthally by 

only 64 cells (see the statically refined grid in Fig. 1 ). The relatively 

low resolution may have affected the growth and saturation of the 

modes. Nevertheless, it is clear that, as expected for RWI, low-order 

modes dominate the azimuthal variation of the surface density at late 

times, with relatively small amplitudes. An implication is that the 

non-linear development of RWI modifies but does not destroy the 

rings formed in our non-ideal MHD simulations. 

The effects of the RWI modes on rings are further illustrated in 

panel (j) of Fig. 4 , which shows that the 8 au ring remains distinct 

from its neighbouring gaps (i.e. with a significant axisymmetric 

m = 0 mode) even after a relatively large number ( ∼ 72) of local orbit 

periods, indicating that non-linear development of RWI modifies 

rather than destroys the ring. The same is true for rings at smaller 

radii, such as the one around 5 au, which retains its ring-shaped 

structure after ∼ 133 local orbital periods. To demonstrate the 

survi v al of the rings and gaps more clearly, we plot in Fig. 6 the 

azimuthally averaged surface density distribution of Model T-3D- 

2000 as a function of radius after its restart at t = 2000 yr and 

compare it to its 2D counterpart Model T-2D. There are some 

differences between the two models at late times, including a 

more prominent ring at ∼ 5 au in the 2D case and a less empty 

gap at ∼ 10 au in the 3D case. Nevertheless, the azimuthally 

averaged radial substructures are broadly similar in the two cases, 

supporting the notion that rings and gaps survive in 3D despite 

RWI. 

4.3 RWI vortex structure 

In this subsection, we analyse the structure of the vortices for the 8 

au ring at the time t = 3150 yr (or 1150 yr after the 3D restart), when 
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Figure 5. The time evolution of the mode amplitudes of the azimuthal surface density variation for three representative rings at radii of R ∼ 18 (panel a), 8 

(b), and 5 au (c) of Model T-3D-2000. The time is normalized by their local period. Panel (a) shows the m = 8 mode first dominates the 18 au ring before being 

o v ertaken by the m = 2 mode. Panels (b) and (c) illustrate a similar trend: the higher order modes develop first before being o v ertaken by low-order modes, as 

expected for RWI modes. 

Figure 6. Time evolution of (a) the surface density distribution of Model T-2D and (b) the azimuthally averaged surface density distribution of Model T-3D-2000 

as a function of radius after the 3D restart at = 2000 yr. Note the prominent rings and gaps survive in 3D despite RWI. 

the m = 1 azimuthal mode reaches its peak amplitude (see Fig. 5 b). 

We will concentrate on the broad features of the vortices since their 

detailed structures may not be adequately resolved in our 3D global 

non-ideal MHD simulations. At this time, the m = 2 mode has a 

significant amplitude as well, leading to a secondary density peak 

next to the primary one, as shown in Figs 7 (a) and 8 (b) (the one with 

a smaller value of the azimuthal angle φ). As expected, these vortices 

are anticyclonic, with the flow streamlines on the mid-plane circling 
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Figure 7. Structure of the dominant vortex in the 8 au ring at τ ∼ 50. Panels (a)–(c) show the mass density normalized to its initial value, the z−component 

vorticity normalized to its local Keplerian angular speed, and the logarithmic scale of the plasma- β on the mid-plane, respectiv ely. P anels (a) and (b) include the 

v elocity streamlines (gre y lines) and the panel (c) the magnetic fields (white lines). Panels (d) and (f) are the same as (a)–(c), but on a meridional plane passing 

through the density peak of the 8 au ring. The brown and black contour lines are 0.6 and 1.0 contours of the mass density normalized to its initial value. An 

animated version of the figure can be found at https:// virginia.box.com/ s/ 499xq1qt2j9c9vgxzljlb19x610tfnqe . 

the local density maxima in a direction opposite to the Keplerian 

rotation (see Fig. 7 a). 

The corresponding ne gativ e axial vorticity is shown in panel (b) of 

Fig. 7 . Note that the spatial distributions of the axial vorticity in and 

around the vortices are patchier compared to 3D hydro simulations 

(e.g. fig. 8 of Richard et al. 2013 ), likely because the magnetic fields 

included in our simulation make the disc more dynamically active and 

can produce spatially variable vorticity even in the absence of RWI- 

induced vortices. Nev ertheless, re gions of high ne gativ e vorticity 

appear relatively coherent in the vertical direction, as shown in their 

R − z distribution (panel e), similar to the columnar structure seen 

in the hydro case (e.g. fig. 8 of Richard et al. 2013 ). 

The streamlines in panels (d) and (e) show that the flow on 

the poloidal ( R − z) plane has a downdraft in the outer part of 

the vortex (with larger radii than that of the density peak) and an 

updraft in the inner part (near the density peak), with some hint 

of a clockwise vortex in between. This pattern is reminiscent of 

the one shown in the lower left panel of fig. 13 of Meheut et al. 

