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Abstract
We introduce a novel algorithm that converges to level set convex viscosity solutions of
high-dimensional Hamilton–Jacobi equations. The algorithm is applicable to a broad
class of curvature motion PDEs, as well as a recently developed Hamilton–Jacobi
equation for the Tukey depth, which is a statistical depth measure of data points.
A main contribution of our work is a new monotone scheme for approximating the
direction of the gradient, which allows for monotone discretizations of pure partial
derivatives in the direction of, and orthogonal to, the gradient. We provide a con-
vergence analysis of the algorithm on both regular Cartesian grids and unstructured
point clouds in any dimension, and present numerical experiments that demonstrate
the effectiveness of the algorithm in approximating solutions of the affine flow in two
dimensions and the Tukey depthmeasure of high-dimensional datasets such asMNIST
and FashionMNIST.

Mathematics Subject Classification 65N25: Numerical methods for eigenvalue
problems for boundary value problems involving PDEs · 35F21: Hamilton-Jacobi
equations · 35D40: Viscosity solutions to PDEs

1 Introduction

The motion of curves or surfaces with normal velocity that depends on curvature has
a wide range of applications in science, engineering, and mathematics. A short, and
nowhere near complete list includes materials science [1, 2], fluid and bubble motion
[3, 4], image processing [5], computer vision [6, 7], stochastic control [8], and more
recently, data science [9].
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There is a wealth of literature on numerical schemes for approximating geometric
motions, and one of the most successful and widely used algorithms is the level set
method. This method was pioneered by Sethian and Osher [10] and implicitly rep-
resents the evolving curve or surface as the zero level set of a function u(x, t). The
algorithm then solves a level set PDE for the evolution of u. The implicit representation
allows for topological changes in the surface, and has led to a rigorous notion of geo-
metric flows past singularities by utilizing the machinery of viscosity solutions [11].

In current numerical practice, there is a significant discrepancy between the numer-
ical schemes used and their theoretical counterparts. Specifically, there is no proof
of convergence of the finite difference numerical solutions to the viscosity solution
of the level set equation as the grid resolution approaches zero. The difficulty is that
convergence proofs are only available formonotone schemes [12] (refer to Definition
2.8), and the standard discretizations of curvature are not monotone.

Several attempts have been made to address the lack of monotonicity in the litera-
ture. Merriman, Bence, and Osher [13] introduced a class ofmonotone approximation
schemes known as diffusion generated motion or threshold dynamics. The algorithms
consist of two simple steps: (1) Convolution with a positive kernel (diffusion), and (2)
thresholding. The original algorithm has been extended to a wide range of anisotropic
curvature motions, as well as motions of networks (see [14] for recent results). Since
the schemes are monotone, rigorous proofs of convergence to the viscosity solution
are available [15, 16]. One drawback of threshold dynamics is that the algorithm
may become “stuck” if the time step1 is chosen too small, limiting the accuracy [17].
This can be alleviated by using the signed distance function in place of characteris-
tic functions (see, e.g., [14, 18]). Oberman [19] developed a wide-stencil monotone
finite difference scheme for curvature motion based on a connection between the local
median and curvature. Oberman’s wide stencil approach has been extended to more
general degenerate elliptic PDEs, including certain types of Hamilton–Jacobi and
Monge–Ampère equations [20–23], and more recently the affine flow [24]. In general,
monotone schemes are less flexible than non-monotone ones, and in many cases they
must be specifically designed for each application.

A noteworthy application of this class of curvature motion PDEs is the computation
of data depth. Data depth can be seen as an extension of the notion order statistics to
high-dimensional data sets. Thedepth of a data point in a cluster is a notion of howclose
it is to the center, i.e., the mean or median of the data, with deeper points being more
central and representative of the typical data point, and shallower points being identi-
fied as outliers.Adefinitionof data depth leads naturally to a notionof highdimensional
medians (i.e., the deepest points), and the study of robustness ofmedians to data pertur-
bations is a central topic in the field of robust statistics. The Tukey, or half-space, depth
[25] is one of the seminal notions of data depth, and it has been extended to graphs [26]
and metric spaces [27]. Other notions of data depth include convex hull peeling [28],
the Monge-Kantorovich depth [29], non-dominated sorting [30], and Pareto envelope
peeling [31, 32]. Many notions of data depth have been connected to Hamilton–Jacobi
and curvature motion equations in the large data continuum limit. It was shown in
[30, 33, 34] that non-dominated sorting has a Hamilton–Jacobi equation continuum

1 The time step refers to the width of the convolution kernel.
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limit. A related Hamilton–Jacobi equation continuum limit was established for Pareto-
envelope peeling in [32]. In [9] it was shown that the continuum limit of convex hull
peeling is a weighted version of affine invariant curvature motion (i.e., the affine flow).

Recently, connections have also been made between Hamilton–Jacobi equations
and Tukey depth [35]. Tukey depth serves as a statistical measure of data depth and is
defined given a data density function ρ as follows:

T (x) := inf|v|=1

∫

(y−x)·v≥0

ρ(y)dy.

In other words, the depth T (x) of a datapoint x ∈ R
n is the least amount of probability

mass contained in any halfspace that contains x . The study [35] showed that the Tukey
depth function T (x), under some reasonable assumptions onρ and its support� ⊂ R

d ,
is the viscosity solution of the nonstandard eikonal equation

|∇T (x)| =
∫

(y−x)·∇T (x)=0

ρ(y) dS(y), for x ∈ �, (1.1)

subject to the homogeneous Dirichlet boundary condition u = 0 on ∂�. The vis-
cosity solution of (1.1) has convex level sets, i.e., it is a quasiconcave function. The
nonstandard dependence on ∇T on the right-hand side of Eq. (1.1) poses a challenge
in constructing a monotone, and hence provably convergent, numerical method. Cur-
rently, we are unaware of any existing numerical methods that can be used to solve
(1.1) with provable convergence guarantees. Let us also mention that recent works,
some inspired by [35], have considered using a more standard eikonal equation of
the form |∇T | = ϕ(ρ) for data depth (see [36] and [37]). These standard eikonal
equations can be solved with the Fast Marching Method [38], which is known for its
speed and efficiency in solving the eikonal equation. In addition, a recent study [39]
considered a family of graph p-eikonal equations, and demonstrated its applications
in applications to data depth and semi-supervised learning.

The lack of numerical methods with rigorous guarantees for solving (1.1) was
one of the main motivations for this work. Notice that the right hand side of (1.1)
depends only the direction of ∇T , and not on its magnitude. The same types of
dependencies arise in curvature motion Hamilton–Jacobi equations, where one can
view the various principal curvatures arising in the front propagation speed as pure
second derivatives in directions orthogonal to the gradient. In this work, we develop
a novel wide-stencil finite-difference technique for discretizing the direction of the
gradient that works for the Tukey depth equation (1.1), as well as Hamilton–Jacobi
equations with curvature dependent speeds. Our current work is focused on the setting
of monotone front evolution in which the level sets of the solution are convex, but we
expect the methods are more general and this constraint can be relaxed in future work.
Since our scheme is monotone, we are able to use the Barles-Souganidis framework
[12] to prove convergence to the viscosity solution. An interesting feature of our work
is that our proposed scheme is not dependent on any grid structure, and it can be easily
applied on unstructured, possibly high dimensional, point clouds. While the accuracy
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Fig. 1 Non-unique solutions of the 1D eikonal equation |u′| = 1 with Dirichlet boundary conditions
u(0) = u(1) = 0

of the schemes will suffer from the curse of dimensionality, the computational cost
depends only on the number of datapoints and is largely insensitive to dimension.
As an application, we present results of solving the Tukey depth PDE (1.1) on high
dimensional image data sets, including MNIST and FashionMNIST.

1.1 Outline

This paper is organized as follows. In the following sections, we describe a new
technique for constructing monotone finite difference schemes for discretizing the
direction of the gradient. We begin in Sect. 2 by reviewing the definitions of quasi-
concave functions, viscosity solutions, and monotone schemes. In Sect. 3, we propose
a new monotone and consistent numerical scheme for computing viscosity solutions
of curvature-driven PDEs and prove the convergence of the scheme on general point
clouds in R

d , with an arbitrary dimension d. Section4 presents several applications
of using the proposed numerical methods to compute solutions of the Tukey depth
eikonal equation and mean curvature motion PDEs. Finally, in Sect. 5, we present
numerical examples of using the proposed scheme to solve various eikonal equations
in general point clouds settings in dimensions ranging from d = 2 to d = 784.

2 Background

In this paper, we are interested in a general class of second order Hamilton–Jacobi
equations of the form

{
H(∇2u,∇u, u, x) = 0, x ∈ �

u(x) = g(x), x ∈ ∂�,
(2.1)

where � ⊂ R
d is an open and bounded domain, ∂� is a boundary of �, H : Rd×d

sym ×
R
d × R × � → R, g : � → R, and u : � → R, with ∇u denoting the gradient of

u and ∇2u denoting the Hessian. In particular, we are interested in the setting where
the solution u is quasiconcave, which means the super level set {u > t} is convex for
all t ∈ R.

This class of equations usually does not admit classical solutions, i.e., solutions
that are continuously differentiable so that the equation is satisfied classically at each
x ∈ �. See Fig. 1 for a simple 1D example. Due to the fully nonlinear nature of the
equation, the notion of weak solutions using test functions and integration by parts
is not applicable. For equations of the form (2.1) that satisfy some basic ellipticity
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Monotone discretizations of levelset.. 1991

and monotonicity conditions, the notion of viscosity solution [40, 41] identifies the
physically correct solution for broad ranges of applications, and has proven to be
an extremely useful tool in the study of nonlinear PDEs. In this section, we review
definitions of quasiconcavity, viscosity solutions, and the convergence for numerical
schemes for viscosity solutions.

2.1 Quasi-concavity

Let us introduce the definition of quasiconcave functions and their properties.

