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Abstract

We introduce a novel algorithm that converges to level set convex viscosity solutions of
high-dimensional Hamilton—Jacobi equations. The algorithm is applicable to a broad
class of curvature motion PDEs, as well as a recently developed Hamilton—Jacobi
equation for the Tukey depth, which is a statistical depth measure of data points.
A main contribution of our work is a new monotone scheme for approximating the
direction of the gradient, which allows for monotone discretizations of pure partial
derivatives in the direction of, and orthogonal to, the gradient. We provide a con-
vergence analysis of the algorithm on both regular Cartesian grids and unstructured
point clouds in any dimension, and present numerical experiments that demonstrate
the effectiveness of the algorithm in approximating solutions of the affine flow in two
dimensions and the Tukey depth measure of high-dimensional datasets such as MNIST
and FashionMNIST.

Mathematics Subject Classification 65N25: Numerical methods for eigenvalue
problems for boundary value problems involving PDEs - 35F21: Hamilton-Jacobi
equations - 35D40: Viscosity solutions to PDEs

1 Introduction

The motion of curves or surfaces with normal velocity that depends on curvature has
a wide range of applications in science, engineering, and mathematics. A short, and
nowhere near complete list includes materials science [1, 2], fluid and bubble motion
[3, 4], image processing [5], computer vision [6, 7], stochastic control [8], and more
recently, data science [9].
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There is a wealth of literature on numerical schemes for approximating geometric
motions, and one of the most successful and widely used algorithms is the level set
method. This method was pioneered by Sethian and Osher [10] and implicitly rep-
resents the evolving curve or surface as the zero level set of a function u(x, ¢). The
algorithm then solves a level set PDE for the evolution of u. The implicit representation
allows for topological changes in the surface, and has led to a rigorous notion of geo-
metric flows past singularities by utilizing the machinery of viscosity solutions [11].

In current numerical practice, there is a significant discrepancy between the numer-
ical schemes used and their theoretical counterparts. Specifically, there is no proof
of convergence of the finite difference numerical solutions to the viscosity solution
of the level set equation as the grid resolution approaches zero. The difficulty is that
convergence proofs are only available for monotone schemes [12] (refer to Definition
2.8), and the standard discretizations of curvature are not monotone.

Several attempts have been made to address the lack of monotonicity in the litera-
ture. Merriman, Bence, and Osher [13] introduced a class of monotone approximation
schemes known as diffusion generated motion or threshold dynamics. The algorithms
consist of two simple steps: (1) Convolution with a positive kernel (diffusion), and (2)
thresholding. The original algorithm has been extended to a wide range of anisotropic
curvature motions, as well as motions of networks (see [14] for recent results). Since
the schemes are monotone, rigorous proofs of convergence to the viscosity solution
are available [15, 16]. One drawback of threshold dynamics is that the algorithm
may become “stuck” if the time step! is chosen too small, limiting the accuracy [17].
This can be alleviated by using the signed distance function in place of characteris-
tic functions (see, e.g., [14, 18]). Oberman [19] developed a wide-stencil monotone
finite difference scheme for curvature motion based on a connection between the local
median and curvature. Oberman’s wide stencil approach has been extended to more
general degenerate elliptic PDEs, including certain types of Hamilton—Jacobi and
Monge—Ampere equations [20-23], and more recently the affine flow [24]. In general,
monotone schemes are less flexible than non-monotone ones, and in many cases they
must be specifically designed for each application.

A noteworthy application of this class of curvature motion PDEs is the computation
of data depth. Data depth can be seen as an extension of the notion order statistics to
high-dimensional data sets. The depth of a data pointin a cluster is a notion of how close
it is to the center, i.e., the mean or median of the data, with deeper points being more
central and representative of the typical data point, and shallower points being identi-
fied as outliers. A definition of data depth leads naturally to a notion of high dimensional
medians (i.e., the deepest points), and the study of robustness of medians to data pertur-
bations is a central topic in the field of robust statistics. The Tukey, or half-space, depth
[25] is one of the seminal notions of data depth, and it has been extended to graphs [26]
and metric spaces [27]. Other notions of data depth include convex hull peeling [28],
the Monge-Kantorovich depth [29], non-dominated sorting [30], and Pareto envelope
peeling [31, 32]. Many notions of data depth have been connected to Hamilton—Jacobi
and curvature motion equations in the large data continuum limit. It was shown in
[30, 33, 34] that non-dominated sorting has a Hamilton—Jacobi equation continuum

! The time step refers to the width of the convolution kernel.
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limit. A related Hamilton—Jacobi equation continuum limit was established for Pareto-
envelope peeling in [32]. In [9] it was shown that the continuum limit of convex hull
peeling is a weighted version of affine invariant curvature motion (i.e., the affine flow).

Recently, connections have also been made between Hamilton—Jacobi equations
and Tukey depth [35]. Tukey depth serves as a statistical measure of data depth and is
defined given a data density function p as follows:

TG0 = inf / p(y)dy.
(y=x)-v=0
In other words, the depth T (x) of a datapoint x € R”" is the least amount of probability
mass contained in any halfspace that contains x. The study [35] showed that the Tukey

depth function 7 (x), under some reasonable assumptions on p and its support 2 C R,
is the viscosity solution of the nonstandard eikonal equation

VT (x)| = / p(y)dS(y), forx e Q,
(y—x)-VT (x)=0

(1.1

subject to the homogeneous Dirichlet boundary condition # = 0 on d€2. The vis-
cosity solution of (1.1) has convex level sets, i.e., it is a quasiconcave function. The
nonstandard dependence on VT on the right-hand side of Eq. (1.1) poses a challenge
in constructing a monotone, and hence provably convergent, numerical method. Cur-
rently, we are unaware of any existing numerical methods that can be used to solve
(1.1) with provable convergence guarantees. Let us also mention that recent works,
some inspired by [35], have considered using a more standard eikonal equation of
the form |VT| = ¢(p) for data depth (see [36] and [37]). These standard eikonal
equations can be solved with the Fast Marching Method [38], which is known for its
speed and efficiency in solving the eikonal equation. In addition, a recent study [39]
considered a family of graph p-eikonal equations, and demonstrated its applications
in applications to data depth and semi-supervised learning.

The lack of numerical methods with rigorous guarantees for solving (1.1) was
one of the main motivations for this work. Notice that the right hand side of (1.1)
depends only the direction of VT, and not on its magnitude. The same types of
dependencies arise in curvature motion Hamilton—Jacobi equations, where one can
view the various principal curvatures arising in the front propagation speed as pure
second derivatives in directions orthogonal to the gradient. In this work, we develop
a novel wide-stencil finite-difference technique for discretizing the direction of the
gradient that works for the Tukey depth equation (1.1), as well as Hamilton—Jacobi
equations with curvature dependent speeds. Our current work is focused on the setting
of monotone front evolution in which the level sets of the solution are convex, but we
expect the methods are more general and this constraint can be relaxed in future work.
Since our scheme is monotone, we are able to use the Barles-Souganidis framework
[12] to prove convergence to the viscosity solution. An interesting feature of our work
is that our proposed scheme is not dependent on any grid structure, and it can be easily
applied on unstructured, possibly high dimensional, point clouds. While the accuracy

@ Springer



1990 J. Calder, W. Lee

Fig. 1 Non-unique solutions of the 1D eikonal equation |u’| = 1 with Dirichlet boundary conditions
u@) =u(l)=0

of the schemes will suffer from the curse of dimensionality, the computational cost
depends only on the number of datapoints and is largely insensitive to dimension.
As an application, we present results of solving the Tukey depth PDE (1.1) on high
dimensional image data sets, including MNIST and FashionMNIST.

1.1 Outline

This paper is organized as follows. In the following sections, we describe a new
technique for constructing monotone finite difference schemes for discretizing the
direction of the gradient. We begin in Sect.2 by reviewing the definitions of quasi-
concave functions, viscosity solutions, and monotone schemes. In Sect. 3, we propose
a new monotone and consistent numerical scheme for computing viscosity solutions
of curvature-driven PDEs and prove the convergence of the scheme on general point
clouds in R, with an arbitrary dimension d. Section4 presents several applications
of using the proposed numerical methods to compute solutions of the Tukey depth
eikonal equation and mean curvature motion PDEs. Finally, in Sect.5, we present
numerical examples of using the proposed scheme to solve various eikonal equations
in general point clouds settings in dimensions ranging fromd = 2to d = 784.

2 Background

In this paper, we are interested in a general class of second order Hamilton—Jacobi
equations of the form

H(V?u,Vu,u,x) =0, xeQ

2.1
ulx) =gkx), x €,

where Q C R? is an open and bounded domain, €2 is a boundary of 2, H : Rdxd

sym
RY xR x Q — R, g: Q2 — R,and u : @ — R, with Vu denoting the gradient of
u and V2u denoting the Hessian. In particular, we are interested in the setting where
the solution u is quasiconcave, which means the super level set {# > t} is convex for
allt e R.

