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A B S T R A C T 

Recent (sub)millimetre polarization observations of protoplanetary discs reveal toroidally aligned, effectively prolate dust grains 

large enough (at least ∼ 100 μm) to efficiently scatter millimetre light. The alignment mechanism for these grains remains 

unclear. We explore the possibility that gas drag aligns grains through gas–dust relative motion when the grain’s centre of mass is 

offset from its geometric centre, analogous to a badminton birdie’s alignment in flight. A simple grain model of two non-identical 

spheres illustrates how a grain undergoes damped oscillations from flow-induced restoring torques which align its geometric 

centre in the flow direction relative to its centre of mass. Assuming specular reflection and subsonic flow, we derive an analytical 

equation of motion for spheroids where the centre of mass can be shifted away from the spheroid’s geometric centre. We show 

that a prolate or an oblate grain can be aligned with the long axis parallel to the gas flow when the centre of mass is shifted 

along that axis. Both scenarios can explain the required ef fecti vely prolate grains inferred from observations. Application to a 

simple disc model shows that the alignment time-scales are shorter than or comparable to the orbital time. The grain alignment 

direction in a disc depends on the disc (sub-)structure and grain Stokes number (St) with azimuthal alignment for large St grains 

in sub-Keplerian smooth gas discs and for small St grains near the gas pressure extrema, such as rings and gaps. 
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1  I N T RO D U C T I O N  

Dust grains within gaseous protoplanetary discs are the raw material 

for forming planets (e.g. Dr 
↪ a ̇zkowska et al. 2023 ). Their studies have 

been revolutionized by the Atacama Large Millimeter/submillimeter 

Array (ALMA), especially through disc-scale observations of linear 

continuum polarization (e.g. Kataoka et al. 2016b ; Stephens et al. 

2017 , 2020 , 2023 ; Alves et al. 2018 ; Bacciotti et al. 2018 ; Girart 

et al. 2018 ; Lee et al. 2018 ; Ohashi et al. 2018 ; Sada v oy et al. 2018 , 

2019 ; Dent et al. 2019 ; Harrison et al. 2019 ; Takahashi et al. 2019 ; 

Aso et al. 2021 ; Tang et al. 2023 ; Harrison et al. 2024 ; Liu et al. 2024 ; 

Lin et al. 2024a ). The origin of disc polarization is often attributed to 

scattering when dust grains have grown large enough to efficiently 

scatter millimetre/submillimetre light. Measuring polarization can 

constrain the properties of dust grains, like the distribution, grain 

sizes, porosity, etc (e.g. Kataoka et al. 2015 , 2016a ; Yang et al. 

2016a , 2017 ; Kirchschlager & Bertrang 2020 ; Yang & Li 2020 ; Lin 

et al. 2020b ; Zhang et al. 2023 ; Yang et al. 2024 ; Zamponi et al. 

� E-mail: zlin@carnegiescience.edu 

2024 ). Alternatively, if grains are aligned, then the thermal emission 

is intrinsically polarized (e.g. van de Hulst 1957 ; Yang et al. 2016b ; 

Kirchschlager, Bertrang & Flock 2019 ; Lin et al. 2020a , 2022 ). 

Polarized thermal emission from aligned grains has been used to 

trace the magnetic field in the envelopes around protostars. Polariza- 

tion successfully measured the expected hour-glass morphology of 

the magnetic field (e.g. Girart, Rao & Marrone 2006 ; Stephens et al. 

2013 ; Maury et al. 2018 ; Kwon et al. 2019 ; Huang et al. 2024 ). 

The widely accepted explanation is through radiative alignment 

torques, i.e. RATs (Dolginov 1972 ; Dolginov & Mytrophanov 1976 ; 

Draine & Weingartner 1996 , 1997 ; Lazarian & Hoang 2007a ) which 

allow grains to be aligned to the magnetic field or radiation field 

through internal and external alignment (see e.g. Lazarian 2007 , 

Lazarian, Andersson & Hoang 2015 for a re vie w). Internal alignment 

refers to the alignment of the angular momentum, J , to the axis 

of maximum moment of inertia due to energy dissipation (Purcell 

1979 ; Lazarian & Efroimsky 1999 ; Hoang & Lazarian 2009 ; Hoang 

et al. 2022 ). As a result, the long axis of the grain should be 

perpendicular to J and the polarization of an ensemble of grains 

should appear ef fecti vely oblate. External alignment occurs when J 

becomes aligned with an external field, like the magnetic field B or 
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the radiation field (Lazarian & Hoang 2007a ; Lazarian et al. 2015 ). 

When producing polarization after internal and external alignments, 

the grains as an ensemble should be ef fecti vely oblate with their short 

axes aligned along the external field. 

In the disc-scales, ho we ver, recent observ ations have re vealed 

compelling evidence for the presence of grains that appear ef fecti vely 

prolate with their long axes aligned toroidally around the disc. For 

e xample, multiwav elength observations of HL Tau hav e unv eiled 

transitions in the polarization morphology from the very large array 

(VLA) Q -band ( λ = 7 . 1 mm) to ALMA bands 3, 4, 5, 6, and 7 ranging 

from λ = 3.1 to 0.87 mm (Stephens et al. 2014 , 2017 ; Lin et al. 2024a ). 

The change in pattern cannot be solely attributed to scattering. 

In particular, band 3 ( λ = 3.1 mm) shows an azimuthally oriented 

polarization pattern that was shown to require toroidally aligned, 

ef fecti vely prolate grains based on the azimuthal variation in the 

polarization (Kataoka et al. 2017 ; Yang et al. 2019 ; Mori & Kataoka 

2021 ). Since the optical depth decreases with increasing wavelength, 

scattering can become less of a factor at longer wavelengths. Multi- 

wavelength models have shown that scattering of toroidally aligned, 

prolate grains can produce the observed polarization transition (Lin 

et al. 2022 , 2024a ). In addition, recent high angular resolution 

observations (5 au resolution) at ALMA Band 7 ( λ = 0 . 87 mm) 

revealed azimuthally oriented polarization in the first gap, but 

signatures of scattering polarization in the rings. Stephens et al. 

( 2023 ) demonstrated that by incorporating optical depth changes 

between rings and gaps, scattering of toroidally aligned, prolate 

grains can also explain the observed polarization substructure. 

Signatures of toroidally aligned, prolate grains akin to those 

observed from HL Tau also exist in discs around other sources. 

Haro 6-13, V892 T au, DG T au, and GG T au show polarization 

that is predominantly parallel to the disc minor axis (a signature of 

scattering) at the shorter wavelength, λ ∼ 0 . 9 mm, and azimuthally 

oriented polarization at the longer wavelength, λ ∼ 3 mm (Bacciotti 

et al. 2018 ; Harrison et al. 2019 ; Ohashi et al. 2023 ; Tang et al. 2023 ; 

Harrison et al. 2024 ). For AS 209, the polarization along the disc 

major axis has polarization angles parallel to the disc minor axis, but 

the polarization in the outer regions appears azimuthally oriented (at 

Band 7 from Mori et al. 2019 and at Band 6 from Harrison et al. 

2021 ). The polarization pattern is reminiscent of HL Tau where the 

optical depth in the inner region is large while the optical depth in 

the outer region is low leading to a scattering signature in the inner 

region and a signature of toroidally aligned, prolate grains in the 

outer region (Stephens et al. 2017 ; Lin et al. 2024a ). 

An alternative to radiative alignment is mechanical alignment 

where interactions with the gas can align the dust grains. One type 

of mechanical alignment is the Gold mechanism that allows the 

alignment of grains along their long axes under the presence of gas–

dust relative motion (Gold 1952a , b ; Purcell 1969 ). Although the 

mechanism can explain the necessary prolate grains, the required 

relative motion should be supersonic which does not apply to 

protoplanetary discs (e.g. Nakagawa, Sekiya & Hayashi 1986 ; Lesur 

et al. 2023 ). 

Another type of mechanical alignment is through the helicity of 

grains, where grains spin up under the presence of gas–dust relative 

motion (Lazarian & Hoang 2007b ). This mechanism also requires 

internal alignment, which, along with external alignment, ensures 

that the short axes of grains become aligned to the direction of the 

gas flow or the magnetic field B . While the proposed mechanism no 

longer requires supersonic drift, it is expected to produce ef fecti vely 

oblate grains because of internal alignment. The observation of 

prolate grains suggests a lack of internal alignment which may not be 

too surprising since internal alignment time-scales are much longer 

than the gas damping time-scale for grains larger than ∼ 10 μm in 

protoplanetary disc environments (Hoang et al. 2022 ). 

A potential solution is through a modification to the radiative 

alignment paradigm using the so-called ‘wrong’ internal alignment 

(Hoang & Lazarian 2009 ). For large grains without internal align- 

ment, the short axes can become perpendicular to J (in contrast to the 

‘right’ alignment mentioned abo v e where the short axes are parallel 

to J ). When J becomes externally aligned to the expected toroidal 

B -field of a protoplanetary disc, it can match the desired toroidally 

aligned prolate grains if grains contain large amounts of iron clusters 

(Thang et al. 2024 ). Ho we ver, alignment with the B -field appears 

difficult in disc environments because the Larmor precession time- 

scale can be much longer than the gas damping time-scale unless the 

former is greatly shortened by, e.g. superparamagnetic inclusions 

(Tazaki, Lazarian & Nomura 2017 ; Yang 2021 ). 