Definition 2.1 A function u : � → R is quasiconcave if

u(λx + (1 − λ)y) ≥ min
(
u(x), u(y)

)

for all x, y ∈ � and all 0 < λ < 1. A function u is strictly quasiconcave if the
inequality is strict. A function u is locally quasiconcave at x ∈ � (resp. locally
strictly quasiconcave) if u satisfies the inequality (resp. strict inequality) in some
neighborhood of x ∈ O ⊂ �.

Lemma 2.2 Given u ∈ C1(�), the following are equivalent.

(i) u is quasiconcave.
(ii) For all x, y ∈ �,

(y − x) · ∇u(x) ≤ 0 	⇒ u(y) ≤ u(x).

(iii) For all x ∈ �, there exists a nonzero p ∈ R
d such that for all y ∈ �,

(y − x) · p ≤ 0 	⇒ u(y) ≤ u(x).

Lemma 2.3 If u ∈ C2(�) is quasiconcave then for all x, y ∈ �,

(y − x) · ∇u(x) = 0 	⇒ (y − x) · ∇2u(x)(y − x) ≤ 0.

Lemma 2.4 Given a function u ∈ C2(�) the following are equivalent.

(i) u is strictly quasiconcave.
(ii) For all x, y ∈ �,

(y − x) · ∇u(x) ≤ 0 	⇒ u(y) < u(x).

(iii) For all x ∈ �, there exists a nonzero p ∈ R
d such that for all y ∈ �,

(y − x) · p ≤ 0 	⇒ u(y) < u(x).

(iv) For all x, y ∈ � and x �= y,

(y − x) · ∇u(x) = 0 	⇒ (y − x) · ∇2u(x)(y − x) < 0.
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Note that the second order condition is a necessary condition for the quasiconcavity
in Lemma 2.3 but it is a necessary and sufficient condition for the strict quasiconcavity
inLemma2.4 (iv).We refer the reader to [42] and [43] formore details on quasiconcave
functions.

2.2 Viscosity solutions

Recall the definitions of upper and lower semicontinuous functions.

Definition 2.5 A function f : O → R is upper (resp. lower) semicontinuous if

lim sup
y→x
y∈O

f (y) ≤ f (x) (resp. lim inf
y→x

f (y) ≥ f (x))

for all x ∈ �.

Definition 2.6 Given a function f : O → R, the upper (resp. lower) semicontinuous
envelop of f is

f ∗(x) = lim sup
y→x
y∈O

f (y) (resp. f∗(x) = lim inf
y→x
y∈O

f (y)).

We present the definition of viscosity solutions of (2.1) given upper or lower semi-
continuous functions.

Definition 2.7 An upper semicontinuous (resp. lower semicontinuous) function u :
� → R is a viscosity subsolution (resp. supersolution) of (2.1) if for every x ∈ � and
every smooth test function ϕ ∈ C∞(Rd) such that u − ϕ has a local maximum at x ,

{
H∗(∇2ϕ,∇ϕ, u, x) ≤ 0. if x ∈ �

min
(
H∗(∇2ϕ,∇ϕ, u, x), u(x) − g(x)

) ≤ 0 if x ∈ ∂�

(respectively,

{
H∗(∇2ϕ,∇ϕ, u, x) ≥ 0) if x ∈ �

max
(
H∗(∇2ϕ,∇ϕ, u, x), u(x) − g(x)

) ≥ 0 if x ∈ ∂�)

where g : ∂� → R is continuous. If u is both a viscosity subsolution and a viscosity
supersolution, then we call u a viscosity solution of (2.1). We say that the boundary
condition in (2.1) hold in the weak viscosity sense.

We note that the upper and lower semicontinuous envelopes H∗ and H∗ are com-
puted with respect to all of the variables that H depends on. We refer the reader to
[44, 45] for more details on viscosity solutions. In particular, we treat the boundary
conditions in the viscosity sense, as in [44, Chapter 7].
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2.3 Monotone schemes

We provide a review of the definitions of monotone schemes used to approximate vis-
cosity solutions based on the Barles-Souganidis framework [12]. Our finite difference
schemes for (2.1) are presented in the form

{
Sh(uh, uh(x), x) = 0, for x ∈ Xn\�n,

uh(x) = g(x), for x ∈ �n,

where Xn ⊂ � is a set of points with spatial resolution h, �n ⊂ Xn is a set of
boundary nodes, uh : Xn → R is the numerical solution, and Sh is the scheme. The
first argument of Sh represents the dependence of the scheme on the values of uh
at neighboring points, while the second represents the dependence of the scheme on
the value of uh at the current point x . To ensure convergence, the Barles-Souganidis
framework provides necessary properties that the scheme must satisfy. In this context,
we review the definitions that are required for the convergence of the scheme.

Definition 2.8 A scheme Sh is monotone if for all t ∈ R, x ∈ Xn , and u, v : Xn → R

u ≤ v 	⇒ Sh(u, t, x) ≥ Sh(v, t, x).

Definition 2.9 A scheme Sh is consistent if for all x ∈ � and ϕ ∈ C∞(Rn)

lim sup
γ→0
h→0+
y→x

Sh(ϕ + γ, ϕ(y) + γ, y) ≤ H∗(∇2ϕ,∇ϕ, ϕ, x).

and

lim inf
γ→0
h→0+
y→x

Sh(ϕ + γ, ϕ(y) + γ, y) ≥ H∗(∇2ϕ,∇ϕ, ϕ, x).

Definition 2.10 A scheme Sh is stable if the solution of the scheme uh satisfies

sup
h>0

sup
x∈Xn

|uh(x)| ≤ C

for some positive constant C > 0.

Definition 2.11 The PDE (2.1) satisfies the strong uniqueness if u ≤ v on � for every
viscosity subsolution u and every viscosity supersolution v.

When the PDE satisfies the comparison principle, in the sense of strong uniqueness
in Definition 2.11, and the scheme satisfies monotonicity, consistency, and stability,
one can show that the solution of the scheme converges uniformly to a unique viscosity
solution based on Barles-Souganidis framework (refer to Theorem 3.8). We remark
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that the notion of strong uniqueness is different from a standard comparison principle
for viscosity sub and supersolutions due to how Definition 2.7 handles the boundary
conditions (which is often called boundary conditions in the viscosity sense, see [44,
Chapter 7]).

3 Numerical methods

In this section, we introduce our novel monotone numerical scheme for computing
quasiconcave viscosity solutions of Hamilton–Jacobi equations. Our scheme can be
applied on general point clouds of arbitrary dimensions, provided they satisfy some
reasonable properties. This allows the methods to be applied in graph settings, with
various graph structures such as ε-graphs or k-nearest neighbor graphs. Due to the
monotonicity of the scheme, the method enjoys strong stability and convergence guar-
antees.

3.1 Notation

Before proceeding, let us fix some notation. Let� ⊂ R
d be an open bounded domain.

Define a set of points

Xn = {x1, x2, · · · , xn} ⊂ �,

a set of boundary points

�n ⊂ Xn,

and a spatial resolution

h := max
x∈Xn

min
y∈Xn

|x − y|.

For each x ∈ Xn , we define a set of neighboring points Nh(x) ⊂ Xn , and we
assume there exists 0 < δ < R such that

Nh(x) ⊂ B(x, R)\B(x, δ) for all x ∈ Xn .

It will be important later on to take R, δ = O(h). Define a set of displacement vectors

Vh(x) = {y − x : y ∈ Nh(x)}

that denotes the vectors pointing from x to each neighbor, and the local directional
resolution at x ∈ Xn

dθ(x) = max|p|=1
min

q∈Vh(x)
w(p, q)
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where w(p, q) = arccos
(

p·q
|p||q|

)
. Define the global directional resolution

dθ := max
x∈Xn

dθ(x).

The following lemma describes the geometric properties of point clouds in R
d , and

will be used in the main theorems. The visual representations can be found in Fig. 2.

Lemma 3.1 Let 0 ≤ θ1 ≤ π and 0 ≤ θ2 ≤ π be nonnegative constants, and x, p, q
be unit vectors such that w(x, p) = θ1.

(i) If θ1 < θ2 and w(p, q) ≥ θ2, then

x · q ≤ cos(θ2 − θ1).

The equality is attained if and only if w(p, q) = θ2 and

p = x − (
sin θ1/ sin θ2

)
q

|x − (
sin θ1/ sin θ2

)
q| .

(ii) If θ1 > θ2 and w(p, q) ≤ θ2, then

cos(θ1 + θ2) ≤ x · q ≤ cos(θ1 − θ2).

The left equality is attained if and only if w(p, q) = θ2 and

p = q + (
sin θ2/ sin θ1

)
x

|q + (
sin θ2/ sin θ1

)
x | .

The right equality is attained if and only if w(p, q) = θ2 and

p = q − (
sin θ2/ sin θ1

)
x

|q − (
sin θ2/ sin θ1

)
x | .

Proof Assume θ1 < θ2 and w(p, q) ≥ θ2 and let λ be an arbitrary positive constant.
Then

p · (x − λq) ≤ |x − λq| =
√
1 + λ2 − 2λx · q. (3.1)

By the assumption, p · (x − λq) ≥ cos θ1 − λ cos θ2. Thus, by squaring both sides,
we get

cos2 θ1 + λ2 cos2 θ2 − 2λ cos θ1 cos θ2 ≤ 1 + λ2 − 2λx · q.

Using the equality cos2 θ + sin2 θ = 1,

2λx · q ≤ sin2 θ1 + λ2 sin2 θ2 + 2λ cos θ1 cos θ2
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= 2λ cos(θ2 − θ1) + (sin θ1 − λ sin θ2)
2.

Since λ is an arbitrary number, we may choose λ = sin θ1/ sin θ2. Thus,

x · q ≤ cos(θ2 − θ1).

From (3.1), the equality is attained if and only if w(p, q) = θ2 and p = x−λq
|x−λq| .