This class of equations usually does not admit classical solutions, i.e., solutions
that are continuously differentiable so that the equation is satisfied classically at each
x € Q. See Fig.1 for a simple 1D example. Due to the fully nonlinear nature of the
equation, the notion of weak solutions using test functions and integration by parts
is not applicable. For equations of the form (2.1) that satisfy some basic ellipticity
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and monotonicity conditions, the notion of viscosity solution [40, 41] identifies the
physically correct solution for broad ranges of applications, and has proven to be
an extremely useful tool in the study of nonlinear PDEs. In this section, we review
definitions of quasiconcavity, viscosity solutions, and the convergence for numerical
schemes for viscosity solutions.

2.1 Quasi-concavity

Let us introduce the definition of quasiconcave functions and their properties.
Definition 2.1 A function u : @ — R is quasiconcave if

u(rx + (1 —2)y) = min (u(x), u(y))
forall x,y € Qand all 0 < A < 1. A function u is strictly quasiconcave if the
inequality is strict. A function u is locally quasiconcave at x € 2 (resp. locally

strictly quasiconcave) if u satisfies the inequality (resp. strict inequality) in some
neighborhood of x € O C Q.

Lemma 2.2 Given u € C'(Q), the following are equivalent.

(i) u is quasiconcave.
(ii) Forallx,y € Q,

(y—x) - Vulx) =0 = u(y) < ux).
(iii) For all x € Q, there exists a nonzero p € R? such that forall y € Q,
(y—x)-p=<0 = u(y) <u).
Lemma 2.3 Ifu € C*(Q) is quasiconcave then for all x, y € L,
(v =2) - Vu@) =0 = (y—x) - Vu@)(y —x) < 0.

Lemma 2.4 Given a function u € C*(2) the following are equivalent.

(i) u is strictly quasiconcave.
(ii) Forallx,y € Q,

(y—=x)Vulx) <0 = u(y) <ux).
(iii) For all x € Q, there exists a nonzero p € R such that for all y € Q,
y=x)p=0 = uy) <ul).
(iv) Forallx,y € Qand x # y,

(y—x) - Vu@) =0 = (y—x) - Vu@)(y —x) <0,
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Note that the second order condition is a necessary condition for the quasiconcavity
in Lemma 2.3 but it is a necessary and sufficient condition for the strict quasiconcavity
in Lemma 2.4 (iv). We refer the reader to [42] and [43] for more details on quasiconcave
functions.

2.2 Viscosity solutions

Recall the definitions of upper and lower semicontinuous functions.
Definition 2.5 A function f : O — R is upper (resp. lower) semicontinuous if
limsup £(y) < f(x) (resp. liminf f(y) = f(x))
V<0 o
for all x € Q.

Definition 2.6 Given a function f : O — R, the upper (resp. lower) semicontinuous
envelop of f is

Fr =Tlimsup £) esp. fu(x) = Timinf £ ().
§€Ox yeO

We present the definition of viscosity solutions of (2.1) given upper or lower semi-
continuous functions.

Definition 2.7 An upper semicontinuous (resp. lower semicontinuous) function u :
Q — Ris aviscosity subsolution (resp. supersolution) of (2.1) if for every x € Q and
every smooth test function ¢ € C*°(R?) such that u — ¢ has a local maximum at x,

H.(V?¢,Vo,u,x) <0. ifx eQ

min (Hy(V2@, Vo, u, x), u(x) — g(x)) <0 ifx € 3Q
(respectively,

H*(V29,Vo,u,x) > 0) ifx e Q

max (H*(V2<p, Vo, u,x), u(x) — g(x)) >0 ifx € 9Q2)

where g : Q2 — R is continuous. If « is both a viscosity subsolution and a viscosity
supersolution, then we call u a viscosity solution of (2.1). We say that the boundary
condition in (2.1) hold in the weak viscosity sense.

We note that the upper and lower semicontinuous envelopes H* and H, are com-
puted with respect to all of the variables that H depends on. We refer the reader to
[44, 45] for more details on viscosity solutions. In particular, we treat the boundary
conditions in the viscosity sense, as in [44, Chapter 7].
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2.3 Monotone schemes

We provide a review of the definitions of monotone schemes used to approximate vis-
cosity solutions based on the Barles-Souganidis framework [12]. Our finite difference
schemes for (2.1) are presented in the form

Spp, up(x), x) =0, for x € X,\Iy,
up(x) = g(x), for x € I'y,

where X, C Q is a set of points with spatial resolution &, I’y C A}, is a set of
boundary nodes, uj; : X, — R is the numerical solution, and Sy, is the scheme. The
first argument of S), represents the dependence of the scheme on the values of uy,
at neighboring points, while the second represents the dependence of the scheme on
the value of uy, at the current point x. To ensure convergence, the Barles-Souganidis
framework provides necessary properties that the scheme must satisfy. In this context,
we review the definitions that are required for the convergence of the scheme.

Definition 2.8 A scheme S}, is monotone if forallt e R, x € X,,andu,v: X, - R
u<v = Sp(u,t,x)>S,,t,x).
Definition 2.9 A scheme S, is consistent if for all x € Q and ¢ € C®(R")

limsup S (¢ + v, 9(Y) + v, ¥) < H*(V2p, Vo, ¢, x).
y—0

h—0t
y—x

and
liminf Si(p + . () +y.9) = Ho(V29, Vo, ¢, x).
h—01
y—=>x

Definition 2.10 A scheme S}, is stable if the solution of the scheme uy, satisfies

sup sup |up(x)| <C
h>0xeX,

for some positive constant C > 0.

Definition 2.11 The PDE (2.1) satisfies the strong uniqueness if u < v on Q for every
viscosity subsolution # and every viscosity supersolution v.

When the PDE satisfies the comparison principle, in the sense of strong uniqueness
in Definition 2.11, and the scheme satisfies monotonicity, consistency, and stability,
one can show that the solution of the scheme converges uniformly to a unique viscosity
solution based on Barles-Souganidis framework (refer to Theorem 3.8). We remark
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that the notion of strong uniqueness is different from a standard comparison principle
for viscosity sub and supersolutions due to how Definition 2.7 handles the boundary
conditions (which is often called boundary conditions in the viscosity sense, see [44,
Chapter 7]).

3 Numerical methods

In this section, we introduce our novel monotone numerical scheme for computing
quasiconcave viscosity solutions of Hamilton—Jacobi equations. Our scheme can be
applied on general point clouds of arbitrary dimensions, provided they satisfy some
reasonable properties. This allows the methods to be applied in graph settings, with
various graph structures such as e-graphs or k-nearest neighbor graphs. Due to the

monotonicity of the scheme, the method enjoys strong stability and convergence guar-
antees.

3.1 Notation

Before proceeding, let us fix some notation. Let  C R? be an open bounded domain.
Define a set of points

Xy ={x1, 32, . X} C Q,
a set of boundary points
Ly C Xy,
and a spatial resolution

h := max min |x — y|.
xeX, yeX,

For each x € A&),, we define a set of neighboring points Nj(x) C A}, and we
assume there exists 0 < § < R such that

Np(x) C B(x, R)\B(x,§) forall x € X,,.
It will be important later on to take R, § = O (h). Define a set of displacement vectors
Vi(x) ={y —x: y € Np(x)}

that denotes the vectors pointing from x to each neighbor, and the local directional
resolution at x € &,

df(x) = max min w(p,q)
Ipl=1g€Vy(x) 1
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where w(p, g) = arccos (%). Define the global directional resolution

df := max df(x).
xek,

The following lemma describes the geometric properties of point clouds in R¢, and
will be used in the main theorems. The visual representations can be found in Fig. 2.

Lemma3.1 Let 0 < 0; < 7 and 0 < 6, < 7 be nonnegative constants, and x, p, q
be unit vectors such that w(x, p) = 0.

(i) If 01 < 62 and w(p, q) = 6y, then
x-q < cos(tr —67).
The equality is attained if and only if w(p, q) = 62 and

B x—(sin@l/sinez)q
P = (sinby/sinba)q|

(ii) If 01 > 0y and w(p, q) < 03, then
cos(01 + 62) < x-g <cos(t) — 6r).
The left equality is attained if and only if w(p, q) = 6> and

g+ (sin6y/sin6;)x
b= lg + (sin 6/ sin6;)x|’

The right equality is attained if and only if w(p, q) = 6> and

q— (sin@z/ sin 91)x

P = (sinby/ sin6r)x|

Proof Assume 0; < 0, and w(p, ¢) > 6, and let A be an arbitrary positive constant.