The various examples from observations call for an answer to 

why grains are toroidally aligned and ef fecti vely prolate, but a 

robust explanation remains inconclusive. Understanding the grain 

alignment mechanism is not only interesting in its own right, but it 

will also permit the measurement of the underlying grain-aligning 

vector field in the disc. In this paper, we investigate a novel type of 

mechanical alignment, where the offset between the centre of mass 

of a grain and its geometric centre creates restoring torques when the 

grain feels a systematic flow of gas with respect to its centre of mass, 

i.e. an aerodynamic flow (denoted by the vector ‘ A ’ hereafter). The 

mechanism is moti v ated by how a badminton birdie flying through the 

air oscillates and quickly aligns aerodynamically along the direction 

of flight against the gaseous headwind in terrestrial environments 1 

(Cohen et al. 2015 ). To highlight the central role of the offset 

between geometric and mass centres, we will term the mechanism 

‘badminton birdie-like alignment’ (or ‘birdie-like alignment’ for 

short) to distinguish it from other forms of mechanical alignment 

(the e xpected de gree of the offset will be discussed below). We 

ignore internal relaxation since the effect is slow for large grains and 

only consider the rotational motion of grains due to torques provided 

by gas drag. In discs with subsonic gas–dust bulk relative motion, we 

will show that the proposed mechanism can achieve fast alignment 

within an orbital time for most regions in discs, which opens a new 

window on mapping the field of aerodynamic flow acting on grains 

– the A -field – through dust continuum polarization observations. 

The paper is organized as follows. Section 2 builds the physical 

intuition by using a simple grain model composed of two spheres 

to illustrate the key alignment behaviour and alignment time-scales 

under the presence of a gas flow. Section 3 derives the torque on a 

grain of arbitrary shape and calculates the alignment of spheroids 

(both prolate and oblate) whose solutions for polarization are known 

enabling connections to observed disc polarization from aligned 

grains. Section 4 implements the spheroid alignment model in a 

simple disc model with gas and dust velocity fields to assess the 

alignment time-scale and alignment directions. Section 5 provides a 

discussion, and we summarize our results in Section 6 . 

2  DO UBLE-SPHER E  ILL UST RATION  

This section begins with the simplest model to illustrate the alignment 

under gas drag using a double-sphere model (Cohen et al. 2015 ). 

Given the simple spherical shape, the gas drag in the Epstein regime 

has a simple analytical form (Epstein 1924 ). We first describe the 

1 Other examples from human activities include the ji ̀anzi or the hago (in the 

game of hanetsuki). 
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Figure 1. Schematic of the double sphere model. The dust grain is composed 

of two spheres, labelled ‘black’ (circle with a dark shade) and ‘white’ (circle 

without a shade), with radii ς • and ς ◦, respectively. Point O is the centre of 

mass of the grain. The radius vectors from the centre of mass to the centre of 

each sphere are r • and r ◦, respectively. The distance between the centres of 

the spheres is l denoted by a dashed line. A is the gas velocity relative to the 

centre of mass of the grain, i.e. the aerodynamic flow from the perspective of 

the grain, and is along ˆ e 3 . The spin of the grain is along ˆ e 2 . θ is the angle of 

r ◦ from ˆ e 3 in the counterclockwise direction in this figure. Since alignment 

occurs at θ = 0 when m •/m ◦ > ς 2 • /ς 2 ◦ , the black sphere has a larger mass 

and is smaller than the white sphere. 

necessary formulation of the problem, and then parametrize the 

model to focus on the physical quantities that determine alignment. 

We will show that the asymmetry between the two spheres induces 

oscillation due to a systematic gas–dust relative motion. The spin 

of the grain through gas leads to damping of the oscillation and 

eventually to alignment. 

2.1 Problem setup 

Consider a grain composed of two spheres connected by a mass-less 

rigid pole. We use point O to denote the centre of mass and let A 

be the systematic velocity of the gas with respect to O. Fig. 1 shows 

a schematic of the double sphere. To distinguish each sphere, we 

use subscripts ‘ •’ and ‘ ◦’ to represent the black and white spheres, 

respectiv ely. The radius v ectors from O to the centre of each sphere 

are r • and r ◦, respectively, with corresponding lengths denoted as r •
and r ◦. By definition of the centre of mass, the lengths are related to 

the mass through 

m •r • = m ◦r ◦ , (1) 

where m • and m ◦ are the masses of the spheres. The ith sphere ( i = •
or ◦) is characterized by radius ς i and its radius and mass are related 

through 

m i = 
4 π

3 
ς 3 i ρi , (2) 

where ρi is the material density for the ith sphere, which can be 

different for the two spheres. 

We use the Cartesian coordinate system centred on the centre of 

mass O with unit directions ˆ e 1 , ˆ e 2 , and ˆ e 3 . Let ˆ e 3 be along the 

direction of the gas flow A . We define the angle between r ◦ and ˆ e 3 

as θ . Without loss of generality, let ˆ e 1 be in the plane formed by r ◦
and ̂  e 3 . The aerodynamic drag force will be in this plane, producing a 

torque around the ˆ e 2 axis, which will be the axis of the flow-induced 

grain rotating motion, denoted by ω = ω ̂  e 2 . 

The drag force in the Epstein regime is (Epstein 1924 ): 

F = −
4 π

3 
ρg ς 

2 v th u (3) 

for a spherical grain of radius ς embedded in a gas with mass density 

ρg . F or conv enience, we will also use the gas number density n g ≡
ρg / ( μm p ) where m p is the mass of a proton and μ is the mean 

molecule weight which we assume as 2.3 for molecular hydrogen- 

dominated gas. v th is the average speed of the gas molecules with a 

Maxwell–Boltzmann distribution 

v th ≡

√ 

8 kT 

πμm p 
, (4) 

where k is the Boltzmann constant and T is the gas temperature. u 

is the velocity of the sphere relative to the gas. 2 The Epstein regime 

applies if the mean free path of the gas molecules is much larger than 

the size of the particle. For discs, the mean free path is generally 

of the order of ∼cm near ∼ 1 au and larger at larger radii where 

the gas density is lower (Armitage 2015 ). Thus, the Epstein regime 

is appropriate in the outer disc where resolved dust polarization is 

detected (see Section 4.2 for an estimate of the mean free path). 

Each sphere provides a cross-section for gas drag to induce a 

torque � i ≡ r i × F i on the grain. The velocity u i for the ith sphere 

trav elling relativ e to the gas is 

u i ≡ ω × r i − A (5) 

when incorporating the rotation of the grain (with angular velocity 

ω ). Applying the relative velocity from equation ( 5 ) to the drag force 

from equation ( 3 ) gives 

� i = −
4 π

3 
ρg v th ς 

2 
i [ r i × ( ω × r i ) − r i × A ] . (6) 

The total torque on the grain is � = � • + � ◦ from both spheres. 

We can easily identify that the torque � is only non-zero along ˆ e 2 
meaning we only have to consider the component 
 2 ( 
 1 = 
 3 = 0). 

There is only one equation of motion: 


 2 = I ω̇ , (7) 

where I is the moment of inertia and ω̇ is the angular acceleration. 

For the double-sphere model, we can easily derive the moment of 

inertia as 

I = 

∑ 

i 

m i 

(

2 

5 
ς 2 i + r 2 i 

)

, (8) 

where the second term comes from the parallel axis theorem. 

Using equations ( 6 ) and ( 7 ), we get a second-order differential 

equation: 

I ω̇ + Dω + P sin θ = 0 , (9) 

2 There are several quantities related to velocity used throughout the paper 

that deserve clarification. We use ‘ A ’ to denote the bulk motion of gas relative 

to the centre of mass of a grain. We use ‘ u ’ to denote the motion of a piece of 

a grain relative to the gas. For Section 2 , u is the speed for one of the spheres, 

while for Section 3 , u corresponds to the speed of an infinitesimal surface. In 

Section 4 , we will use ‘ v’ to describe the velocity field of the disc. 
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Figure 2. A schematic of how the orientation of the grain relates to the potential well created by the existence of aerodynamic flow. Top panel: the orientation 

of an example double-sphere grain model that satisfies m •/m ◦ > ς 2 • /ς 2 ◦ like in Fig. 1 The heavier sphere has a darker colour, while the less massive sphere 

is white. The lines with arrows denote the direction of the gas flow. The circular arrow depicts the direction of the flow-induced torque, which al w ays tries to 

align the grain and resists any angular displacement. As such, the flow-induced torque is a ‘restoring’ torque. When aligned, the less massive sphere follows 

the direction of the flow, analogous to how the heavier head of the badminton birdie leads the less massive tail against a headwind. Bottom panel: the energy 

potential U as a function of θ . The depth of the potential well is 2 P . Alignment occurs at θ = 0 where U is minimal. 

where 

D ≡
4 π

3 
ρg v th ( ς 

2 
• r 2 • + ς 2 ◦ r 2 ◦ ) 

P ≡
4 π

3 
ρg v th A ( −ς 2 • r • + ς 2 ◦ r ◦) . 

