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In this paper we prove the first quantitative convergence rates for the
graph infinity Laplace equation for length scales at the connectivity thresh-
old. In the graph-based semisupervised learning community this equation is
also known as Lipschitz learning. The graph infinity Laplace equation is char-
acterized by the metric on the underlying space, and convergence rates fol-
low from convergence rates for graph distances. At the connectivity thresh-
old, this problem is related to Euclidean first passage percolation, which is
concerned with the Euclidean distance function dh(x, y) on a homogeneous
Poisson point process on R

d , where admissible paths have step size at most
h > 0. Using a suitable regularization of the distance function and subadditiv-
ity we prove that dhs

(0, se1)/s → σ as s → ∞ almost surely where σ ≥ 1 is
a dimensional constant and hs � log(s)1/d . A convergence rate is not avail-
able due to a lack of approximate superadditivity when hs → ∞. Instead, we
prove convergence rates for the ratio dh(0,se1)

dh(0,2se1)
→ 1

2 when h is frozen and
does not depend on s. Combining this with the techniques that we developed
in (IMA J. Numer. Anal. 43 (2023) 2445–2495), we show that this notion
of ratio convergence is sufficient to establish uniform convergence rates for
solutions of the graph infinity Laplace equation at percolation length scales.

1. Introduction. In this paper we will use techniques from first-passage percolation to
prove new and strong results in the field of partial differential equations on graphs. In more
detail, we will exploit stochastic homogenization effects in Euclidean first-passage percola-
tion on Poisson point clouds to derive uniform convergence rates for the infinity Laplacian
equation on a random geometric graph with n vertices in R

d whose connectivity length scale
εn is proportional to the connectivity threshold, that is,

εn ∼
(

logn

n

) 1
d

.

Our approach is based on the insight from our previous work [15] that convergence rates for
the graph distance function translate to convergence rates for solutions of the graph infinity
Laplace equation which can be regarded as a generalized finite difference method and which,
in the context of semisupervised learning, is also known as Lipschitz learning.

While the fields of percolation theory and partial differential equations (PDEs) on graphs
(including finite difference methods and semisupervised learning) are very well developed,
there are relatively few results that connect them, such as [13, 27] which deals with Gamma-
convergence of discrete Dirichlet energies on Poisson clouds or [41] on distance learning
from a Poisson cloud on an unknown manifold. In the following we give a brief overview of
first-passage percolation and graph PDEs.

Received October 2022; revised January 2024.
MSC2020 subject classifications. Primary 35R02, 65N12, 60K35; secondary 60F10, 60G44, 68T05.
Key words and phrases. First-passage percolation, Poisson point process, concentration of measure, graph in-

finity Laplacian, Lipschitz learning, graph-based semisupervised learning.

3870

https://imstat.org/journals-and-publications/annals-of-applied-probability/
https://doi.org/10.1214/24-AAP2052
http://www.imstat.org
https://orcid.org/0000-0002-6554-9892
https://orcid.org/0000-0002-9829-4128
https://orcid.org/0000-0001-8440-2928
mailto:leon.bungert@uni-wuerzburg.de
mailto:jwcalder@umn.edu
mailto:tim.roith@desy.de
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


RATIO CONVERGENCE RATES FOR FIRST-PASSAGE PERCOLATION 3871

First-passage percolation. First-passage percolation was introduced in [14, 43] as a
model for the propagation of fluid through a random medium. In mathematical terms, the
set-up is a graph G = (V ,E) whose edges are equipped with passage times t (e) ∈ [0,∞]
and one would like to understand the graph distance function between vertices x, y ∈ V :

T (x, y) := inf

{
m∑

i=1

t (ei) : m ∈ N, (e1, . . . , em) connects x and y

}
.(1.1)

Typical questions address properties of geodesics, shape theorems, size of connected compo-
nents of the graph, and large scale asymptotics of the graph distance.

Stochasticity can enter the model in different ways. In the simplest set-up the graph con-
sists of the square lattice Z

d and the passage times t (e) are i.i.d. random variables. This
setting is well-understood (see the incomplete list of results [1, 2, 30, 49, 50] and the sur-
veys [10, 48, 62]). Another way that randomness can enter the percolation model is through
the vertices of the graph instead of its edge weights. This setting is known as Euclidean
first-passage percolation and typically the vertices are assumed to constitute a Poisson point
process X in R

d , which possesses convenient isotropy properties [51]. The connectivity of
the graph can be modelled in different ways but is typically assumed to follow deterministic
rules (once the vertices are given).

In the works [45, 46] a fully connected graph together with power weighted passage times
is considered, that is, t (e) = |x − y|α where e = (x, y) represents an edge in the graph and
α ≥ 1 is a parameter. For α = 1 long hops are possible and the corresponding graph distance
T (x, y) equal the Euclidean one |x − y|. To prevent this trivial behavior and enforce short
hops, in almost all results it is assumed that α > 1. More recent results and applications of
this power weighted Euclidean first-passage percolation model can be found, for instance, in
[47, 53]. It is also possible to replace the fully connected graph by a Delaunay triangulation
subordinate to the Poisson point process, see, for example, [44, 57, 59].

Most relevant for us will be the setting of a random geometric graph. Here, the connec-
tivity relies on some parameter h > 0 and admissible paths in the definition of the distance
T (x, y) cannot have hops of length larger than h. Such models were previously considered
but much less is known, as compared to lattice percolation or Euclidean percolation with
power weights. High probability bounds between the graph and Euclidean distance were
proved in [35, 39] and large deviation results for the graph distance and a shape theorem
were established in [63]. The central difficulty of this model is that the distance function is
a random variable with infinite expectation with respect to the realizations of the Poisson
point process. This makes standard techniques from subadditive ergodic theory inapplicable.
Furthermore, establishing quantitative large deviation bounds for this graph distance is very
challenging due to the fact that feasible paths on different scales h cannot be straightfor-
wardly combined into a feasible path. In essence, this means that the stochastic processes,
while still subadditive, do not readily admit any type of approximate superadditivity across
length scales, which is needed to establish convergence rates.1 This issue does not arise in
lattice percolation [50], power weighted percolation [46], or related problems like the longest
chain problem [12], since in these cases the connectivity structure does not involve a length
scale h, and so approximate superadditivity is readily available. For additional convergence
rate results in lattice percolation we also refer to [1, 2].

Let us mention that there is a history of ideas from percolation theory (e.g., subadditivity
and concentration inequalities) finding important applications in the theory of PDEs. Recent

1As we show in this paper, approximate superadditivity does hold when the length scale h is fixed, which is
sufficient for the ratio convergence results in this paper, but not for establishing convergence rates for the scaling
limit.
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results on stochastic homogenization theory for PDEs make use of subadditive quantities [3,
5, 6, 8], including homogenization of elliptic PDEs on percolation clusters [4, 32]. Subad-
ditivity and concentration inequalities are also key tools in the convergence of data peeling
processes to solutions of continuum PDEs [26, 28].

Graph PDEs, finite difference methods, and semisupervised learning. Recent years have
seen a surge of interest and results in the field of PDEs and variational problems on graphs.
This is based on the observations that, on one hand, PDEs on graphs generalize finite differ-
ence methods for the numerical solution of PDEs and, on the other hand, constitute efficient
and mathematically well-understood tools for solving problems in machine learning, includ-
ing data clustering, semisupervised learning, and regression problems, to name a few.

The first observation is easily understood, noting that any grid in R
d with neighbor

relations—for instance, the rectangular regular grid εZd where every point x0 ∈ εZd is con-
nected to its 2d nearest neighbors x0 ± εei for i = 1, . . . , d and their connection is weighted
by their Euclidean distance ε—is a special case of a weighted graph. The Laplacian operator
of a smooth function, for instance, can be approximated as

�u(x0) ≈ 1

ε2

d∑
i=1

(
u(x0 + εei) − 2u(x0) + u(x0 − εei)

)
.(1.2)

It is important to remark that graphs allow for richer models. For instance, if the points
{x1, . . . , xn} are i.i.d. samples from a probability density ρ, then the graph Laplacian offers
an approximation of a density weighted Laplacian with high probability (see e.g, [17] and the
references therein):

1

ρ(x0)
div

(
ρ(x0)

2∇u(x0)
) ≈ 1

nεd+2

∑
1≤i≤n|xi−x0|≤ε

(
u(xi) − u(x0)

)
.(1.3)

Furthermore, as opposed to standard finite difference methods, random graphs can possess an
increased approximation and convergence behavior due to stochastic homogenization effects.
In the context of the infinity Laplace operator, this is a key finding of the present paper.

The convergence analysis of finite difference methods for nonlinear PDEs like the p-
Laplace and the infinity Laplace equations was revolutionized by the seminal work of Barles
and Souganidis [11] on convergence of monotone schemes to viscosity solutions and sparked
results like [54–56]. Furthermore, the dynamic programming principles and mean value for-
mulas gave rise to new finite difference methods for p-Laplace equations [33, 34].

There are also close connections between graph PDEs and semisupervised learning (SSL).
In SSL one is typically confronted with a relatively large collection of n ∈ N data points
�n, only few of which carry a label. The points with labels constitute the small subset On ⊂
�n (which can but does not have to depend on n). A prototypical example for this is the
field of medical imaging where obtaining data is cheap but obtaining labels is expensive.
Based on pairwise similarity or proximity of the data points, the whole data set is then turned
into a weighted graph structure and one seeks to extend the label information by solving a
“boundary” value problem on this graph, where the boundary data is given by the labels on
the small labeled set. The abstract problem consists of finding a function un : �n → R that
solves the graph PDE {

Lnun(x) = 0 for all x ∈ Xn \On,

un(x) = g(x) for all x ∈ On,

where Ln is a suitable differential operator on a graph, for example, a version of the graph
Laplacian [24, 25, 64], the graph p-Laplacian for p ∈ (1,∞) [17, 40, 42, 60], the graph
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infinity Laplacian [15, 18, 58], a Poisson operator [20, 23], or an eikonal-type operator [21,
36, 38].

Both in the context of finite difference methods and in graph-based semisupervised learn-
ing two main questions arise:

1. Under which conditions on the graph and the discrete operators do solutions converge
to solutions of the respective continuum PDE?

2. What is the rate of convergence?

The answers to these questions, if they exist, typically involve two important parameters:
The graph resolution δn, which describes how well the graph approximates the continuum
domain in the Hausdorff distance, and the graph length scale εn, which encodes the maxi-
mum distance between neighbors in the graph. Note that for n i.i.d. samples from a positive

distribution δn ∼ (logn/n)
1
d with high probability whereas for a regular grid δn ∼ (1/n)

1
d .

The finite difference approximation of the Laplacian on a regular grid (1.2) where εn ∼ δn

is consistent with the Laplacian, where with consistency we mean that the application of the
discrete operator to a smooth function converges to the application of the limiting operator to
the same function. However, already for the graph Laplacian (1.3) on general point clouds or
for nonlinear differential operators like the game theoretic p-Laplacian or the infinity Lapla-
cian, one has to choose εn significantly larger than δn to ensure that the discrete operators

are consistent with the continuum one, for example, εn � δ
d

d+2
n for the Laplacian [17], The-

orem 5, εn � δ
2
3
n for the p-Laplacian [33], Theorem 1.1, and [18], Lemma 15, Theorem 17,

for the infinity Laplacian.
Note that convergence rates can be proved for solutions of the graph Laplace equation by

combing consistency with maximum principles, see, for example, [25], and spectral conver-
gence rates for eigenfunctions are also available, see [22] and the references therein. Further-
more, in the consistent regime of the infinity Laplacian, rates of convergence were proved for

εn � δ
1
2
n and a very restrictive setting in [61] and, recently, for general unstructured grids but

very large length scales εn ∼ δ
1
4
n in [52]. In [15] we established convergence rates in a general

setting whenever εn � δn.
As our result in [15] shows, overcoming the lower bounds imposed by consistency of

the operator is clearly possible is some cases. For instance, when working with variational
methods like Gamma-convergence, convergence can typically be established in the regime
εn � δn [40, 58, 60], however, proving convergence rates is difficult due to the asymptotic
nature of Gamma-convergence.

In our previous work [15] we proposed an entirely new approach based on ideas from
homogenization theory. We defined a new homogenized length scale τn that is significantly
larger then the graph length scale εn, that is, one has δn � εn � τn. We showed that solutions
of the graph infinity Laplace equation

max
1≤j≤n

η
(|xi − xj |/εn

)(
u(xj ) − u(xi)

)
+ min

1≤j≤n
η
(|xi − xj |/εn

)(
u(xj ) − u(xi)

) = 0,
(1.4)

where η : (0,∞) → (0,∞) is a decreasing function satisfying suppη ⊂ [0,1] and some other
mild conditions, give rise to approximate sub- and super-solutions of a nonlocal homogenized
infinity Laplace equation for the operator

�τn∞u(x) := 1

τ 2
n

(
sup

y∈B(x;τn)

(
u(y) − u(x)

) + inf
y∈B(x;τn)

(
u(y) − u(x)

))
.(1.5)
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Loosely speaking the larger length scale τn can then be used to ensure consistency with the
infinity Laplacian �∞u := 〈∇u,∇2∇u〉 while at the same time allowing εn to arbitrarily
close to δn as long as εn � δn is satisfied. The rate is then given by the optimal choice of τn

in terms of εn and δn. The convergence rates obtained in our previous work [15] depend on
quantities like the ratio δn

εn
, and are degenerate at the connectivity scaling εn ∼ δn. Establish-

ing convergence rates at the length scale εn ∼ δn is the main focus of this paper.

Structure of this paper. The rest of the paper is organized as follows: In Section 2 we
explain our precise setup and our main results for Euclidean first-passage percolation Theo-
rem 2.1 and the graph infinity Laplacian Theorem 2.3. We also discuss some open problems
and extensions. Sections 3 to 5 are devoted to proving the percolation results, by first estab-
lishing asymptotics for the expected value of a regularized graph distance (which has finite
expectation and coincides with the original distance with high probability), proving concen-
tration of measure for this distance, and establishing quantitative convergence rates for the
ratio of two distance functions. Finally, we apply our findings to get convergence rates for the
graph infinity Laplace equation in Section 6.