( 2010 ) (in the region between their ∼ 2 . 8 and 3 . 0 r i ), who studied 

the 3D structures of hydro RWI vortices. Ho we v er, the vorte x is 

barely visible and much less prominent than the hydro case. There 

is a prominent counterclockwise vortex outside the clockwise one 

in the hydro case, but not in our case. The difference may not be 

surprising since our wind-launching non-ideal MHD disc has strong 

meridional circulation motions, particularly in dense rings (e.g. fig. 

8 of Hu et al. 2022 ; see also Riols & Lesur 2019 ; Cui & Bai 2021 

and Fig. 12 d below), which can, in principle, change the dynamics 

and structure of the RWI vortices. 

Specifically, magnetic fields may affect the motions in and around 

the vortices. For example, the field lines in the R − φ plane are 

mostly toroidal (i.e. along φ-direction; panel c), which may resist 

the field bending by the cross-field motion associated with the 

anticyclonic rotation around the density peak of the vortex (panel 

a). Ho we ver, the magnetic fields inside the overdense vortex are 

relatively weak, corresponding to a typical plasma- β of order 10 2 

(panel c), so their direct resistance to the vortex motion may be 

relati vely modest. Ne vertheless, the magnetic field and its associated 

outflow dominate the angular momentum transport and generate 

strong poloidal motions and non-Keplerian rotation throughout the 

disc, which could affect the RWI vortices indirectly; indeed, they give 

rise to the RWI-unstable substructures in the first place. Ho we ver, 

such indirect effects are difficult to quantify. 

An interesting feature of the plasma- β distribution in the R − φ

plane (panel c) is a ring of high β values offset from the density peak, 

where the field lines change directions abruptly. Panel (f) shows 

that the feature extends vertically outside the high-density part of 
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Figure 8. Detailed structure of the dominant RWI vortex in the 8 au ring of the 

Model T-3D-2000 at τ ∼ 50. Panels (a) and (c) show the radial profiles of the 

surface density normalized to its initial value and azimuthal velocity deviation 

from the local Keplerian value normalized to local sound speed, respectively, 

on a meridional plane passing through the density peak at 8 au. Panels (b) 

and (d) show the azimuthal profiles of the surface density normalized to 

its initial value and radial velocity normalized to the local sound speed of 

the same vortex. The red dashed–dotted lines mark the locations where the 

mass density normalized to its initial value is 1.0 (corresponding to the black 

density contour in Fig. 7 ). 

the vortex outlined by the isodensity contours, indicating that it is 

primarily a feature of weak local magnetic field rather than high 

density . Specifically , it is primarily associated with regions where 

the magnetic field reversal happens, particularly in the φ-direction 

(i.e. where B φ approaches zero). The field reversal in or near dense 

vortices is unsurprising because the gas motions there are strong 

enough to tangle the field lines, creating kinks where the magnetic 

field components (such as B φ or B r ) drop to zero. Field tangling 

is harder to achieve in the more strongly magnetized lower density 

regions (e.g. gaps), where the field lines are straighter. 

To analyse the vortices more quantitatively, we plot in Fig. 8 

the radial and azimuthal profiles of the normalized surface density 

across the density peak of the primary vortex (panels a and b) and 

the radial profile of the deviation of the azimuthal velocity from 

the local Keplerian value (panel c) and the azimuthal profile of the 

radial velocity (panel d) normalized by the local sound speed. The 

radial density profile is asymmetric because the gap outside the 

vortex-forming ring is deeper than that inside (see Fig. 7 and its 

animated version). The super-Keplerian rotation radially interior to 

the density peak and sub-Keplerian rotation exterior to the peak are 

consistent with expectations. As expected from the counterclockwise 

circulation pattern of the antic yclonic vorte x around the density peak 

in the R − φ plane (see Fig. 7 a), the radial velocity is positive on the 

larger azimuthal angle side of the density peak, reaching a maximum 

of ∼ 0 . 2 times the local sound speed. It is ne gativ e on the other 

side, decreasing to a minimum of only ∼ −0 . 1 times the local sound 

speed; the asymmetry is caused by the secondary vortex nearby. 