Then
p-(x—Aq) <|x —Ag| =+/1+ A2 —2xx -q. 3.1

By the assumption, p - (x — Ag) > cos ) — Acos 6. Thus, by squaring both sides,
we get

cos? 01 + 22 cos? 6y — 2L cosfycostr <1+ 22— 2hx - q.
Using the equality cos” 6 + sin® 6 = 1,

20x - q < sin? 0 + A” sin® 62 + 2A cos 0 cos 6>
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=2\ cos(fy —01) + (sinf; — Asin 92)2.
Since X is an arbitrary number, we may choose A = sin 61/ sin 6. Thus,

X -q <cos(r —07).
From (3.1), the equality is attained if and only if w(p, ¢) = 6, and p = &:iql.
For the second part of the lemma, assume 61 > 6, and w(p, g) < 6, and ‘iet A be
an arbitrary constant. Similar to the proof of the first part, consider

cosy —Acost; < p-(qg—Ax) <|q — Ax|

where the first inequality comes from the assumption and sgn is a sign function. By
squaring both sides and rearranging terms,

20x - q < sin® 6r + A% sin? 61 + 2X cos 6 cosbs.
If A > 0, then
20x - q < 27cos(f) — 62) + (sin6r — A sin6)>.
By choosing A = sin 6,/ sin 6y,
x-q < cos(f; —6). (3.2)
If A < 0, then

—2Ax-q > — sin? 60y — 22 sin? 61 — 22X cos 6 cos O,

—2Acos(f) 4+ 62) — (sin6p + A sin 91)2.

By choosing A = —sin 6,/ sin 6,
X -q > cos(0) + 62). (3.3)

The equalities in (3.2) and (3.3) are attained if and only if w(p,q) = 6> and p =

g:—;\;‘. This concludes the proof. i

3.2 Wide stencil schemes
The schemes we consider in this paper are wide stencil schemes, inspired by schemes
for degenerate elliptic equations such as the Monge—Ampere equation [20]. Consider

the first-order Hamilton—Jacobi equation of the form

H(NVu,u,x) =0 in Q.
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(a) (b) Lemma 3.1: Case (i)

Fig.2 Visual representations of Lemma 3.1

We recall (see [46]) that the notion of viscosity subsolution can be equivalently
expressed as

sup  Hy(p,u,x) <0 inQ
peD~(u,x)

where the subdifferential set D~ is defined as
D™, x) = {peR!: u(y) —u(x) < p- (v =) +ollx =y as y > x}.
Similarly, the notion of viscosity supersolution can be expressed as

inf H*(p,u,x)>0 in Q
peDT (u,x)

where the superdifferential set D™ is defined as
DY (u, x) = {p eR?: u(y) —ux)>p-(y—x)4+o(lx —yp)asy — x}.
When u is quasiconcave, so that the set

[y eR :u(y) > u(x)}

is convex, we can drop the o(|x — y|) term from the definition of the subdifferential,
and equivalently write

D™ (u,x) = {p eR?: u(y) <ux)+p-(Qy—x) forynearx}.

Since we are only concerned with the direction of the gradient, and not the magnitude,
we can further focus our attention only on the sign of p - (y — x). This leads to the
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(a) (b)
Fig.3 a An example of a vector p belonging to the subdifferential P, (u, u(x), x) and b an illustration of

the set-valued monotonicity of P~ withu < v

following approximation of the subdifferential set on a general point cloud

Py (u,u(x), x) := {p eR? : —p € Vi(x), and

WEN), p (=0 <0 = u() suw]. G4

We should explain the choice that —p € Vj(x) was made so that for any p €
P, (u,u(x), x), we have x — p € Aj, so that we can form a backward difference
quotient (which is upwind/montone). Notice that we do not intend for P, to exactly
approximate D~ as h — 0, since the magnitude |p| will in general not converge to
|Vu(x)|. This is the reason for the alternative notation P, instead of, say, D, . Instead,
as we show below, the direction of p € P, converges to the direction of the gradient
Vu(x)ash — 0.

The set-valued operator P, (u, u(x), x) is the collection of all displacement vectors
that support the convex super level set {# > u(x)}. The displacement vector in the
set operator lies in the opposite direction of Vu, that is the downwind direction. See
Fig.3a for an illustration. We can also define an analogous approximation PhJr of the
superdifferential, but this is generally the empty set for quasiconcave functions (but
would be appropriate for quasiconvex functions).

This set-valued operator has many useful properties that allow us to easily construct
convergent monotone schemes for quasiconcave viscosity solutions. In what follows,
we present some properties of the operator and new monotone schemes based on this
operator.

3.3 Properties of a subdifferential set

Monotonicity requires the scheme be a decreasing function of uy, () for all neighboring
grid points y € Nj(x). If the scheme is also an increasing function of u(x), then
the scheme is often called elliptic [23]. The terms monotone and upwind are used
interchangeably for first order equations, and refer to the same property.
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A key property of P, is the following monotonicity with respect to set inclusion,
which is immediate from the definition.

Proposition3.2 Forallt e R, x € X, andu,v : &, - R
u<v = P (u,t,x) D P (v,t,x). 3.5)

In words, if u(x) = t = v(x) and u < v, then any halfspace supporting {v >
t} also supports {u > t}. See Fig.3b for an illustration. Let us write P, [u](x) =
P, (u, u(x), x) for simplicity.

Next, we present a theorem that establishes conditions under which the subdif-
ferential set is nonempty. It turns out that this requires strict quasiconcavity of the
test function ¢. Without the strictness, one can choose a sufficiently flat function ¢,
depending on the local point cloud structure, for which the subdifferential set becomes
empty.

Throughout this section, given xg € &;,, we will assume ¢ € C*(R?) is a smooth
function for which there exists 4y > O such that

q-Vo(x) =0 = ¢-V?>p(x)g <0 and |Ve(x)| >0

for all x € B(xg, ho). The first part is equivalent to ¢ being strictly quasiconcave by
Lemma 2.4. By defining a function

L(X.p)i= sup q-Xq, (3.6)
i
q:

we can rewrite the assumption as

sup  L(VZ@(x), Vo(x)) <O0. (3.7)

x€B(x0,ho)

Theorem 3.3 (Existence) Let xo € X, and assume ¢ € C®(R?) satisfies |Vo(xo)| >
0 and (3.7). Denote by

Ay i= —L(V?p(x0), Vo(x0))

where L is defined in (3.6).
Then the subdifferential set Py[@](x0) is nonempty if d0(xo) and § satisfy

6 (xp) < A0 (3.8)
X _— .
¥ =2 Ve(xo)| + C8

where C is a positive constant depending on .

Proof By the definition of d@, there exists —p € Vj,(xp) such that
w(Ve(xo), p) < db(xp).
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We want to show ¢(xg + g) < ¢(xg) for any ¢ € Vj(xg) such that w(p,q) >
/2. Choose ¢ € Vj(xg) such that w(p,q) > m/2. By Lemma 3.1, we have
w(Ve(xo), q) > /2 —db(xo). If w(Ve(xo), g) > 7/2, then p(xo + q) < ¢(xo) by
Lemma 2.4. Thus, assume

/2 —dO(xp) < w(Ve(xo),q) < /2.

Decompose ¢ such that

r . Vo(xo)
q =lq| (cos@ — + s1n®—>
|r] IVo(xo)l

where r is an orthogonal vector to Vg (xp) and ® = w(r, g) = /2 — w(Ve(xo0), q).
Using a Taylor expansion of ¢,

(xo+q)

. 1
< ¢(x0) + Ve (x0)lg] sindf (x) + 54 - V2p(x0)q

. |‘]|2 2 r 2 r
= @(x0) + |Vo(xo)llglsindf(xp) + ——| cos” ©— - V7p(xp)—

2 |7 7]
. Vo(xp) Vo(xp) . Vo(xp) r )
2 (X0 2 (4] (Ae] 2
+ sin“ ® - Vep(xg) + 2sin ® cos ® -Vop(xg)—
Vool P Vool Vo) O
2
< @(x0) + |V (x0)|lg sin d6 (xp) + %(—Al cos? © + C; sin” © + 2C, sin ©)
where we denote
Vo (x) Vo (x)
Ci = V2(x) ,
xeB(xgho) | IV IVo(x)]
Vo(xo) r (3.9
C = ———= - V2p(x0)—|.
xeB(xo,ho) | VP (x0)| |7

r-Vo(x)=0
Using cos2® 4 sin? ® = 1 and O© < db(xo),

2
< ¢(x0) + [Ve(xo)llg| sindf(xo) + %(_Al + (A1 + C1 + 2C2) sindb (x0))

2 72|V
< gtn+ 48 (Aot

; +C)d9(x0) _ Al)

< @(x0)

where C = A1 + C; + 2C3 and the last inequality comes from (3.8). Thus, p €
Py [ol(x0). u
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Theorem 3.3 gives conditions that guarantee the subdifferential set to be nonempty
on general point clouds in R?. Note that ¢ needs to be strictly quasiconcave because
the constant A being strictly positive is crucial for the condition (3.8) to hold. If the
point cloud satisfies some form of symmetry in R?, then the set can be nonempty with
a quasiconcave ¢.