2. Setup and main results. In this section we introduce the different distance functions
on Poisson point processes that we shall use in the course of the paper.

In large parts of this paper we let X be a Poisson point process on R
d with unit intensity.

This means that X is a random at most countable collection of points such that the number
of points in X ∩ A, for a Borel set A, is a Poisson random variable with mean |A|, which
denotes the Lebesgue measure of A. That is,

P
(
#(A ∩ X) = k

) = |A|k
k! exp

(−|A|).(2.1)

The Poisson process has the important property that for any A ⊂ R
d , the intersection X ∩ A

is also a Poisson point process with intensity function 1A, or rather, a unit intensity Poisson
point process on A [51]. This is not true for i.i.d. sequences, restrictions of which to subsets
are, in fact, Binomial point processes.

2.1. Paths and distances. Given a set of points P ⊂ R
d , x, y ∈ R

d , and a length scale
h > 0, we denote the set of paths in P , connecting x, y ∈ R

d with steps of size less than or
equal to h, by

�h,P (x, y) := {
p ∈ P m : m ∈ N,p1 ∈ πP (x),pm ∈ πP (y),

|x − p1| ≤ h/2, |y − pm| ≤ h/2, and

|pi − pi+1| ≤ h ∀i = 1, . . . ,m
}
,

(2.2)

where for x ∈ R
d the set πP (x) := {x̂ ∈ P : |x − x̂| = miny∈P |x − y|} is the set of all closest

points in P . For any path p ∈ �h,P (x, y) with m elements we let

L(p) :=
m−1∑
i=1

|pi+1 − pi |(2.3)

denote the length of the path. We now define

dh,P (x, y) := inf
{
L(p) : p ∈ �h,P (x, y)

}
, x, y ∈ P,(2.4)

to be the length of the shortest path in �h,P (x, y) connecting x ∈ R
d and y ∈ R

d . Whenever
we are referring to the Poisson point process X, meaning P = X, we obfuscate the depen-
dency on X by using the abbreviations �h(x, y) and dh(x, y).
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FIG. 1. The covering of the Poisson process X on the left yields empty boxes in red. We define the enriched
process Xs on the right by adding the points in blue.

2.2. Different distance-based random variables. Thanks to the spatial homogeneity of
the Poisson process it suffices to study the distance between the points x = 0 and y = se1
where e1 = (1,0, . . . ,0) ∈ R

d denotes the first unit vector. This leads to the quantity
dh(0, se1) for s ≥ 0. If the length scale h > 0 is fixed, most distances will be infinite with
high probability when s is large. Therefore, we consider length scales h ≡ hs which depend
on the distance.

Our main object of study is the random variable

Ts := dhs (0, se1) = inf
{
L(p) : p ∈ �hs (0, se1)

}
, s ≥ 0.(2.5)

For properly chosen length scales hs , roughly satisfying log(s)
1
d � hs � s, we show that

s − hs ≤ Ts ≤ Cds with high probability. Here Cd > 0 is a suitable dimensional constant,
to be specified later. However, with small but positive probability there are no feasible paths
and Ts is infinite which makes it meaningless to study its expectation E[Ts] and fluctuations
around the expectation.

Therefore, we construct yet another distance function which always has feasible paths.
For this, let us fix s > 0 and cover R

d with closed boxes {Bk}k∈N of side length δs/Cd .

Here δs ∼ log(s)
1
d will be specified later and Cd > 0 is a dimensional constant, sufficiently

large such that the maximum distance of two points in two touching boxes is at most δs/2.
A possible choice is

Cd := 2
√

d.(2.6)

The probability that all boxes Bk contain at least one point in X is zero and therefore we
define an at most countable index set Is such that Bi ∩ X =∅ for all i ∈ Is . For every i ∈ Is

we then add a point xi ∈ Bi , for instance the center of the box, to the Poisson process X, see
Figure 1, which leads to the enriched set of points

Xs := X ∪ ⋃
i∈Is

{xi}.(2.7)

With the notation Xs we emphasize that this enriched Poisson point process depends on s. We
can hence consider the following distance function on the enriched Poisson process which we
define for all scalings h ≥ δs (which can but do not have to depend on s)

dh,Xs (x, y), x, y ∈ R
d,(2.8)

and we define T ′
s as

T ′
s := dhs,Xs (0, se1).(2.9)
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TABLE 1
Different random variables used in this work. X denotes a unit intensity Poisson process, Xs an enrichment with

additional points

Symbol Meaning Definition

Ts graph distance on Poisson process dhs,X(0, se1)

T ′
s graph distance on enriched Poisson process dhs,Xs

(0, se1)

– graph distance on enriched Poisson process with fixed step size dh,Xs
(x, y)

Later we shall express T ′
s − E[T ′

s ] as a sum over a martingale difference sequence with
bounded increments. This will allow us to prove concentration of measure for T ′

s .
Finally, we will synthesis these different results (see Table 1 for an overview of the dif-

ferent definitions) by utilizing that with high probability the random variables Ts and T ′
s

coincide.

2.3. Constants and symbols. We will encounter many constants in the paper, most of
which are dimensional, that is, they depend on d ∈ N. Out of all these constants, only Cd

(which was already introduced above), C′
d (which shall be introduced in Section 3.2), and

σ (which will arise as σ = lims→∞ Ts

s
∈ [1,Cd ]) will keep their meaning throughout the

whole paper. However, we do not claim that their values are optimal or analytically known.
In many estimates and probabilities other (mostly dimensional) constants will appear and
we number them as C1, C2, C3, etc. Note, however, that their values change between the
individual lemmas and theorems they appear in and also sometimes change in proofs, which
we mention in the latter case. Since these constants are of no importance to us, we refrain
from numbering them continuously, as its sometimes done. Finally, we sometimes write our
inequalities in a more compact form by absorbing all constants into the symbols �, �, or ∼,
where, for instance, f (s) � g(s) means f (s) ≤ Cg(s) and f (s) ∼ g(s) means f (s) = Cg(s)

for a constant C > 0. Finally, we will use the symbol � to denote

f (s) � g(s) ⇐⇒ lim
s→∞

f (s)

g(s)
= 0.

2.4. Main results. In this section we state our most important results for Euclidean first-
passage percolation on a unit intensity Poisson process X ⊂ R

d and the application to the
graph infinity Laplace equation.

Note that the first theorem is stated in a very compact form and some of the results will
be proved in a slightly more general setting. Also the assumptions will be spelled out in a
more quantitative form throughout the paper. The most important parts of this statement are
the concentration of measure and the convergence rates for ratio convergence. Even though
convergence rates for dhs (0, se1) are not available, the ratio convergence rates are sufficient
for our application to Lipschitz learning.

THEOREM 2.1 (Euclidean first-passage percolation). Let s > 1 and assume that s �→ hs

is nondecreasing and satisfies

log(s)
1
d � hs � s.

There exist dimensional constants C1,C2 > 0, not depending on s, such that:

1. (Convergence) There exists a dimensional constant σ ∈ [1,Cd ] (depending on the
choice of s �→ hs ) such that

lim
s→∞

E[dhs,Xs (0, se1)]
s

= σ and lim
s→∞

dhs (0, se1)

s
= σ almost surely.
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2. (Concentration) It holds for all t ≥ hs

P

(∣∣dhs,Xs (0, te1) −E
[
dhs,Xs (0, te1)

]∣∣ > λ

√√√√ log(s)
2
d

hs

t

)
≤ C1 exp(−C2λ) ∀λ ≥ 0.

3. (Ratio convergence) It holds for s > 1 sufficiently large

∣∣∣∣ E[dhs,Xs (0, se1)]
E[dhs,Xs (0,2se1)] − 1

2

∣∣∣∣ ≤ C1
hs

s
+ C2

√√√√ log(s)
2
d

hs

log(s)√
s

.

PROOF. The theorem collects results from Theorems 4.1 and 4.4 and Proposition 5.4.
�

REMARK 2.2. Since dh,Xs (x, y) = dh(x, y) with high probability, the concentration of
measure statement in Item 2 of Theorem 2.1 implies concentration of the standard distance
function Ts around E[T ′

s ]. Furthermore, using concentration, Item 3 has a corresponding high
probability versions for both distances.

Our second main result concerns convergence rates for solutions to the graph infinity
Laplace equation. For this we let Xn ⊂ � be a Poisson point process with density n ∈ N

in an open and bounded domain � ⊂ R
d . For a bandwidth parameter ε > 0 and a function

u : Xn →R we define the graph infinity Laplacian of u as

Lε∞u(x) := sup
y∈B(x,ε)∩Xn

u(y) − u(x)

|y − x| + inf
y∈B(x,ε)∩Xn

u(y) − u(x)

|y − x| , x ∈ Xn.

The infinity Laplacian operator of a smooth function u : � →R is defined as

�∞u =
d∑

i,j=1

∂iu∂ju∂2
ij u = 〈∇u,∇2u∇u

〉
.

The following theorem states quantitative high probability convergence rates of solutions
to the equation Lε∞un = 0 to solutions of �∞u = 0. Note that the theorem considers the
boundary value problem associated with the infinity Laplace operator whereas in our previous
work [15] we considered the setting where function values are prescribed in a very general
closed set O ⊂ �. While this is much more realistic in the context of semisupervised learning,
the corresponding convergence proof requires precise control of graph distance functions
close to the boundary of the domain. Achieving this control in the percolation setting is
far beyond the scope of this paper since it would essentially require percolation results on
Poisson point processes on half spaces together with suitable flattening techniques. Therefore,
we focus on the setting of a boundary value problem, where boundary values for the discrete
equation are prescribed in a tube around the boundary. This is in line with previous work for
the linear Laplacian operator, for example, [13, 25].

THEOREM 2.3 (Convergence rates). Let � ⊂ R
d be an open and bounded domain. Let

g : � →R be a Lipschitz function and u : � →R be the unique viscosity solution of{
�∞u = 0 in �,

u = g on ∂�.

Let Xn be a Poisson point process in R
d with density n ∈ N, let ε > 0 and τ > 0 satisfy

K

(
logn

n

) 1
d ≤ ε ≤ 1

K
τ, 0 < τ < 1,
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and let

On := {
x ∈ Xn ∩ � : dist(x, ∂�) ≤ ε

}
.

Let un : Xn →R be the unique solution of{
Lε∞un = 0 in � ∩ Xn \On,

un = g on On.

There exist dimensional constants C1,C2,C3,C4,C5 > 0 such that for n ∈ N, for all λ ≥ 0,
and for K ≥ 8 sufficiently large it holds

P

(
sup
x∈Xn

∣∣u(x) − un(x)
∣∣� τ + 3

√√√√
(logn + λ)

(
logn

n

) 1
d 1√

τ 3ε
+ ε

τ 2

)
≥ 1 − C1 exp

(−C2K
d logn

) − C3 exp(−C4λ + C5 logn).

An important special case of Theorem 2.3 is the choice of εn ∼ (
logn

n
)

1
d .

COROLLARY 2.4. Under the conditions of Theorem 2.3 and for ε = εn = K(
logn

n
)

1
d with

K sufficiently large it holds for all λ ≥ 0 that

P

(
sup
x∈Xn

∣∣u(x) − un(x)
∣∣� (logn + λ)

2
9

(
logn

n

) 1
9d
)

≥ 1 − C1 exp
(−C2K

d logn
) − C3 exp(−C4λ + C5 logn).

PROOF. For this choice of ε = εn it holds that(
logn

n

) 1
d 1√

τ 3ε
� ε

τ 2

so we can ignore the second term under the root in Theorem 2.3. Optimizing the resulting

error term over τ yields the optimal choice of τn := (logn + λ)
2
9 (

logn
n

)
1

9d . For this choice
both terms scale in the same way. �

REMARK 2.5. Corollary 2.4 shows that we get a convergence rate of (
logn

n
)

1
9d (up to the

log factor) at the connectivity scale εn ∼ (
logn

n
)

1
d . Interestingly, this rate coincides with the

best rate achievable using the techniques from our previous paper [15], though in that work

we had to choose a much larger length scale εn ∼ (
logn

n
)

5
9d to obtain the rate. In any case,

judging from our numerical experiments and simple examples we do not expect these rates
to be optimal. In particular, it would be interesting to understand the degree of suboptimality
which our techniques introduce when passing from rates of distance functions (or their ratio)
to rates for the infinity Laplace equation.

We can obtain almost sure convergence rates by letting λ depend on n.

COROLLARY 2.6. Under the conditions of Corollary 2.4 and for K > 0 sufficiently large
it holds

lim sup
n→∞

supx∈Xn
|u(x) − un(x)|

(logn)
2
9 (

logn
n

)
1

9d

< ∞ almost surely.
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PROOF. For λn = C logn with a large constant C > 0 and for K > 0 sufficiently large
we can use the Borel–Cantelli lemma to conclude. �

While we have stated our results for Poisson point processes, it is straightforward to de-
Poissonize and obtain the same results for i.i.d. sequences.

COROLLARY 2.7. Assume the conditions of Theorem 2.3, except that Xn is defined in-
stead as an i.i.d. sample of size n uniformly distributed on �. There exist dimensional con-
stants C1,C2,C3,C4,C5 > 0 such that for n ∈ N and K > 0 sufficiently large it holds

P

(
sup
x∈Xn

∣∣u(x) − un(x)
∣∣� τ + 3

√√√√
(logn + λ)

(
logn

n

) 1
d 1√

τ 3ε
+ ε

τ 2

)

≥ 1 − e
1
12 C1 exp

(
−C2K

d logn + 1

2
log(n)

)
− C3 exp(−C4λ + C5 logn).