An important parameter to characterize a vortex is its aspect ratio 

χ ≡ a/b, where a and b are the major and minor axes of close 

Figure 9. The aspect ratio for the dominant vortex at 8 au in Model T-3D- 

2000 from τ = 50 to 60 (the time is normalized by the local orbital period). 

streamlines (e.g. Ono et al. 2018 ). Because the velocity field in our 

non-ideal MHD simulation is much more disordered than the hydro 

simulations (see the velocity streamline in Fig. 7 ), we choose to 

approximate the shape of the vortex using the iso-density contour of 

ρ( r, φ) /ρ( r, t = 0) = 1 (i.e. the black lines for the dominant vortex 

in Fig. 7 a). The resulting aspect ratio χ for the dominant vortex near 

the 8 au radius is shown in Fig. 9 as a function of time during the 

period when the m = 1 mode dominates (50 < τ < 60; see panel b of 

Fig. 5 ). The aspect ratio is of order 10 or larger for the entire duration, 

indicating that the vortex is highly elongated, consistent with visual 

inspection of Fig. 7 and especially Fig. 4 and their associated 

animations. Lesur & Papaloizou ( 2009 ) pointed out that vortices 

in discs tend to be unstable to ellipsoidal instability in 3D, although 

the maximum growth rate obtained from linear analysis decreases 

rapidly with increasing aspect ratio χ in a stratified disc (see the 

red curve in their fig. 6), making it increasingly difficult to detect 

in simulations. Richard et al. ( 2013 ) found that highly elongated 

vortices with χ ∼ 6 or larger can survive in 3D compressible hydro 

simulations. This hydro result contrasts with our non-ideal MHD 

simulation, where the amplitude of the dominant m = 1 mode at 8 

au steadily decreases after peaking around τ ≈ 55 despite its large 

aspect ratio. 

There are several possibilities for the abo v e difference. First, 

the magnetic field in our simulation may weaken the vorte x. F or 

example, the circulating flow in the vortex must move across the 

predominantly toroidal magnetic field in the mid-plane (contrasting 

the flow streamlines and field lines in, e.g. Figs 7 a and c, respectively) 

and is expected to be resisted by magnetic tension. Lyra & Klahr 

( 2011 ) found that the elliptic instability is quite destructive in 

magnetized discs; perhaps this explains why even elongated vortices 

decay in our simulations. Secondly, the vortex may be weakened 

by the magnetized disc wind in our simulation. Through mass and 

angular momentum removal, the wind induces strong meridional 

circulation that may be incompatible with the columnar structure 

preferred by the vortex. In particular, significant vertical motions 

are present in our simulation (see e.g. Fig. 7 d), which are different 

from those found in 3D hydro simulations (e.g. Meheut et al. 2010 ; 

Meheut, Yu & Lai 2012 ; Richard et al. 2013 ). Thirdly, our wind- 

launching non-ideal MHD disc is more dynamically active than the 

relatively quiescent disc envisioned in most of the previous 3D hydro 

RWI simulations, with an ef fecti ve α parameter of order 0.01 to 

0.1 estimated from the Reynolds and Maxwell stresses, which can 

ne gativ ely impact the vortex’s survival (e.g. Lin 2013 ). 

Interestingly, man y c yclonic vortices form in our restarted 3D 

simulation in addition to the anticyclonic vortices discussed abo v e. 

They are formed in low-density gaps and evolve broadly like the 
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Figure 10. Simultaneous growth of rings and gaps and RWI in 3D in Model T3D-0. Plotted in the first column are the surface density distribution normalized 

to its initial value at three representative times t = 340 (panel a), 680 (panel e), and 1220 yr (panel i). Similarly, the second, third, and fourth columns 

sho w, respecti vely, the mid-plane mass density normalized to its initial value, the mid-plane plasma- βz based on the vertical field component B z alone, and 

the mid-plane radial velocity normalized by the sound speed. An animated version of the figure can be found on the website: https:// virginia.box.com/ s/ 

shw9ux7dc0klb3bduj13iqvq3hj45rjq . 

anticyclonic vortices formed in dense rings: higher order azimuthal 

modes dominate at earlier times and lower order modes at later 

times. F or e xample, eight c yclonic vortices (i.e. the m = 8 mode) 

are clearly visible in the ∼10-au gap from the streamlines plotted on 

the R − φ plane at a relatively early time t = 450 yr after the restart 

(corresponding to about 14 local orbital periods), as shown in the 

animated version of Fig. 7 . They merge into fewer numbers at later 

times. In particular, at the time of t = 1150 yr shown in Fig. 7 , there 

are only two readily identifiable cyclonic vortices with (clockwise) 

closed streamlines in the 10-au gap, as can be seen from panel (a) and 

particularly (b), which also shows that the cyclonic vortices have the 

largest (positiv e) v ertical component of the vorticity ω z . Besides the 

sign of ω z , these vortices differ from the anticyclonic ones (with a 

ne gativ e ω z ) in one major aspect: they are more strongly magnetized, 

with a plasma- β typically of order unity, as can be seen from panels 

(c) and (f). Nevertheless, despite the strong magnetization in the 

gap, cyclonic vortices appear to be able to develop and survive 

until the end of the simulation at t = 1490 yr after the 3D restart, 

corresponding to ∼47 local orbital periods at 10 au. 