The second term is a torque that is proportional to ω and acts to 

oppose it, serving as the damping torque. The third term is a θ - 

dependent torque induced by the gas flow through relative dust-gas 

drift. 

In the limit of small θ , equation ( 9 ) simply describes a damped 

harmonic oscillator. The motion of a damped harmonic oscillator is 

characterized by two time-scales: the undamped period of oscillation 

t o and the damping time t d . The undamped period of oscillation is 

simply 

t o ≡
2 π

ω o 
, (10) 

where ω o is the undamped angular frequency 

ω o ≡
√ 

P 

I 
. (11) 

The damping time describes the time-scale for the oscillation 

amplitude to decrease: 

t d ≡
2 I 

D 
. (12) 

Although these expressions are derived from analytical solutions to 

the damped harmonic oscillator, it remains beneficial to use them as 

characteristic time-scales for equation ( 9 ) beyond the limit of small θ . 

Evidently, with the birdie-like alignment mechanism, the time-scale 

to reach alignment is in fact the damping time, which we discuss in 

more detail below. 

2.2 Alignment direction 

When P �= 0 (i.e. when the two grains are not identical and A �= 0), 

we can easily understand why this grain has to be aligned by defining 

the potential energy from the θ -dependent torque: 

U ≡ −
∫ θ

0 

( −P sin θ ′ ) d θ ′ = −P cos θ, (13) 

where θ ′ is a dummy variable and the reference potential energy 

at θ = 0 is −P . We first consider P > 0, in which case U is 

a minimum at θ = 0. The − cos θ dependence of U is easy to 

understand through Fig. 2 which shows a schematic of how the 

orientation of the grain relates to U described by equation ( 13 ). The 

direction of the θ -dependent torque depends on the orientation of 

the grain and acts against the displacement of θ from 0 attempting 

to trap the grain in alignment. At θ = 0, the torque vanishes and the 

grain is kept stable with the white sphere following the direction 

of the flow (the less massive and/or larger sphere follows A ). 

The anti-alignment point, θ = π , also does not produce a torque, 

but is unstable. The θ -dependent torque is thus a restoring torque 

within the potential well, which we call the ‘flow-induced restoring 

torque’. 

The existence of the damping torque ( ω-dependent torque) di- 

minishes the spin, which eventually decreases the rotational energy 

until θ = 0, i.e. the grain becomes aligned, which corresponds to 

the minimum energy state. Alternatively, if P < 0 (for example, the 
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white sphere becomes the heavier sphere), then U reaches a minimum 

at θ = π though the less massive and/or larger sphere still follows 

the direction of the flow (recall that θ is specifically defined using 

r ◦; see Fig. 1 ). 

From equation ( 13 ), the peak of the potential well is simply 2 P . 

If the total energy (rotational plus potential energy) of a grain is 

greater than 2 P , the grain will not be trapped in a potential well, but 

continue to spin (and not oscillate). For an initially aligned grain, one 

can easily derive that the escape angular speed is ω esc = 2 ω o , i.e. a 

grain spinning faster than ω esc cannot be trapped in oscillation. As 

gas damping dissipates the rotational energy of the grain, the grain 

will inevitably land in a potential well and begin oscillating until it 

reaches alignment at θ = 0. 

Observing the expression of P from equation ( 9 ), we can realize 

that the quantity −ς 2 • r • + ς 2 ◦ r ◦ is the first moment of the cross- 

sections of the spheres. We can define the ‘geometrical centre’ of the 

double-sphere grain by 

r g ≡
−ς 2 • r • + ς 2 ◦ r ◦

ς 2 • + ς 2 ◦
(14) 

and use r g to denote the vector from the centre of mass to the 

geometrical centre. When r g > 0, the geometrical centre shifts 

towards the white sphere and the final alignment angle at θ = 0 

is such that r g ‖ A . Conversely, when r g < 0, the geometrical centre 

mo v es closer to the black sphere, and the final alignment angle at 

θ = π also means r g ‖ A . In other words, the asymmetry between 

the two spheres causes an offset between the centre of mass and the 

geometrical centre and the grain becomes susceptible to alignment 

with A . The final alignment orientation is such that the geometrical 

centre points along the direction of the flow relative to the centre of 

mass. When r g = 0, the geometrical centre corresponds to the centre 

of mass leading to P = 0. 

Since the centre of mass is related to the mass of the spheres, we 

can express how alignment depends on the mass or density. To fulfill 

P > 0, it requires 

m •

m ◦
> 

ς 2 •

ς 2 ◦
, (15) 

where we used the definition of P and equation ( 1 ). If the spheres 

have equal mass, m • = m ◦, then the black sphere should be smaller 

than the white sphere ( ς ◦ > ς •) to reach alignment at θ = 0. 

Equi v alently, we can re-express P > 0 using the material density 

and obtain 

ρ•

ρ◦

ς •

ς ◦
> 1 . (16) 

This expression explains that both an asymmetry in the material 

density and/or in the size can create alignment. If ρ• = ρ◦, the black 

sphere needs to be larger than the white sphere ς • > ς ◦ to reach 

alignment at θ = 0 (note the opposite relation because the material 

density is fixed as opposed to keeping the total mass fixed). 

Lastly, we consider the behaviour when the flow-induced torque 

is non-existent. From equation ( 9 ), we can see that P can equal 0 

when the two spheres are identical or when A = 0, while D is al w ays 

greater than 0. When P = 0, the equation reduces to I ω̇ + Dω = 0, 

which can be integrated once to yield the time evolution of the grain 

misalignment angle relative to the flow: 

θ ( t) = θ (0) + 
1 

2 
ω(0) t d (1 − e −2 t/t d ) , (17) 

where θ (0) and ω(0) are the initial conditions of θ and ω. Equation 

( 17 ) means that the grain does not oscillate. The final orientation of 

θ ( t → ∞ ) is θ (0) + ω(0) t d / 2. In other words, without the restoring 

torque ( P = 0), the final alignment angle depends on the initial 

conditions. If the initial conditions for the grains are random and the 

direction of rotation is also random, then the ensemble should not 

hav e an y preferred alignment direction (see Section 5 for a discussion 

on the resulting polarization). 

2.3 Parametrization 

While the abo v e discussion allo ws a qualitati ve description of 

alignment, we utilize a parametrization of the double-sphere model 

to facilitate the quantitative description. In particular, we aim to 

quantify how t o and t d depend on the characteristic properties of the 

grain, in addition to the level of asymmetry between the spheres. We 

define the characteristic length l of the entire grain through 

l ≡ r • + r ◦ (18) 

which is simply the length between the centre of the two spheres. We 

define the ratio of the sizes through 

ε ≡
ς •

ς ◦
(19) 

and the sum of the sizes is constrained by 

ς • + ς ◦ ≡ λl, (20) 

where λ is the fraction of l that the radius of each sphere occupies 

with λ ≤ 1. λ = 1 means the two spheres are in contact. The sizes 

are thus 

ς • = 
ελ

1 + ε
l, 

ς ◦ = 
λ

1 + ε
l. (21) 

In addition to the size, we define the ratio of the densities through 

κ ≡
ρ•

ρ◦
. (22) 

We denote the total mass of the grain through m ≡ m • + m ◦ and 

along with definitions of ε and κ , one can find that 

m • = 
ε3 κ

1 + ε3 κ
m, 

m ◦ = 
1 

1 + ε3 κ
m. (23) 

Since r i for each sphere is related to the centre of mass through 

equation ( 1 ), we can re-express r i by 

r • = 
1 

1 + ε3 κ
l, 

r ◦ = 
ε3 κ

1 + ε3 κ
l. (24) 

It is also convenient to consider the o v erall material density ρs 

which is the total mass encompassed by the total volume of the two 

spheres: 

ρs = 
m 

l 3 

3 

4 πλ3 

(1 + ε) 3 

1 + ε3 
(25) 

One can find that 

ρ• = 
1 + ε3 

1 + ε3 κ
κρs 

ρ◦ = 
1 + ε3 

1 + ε3 κ
ρs (26) 
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We can now determine the coefficients to equation ( 9 ). The 

moment of inertia is 

I = 
4 π

3 
ρs l 

5 λ3 (1 + ε3 ) 

(1 + ε) 3 (1 + ε3 κ) 

[

ε3 κ

1 + ε3 κ
+ 

2 

5 
λ2 (1 + ε5 κ) 

]

(27) 

The coefficient to the drag term is 

D = 
4 π

3 
ρg v th l 

4 λ2 ε2 (1 + ε4 κ2 ) 

(1 + ε) 2 (1 + ε3 κ) 2 
(28) 

Lastly, we find 

P = 
4 π

3 
ρg v th Al 3 

λ2 ε2 ( εκ − 1) 

(1 + ε) 2 (1 + ε3 κ) 
. (29) 

Note that the factor εκ − 1 is equi v alent to equation ( 16 ) and 

determines the sign of P , which, in turn, determines the alignment 

direction. 