PROOF. Let X̃n be a Poisson point process on R
d with intensity n

|�| . Conditioned on

#(X̃n ∩ �) = n, both Xn and X̃n ∩ � have the same distribution. By conditioning on #(X̃n ∩
�) = n and using Theorem 2.3 the probability of the event

sup
x∈Xn

∣∣u(x) − un(x)
∣∣� τ + 3

√√√√
(logn + λ)

(
logn

n

) 1
d 1√

τ 3ε
+ ε

τ 2

is bounded by

P
(
#(X̃n ∩ �) = n

)−1(
C1 exp

(−C2K
d logn

) + C3 exp(−C4λ + C5 logn)
)
.

By Stirling’s formula we have

P
(
#(X̃n ∩ �) = n

)−1 = n!en

nn
≤ e

1
12

√
n.

Upon adjusting the values of C3 and C5, the proof is complete. �

2.5. Outlook. There are two central directions of future research that originate from this
paper, namely further strengthening and generalizing our percolation results, and applying
the techniques from this paper to prove convergence rates for other graph PDEs, like for
instance the p-Laplace equation. With respect to the first direction, the ultimate goal would
be to prove a strong approximate superadditivity result of the form (5.1) which in combination
with the concentration of measure from Theorem 4.1 immediately yields convergence rates
for the almost sure convergences T ′

s /s → σ and Ts/s → σ , as shown in [50]. Therefore, we
formulate the following open problem:

OPEN PROBLEM. Does there exist a function s �→ g(s), satisfying
∫ ∞

1 g(s)s−2 ds < ∞,
such that

E
[
T ′

2s

] ≥ 2E
[
T ′

s

] − g(s), s > 1?

This form of strong super-additivity is implied and roughly equivalent to establishing a
modulus of continuity of the distance function with respect to the length scale, that is, for the
function

h �→ E
[
dh,Xs (0, se1)

]
.
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This problem is related to continuity of the time constant in first passage percolation, which
was established for lattice percolation in [29, 31]. However, the notion of continuity in [29,
31] is nonquantitative, and taken with respect to the distribution of the i.i.d. edge weights,
whereas in our setting we seek a quantitative continuity statement with respect to the length
scale h that defines the connectivity structure. It seems that different techniques are required
here.

Having this continuity at hand, it would be straightforward to extend the arguments of
Section 6 to inhomogeneous Poisson point processes with intensity nρ where n ∈ N and ρ is
a probability density with some regularity. Blowing up around a point shows that the graph
distance can be bounded from above and from below with distances d ′

hi
(0, se1) on a unit

intensity process, albeit with two different but close length scales h1, h2 > 0.
It would be desirable to extend the percolation results to weighted distances of the form

dh(x, y) := inf

{
m∑

i=1

h

η(|pi − pi−1|/h)
: p ∈ �h(x, y)

}
.(2.10)

For η(t) := 1
t

this reduces to the distance that we considered here but it allows to generate
a large class of commonly known graph distances where the weight of an edge (x, y) is
given by h−1η(|x − y|/h). Most notably, if η(t) = 1 for 0 ≤ t ≤ 1 and η(t) = 0 for t > 1
one obtains the hop counting distance, scaled with h. The analysis of (2.10) is complicated
by the fact that they do not obey the triangle inequality and, furthermore, are inaccurate if
|x − y| � h. Still, we expect that our results can be generalized to these distances relatively
easily.

The question of whether and how percolation techniques can be applied to other graph
PDEs (e.g., the Laplace or p-Laplace equations) seems much harder. Recent results in two di-
mensions show that at least Dirichlet energies Gamma-converge for percolation length scales
[13, 27]. Combining quantitative versions of these arguments with the techniques from [19],
Section 5.5, can potentially produce convergence rates.

3. Convergence in expectation. In this section we prove that T ′
s satisfies

lim
s→∞

E[T ′
s ]

s
= σ ∈ (0,∞).(3.1)

For this we use the subadditivity techniques from [16], Appendix A. It will turn out that
s �→ E[T ′

s ] is only nearly subadditive which, however, is enough to establish (3.1). Note that
we cannot hope for an analogous statement for Ts since E[Ts] = ∞ for all s > 0.

3.1. Bounds. First we prove coarse lower and upper bounds for Ts and T ′
s which will be

used to prove that, if the limit in (3.1) exists, then 0 < σ < ∞ has to hold.
We start with a trivial lower bound which is true for any distance function, independent of

the set of points which is used to construct it.

LEMMA 3.1 (Lower bound). For any set of points P ⊂ R
d , x, y ∈R

d , and h > 0 it holds

dh,P (x, y) ≥ |x − y| − dist(x,P ) − dist(y,P ) ≥ |x − y| − h,

and, in particular, for all s ≥ 0

Ts ≥ s − hs, T ′
s ≥ s − hs.
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PROOF. We can assume that dh,P (x, y) < ∞ since otherwise the inequality is trivially
true. Let therefore p ∈ �h,P (x, y) be a path with m ∈ N elements in X, the length of which
realizes dh,P (x, y). Then it holds

dh,P (x, y) ≥
m−1∑
i=1

|pi+1 − pi | ≥
∣∣∣∣∣
m−1∑
i=1

(pi+1 − pi)

∣∣∣∣∣ = |pm − p1|

≥ ∣∣y − x + pm − y − (p1 − x)
∣∣

≥ |x − y| − |pm − y| − |p1 − x|
= |x − y| − dist(x,P ) − dist(y,P )

≥ |x − y| − h,

using that the existence of a feasible path implies dist(x,P ),dist(y,P ) ≤ h/2. The statements
for Ts and T ′

s follow from their definition as distances on P := X and P := Xs , respectively.
�

Now we prove a high probability upper bound for the distance function on the Poisson
point process which we will apply to Ts .

LEMMA 3.2 (Upper bound 1). For all x, y ∈ R
d and h > 0 it holds

P
(
dh(x, y) ≤ Cd |x − y| + h

) ≥ P
(
dh(x, y) ≤ Cd |x − y| + dist(x,X) + dist(y,X)

)
≥ 1 − exp

(
−
(

h

Cd

)d

+ log
(

Cd |x − y|
h

))
,

and, in particular, for all s ≥ 0

P(Ts ≤ Cds + hs) ≥ 1 − exp
(
−
(

hs

Cd

)d

+ log
(

Cds

hs

))
∀s > 0.

Here the constant Cd is defined in (2.6).

REMARK 3.3. The probability for this upper bound deteriorates for large distances if
the step size h > 0 is fixed. Therefore, we have to use h = hs which shall be chosen as

hs ∼ log(s)
1
d later.

PROOF OF LEMMA 3.2. Because of the spatial invariance of the Poisson process, it
suffices to proof the statement for dh(0, se1). We cover the line segment connecting 0 and
se1 by M ∈ N boxes Bi := {2i−Mr

2M
e1} ⊕ [−r, r]d−1, i = 1, . . . ,M , see Figure 2. The side

length r > 0 is given by

r = h

Cd

,(3.2)

FIG. 2. Boxes covering the line segment between 0 and se1.
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where Cd given by (2.6) assures that the maximal distance of two points in two adjacent
boxes Bi , Bi+1 is bounded by h, and the maximal distance between 0 and the points in the
first box B1 and se1 and the points in the last box BM is bounded by h/2. Consequently, the
number of boxes is

M = s

r
= Cds

h
.(3.3)

If each box contains a point from the Poisson cloud X, we can construct a valid path p ∈
�h(0, se1) which satisfies

dh(0, se1) ≤ dist(0,X) + h

2
+ (M − 1)h + h

2
+ dist(se1,X)

= Cds + dist(0,X) + dist(se1,X).

Here, we used the triangle inequality to estimate |p1 −p2| ≤ |p1 −0|+|0−p2| ≤ dist(0,X)+
h/2 and similarly for the last term. Furthermore, the probabilility of this event is

P
(
Bi ∩ X �= ∅ ∀i ∈ {1, . . . ,M}) = 1 − P

(
M⋃
i=1

{Bi ∩ X = ∅}
)
.

Using a union bound, and (2.1) with k = 0 we obtain

P

(
M⋃
i=1

{Bi ∩ X = ∅}
)

≤
M∑
i=1

P(Bi ∩ X =∅) =
M∑
i=1

exp
(−μ(Bi)

)
= M exp

(−rd) = s

r
exp

(−rd) = exp
(
−rd + log

(
s

r

))
.

Furthermore, the definition of r in (3.2) implies

P

(
M⋃
i=1

{Bi ∩ X = ∅}
)

≤ exp
(
−
(

h

Cd

)d

+ log
(

Cds

h

))
.

�

LEMMA 3.4 (Upper bound 2). For the constant Cd , defined in (2.6), for any s > 1, and
for h ≥ δs it holds almost surely

dh,Xs (x, y) ≤ Cd |x − y| + h ∀x, y ∈ R
d,

and in particular for hs ≥ δs

T ′
s ≤ Cds + hs ∀s > 0.

PROOF. The proof is the same as the one of Lemma 3.2 with the only difference being
that the path which is constructed there uses the nonempty boxes from the definition of Xs .

�

REMARK 3.5 (Better upper bounds). It is important to remark that the upper bounds
dh(x, y), dh,Xs (x, y) ≤ Cd |x − y| + h are quite coarse. Using the more careful strategy from
[15], Lemma 5.5, one can obtain the (high probability) bounds

dh(x, y), dh,Xs (x, y) ≤
(

1 + C
δs

h

)
|x − y| + h,

where C is a dimensional constant. Since in our regime h ∼ δs the constant in front of |x −y|
does not converge to 1 anyway, there is no need for us to use these improved bounds.
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3.2. The distances coincide with high probability. It turns out that the two distance func-
tions dh(·, ·) and dh,Xs (·, ·) coincide with high probability. For this, we first show localization,
that is, that optimal paths for the former distance lie in a sufficiently large ball with high prob-
ability.

LEMMA 3.6. There exists a dimensional constant C′
d ≥ 1 such that for 0 < h ≤ |x −y|/2

with probability at least 1 − exp(−( h
Cd

)d + log(
Cd |x−y|

h
)) any optimal path of dh(x, y) lies in

B(x,C′
d |x − y|).

PROOF. Without loss of generality we assume x = 0 and y = se1. By Lemma 3.2, with
probability at least 1 − exp(−( h

Cd
)d + log(Cds

h
)) there exists an optimal path for dh(0, se1)

and it holds dh(0, se1) ≤ Cds+h ≤ (Cd +1/2)s. Let p be such an optimal path with m := |p|
elements. If p contained a point pi outside B(0,C′

ds) its length would satisfy

L(p) ≥ |p1 − pi | + |pi − pm| ≥ 2|pi | − |p1| − |pm| ≥ 2|pi | − h

2
− h

2
− |se1|

≥ 2C′
ds − h − s = (

2C′
d − 1

)
s − h.

= (
2C′

d − 1
)
s

(
1 − h

s

)
.

By the assumption h ≤ s/2 we get that the brackets are larger or equal than 1
2 . Hence, if we

choose C′
d ≥ Cd + 3/2 we get that

dh(0, se1) = L(p) ≥ (Cd + 1)s

which is a contradiction. �

An analogous statement is satisfied by dh,Xs (·, ·), using the upper bound established in
Lemma 3.4.

LEMMA 3.7. Assume that δs ≤ h ≤ |x − y|/2. Then any optimal path of dh,Xs (x, y) lies
in B(x,C′

d |x − y|).
PROOF. Using Lemma 3.4, the proof works exactly as the one of the previous lemma.

�

Thanks to these two lemmata for any x, y ∈ R
d the distance dh,Xs (x, y) in fact only de-

pends on points in a compact set. Using properties of the Poisson process we can argue that
the small boxes Bk from the definition of dh,Xs (·, ·) which fall into this compact set all con-
tain a Poisson point with high probability. This then implies that dh(x, y) = dh,Xs (x, y) since
no point has to be added to X.

LEMMA 3.8. Let x, y ∈ R
d and δs ≤ h ≤ |x − y|/2. Then it holds that

P
(
dh(x, y) = dh,Xs (x, y)

) ≥ 1 − 2 exp
(
−
(

h

Cd

)d

+ d log
(

2CdC′
d |x − y|
δs

))
.

PROOF. Again it suffices to prove the statement for x = 0 and y = se1. Let Es be the
event any optimal path of dh(0, se1) lies within B(0,C ′

ds). Then Lemma 3.6 shows

P(Es) ≥ 1 − exp
(
−
(

hs

Cd

)d

+ log
(

Cds

h

))
.(3.4)
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After possibly enlarging C′
d a little we can assume that the box of side length 2C′

ds which
contains B(0,C′

ds) coincides with the union of M ∈ N boxes Bk which have a side length of

δs/Cd . Here M = (
2CdC′

d s

δs
)d . As in the proof of Lemma 3.2, using (2.1) and a union bound

shows that the probability that all of these boxes contain a point from X is at least

1 − M exp
(
−
(

h

Cd

)d)
= 1 − exp

(
−
(

h

Cd

)d

+ log
((

2CdC′
ds

δs

)d))

= 1 − exp
(
−
(

h

Cd

)d

+ d log
(

2CdC′
ds

δs

))
.

We call this event Fs and obtain

P(Fs) ≥ 1 − exp
(
−
(

h

Cd

)d

+ d log
(

2CdC′
ds

δs

))
.(3.5)

Since according to Lemma 3.7 it holds dh(0, se1) = dh,Xs (0, se1) if all boxes contain a point
from X, we obtain Es ∩ Fs ⊂ {dh(0, se1) = dh,Xs (0, se1)}. Hence, using (3.4) and (3.5) and
a union bound we get

P
(
dh(0, se1) = dh,Xs (0, se1)

) ≥ P(Es ∩ Fs) = 1 − P
(
Ec

s ∪ Fc
s

) ≥ 1 − P
(
Ec

s

) − P
(
Fc

s

)
≥ 1 − exp

(
−
(

h

Cd

)d

+ log
(

Cds

h

))

− exp
(
−
(

h

Cd

)d

+ d log
(

2CdC′
ds

δs

))

≥ 1 − 2 exp
(
−
(

h

Cd

)d

+ d log
(

2CdC′
ds

δs

))
.