Theorem 3.4 (Existence on symmetric stencils on R?) Let xo € X,, C R? and assume
@ € C®(R?) is quasiconcave and |V (xg)| > 0.
Suppose Vi, (xo) satisfies

(i) If p € Vi(xo) then —p € Vj(x), and
(ii) If p € Vi(x0) then there exists q € Vi, (xq) such that p -q = 0.

Then the subdifferential set P, [¢](xo) is nonempty.

Proof Choose —p*™ € V}j,(xo) such that

— p* = argmin w(Ve(xg), p). (3.10)
—peVi(xo)

Note that w(Ve(xg), p*) < df. We will show p* € P, [p](xo). Choose any g €
Vi (x0) such that w(p*, ¢) > 7w /2. By Lemma 3.1, we have

Voxo) ¢ p )
Fotol Tal =< (5 ~w(Vewo. )

which follows that w (Ve (xp), ¢) > 7m/2—w(Ve(xg), p*). Suppose w(V(xp), g) <
7 /2. Then there exists &
such that 0 < ¢ < w(Ve(xo), p*) and

T
w(Ve(xp), q) = 7

Then, by the symmetry of Nj(xo), there exists r € Vj,(xp) such that w(g,r) = /2
and by Lemma 3.1, r also satisfies

w(Vo(xp),r) =e&.

Thus, w(Ve(xp),r) < w(Ve(xp), p*), which is a contradiction to the definition
of p*. Thus, ¢ satisfies w(Ve(xo), q) > m/2. Since ¢ is quasiconcave, we have
@(x0 + q) < ¢(x0). Thus, p* € P [¢](x0). O

Coming back to the general unstructured point cloud setting in R?, we will show
that the subdifferential set P, [¢](xo) converges to the direction of Vg (xo) in a sense
that

li . P Vexo)
m mn - . —— 7 =1
h=0 pep [glxo) [Pl [V@(x0)]
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Theorem 3.5 Let xg € X, and ¢ € C®(R?) be such that |V¢(xg)| > 0. Denote by

r ) r
Ay = max —— -V7po(xg)—.
rVe(i)=0 |r| Ir|
If p € P, [9l(x0), then
Aorh

w(p, 2d0 3.11)

A\
YO0 = 3G oGl — h(Cr +2Co)

where C| and Cy are from (3.9).

Proof For simplicity, denote by © := 2W(p(x0)|}4}f_cl_zcz. Suppose, on the contrary,

there exists p € P, [¢](xo) such that
w(p, Vo(xg)) = O +2d0 + ¢

for some constant ¢ > 0. By Lemma 3.1, there exists a vector ¢ € R such that
w(p,q) =m/2+dO + ¢ and

v
900 94 _ G+ d6),

Vo (xo)| gl
Thus,

b g
w(g, Ve(xo)) = = — © —db.

By the definition of d6, there exists ¢’ € Vj,(xg) such that w(qg,q’) < df. By
Lemma 3.1,

p q T . ,oom
—-—/fcos<—+£):—sm8<O:>w(p,q)>—.
Ipl lq'l 2 2

Again, by Lemma 3.1, we have

V /
ﬂ.q_/ >cos(z—®>=sin®.
[Voxo)| Iq'| 2

Using a Taylor expansion on ¢,

. 1
0o +4q") > ¢(x0) + [V (xo)llg'| sin © + 24" V20 (x0)q .

Similar to the proof in Theorem 3.3, we may use the orthogonal decomposition of ¢’.
This leads to

, lq'1?
@(x0+q") > ¢(x0) + |Ve(xo)llg| sin ® + 2

(—A2 cos2 ® — Cy sin? ® — 2C; sin @)
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lq'I?
2

C — 2C2> sin ® — Az)

> ¢(x0) + Ve (x0)llg’| sin © +
g1 ((2|V¢(XO)| B

(—Ay — (C1 +2C)sin ®)
> ¢(x0) + > 7
= @(x0)-

Since w(p,q’) > m/2 and @(xo + q’) > @(xp), this is a contradiction to p €
P, [¢](x0). O

3.4 Monotone and consistent scheme

In this section, we use the subdifferential set to construct monotone and consistent
schemes for Hamilton—Jacobi equations with quasiconcave solutions. Since we are
only interested in viscosity solutions that are quasiconcave, we consider the following
operator

~ H(V?u,Vv if L(V? v <
B (V% Vi ) :={ (V2u, Vit )i LOVAU), VUG <0, 0o
—00 otherwise.

A similar operator is used in [9]. Since H and L are elliptic, H is also elliptic, i.e. for
any pe R z e R, x € Q,and X, Y € RZX4 we have

sym
X<Y = H(X,p,z,x)>H(Y,p,z.x).

Recall that the condition L(V2u(x), Vu(x)) < 0 is the second-order necessary con-
dition for the quasiconcavity from Lemma 2.2. Thus, if u is a quasiconcave solution
of H then the subdifferential set is nonempty for all x €  and

H(Vu, Vu,u,x) = H(V?u, Vu,u, x) = 0.
Throughout the section, we will assume that
do < h'te (3.13)
for some o > 0. Given a strictly quasiconcave function, the inequality in Theorem 3.3
is satisfied for all x € &, by choosing a sufficiently small 4. Thus, the subdifferential

set is nonempty in A;,.
We propose a new numerical scheme S, using the subdifferential operator,

max pepy(ulx) Fn(p, u, u(x), x) if P, [u](x) # 9,

. (3.14)
—00 otherwise

Sp(u, u(x), x) =

where Fj, = Fj,(p, u, t, x) is a function that satisfies
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(F1) Fj is monotone,

(F2) Fj is continuous in # and ¢,

(F3) givenx € 2, p € RY, X e joyxmd and u € C®(RY), F, approximates the
function H (X, p, u, x) in (3.12) such that for all

|Fn(p,u, u(x),x) — H(X, p,u, )| < C(W™ +d0™), mi,my = 1.

The following lemmas shows the monotonicity and consistency of the proposed
scheme.

Proposition 3.6 (Monotonicity) The scheme (3.14) is monotone.

Proof Letu, v : @ — R< be functions such thatu < v near x. Suppose P, (v, v(x), x)
is nonempty. By Proposition 3.2 and (F1), we have

Sp(u,u(x),x) = max  Fp(p,u,u(x),x)
pePy(u,u(x),x)

max Frn(p,v,u(x),x) = Sp(v, u(x), x).
pePy(v,u(x),x)

v

If P, (v, v(x), x) is empty, then
Sp(u, u(x), x) > —oo = Sp(v, u(x), x).

Thus, the scheme is monotone. O

Proposition 3.7 (Consistency) Suppose the function H(X, p, ¢, x) in (3.12) satisfies

|H(X, p,@,x) —H(Y,q,9,y)| <C ( l% - Z—l +lx— y|) (3.15)

forall X,Y e R4 p g e RY x,y € Q, and C is a constant depending on ¢ and

sym

Q. Given x € Q, assume (3.13) and ¢ € C®(RY) satisfies |Vo(x)| > 0.
(i) IfL(szp(x), Vo(x)) < 0, the scheme satisfies

lim sup Sy (¢ + v, () + v, ) < H*(V2p, Vo, ¢, x).

h—07t
y—0
y~>x

(ii) If L(V?@(x), Vo(x)) > 0, the scheme satisfies

liminf Sy, (¢ + v, 9(y) + v, ¥) = H(V?0, Vg, ¢, x).
h—0t

y—0
y—x
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Proof We prove the first part of the proposition. Let x € € and assume
L(V?p(x), Vo(x)) < 0. Choose ¢ > 0 and define ¢, a perturbation of ¢, such
that

€ 2
e (¥) = 0(y) — Ely —x|”.
Then L(Vzgog (x), Ve (x)) < 0. Suppose that ¢, satisfies

lim Sy (pe + 7, 9:0) +v,3) = H(V?@e, Ve, ge, X). (3.16)

y—0
y—>x

By the definition of the operator,

H(V?0e, Vi, 9, x) = H(V? 0, Vi, e, x) = H(V?9, Vo, 9, X)
= ﬁ(V2<p, Vo, p, x).

Thus, by the monotonicity of the scheme,

lim sup Sy (@, 9(3), ¥) < limsup Sy (ge + ¥, 9 (v) + v, ¥) < H*(V?@, Vo, ¢, x).
h—0 h—0
y—0 y—0
y—>x y—>x

Thus, (i) is proven if (3.16) is shown.

Let us show (3.16). From the assumption (3.13), there exists #o such that the
inequality (3.8) is satisfied for all 4 < hg. Furthermore, we may assume A is small
enough that L(Vz(,aS (y), Ve (y)) < Oforall y € B(x, hg). Choose h < hg, y € A,
such that [x — y| < &, and y > 0. Denote by p* := argmax ¢ p,(4)(x) Fr (P, ¢e +
Y, ¢e(y) + v, y). Then

|Fap™, gc + 7,000 + 7. 9) = H(V20e, Voo, 00, %)
< |Fn(p*. 0 + ¥, 0c(0) + v, ¥) — Fu(p*, ¢e. 9 (). ¥)|
| a0, 9es 00, ) = H(V2 g0, Ve, g, )

By (F2), the first term converges to 0 as y — 0. The second term can be bounded by

< )Fh(p*, Qe 0 (1), ) — H(V?0s, p*, 05, y)‘

+ |H(Pge. 0", 0 ) = H(V200, Voo, 00, 3)|

+|x—yl)

*
\Y

Ip [V e (x)]
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where the last inequality uses (F3) and (3.15). The second term in the last line can be
bounded by
+|x — y|> .