For the second part of the lemma, assume θ1 > θ2 and w(p, q) ≤ θ2 and let λ be
an arbitrary constant. Similar to the proof of the first part, consider

cos θ2 − λ cos θ1 ≤ p · (q − λx) ≤ |q − λx |

where the first inequality comes from the assumption and sgn is a sign function. By
squaring both sides and rearranging terms,

2λx · q ≤ sin2 θ2 + λ2 sin2 θ1 + 2λ cos θ1 cos θ2.

If λ > 0, then

2λx · q ≤ 2λ cos(θ1 − θ2) + (sin θ2 − λ sin θ1)
2.

By choosing λ = sin θ2/ sin θ1,

x · q ≤ cos(θ1 − θ2). (3.2)

If λ < 0, then

−2λx · q ≥ − sin2 θ2 − λ2 sin2 θ1 − 2λ cos θ1 cos θ2

= −2λ cos(θ1 + θ2) − (sin θ2 + λ sin θ1)
2.

By choosing λ = − sin θ2/ sin θ1,

x · q ≥ cos(θ1 + θ2). (3.3)

The equalities in (3.2) and (3.3) are attained if and only if w(p, q) = θ2 and p =
q−λx
|q−λx | . This concludes the proof. ��

3.2 Wide stencil schemes

The schemes we consider in this paper are wide stencil schemes, inspired by schemes
for degenerate elliptic equations such as the Monge–Ampère equation [20]. Consider
the first-order Hamilton–Jacobi equation of the form

H(∇u, u, x) = 0 in �.
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Fig. 2 Visual representations of Lemma 3.1

We recall (see [46]) that the notion of viscosity subsolution can be equivalently
expressed as

sup
p∈D−(u,x)

H∗(p, u, x) ≤ 0 in �

where the subdifferential set D− is defined as

D−(u, x) :=
{
p ∈ R

d : u(y) − u(x) ≤ p · (y − x) + o(|x − y|) as y → x
}
.

Similarly, the notion of viscosity supersolution can be expressed as

inf
p∈D+(u,x)

H∗(p, u, x) ≥ 0 in �

where the superdifferential set D+ is defined as

D+(u, x) :=
{
p ∈ R

d : u(y) − u(x) ≥ p · (y − x) + o(|x − y|) as y → x
}
.

When u is quasiconcave, so that the set

{y ∈ R
d : u(y) ≥ u(x)}

is convex, we can drop the o(|x − y|) term from the definition of the subdifferential,
and equivalently write

D−(u, x) =
{
p ∈ R

d : u(y) ≤ u(x) + p · (y − x) for y near x
}
.

Since we are only concerned with the direction of the gradient, and not the magnitude,
we can further focus our attention only on the sign of p · (y − x). This leads to the

123



1998 J. Calder, W. Lee

Fig. 3 a An example of a vector p belonging to the subdifferential P−
h (u, u(x), x) and b an illustration of

the set-valued monotonicity of P−
h with u ≤ v

following approximation of the subdifferential set on a general point cloud

P−
h (u, u(x), x) :=

{
p ∈ R

d : −p ∈ Vh(x), and

∀y ∈ Nh(x), p · (y − x) < 0 	⇒ u(y) ≤ u(x)
}
. (3.4)

We should explain the choice that −p ∈ Vh(x) was made so that for any p ∈
P−
h (u, u(x), x), we have x − p ∈ Xn , so that we can form a backward difference

quotient (which is upwind/montone). Notice that we do not intend for P−
h to exactly

approximate D− as h → 0, since the magnitude |p| will in general not converge to
|∇u(x)|. This is the reason for the alternative notation P−

h instead of, say, D−
h . Instead,

as we show below, the direction of p ∈ P−
h converges to the direction of the gradient

∇u(x) as h → 0.
The set-valued operator P−

h (u, u(x), x) is the collection of all displacement vectors
that support the convex super level set {u ≥ u(x)}. The displacement vector in the
set operator lies in the opposite direction of ∇u, that is the downwind direction. See
Fig. 3a for an illustration. We can also define an analogous approximation P+

h of the
superdifferential, but this is generally the empty set for quasiconcave functions (but
would be appropriate for quasiconvex functions).

This set-valued operator has many useful properties that allow us to easily construct
convergent monotone schemes for quasiconcave viscosity solutions. In what follows,
we present some properties of the operator and new monotone schemes based on this
operator.

3.3 Properties of a subdifferential set

Monotonicity requires the schemebe a decreasing function of uh(y) for all neighboring
grid points y ∈ Nh(x). If the scheme is also an increasing function of uh(x), then
the scheme is often called elliptic [23]. The terms monotone and upwind are used
interchangeably for first order equations, and refer to the same property.
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A key property of P−
h is the following monotonicity with respect to set inclusion,

which is immediate from the definition.

Proposition 3.2 For all t ∈ R, x ∈ Xn and u, v : Xn → R

u ≤ v 	⇒ P−
h (u, t, x) ⊃ P−

h (v, t, x). (3.5)

In words, if u(x) = t = v(x) and u ≤ v, then any halfspace supporting {v ≥
t} also supports {u ≥ t}. See Fig. 3b for an illustration. Let us write P−

h [u](x) =
P−
h (u, u(x), x) for simplicity.
Next, we present a theorem that establishes conditions under which the subdif-

ferential set is nonempty. It turns out that this requires strict quasiconcavity of the
test function ϕ. Without the strictness, one can choose a sufficiently flat function ϕ,
depending on the local point cloud structure, for which the subdifferential set becomes
empty.

Throughout this section, given x0 ∈ Xn , we will assume ϕ ∈ C∞(Rd) is a smooth
function for which there exists h0 > 0 such that

q · ∇ϕ(x) = 0 	⇒ q · ∇2ϕ(x)q < 0 and |∇ϕ(x)| > 0

for all x ∈ B(x0, h0). The first part is equivalent to ϕ being strictly quasiconcave by
Lemma 2.4. By defining a function

L(X , p) := sup
q·p=0
|q|=1

q · Xq, (3.6)

we can rewrite the assumption as

sup
x∈B(x0,h0)

L(∇2ϕ(x),∇ϕ(x)) < 0. (3.7)

Theorem 3.3 (Existence) Let x0 ∈ Xn and assume ϕ ∈ C∞(Rd) satisfies |∇ϕ(x0)| >

0 and (3.7). Denote by

A1 := −L(∇2ϕ(x0),∇ϕ(x0))

where L is defined in (3.6).
Then the subdifferential set Ph[ϕ](x0) is nonempty if dθ(x0) and δ satisfy

dθ(x0) ≤ A1δ

2|∇ϕ(x0)| + Cδ
(3.8)

where C is a positive constant depending on ϕ.

Proof By the definition of dθ , there exists −p ∈ Vh(x0) such that

w(∇ϕ(x0), p) ≤ dθ(x0).
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We want to show ϕ(x0 + q) ≤ ϕ(x0) for any q ∈ Vh(x0) such that w(p, q) >

π/2. Choose q ∈ Vh(x0) such that w(p, q) > π/2. By Lemma 3.1, we have
w(∇ϕ(x0), q) > π/2− dθ(x0). If w(∇ϕ(x0), q) > π/2, then ϕ(x0 + q) ≤ ϕ(x0) by
Lemma 2.4. Thus, assume

π/2 − dθ(x0) < w(∇ϕ(x0), q) ≤ π/2.

Decompose q such that

q = |q|
(
cos


r

|r | + sin

∇ϕ(x0)

|∇ϕ(x0)|
)

where r is an orthogonal vector to ∇ϕ(x0) and 
 = w(r , q) = π/2− w(∇ϕ(x0), q).
Using a Taylor expansion of ϕ,

ϕ(x0 + q)

≤ ϕ(x0) + |∇ϕ(x0)||q| sin dθ(x0) + 1

2
q · ∇2ϕ(x0)q

= ϕ(x0) + |∇ϕ(x0)||q| sin dθ(x0) + |q|2
2

(
cos2 


r

|r | · ∇2ϕ(x0)
r

|r |
+ sin2 


∇ϕ(x0)

|∇ϕ(x0)| · ∇2ϕ(x0)
∇ϕ(x0)

|∇ϕ(x0)| + 2 sin
 cos

∇ϕ(x0)

|∇ϕ(x0)| · ∇2ϕ(x0)
r

|r |
)

≤ ϕ(x0) + |∇ϕ(x0)||q| sin dθ(x0) + |q|2
2

(−A1 cos
2 
 + C1 sin

2 
 + 2C2 sin
)

where we denote

C1 = sup
x∈B(x0,h0)

∣∣∣∣ ∇ϕ(x)

|∇ϕ(x)| · ∇2ϕ(x)
∇ϕ(x)

|∇ϕ(x)|
∣∣∣∣ ,

C2 = sup
x∈B(x0,h0)
r ·∇ϕ(x)=0

∣∣∣∣ ∇ϕ(x0)

|∇ϕ(x0)| · ∇2ϕ(x0)
r

|r |
∣∣∣∣ .

(3.9)

Using cos2 
 + sin2 
 = 1 and 
 < dθ(x0),

≤ ϕ(x0) + |∇ϕ(x0)||q| sin dθ(x0) + |q|2
2

(−A1 + (A1 + C1 + 2C2) sin dθ(x0))

≤ ϕ(x0) + |q|2
2

((2|∇ϕ(x0)|
δ

+ C
)
dθ(x0) − A1

)

≤ ϕ(x0)

where C = A1 + C1 + 2C2 and the last inequality comes from (3.8). Thus, p ∈
P−
h [ϕ](x0). ��
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Theorem 3.3 gives conditions that guarantee the subdifferential set to be nonempty
on general point clouds in R

d . Note that ϕ needs to be strictly quasiconcave because
the constant A1 being strictly positive is crucial for the condition (3.8) to hold. If the
point cloud satisfies some form of symmetry inR2, then the set can be nonempty with
a quasiconcave ϕ.