With the coefficient determined, we can assess the damping time 

t d and oscillation time t o . We will use t d,d and t o,d to denote t d and t o 
of the double-sphere model, respectively. The damping time for the 

double-sphere is 

t d,d = 
ρs l 

ρg v th 
t̆ d,d , 

t̆ d,d ≡
2 λ(1 + ε3 )(1 + ε3 κ) 

ε2 (1 + ε)(1 + ε4 κ2 ) 

[

ε3 κ

1 + ε3 κ
+ 

2 

5 
λ2 (1 + ε5 κ) 

]

, (30) 

where ̆t d,d is a dimensionless factor that encapsulates the asymmetry. 

We will use a breve ( ̆) to denote the dimensionless factors that 

only depend on the geometry of the grain. The physical quantity 

ρs l/ ( ρg v th ) is equi v alent to the stopping time of a spherical grain 

with radius l and material density ρs . The stopping time is the 

characteristic time-scale for the aerodynamic drag force to stop the 

motion of a moving grain (Armitage 2015 ). The relation between 

the damping time and the stopping time of a single sphere is not 

too surprising. As the double-sphere grain spins, each sphere mo v es 

relative to the gas. Requiring each sphere to stop its relative motion 

with respect to the gas is equi v alent to stopping the spin of the 

system, i.e. rotational damping. Thus, the damping time should be 

on the order of the stopping time. Ho we ver, this ef fect cannot be 

captured for a single spherical grain as we will see in Section 3 . 

Plugging in some typical numbers for a protoplanetary disc for the 

stopping time, we get 

t s ≡
ρs l 

ρg v th 

∼ 25 yr 

(

ρs 

3 g cm −3 

)(

l 

1 mm 

)(

10 9 cm 
−3 

n g 

)(

1 km s −1 

v th 

)

. 

(31) 

Since increasing gas density dampens the grain spin more quickly 

( t d ∝ 1 /ρg ), we expect that grains are better aligned in higher gas 

densities. Also, since t d ∝ l, larger grains are more difficult to be 

damped and should be less aligned. 

Fig. 3 (a) shows the asymmetry factor t̆ d,d for different values of 

size ratio ε and density ratio κ while adopting λ = 1 (i.e. contacting 

spheres). We find that the value is of the order of unity across the 

parameter space. When ε = 1 and κ = 1 (the symmetric case), then 

t̆ d,d = 1 . 4. Note that the flow speed A does not contribute to the 

damping time, but only determines the oscillation potential (and 

hence frequency) around the dust–gas drift direction. 

Figure 3. Dimensionless factors for the double-sphere model as a function 

of ε (ratio of radii between the two spheres) and κ (ratio of material 

density). Panel (a): the damping time dimensionless factor, ̆t d,d . Panel (b): the 

oscillation time dimensionless factor, ̆t o,d . As ε → 1 and κ → 1, ̆t o,d → ∞ 

meaning there is no oscillation when the two spheres are equi v alent. 

The oscillation time for the double-sphere is 

t o,d = 

√ 

ρs l 2 

ρg v th A 
t̆ o,d , 

t̆ o,d ≡ 2 π

√ 

λ(1 + ε3 ) 

ε2 (1 + ε)( εκ − 1) 

[

ε3 κ

1 + ε3 κ
+ 

2 

5 
λ2 (1 + ε5 κ) 

]

, (32) 

where t̆ o,d is a dimensionless factor for the oscillation time and 

the physical quantity in front of it is the characteristic oscillation 

time. Plugging in the same numbers for a protoplanetary disc as 

equation ( 31 ) and adopting A = 10 m s −1 (see Section 4 below), the 

characteristic oscillation time is ∼ 5 min. 

Fig. 3 (b) shows ̆t o,d as a function of size ratio ε for different values 

of density ratio κ . While most of the parameter space shows ̆t o,d ∼ 10, 

its value increases rapidly as ε and κ decreases to 1. Nevertheless, 

even if κ = 1 . 01 and ε = 1, or κ = 1 and ε = 1 . 01, ̆t o,d ∼ 50. Thus, 

t o,d is much shorter than the damping time and the Keplerian orbital 

periods of the outer disc even for 1 per cent asymmetry. 

Since t o,d � t d,d , the grain undergoes many oscillations before 

the amplitude of oscillation diminishes. The oscillation behaviour is 
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more akin to an underdamped harmonic oscillator which enters its 

equilibrium state (i.e. becomes aligned) gradually. We can understand 

why through the damping ratio defined by ζ ≡ D/ (2 
√ 

I P ) where 

ζ < 1, ζ = 1, and ζ > 1 correspond to underdamped, critically 

damped, and o v erdamped oscillators, respectiv ely. Applying the 

constants from equation ( 9 ), we have 

ζd = 

√ 
ρg v th 

ρs A 
ζ̆d , 

ζ̆d ≡
ε(1 + ε4 κ2 ) 

2(1 + ε3 κ) 

√ 

(1 + ε) 3 

λ(1 + ε3 )( εκ − 1) 

×
[

ε3 κ

1 + ε3 κ
+ 

2 

5 
λ2 (1 + ε5 κ) 

]− 1 
2 

, (33) 

where ζ̆d encapsulates the dimensionless, asymmetry factors. Using 

typical conditions of discs used in equation ( 31 ), we have ζd ∼
4 × 10 −7 ̆ζd and ζ̆d ∼ 6 for ε = 1 . 01 and κ = 1. One can see that 

ζd � 1 because the gas mass density ρg is drastically smaller than 

grain material density ρs (by 15 orders of magnitude with n g = 10 9 

cm 
−3 ), which is more than enough to compensate for the difference 

between the dust–gas relative speed A and the thermal speed v th . 

Fig. 4 shows the phase portrait (or trajectory maps) of the damped 

oscillations given by equation ( 9 ). The phase portrait shows the 

evolution of θ and ω for the dynamical system. 3 We used the same 

values from equation ( 31 ) along with ε = 1 . 01, κ = 1, and A = 

10 m s −1 . Fig. 4 also shows the separatrix described by ( ω/ω 0 ) 
2 = 

2(1 + cos θ ) which separates the bounded and unbounded region. 

One can derive this relation by equating the total energy (kinetic and 

potential energy) of the system to the energy at the unstable point. 

Grains in the unbounded regions continually spin without regard to 

the alignment direction. Ho we ver, as the grain loses energy through 

damping, it will cross the separatrix at some point and become bound 

within a potential well (see Appendix A for an example phase portrait 

when the grain is more damped). We can see that θ of a grain oscillates 

around the alignment point at θ = 0 and is repelled at θ = −π and π . 

To conclude the results from the double-sphere model, the asym- 

metry in the structure (a combination of the cross-section and mass) 

and the existence of gas flow lead to restoring torques that make the 

grain oscillate instead of a spin-up. As the grain oscillates, the torque 

from gas damping opposes any grain rotating motion which dampens 

the magnitude of oscillation. Even a 1 per cent level of asymmetry 

allows the grain to undergo severely underdamped oscillations. The 

damped oscillations eventually reach an orientation where the grain 

geometric centre aligns along the gas flow with respect to its centre 

of mass. The time-scale to align the grain is related to the damping 

time-scale which is comparable to the stopping time of the entire 

grain. In other words, the grain asymmetry and gas flow determine 

the direction of alignment and the damping time determines how 

quickly the grain reaches alignment. 

3  SPHERO ID  M O D E L  

The double-sphere model of a grain allowed estimates of the 

oscillation behaviour depending on the level of asymmetry and the 

time-scales for alignment. In addition, the model will al w ays be 

aligned along the long axis connecting the two spheres, which hints 

at a potential solution that can match the requirement of ef fecti vely 

aligned prolate grains constrained from observ ations. Ho we ver, 

3 We use the Python package PHASEPORTRAIT available at https:// 

phaseportrait.github.io 

the shape of the model is too idealized to assess its polarization 

from thermal emission. In this section, we utilize an axisymmetric 

ellipsoid, i.e. spheroid (prolate and oblate), and assess the alignment 

behaviour. The polarization from spheroids is well established, both 

in the dipole limit (van de Hulst 1957 ) and for arbitrary sizes 

using the T-matrix technique (Waterman 1971 ; Mishchenko & Travis 

1994 ). The spheroidal alignment model can be directly compared to 

observed polarization. 

3.1 Problem setup 

Similar to the previous section, we aim to solve the total torque � of a 

spinning grain embedded in a flowing background of gas. Obtaining 

� will allow us to derive the equation of motion. While the double- 

sphere model only adds torque from two discrete points (the centres 

of the two spheres), a smooth object, like a spheroid, requires us to 

integrate the torque over its surface S: 

� = 

∮ 

S 

r × d F , (34) 

where r is the radius vector of a surface element d σ from the centre 

of mass O and d F is the infinitesimal force from the gas acting on 

the surface element. 