Here we also used that d ≥ 1 and 2C ′
d/δs ≥ 1/h. �

3.3. Approximate spatial invariance. A main benefit of using distance functions over
homogeneous Poisson point processes is their invariance with respect to isometric transfor-
mations like shifts, rotations, etc., which preserve the Lebesgue measure.

Using that the distance functions dh,Xs (x, y) and dh(x, y) coincide with high probability,
we can show that this invariance of dh(x, y) translates to dh,Xs (x, y). In fact, we will need
the slightly more general statement of the following lemma.

LEMMA 3.9. Let M ∈ N and xi, yi ∈ R
d be points satisfying |xi − yi | = � for all i =

1, . . . ,M and δs ≤ h ≤ �/2. Let furthermore � : Rd →R
d be an isometry. Then it holds∣∣∣E[

min
1≤i≤M

dh,Xs

(
�(xi),�(yi)

)] −E

[
min

1≤i≤M
dh,Xs (xi, yi)

]∣∣∣
≤ exp

(
−
(

h

Cd

)d

+ (d + 1) log
(
max

{
2CdC′

d,4Cd + 2
}
�
) + logM − d log(δs)

)
.

PROOF. Using that � is an isometry and applying Lemma 3.8 and a union bound, yields
that the event

A := {
dh,Xs

(
�(xi),�(yi)

) = dh

(
�(xi),�(yi)

)
and dh,Xs (xi, yi) = dh(xi, yi) ∀i = 1, . . . , n

}
satisfies

P(A) ≥ 1 − 2M exp
(
−
(

h

Cd

)d

+ d log
(

2CdC′
d�

δs

))
.
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Hence, we can use the invariance of the distance function on the Poisson process X to get

E

[
min

1≤i≤M
dh

(
�(xi),�(yi)

) ∣∣ A]
= E

[
min

1≤i≤M
dh(xi, yi)

∣∣ A]
.

Therefore, we obtain

E

[
min

1≤i≤M
dh,Xs

(
�(xi),�(yi)

)]
= E

[
min

1≤i≤M
dh,Xs

(
�(xi),�(yi)

) ∣∣ A]
P(A) +E

[
min

1≤i≤M
dh,Xs

(
�(xi),�(yi)

) ∣∣ Ac
]
P
(
Ac)

= E

[
min

1≤i≤M
dh

(
�(xi),�(yi)

) ∣∣ A]
P(A) +E

[
min

1≤i≤M
dh,Xs

(
�(xi),�(yi)

) ∣∣ Ac
]
P
(
Ac)

= E

[
min

1≤i≤M
dh(xi, yi)

∣∣ A]
P(A) +E

[
min

1≤i≤M
dh,Xs

(
�(xi),�(yi)

) ∣∣ Ac
]
P
(
Ac)

= E

[
min

1≤i≤M
dh,Xs (xi, yi)

∣∣ A]
P(A) +E

[
min

1≤i≤M
dh,Xs

(
�(xi),�(yi)

) ∣∣ Ac
]
P
(
Ac)

= E

[
min

1≤i≤M
dh,Xs (xi, yi)

]
+

(
E

[
min

1≤i≤M
dh,Xs

(
�(xi),�(yi)

) ∣∣ Ac
]
−E

[
min

1≤i≤M
dh,Xs (xi, yi)

∣∣ Ac
])
P
(
Ac).

Reordering and trivially estimating dh,Xs (·, ·) using Lemma 3.4 we obtain∣∣∣E[
min

1≤i≤M
dh,Xs

(
�(xi),�(yi)

)] −E

[
min

1≤i≤M
dh,Xs (xi, yi)

]∣∣∣
≤ 4M(Cd� + h) exp

(
−
(

h

Cd

)d

+ d log
(

2CdC′
d�

δs

))

= exp
(
−
(

h

Cd

)d

+ d log
(

2CdC′
d�

δs

)
+ log

(
4M(Cd� + h)

))

≤ exp
(
−
(

h

Cd

)d

+ d log
(
2CdC′

d�
) + log

(
(4Cd + 2)�

) + logM − d log(δs)

)

≤ exp
(
−
(

h

Cd

)d

+ (d + 1) log
(
max

{
2CdC′

d,4Cd + 2
}
�
) + logM − d log(δs)

)
,

where we used the isometry of � and that h ≤ �/2. �

3.4. Near subadditivity. In this section we prove an approximate triangle inequality for
the distance dh(·, ·) which will then allow us to prove an approximate subadditivity property
for E[T ′

s ]. Old results, which go back to Erdős and others, will then allow us to deduce (3.1).
First, we prove a general approximate triangle inequality for the distance function on an

arbitrary set of points and different values of the length scale h.

LEMMA 3.10. Let P ⊂R
d be a set of points. Let h1, h2 > 0 and h3 ≥ max(h1, h2). Then

it holds

dh3,P (x, y) ≤ dh1,P (x, z) + dh2,P (z, y) + h3 ∀x, y, z ∈R
d .(3.6)

PROOF. The statement follows from the simple observation that if p ∈ �h1,P (x, z) and
q ∈ �h2,P (z, y) are optimal paths which realize dh1,P (x, z) and dh2,P (z, y) then r := (p, q)

is a path in �h3,P (x, y). To see this, note that the last point in p has a distance of at most h1/2
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to z and the first point in q has a distance of at most h2/2 to z. Using the triangle inequality
the distance between the those two points is at most h1/2 + h2/2 ≤ h3 and consequently

dh3,P (x, y) ≤ L(r) ≤ L(p) + L(q) + h3 = dh1,P (x, z) + dh2,P (z, y) + h3. �

A straightforward consequence of Lemma 3.10 would be that s �→ E[Ts] is near subaddi-
tive which by means of [16], Lemma A.2, implies that the limit lims→∞ E[Ts ]

s
exists. How-

ever, since there is a small but nonzero probability that Ts = dhs (0, se1) = ∞, the expected
value E[Ts] and this limit is infinite. Therefore, we investigate T ′

s defined in (2.9).
From Lemma 3.8 we know that T ′

s = Ts with high probability and, furthermore, T ′
s is

always finite and satisfies T ′
s ≤ Ts . We introduce the error term Es := Ts − T ′

s ≥ 0. For es-
timating it we now specify the choice of δs , the width of the boxes in the definition of T ′

s

in (2.9). We shall choose it in such a way that the error Es is zero with high probability as
s → ∞.

ASSUMPTION 1. For a constant k > 0 and for C′′
d := max{2CdC′

d,4Cd + 2} we choose

δs = Cd

(
k log

(
C′′

d s
)) 1

d .

At this point we also fix the assumptions on the step size hs :

ASSUMPTION 2. Let s �→ hs be nonincreasing and satisfy

δs ≤ hs � s.

For these assumptions on δs and hs (note that we are mainly interested in the case hs = δs)
one can simplify the following term, which appears in a lot of probabilities:

exp
(
−
(

hs

Cd

)d

+ d log
(

2CdC′
ds

δs

))
≤ 1

δd
s

(
1

2CdC′
ds

)k−d

(3.7)

and similarly for the error term in Lemma 3.9 with M = 1 and s ≥ �/2 we have

exp
(
−
(

h

Cd

)d

+ (d + 1) log
(
C′′

d�
) − d log(δs)

)
≤ 2k

δd
s

(
1

C′′
d�

)k−(d+1)

,(3.8)

which is dominating (3.7). Using (3.7), the statement of Lemma 3.8 can be reformulated as
follows

P(Es > 0) ≤ 2

δd
s

(
1

2CdC′
ds

)k−d

.(3.9)

Utilizing that the error Es is zero with high probability and that we have the approximate
triangle inequality from Lemma 3.10 we can show that E[T ′

s ] is nearly subadditive.

PROPOSITION 3.11. Under Assumptions 1 and 2 and for k ≥ d + 1 there exists a con-
stant C = C(d) > 0 such that for all s > 0 sufficiently large and all s ≤ t ≤ 2s it holds

E
[
T ′

s+t

] ≤ E
[
T ′

s

] +E
[
T ′

t

] + Chs+t .

PROOF. We define the translation �s : Rd → R
d , x �→ x − se1 and note that it is a

probability measure preserving transformation of Rd . We define the event

A := {
T ′

s+t = Ts+t

} ∩ {
T ′

s = Ts

} ∩ {
T ′

t ◦ �s = Tt ◦ �s

}
,(3.10)

abbreviating Tt ◦�s := dht (se1, (s + t)e1) and analogously T ′
t ◦�s := dht ,Xt (se1, (s + t)e1).
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Using the conditional expectation we obtain the following formula of total probability

E
[
T ′

s+t

] = E
[
T ′

s+t | A]
P(A) +E

[
T ′

s+t | Ac]
P
(
Ac).(3.11)

By definition of the T ′ random variable and the event A, and using the approximate triangle
inequality from Lemma 3.10, we have

E
[
T ′

s+t | A] = E[Ts+t | A] = E
[
dhs+t

(
0, (s + t)e1

) | A]
≤ E

[
dhs (0, se1) | A] +E

[
dht

(
se1, (s + t)e1

) | A] + hs+t

= E[Ts | A] +E[Tt ◦ �s | A] + hs+t

= E
[
T ′

s | A] +E
[
T ′

t ◦ �s | A] + hs+t .

(3.12)

Combining (3.11) and (3.12), estimating P(A) ≤ 1, and using also Lemmas 3.1 and 3.4 and
the almost translation invariance of E[T ′

s ] from Lemma 3.9 in the case M = 1 together with
(3.8) we get

(3.13)

E
[
T ′

s+t

] ≤ (
E
[
T ′

s | A] +E
[
T ′

t ◦ �s | A] + hs+t

)
P(A) +E

[
T ′

s+t | Ac]
P
(
Ac)

= E
[
T ′

s

] +E
[
T ′

t ◦ �s

] + hs+t

+ (
E
[
T ′

s+t | Ac] −E
[
T ′

s | Ac] −E
[
T ′

t ◦ �s | Ac])
P
(
Ac)

≤ E
[
T ′

s

] +E
[
T ′

t ◦ �s

] + hs+t

+ (
Cd(s + t) + hs − (s − hs) − (t − ht )

)
P
(
Ac)

≤ E
[
T ′

s

] +E
[
T ′

t

] + hs+t + 2k

δd
t

(
1

C′′
d t

)k−(d+1)

+ [
(Cd − 1)(s + t) + 2hs + 2ht

]
P
(
Ac).

Using Lemma 3.8, Eq. (3.9), and Assumption 1 and the fact that 0 ≤ s ≤ t ≤ 2s we obtain
that

P
(
Ac) ≤ P(Es+t > 0) + P(Es > 0) + P(Et > 0)

≤ C

(
(s + t)d−k

log(Cd(s + t))
+ sd−k

log(Cds)
+ td−k

log(Cdt)

)

≤ C
(s + t)d−k

log(Cd(s + t)/3)
,

where the constant C is dimensional and changes its value. Plugging this estimate into (3.13)
and using Assumption 2, we obtain that

E
[
T ′

s+t

] ≤ E
[
T ′

s

] +E
[
T ′

t

] + hs+t + C
(s + t)d+1−k

log(Cd(s + t)/3)
,

where C again changed its value. For k ≥ d + 1 and using Assumption 1 we can absorb the
second error term into the first one. Changing C again concludes the proof. �

3.5. Convergence. Utilizing the bounds and the near subadditivity we obtain the follow-
ing result:

PROPOSITION 3.12. Assume that δs satisfies Assumption 1 with k ≥ d + 1 and hs sat-
isfies Assumption 2 with the additional requirement that for s sufficiently large it holds
hs ≤ Csα for some constant C > 0 and some α ∈ (0,1). Then the limit

σ := lim
s→∞

E[T ′
s ]

s
(3.14)

exists and satisfies σ ∈ [1,Cd ].



3888 L. BUNGERT, J. CALDER AND T. ROITH

PROOF. For α ∈ (0,1) the function g(z) := Czα satisfies
∫ ∞
z0

g(z)z−2 < ∞ for z0 > 0.

Hence, Proposition 3.11 and [16], Lemma A.2, imply that σ := lims→∞ E[T ′
s ]

s
exists. By

Lemmas 3.1 and 3.4 the random variable T ′
s satisfies the deterministic bounds

s − hs ≤ T ′
s ≤ Cds + hs.

Taking the expectation, dividing by s, using hs � s and Cd ≥ 1 shows that σ ∈ [1,Cd ]. �

REMARK 3.13 (The constant σ ). As already pointed out in Remark 3.5, the constant σ

can be brought arbitrarily close to 1 by multiplying hs with a large constant. Note that it is

not required to demand a quicker growth than hs ∼ log(s)
1
d .

4. Concentration of measure and almost sure convergence. In this section we will
prove concentration of measure for T ′

s around its expectation. This will have two important
consequences: First, it will allow us to show that

lim
s→∞

Ts

s
= σ almost surely,

where σ is the constant from (3.1) and Proposition 3.12. Second, we will use concentration
to prove an approximate superadditivity property which will be the key to convergence rates.

4.1. Concentration of measure. In this section we prove concentration of measure for
T ′

s . In fact, we will prove a slightly more general statement, namely concentration of measure
for the distance function dhs,Xs (x, y). Since T ′

s = dhs,Xs (0, se1) concentration for T ′
s will be

a special case.

THEOREM 4.1 (Concentration of measure for dh,Xs (·, ·)). There exist dimensional con-
stants C1,C2 > 0 such that for all s > 0 and all x, y ∈ R

d with |x − y| ≥ h ≥ δs it holds

P

(∣∣dh,Xs (x, y) −E
[
dh,Xs (x, y)

]∣∣ > λ

√
δ2
s

h
|x − y|

)
≤ C1 exp(−C2λ) ∀λ ≥ 0.

REMARK 4.2. We will be mostly interested in the regime where h = hs = δs =
Cd(k log(2CdC′

ds))
1
d , in which case we get for |x − y| ≥ hs :

P
(∣∣dhs,Xs (x, y) −E

[
dhs,Xs (x, y)

]∣∣ > λ
√

hs |x − y|) ≤ C1 exp(−C2λ) ∀λ ≥ 0.