Theorem 3.4 (Existence on symmetric stencils on R2) Let x0 ∈ Xn ⊂ R
2 and assume

ϕ ∈ C∞(R2) is quasiconcave and |∇ϕ(x0)| > 0.
Suppose Vh(x0) satisfies

(i) If p ∈ Vh(x0) then −p ∈ Vh(x0), and
(ii) If p ∈ Vh(x0) then there exists q ∈ Vh(x0) such that p · q = 0.

Then the subdifferential set P−
h [ϕ](x0) is nonempty.

Proof Choose −p∗ ∈ Vh(x0) such that

− p∗ = argmin
−p∈Vh(x0)

w(∇ϕ(x0), p). (3.10)

Note that w(∇ϕ(x0), p∗) ≤ dθ . We will show p∗ ∈ P−
h [ϕ](x0). Choose any q ∈

Vh(x0) such that w(p∗, q) > π/2. By Lemma 3.1, we have

∇ϕ(x0)

|∇ϕ(x0)| · q

|q| < cos
(π

2
− w(∇ϕ(x0), p

∗)
)

which follows thatw(∇ϕ(x0), q) > π/2−w(∇ϕ(x0), p∗). Supposew(∇ϕ(x0), q) ≤
π/2. Then there exists ε

such that 0 ≤ ε < w(∇ϕ(x0), p∗) and

w(∇ϕ(x0), q) = π

2
− ε.

Then, by the symmetry of Nh(x0), there exists r ∈ Vh(x0) such that w(q, r) = π/2
and by Lemma 3.1, r also satisfies

w(∇ϕ(x0), r) = ε.

Thus, w(∇ϕ(x0), r) < w(∇ϕ(x0), p∗), which is a contradiction to the definition
of p∗. Thus, q satisfies w(∇ϕ(x0), q) > π/2. Since ϕ is quasiconcave, we have
ϕ(x0 + q) ≤ ϕ(x0). Thus, p∗ ∈ P−

h [ϕ](x0). ��
Coming back to the general unstructured point cloud setting in R

d , we will show
that the subdifferential set P−

h [ϕ](x0) converges to the direction of ∇ϕ(x0) in a sense
that

lim
h→0

min
p∈P−

h [ϕ](x0)
p

|p| · ∇ϕ(x0)

|∇ϕ(x0)| = 1.
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Theorem 3.5 Let x0 ∈ Xn and ϕ ∈ C∞(Rd) be such that |∇ϕ(x0)| > 0. Denote by

A2 := max
r ·∇ϕ(x0)=0

− r

|r | · ∇2ϕ(x0)
r

|r | .

If p ∈ P−
h [ϕ](x0), then

w(p,∇ϕ(x0)) ≤ A2h

2|∇ϕ(x0)| − h(C1 + 2C2)
+ 2dθ (3.11)

where C1 and C2 are from (3.9).

Proof For simplicity, denote by 
 := A2
2|∇ϕ(x0)|/h−C1−2C2

. Suppose, on the contrary,

there exists p ∈ P−
h [ϕ](x0) such that

w(p,∇ϕ(x0)) = 
 + 2dθ + ε

for some constant ε > 0. By Lemma 3.1, there exists a vector q ∈ R
d such that

w(p, q) = π/2 + dθ + ε and

∇ϕ(x0)

|∇ϕ(x0)| · q

|q| = sin(
 + dθ).

Thus,

w(q,∇ϕ(x0)) = π

2
− 
 − dθ.

By the definition of dθ , there exists q ′ ∈ Vh(x0) such that w(q, q ′) < dθ . By
Lemma 3.1,

p

|p| · q ′

|q ′| ≤ cos
(π

2
+ ε

)
= − sin ε < 0 	⇒ w(p, q ′) >

π

2
.

Again, by Lemma 3.1, we have

∇ϕ(x0)

|∇ϕ(x0)| · q ′

|q ′| > cos
(π

2
− 


)
= sin
.

Using a Taylor expansion on ϕ,

ϕ(x0 + q ′) > ϕ(x0) + |∇ϕ(x0)||q ′| sin
 + 1

2
q ′ · ∇2ϕ(x0)q

′.

Similar to the proof in Theorem 3.3, we may use the orthogonal decomposition of q ′.
This leads to

ϕ(x0 + q ′) > ϕ(x0) + |∇ϕ(x0)||q ′| sin
 + |q ′|2
2

(
−A2 cos

2 
 − C1 sin
2 
 − 2C2 sin


)
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≥ ϕ(x0) + |∇ϕ(x0)||q ′| sin
 + |q ′|2
2

(−A2 − (C1 + 2C2) sin
)

≥ ϕ(x0) + |q ′|2
2

((
2|∇ϕ(x0)|

h
− C1 − 2C2

)
sin
 − A2

)

= ϕ(x0).

Since w(p, q ′) > π/2 and ϕ(x0 + q ′) > ϕ(x0), this is a contradiction to p ∈
P−
h [ϕ](x0). ��

3.4 Monotone and consistent scheme

In this section, we use the subdifferential set to construct monotone and consistent
schemes for Hamilton–Jacobi equations with quasiconcave solutions. Since we are
only interested in viscosity solutions that are quasiconcave, we consider the following
operator

H̃(∇2u,∇u, u, x) :=
{
H(∇2u,∇u, u, x) if L(∇2u(x),∇u(x)) ≤ 0,

−∞ otherwise.
(3.12)

A similar operator is used in [9]. Since H and L are elliptic, H̃ is also elliptic, i.e. for
any p ∈ R

d , z ∈ R, x ∈ �, and X ,Y ∈ R
d×d
sym we have

X ≤ Y 	⇒ H̃(X , p, z, x) ≥ H̃(Y , p, z, x).

Recall that the condition L(∇2u(x),∇u(x)) ≤ 0 is the second-order necessary con-
dition for the quasiconcavity from Lemma 2.2. Thus, if u is a quasiconcave solution
of H then the subdifferential set is nonempty for all x ∈ � and

H̃(∇2u,∇u, u, x) = H(∇2u,∇u, u, x) = 0.

Throughout the section, we will assume that

dθ < h1+α (3.13)

for some α > 0. Given a strictly quasiconcave function, the inequality in Theorem 3.3
is satisfied for all x ∈ Xn by choosing a sufficiently small h. Thus, the subdifferential
set is nonempty in Xn .

We propose a new numerical scheme Sh using the subdifferential operator,

Sh(u, u(x), x) :=
{
maxp∈Ph [u](x) Fh(p, u, u(x), x) if P−

h [u](x) �= ∅,

−∞ otherwise
(3.14)

where Fh = Fh(p, u, t, x) is a function that satisfies
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(F1) Fh is monotone,
(F2) Fh is continuous in u and t ,
(F3) given x ∈ �, p ∈ R

d , X ∈ R
d×d
sym and u ∈ C∞(Rd), Fh approximates the

function H(X , p, u, x) in (3.12) such that for all

|Fh(p, u, u(x), x) − H(X , p, u, x)| ≤ C(hm1 + dθm2), m1,m2 ≥ 1.

The following lemmas shows the monotonicity and consistency of the proposed
scheme.

Proposition 3.6 (Monotonicity) The scheme (3.14) is monotone.

Proof Letu, v : � → R
d be functions such thatu ≤ v near x . Suppose P−

h (v, v(x), x)
is nonempty. By Proposition 3.2 and (F1), we have

Sh(u, u(x), x) = max
p∈Ph(u,u(x),x)

Fh(p, u, u(x), x)

≥ max
p∈Ph(v,u(x),x)

Fh(p, v, u(x), x) = Sh(v, u(x), x).

If P−
h (v, v(x), x) is empty, then

Sh(u, u(x), x) ≥ −∞ = Sh(v, u(x), x).

Thus, the scheme is monotone. ��

Proposition 3.7 (Consistency) Suppose the function H(X , p, ϕ, x) in (3.12) satisfies

|H(X , p, ϕ, x) − H(Y , q, ϕ, y)| ≤ C

(∣∣∣∣ p

|p| − q

|q|
∣∣∣∣ + |x − y|

)
(3.15)

for all X ,Y ∈ R
d×d
sym , p, q ∈ R

d , x, y ∈ �, and C is a constant depending on ϕ and

�. Given x ∈ �, assume (3.13) and ϕ ∈ C∞(Rd) satisfies |∇ϕ(x)| > 0.

(i) If L(∇2ϕ(x),∇ϕ(x)) ≤ 0, the scheme satisfies

lim sup
h→0+
γ→0
y→x

Sh(ϕ + γ, ϕ(y) + γ, y) ≤ H̃∗(∇2ϕ,∇ϕ, ϕ, x).

(ii) If L(∇2ϕ(x),∇ϕ(x)) > 0, the scheme satisfies

lim inf
h→0+
γ→0
y→x

Sh(ϕ + γ, ϕ(y) + γ, y) ≥ H̃∗(∇2ϕ,∇ϕ, ϕ, x).
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Proof We prove the first part of the proposition. Let x ∈ � and assume
L(∇2ϕ(x),∇ϕ(x)) ≤ 0. Choose ε > 0 and define ϕε a perturbation of ϕ, such
that

ϕε(y) = ϕ(y) − ε

2
|y − x |2.

Then L(∇2ϕε(x),∇ϕε(x)) < 0. Suppose that ϕε satisfies

lim
h→0
γ→0
y→x

Sh(ϕε + γ, ϕε(y) + γ, y) = H(∇2ϕε,∇ϕε, ϕε, x). (3.16)

By the definition of the operator,

H̃(∇2ϕε,∇ϕε, ϕε, x) = H(∇2ϕε,∇ϕε, ϕε, x) = H(∇2ϕ,∇ϕ, ϕ, x)

= H̃(∇2ϕ,∇ϕ, ϕ, x).

Thus, by the monotonicity of the scheme,

lim sup
h→0
γ→0
y→x

Sh(ϕ, ϕ(y), y) ≤ lim sup
h→0
γ→0
y→x

Sh(ϕε + γ, ϕε(y) + γ, y) ≤ H̃∗(∇2ϕ,∇ϕ, ϕ, x).