Since the perfectly axisymmetric rings and gaps formed in 2D 

simulations are shown to be unstable to RWI, such idealized struc- 

tures are unlikely to be produced in nature without the assumption 

of axisymmetry. We are thus moti v ated to start the 3D simulations 

from the very beginning to determine how the RWI interacts with 

the formation of the rings and gaps in the first place. 

4.4 3D simulation from the beginning 

In this section, we analyse the results of Model T-3D-0, which is the 

same as Model T-3D-2000 but restarts from the 2D simulation at t = 

0 yr rather than t = 2000 yr. Since the disc has no initial substructure, 

it is initially stable to RWI. We expect the non-axisymmetric RWI 

modes to grow as rings and gaps develop through non-ideal MHD 

processes in the wind-launching disc. The initial development of 

nearly axisymmetric rings and gaps is illustrated in the top panels 

of Fig. 10 , where we plot the normalized column density, the mid- 

plane density, plasma- βz based on the vertical component of the 

magnetic field, and radial velocity normalized by the local sound 

speed, at the same representative time of t = 340 yr as shown in the 

top panels for Model T-3D-2000 in Fig. 4 . In the T-3D-2000 case, a 

prominent m = 8 azimuthal RWI mode has already become clearly 

visible at this time in a ring around ∼ 11 au radius. In the T-3D-0 case, 

although rings and gaps hav e dev eloped near ∼ 10 au at this time, 

they remain nearly axisymmetric, likely because their amplitudes 

are still relatively small and it takes time for RWI modes to grow, 

particularly on a background ring/gap of relatively low contrast. 
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Figure 11. Same as Fig. 5 , but for Model T-3D-0 at R = 12 (a), 9.7 (b), and 

9 au (c). 

Non-axisymmetric RWI modes do develop at later times. For 

example, the middle row of Fig. 10 shows a prominent m = 5 mode 

on a ring of ∼ 9 . 7 au radius at the second representative time of 

t = 680 yr, corresponding to about 22.5 local orbital periods. It 

is seen most clearly in the radial velocity map (Fig. 10 h), but is 

also visible in the other three maps (Figs 10 e–g). At later times, 

the non-axisymmetric structure becomes more dominated by lower 

order azimuthal modes (with smaller m ), broadly consistent with the 

trend expected for RWI. For example, at the end of the simulation 

( t = 1220 yr, shown in the bottom row), the azimuthal density 

perturbation is dominated by a high-density vortex ( m = 1 mode) 

near the bottom of the ∼ 9 . 7 au ring, although other low-order ( m = 2 

and m = 3) modes are also visible. 

To quantify the mode evolution, we plot in Fig. 11 the time 

evolution of the amplitudes of various azimuthal modes, as done 

in Fig. 5 for the restarted model T-3D-2000. It is clear that the m = 5 

mode initially dominates the 9.7 au ring (the purple peak around 

τ ∼ 22). As time progresses, it is first replaced by the m = 3 (blue), 

then m = 2 (red), and, finally, m = 1 (black) mode. The progression 

to wards lo wer order modes with time is also e vident for the 9 au 

ring shown (bottom panel), consistent with the expectation of RWI. 

Interestingly, the top panel shows that the azimuthal modes of the 

outer 12 au ring are dominated by m = 1 at relatively early times 

between τ ∼ 13–16. This is in contrast with the outer (18 au) ring 

of Model T-3D-2000, which is dominated by the high-order m = 8 

mode at similarly early times (see the grey curve in the top panel of 

Fig. 5 ). We attribute the different behaviour to the difference in the 

initial disc structure when the 3D simulation starts. In the T-3D-2000 

case, highly RWI unstable, well-defined rings of large contrast with 

their surroundings already exist at the beginning of the simulation 

(see the red curve in the top panel of Fig. 3 ). For such (unstable) 

conditions, the higher order modes are expected to grow faster, as 

discussed earlier in Section 4.2 (see also, e.g. Ono et al. 2018 ). In 

the T-3D-0 case, there is no ring at 12 au (or anywhere else) initially. 

It takes time for the rings to form out of the initially smooth disc 

and for their amplitudes to increase relative to their surroundings 

(see Fig. 13 below). When the ring amplitude is smaller, the fastest 

growing mode tends to be of a lower order (see e.g. table 1 of Ono 

et al. 2018 ), consistent with the abo v e difference between the outer 

rings of Models T-3D-0 and T3D-2000. 