Assuming specular reflection, gas drag in the Epstein regime, and 

subsonic relative motion, Appendix B shows that d F at each point 

of the surface follows 

d F = −ρg 

[

c 2 s n + v th N ( u ) 

]

d σ, (35) 

where n is the unit normal direction of d σ and u is the velocity of the 

surface relative to the gas. N ≡ n n is a projection tensor that simply 

returns a vector from the part of u that is normal to the surface d σ . 

The ne gativ e sign means the force is opposite to the direction of n . 

c s is the isothermal sound speed c s ≡
√ 

kT / ( μm p ) . 

Assume the grain spins as a solid body with angular velocity 

ω around the center of mass. Each point of the surface will travel 

relative to the gas as 

u = ω × r − A . (36) 

The expression is directly related to equation ( 5 ), but in this case, 

the u is the relative velocity of a surface element and not a complete 

sphere that was assumed for the double-sphere model. Substituting 

equation ( 36 ) and equation ( 35 ) into equation ( 34 ) yields three terms 

to the total torque on the spheroid: 

� = −ρg c 
2 
s K + ρg v th L ω + ρg v th M A (37) 

with 

K ≡
∮ 

S 

r × n d σ, 

L ≡
∮ 

S 

r × N ( r ×)d σ, 

M ≡
∮ 

S 

r × N d σ, 

where K is a vector and L and M are tensors. We have rearranged the 

expression such that only quantities that depend on the location of the 

surf ace are k ept inside each integral. Note that the cross product, r ×, 

is a 2-rank tensor that can be implemented as a matrix calculation. The 

first term is a driving torque that exists regardless of any A or ω . The 

second term is the damping torque since it is related to ω . The third 

term depends on A and, as we will see later, produces the restoring 

torque. Equation ( 37 ) is particularly useful since each integral only 

depends on the structure of the grain and does not depend on the 
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Figure 4. The phase portrait (trajectory map) of the double-sphere grain under the presence of gas flow A . The horizontal axis is θ , while the vertical axis 

is the angular velocity ω normalized by the oscillation frequency ω o . The black circles correspond to stable equilibrium points that serve as the attractors for 

alignment. The plus signs are the unstable equilibrium points. The blue curve is the separatrix that separates the bounded and unbounded re gions. Re gions inside 

the separatrix are bounded and oscillate around the attractors. 

environmental properties, like A or ρg , or its dynamic state, like θ

or ω . This opens the possibility of pre-calculating these integrals 

for any grain as its unique physical property before considering its 

dynamic behaviour. 

3.2 Strictly axisymmetric spheroid 

Thus far, we have not utilized any assumption about the geometry 

of the spheroid. We now evaluate each term in equation ( 37 ) using a 

dedicated coordinate system shown in Fig. 5 . The setup is equi v alent 

to Section 2 . Let ̂  e 1 , ̂  e 2 , and ̂  e 3 represent the Cartesian, unit directions 

of the lab frame that is centred at the origin O. We define ˆ e 3 to be 

along the direction of gas flow A and let the grain rotate around ˆ e 2 . 

Let the body frame of the spheroid also be a Cartesian coordinate 

system with its centre denoted by G . We use ˆ b 1 , ˆ b 2 , and ˆ b 3 to denote 

the unit vectors. ˆ b 3 is along the axis of asymmetry and ˆ b 2 is parallel 

to ˆ e 2 . The angle between ˆ b 3 and ˆ e 3 is θ . The relation between these 

two sets of unit vectors is simply 

ˆ b i = W ij ̂  e j , (38) 

where we adopt the Einstein summation convention and i and j are 

indices from 1 to 3. W ij are the elements of the matrix 

W = 

⎛ 

⎝ 

cos θ 0 − sin θ

0 1 0 

sin θ 0 cos θ

⎞ 

⎠ . (39) 

In the body frame, the surface of the spheroid follows 

b 2 1 + b 2 2 

a 2 
+ 

b 2 3 

c 2 
= 1 , (40) 

where b 1 , b 2 , and b 3 are coordinates in the body frame along ˆ b 1 , 
ˆ b 2 , and ˆ b 3 , respectively. In addition, c is the length of the spheroid 

along the axis of symmetry (not to be confused with the isothermal 

sound speed c s or the speed of light) and a is the length along the axis 

perpendicular to that. A prolate has c > a, while an oblate has c < a. 

Note that to fulfill the assumption of drag in the Epstein regime, the 

longest axis of the spheroid should be smaller than the mean free path 

of the gas (which is estimated in Section 4.2 below for an illustrative 

disc). 

Considering axisymmetric particles makes the surface integral 

easier to compute via a surface of revolution. We parametrize the 

surface by introducing the azimuthal angle φ around the ˆ b 3 axis 

(

b 1 
b 2 

)

= 

(

w cos φ

w sin φ

)

, (41) 

where φ starts from ˆ b 1 and increases following the right-hand rule. 

Furthermore, w is the perpendicular distance from the surface to the 

axis of symmetry, which depends on b 3 , and serves as the generatrix 

for the surface integration: 

w( b 3 ) ≡ a 

√ 

1 − b̄ 2 3 , (42) 

where b̄ 3 ≡ b 3 /c is b 3 normalized by c. We will use the bar symbol 

to denote length quantities normalized by c. With the generatrix, we 

can derive the surface element to be 

d σ = ac 

√ 

1 + ( ̄a 2 − 1) ̄b 2 3 d ̄b 3 d φ, (43) 

where ā ≡ a/c. 
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Figure 5. Schematic of a prolate and an oblate where the centre of mass is shifted along the axis of symmetry. We use ellipses to represent the cross-sections of 

the two spheroids in the e 1 e 3 -plane. The quantity a is the length from the spheroid centre along the axis perpendicular to the axis of symmetry, while c is the 

length from the centre along the axis of symmetry. For the prolate, the axis of symmetry is the long axis ( c > a), while for the oblate, the axis of symmetry is 

the short axis ( c < a). ̂  e 1 , ̂  e 2 , and ̂  e 3 are lab frame unit vectors where ̂  e 2 points out of the page. ˆ b 1 , ˆ b 2 , and ˆ b 3 are body frame unit vectors, where ˆ b 2 also points 

out of the page and ˆ b 3 is along the axis of symmetry. The offset of the centre of the spheroid from the centre of mass O is g . Since the centre of mass is shifted 

along the axis of symmetry, g ‖ ˆ b 3 . The arrow to the upper right of each grain (in green) is the direction of the gas flow A . 

The normal vector of the spheroid is related to the gradient of 

equation ( 40 ). We express the unit normal vector by n = ˜ n i ̂  b i : 

⎛ 

⎝ 

˜ n 1 
˜ n 2 
˜ n 3 

⎞ 

⎠ = 
1 

√ 
1 + ( ̄a 2 − 1) ̄b 2 3 

⎛ 

⎝ 

√ 
1 − b̄ 2 3 cos φ

√ 
1 − b̄ 2 3 sin φ

ā ̄b 3 

⎞ 

⎠ . (44) 

We use a tilde to denote components using ˆ b i as basis vectors. 

The radius vector of the surface from O can be decomposed to 

r = g + s , (45) 

where g points from the centre of mass to the geometric centre G 

and s points from G to the surface. The components of s using ˆ b i 
basis vectors are 
⎛ 

⎝ 

˜ s 1 
˜ s 2 
˜ s 3 

⎞ 

⎠ = 

⎛ 

⎝ 

a 
√ 

1 − b̄ 2 3 cos φ

a 
√ 

1 − b̄ 2 3 sin φ

c ̄b 3 

⎞ 

⎠ (46) 

For the offset vector g , we first consider the offset along the axis 

of symmetry to follow the strict assumption of axisymmetry. If the 

length between O and G is g , we have g = g ̂  b 3 . We later relax this 

assumption and explore the effects of g when it is not along the axis 

of symmetry. 

With the rele v ant details of the surface defined, we can now solve 

for K , L , and M . When inte grating o v er the surface, we find a 

common occurrence of an integral in the form of 

E[ f ( x)] ≡
∫ 1 

−1 

f ( x) 
√ 

1 + ( ̄a 2 − 1) x 2 
d x, (47) 

where x is a dummy variable for integration and f ( x) is some 

function that depends on x. The dummy variable x originates from b̄ 3 
as we integrate over the surface. The definition of E[ f ( x)] implicitly 

depends on ā for easier notation. Appendix C shows the analytical 

solutions to the E-integrals used in this paper. 

For K , we make use of equation ( 45 ) for r and obtain: 

K = g ×
∮ 

S 

n d σ + 

∮ 

S 

s × n d σ = 0 . (48) 

Note that the integral in the first term, 
∮ 

S n d σ , is al w ays 0 for a closed 

surface. 4 The latter term integrates to 0 for a spheroid. 