Thus, (i) is proven if (3.16) is shown.
Let us show (3.16). From the assumption (3.13), there exists h0 such that the

inequality (3.8) is satisfied for all h < h0. Furthermore, we may assume h0 is small
enough that L(∇2ϕε(y),∇ϕε(y)) < 0 for all y ∈ B(x, h0). Choose h < h0, y ∈ Xn

such that |x − y| < h, and γ > 0. Denote by p∗ := argmaxp∈Ph [ϕ](x) Fh(p, ϕε +
γ, ϕε(y) + γ, y). Then

∣∣∣Fh(p∗, ϕε + γ, ϕε(y) + γ, y) − H(∇2ϕε,∇ϕε, ϕε, x)
∣∣∣

≤ ∣∣Fh(p∗, ϕε + γ, ϕε(y) + γ, y) − Fh(p
∗, ϕε, ϕε(y), y)

∣∣
+

∣∣∣Fh(p∗, ϕε, ϕε(y), y) − H(∇2ϕε,∇ϕε, ϕε, x)
∣∣∣ .

By (F2), the first term converges to 0 as γ → 0. The second term can be bounded by

≤
∣∣∣Fh(p∗, ϕε, ϕε(y), y) − H(∇2ϕε, p

∗, ϕε, y)
∣∣∣

+
∣∣∣H(∇2ϕε, p

∗, ϕε, y) − H(∇2ϕε,∇ϕε, ϕε, x)
∣∣∣

≤ C(hm1 + dθm2) + C

(∣∣∣∣ p∗

|p∗| − ∇ϕε(x)

|∇ϕε(x)|
∣∣∣∣ + |x − y|

)
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where the last inequality uses (F3) and (3.15). The second term in the last line can be
bounded by

≤ C

(∣∣∣∣ p∗

|p∗| − ∇ϕε(y)

|∇ϕε(y)|
∣∣∣∣ +

∣∣∣∣ ∇ϕε(y)

|∇ϕε(y)| − ∇ϕε(x)

|∇ϕε(x)|
∣∣∣∣ + |x − y|

)
.

By Theorem 3.5,

∣∣∣∣ p∗

|p∗| − ∇ϕε(y)

|∇ϕε(y)|
∣∣∣∣ ≤ C(h + dθ)

and since ϕε ∈ C∞(Rd),

∣∣∣∣ ∇ϕε(y)

|∇ϕε(y)| − ∇ϕε(x)

|∇ϕε(x)|
∣∣∣∣ ≤

∣∣∣∣ ∇ϕε(y)

|∇ϕε(y)| − ∇ϕε(x)

|∇ϕε(y)|
∣∣∣∣ +

∣∣∣∣ ∇ϕε(x)

|∇ϕε(y)| − ∇ϕε(x)

|∇ϕε(x)|
∣∣∣∣

≤ maxz∈B(x,h) |∇2ϕε(z)|
minz∈B(x,h) |∇ϕε(z)| |x − y| ≤ Ch.

This proves (3.16), and thus proves the first part of the proposition.
Next, we prove the second part of the proposition. Since ϕ is smooth and
L(∇2ϕ(x),∇ϕ(x)) > 0, there exists h0 such that L(∇2ϕ(y),∇ϕ(y)) > 0 for
all y ∈ B(x, h0). Thus, for any sequence yk → x , there exists K such that
H̃(∇2ϕ,∇ϕ, ϕ, yk) = −∞ for all k > K . Thus,

lim infh→0+
γ→0
y→x

Sh(ϕ + γ, ϕ(y) + γ, y) ≥ −∞

= lim infk→∞ H̃(∇2ϕ,∇ϕ, ϕ, yk) ≥ H̃∗(∇2ϕ,∇ϕ, ϕ, x)

which proves the proposition. ��
Finally, we show the scheme Sh is convergent.

Theorem 3.8 Suppose the assumption (3.13) and the stronguniqueness property (2.11)
hold. Suppose u is the unique quasiconcave viscosity solution of the PDE

{
H(∇2u,∇u, u, x) = 0 in �

u = g on ∂�
(3.17)

where g : ∂� → R is a continuous function.
Then the numerical solutions uh of the scheme Sh converges uniformly to u on �.

Proof Denote byXn(h) and �n(h) the set of points in � and the set of boundary points,
respectively, with the number of points n(h) depending on the spatial resolution h.
Let u, u : � → R be defined by

u(x) := lim sup
Xn(h)�y→x

h→0

uh(y) and u(x) := lim inf
Xn(h)�y→x

h→0

uh(y).
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We claim that u and u are viscosity subsolution and supersolution of (3.17), respec-
tively. First, let x0 ∈ � and ϕ ∈ C∞(Rd) be such that u−ϕ has a local minimum at x0.
Without the loss of generality, we can replace ϕ by ϕ(x)−ϕ(x0)+u(x0)−K |x−x0|2.
By choosing K large enough ϕ satisfies the quasiconcavity assumption (3.7), and there
exists ε > 0 such that

u(x) − ϕ(x) > 0 = u(x0) − ϕ(x0) for all x ∈ B(x0, ε) ∩ �.

There exist sequences hk → 0 and yk → x0 where uhk −ϕ attains the local minimum
at yk ∈ B(x0, ε)∩Xn(hk ) for each k. Denote by γk := uhk (yk)−ϕ(yk). Then we have
γk → 0 and uhk (x) − ϕ(x) ≥ γk for all x ∈ B(x0, ε) ∩ Xn(hk). By the definition of
uh and the monotonicity of Sh ,

0 = Sh(uhk , uhk (yk), yk) ≤ Sh(ϕ + γk, ϕ(yk) + γk, yk). (3.18)

By the consistency of Sh ,

0 ≤ lim sup
k

Sh(ϕ + γk, ϕ(yk) + γk, yk) ≤ H̃∗(∇2ϕ(x0),∇ϕ(x0), ϕ(x0), x0).

If x0 ∈ ∂�, then we can arrange it so that either yk ∈ �n(hk) or yk ∈ Xn(hk)\�n(hk) for
all k. In the first case, we have

u(x0) = lim
hk→0+ uhk (yk) ≥ g(x0),

due to the continuity of g. In the second case, by the same argument as above, (3.18)
holds. Thus, u is a viscosity supersolution of (3.17).

The proof of u being a viscosity subsolution of (3.17) is similar to the above proof.
The only change is that given a smooth test function ϕ ∈ C∞(Rd) such that u−ϕ has
a local maximum at x0, we add a quadratic term to ϕ so that L(∇2ϕ(x0),∇ϕ(x0)) > 0
and x0 is a strict local maximum point.

By definitions, u ≤ u on �, and by the strong uniqueness property, u ≥ u on �.
Thus, we have u ≡ u, and we conclude uh converges uniformly to the unique viscosity
solution of (3.17). ��

3.5 Iterative scheme

To solve the global scheme (Sh), we propose an implicit iterative method. Given point
clouds Xn , the implicit iteration can be formulated by solving

Sh(u
n
h, u

n+1
h (x), x) = 0 for every x ∈ Xn

starting from some initial guess u0h ∈ Mh . Using the monotonicity of the scheme
un+1 can be computed through bisection methods. Since the scheme is monotone,
homogeneous (for mean curvature motion), and satisfies a maximum principle, it is
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possible to show that the resulting solution is within O(h) of the exact solution of the
scheme. The alogrithm is displayed in Algorithm 1. In the algorithm, the error of u is
defined by

error = 1

|Xn|
∑
x∈Xn

|Sh(u, u(x), x)|

where |Xn| denotes the total number of points in Xn .

Algorithm 1 Implicit iterative method
Require: A point cloud Xn and a function Fh(p, u, t, x) in (3.14).
Ensure: Solution of the scheme uh
1: while error > tolerance do
2: for x ∈ Xn do
3: Use bisection methods to compute un+1(x) from t �→ Sh(un , t, x).
4: end for
5: end while

In the numerical experiments described in Sect. 5, we initialize u(0) using the computed
solution on a coarser graph. Specifically,we compute the solution on a N

2 × N
2 Cartesian

grid and use it as an initial guess function to compute the solution on an N ×N grid. In
practice, this initialization significantly accelerates the convergence of the algorithm
compared to setting u(0) ≡ 0. We believe that implementing multigrid-type methods
can further improve the algorithm’s performance, which we plan to explore in future
projects.

4 Applications

In this section, we will construct the monotone convergent schemes for the viscosity
solutions of the levelset convex geometric PDEs. In particular, we construct monotone
schemes for the Tukey depth eikonal equation in (1.1),

|∇u(x)| =
∫

(y−x)·∇u(x)=0

ρ(y) dS(y) in �,

the mean curvature motion PDE
{

|∇u|κ = f in �

u = 0 on ∂�,
(4.1)

and the curvature flow equation

{
|∇u|κα+ = f in �

u = 0 on ∂�
(4.2)
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for α ∈ (0, 1] depending the dimension of the domain �.

4.1 Tukey depth

From (3.12), define

H(p, u, x) = p

|p| · ∇u(x) −
∫

(y−x)·p=0

ρ(y) dS(y) (4.3)

where ρ is a nonnegative density. In order to establish a monotone convergent scheme
for the Tukey depth eikonal equation (1.1), the task involves demonstrating that H
satisfies the Lipschitz condition stated in Proposition 3.7 and defining a function Fh
that fulfills the requirements outlined in assumptions (F1), (F2), and (F3). Then we
can easily construct monotone and consistent schemes Sh in (3.14).

To show the nonlocal integral term within the PDE satisfies the Lipschitz condition
stated in Proposition 3.7, we assume the data density ρ satisfies the same regular-
ity condition detailed in [35], which established the existence of a unique viscosity
solution of the Tukey depth eikonal equation.