- C( P Vee(y) Voe(y)  Vee(x)
B Pl IVeeWIT IV [Vee(x)]

By Theorem 3.5,

p* Ve (y)
- Ch+do
’|p*| Vo] = CRH0
and since g, € C®(RY),
Ve (y) _ Ve (x) Ve (y) . Ve (x) Ve (x) _ Ve (x)
[Voe) Vo)~ [IVe:(D] Ve (»)] IVoeM)| Ve (x)]

_ MaXzepe Ve (@)
T mingegx,n) Ve (2)]

|x —y| < Ch.

This proves (3.16), and thus proves the first part of the proposition.

Next, we prove the second part of the proposition. Since ¢ is smooth and
L(V?p(x), Vo(x)) > 0, there exists kg such that L(VZ¢(y), Vo(y)) > 0 for
all y € B(x,hp). Thus, for any sequence yy — x, there exists K such that
I-NI(V2<p, Vo, e, yv) = —oo forall k > K. Thus,

liminf;, o+ Sp(p + ¥, 0(y) +v,y) = —00
y—0
y—>x

= liminfy_ o H(V20, Vo, ¢, i) = H,(V2p, Vg, ¢, x)

which proves the proposition. O
Finally, we show the scheme S, is convergent.

Theorem 3.8 Suppose the assumption (3.13) and the strong uniqueness property (2.11)
hold. Suppose u is the unique quasiconcave viscosity solution of the PDE

H(Vzu, Vu,u,x) =0 inQ

(3.17)

u=g onoQ2
where g : 02 — R is a continuous function. -
Then the numerical solutions uy, of the scheme Sy, converges uniformly to u on SQ.

Proof Denote by X,y and I', 5 the set of points in Q and the set of boundary points,
respectively, with the number of points n(h) depending on the spatial resolution h.
Letu,u: 2 — R be defined by

u(x):= limsup up(y) and u(x):= liminf wup(y).
Xn(h)ayax "(h)ay*)x
h—0 h—0
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We claim that # and u are viscosity subsolution and supersolution of (3.17), respec-
tively. First, let xo € 2 and ¢ € C*°(R¥) be such that u — ¢ has a local minimum at xo.
Without the loss of generality, we can replace ¢ by ¢(x) — @ (x0) +u(xo) — K |x —x¢ |2.
By choosing K large enough ¢ satisfies the quasiconcavity assumption (3.7), and there
exists € > 0 such that

u(x) —p(x) > 0 =u(xg) — ¢(xg) forall x € B(xg, €) neQ.

There exist sequences iy — 0 and yx — xo where uj,, — ¢ attains the local minimum
at yx € B(xo, €) N X, ;) for each k. Denote by yi := up, (yx) — ¢(yr). Then we have
vk — 0and up, (x) — @(x) > yi for all x € B(xg, &) N Xy,). By the definition of
uj, and the monotonicity of Sy,

0= Spung, un, V), &) < Sp(@ + vk, (k) + Vi, yu)- (3.18)

By the consistency of Sy,

0< limksup Su(@ + v 9% + vio yi) < H* (V2@(x0), Vo (x0), ¢(x0), X0).

If xo € 0€2, then we can arrange it so that either y, € I'y(5,) or yx € X)) \ny) for
all k. In the first case, we have

u(xg) = hliH(l)+ up, (i) > g(xo),
k—>

due to the continuity of g. In the second case, by the same argument as above, (3.18)
holds. Thus, u is a viscosity supersolution of (3.17).

The proof of u being a viscosity subsolution of (3.17) is similar to the above proof.
The only change is that given a smooth test function ¢ € C*(R?) such that i — ¢ has
a local maximum at xo, we add a quadratic term to ¢ so that L( Vzgo(xo), Ve(xg)) >0
and xg is a strict local maximum point.

By definitions, u < # on €, and by the strong uniqueness property, u >  on 2.
Thus, we have u = u, and we conclude u;, converges uniformly to the unique viscosity
solution of (3.17). m]

3.5 Iterative scheme

To solve the global scheme (S;,), we propose an implicit iterative method. Given point
clouds A&}, the implicit iteration can be formulated by solving

Sp(uy, uZH(x), x) =0 foreveryx € X,

starting from some initial guess u2 € My, Using the monotonicity of the scheme
u"*! can be computed through bisection methods. Since the scheme is monotone,

homogeneous (for mean curvature motion), and satisfies a maximum principle, it is
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possible to show that the resulting solution is within O () of the exact solution of the
scheme. The alogrithm is displayed in Algorithm 1. In the algorithm, the error of u is
defined by

€Iror =

D 1Sn(u, u(x), %)

xeX,

1
| X |

where | X, | denotes the total number of points in &;,.

Algorithm 1 Implicit iterative method

Require: A point cloud &), and a function Fj (p, u, t, x) in (3.14).
Ensure: Solution of the scheme uy,

1: while error > tolerance do

2:  forx € X, do

3: Use bisection methods to compute uhttl (x) from £ > S (u", 1, x).
4:  end for
5: end while

In the numerical experiments described in Sect. 5, we initialize u?) using the computed
solution on a coarser graph. Specifically, we compute the solution on a % X % Cartesian
grid and use it as an initial guess function to compute the solution on an N x N grid. In
practice, this initialization significantly accelerates the convergence of the algorithm
compared to setting u® = 0. We believe that implementing multigrid-type methods
can further improve the algorithm’s performance, which we plan to explore in future
projects.

4 Applications
In this section, we will construct the monotone convergent schemes for the viscosity

solutions of the levelset convex geometric PDEs. In particular, we construct monotone
schemes for the Tukey depth eikonal equation in (1.1),

Vu(x)| = / p(y)dS(y) in 2,

(y—x)-Vu(x)=0

the mean curvature motion PDE

|Vulk = f in Q
4.1)
u=0 onoS2,
and the curvature flow equation
Vulc§ = f in Q
Vuly = 1 (4.2)

u=0 ona
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for a € (0, 1] depending the dimension of the domain €2.

4.1 Tukey depth

From (3.12), define

H(p,u,x) = I%I - Vu(x) — / p(y)dS(y) 4.3)

(y—x)-p=0

where p is a nonnegative density. In order to establish a monotone convergent scheme
for the Tukey depth eikonal equation (1.1), the task involves demonstrating that H
satisfies the Lipschitz condition stated in Proposition 3.7 and defining a function Fj,
that fulfills the requirements outlined in assumptions (F1), (F2), and (F3). Then we
can easily construct monotone and consistent schemes S, in (3.14).

To show the nonlocal integral term within the PDE satisfies the Lipschitz condition
stated in Proposition 3.7, we assume the data density p satisfies the same regular-
ity condition detailed in [35], which established the existence of a unique viscosity
solution of the Tukey depth eikonal equation.

Lemma 4.1 Suppose a nonnegative density p is Lipschitz in an open and bounded
support S C Q. Given ¢ € C®(R?), the function H in (4.3) satisfies

p q
|H(p,p,x)— H(q, ¢, )| §C<m_lq_l +|x—y|>

forallx,y € Qand p,q € R, and C is a constant depending on p and Q.