For L , using equation ( 45 ) gives four terms: 

L = g ×
∮ 

S 

N d σ ( g ×) + g ×
∮ 

S 

N ( s ×)d σ + 

∮ 

S 

s × N d σ ( g ×) 

+ 

∮ 

S 

s × N ( s ×)d σ. (49) 

It is convenient to know that the integral of N expressed in ˆ b i basis 

vectors is 

∮ 

S 

N d σ = πc 2 

⎛ 

⎝ 

ā E[1 − x 2 ] 0 0 

0 ā E[1 − x 2 ] 0 

0 0 2 ̄a 3 E[ x 2 ] 

⎞ 

⎠ . (50) 

For the first term of equation ( 49 ), using the ˆ b i basis vectors, we find 

that 

g ×
∮ 

S 

N d σ ( g ×) = −πc 4 ā ̄g 2 E[1 − x 2 ] 

⎛ 

⎝ 

1 0 0 

0 1 0 

0 0 0 

⎞ 

⎠ , (51) 

4 Under the current context, this is true since we assumed that the entire surface 

of a grain reflects gas equally through equation ( 35 ). If certain patches of the 

grain reflect gas differently, then there is an interesting possibility that the 

integral may not have to be 0 . 
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where ḡ ≡ g/c. Each element in the second term integrates to 0. 

Since N is a symmetric 2-rank tensor and both s × and g × are 

antisymmetric 2-rank tensors, the third term is equi v alent to the 

transpose of the second term. Lastly, the fourth term is a symmetric 

tensor, which means there are only six independent elements when 

expressed as a matrix in general. For the spheroid, four of the 

independent elements integrate to 0 leaving only two non-zero 

elements: 

∮ 

S 

s × N ( s ×)d σ = −πc 4 ā (1 − ā 2 ) 2 E[ x 2 − x 4 ] 

⎛ 

⎝ 

1 0 0 

0 1 0 

0 0 0 

⎞ 

⎠ (52) 

Thus, we find that 

˜ L 11 = ˜ L 22 = −πc 4 ā 

[

ḡ 2 E[1 − x 2 ] + (1 − ā 2 ) 2 E[ x 2 − x 4 ] 

]

(53) 

while the rest of the elements are zero. 

Lastly, for M , using the ˆ b i basis vectors, we have 

M = g ×
∮ 

S 

N d σ + 

∮ 

S 

s × N d σ

= πc 3 ā ̄g E[1 − x 2 ] 

⎛ 

⎝ 

0 −1 0 

1 0 0 

0 0 0 

⎞ 

⎠ , (54) 

where we found that the second term is 0 . 

We can now derive the torque from equation ( 37 ). Given the 

assumed A = A ̂ e 3 , we can express A = ˜ A i ̂
 b i and find that 

A = −A sin θ ˆ b 1 + A cos θ ˆ b 3 (55) 

using equation ( 39 ). Since we only consider rotation around ˆ e 2 and 

ˆ e 2 = ˆ b 2 , the angular velocity is simply ω = ω ̂  e 3 = ω ̂  b 2 . Applying 

to equation ( 37 ), the torque is thus 

˜ 
 2 = −ρg v th πc 4 ω ̄a 
[ 

ḡ 2 E[1 − x 2 ] + (1 − ā 2 ) 2 E[ x 2 − x 4 ] 
] 

−ρg v th Aπc 3 ā ̄g E[1 − x 2 ] sin θ (56) 

and we find that ˜ 
 1 = ˜ 
 3 = 0. Note that 
 2 = ˜ 
 2 also because ˆ e 2 = 

ˆ b 2 . Thus, we see that the torque is only limited along ˆ e 2 which is 

what we expect when we only consider ω along ˆ e 2 . 

The moment of inertia around the axis passing through the 

geometric centre G and perpendicular to the axis of symmetry is 

I ⊥ = 
4 π

15 
c 5 ρs ̄a 

2 (1 + ā 2 ) (57) 

for a homogenous spheroid with material density ρs . Ho we ver, to 

shift the centre of mass O away from the geometric centre G , the 

spheroid cannot be homogenous. Nevertheless, based on the double- 

sphere model, the necessary shift is relatively small compared to 

the size of the grain, so the homogenous sphere remains a good 

approximation even in this case. Using I ⊥ and the parallel axis 

theorem, we have 

I s = 
4 π

15 
c 5 ρs ̄a 

2 (1 + ā 2 + 5 ̄g 2 ) , (58) 

where we can see that I s corresponds to I ⊥ when ḡ � 1. As an 

approximation, we simply adopt I s as the moment of inertia for the 

spheroid. The subscript ‘s’ stands for ‘spheroid’. 

The equation of motion has the same form as the double-sphere 

model: 

I s ̇ω + D s ω + P s sin θ = 0 , (59) 

where 

D s = ρg v th πc 4 ā 
[ 

ḡ 2 E[1 − x 2 ] + (1 − ā 2 ) 2 E[ x 2 − x 4 ] 
] 

P s = ρg v th Aπc 3 ā ̄g E[1 − x 2 ] 

meaning the spheroid will also behave as a damped oscillator. 

We find that the potential energy is U s = −P s cos θ , which is 

again proportional to − cos θ and means the final alignment angle 

is at θ = 0 for P s > 0 or at θ = π for P s < 0. Since E[1 − x 2 ] is 

al w ays positive for all ā > 0, the sign of P s comes entirely from the 

sign of g and is independent of ā . In other words, both prolate and 

oblate grains will become aligned with their axis of symmetry along 

the gas flow, such that the direction from the centre of mass to the 

geometric centre follows the direction of the gas flow ( g ‖ A ). 

Given equation ( 59 ) we can explore the damping time t d and 

oscillation time t o analytically like in the previous section. We find 

that 

t d,s = 
ρs c 

ρg v th 
t̆ d,s , 

t̆ d,s ≡
8 

15 

ā (1 + ā 2 + 5 ̄g 2 ) 

ḡ 2 E[1 − x 2 ] + (1 − ā 2 ) 2 E[ x 2 − x 4 ] 
. (60) 

The damping time t d,s is once again related to the stopping time 

modified by a dimensionless quantity that depends on the structure 

of the grain t̆ d,s (through ā and ḡ ). Fig. 6 (a) shows how t̆ d,s depends 

on ā and ḡ . If we have a sphere ( ̄a = 1) rotating about its geometric 

centre ( ̄g = 0), t̆ d,s → ∞ (or equi v alently, D s → 0) meaning it will 

not be damped by the gas at all. The result makes sense since the 

normal direction at each point of the sphere is al w ays directed radially 

from the centre of the sphere and thus the gas cannot produce any 

torque as the sphere spins. Ho we ver, if the centre of mass of the 

sphere does not correspond to the geometrical centre ( ̄g �= 0), then 

t d,s is no longer infinite and its rotation can be damped. If we have 

a homogenous spheroid ( ̄a �= 1) rotating about its geometric centre 

( ̄g = 0), t̆ d,s is also finite since the normal directions of most of the 

surface elements are no longer strictly in the radial direction from 

O and gas can produce a torque. In general, as the non-sphericity 

( | ̄a − 1 | ) increases, ̆t d,s decreases. In other words, more non-spherical 

grains (for both prolates and oblates) are better damped by the gas 

and are aligned faster. With ḡ = 0 . 01 and ā = 0 . 9, t̆ d,s ∼ 80. 

The oscillation time is 

t o,s = 

√ 

ρs c 2 

ρg v th A 
t̆ o,s 

t̆ o,s ≡

√ 

16 π2 

15 

ā (1 + ā 2 + 5 ̄g 2 ) 

ḡ E[1 − x 2 ] 
, (61) 

which is also similar to the expression for the double-sphere. Fig. 6 (b) 

sho ws ho w t̆ o,s depends on the structure. For a gi ven ā , increasing 

ḡ decreases t o,s for both prolates and oblates, which means the key 

to allowing a spheroid to oscillate lies in the offset between the 

centre of mass from the geometric centre. For ḡ → 0, t̆ o,s → ∞ (or 

equi v alently, P s → 0) meaning the grain will not oscillate without the 

offset. Fig. 6 (b) also shows that increasing ̄a (more oblong) increases 

t̆ o,d . Ho we ver, the large dif ference is in part due to keeping the length 

along the axis of symmetry, c, fixed (long axis for a prolate, but short 

axis for an oblate). With ḡ = 0 . 01 and ā = 0 . 9, t̆ o,s ∼ 35. 
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Figure 6. Dimensionless factors for the strictly axisymmetric spheroid as 

a function of ḡ (the normalized distance from the centre of mass to the 

spheroid centre, g/c) and ā (the aspect ratio, a/c). Panel (a): the damping 

time dimensionless factor, ̆t d,d . Panel (b): the oscillation time dimensionless 

factor, ̆t o,d . Black solid lines correspond to the spherical case, ̄a = 1. Dashed 

lines correspond to prolates ( ̄a < 1), while dash-dotted lines correspond to 

oblates ( ̄a > 1). 

3.3 Quasi-axisymmetric spheroid 

Previously, we have enforced strict axisymmetry which requires the 

centre of mass to be along the axis of symmetry. As a result, both 

prolate and oblate cases will be aligned with their axis of symmetry 

along the gas flow. Since polarization observations of discs fa v our 

ef fecti vely prolate grains, we would naively continue our discussion 

with prolate grains. Ho we ver, if oblate grains are aligned along some 

long axis and the direction of the short axis is random as an ensemble, 

they can also appear ef fecti vely prolate around the azimuth of a disc if 

the dust-gas drift velocity is azimuthal. We are particularly interested 

in verifying if oblate grains can be aligned to the gas drift along the 

long axis if g is along the long axis. 