Lemma 4.1 Suppose a nonnegative density ρ is Lipschitz in an open and bounded
support S ⊂ �. Given ϕ ∈ C∞(Rd), the function H in (4.3) satisfies

|H(p, ϕ, x) − H(q, ϕ, y)| ≤ C

(∣∣∣∣ p

|p| − q

|q|
∣∣∣∣ + |x − y|

)

for all x, y ∈ � and p, q ∈ R
d , and C is a constant depending on ρ and �.

Proof Define

H1(p, u, x) = p

|p| · ∇u(x)

H2(p, u, x) =
∫

(y−x)·p=0

ρ(y) dS(y).

First, we will show H1 is Lipschitz. Choose x ∈ � and p, q ∈ R
d . Then

|H1(p, ϕ, x) − H1(q, ϕ, x)| ≤
∣∣∣∣ p

|p| − q

|q|
∣∣∣∣max
z∈�

|∇ϕ(z)|.

Choose x, y ∈ � and p ∈ R
d . Then

|H1(p, ϕ, x) − H1(p, ϕ, y)| ≤ |∇ϕ(x) − ∇ϕ(y)| ≤ |x − y|max
z∈�

|∇2ϕ(z)|.

Thus, H1 satisfies (3.15).
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To show H2 is Lipschitz, first fix p ∈ R
d . For all x, y ∈ �,

|H2(p, u, x) − H2(p, u, y)| =

∣∣∣∣∣∣∣
∫

(z−y)·p=0

ρ(z + (x − y)) dS(z) −
∫

(z−y)·p=0

ρ(z) dS(z)

∣∣∣∣∣∣∣
≤

∫

(z−y)·p=0

|ρ(z + (x − y)) − ρ(z)| dS(z)

≤ C |x − y|
∫

(z−y)·p=0

1�(z) dS(z)

≤ C |x − y|

where the second ineqaulity uses ρ being Lipschitz and 1� is an indicator function on
� and C is a constant depending on ρ and �.

Next, we fix x ∈ �. Choose any p, q ∈ R
d and define p′ = p⊥

|p⊥| and q ′ = q⊥
|q⊥| .

Then, using the change of variables,

|H2(p, u, x) − H2(q, u, x)| =
∣∣∣∣∣∣

∞∫

−∞
ρ(x + p′t) dt −

∞∫

−∞
ρ(x + q ′t) dt

∣∣∣∣∣∣

≤
∞∫

−∞

∣∣ρ(x + p′t) − ρ(x + q ′t)
∣∣ dt

≤ C |p′ − q ′|
∞∫

−∞
t1�(t) dt

≤ C |p′ − q ′| = C

∣∣∣∣ p

|p| − q

|q|
∣∣∣∣ .

where the second inequality use ρ being Lipschitz. Again, C is a constant depending
on ρ and �. This proves the lemma. ��

Note that the condition stated in Lemma 4.1 requires ρ to be Lipschitz continuous
within an open and bounded support in the domain. However, it is worth noting that this
condition can be relaxed to some extent. In Sect. 5.3, we illustrate, through numerical
examples, that the proposed numerical scheme is capable of approximating the solution
when the density ρ is not Lipschitz in �.
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4.2 Curvature motion

We present our monotone schemes in the simple setting of curvature motion of a
convex curve in the plane. This is described by the eikonal equation

{
|∇u|κ = 1 in �

u = 0 on ∂�,
(4.4)

where � ⊂ R
2 is a convex and bounded set, ∂� is the initial curve, and κ(x) is

the curvature of the level set of u passing through x , which is given by κ(x) =
−div(∇u/|∇u|). In this setting, the level sets {u = t} evolve with normal velocity
v = κ . Since the initial curve ∂� is convex, all the super-level sets {u ≥ t} of u will
be convex, hence u is quasiconcave.

The eikonal equation (4.4) has a particularly simple form, since we can formally
expand κ to find

−uηη = |∇u|κ = 1, (4.5)

where η = ∇u⊥
|∇u| is a unit vector orthogonal to ∇u, and uηη = η · ∇2u η. Hence, the

problem boils down to constructing a monotone scheme for the pure second derivative
uηη. If the direction η in (4.5) was fixed and did not depend on ∇u, then the problem
would be simple. The difficulty is that η depends on ∇u.

We can directly apply our subdifferential P−
h [u](x) in this setting. For p ∈ Vh(x)

we define p⊥ := (−p2, p1). The vector p⊥ plays the role of η from (4.5).2 Our
scheme for (4.4) is

max
p∈P−

h [u](x)
−�h

p⊥ p⊥uh(x) = 1 for x ∈ Xn, (4.6)

where �h
qq is defined as

�h
qqu(x) := u(x + q) − 2u(x) + u(x − q)

|q|2

The main idea is that we replaced the selection of the direction η = ∇u⊥ with the
maximum over the subdifferential P−

h [u](x). It is easy to see that for p ∈ Vh(x) the
negative of the second order finite difference, i.e., −�h

qq is a monotone scheme, and
so it follows from Proposition 3.2 that (4.6) is monotone.

The schemes we consider here are wide stencil schemes, inspired by schemes for
degenerate elliptic equations such as the Monge–Ampère equation [20]. In particular,
we take the stencil Vh to be independent of x . See Fig. 4 for a depiction of the direction
set Vh for the standard 9 and 25 point stencils.

2 We assume our stencil Nh(x) is chosen symmetrically, so that p ∈ Vh(x) if and only if p⊥ ∈ Vh(x).
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Fig. 4 Depiction of the available directions Vh in the 9 and 25 point stencils

Remark 4.2 We can easily extend the scheme to motion by a power α ∈ (0, 1] of mean
curvature:

{
|∇u|κα+ = f in �

u = 0 on ∂�.
(4.7)

The reformulated equation corresponding to (4.5) becomes

|∇u|1−α(−uηη)
α+ = f in �

and the corresponding scheme is

max
p∈P−

h [u](x)
|∇pu(x)|1−α(−�p⊥ p⊥u(x))α+ = f (x) for x ∈ Xn, (4.8)

where ∇pu is any monotone discretization gradient, in this case

∇pu(x) := u(x) − u(x − p)

|p| .

Remark 4.3 We can furthermore extend the scheme to certain functions of mean cur-
vature, namely

{
|∇u|g(κ+) = f in �

u = 0 on ∂�,
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where g : [0,∞) → [0,∞) is increasing and satisfies

g′(s) ≤ s−1g(s) for all s > 0. (4.9)

The corresponding scheme is

|∇pu(x)| max
p∈P−

h [u](x)
g

(
(−�p⊥ p⊥u(x))+

|∇pu(x)|
)

= f (x) for x ∈ Xn .

The condition (4.9) ensures that s �→ sg(t/s) is increasing for all t ≥ 0, so that the
scheme is monotone. This requirement is satisfied by g(s) = sα for 0 < α ≤ 1, but
also by other monotone functions, such as

g(s) =
(
log

(
1

s
+ e

))−1

.

We now establish consistency of the above schemes.

Lemma 4.4 Define a function

H(p, ϕ, x) = p · ∇2ϕ(x) p

|p|2 .

Then, given ϕ ∈ C∞(Rd), the function H satisfies the Lipschitz condition stated in
Proposition 3.7.

Proof Choose x ∈ � and p, q ∈ R
d . Then

|H(p, ϕ, x) − H(q, ϕ, x)|

≤
∣∣∣∣ p · ∇2ϕ(x) p

|p|2 − p · ∇2ϕ(x) q

|p||q|
∣∣∣∣ +

∣∣∣∣ p · ∇2ϕ(x) q

|p||q| − q · ∇2ϕ(x) q

|q|2
∣∣∣∣

≤ 2

∣∣∣∣ p

|p| − q

|q|
∣∣∣∣max
z∈�

|∇2ϕ(z)|.

Choose x, y ∈ � and p ∈ R
d . Then

|H(p, ϕ, x) − H(p, ϕ, y)| ≤
∣∣∣∣∣
p · (∇2ϕ(x) − ∇2ϕ(y)

)
p

|p|2
∣∣∣∣∣ ≤ |x − y|max

z∈�

|∇3ϕ(z)|.

This concludes the lemma. ��
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4.3 Extensions to higher dimensions

We briefly discuss here how the schemes naturally extend to higher dimensions. Con-
sider d = 3. We can formulate the scheme to solve motion by mean curvature, Gauss
curvature, or more general functions of the principal curvatures. For mean curvature,
we wish to solve

{
|∇u|κM = f in �

u = 0 on ∂�,

where κM (x) is the mean curvature of the level surface of u passing through x , given
by

κM (x) = −div

( ∇u

|∇u|
)

= uξξ − �u

|∇u| ,

where ξ = ∇u/|∇u|. If η1, η2 is any orthonormal basis for ξ⊥, we can write

�u = uξξ + uη1η1 + uη2η2 ,

and therefore we can write κM as

κM (x) = −uη1η1 + uη2η2

|∇u| . (4.10)

This allows us to rewrite the equation as

−(uη1η1 + uη2η2) = f in �,

and the corresponding scheme would be

max
p∈P−

h [u](x)
(−�v1(p)v1(p)u(x) − �v2(p)v2(p)u(x)) = f (x) for x ∈ Xh,

where v1(p), v2(p) ∈ Vh are an orthonormal basis for p⊥. The Laplacian is rotation-
ally invariant, so the choice of v1(p), and v2(p) is not important.

The affine flow in higher dimensions corresponds to motion of a surface with

velocity proportional to κ
1

d+1
G where κG denotes Gauss curvature. Since d = 3, we

wish to solve

{
|∇u|κ

1
4
G = f in �

u = 0 on ∂�.
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We can write Gauss curvature in the level set formulation as

κG = ∇u · cof(−∇2u)∇u

|∇u|4 .