Proof Define

Hi(p.u,x) = % - Vu(x)

Hy(p,u,x) = / p(y)dS(y).
(y=x)-p=0

First, we will show H; is Lipschitz. Choose x € Q2 and p, g € R4, Then

p q
|Hi(p,¢,x) — Hi(q,¢,x)| < |— — —|max |Ve(2)|.
Ipl gl ze2

Choose x, y € Q and p € RY. Then
[Hi(p, ¢, x) — Hi(p, ¢, )| < Vo) = Vo(y)| < |Ix —y| max V20 (2)].
Thus, H; satisfies (3.15).
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To show Hj is Lipschitz, first fix p € R4, For all x, y € Q,

Ha(pout.x) — Ha(p.u, y)| = / p(z+ (x — ) dS() — / p(2)dS(2)
z—y)-p=0 (z—y)-p=0
< f PG+ (x—y) — p(2)] dS()
(z—y)-p=0
< Clx —y| f 1q(z)dS(z)
(z—y)-p=0
<Clx —y|

where the second ineqaulity uses p being Lipschitz and 1 is an indicator function on
2 and C is a constant depending on p and 2.
€ €
Next, we fix x € Q. Choose any p, ¢ € R? and define p’ = # and ¢’ = \Z_H'
Then, using the change of variables,

oo (o8}

|Hy(p,u, x) — Hy(q,u,x)| = /p(x+p’t)dt—/p(x+q’t)dz
o —0oQ
oo
< / lp(x + p't) — p(x +q'1)]| dt
—o0

o0
<Clp'—4q'| / t1q(r)dt

—00

p q
<Clp'-4q'|=C m—m

where the second inequality use p being Lipschitz. Again, C is a constant depending
on p and €2. This proves the lemma. O

Note that the condition stated in Lemma 4.1 requires p to be Lipschitz continuous
within an open and bounded support in the domain. However, it is worth noting that this
condition can be relaxed to some extent. In Sect. 5.3, we illustrate, through numerical
examples, that the proposed numerical scheme is capable of approximating the solution
when the density p is not Lipschitz in Q.
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4.2 Curvature motion

We present our monotone schemes in the simple setting of curvature motion of a
convex curve in the plane. This is described by the eikonal equation

[Vulk =1 inQ
4.4

u=0 ono<,

where € C R? is a convex and bounded set, 92 is the initial curve, and k (x) is
the curvature of the level set of u passing through x, which is given by x(x) =
—div(Vu/|Vul). In this setting, the level sets {u = t} evolve with normal velocity
v = k. Since the initial curve €2 is convex, all the super-level sets {u > ¢} of u will
be convex, hence u is quasiconcave.

The eikonal equation (4.4) has a particularly simple form, since we can formally
expand « to find

—upy = |Vulx =1, 4.5)

where n = % is a unit vector orthogonal to Vu, and u,, =7 - VZ2u 5. Hence, the
problem boils down to constructing a monotone scheme for the pure second derivative
uyy. If the direction 1 in (4.5) was fixed and did not depend on Vu, then the problem
would be simple. The difficulty is that n depends on Vu.

We can directly apply our subdifferential P, [u](x) in this setting. For p € V,(x)
we define p~ := (—pa, p1). The vector pt plays the role of n from (4.5).> Our

scheme for (4.4) is

}I)Ilex]( )—A},‘?Lpluh(x) =1 forx e &, 4.6)
PEP;, [ul(x

where AZ q is defined as

ulx +q) —2u(x) +ulx — q)
Azqu(x) = e

The main idea is that we replaced the selection of the direction = Vu' with the
maximum over the subdifferential P, [u](x). It is easy to see that for p € Vj(x) the
negative of the second order finite difference, i.e., —AZ q is a monotone scheme, and
so it follows from Proposition 3.2 that (4.6) is monotone.

The schemes we consider here are wide stencil schemes, inspired by schemes for
degenerate elliptic equations such as the Monge—Ampere equation [20]. In particular,
we take the stencil V), to be independent of x. See Fig. 4 for a depiction of the direction
set V, for the standard 9 and 25 point stencils.

2 We assume our stencil Ny, (x) is chosen symmetrically, so that p € Vj, (x) if and only if pL e Vi (x).
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(a) 9 points (b) 25 points

Fig.4 Depiction of the available directions V), in the 9 and 25 point stencils

Remark 4.2 We can easily extend the scheme to motion by a power « € (0, 1] of mean
curvature:

{ IVulc? = f inQ “
u=0 onodQ.
The reformulated equation corresponding to (4.5) becomes
IVul'" ™ (—up)% = f in Q
and the corresponding scheme is
max |Vpu(x)|1_“(—Ap¢p¢u(x))“ = f(x) for x € X, (4.8)

PP, [u](x)
where V,u is any monotone discretization gradient, in this case

u@x) —ulx —p)

Vyu(x) = Dl

Remark 4.3 We can furthermore extend the scheme to certain functions of mean cur-
vature, namely

[Vulg(ky) = f inQ
u=0 onod,
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where g : [0, 00) — [0, 00) is increasing and satisfies
g'(s) <s 'g(s) foralls > 0. 4.9)
The corresponding scheme is

(=A L1 ru(x))+

|[Vpu(x)| max g< V()]

peP; [ul(x)

):f(x) for x € A),.

The condition (4.9) ensures that s — sg(¢/s) is increasing for all + > 0, so that the
scheme is monotone. This requirement is satisfied by g(s) = s* for 0 < o < 1, but
also by other monotone functions, such as

1 —1
gls) = (log (; + e)) )

We now establish consistency of the above schemes.

Lemma 4.4 Define a function

2
p-Vel)p
H(p,p,x) = BT

Then, given ¢ € C®(RY), the function H satisfies the Lipschitz condition stated in
Proposition 3.7.

Proof Choose x €  and p, g € R?. Then

|H(p7¢’x)_H(q’§0’x)|
- ‘p‘Vzw(x)p B p~V2<p(x)q' ’p'szp(x)q _q-Vieg
IpI? Ipllgl Ipllgl lq1?

p

<2_—i

max [V2¢(2)].
lpl gl

z€Q2

Choose x, y € Q and p € R?. Then

p- (Vi) — V() p
Ip|?

< |x — ylmax |V3¢(2)].

zeQ

|H(p7(pv-x)_H(pa(p’y)| =<

This concludes the lemma. O
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4.3 Extensions to higher dimensions

We briefly discuss here how the schemes naturally extend to higher dimensions. Con-
sider d = 3. We can formulate the scheme to solve motion by mean curvature, Gauss
curvature, or more general functions of the principal curvatures. For mean curvature,
we wish to solve

[Vulkyy = f inQ
u=0 ono,

where k7 (x) is the mean curvature of the level surface of u passing through x, given
by

v — A
Ky (x) = —div " = i u,
u |Vu|

where & = Vu/|Vu|. If 51, 12 is any orthonormal basis for £1, we can write
Au = ugg + Unyp + Uy,
and therefore we can write ks as

u +u
Ky (x) = ——’“"‘Wu' e (4.10)

This allows us to rewrite the equation as
—(uyygy + tyypy) = f In 2,
and the corresponding scheme would be

max  (—Ay (pyo(mUX) — Ay (puw(pit(x)) = f(x) for x € &y,
PEP; [ul(x)

where v (p), v2(p) € Vj are an orthonormal basis for p=. The Laplacian is rotation-
ally invariant, so the choice of v (p), and v2(p) is not important.
The affine flow in higher dimensions corresponds to motion of a surface with
1

velocity proportional to « /™

wish to solve

where kg denotes Gauss curvature. Since d = 3, we

1
Vules = f inQ
u=0 ondQ.
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We can write Gauss curvature in the level set formulation as

Vu - cof(—V2u)Vu
K, =
¢ Vul*

If O is any orthogonal transformation such that OVu(x) = |Vu(x)|e3, then we have

_ OVu - cof(—0V*u0")0OVu)  det([—O0V*u0"]33)
- [Vul* B Vul?

KG

’

where [A]z3 denotes the (3,3)-minor of the matrix A. This is similar to the Monge—
Ampere equation restricted to the space orthogonal to Vu. We can use Hadamard’s
determinant identity, as was used for Monge—Ampere in [47], to write

(_uv1v2)+(_uv2v2)+
KG = min 5 ,
{v1,v2} [Vul
where the minimum is over all orthonormal bases {v1, v} of Vu~. The corresponding
monotone discretization scheme is

1 . 1 L
max  |[Vyu|2 min  (=Ayu)i(—Apnu)i = f(x) for x € Ay,
PEP, [ul(x) {vi,va}ept

where p+ denotes the collection of orthonormal bases of the space orthogonal to p
consisting of vectors vy, vy € Vj,.

5 Numerical implementation and experiments

In this section, we present numerical results using the proposed wide stencil finite dif-
ference scheme (Algorithm 1) to solve Hamilton—Jacobi equations in various settings.
Throughout this section we will assume that the domain Q = [0, 119 is the unit square
in R?. The numerical simulations in this section were coded in C++ and Python and
were run on a 2019 MacBook Pro with a 2.6 GHz 6-core processor and 16 GB RAM.
The first set of experiments (Sect.5.1) computes the solutions of a simple eikonal
equation on unstructured point clouds in R? and R* with various boundary condi-
tions. The second set of experiments (Sect.5.2) computes the solution of the affine
flow on regular rectangular grids in R? with various boundary conditions. The third set
of experiments (Sect. 5.3) computes the solutions of the Tukey depth eikonal equation
on unstructured point clouds. Lastly, in the third set of experiments (Sect.5.4), we use
the proposed algorithm to compute the Tukey depth measure on more complex dataset
such as MNIST [48] and Fasion-MNIST dataset [49]. The Python source code and
simulation environment for reproducing our results is available online.’

3 Source code: https://github.com/wonjunee/monotone-scheme.
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(a) Square (b) Ellipse (c) Two balls

Fig. 5 The indicator function f with three different shapes for the set E in (5.1). Black pixels and bright
pixels indicate 0 and 1, respectively

5.1 Eikonal equation

In this set of experiments, we use Algorithm 1 to solve the simple eikonal equation on
unstructured point clouds in R?.