To illustrate the vortices formed in the T-3D-0 model more 

pictorially, we plot in Fig. 12 the normalized density, vertical 

component of the vorticity, and the plasma −β on the mid-plane and 

in the meridional plane passing through the centre of a vortex at the 

same representative time of t = 680 yr as in the second row of Fig. 10 , 

similar to the maps shown Fig. 7 for Model T-3D-2000. Compared to 

the T-3D-2000 case, the density contrast between regions of different 

radii is much less (compare Figs 12 a and 7 ), which is expected given 

that the T-3D-2000 model was restarted with already formed high- 

contrast rings and gaps. Nev ertheless, re gularly spaced antic yclonic 

vortices (with ne gativ e values of v ertical vorticity) are clearly visible 

at higher density radii (e.g. ∼ 9 . 3 and 10.3 au) and cyclonic vortices 

(with positive values of vertical vorticity) at lower density radii (e.g. 

∼ 8 . 8 and 9.8 au; see panels [a] and [b]), with the cyclonic vortices 

forming preferentially at azimuthal angles between the anticyclonic 

ones (and vice versa). 

Despite the prominent vortices of both positive and ne gativ e 

vorticities on the R − φ plane, the flow structure in the meridional 

plane at this time is rather regular, with a layer of accreting 

material located approximately near the mid-plane, which drives 

two prominent cells of opposite meridional circulation abo v e and 

below the layer near the radius of the dominant anticyclonic vortex 

marked by the black contour in panel (c). Indeed, associated with 

the meridional circulations is an azimuthal component of vorticity 

that is larger than the v ertical component, ev en inside the dominant 

RWI vortex, as seen by comparing panels (d) and (e) of Fig. 12 . The 

strong meridional circulation, ultimately induced by the magnetic 

field through accretion and disc wind, is a feature absent from hydro 

simulations of RWI. 

The meridional flow pattern in 3D is nearly identical to that studied 

in detail in 2D (axisymmetric) simulations (e.g. fig. 8 of Hu et al. 

2022 ). In particular, the accretion layer is associated with regions 

of vanishing toroidal magnetic fields, where the field lines change 

directions sharply in the azimuthal direction, creating a large tension 

force in the (ne gativ e) azimuthal direction that brakes the rotation and 

drives accretion. The weak toroidal field is why the accretion layer 

shows up as a filament of high plasma −β in panel (f). The panel 

shows clearly that the accretion drags the poloidal field lines into a 

pinched configuration, which, Suriano et al. ( 2018 ) argue, leads to 

reconnection that lies at the heart of ring and gap formation in the 

first place. Clearly, the development of RWI in 3D does not shut-off 

the mechanism for generating rings and gaps in the non-ideal MHD 

and wind-launching disc in the first place. 

The persistence of ring and gap formation despite the RWI is 

further illustrated in Fig. 13 , where we compare the radial distribution 

of the azimuthally averaged normalized surface density at different 

times for Model T-3D-0 and its 2D counterpart T2D. As in the T-3D- 

2000 case (see Fig. 6 ), the contrast between the rings and gaps tends 

to be somewhat less in 3D than in 2D. Nevertheless, rings and gaps 

have clearly developed and persisted until the end of the simulation. 

It can also be seen from the animated version of Fig. 10 (see its 

caption for a link to the animation). 

We believe the ring and gap formation persists because the RWI 

modifies but does not fundamentally change the flow structures 

that enable the formation and growth of rings and gaps. This is 

illustrated in Fig. 14 . The top left panel shows a much lower plasma- 

βθ (based on the θ -component of the magnetic field) in the low- 

density gaps than in the dense rings, consistent with the result from 

earlier work that the poloidal magnetic flux tends to be redistributed 

from the rings to the gaps. This poloidal magnetic flux redistribution 

pattern is fundamental to the MHD mechanism of ring and gap 

formation (e.g. Suriano et al. 2018 ; Riols & Lesur 2019 ; Cui & Bai 

2021 ). It is broadly preserved in 3D, as seen in the three lower left 

panels, which plot the meridional distributions of the plasma- βθ at 

three representative azimuthal angles. Also evident from the panels 
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Figure 12. The structure of the dominant vortex on the 9.7 au ring in Model T-3D-0 at τ ∼ 22 . 5. Panels (a) and (b) display the mass density normalized 

to its initial value at the mid-plane and the z-component vorticity normalized to its local Keplerian period, respectiv ely. P anels (c)–(f) plot the mass density 

normalized to its initial value (c), the φ-component of the vorticity normalized to its local Keplerian period (d), the z-component vorticity normalized to 

its local Keplerian period (e), and the logarithm of the plasma- β (f) on a meridional plane passing through the density peak of the ∼ 9.2 au ring. The 

grey contours with arrows are velocity streamlines and the white contours (in panel [f]) with arrows are the magnetic field lines. The brown and black 

contour lines mark where the mass density normalized to its initial value is 0.6 and 1.0, respectively. An animated version of the figure can be found at 

https:// virginia.box.com/ s/ oofe09pt2qv01wkk42vv8e0tzqg3oy7k. 

are azimuthal variations of the density (particularly in the rings 

between ∼ 10 and 15 au) and the plasma- βθ (particularly around 

∼ 16 au where its value is much higher at φ = 4 π/ 3 than at φ = 0 

and 2 π/ 3). Similarly, the characteristic disc flow structure in 2D, 

with the accretion concentrating in warped layers (especially within 

about 20 au radius where most rings and gaps are located; see the 

blue regions in the top right panel), is broadly preserved in 3D. 