This means that with high probability the fluctuations of dhs,Xs (x, y) around its expectation
are of order

√|x − y| modulo a log factor. However, the general result from Theorem 4.1 can
also be applied to larger length scales hs � δs in which case the fluctuations are smaller.

PROOF. The proof relies on an application of the abstract martingale estimate from [16],
Lemma B.1. We follow the proofs of [50], Theorem 1, or [46], Theorem 2.1. For a more
compact notation we use the following abbreviation:

T := dh,Xs (x, y).

Step 1: We define a filtration F := {Fk}k∈N0 of the probability space by setting F0 :=
{∅,�}, Fk := F(B1 ∪· · ·∪Bk) for k ≥ 1. By F(A) we refer to the σ -subfield of F := F(Rd)

which is generated by events of the form {X ∩ A �= ∅} for Borel sets A ⊂ R
d . We also define

the martingale Mk := E[T | Fk] − E[T ] with M0 = 0 and we define �k := Mk − Mk−1 =
E[T | Fk] −E[T | Fk−1].

Step 2: We want to compute a constant c > 0 for which |�k| ≤ c.
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Let us define the random variable

T (k) := dh,Xs\Bk
(x, y)

as the graph distance on the enriched Poisson point process without the kth box. Using that
E[T (k) | Fk−1] = E[T (k) | Fk] and trivially T ≤ T (k) we have

�k = E[T | Fk] −E[T | Fk−1] = E
[
T − T (k) | Fk

] +E
[
T (k) − T | Fk−1

]
≤ E

[
T (k) − T | Fk−1

]
and analogously −�k ≤ E[T (k) − T | Fk]. This implies

|�k| ≤ E
[
T (k) − T | Fk−1

] ∨E
[
T (k) − T | Fk

]
.

For bounding T (k) − T we argue as follows: By definition we know that there exist feasible
paths of finite length for T and hence also optimal paths. Let Fk be the event that the optimal
path p = (p1, . . . , pm) for T contains at least one point pi ∈ Bk for i ∈ {1, . . . ,m}. On Fc

k

it obviously holds T (k) = T . On Fk we can—using that all boxes contain a Poisson point—
construct an alternative path around the no-go box Bk which is at most C′′′

d δs longer than T

and is feasible for T (k). Here C′′′
d is a suitable dimensional constant, depending on Cd . In

either case we have T (k) − T ≤ C′′′
d δs and therefore also

|�k| ≤ C′′′
d δs =: c.(4.1)

Step 3: In this step we want to find a sequence of positive F -measurable random variables
{Uk}k∈N such that E[�2

k | Fk−1] ≤ E[Uk | Fk−1].
For any two random variables X, Y with Y measurable with respect to a σ -field G the

projection identity (see, e.g., [37], Prop. 1.26)

E
[(

X −E[X | G])2 | G] ≤ E
[
(X − Y)2 | G]

holds. We shall use this with X := E[T | Fk], Y := E[T (k) | Fk−1] = E[T (k) | Fk], and G :=
Fk−1. Note that we have the tower property E[X | G] = E[E[T | Fk] | Fk−1] = E[T | Fk−1].
Hence, we can compute

E
[
�2

k | Fk−1
] = E

[(
E[T | Fk] −E[T | Fk−1])2 | Fk−1

]
= E

[(
X −E[X | G])2 | Fk−1

]
≤ E

[
(X − Y)2 | Fk−1

]
= E

[(
E[T | Fk] −E

[
T (k) | Fk

])2 | Fk−1
]

= E
[
E
[
T − T (k) | Fk

]2 | Fk−1
]

≤ E
[
E
[(

T − T (k))2 | Fk

] | Fk−1
]

= E
[(

T − T (k))2 | Fk−1
]

= E[Uk | Fk−1],
using Jensen’s inequality and again the tower property for the last two steps and defining the
F -measurable random variable Uk := (T − T (k))2.

Step 4: Here we want to find a constant λ0 ≥ c2

4e
such that for all K ∈N

SK :=
K∑

k=1

Uk ≤ λ0 almost surely.(4.2)
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For this we first note that Uk equals zero whenever there exists an optimal path for T which
does not use a point in the box Bk . We now fix an optimal path with the smallest number of
elements, denote it by p, and abbreviate its number of points by |p|. We define the index set
K := {k ∈ {1, . . . ,K} : ∃i ∈ {1, . . . , |p|},pi ∈ Bk} and get

SK = ∑
k∈K

(
T (k) − T

)2
.

Using that T (k) − T ≤ C′′′
d δs and that the cardinality of K is at most |p|, we obtain the bound

SK ≤ (
C′′′

d δs

)2|p|.(4.3)

Our next goal is to upper-bound |p| by a constant times T/h for which we basically want to
argue that most of the hops in the path p have a length of order h.

Let us abbreviate m := |p|. Our first claim is that for every γ > 0 and j ∈ {1, . . . ,m − 2}
we have:

|pj+1 − pj | ≤ γ =⇒ |pj+2 − pj+1| > h − γ.(4.4)

If this were not the case, then it would hold

|pj+2 − pj | ≤ |pj+1 − pj | + |pj+2 − pj+1| ≤ γ + h − γ = h.

Hence, the path q := (p1, . . . , pj ,pj+2, . . . , pm) would be feasible for T , and would satisfy
L(q) ≤ L(p) as well as |q| = |p| − 1. Since p is optimal and shortest, this is a contradiction.

With this at hand we define the index sets

Iγ := {
j ∈ {1, . . . ,m − 2} : |pj+1 − pj | ≤ γ

}
,

I ′
γ := {j + 1 : j ∈ Iγ },

I ′′
γ := {1, . . . ,m − 1} \ (

Iγ ∪ I ′
γ

)
.

Note that for 0 < γ < h/2, the implication (4.4) shows that Iγ and I ′
γ are disjoint and their

cardinalities coincide. We abbreviate the latter by k ∈ {0, . . . ,m − 2} and note that the cardi-
nality of I ′′

γ equals m − 1 − 2k. Using this we can estimate T from below as follows:

T =
m−1∑
j=1

|pj+1 − pj |

= ∑
j∈Iγ

|pj+1 − pj |︸ ︷︷ ︸
≥0

+ ∑
j∈I ′

γ

|pj+1 − pj |︸ ︷︷ ︸
≥h−γ

+ ∑
j∈I ′′

γ

|pj+1 − pj |︸ ︷︷ ︸
>γ

≥ k(h − γ ) + (m − 1 − 2k)γ

= k(h − 3γ ) + (m − 1)γ.

Choosing γ = h/6 the first term is nonnegative and we obtain the estimate

m ≤ 6
T

h
+ 1.

Plugging this into our previous bound (4.3) for S, we obtain

SK ≤ (
C′′′

d δs

)2
(

6
T

h
+ 1

)
= 6

(
C′′′

d δs

)2 T

h
+ (

C′′′
d δs

)2
.(4.5)
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Utilizing that δs ≤ h ≤ |x − y| and, according to Lemma 3.4, also T ≤ Cd |x − y| +h, we get
for a suitable constant C′′′′

d > 0 that

SK ≤ C′′′′
d

δ2
s

h
|x − y|.(4.6)

Using that h ≤ |x − y| we can possibly enlarge C′′′′
d a little such that

λ0 := C′′′′
d

δ2
s

h
|x − y|(4.7)

satisfies λ0 ≥ c2

4e
where c = C′′′

d δs was defined in (4.1). Hence, we have established the almost
sure bound (4.2).

Step 5: We have checked all assumptions for [16], Lemma B.1, which lets us conclude

P
(
T −E[T ] > ε

) ≤ C exp
(
− 1

2
√

eλ0
ε

)
∀ε ≥ 0.

Plugging in λ0 = C′′′′
d

δ2
s

h
|x − y| yields

P
(
T −E[T ] > ε

) ≤ C exp
(
− 1

2
√

eC′′′′
d

δ2
s

h
|x − y|

ε

)

= C exp
(
−

√
h

2
√

eC′′′′
d |x − y|δs

ε

)
∀ε ≥ 0.

For the choice ε = λ

√
δ2
s

h
|x − y| we get

P

(
T −E[T ] > λ

√
δ2
s

h

√|x − y|
)

≤ C exp(−C2λ) ∀λ ≥ 0.

Repeating the proof verbatim for E[T ] − T we finally obtain

P

(∣∣T −E[T ]∣∣ > λ

√
δ2
s

h

√|x − y|
)

≤ C1 exp(−C2λ) ∀λ ≥ 0,

where C1 := 2C. �

The fact that with high probability Ts and T ′
s coincide allows us to deduce concentration of

Ts around E[T ′
s ] (remember that the expectation of Ts is infinite which is why concentration

around it is irrelevant).

COROLLARY 4.3 (Concentration of measure for Ts ). Under the assumptions of Theo-
rem 4.1 and Lemma 3.8 it holds for s > 0 sufficiently large

P

(∣∣Ts −E
[
T ′

s

]∣∣ > λ

√
δ2
s

hs

s

)
≤ 2 exp

(
−
(

hs

Cd

)d

+ d log
(

2CdC′
ds

δs

))
+ C1 exp(−C2λ) ∀λ ≥ 0.
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PROOF. Utilizing that T ′
s = dhs,Xs (0, se1) and using Theorem 4.1 and Lemma 3.8, for all

λ ≥ 0 it holds

P

(∣∣Ts −E
[
T ′

s

]∣∣ > λ

√
δ2
s

hs

√
s

)

≤ P
(∣∣Ts − T ′

s

∣∣ > λ
√

hss
) + P

(∣∣T ′
s −E

[
T ′

s

]∣∣ > λ
δs√
hs

√
s

)

≤ P
(∣∣Ts − T ′

s

∣∣ > 0
) + P

(∣∣T ′
s −E

[
T ′

s

]∣∣ > λ
δs√
hs

√
s

)

≤ 2 exp
(
−
(

hs

Cd

)d

+ d log
(

2CdC′
ds

δs

))
+ C1 exp(−C2λ). �

4.2. Almost sure convergence. Combining concentration of measure with the conver-
gence in expectation from Proposition 3.12, we can now prove almost sure convergence of
T ′

s /s and even of Ts/s. Note that Kingman’s subadditive ergodic theorem is not applicable in
this case since the random variables Ts have infinite expectations, hence, are not in L1. An
additional difficulty arises from Ts and T ′

s being stochastic processes with a continuous vari-
able s ∈ (0,∞). We prove all statements for a subsequence of integers and to use Lipschitz
regularity to extend to the real line.

THEOREM 4.4. Assume that δs satisfies Assumption 1 with k > d + 1 and hs satisfies
Assumption 2 with the additional requirement that for s sufficiently large it holds hs ≤ Csα

for some constant C > 0 and some α ∈ (0,1). Then it holds

lim
s→∞

Ts

s
= σ almost surely,

where σ denotes the constant from Proposition 3.12.

REMARK 4.5. As outlined in Remark 3.5 one can make sure that σ is arbitrarily close
(but not equal) to 1 by multiplying hs with a large constant.

PROOF. Let ε > 0 be arbitrary and choose λ = ε
√

s

√
hs

δ2
s

. Then Theorem 4.1 implies

P
(∣∣T ′

s −E
[
T ′

s

]∣∣ > sε
) ≤ C1 exp

(
−C2ε

√
s

√
hs

δ2
s

)
.

Let now s := n where n ∈ N is a natural number. By assumption we have δn ≤ hn ≤ Cnα

which implies that

exp
(
−C2ε

√
n

√
hn

δ2
n

)
≤ exp

(
−C2ε

√
n√
δn

)
= exp

(−C2εn
1−α

2
)
.

Now we use that for all m ∈ N and x > 0 it holds

exp(−x) ≤ m!
xm

to obtain that

exp
(
−C2ε

√
n

√
hn

δ2
n

)
≤ m!

(C2ε(n)
1−α

2 )m
.
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If we choose m > 2
1−α

we obtain

∞∑
n=1

exp
(
−C2ε

√
n

√
hn

δ2
n

)
≤ m!

(C2ε)m

1

t
m(1−α)

2

∞∑
n=1

1

n
m(1−α)

2

< ∞.

Hence, the Borel–Cantelli lemma allows us to conclude that

P

(
lim sup
n→∞

{∣∣T ′
n −E

[
T ′

n

]∣∣ > nε
}) = 0.

Since ε > 0 was arbitrary, we obtain that |T ′
n

n
− E[T ′

n]
n

| → 0 almost surely as n → ∞. Together
with Proposition 3.12 this implies

lim
n→∞

T ′
n

n
= σ almost surely.(4.8)

We claim that we also have

lim
n→∞

Tn

n
= σ almost surely.(4.9)

To see this, let ε > 0 be arbitrary and choose λ = ε
√

s

√
hs

δ2
s

. Then Corollary 4.3, Assump-

tions 1 and 2, and Eq. (3.7) imply

P
(∣∣Ts −E

[
T ′

s

]∣∣ > sε
) ≤ 2

δd
s

(
1

2CdC′
ds

)k−d

+ C1 exp
(
−C2ε

√
s

√
hs

δ2
s

)
.

Let again s := n where n ∈ N is a natural number. Using that δn ≥ 1 for n sufficiently large
and that k > d + 1 we get that

∞∑
n=1

2

δd
n

(
1

2CdC′
dn

)k−d

< ∞.

Furthermore, by assumption we have δn ≤ hn ≤ Cnα which implies that

exp
(
−C2ε

√
n

√
hn

δ2
n

)
≤ exp

(
−C2ε

√
n√
δn

)
= exp

(−C2εn
1−α

2
)
.

Now we use that for all m ∈ N and x > 0 it holds

exp(−x) ≤ m!
xm

to obtain that

exp
(
−C2ε

√
n

√
hn

δ2
n

)
≤ m!

(C2ε(n)
1−α

2 )m
.

If we choose m > 2
1−α

we obtain

∞∑
n=1

exp
(
−C2ε

√
n

√
hn

δ2
n

)
≤ m!