If O is any orthogonal transformation such that O∇u(x) = |∇u(x)|e3, then we have

κG = O∇u · cof(−O∇2uOT )O∇u〉
|∇u|4 = det([−O∇2uOT ]33)

|∇u|2 ,

where [A]33 denotes the (3,3)-minor of the matrix A. This is similar to the Monge–
Ampère equation restricted to the space orthogonal to ∇u. We can use Hadamard’s
determinant identity, as was used for Monge–Ampère in [47], to write

κG = min{v1,v2}
(−uv1v2)+(−uv2v2)+

|∇u|2 ,

where the minimum is over all orthonormal bases {v1, v2} of∇u⊥. The corresponding
monotone discretization scheme is

max
p∈P−

h [u](x)
|∇pu| 12 min

{v1,v2}∈p⊥
(−�v1v1u)

1
4+(−�v2v2u)

1
4+ = f (x) for x ∈ Xh,

where p⊥ denotes the collection of orthonormal bases of the space orthogonal to p
consisting of vectors v1, v2 ∈ Vh .

5 Numerical implementation and experiments

In this section, we present numerical results using the proposed wide stencil finite dif-
ference scheme (Algorithm 1) to solve Hamilton–Jacobi equations in various settings.
Throughout this section we will assume that the domain� = [0, 1]d is the unit square
in R

d . The numerical simulations in this section were coded in C++ and Python and
were run on a 2019 MacBook Pro with a 2.6 GHz 6-core processor and 16 GB RAM.
The first set of experiments (Sect. 5.1) computes the solutions of a simple eikonal
equation on unstructured point clouds in R

2 and R
3 with various boundary condi-

tions. The second set of experiments (Sect. 5.2) computes the solution of the affine
flow on regular rectangular grids inR2 with various boundary conditions. The third set
of experiments (Sect. 5.3) computes the solutions of the Tukey depth eikonal equation
on unstructured point clouds. Lastly, in the third set of experiments (Sect. 5.4), we use
the proposed algorithm to compute the Tukey depth measure on more complex dataset
such as MNIST [48] and Fasion-MNIST dataset [49]. The Python source code and
simulation environment for reproducing our results is available online.3

3 Source code: https://github.com/wonjunee/monotone-scheme.
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Fig. 5 The indicator function f with three different shapes for the set E in (5.1). Black pixels and bright
pixels indicate 0 and 1, respectively

5.1 Eikonal equation

In this set of experiments, we use Algorithm 1 to solve the simple eikonal equation on
unstructured point clouds in R

d .

{
|∇u| = f in �

u = 0 on ∂�,
(5.1)

where the function f is an indicator function on a set E ⊂ � such that f = 1 on E
and 0 otherwise. We consider three different shapes for E : (1) the box, (2) a rotated
ellipse, and (3) two disjoint balls (Fig. 5).

Let n be the number of points in the unstructured point cloud Xn ⊂ �. We define
the set of neighbors Nh(x) for each x ∈ Xn by constructing k-Euclidean distance
nearest neighbor (kNN) graphs from Xn with k = 20 (where k represents the number
of neighbors). The numerical scheme to solve the PDE is

Sh(u, u(x), x) =
⎧⎨
⎩

max
p∈P−

h [u](x)
∇pu(x) − f (x) if P−

h [u](x) �= ∅
−∞ otherwise

which is proven to be monotone and consistent in the preceding sections. Given an
initial guess u(0) ≡ 0, use Algorithm 1 to iterate the algorithm to compute the solution
of (5.1) on Xn until the convergence. The experiment was repeated for two different
dimensions (d = 2, 3) and different number of points (n = 1000, 2000, · · · , 16000).
The computation time and the total number of iterations to compute the solutions
are displayed in Table 1. Figure6 shows the computed solutions on R

2 with 8000
data points. Note that the algorithm converged fastest on the two balls domain and
slowest on the square domain, showing that the rate of convergence depends on the
convexity of the domain. This is due to the fact that the scheme Sh tests whether the
subdifferential set is empty or not which is equivalent to testing whether the function is
locally strictly quasiconcave at x . In a square domain, the point x near the flat surface
of the square requires a stricter condition on the angular resolution dθ(x) so that the
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Table 1 The number of iterations and computation time (Sect. 5.1)

Square Ellipse Two balls

d n iterations Time iterations Time iterations Time

2 1000 28 0.25s 23 0.25s 19 0.17s

2000 38 0.66s 26 0.47s 24 0.40s

4000 49 1.61s 37 1.31s 33 1.18s

8000 70 4.92s 47 3.30s 39 2.39s

3 4000 46 1.57s 29 1.00s 23 0.81s

8000 62 3.93s 29 1.90s 30 2.04s

16000 72 9.21s 44 5.88s 20 2.70s

Fig. 6 Computed solutions of the eikonal Eq. (5.1) on an unstructured point cloud in R
2 with 8000 data

points. The first image shows the result from a square domain, the second image shows from an ellipse
domain, and the last image shows from two balls domain

subdifferential set is nonempty. The emptiness of subdifferential sets near flat surface
could slow down the convergence of the algorithm. We note that there are many faster
numerical methods for solving the eikonal equation, such as fast marching [38, 50]
and fast sweeping [51]. The point of these experiments is just to illustrate our methods
and their computational complexity on simple equations.

5.2 Curvature motion PDEs

In this set of experiments, we use Algorithm 1 to solve curvature motion PDEs on
2D and 3D Cartesian grids. First, we consider the affine flows in the 2D domain
� = [0, 1]2

{
|∇u|κ1/3

+ = f in �

u = 0 on ∂�,
(5.2)

which corresponds to (4.7) with α = 1/3. The function f is chosen as the indicator
function of the square, ellipse, and two balls domains, as in the preceding experiment.
As it was noted in Sect. 4.2, the wide stencil scheme for the affine flow requires
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Fig. 7 Computed solutions of the affine flows (5.2) with α = 1/3 on 128 × 128 grid with 7 × 7 stencils.
Figures7a and b show two different solutions given different initial guess function u(0)

Table 2 Computation time for affine flows on various grids with 7 × 7 stencils

Domain Error tolerance Grid size

32 × 32 64 × 64 128 × 128

Square 5 × 10−3 0.19 s 1.41 s 15.45 s

Ellipse 3 × 10−3 0.14 s 1.10 s 7.26 s

Two balls (u(0) ≡ 0) 3 × 10−3 0.10 s 0.54 s 3.87 s

Two balls (u(0) ≡ 1) 3 × 10−3 0.66 s 1.33 s 10.62 s

symmetry of the point cloud. Thus, we compute the solutions on a Cartesian grid
with a 7 × 7 = 49 point stencil. We considered 3 different shapes as in the preceding
experiment: (1) the box, (2) a rotated ellipse, and (3) two disjoint balls.

We employed the convergent numerical scheme Sh in (4.8) to compute the viscosity
solutions of (5.2) on grids of dimensions 32×32, 64×64, and 128×128. The contour
plots of the solutions for the box, the ellipse, and two balls are shown in Fig. 7. It should
be noted that the solution of affine flows is unique only when f > 0 and is not unique
when f ≥ 0. We provide examples of nonunique solutions in Fig. 7a and b, where
Fig. 7a shows the computed solution with the initial guess function u(0) ≡ 0 and
Fig. 7b shows the computed solution with u(0) ≡ 1. The quantitative results of the
experiments are presented in Table 2.

Next, we consider the mean curvature PDE in 3D domain � = [0, 1]3 given by

{
|∇u|κ = f in �

u = 0 on ∂�.
(5.3)

Again, the function f serves as an indicator function. In this experiment, we discretize
the domain using a grid of size 50× 50× 50. The solution of the PDE was computed
employing Algorithm 1with stencils of size 7×7×7. Figure8 presents two computed
solutions with two different f . The left plot illustrates the numerical solution of the
PDE for the case where f = 1 everywhere in �, while the right plot depicts the
solution where f = 1 in two separate spherical regions centered at (0.3, 0.3, 0.3) and
(0.7, 0.7, 0.7), each with a radius of 0.3.
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Fig. 8 Computed solutions of the mean curvature PDE given by Eq. (5.3) in a 3D domain � = [0, 1]3.
The left plot illustrates the numerical solution of the PDE for the case where f = 1 everywhere in �, while
the right plot depicts the solution where f = 1 in two separate spherical regions

Fig. 9 Three different shapes for ρ considered in Sect. 5.3

5.3 Tukey depth

In this section, we use Algorithm 1 to compute the viscosity solution of the Tukey
depth eikonal equation (1.1)

|∇u(x)| −
∫

(y−x)·∇u(x)=0

ρ(y) dS(y) = 0, x ∈ �.

We present two experiments for computing Tukey depth measures. In the first exper-
iment, we consider a Cartesian grid on a domain � = [0, 1]2 and ρ is a defined
as

ρ(x) =
{
1 if x ∈ E

0 otherwise.

We consider three different shapes for E ⊂ �: a square, a circle, and a donut (Fig. 9).
In this experiment, instead of the usual wide stencil used in the preceding experi-

ment, a different approach for the wide stencil scheme was implemented.
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Fig. 10 Illustration of the set I (x0, p) ⊂ Xn . Given a point xi ∈ Xn and a displacement vector p ∈ Vh(x0)
the set I (x0, p) includes all the points (represented as dots in the figure) that the line with a slope p passes
through including x0

Given a point x0 ∈ Xn and a displacement vector p ∈ Vh(x0), the nonlocal integral
term from the PDE is approximated by

∫

(y−x0)·p=0

ρ(y) dS(y) = |p|
∑

x j∈I (x0,p)
ρ(x j ) + O(h)

where I (x0, p) contains points in Xn along the line with a slope of p passing through
x0 (Fig. 10).

In this experiment, a different stencil scheme is utilized compared to the one
described in Fig. 4. When considering a grid point x0, instead of selecting points
solely from the grid, points are chosen from the linear interpolation of the available
points within a 3× 3 grid surrounding the center point x0 (Fig. 11). The advantage of
adopting this stencil scheme lies in its capability to reduce the directional resolution
dθ , while preserving the length of the displacement vectors in Vh(x0). It’s important to
note that these interpolated points are approximated using a first-order approximation.
Consequently, this stencil scheme is only applicable to first-order PDEs.