Suriano et al. ( 2018 ) argued that this flow structure is important for 

ring and gap formation because it generates sharp pinching of the 

poloidal magnetic field, facilitating reconnection and magnetic flux 

redistribution relative to mass. There are azimuthal variations in the 

accretion flow, as seen in the three lower right panels around, for 

example, the ∼15-au radius. They appear to modify but not destroy 

the rings and gaps. 

A caveat of our simulations is that, despite the use of SMR, 

the resolution may not be high enough to fully resolv e an y MRI 

turbulence that may develop, especially in the relatively well (mag- 

netically) coupled outer part of the disc beyond ∼ 40 au, where 

the initial ambipolar Elsasser number on the mid-plane exceeds 

10 for the 3D models discussed in this section (see the red curve 

in the upper panel of Fig. A2 ). Although our focus is on the less 

well-coupled inner disc (inside ∼ 30 au) that is expected to be less 

prone to MRI than the outer disc, it is possible that its dynamics 

and structure can be modified at a higher resolution, where a better 

resolved MRI turbulence can potentially reduce the amplitudes of 

the rings and gaps and increase their widths, making them more 

stable to RWI. Indeed, there are no obvious vortices in the 3D 

model shown in fig. 10 of Cui and Bai ( 2021 ), which has a higher 

resolution than ours but a smaller azimuthal angle range ( π/ 4 

rather than 2 π ). Whether the limited azimuthal angle range has a 

strong effect on the formation and evolution of RWI vortices or 

not remains to be determined. Higher resolution simulations with 

a full azimuthal angle range are desirable to resolve the potential 

discrepancy. 
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Figure 13. Same as the Fig. 6 , but for the Model T-3D-0 and with a different colour bar. 

Figure 14. Comparison of the 2D and 3D meridional structures at a representative time t = 1200 yr. The left panels plot the logarithmic scale of plasma βθ

(based on the polar component of the magnetic field), with velocity streamlines traced by the grey lines with arrows. The right panels plot the radial mass flux 

per unit area, with the magnetic field lines traced by the white lines with arrows. The top panels are for the axisymmetric model T-2D, and the lower three panels 

are for three meridional planes of the 3D Model T-3D-0 with, respectively, φ = 0, 2 π/ 3, and4 π/ 3. The brown and black contour lines mark where the mass 

density normalized to its initial value is 0.6 and 1.0, respectively. 
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5  C O N C L U S I O N  

We performed 2D (axisymmetric) and fully 3D non-ideal MHD 

simulations of substructure formation in magnetized, weakly ion- 

ized, wind-launching discs, with the non-ideal MHD coefficients 

computed from a simplified chemical network including dust grains. 

A 2D simulation using a simple power-law prescription for the 

ionization fraction is also included for comparison. We focused on 

whether the substructures formed in such discs are stable to the 

RWI and, if not, ho w the RWI af fects the formation and e volution 

of the substructures. Our main conclusions are summarized as 

follows. 

(i) In agreement with previous work, axisymmetric gas rings and 

gaps form spontaneously in 2D simulations of non-ideal MHD discs 

with ambipolar diffusion and Ohmic dissipation, with more promi- 

nent substructures for larger Elsasser numbers (or better magnetic 

coupling). The case for non-ideal MHD formation of substructures 

is thus strengthened, at least under the assumption of axisymmetry. 

(ii) Axisymmetric gas rings in 2D simulations are found to be un- 

stable to RWI according to analytic stability conditions and through 

3D restart simulation. As expected for RWI, shorter wavelength (or 

larger m ) azimuthal modes develop earlier in the simulation, and 

longer wavelength ones dominate later, forming elongated anticy- 

clonic vortices (arcs) in the ring’s column density distribution that last 

until the end of the simulation. Highly elongated vortices with aspect 

ratios of 10 or more are found to decay with time in our simulation, 

in contrast with the hydro case. This difference could be caused 

by magnetically induced motions, particularly strong meridional 

circulations with large values of azimuthal vorticity, which may 

be incompatible with the columnar structure preferred by vortices. 

Axisymmetric gaps in the 2D simulation are also unstable to RWI, 

forming cyclonic vortices despite being strongly magnetized, with a 

plasma- β of order unity. Nevertheless, the cyclonic and anticyclonic 

RWI vortices modify but do not destroy the rings and gaps in the 

radial gas distribution of the disc. 