[Vul=f inQ
5.1
u=0 onds2,
where the function f is an indicator function on a set E C Q such that f = 1 on E
and 0 otherwise. We consider three different shapes for E: (1) the box, (2) a rotated
ellipse, and (3) two disjoint balls (Fig.5).

Let n be the number of points in the unstructured point cloud &,, C 2. We define
the set of neighbors Nj,(x) for each x € &), by constructing k-Euclidean distance
nearest neighbor (kNN) graphs from &, with k = 20 (where k represents the number
of neighbors). The numerical scheme to solve the PDE is

max  Vyu(x) — f(x) if P [u](x) #9
Sy, u(x), x) = { PEP; ulx)
—00 otherwise

which is proven to be monotone and consistent in the preceding sections. Given an
initial guess u(®) = 0, use Algorithm 1 to iterate the algorithm to compute the solution
of (5.1) on A&}, until the convergence. The experiment was repeated for two different
dimensions (d = 2, 3) and different number of points (n = 1000, 2000, - - - , 16000).
The computation time and the total number of iterations to compute the solutions
are displayed in Table 1. Figure6 shows the computed solutions on R? with 8000
data points. Note that the algorithm converged fastest on the two balls domain and
slowest on the square domain, showing that the rate of convergence depends on the
convexity of the domain. This is due to the fact that the scheme Sj, tests whether the
subdifferential set is empty or not which is equivalent to testing whether the function is
locally strictly quasiconcave at x. In a square domain, the point x near the flat surface
of the square requires a stricter condition on the angular resolution df(x) so that the
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Table 1 The number of iterations and computation time (Sect.5.1)

Square Ellipse Two balls
d n iterations Time iterations Time iterations Time
2 1000 28 0.25s 23 0.25s 19 0.17s
2000 38 0.66s 26 0.47s 24 0.40s
4000 49 1.61s 37 1.31s 33 1.18s
8000 70 4.92s 47 3.30s 39 2.39s
3 4000 46 1.57s 29 1.00s 23 0.81s
8000 62 3.93s 29 1.90s 30 2.04s
16000 72 9.21s 44 5.88s 20 2.70s

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

(a) Square (b) Ellipse (c) Two balls

Fig. 6 Computed solutions of the eikonal Eq. (5.1) on an unstructured point cloud in R2 with 8000 data
points. The first image shows the result from a square domain, the second image shows from an ellipse
domain, and the last image shows from two balls domain

subdifferential set is nonempty. The emptiness of subdifferential sets near flat surface
could slow down the convergence of the algorithm. We note that there are many faster
numerical methods for solving the eikonal equation, such as fast marching [38, 50]
and fast sweeping [51]. The point of these experiments is just to illustrate our methods
and their computational complexity on simple equations.

5.2 Curvature motion PDEs

In this set of experiments, we use Algorithm 1 to solve curvature motion PDEs on
2D and 3D Cartesian grids. First, we consider the affine flows in the 2D domain
Q=1[0,1°

\Vulel? = f inQ

52
u=0 ondS2, (52)

which corresponds to (4.7) with « = 1/3. The function f is chosen as the indicator
function of the square, ellipse, and two balls domains, as in the preceding experiment.
As it was noted in Sect.4.2, the wide stencil scheme for the affine flow requires
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(a) Square (b) Ellipse (c) Two balls (u(? =0) (d) Two balls (u(® = 1)

Fig. 7 Computed solutions of the affine flows (5.2) with @ = 1/3 on 128 x 128 grid with 7 x 7 stencils.
Figures 7a and b show two different solutions given different initial guess function u©

Table 2 Computation time for affine flows on various grids with 7 x 7 stencils

Domain Error tolerance Grid size

32 % 32 64 x 64 128 x 128
Square 5x 1073 0.19s 141s 1545
Ellipse 3% 1073 0.14s 1.10s 7.26s
Two balls (@ = 0) 3x1073 0.10's 0.54's 3.87s
Two balls (@ = 1) 3x 1073 0.66 s 133 10.62's

symmetry of the point cloud. Thus, we compute the solutions on a Cartesian grid
with a 7 x 7 = 49 point stencil. We considered 3 different shapes as in the preceding
experiment: (1) the box, (2) a rotated ellipse, and (3) two disjoint balls.

We employed the convergent numerical scheme S, in (4.8) to compute the viscosity
solutions of (5.2) on grids of dimensions 32 x 32, 64 x 64, and 128 x 128. The contour
plots of the solutions for the box, the ellipse, and two balls are shown in Fig. 7. It should
be noted that the solution of affine flows is unique only when f > 0 and is not unique
when f > 0. We provide examples of nonunique solutions in Fig.7a and b, where
Fig.7a shows the computed solution with the initial guess function u® = 0 and
Fig.7b shows the computed solution with u® = 1. The quantitative results of the
experiments are presented in Table 2.

Next, we consider the mean curvature PDE in 3D domain Q = [0, 1]3 given by

|Vulk = f inQ

53
u=0 onodf2. (5-3)

Again, the function f serves as an indicator function. In this experiment, we discretize
the domain using a grid of size 50 x 50 x 50. The solution of the PDE was computed
employing Algorithm 1 with stencils of size 7 x 7 x 7. Figure 8 presents two computed
solutions with two different f. The left plot illustrates the numerical solution of the
PDE for the case where f = 1 everywhere in 2, while the right plot depicts the
solution where f = 1 in two separate spherical regions centered at (0.3, 0.3, 0.3) and
(0.7,0.7,0.7), each with a radius of 0.3.
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0.8
0.6
0.4

0.2

(a) Cube (b) Two balls

Fig. 8 Computed solutions of the mean curvature PDE given by Eq. (5.3) in a 3D domain Q2 = [0, 13
The left plot illustrates the numerical solution of the PDE for the case where f = 1 everywhere in €2, while
the right plot depicts the solution where f = 1 in two separate spherical regions

(a) Square (b) Circle (¢) Donut

Fig.9 Three different shapes for p considered in Sect.5.3

5.3 Tukey depth

In this section, we use Algorithm 1 to compute the viscosity solution of the Tukey
depth eikonal equation (1.1)

[Vu(x)| — / p(y)dS(y) =0, xeQ.
(y—x)-Vu(x)=0

We present two experiments for computing Tukey depth measures. In the first exper-
iment, we consider a Cartesian grid on a domain Q = [0, 1]2 and p is a defined
as

1 ifxeE

X) =
Pl 0 otherwise.

We consider three different shapes for E C 2: a square, a circle, and a donut (Fig.9).
In this experiment, instead of the usual wide stencil used in the preceding experi-
ment, a different approach for the wide stencil scheme was implemented.
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Fig. 10 Illustration of the set I (xq, p) C &j,. Given a point x; € X} and a displacement vector p € Vj,(xq)
the set I (xq, p) includes all the points (represented as dots in the figure) that the line with a slope p passes
through including x

Given a point xg € A}, and a displacement vector p € V}(x¢), the nonlocal integral
term from the PDE is approximated by

f pMASG) =1Ipl Y plj)+ O
(y—x0)-p=0 xj€l(xo.p)
where I (xo, p) contains points in A}, along the line with a slope of p passing through
xo (Fig.10).

In this experiment, a different stencil scheme is utilized compared to the one
described in Fig.4. When considering a grid point xo, instead of selecting points
solely from the grid, points are chosen from the linear interpolation of the available
points within a 3 x 3 grid surrounding the center point xo (Fig. 11). The advantage of
adopting this stencil scheme lies in its capability to reduce the directional resolution
d6, while preserving the length of the displacement vectors in V}, (xp). It’s important to
note that these interpolated points are approximated using a first-order approximation.
Consequently, this stencil scheme is only applicable to first-order PDEs.

Using Algorithm 1, we computed the viscosity solutions of the PDE for each p, as
well as for different pairs of grid mesh and the number of stencil points: (32 x 32,k =
16), (64 x 64, k = 32), and (96 x 96, k = 64). The analytical solutions for the Tukey
depth measure were known, and we display the errors between the computed solutions
and analytical solutions in Table 3, along with the elapsed time for computations.
Furthermore, Fig. 12 displays the computed solutions on 128 x 128 grids. Note that
the highest values of the solution indicate the medians of the density p. When p is a
donut, which is not quasiconcave, the computed viscosity solution is quasiconcave, as
expected from the analytical solution of the Tukey depth measure.