Using Algorithm 1, we computed the viscosity solutions of the PDE for each ρ, as
well as for different pairs of grid mesh and the number of stencil points: (32×32, k =
16), (64× 64, k = 32), and (96× 96, k = 64). The analytical solutions for the Tukey
depth measure were known, and we display the errors between the computed solutions
and analytical solutions in Table 3, along with the elapsed time for computations.
Furthermore, Fig. 12 displays the computed solutions on 128 × 128 grids. Note that
the highest values of the solution indicate the medians of the density ρ. When ρ is a
donut, which is not quasiconcave, the computed viscosity solution is quasiconcave, as
expected from the analytical solution of the Tukey depth measure.

Note that in Fig. 12, the computed solution for the square density differs noticeably
from the analytical solution. The level sets of the analytical solution are squares near
the center, while the level sets of the computed solution resemble octagons. This
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Fig. 11 The stencil scheme used for the first order Hamilton–Jacobi equations. Figures show the number
of stencil points a k = 16 and b k = 32

Table 3 Computation time and errors for Tukey depth eikonal equation on various sizes grids and stencils

ρ 32 × 32, k = 16 64 × 64, k = 32 96 × 96, k = 48

Time Error Time Error Time Error

Square 0.26s 7.66 × 10−3 4.72s 6.94 × 10−3 34.98s 6.29 × 10−3

Circle 0.26s 6.45 × 10−2 4.51s 2.13 × 10−3 33.88s 1.48 × 10−3

Donut 0.33s 5.15 × 10−3 4.93s 1.36 × 10−3 37.69s 7.84 × 10−4

Fig. 12 Computed results and analytical solutions of the Tukey depth eikonal equation
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Fig. 13 Computed results on 512× 512 grids and analytical solutions of the Tukey depth eikonal equation
where ρ represents a uniform distribution on [0, 1]2. The computed solutions become closer to the analytical
solution as the number of stencil points increases, i.e., as dθ approaches 0

computation can be improved by increasing the number of stencils, or in other words,
by reducing the value of dθ . Figure13 illustrates the computed solutions on a 512×512
domain using the number of stencil points k = 8, 48, 240. As evident, the level sets
of the computed solutions tend to become more square-like as the number of stencils
increases.

To demonstrate the robustness of the statistical depth provided by Tukey depth, we
compare the solutions of the eikonal equation:

{
|∇u(x)| = ρ(x), x ∈ �

u(x) = 0, x ∈ ∂�

and of the Tukey depth eikonal equation:

{
|∇u(x)| =

∫

(y−x)·∇u(x)=0

ρ(y) dS(y), x ∈ �.

Here, ρ = 1 on some subset E ⊂ �, and ρ = 0 otherwise. The shape of E is
visually represented in Fig. 14a, where it can be observed that E assumes the form
of a circle with a minor perturbation within its interior, i.e., ρ = 0 on a small area
in the interior. Figure14 illustrates the computed solutions of these two equations on
512 × 512 grids. It is important to note that because ρ is not strictly positive, the
solution to the eikonal equation is not unique, and the computed solution may depend
on the chosen initialization of u0. Figure14 presents the computed solution with the
initialization u0 ≡ 0. It is evident from the figures that the solution to the eikonal
equation is significantly influenced by the small perturbation. On the other hand, the
solution of the Tukey depth eikonal equation is unique, even when ρ vanishes (see
[35]), and hence the solution remains relatively unperturbed by it. Consequently, the
results affirm the robustness of the Tukey depth eikonal equation in the presence of
perturbations.

Next, we solve the Tukey depth eikonal equation on unstructured point clouds Xn

that are independent and identically distributed sampled from the uniform distribution
ρ ∈ P(�) on a square in R

2 and on a ball in R
2 and R

3. We construct a k = 30
Euclidean distance nearest neighbors graph fromXn to define Nh(x) for each x ∈ Xn .
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Fig. 14 a Illustrates the density ρ with a small perturbation in the interior, where bright pixels represent
a value of 1 and dark pixels represent a value of 0. b and c depict the computed solutions of the eikonal
equation and the Tukey depth eikonal equation, respectively, using the density ρ on 512 × 512 grids

Table 4 Computation time and errors for Tukey depth eikonal equation on 2D point clouds

ρ n = 1000 n = 3000 n = 10000

Time Error Time Error Time Error

Square 0.28 s 5.74 × 10−4 1.15 s 2.24 × 10−4 5.44 s 1.59 × 10−4

Circle (2D) 0.39 s 2.24 × 10−3 1.20 s 9.15 × 10−4 5.10 s 8.38 × 10−4

Circle (3D) 0.41 s 5.76 × 10−4 1.07 s 3.31 × 10−4 4.60 s 2.76 × 10−4

The imposed boundary condition is a Dirichlet boundary condition such that

u(x) = 0, x ∈ ∂εXn

where ∂εXn := {x ∈ Xn : d(x, ∂�) < ε} and d(x, y) = |x − y|.
Note that there are various density estimation techniques that can be used to approx-

imate the nonlocal integral function (x, p) �→ ∫
(y−x)·p=0 ρ(y), dS(y). However, in

this experiment, we analytically compute the function for demonstration purposes.
The quantitative results, showing the error between computed solutions and analytical
solutions inR2 andR3, are displayed in Table 4 and visualized in Figs. 15 and 16. The
error is computed through the L1 norm between the computed solutions uc : Xn → R

and analytical solutions ua : Xn → R:

Error = ‖uc − ua‖L1(Xn)
= 1

n

∑
x∈Xn

|uc(x) − ua(x)|.

5.4 Applications to high-dimensional datasets

In this set of experiments, we solve the Tukey depth eikonal equation on high-
dimensional datasets.We consider theMNIST [48] and Fashion-MNIST [49] datasets.
The MNIST dataset consists of 28 × 28 grayscale images of handwritten digits from
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Fig. 15 Computed solutions and analytical solutions of Tukey depth eikonal equation on point clouds in
R
2. Each subplot a–f displays the computed solution on the left and the analytical solution on the right, for

varying numbers of points and densities

Fig. 16 Computed solutions of Tukey depth eikonal equation on point clouds sampled from the uniform
distribution on a sphere in R

3. The figures display the segmented 3D sphere for clear visualization
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0 to 9, while Fashion-MNIST consists of 28 × 28 grayscale images of ten classes of
clothing such that shoes, t-shirts, and so on.

LetXn ⊂ R
784 be a point cloud containing 4000 images of a single digit (0, · · · , 9)

fromMNIST dataset. Thus,Xn is an empirical distribution of a data density of a given
digit from the MNIST dataset. We then construct k = 30 Euclidean distance nearest
neighbors graph from Xn , which defines the set of neighbors Nh(x) for each x ∈ Xn .
Since this is a high-dimensional problem, computing an integral on the hyperplane of
R
784 is a challenging task. In this experiment, we approximate the nonlocal integral

term by

∫

(y−x)·p=0

ρ(y) dS(y) ≈
∫

(y−x)·p=0

ρ(y)Nσ (|x − y|) dS(y)

where Nσ is a normal distribution with a variance σ and a mean 0. We compute this
integral term using Monte-Carlo simulation

∫

(y−x)·p=0

ρ(y)Nσ (|x − y|) dS(y) ≈ 1

N

N∑
i=1

ρ(yi )

where yi are samplings froma normal distribution on a hyperplane {y : (y−x)·p = 0}.
In the expression, ρ(yi ) is computed by a kernel density estimation such that

ρ(yi ) ≈ 1

M

M∑
j=1

Nr (x j − yi ).

The same Dirichlet boundary condition of a point cloud is used as in the preceding
experiment.

In the high-dimensional setting, the spatial resolution h is very large, since the
distance between points grows exponentially with dimension (put another way, to
keep h fixed as d → ∞ would require an exponentially growing number of points, as
we encounter the curse of dimensionality). Thus, we do not expect to obtain a highly
accurate approximation of the true solution. Furthermore, we do not have access to
the exact solution anyway, so we cannot check the accuracy. Instead, in the present
experiments we visualize the images with the highest and lowest computed depth
values (i.e., the deepest and shallowest points) in order to demonstrate the algorithm’s
ability to approximate a reasonable notion of data depth.

We repeat the experiment for each digit from 0 to 9 in MNIST dataset and for each
class of clothings in Fashion-MNIST dataset. The results are displayed in Figs. 17
(MNIST) and 18 (Fashion-MNIST). Each figure in Fig. 17 shows 16 highest points
from (a) the computed solutions of Tukey depth eikonal equation, (b) the distance
function dist(x, ∂�) from the eikonal equation, (c) 16 boundary points in ∂εXn , and
(d) 16 randompoints fromXn . Theboundarypointswere computedusing themethod in
[37]. The highest points from the computed solutions of Tukey depth eikonal equation
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Fig. 17 Median images from MNIST dataset

correspond to median points of the datasets. When comparing (a) with other results,
we can see the median points from Tukey depth show the most consistent shapes of the
digits. Similarly, Fig. 18a shows the most consistent results of all. Thus, even though
our numerical method may not accurately approximate the true solution of the Tukey
depth PDE in a high dimensional setting, the method is computationally efficient and
produces reasonable results for data depth.

6 Conclusion

In this paper, we developed a new monotone finite difference scheme for solving
Hamilton–Jacobi equations with quasiconcave solutions. The method is based on a
novel set-valued monotone discretization for the direction of the gradient. We proved
that the method converges to the viscosity solution of the underlying Hamilton–Jacobi
equation, and presented a series of numerical results on various types of curvature
motion in d = 2 and d = 3 dimensions, as well as applications to computing the Tukey
depth on high dimensional image datasets including MNIST and FashionMNIST.
Future work will focus on expanding the methods to equations that do not enjoy the
quasiconcavity property.
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Fig. 18 Median images from FashionMNIST dataset
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