(iii) Our 3D simulation that starts from a smooth initial condition 

shows that RWI does not shut-off the mechanism for generating 

rings and gaps in the non-ideal MHD and wind-launching disc. 

Specifically, anticyclonic and cyclonic vortices are still formed in 

rings and gaps, respectively, with amplitudes saturating at moderate 

levels. The RWI and associated vortices modify but do not suppress 

the poloidal magnetic flux accumulation in low-density regions and 

the characteristic meridional flow patterns that are crucial to the ring 

and gap formation. 

An interesting question to address in future investigations is 

ho w RWI af fects the dust distribution and the disc appearance 

in continuum emission. Most observed disc dust substructures 

appear rather axisymmetric, although a small fraction shows non- 

axisymmetric features, including arcs, which are potentially vortices. 

The RWI vortices discussed in this paper open up the possibil- 

ity of producing such dusty vortices in non-ideal MHD wind- 

launching discs. Ho we ver, detailed dust treatment is needed to 

explore this possibility quantitatively. The current simulation will 

also benefit from adaptive (rather than static) mesh refinement, 

which will better resolve the vortices formed in the global 3D 

simulations. Higher resolution is also desirable to better resolve 

any MRI turbulence that may develop, which can modify the 

disc dynamics and structure, which, in turn, affects its stability 

to RWI. 
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APPENDIX  A :  C H A R G E  A BU N DA N C E S  A N D  

ELSASSER  N U M B E R S  

One of our impro v ements o v er previous work along a similar line 

(Suriano et al. 2018 ; Hu et al. 2022 ) is that we computed the charge 

abundances from a reduced chemical network (see Section 3 ) rather 

than using the simple power-law prescription of Shu ( 1992 ), which 

is derived under the assumption of one dominant molecular ion (e.g. 

HCO 
+ ) and no dust grains. Fig. A1 shows fractional abundances of 

Table A1. Relative abundances of the elements included in the chemical 

network. Similar to table 1 of Umebayashi & Nakano ( 1990 ), with the 

fractions remaining in the gas phase set to δ1 = 0 . 2 and δ2 = 0 . 02. 

Element Abundant Chemical species Fraction (gas) 

H 1 H 2 1 

He 8.5 ×10 −2 He 1 

C 4.2 ×10 −4 CO δ1 

O 6.9 ×10 −4 

9.0 ×10 −5 O δ1 

9.0 ×10 −5 O 2 δ1 

Mg 1.7 ×10 −4 Mg δ2 

Table A2. List of gas-phase reactions in our chemical network. Symbols αc , 

βc , and γc are the coefficients used to determine the reaction rates. These 

coefficients are grabbed from UMIST database. 