The benefits of axisymmetry lie in the integration of the surface 

and g itself does not participate in the integration. In other words, 

we can allow the centre of mass to be anywhere in the spheroid, 

while keeping most of the deri v ation the same. If g is not along 

the axis of symmetry, the grain is no longer strictly axisymmetric in 

terms of the distribution of mass. Ho we ver, since the surface remains 

Figure 7. Panel (a): a schematic of the coordinate system used to describe the 

quasi-axisymmetric oblate following the same colouring scheme and notation 

as Fig. 5 . Without strictly requiring g to be parallel to ̂  b 3 , it can form an angle 

ψ from ˆ b 3 . The horizontal dotted line (in green) helps visualize the angle θ

formed by ˆ b 3 and ̂  e 3 . The (blue) dotted line parallel to the direction of g helps 

visualize ψ . Panel (b): a schematic of a quasi-axisymmetric oblate with g ‖ ˆ b 1 
(or equi v alently ψ = 90 ◦) when reaching alignment at θ = −90 ◦. 

axisymmetric, we describe the model as a ‘quasi-axisymmetric’ 

model. We show that both the shape parameter ā and the offset 

vector g determine the final alignment direction. In the case where 

g lies along the long axis of an oblate, we find that the long axis of 

the oblate will be aligned with the gas flow. 

Following the same notation above, consider g that forms an angle 

ψ from ˆ b 3 . Fig. 7 (a) shows a schematic of a quasi-axisymmetric 

oblate. We pick ˆ b 1 to be in the same plane as g and ˆ b 3 , which gives 

⎛ 

⎝ 

˜ g 1 
˜ g 2 
˜ g 3 

⎞ 

⎠ = 

⎛ 

⎝ 

g sin ψ 

0 

g cos ψ 

⎞ 

⎠ (62) 

using ˆ b i as basis vectors. The gas flow remains in the ˆ e 3 direction. 

We can choose ˆ e 1 such that g lies in the plane formed by ˆ e 1 and ˆ e 3 . 

ˆ e 2 remains parallel to ˆ b 2 . 
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We first e v aluate K , L , and M using equation ( 62 ). We find that 

K = 0 . For L , one only needs to re-e v aluate the first term that depends 

on g and is non-zero. We find that 

˜ L 11 = −πc 4 ā ̄g 2 E[1 − x 2 ] cos 2 ψ 

˜ L 13 = ˜ L 31 = −πc 4 ā ̄g 2 E[1 − x 2 ] cos ψ sin ψ 

˜ L 22 = −πc 4 ā ̄g 2 
[ 

E[1 − x 2 ] cos 2 ψ + 2 ̄a 2 E[ x 2 ] sin 2 ψ 

] 

˜ L 33 = −πc 4 ā ̄g 2 E[1 − x 2 ] sin 2 ψ (63) 

while the rest of the elements of L are 0. When ψ = 0, we reco v er 

equation ( 53 ). For M , we find that 

˜ M 12 = −πc 3 ā ̄g E[1 − x 2 ] cos ψ 

˜ M 21 = πc 3 ā ̄g E[1 − x 2 ] cos ψ 

˜ M 23 = −2 πc 3 ā 3 ḡ E[ x 2 ] sin ψ 

˜ M 32 = πc 3 ā ̄g E[1 − x 2 ] sin ψ (64) 

while the rest of the elements of M are 0. When ψ = 0, we reco v er 

equation ( 54 ). Lastly, the moment of inertia remains equal to equation 

( 58 ). 

The equation of motion becomes 

I s ̇ω + D q ω + P q sin θ + P c cos θ = 0 , (65) 

where the coefficients are 

D q = ρg v th πc 4 ā 

[

(1 − ā 2 ) 2 E[ x 2 − x 4 ] + ḡ 2 E[1 − x 2 ] cos 2 ψ 

+ 2 ̄a 2 ḡ 2 E[ x 2 ] sin 2 ψ 

]

P q = ρg v th Aπc 3 ā ̄g E[1 − x 2 ] cos ψ 

P c = 2 ρg v th Aπc 3 ā 3 ḡ E[ x 2 ] sin ψ . 

The subscript ‘q’ refers to the quasi-axisymmetric model, while the 

subscript ‘c’ for P c refers to the coefficient of its cosine term (‘ P q,c ’ 

would be too redundant). The existence of the extra cos θ term 

in equation ( 65 ) alters the dynamical behaviour giving a potential 

energy of 

U q = −P q cos θ + P c sin θ. (66) 

We can derive the alignment angle by finding θalign such that U is a 

minimum giving 

θalign = atan2 

(

−P c 

P q 

)

= atan2 

(

−2 ̄a 2 E[ x 2 ] sin ψ 

E[1 − x 2 ] cos ψ 

)

, (67) 

where atan2 is the arctangent that gives an angle in the correct 

quadrant by taking into account the sign of the arguments. The 

alignment angle does not depend on the length of g , but only on ψ and 

ā . Fig. 8 (a) shows the alignment angle as a function of ψ for different 

values of ̄a . If ψ = 0, i.e. g follows the axis of symmetry, then P c = 0 

and θalign = 0 which reco v ers the previous results. If ψ = π/ 2, i.e. 

g follows the axis perpendicular to the axis of symmetry for both 

prolates and oblates, then P q = 0 and θalign = −90 ◦. This means that 

an oblate will be aligned to A along its long axis if its centre of 

mass is shifted along the long axis. A schematic of this conceptually 

important case is shown in Fig. 7 (b) for an oblate. In fact, if the centre 

of mass is preferentially shifted towards the long axis of the oblate 

( ψ > ∼ 45 ◦), then the grain is preferentially aligned along the long 

axis which is permitted by disc polarization when considering the 

Figure 8. Panel (a): the angle of alignment θalign as a function of ψ and for 

dif ferent v alues of ā (a prolate means ā < 1, while an oblate means ā > 1). 

Panel (b): the angle from g when at alignment. 

ensemble. Equation ( 67 ) also suggests a prolate will be aligned to A 

along its short axis if g is shifted along that direction. We discuss the 

implications in Section 5 . 

We can also derive the angle, θg , that g forms with A which is 

shown in Fig. 8 (b). Evidently, θg does not entirely follow A , but is 

modified by the shape of the grain. Nevertheless, it is within ∼ 30 ◦

for the range of ā explored here. 

4  A L I G N M E N T  IN  A  DISC  

Sections 2 and 3 have established how grains are aligned and how 

the alignment time-scales depend on environmental factors. This 

section will now implement the axisymmetric spheroid model in 

a simple disc environment to assess the alignment time-scales. 

Observations of polarization permit either prolate grains aligned with 

the long axis toroidally around the disc or oblate grains also aligned 

with the long axis toroidally around the disc. For brevity, we will only 

apply the results from the strictly axisymmetric prolate case. We first 

describe how the gas and dust velocities depend on the properties 

of the disc and grains in Section 4.1 . In Section 4.2 , we implement 

the velocity profiles and analyse the alignment time-scales across the 

disc. 
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4.1 Disc velocity 

We assume that the dynamics of gas are not affected by the dust. We 

use ( R, � ) to denote the cylindrical radius and azimuth of the disc. 

Let the Keplerian frequency in the midplane be �K ≡
√ 

GM ∗/R 3 

where M ∗ is the stellar mass. It is also convenient to define the 

Keplerian velocity v K ≡ �K R. We define a pressure scale height 

as H ≡ c s /�K and let P g be the gas pressure. The azimuthal 

velocity of the gas in the midplane follows from the radial force 

balance: 

v g,� = v K 

√ 

1 − η, (68) 

where the dimensionless factor 

η ≡ −
1 

�2 
K ρg R 

∂ P g 

∂ R 
= −

(

H 

R 

)2 
∂ ln P g 

∂ ln R 

represents the level of deviation from v K due to the pressure gradient 

(Nakagawa et al. 1986 ; Armitage 2015 ). It is convenient to define 

the pressure gradient as β ≡ ∂ ln P g / ∂ ln R. We assume the gaseous 

disc is accreting and parametrize an inward flow by 

v g,R = −α

(

H 

R 

)2 

v K , (69) 

where α is a dimensionless parameter. 5 

The azimuthal velocity of the dust is (Armitage 2015 ): 

v d,� = v g,� −
1 

2 
St v d,R , (70) 

where v d,R is the radial velocity of the dust and St is the Stokes 

number of the dust. The radial velocity of the dust is 

v d,R = 
v g,R − St ηv K 

St 2 + 1 
. (71) 

With these expressions, we can derive the aerodynamic flow of 

gas experienced by the dust A through: 

A R ≡ v g,R − v d,R = −
αSt + β

St + St −1 

(

H 

R 

)2 

v K (72) 

A � ≡ v g,� − v d,� = 
1 

2 

−α + βSt 

St + St −1 

(

H 

R 

)2 

v K (73) 

in the radial and azimuthal directions, respectively. The flow 

speed is simply A = 

√ 

A 
2 
R + A 

2 
� . We can also obtain the flow 

direction χ which determines the alignment direction of the 

grain: 

χ = atan2 

[

1 

2 

−α + βSt 

−( αSt + β) 

]

, (74) 

where χ = 0 means the dust feels an outward radial gas flow, while 

χ = 90 ◦ means the dust feels an azimuthally directed flow along the 

direction of disc rotation (i.e. a tailwind if the dust orbits azimuthally). 