(C2ε)m

1

t
m(1−α)

2

∞∑
n=1

1

n
m(1−α)

2

< ∞.

Hence, the Borel–Cantelli lemma allows us to conclude that

P

(
lim sup
n→∞

{∣∣Tn −E
[
T ′

n

]∣∣ > nε
}) = 0.
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Since ε > 0 was arbitrary, we obtain that |Tn

n
− E[T ′

n]
n

| → 0 almost surely as n → ∞. Together
with Proposition 3.12 this establishes the claim, proving (4.9).

We now extend the limits to hold for real-valued s → ∞. We first show that

lim
s→∞

Ts

s
= σ almost surely.(4.10)

To see this, we let B(x, t) := {y ∈ R
d : |x − y| ≤ t} denote the closed ball around x ∈ R

d

with radius t > 0 and let An denote the event that

X ∩ B

(
(n + 1)e1,

hn

4

)
�= ∅.

By the law of the Poisson point process and the choice of scaling of hn we have

(4.11)
∞∑

n=1

P
(
Ac

n

) =
∞∑

n=1

exp
(
−ωd

hd
n

4d

)
< ∞,

where ωd is the volume of the d-dimensional unit ball. When An occurs, let us denote by xn

any point in the intersection of X with B((n + 1)e1,
hn

4 ). We also assume n is large enough
so that hn

4 ≥ 1.
We now claim that whenever An occurs and Tn is finite, we have

(4.12) Tn+1 − hn ≤ Ts ≤ Tn + hn for all n ≤ s ≤ n + 1.

To see this, note that any optimal path for Tn must terminate at a point x within distance hn

2
of ne1. Since An occurs we can add the point xn to this path to obtain a feasible path for Ts .
Indeed, we simply note that hn ≤ hs and compute

|x − xn| ≤ |x − ne1| +
∣∣ne1 − (n + 1)e1

∣∣ + ∣∣xn − (n + 1)e1
∣∣ ≤ hn

2
+ 1 + hn

4
≤ hn ≤ hs,

and

|xn − se1| ≤
∣∣xn − (n + 1)e1

∣∣ + ∣∣(n + 1)e1 − se1
∣∣ ≤ hn

4
+ 1 ≤ hn

2
≤ hs

2
.

Note that we used that hn

4 ≥ 1 in both inequalities. It follows that Ts is finite and

Ts ≤ Tn + hn.

To prove the other inequality, we follow a similar argument, taking a path that is optimal for
Ts , which must terminate at a point y that is within distance hn

2 of se1, and concatenating the
point xn to obtain a feasible path for Tn+1. This yields the inequality

Tn+1 ≤ Ts + hn,

which establishes the claim. The proof of (4.10) is completed by dividing by s in (4.12),
recalling (4.11) and applying Borel–Cantelli. �

5. Near superadditivity and ratio convergence. In this section we prove a type of ap-
proximate superadditivity of the distance function with the aim of proving convergence rates.
Ideally, we would like to show that for a slowly increasing function s �→ g(s)

E
[
T ′

2s

] ≥ 2E
[
T ′

s

] − g(s)(5.1)

holds true. Together with the near subadditivity from Proposition 3.11, the convergence from
Proposition 3.12, and [16], Lemma A.2, this would directly imply quantitative convergence
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rates for E[T ′
s ]

s
to the constant σ . The concentration statement from Theorem 4.1 would then

yield almost sure rates for T ′
s

s
to σ .

Although we think that (5.1) might be true, a proof of this is very difficult since the distance
functions in the definition of T ′

2s and T ′
s utilize the different length scales h2s and hs . Conse-

quently, a path which realizes T ′
2s is typically not feasible for the distance in T ′

s which makes
a construction of a suboptimal path for this distance such that (5.1) is satisfied hard. This is a
specific problem of our sparse graph setting and can be avoided using a fully connected graph
as, for example, in [46].

Therefore, we shall not work with the random variables T ′
s or Ts in the following but rather

work with a fixed length scale h and the distance function dh,Xs (·, ·) defined in (2.8). That is,
we aim to prove near superadditivity of the form

E
[
dh,Xs (0,2se1)

] ≥ 2E
[
dh,Xs (0, se1)

] − g(s),(5.2)

where we emphasize that both distance functions on the left and on the right have the same
length scale h.

5.1. Near superadditivity. We start by proving the following proposition which asserts
near superadditivity of the form (5.2). The argument closely follows the proof given in [46],
Lemma 4.1.

PROPOSITION 5.1 (Near superadditivity). Let δs satisfy assumption Assumption 1 with
k > d + 1. There exist dimensional constants C1,C2 > 0 such that for all s > 1 sufficiently
large with δs ≤ h ≤ s we have that

E
[
dh,Xs (0,2se1)

] ≥ 2E
[
dh,Xs (0, se1)

] − C1h − C2

√
δ2
s

h
s log(s).

REMARK 5.2. In the case that h = hs = δs we can subsume the error terms into one and
for some dimensional constant C > 0 we have

E
[
dhs,Xs (0,2se1)

] ≥ 2E
[
dhs,Xs (0, se1)

] − C log(s)
1+2d

2d
√

s.

PROOF. Let p1, . . . , pm be a path realizing the length dh,Xs (0,2se1). We now consider
the balls B(0, s), B(2se1, s) and denote by is , i2s the indices such that

pi ∈ B(0, s) ∀i ≤ is, pis+1 /∈ B(0, s),

pi ∈ B(2e1, s) ∀i ≥ i2s, pi2s−1 /∈ B(2se1, s),

that is, the smallest index is after which the path leaves B(0, s) and the largest index i2s

before which the path enters B(2se1, s). We note that by definition these indices exist and
that is < i2s holds. The construction is illustrated in Figure 3. We now take the points where
the path intersects the respective spheres,

xs := pispis+1 ∩ ∂B(0, s),

x2s := pi2s−1pi2s
∩ ∂B(2se1, s),

for which we have

dh,Xs (0,2se1) =
m−1∑
i=1

|pi+1 − pi |

≥
is−1∑
i=1

|pi+1 − pi | + |pis − xs | + |x2s − pi2s
| +

m−1∑
i=i2s

|pi+1 − pi |

≥ dh,Xs (0,pis ) + dh,Xs (pi2s
,2se1).

(5.3)
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FIG. 3. Construction in the proof of Proposition 5.1. The blue points on the spheres constitute the deterministic
coverings xi and x′

i .

We choose a family of ns points {xi : 1 ≤ i ≤ ns} ⊂ ∂B(0, s) on the sphere ∂B(0, s) such
that x1 = se1 and the other points are distributed in such a way that for all x ∈ ∂B(0, s) there
exists a point xi with |x − xi | ≤ h. The construction of these points is straightforward: Given
{x1, . . . , xk} one chooses

xk+1 ∈ ∂B(0, s)
∖ k⋃

i=1

B(xi, h/2).

Obviously, this process terminates after order (s/h)d−1 iterations which means that

ns ≤ C

(
s

h

)d−1
.(5.4)

Analogously one defines a covering of ∂B(2se1, s) into points {x′
i : 1 ≤ i ≤ ns} by reflecting

the points xi at the point se1. Note that the value of ns will turn out to be irrelevant, with the
only important thing being that it is at most polynomially large in s.

For i∗ ∈ {1, . . . , ns} chosen such that |xs − xi∗ | ≤ h it holds that

|pis − xi∗ | ≤ |pis − xs | + |xs − xi∗ | ≤ 2h.

It also holds that

dh,Xs (pis , xi∗) ≤ Cd |pis − xi∗ |
which implies that

dh,Xs (0, xi∗) ≤ dh,Xs (0,pis ) + dh,Xs (pis , xi∗) ≤ dh,Xs (0,pis ) + 2Cdh.

Analogously, for a suitable i∗ ∈ {1, . . . , ns} one gets

dh,Xs

(
x′
i∗,2se1

) ≤ dh,Xs (pi2s
,2se1) + 2Cdh.

Using these two inequalities together with (5.3) we obtain

dh,Xs (0,2se1) ≥ dh,Xs (0,pis ) + dh,Xs (pi2s
,2se1) ≥ dh,Xs (0, xi∗) + dh,Xs

(
x′
i∗,2se1

) − 4Cdh

≥ min
1≤i≤ns

dh,Xs (0, xi) + min
1≤i≤ns

dh,Xs

(
x′
i ,2se1

) − 4Cdh.
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Taking expectations and using Lemma 3.9 with M = ns as well as (5.4) we get

E
[
dh,Xs (0,2se1)

] ≥ 2E
[

min
1≤i≤ns

dh,Xs (0, xi)
]
− 4Cdh

− C1 exp
(
−
(

h

Cd

)d

+ C2 log
(

s

δs

))
≥ 2E

[
min

1≤i≤ns

dh,Xs (0, xi)
]
− C1h,

where we used the assumption δs ≤ h ≤ s and s > 1 sufficiently large to simplify and ab-
sorb the rightmost term into the error term of order h. The constant C1 changed its value
several times. By adding two zeros and using that because of Lemma 3.9 with M = 1 it
holds |E[dh,Xs (0, xi)] − E[dh,Xs (0, se1)]| ≤ C1h for all i, we can reorder this inequality in
the following way:

E
[
dh,Xs (0,2se1)

] ≥ 2E
[
dh,Xs (0, se1)

]
− 2E

[
max

1≤i≤ns

(
E
[
dh,Xs (0, xi)

] − dh,Xs (0, xi)
)] − C1h,

where the constant C1 again changed its value. We shall apply [16], Lemma B.2, to the
random variables

Y
(s)
i := 1√

δ2
s

h
s

dh,Xs (0, xi), 1 ≤ i ≤ ns,

which satisfy

E
[
Y

(s)
i

] ≤ Cds√
δ2
s

h
s

≤ Cd

√
h

δ2
s

√
s ≤ Cs

for s > 1 with s ≥ h and some constant C > 0. Using also (5.4) and the concentration of
measure from Theorem 4.1 we can apply [16], Lemma B.2, to get that

E

[
max

1≤i≤ns

(
E
[
Y

(s)
i

] − Y
(s)
i

)] ≤ C2 log(s)

which translates to

E

[
max

1≤i≤ns

(
E
[
dh,Xs (0, xi)

] − dh,Xs (0, xi)
)] ≤ C2

√
δ2
s

h
s log(s).

Hence, we obtain the desired inequality

E
[
dh,Xs (0,2se1)

] ≥ 2E
[
dh,Xs (0, se1)

] − C1h − C2

√
δ2
s

h
s log(s). �

Similarly, one can prove near monotonicity of the function s �→ E[dh,Xs (0, se1)]. While
we believe that this function should in fact be nondecreasing in s, the proof is not obvious.
However, for our purposes the following approximate monotonicity statement is sufficient.

PROPOSITION 5.3 (Near monotonicity). There exist dimensional constants C1,C2 > 0
such that for all s > 1 with δs ≤ h ≤ s

Cd+2 , and 0 ≤ s′ ≤ s it holds

E
[
dh,Xs

(
0, s′e1

)] ≤ E
[
dh,Xs (0, se1)

] + C1h + C2

√
δ2
s

h
s log(s).
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PROOF. We distinguish two cases, based on whether s′ is smaller or larger than h.
Case 1, s′ ≤ h: In this case we can perform trivial estimates:

E
[
dh,Xs

(
0, s′e1

)] ≤ Cdh + h ≤ s − h + (Cd + 2)h − s ≤ s − h ≤ E
[
dh,Xs (0, se1)

]
.

Case 2, s′ ≥ h: Using similar notation as in the proof of Proposition 5.1, we obtain

dh,Xs (0, se1) ≥ dh,Xs (0,pis′ ) ≥ dh,Xs (0, xi∗) − 2Cdh ≥ min
1≤i≤ns

dh,Xs (0, xi) − 2Cdh.

With the same arguments as in this previous proof and using that |xi | = s′ ≥ h we then obtain

E
[
dh,Xs (0, se1)

] ≥ E
[
dh,Xs

(
0, s′e1

)] − C1h − C2

√
δ2
s

h
s log(s),

where C2 originates from an application of [16], Lemma B.2. Combining both cases com-
pletes the proof. �

5.2. Ratio convergence rates. We can use the previous superadditivity results to prove a
convergence rate of the ratios of two distance functions:

E[dh,Xs (0, se1)]
E[dh,Xs (0,2se1)] → 1

2
, s → ∞.

Note that, in contrast to Proposition 3.12, the limiting constant σ does not appear in this ratio
convergence.

PROPOSITION 5.4. Under the conditions of Theorem 4.1 and Proposition 5.1 there exist
dimensional constants C1,C2 > 0 such that it holds for all s > 1 sufficiently large with δs ≤
h ≤ s that ∣∣∣∣ E[dh,Xs (0, se1)]

E[dh,Xs (0,2se1)] − 1

2

∣∣∣∣ ≤ C1
h

s
+ C2

√
δ2
s

h

log(s)√
s

.

REMARK 5.5. In the case that h = δs we can again subsume the convergence rate into
one term and for some dimensional constant C1 > 0 we have for s, t > 1 with s ≥ h suffi-
ciently large: ∣∣∣∣ E[dh,Xs (0, se1)]

E[dh,Xs (0,2se1)] − 1

2

∣∣∣∣ ≤ C1
log(s)

1+2d
2d√

s
.

PROOF. The approximate triangle inequality from Lemma 3.10 implies that

dh,Xs (0,2se1) ≤ dh,Xs (0, se1) + dh,Xs (se1,2se1) + h,

where we remark that all three distance functions are defined on the same set of points Xs .
Taking expectations and using the approximate translation invariance from Lemma 3.9 with
M = 1 yields

E
[
dh,Xs (0,2se1)

] ≤ 2E
[
dh,Xs (0, se1)

] + C1h,

where we used the scaling assumption and (3.8) to estimate the error term by C1h. Using also
Proposition 5.1 we get

1

2
− C1h

E[dh,Xs (0,2se1)] ≤ E[dh,Xs (0, se1)]
E[dh,Xs (0,2se1)] ≤ E[dh,Xs (0, se1)]

2E[dh,Xs (0, se1)] − C1h − C2

√
δ2
s

h
s log(s)

=
(

2 − C1
h

E[dh,Xs (0, se1)] − C2

√
δ2
s

h
s log(s)

E[dh,Xs (0, se1)]
)−1
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≤
(

2 − C1
h

s − h
− C2

√
δ2
s

h
s log(s)

s − h

)−1

≤
(

2 − C1
h

s(1 − h/s)
− C2

√
δ2
s

h
log(s)√

s(1 − h/s)

)−1
.