Reaction αc βc γc 

H + + O −→ 

O + + H 

6 . 86 × 10 −10 0.26 224.30 

H + + O 2 −→ 

O 2 
+ + H 

2 . 00 × 10 −9 0.0 0.0 

H + + Mg −→ 

Mg + + H 

1 . 1 × 10 −9 0.0 0.0 

He + + H 2 −→ 

H + + H + He 

7 . 2 × 10 −15 0.0 0.0 

He + + CO −→ 

C + + O + He 

1 . 6 × 10 −9 0.0 0.0 

He + + O 2 −→ 

O + + O + He 

1 . 1 × 10 −9 0.0 0.0 

H 3 
+ + CO −→ 

HCO + + H 2 

1 . 36 × 10 −9 −0.14 −3.40 

H 3 
+ + O −→ 

OH + + H 2 

7 . 98 × 10 −10 −0.16 1.4 

H 3 
+ + O 2 −→ 

O 2 H + + H 2 

9 . 3 × 10 −10 0.0 100.0 

H 3 
+ + Mg −→ 

Mg + + H 2 + H 

1 . 0 × 10 −9 0.0 0.0 

C + + H 2 −→ 

CH 2 
+ + hν

2 . 0 × 10 −16 −1.3 23.0 

C + + O 2 −→ 

CO + + O 

3 . 42 × 10 −10 0.0 0.0 

C + + O 2 −→ 

O + + CO 

4 . 54 × 10 −10 0.0 0.0 

C + + Mg −→ 

Mg + + C 

1 . 1 × 10 −9 0.0 0.0 

O 2 
+ + Mg −→ 

Mg + + O 2 

1 . 2 × 10 −9 0.0 0.0 

HCO + + Mg −→ 

Mg + + HCO 

2 . 9 × 10 −9 0.0 0.0 

H + + e −→ H + hν 3 . 5 × 10 −12 −0.75 0.0 

He + + e −→ 

He + hν

5 . 36 × 10 −12 −0.50 0.0 

H 3 
+ + e −→ 

H + H + H 

4 . 36 × 10 −8 −0.52 0.0 

H 3 
+ + e −→ 

H 2 + H 

2 . 34 × 10 −8 −0.52 0.0 

C + + e −→ C + hν 2 . 36 × 10 −12 −0.29 −17.6 

Mg + + e −→ 

Mg + hν

2 . 78 × 10 −12 −0.68 0.0 

CO + + e −→ O + C 2 . 0 × 10 −7 −0.48 0.0 

O 2 
+ + e −→ O + O 1 . 95 × 10 −7 −0.70 0.0 

OH + + e −→ O + H 3 . 75 × 10 −8 −0.50 0.0 

O 2 H + + e −→ 

O 2 + H 

3 . 0 × 10 −7 −0.50 0.0 

HCO + + e −→ 

CO + H 

2 . 4 × 10 −7 −0.69 0.0 

CH 2 
+ + e −→ 

C + H 2 

7 . 68 × 10 −8 −0.60 0.0 

the main charges computed from our chemical network as a function 

of number density for an MRN-like dust size distribution with 

a min = 0 . 5 μm and a max = 25 μm, including Mg + , m 
+ (molecular 

ions other than H 
+ 
3 ), grains with charge 0 , ±e , and ±2 e . The power- 

law prescription of Shu ( 1992 ) is also shown for comparison. 

We use the charge abundances in Fig. A1 to calculate the Elsasser 

number together with the disc properties. Fig. A2 shows the initial 

profile of the ambipolar Elsasser numbers of Model S-2D (where 
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Figure A1. Fractional abundances of main charges as a function of the 

number density computed from the chemical network for an MRN-type dust 

size distribution with a min = 0 . 5 μm and a max = 25 μm. Magnesium ions, 

molecular ions other than H 
+ 
3 , grains with charge 0 , ±e, and ±2 e. The power- 

law prescription of Shu ( 1992 ) is plotted as a yellow line for comparison. 

Figure A2. Initial profiles of the ambipolar Elsasser number for Model S- 

2D (green lines) and Model T-2D (red lines). Panel (a) shows the Elsasser 

numbers as a function of radius on the mid-plane. Panel (b) shows the Elsasser 

number at the radius r = 10 au as a function of the vertical distance from the 

mid-plane. The dashed lines in panel (b) mark the disc surface near ∼ 1 au. 

the power-law prescription of Shu 1992 is adopted; green lines) and 

Model T-2D (where the chemical network is used; red lines) as a 

function of radius on the mid-plane (panel a) and as a function of 

vertical distance from the midplane at r = 10 au (panel b, where the 

θ -dependence in equation [ 25 ] is applied). 

AP PENDIX  B:  R AT E  COEFFICIE NTS  F O R  

CO LLISIONA L  M O M E N T U M  TR ANSFE R  

Three charged species (ions, electrons, and grains) collide with the 

molecular hydrogen in our model. We take the collisional momentum 

transfer rate coefficients from Pinto et al. ( 2008 ) and Grassi et al. 

( 2019 ). Note that the units of R e,n , R i,n , and R g,n in this subsection 

are cm 
3 s −1 , corresponding to the R j,n ( T ) in the equation ( 21 ), so the 

Hall parameter is dimensionless. 

For the collisional rate between electrons and molecular hydrogen, 

we use the rate 

R e,n ( T ) = 10 −9 
√ 

T 
[

0 . 535 + 0 . 203 log 10 (T) −0 . 163[ log 10 (T) ] 2 
]

. (B1) 

The collisional rate between ions and molecular hydrogen is given 

as 

R i,n ( T ) = 2 . 21 π

√ 
αpol e 2 

m red 
, (B2) 

where αpol = 8 . 06 × 10 −25 cm 
3 is the polarizability of molecular 

hydrogen. 

The momentum transfer through collisions between charged grains 

and neutral hydrogen is 

〈 R g,n ( T , Z) 〉 = 2 . 21 π

√ 

αpol | Z| e 2 

m red 

a p+ 1 
c − a p+ 1 

min 

a 
p+ 1 
max − a 

p+ 1 
min 

+ 

(

8 k B T 

πm r 

)1 / 2 
4 πδL 

3 

a p+ 3 
max − a p+ 3 

c 

a 
p+ 1 
max − a 

p+ 1 
min 

p + 1 

p + 3 
, (B3) 

where 

a c ( T , Z) = 
0 . 206 √ 

δL 

(

αpol | Z| 
T 

)1 / 4 
(B4) 

is a critical grain size to measure microscope grain-neutral reaction 

for the hard sphere and the Langevin rates (Pinto et al. 2008 ). We set 

δL = 1 . 3 as recommended by Liu et al. ( 2003 ). 
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