Note that in Fig. 12, the computed solution for the square density differs noticeably
from the analytical solution. The level sets of the analytical solution are squares near
the center, while the level sets of the computed solution resemble octagons. This
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(a) k=16 (b) k=32

Fig. 11 The stencil scheme used for the first order Hamilton—Jacobi equations. Figures show the number
of stencil pointsa k = 16 and b k = 32

Table 3 Computation time and errors for Tukey depth eikonal equation on various sizes grids and stencils

0 32x32,k=16 64 x 64,k = 32 96 x 96, k = 48
Time Error Time Error Time Error
Square 0.26s 7.66 x 1073 4.72s 6.94 x 1073 34.98s 6.29 x 1073
Circle 0.26s 6.45 x 1072 451s 2.13 x 1073 33.88s 1.48 x 1073
Donut 0.33s 5.15 x 1073 4.93s 1.36 x 1073 37.69s 7.84 x 1074
1.0 1.0 1.0

0.8 0.8

06

06

0.4 0.4

02 02

0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) Computed solution on a square (b) Computed solution on a circle (c) Computed solution on a donut

08 08

06

06

04

04

02 0.2

0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(d) Analytical solution on a square (e) Analytical solution on a circle (f) Analytical solution on a donut

Fig. 12 Computed results and analytical solutions of the Tukey depth eikonal equation
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(a) 16 stencil points (b) 48 stencil points (c) 240 stencil points (d) Analytical solution

Fig. 13 Computed results on 512 x 512 grids and analytical solutions of the Tukey depth eikonal equation
where p represents a uniform distribution on [0, 112. The computed solutions become closer to the analytical
solution as the number of stencil points increases, i.e., as d6 approaches 0

computation can be improved by increasing the number of stencils, or in other words,
by reducing the value of d6. Figure 13 illustrates the computed solutionsona 512 x 512
domain using the number of stencil points k = 8, 48, 240. As evident, the level sets
of the computed solutions tend to become more square-like as the number of stencils
increases.

To demonstrate the robustness of the statistical depth provided by Tukey depth, we
compare the solutions of the eikonal equation:

[Vu(x)| = px), xeQ
ulx) =0, x € 0Q2

and of the Tukey depth eikonal equation:

Vu(x)| = / p(y)dS(y), xeQ.

(y—x)-Vu(x)=0

Here, p = 1 on some subset E C €2, and p = 0 otherwise. The shape of E is
visually represented in Fig. 14a, where it can be observed that E assumes the form
of a circle with a minor perturbation within its interior, i.e., p = 0 on a small area
in the interior. Figure 14 illustrates the computed solutions of these two equations on
512 x 512 grids. It is important to note that because p is not strictly positive, the
solution to the eikonal equation is not unique, and the computed solution may depend
on the chosen initialization of u°. Figure 14 presents the computed solution with the
initialization u° = 0. It is evident from the figures that the solution to the eikonal
equation is significantly influenced by the small perturbation. On the other hand, the
solution of the Tukey depth eikonal equation is unique, even when p vanishes (see
[35]), and hence the solution remains relatively unperturbed by it. Consequently, the
results affirm the robustness of the Tukey depth eikonal equation in the presence of
perturbations.

Next, we solve the Tukey depth eikonal equation on unstructured point clouds A},
that are independent and identically distributed sampled from the uniform distribution
p € P(2) on a square in R? and on a ball in R? and R3. We construct a k = 30
Euclidean distance nearest neighbors graph from &}, to define N, (x) for each x € &;,.
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F Y
A 4

(a) The data density p (b) Eikonal equation (c) Tukey depth

Fig. 14 a Illustrates the density p with a small perturbation in the interior, where bright pixels represent
a value of 1 and dark pixels represent a value of 0. b and ¢ depict the computed solutions of the eikonal
equation and the Tukey depth eikonal equation, respectively, using the density p on 512 x 512 grids

Table 4 Computation time and errors for Tukey depth eikonal equation on 2D point clouds

P n = 1000 n = 3000 n = 10000
Time Error Time Error Time Error
Square 0.28s 574 x 1074 1.15s 224 x 1074 5445 1.59 x 10~

Circle (2D) 0.39s 2.24 x 1073 1.20's 9.15 x 10~4 5.10s 8.38 x 1074
Circle (3D) 0.41s 5.76 x 10~ 1.07s 331 x 1074 4.60s 2.76 x 1074

The imposed boundary condition is a Dirichlet boundary condition such that
u(x) =0, x €A,

where 0. X, :={x € X, : d(x,9Q) < e}andd(x,y) =[x — y|.

Note that there are various density estimation techniques that can be used to approx-
imate the nonlocal integral function (x, p) +— f (y—x)-p=0 o (¥),dS(y). However, in
this experiment, we analytically compute the function for demonstration purposes.
The quantitative results, showing the error between computed solutions and analytical
solutions in R? and R3, are displayed in Table 4 and visualized in Figs. 15 and 16. The
error is computed through the L' norm between the computed solutions u.. : X, — R
and analytical solutions u, : X, — R:

1
Brror = lue — tall1x,) =~ D le(x) = ta ()]
xeX,

5.4 Applications to high-dimensional datasets
In this set of experiments, we solve the Tukey depth eikonal equation on high-

dimensional datasets. We consider the MNIST [48] and Fashion-MNIST [49] datasets.
The MNIST dataset consists of 28 x 28 grayscale images of handwritten digits from
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0.00

(d) n = 3000 on a circle density

025
020
015
010
005

0.00

actual

|

(e) m = 10000 on a square density (f) m = 10000 on a circle density

Fig. 15 Computed solutions and analytical solutions of Tukey depth eikonal equation on point clouds in
R2. Each subplot a—f displays the computed solution on the left and the analytical solution on the right, for
varying numbers of points and densities

(a) n = 1000 on a sphere (b) m = 3000 on a sphere (¢) m = 10000 on a sphere

Fig. 16 Computed solutions of Tukey depth eikonal equation on point clouds sampled from the uniform
distribution on a sphere in R3. The figures display the segmented 3D sphere for clear visualization
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0 to 9, while Fashion-MNIST consists of 28 x 28 grayscale images of ten classes of
clothing such that shoes, t-shirts, and so on.

Let X,  R7% be a point cloud containing 4000 images of a single digit (0, - - - , 9)
from MNIST dataset. Thus, X}, is an empirical distribution of a data density of a given
digit from the MNIST dataset. We then construct k = 30 Euclidean distance nearest
neighbors graph from &}, which defines the set of neighbors Nj, (x) for each x € A,.
Since this is a high-dimensional problem, computing an integral on the hyperplane of
R784 is a challenging task. In this experiment, we approximate the nonlocal integral
term by

/ p() dS(y) ~ / PN (x — ¥ dS()

(y—x)-p=0 (y—x)-p=0

where N is a normal distribution with a variance ¢ and a mean 0. We compute this
integral term using Monte-Carlo simulation

1 N
/ POING (Ix =y dS() ~ — l;p(m

(y—x)-p=0

where y; are samplings from a normal distribution on a hyperplane {y : (y—x)-p = 0}.
In the expression, p(y;) is computed by a kernel density estimation such that

1 M
PN~ o Y N = yi).

j=1

The same Dirichlet boundary condition of a point cloud is used as in the preceding
experiment.

In the high-dimensional setting, the spatial resolution /4 is very large, since the
distance between points grows exponentially with dimension (put another way, to
keep h fixed as d — oo would require an exponentially growing number of points, as
we encounter the curse of dimensionality). Thus, we do not expect to obtain a highly
accurate approximation of the true solution. Furthermore, we do not have access to
the exact solution anyway, so we cannot check the accuracy. Instead, in the present
experiments we visualize the images with the highest and lowest computed depth
values (i.e., the deepest and shallowest points) in order to demonstrate the algorithm’s
ability to approximate a reasonable notion of data depth.

We repeat the experiment for each digit from 0 to 9 in MNIST dataset and for each
class of clothings in Fashion-MNIST dataset. The results are displayed in Figs. 17
(MNIST) and 18 (Fashion-MNIST). Each figure in Fig. 17 shows 16 highest points
from (a) the computed solutions of Tukey depth eikonal equation, (b) the distance
function dist(x, 9€2) from the eikonal equation, (c) 16 boundary points in 9, X},, and
(d) 16 random points from &;,. The boundary points were computed using the method in
[37]. The highest points from the computed solutions of Tukey depth eikonal equation
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Fig. 17 Median images from MNIST dataset
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(d) Random images

correspond to median points of the datasets. When comparing (a) with other results,
we can see the median points from Tukey depth show the most consistent shapes of the
digits. Similarly, Fig. 18a shows the most consistent results of all. Thus, even though
our numerical method may not accurately approximate the true solution of the Tukey
depth PDE in a high dimensional setting, the method is computationally efficient and
produces reasonable results for data depth.

6 Conclusion

In this paper, we developed a new monotone finite difference scheme for solving
Hamilton—Jacobi equations with quasiconcave solutions. The method is based on a
novel set-valued monotone discretization for the direction of the gradient. We proved
that the method converges to the viscosity solution of the underlying Hamilton—Jacobi
equation, and presented a series of numerical results on various types of curvature
motionind = 2 and d = 3 dimensions, as well as applications to computing the Tukey
depth on high dimensional image datasets including MNIST and FashionMNIST.
Future work will focus on expanding the methods to equations that do not enjoy the
quasiconcavity property.
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Fig. 18 Median images from FashionMNIST dataset
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