For s > 1 sufficiently large we can assume that the two negative terms are smaller than 3
2 and

we can use the elementary inequality 1
2−x

≤ 1
2 + x for 0 ≤ x ≤ 3

2 to obtain∣∣∣∣ E[dh,Xs (0, se1)]
E[dh,Xs (0,2se1)] − 1

2

∣∣∣∣ ≤ C1
h

s
+ C2

√
δ2
s

h

log(s)√
s

,

where we used that 2s − h ≤ E[dh,Xs (0,2se1)] ≤ 2Cds + h and increased the constants C1,
C2 a little. �

6. Application to Lipschitz learning. In this section we discuss an application of our re-
sults to the graph infinity Laplace equation which arises in the context of graph-based semisu-
pervised learning. In particular, we will extend our previous results from [15] by proving
uniform convergence rates for Lipschitz learning on graphs with bandwidths on the connec-
tivity threshold. An alternative viewpoint of our results is that we prove that finite difference
discretizations of the infinity Laplace equation on Poisson clouds converge at the percolation
length scale. In particular, choosing large stencils—which is required for structured grids, see
[54] but also our results in [15]—is not necessary for Poisson clouds.

For the readers’ convenience we first translate the results of the present paper to Pois-
son processes with intensity n � 1 which is the natural setting when working on graphs in
bounded domains.

6.1. Rescaling to processes with higher intensity. Let Xn be a Poisson point process with
intensity n in R

d . This means that

P
(
#(A ∩ Xn) = k

) = (n|A|)k
k! e−n|A| ∀A ⊂ R

d .

In expectation, the number of Poisson points in a set A equals E[#(A ∩ Xn)] = n|A|. Given
x0, x1 ∈ R

d , we define the affine map

�(x) := n
1
d R(x − x0), x ∈R

d,

where R ∈ R
d×d is a suitable orthogonal matrix such that �(x1) = n

1
d |x1 − x0|e1. Using the

mapping theorem for Poisson point processes [51] we can connect the graph distance with
step size ε > 0 on Xn with the graph distance on a unit intensity process, as studied in the
previous sections. Defining the unit intensity Poisson point process X := �(Xn), the length
and step size

s := n
1
d |x − x0|,(6.1)

h := n
1
d ε,(6.2)

we have

dε,Xn(x0, x) = n− 1
d dh,X(0, se1).

We also have a regularized version of the distance on Xn by defining

d ′
ε(x0, x) := n− 1

d dh,Xs (0, se1),
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where we suppress the dependency of the enriched Poisson process for a more compact no-

tation. Note that for distances |x − x0| of order one the choice of h = hs ∼ log(s)
1
d translates

to

ε = log(n
1
d |x − x0|) 1

d

n
1
d

= ( 1
d

log(n) + log |x − x0|) 1
d

n
1
d

∼
(

log(n)

n

) 1
d

,

which is precisely the connectivity threshold for the graph Xn.

REMARK 6.1 (Change of notation). In what follows we will let ε denote the length scales
used for the distance function on Xn. Furthermore, we will also suppress the dependency of
the distance function on Xn and will simply write dε(x0, x).

Let us rephrase our previous results which are needed for the application to the graph
infinity Laplacian in terms of the rescaled distance function. These are the localization results
Lemmas 3.6 and 3.8, the concentration statement Theorem 4.1, the near monotonicity from
Proposition 5.3, and the ratio convergence statement from Proposition 5.4.

THEOREM 6.2 (Properties of the distance function on Xn). Let x0, x ∈R
d and assume

K

(
logn

n

) 1
d ≤ ε ≤ |x − x0|.

Then there exist dimensional constants C1,C2 > 0 which are independent of x0 and x such
that for K > 0 sufficiently large:

1. (Concentration) For all λ > 0 it holds

P

(∣∣d ′
ε(x0, x) −E

[
d ′
ε(x0, x)

]∣∣ > λK

(
logn

n

) 1
d

√
|x − x0|

ε

)
≤ C1 exp(−C2λ).

2. (Near monotonicity) For n sufficiently large, x0 = 0, and x ∈R
d such that (Cd + 2)ε ≤

|x| ≤ 1 it holds for all x′ ∈ R
d with |x′| ≤ |x|:

E
[
d ′
ε

(
0, x′)] ≤ E

[
d ′
ε(0, x)

] + C1ε + C2K

(
logn

n

) 1
d (

logn + log |x|)
√

|x|
ε

.

3. (Ratio convergence in expectation) For n sufficiently large, x0 = 0, and x ∈ R
d such

that ε ≤ |x| it holds that∣∣∣∣ E[d ′
ε(0, x)]

E[d ′
ε(0,2x)] − 1

2

∣∣∣∣ ≤ C1
ε

|x| + C2K

(
logn

n

) 1
d logn + log |x|√

ε|x| .

4. (Localization) For |x − x0| ≥ 2ε it holds

P
(
any optimal path of dε(x0, x) lies in B(x0,C

′
d |x0 − x|))

≥ 1 − exp
(−C1nεd + C2 log

(
n|x0 − x|)),

P
(
dε(x0, x) = d ′

ε(x0, x)
) ≥ 1 − 2 exp

(−C1nεd + C2 log
(
n|x0 − x|)).

PROOF. One simply uses (6.1) and (6.2) and observes that δs = Cd(k log(C′′
d s))

1
d =

K(logn)
1
d for a suitable constant K = K(d). �
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6.2. Convergence rates. We still let Xn be a Poisson point process with intensity n ∈ R

on R
d and let � ⊂ R

d be an open and bounded domain. Remember that for a bandwidth
parameter ε > 0 and a function un : Xn →R we defined the graph infinity Laplacian of un as

Lε∞un(x) := sup
y∈B(x,ε)∩Xn

u(y) − u(x)

|y − x| + inf
y∈B(x,ε)∩Xn

u(y) − u(x)

|y − x| , x ∈ Xn.

Solutions of the graph infinity Laplacian equation Lε∞un = 0 satisfy a special comparison
principle with the graph distance function, called comparison with cones. To explain this, we
introduce some terminology. For a subset A ⊂ Xn we define its graph boundary and closure
as

bdε(A) := {
x ∈ Xn \ A : ∃y ∈ A, |x − y| ≤ ε

}
,

clε(A) := A ∪ bdε(A).

Furthermore, we refer to a subset A ⊂ Xn as ε-connected if for all points x, y ∈ A there
exists a path in A which connects x and y and has hops of maximal size ε, in other words if
dε(x, y)[A] < ∞.

We say that un satisfies comparison with cones on a subset X′
n ⊂ Xn if for every subset

X′′
n ⊂ X′

n, for all a ≥ 0, and for all z ∈ X′
n \ X′′

n it holds

max
clε(X′′

n)

(
un − adε(·, z)) = max

bdε(X′′
n)

(
un − adε(·, z)),(6.3a)

min
clε(X′′

n)

(
un − adε(·, z)) = min

bdε(X′′
n)

(
un − adε(·, z)).(6.3b)

We have the following result:

THEOREM 6.3 ([15], Theorem 3.2). Let X′
n ⊂ Xn be an ε-connected subset of Xn and let

un : X′
n → R satisfy Lε∞un(x) = 0 for all x ∈ X′

n. Then un satisfies comparison with cones
on X′

n.

The goal of this section is to establish rates of convergence for solutions of Lε∞un = 0 to
solutions of the infinity Laplacian equation �∞u = 0, where �∞u := ∑d

i,j=1 ∂iu∂ju∂2
ij u for

smooth functions u. Note that solutions to the infinity Laplacian equation are not C2 in gen-
eral which is why one typically uses the theory of viscosity solutions. However, solutions can
be characterized through a comparison with cones property, as well. We refer to the seminal
monograph [9] for this and other important properties of the infinity Laplacian equation.

For proving the rates we shall utilize the framework which we developed in [15] and which
only relies on the comparison with cones property of the respective solutions. The novel idea
there was the introduction of a homogenized length scale τ > ε, a corresponding extensions
uτ

n of a graph solution un, and a homogenized infinity Laplacian operator �τ∞. The general
recipe for getting rates as in [15] is the following:

1. Let Lε∞un = 0 and �∞u = 0.
2. Use convergence of the distance function to prove that

−�τ∞uτ
n � error(n, ε, τ ) and sup

∣∣un − uτ
n

∣∣� τ.

3. Perturb the continuum solution u to a function ũ which satisfies

−�τ∞ũ� error(n, ε, τ ) and sup |u − ũ| � τ + 3
√

error(n, ε, τ ).

4. Use a comparison principle for �τ∞ and repeat the argument for −un and −u to get

sup |un − u| � τ + 3
√

error(n, ε, τ ).
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5. Optimize over n, ε, τ to get explicit rates.

Note that in [15] a careful analysis of boundary conditions and regularity is performed in
order to be able to perform the arguments above all the way up to the boundary. Furthermore,
the introduction of the homogenized operator allowed us to obtain convergence rates for
arbitrary small graph bandwidths satisfying

ε �
(

logn

n

) 1
d

.

The purpose of this section is to show how our results on Euclidean first-passage percolation
allows to improve the error term error(n, ε, τ ) in order to allow for length scales of the form

ε ∼
(

logn

n

) 1
d

.

Let us now introduce the homogenized quantities. For τ > 0 we define extensions of the
discrete function un : Xn →R to functions uτ

n, (un)τ :Rd →R as follows:

uτ
n(x) := sup

B(x,τ )∩Xn

un, x ∈R
d,(6.4a)

(un)τ (x) := inf
B(x,τ )∩Xn

un, x ∈R
d .(6.4b)

Note that both extrema are attained if B(x, τ ) ∩ Xn �= ∅ since this set is of finite cardinality.
We also define the nonlocal infinity Laplacian with respect to τ > 0 of a function u :Rd →R

as

�τ∞u(x) := 1

τ 2

(
sup

B(x,τ )

u − 2u(x) + inf
B(x,τ )

u
)
, x ∈ R

d .(6.5)

Last, for a positive number r > 0 we define inner parallel sets of � as

�r := {
x ∈ � : dist(x, ∂�) > r

}
.(6.6)

THEOREM 6.4. Let � ⊂R
d be an open and bounded domain and Xn be a Poisson point

process on R
d with density n ∈ N. Assume that ε > 0 and τ > 0 satisfy

K

(
logn

n

) 1
d ≤ ε ≤ 1

K
τ, 0 < τ < 1,(6.7)

and define

On := {
x ∈ Xn ∩ � : dist(x, ∂�) ≤ ε

}
.

Let g : � →R be a Lipschitz function and un : Xn →R solve{
Lε∞un = 0 on Xn \On,

un = g on On.

Then there exist dimensional constants C1,C2,C3,C4,C5 > 0 and C6 > 1 such that for all
λ ≥ 0 and for K ≥ 8 sufficiently large with probability at least

1 − C1 exp
(−C2K

d logn
) − C3 exp(−C4λ + C5 logn)

it holds for all x0 ∈ �2C6τ that

−�τ∞uτ
n(x0)� Lip(g)

(
(logn + λ)

(
logn

n

) 1
d 1√

τ 3ε
+ ε

τ 2

)
,(6.8a)

−�τ∞(un)τ (x0)�−Lip(g)

(
(logn + λ)

(
logn

n

) 1
d 1√

τ 3ε
+ ε

τ 2

)
.(6.8b)
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REMARK 6.5. Abbreviating δn := (
logn

n
)

1
d our result translates to

−�τ∞uτ
n(x0)� Lip(g)

(
(logn + λ)

δn√
τ 3ε

+ ε

τ 2

)
.

In particular, we can choose ε = δn and the error term reduces to
√

δn

τ 3 which goes to zero if τ

is sufficiently large compared to δn. In our previous work [15], Theorem 5.13, we proved an
analogous result for arbitrary weighted graphs (whose vertices could also be deterministic)
with connectivity radius δn, graph bandwidth ε, and a free parameter τ . There we proved that

−�τ∞uτ
n(x0)� Lip(g)

(
δn

τε
+ ε

τ 2

)
and one observes that choosing ε = δn is not possible since then the right hand side would
diverge as τ → 0.

PROOF. The proof follows very closely our earlier result [15], Theorem 5.13, but in-
volves nontrivial adaptations.

It suffices to prove the first statement since the second one follows by changing the signs
of un. Furthermore, it suffices to prove the statement for graph vertices x0 ∈ Xn and then use
[15], Lemma 5.8, to extend it to continuum points, which does only incur error terms that are
already present and increases the constant C6.

Let us fix x0 ∈ �2C6τ where for now we assume that C6 > 1. Utilizing that

sup
B(x0,τ )

uτ
n = sup

x∈B(x0,τ )

sup
B(x,τ )∩Xn

un = sup
B(x0,2τ)

un = u2τ
n (x0),

inf
B(x0,τ )

uτ
n = inf

x∈B(x0,τ )
sup

B(x,τ )∩Xn

un ≥ un(x0),

we obtain

−τ 2�τ∞uτ
n(x0) ≤ 2uτ

n(x0) − u2τ
n (x0) − un(x0).(6.9)

To estimate this term, we turn our attention to the function un and the fact that it satisfies
comparison with cones. For this we define the set Bn(x0,2τ) ⊂ Xn as

Bn(x0,2τ) :=
{
x ∈ Xn \ {x0} : dε(x0, x) ≤ inf

y∈B(x0,2τ−ε)c
dε(x0, y) − ε

}
.(6.10)

We start by recording a couple of properties of the set Bn(x0,2τ):
First, we observe that

Bn(x0,2τ) ⊂ B(x0,2τ − ε)(6.11)

since otherwise there would be a point x ∈ Bn(x0,2τ) such that dε(x0, x) ≤ dε(x0, x) − ε

which is a contradiction.
Second, we claim that

inf
y∈B(x0,2τ−ε)c

dε(x0, y) = inf
y∈B(x0,2τ)\B(x0,2τ−ε)

dε(x0, y)(6.12)

which is going to be relevant a little later. To see this, note that the left hand side is always
smaller or equal than the right hand side. Furthermore, any feasible path from a point y ∈
B(x0,2τ − ε)c to x0 has to contain a point in B(x0,2τ) and can hence be truncated to obtain
a feasible path for the right side.
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Third, we claim that the (graph) boundary of Bn(x0,2τ) satisfies

bdε

(
Bn(x0,2τ)

) ⊂
{
x ∈ Xn ∩ B(x0,2τ) :

dε(x0, x) > inf
y∈B(x0,2τ−ε)c

dε(x0, y) − ε
}

∪ {x0} =: B′(6.13)

and in particular B′ ⊂ �. By definition, for z ∈ bdε(Bn(x0,2τ)) there exists x ∈ Bn(x0,2τ)

with |x − z| ≤ ε and hence, using also (6.11), we get

|z − x0| ≤ |z − x| + |x0 − x| ≤ ε + 2τ − ε = 2τ,

which proves (6.13). In particular, we see by (6.7) and (6.13) that for C6 > 1 sufficiently large
it holds B′ ∩On = ∅. We have the following trivial inequality:

un(x) ≤ un(x0) + (
u2τ

n (x0) − un(x0)
) dε(x0, x)

infy∈B(x0,2τ−ε)c dε(x0, y) − ε
∀x ∈ B′.

Indeed, if x = x0 the inequality is in fact an equality, and for all x ∈ B(x0,2τ) it is also true
since u2τ

n (x0) ≥ un(x). Consequently, since bdε(Bn(x0,2τ)) ⊂ B′ ⊂ (Xn ∩ �) \ On and un

satisfies comparison with cones on this set, we infer that for all x ∈ clε(Bn(x0,2τ)) it holds

un(x) ≤ un(x0) + (
u2τ

n (x0) − un(x0)
) dε(x0, x)

infy∈B(x0,2τ−ε)c dε(x0, y) − ε
.(6.14)

Without loss of generality we can assume that Cd ≤ 3/2 (otherwise, one can increase K in
the definition of ε, see Remark 3.5). Using Lemma 3.2 this ensures that for all x ∈ B(x0, τ )

we have with probability at least 1 − C1 exp(−C2K
d logn) for some constants C1,C2 > 0

that

dε(x0, x) ≤ Cdτ + ε ≤ 3

2
τ + ε = 2τ − 3ε + 4ε − 1

2
τ.(6.15)

On the other hand, using Lemma 3.1 we also have

inf
y∈B(x0,2τ−ε)c

dε(x0, y) − ε ≥ inf
y∈B(x0,2τ−ε)c

|x0 − y| − dist(y,Xs) − ε

≥ 2τ − 3ε.

(6.16)

Since τ ≥ Kε ≥ 8ε we infer from (6.15) and (6.16) that

dε(x0, x) ≤ inf
y∈B(x0,2τ−ε)c

dε(x0, y) − ε

and this implies B(x0, τ ) ⊂ Bn(x0,2τ). Consequently, we can maximize both sides in (6.14)
over x ∈ B(x0, τ ) ∩ Xn to get

uτ
n(x0) ≤ un(x0) + (

u2τ
n (x0) − un(x0)

) supx∈B(x0,τ )∩Xn
dε(x0, x)

infy∈B(x0,2τ−ε)c dε(x0, y) − ε

≤ un(x0) + (
u2τ

n (x0) − un(x0)
)supx∈B(x0,τ )∩Xn

dε(x0, x)

infy∈B(x0,2τ−ε)c dε(x0, y)

×
(

1 + ε

infy∈B(x0,2τ−ε)c dε(x0, y)

)
.

In the last step we used the elementary inequality 1
1−t

≤ 1 + 2t for 0 ≤ t ≤ 1/2. Now we
argue that we can replace dε by d ′

ε in this expression with high probability: First, we finally
use property (6.12) from above which tells us that the infimum infy∈B(x0,2τ−ε)c dε(x0, y) can
be restricted to the annulus B(x0,2τ) \ B(x0,2τ − ε). Hence Item 4 in Theorem 6.2 implies
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that dε(x0, y) = d ′
ε(x0, y) for all y ∈ B(x0,2τ) \ B(x0,2τ − ε) with probability at least 1 −

C1 exp(−C2K
d logn) where we possibly increase C1 and C2.

Second, we argue for the supremum. Possibly increasing C1 and C2 with probability at
least 1 − C1 exp(−C2K

d logn) it is finite and let us assume it is attained at a point x̂ ∈
B(x0,2ε) ∩ Xn. Then using Lemma 3.2 with the same probability we have

2Cdε ≥ d∩(x0, x̂) = sup
x∈B(x0,τ )∩Xn

dε(x0, x) ≥ dε(x0, x̃) ≥ (K − 1)ε

for every point x̃ ∈ (B(x0,Kε) ∩ Xn) \ B(x0, (K − 1)ε). Note that if K is sufficiently large
then such a point exists with the same probability.

This is a contradiction if K > 2Cd + 1 and so Item 4 in Theorem 6.2 again lets us replace
dε(x0, x) by d ′

ε(x0, x) for all x ∈ B(x0, τ ) ∩ Xn. Hence, we obtain

uτ
n(x0) ≤ un(x0) + (

u2τ
n (x0) − un(x0)

)supx∈B(x0,τ )∩Xn
d ′
ε(x0, x)

infy∈B(x0,2τ−ε)c d ′
ε(x0, y)

×
(

1 + ε

infy∈B(x0,2τ−ε)c d ′
ε(x0, y)

)
with probability at least 1 − C1 exp(−C2K

d logn). Introducing the shortcut notation

dτ (x0) := sup
x∈B(x0,τ )∩Xn

d ′
ε(x0, x),(6.17a)

d2τ (x0) := inf
y∈B(x0,2τ−ε)c

d ′
ε(x0, y),(6.17b)

rτ (x0) := dτ (x0)

d2τ (x0)
− 1

2
,(6.17c)

we can rewrite and continue the previous estimate as follows:

uτ
n(x0) ≤ un(x0) + (

u2τ
n (x0) − un(x0)

)(
rτ (x0) + 1

2

)(
1 + ε

infy∈B(x0,2τ−ε)c d ′
ε(x0, y)

)

≤ (
u2τ

n (x0) − un(x0)
)
rτ (x0) + 1

2

(
un(x0) + u2τ

n (x0)
)

+ (
u2τ

n (x0) − un(x0)
)(

rτ (x0) + 1

2

)
ε

infy∈B(x0,2τ−ε)c d ′
ε(x0, y)

.

Returning to (6.9) we obtain

−τ 2�τ∞uτ
n(x0) ≤ 2

(
u2τ

n (x0) − un(x0)
)
rτ (x0)

+ 2
(
u2τ

n (x0) − un(x0)
)(

rτ (x0) + 1

2

)
ε

infy∈B(x0,2τ−ε)c d ′
ε(x0, y)

≤ 2 Lipn(un)dε

(
x0, x

∗
0
)
rτ (x0)

+ 2 Lipn(un)dε

(
x0, x

∗
0
)(

rτ (x0) + 1

2

)
ε

infy∈B(x0,2τ−ε)c d ′
ε(x0, y)

,

where we let x∗
0 ∈ B(x0,2τ) ∩ Xn be a point which realizes u2τ

n (x0) and define the graph
Lipschitz constant

Lipn(un) := max
x,y∈Xn

|un(x) − un(y)|
dε(x, y)

.(6.18)
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Since un solves the graph infinity Laplace equation it holds Lipn(un) = Lipn(g) by [15],
Proposition 3.8, and using Lemma 3.1 we get

Lipn(g) = max
x,y∈Xn

|g(x) − g(y)|
dε(x, y)

≤ max
x,y∈Xn

|g(x) − g(y)|
|x − y| ≤ Lip(g).

We have the estimates dε(x0, x
∗
0 ) ≤ 2Cdτ with high probability and infy∈B(x0,2τ−ε)c d ′

ε(x0,

y) ≥ 2τ − 2ε which imply

−τ 2�τ∞uτ
n(x0) ≤ 2Cd Lip(g)τ rτ (x0)

+ 4C2
d Lip(g)τ

ε

infy∈B(x0,2τ−ε)c d ′
ε(x0, y)

(
rτ (x0) + 1

2

)

� Lip(g)

(
τ rτ (x0) + τε

τ − ε

)
� Lip(g)

(
τ rτ (x0) + ε

)
.

In the second inequality we used trivial estimates on τ , ε, and rτ (x0) to absorb the second
term into the first one, and we absorbed dimensional constants into the � symbol. In the third
inequality we used that τ ≥ 8ε to simplify τε

τ−ε
= ε 1

1− ε
τ

≤ 8
7ε � ε. Dividing by τ 2 we obtain

−�τ∞uτ
n(x0)� Lip(g)

(
rτ (x0)

τ
+ ε

τ 2

)
.

By [16], Lemma C.3, and a union bound there exist constants C3,C4,C5 > 0 such that for all
λ ≥ 0 with probability at least 1 − C3 exp(−C4λ + log(τ/ε) + C5 logn) it holds

rτ (x0)� (logn + λ)

(
logn

n

) 1
d logn√

τε
.

Plugging this in we obtain

−�τ∞uτ
n(x0)� Lip(g)

(
(logn + λ)

(
logn

n

) 1
d 1√

τ 3ε
+ ε

τ 2

)
.

We conclude the proof, noting that the last probability can be simplified using (6.7):

log(τ/ε) + C5 logn ≤ log τ − log ε + C5 logn

≤ − logK − (1/d) log logn + (1/d) logn + C5 logn ≤ C5 logn

by changing the value of C5 > 0 and choosing K ≥ 1 and n ≥ 3. Hence the last probability
can be simplified to 1−C3 exp(−C4λ+C5 logn) and the final result is establish with another
union bound. �

The proof of Theorem 2.3 is now identical to the one presented in our previous paper with
the essential ingredient being Theorem 6.4.

PROOF SKETCH OF THEOREM 2.3. The proof works as in [15], Section 5.3.3, replacing
ε there with C6τ . For completeness we sketch the proof below.

From Theorem 6.4 we obtain

−�τ∞uτ
n ≤ C Lip(g)

(
(logn + λ)

(
logn

n

) 1
d 1√

τ 3ε
+ ε

τ 2

)
=: Cn,τ in �2C6τ ,
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for some constant C > 0. The proof strategy is to perturb u to a strict supersolution associated
to the operator −�τ∞. For this we use [15], Lemma 4.8, Lemma 4.9, as in the proof of [15],
Proposition 5.16, which allows us to choose w : �2C6τ →R such that

−�τ∞w ≥ Cn,τ in �2C6τ ,
∥∥w − (u)τ

∥∥
L∞(�2C6τ ) � 3

√
Cn,τ .

Since we now have −�τ∞uτ
n ≤ Cn,τ ≤ −�τ∞w we can invoke the comparison principle for

the operator −�τ∞, see [7], Corollary 3.3, to obtain that

sup
�(2C6−1)τ

(
uτ

n − (u)τ
)
� sup

�(2C6−1)τ

(
uτ

n − w
) + 3

√
Cn,τ = sup

�(2C6−1)τ \�2C6τ

(
uτ

n − w
) + 3

√
Cn,τ

� sup
�(2C6−1)τ \�2C6τ

(
uτ

n − (u)τ
) + 2 3

√
Cn,τ ,

where we also used the triangle inequality twice. Analogously, we obtain

sup
�(2C6−1)τ

(
uτ − (un)τ

)
� sup

�(2C6−1)τ \�2C6τ

(
uτ − (un)τ

) + 2 3
√

Cn,τ .

The next steps consists in getting rid of the extension operators at the scale of τ , for which we
employ (approximate) Lipschitzness of u (and un). Utilizing [15], Lemma 5.9, Lemma 5.10,
Lemma 5.11, this can be done at the cost of an additive error of order τ , for which we obtain

sup
Xn∩�(2C6−1)τ

|u − un|� τ + 3
√

Cn,τ .

Finally, we extend this result to Xn ∩� using again Lipschitzness of u and the data g. Namely
take x ∈ Xn ∩ � and x̃ ∈ Xn ∩ (� \ �(2C6−1)τ ) such that |x − x̃|� τ which yields∣∣u(x) − un(x)

∣∣ ≤ ∣∣u(x) − u(x̃)
∣∣ + ∣∣u(x̃) − un(x̃)

∣∣ + ∣∣un(x̃) − un(x)
∣∣

� Lip(g)τ + τ + 3
√

Cn,τ ,

where we used that un satisfies an approximate Lipschitz estimate of the form∣∣un(x) − un(y)
∣∣ ≤ Lipn(un)dε(x, y)� Lipn(g)

(|x − y| + ε
)
� Lip(g)τ.

Hence, we have showed

sup
Xn∩�

|u − un|� Lip(g)τ + 3
√

Cn,τ

which concludes the proof sketch. �
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SUPPLEMENTARY MATERIAL

Appendix (DOI: 10.1214/24-AAP2052SUPPA; .pdf). The appendix collects important
statements regarding (approximately) sub- and superadditive functions, an abstract concentra-
tion inequality for martingale difference sequences, some auxiliary estimates, and numerical
illustrations.

Code for numerical examples (DOI: 10.1214/24-AAP2052SUPPB; .zip). The code for
the numerical examples is provided in the supplementary material in the file
PercolationConvergenceRates.zip. It can also be found at https://github.com/
TimRoith/PercolationConvergenceRates.
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