Since prolate grains are aligned along the long axis, the polarization 

angle will be parallel to χ , i.e. the polarization angle has a 180 ◦

de generac y and only ranges from 0 ◦ to 180 ◦. 

Fig. 9 shows the gas flow direction as a function of St for different 

levels of α. When α = 0 (Fig. 9 , first column), the gas does not 

accrete ( v g,R = 0), while v g,� is al w ays sub-Keplerian due to the 

5 Note that the α here is simply a parametrization for the inward flow since we 

do not presume the origin. Thus, it is not immediately related to the typical 

α-viscosity prescription from Shakura & Sunyaev ( 1973 ). Nevertheless, if 

viscosity serves as the origin of the inward flow, then our parameter α should 

only differ from the α-viscosity by a factor of 1.5. 

pressure gradient β from equation ( 68 ) (Figs 9 a and d). The velocity 

of the dust depends on St . When St � 1, the dust is completely 

coupled to the gas and the dust velocity equals the gas velocity. 

The gas flow, A , is thus close to 0 (Fig. 9 g). As St increases to 

∼ 1, v d,� begins to increase (becomes less ne gativ e) and v d,R drops 

quickly. This is the well-known scenario where dust grains mo v e 

inwards quickly when St ∼ 1 (i.e. the radial drift; Armitage 2015 ). 

The gas flow is predominantly in the radial direction making χ ∼ 0 ◦

for relatively small particles with St � 1 (Fig. 9 j). When St � 1, 

the grains decouple from the gas and maintain a Keplerian orbit 

( v d,� = v K , v d,R = 0). The gas flow becomes opposite to the az- 

imuthal direction making χ ∼ −90 ◦ and the dust feels an azimuthal 

headwind (Fig. 9 j). Thus, for prolate grains aligned to the gas flow 

along the long axis, the polarization direction should be parallel to the 

radial direction when St � 1 and parallel to the azimuthal direction 

when St � 1. 

When α increases (Fig. 9 , second and third column), v g,R becomes 

non-zero and travels inwards (Figs 9 e and f). Ho we ver, v g,� does 

not change, since it remains completely determined by the pressure 

gradient (Figs 9 b and c). The main effect on the gas flow is when 

St � 1 where the dust becomes Keplerian with v d,R → 0. With a 

non-zero v g,R , the dust eventually matches v g,R as the St increases 

(Figs 9 e and f) and v d,R approaches zero from below, which leads 

to a characteristic Stokes number St c in the high St regime where 

A R = 0 exactly: 

St c = −
β

α
. (75) 

The value of St c is formally ∞ when α = 0 and of the order of 10 2 

when α = 0 . 01. It becomes ∼ 10 when α increases to 0.1. For grains 

with St > St c , the alignment angle χ becomes more ne gativ e than 

−90 ◦, although the deviation remains relatively small, so that the 

alignment is approximately azimuthal. 

The exploration shows that grains with large St can produce the 

azimuthal direction of polarization, and increasing α lessens the strict 

need for very large St . At face value, this may serve as evidence of 

aerodynamically large grains that are fairly decoupled from the gas. 

Ho we ver, e ven with α = 0 . 1, which would require a fairly large 

turbulence (Rosotti 2023 ) or magnetic-wind driven accretion (e.g. 

Suriano et al. 2018 ), the required St is ∼ 20 which is larger than 

what is typically considered. 

The issue may depend on the assumed pressure gradient. Dust rings 

are fairly common (e.g. Andrews et al. 2018 ) and they can serve as 

traps for large grains (e.g. Pinilla et al. 2012 ; Dullemond et al. 2018 ). 

Gas kinematics also infer pressure bumps (Teague et al. 2018 ). With 

quickly varying pressure gradients along the radius across rings, β

may be closer to 0, for example, β = 0 at pressure maxima and 

minima. Gi ven ho w common dust rings are, we also explore the case 

when β = 0 and show that small St can also produce gas flow parallel 

to the azimuthal direction. 

In the limit of β = 0, we have χ → atan2 [( −1) / ( −2 St )] as long 

as α is non-zero. When St � 1, χ → −90 ◦, which would produce 

polarization parallel to the azimuthal direction. Fig. 10 (d) shows χ

in the limit of β = 0. The reason is the following. With β = 0, the 

azimuthal velocity of the gas is in Keplerian orbit, i.e. v g,� = v K 

(Fig. 10 a). As the grains accrete with the gas from outer radii, they 

become super-Keplerian and feel a headwind towards χ = −90 ◦

(Fig. 10 c). In the case of large grains, St � 1, they reach purely 

Keplerian orbits and only feel the flow from the radial direction 

due to the accreting gas. Although the flow speed is smaller by 

one order of magnitude compared to Fig. 9 (h), it only lengthens 

the oscillation time t o and does not alter the damping time t d . This 
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Figure 9. Radial and azimuthal velocity profiles as a function of St for different levels of gas accretion, parametrized by α. The left to right columns correspond 

to α = 0 (no gas accretion), 0.01, and 0.1. The adopted pressure gradient, β, is −2.75. Top row: the azimuthal velocity subtracted by the Keplerian velocity v K 

normalized by ( H /R) 2 v K . The black and green solid lines are the profiles for the dust and gas, respectively. The horizontal dotted line corresponds to v � with 

Keplerian rotation. Second row: the radial velocity for the dust and gas (black and green lines, respectively). The horizontal dotted line corresponds to v R = 0. 

Third row: the gas flow which is the gas velocity relative to the dust velocity. The radial and azimuthal components of the gas flow, A R and A � , are shown 

in solid and dashed lines, respectively. The horizontal dotted line corresponds to no relative velocity. Fourth row: the gas flow direction χ in degrees. χ = 0 ◦

means radial, outward flow, while χ = 90 ◦ means azimuthal flow in the rotation direction. The horizontal dotted lines mark 0 ◦ and −90 ◦ for visual guidance. 

limiting case highlights the fact that the direction of the gas flow 

can be complicated, especially in highly structured gas discs, and 

requires further investigation. 

4.2 Alignment time-scale 

We make a simple prescription of a disc applying the velocity field 

formulated abo v e. We assume a stellar mass of M ∗ = 0 . 5M �. The 

surface density is a power law truncated at an inner radius R a and an 

outer radius R b : 

�( R) = � 1 au 

(

R 

1 au 

)−p 

, (76) 

where � 1 au is the surface density at 1 au. We adopt R a = 0 . 1 au, R b = 

100 au, and p = 1. We assume a total disc mass that is 5 per cent of 

the stellar mass, M disc = 0 . 05 M ∗, which gives � 1 au ∼ 350 g cm 
−2 . 

The temperature of the disc follows 

T ( R) = 200 

(

R 

au 

)−0 . 5 

. (77) 

The pressure scale height is H ≡ c s /�K . The gas density in the 

midplane is 

ρg ( R) ≡
� 

√ 
2 πH 

(78) 

With this setup, the pressure gradient is β = −2 . 75. We adopt α = 

0 . 01. For the prolate grain, we adopt c = 1 mm, ā = 0 . 9, and g = 

0 . 01. 

For reference, we estimate the mean free path of the gas by 

λmfp = 
1 

n g σH 2 

, (79) 

where σH 2 = 2 × 10 −15 cm 
2 (Birnstiel, Dullemond & Brauer 2010 ). 

Fig. 11 (a) shows λmfp as a function of radius in the disc. For our 

adopted disc parameters, the λmfp is ∼ 8 cm at R = 1 au to ∼ 2 × 10 5 

cm at = 100 au. Thus, the assumed millimetre grain should be well 

within the Epstein regime, especially in the lower density regions 

like in the outer regions of a disc. 

Fig. 11 (d) shows the time-scales as a function of radius in the 

disc. We find that the damping time t d is around 4 d ( ∼ 10 −2 yr) 
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Figure 10. The velocity profiles when β = 0 and α = 0 . 01 plotted in the 

same way as Fig. 9 . 

at R = 1 au, and reaches a thousand years at R = 100 au. Also, t d 
is mostly smaller than the orbital time t K at all radii up to 70 au, 

meaning grain oscillations are mostly damped within a fraction of an 

orbit. The increase in t d with increasing radius is due to the decrease 

in both the midplane density and temperature (equation 60 ). Given 

that t d is comparable to or less than t K , we reason that the alignment 

mechanism can operate in discs even for a grain with a small offset 

between its centre of mass and its geometric centre of g = 0 . 01. 

The oscillation time t o is around a few minutes ( ∼ 10 −5 yr) 

at R = 1 au and increases to an hour ( ∼ 10 −4 yr) at R = 100 au. 

Different from t d , the oscillation time t o does not increase strongly 

with radius, because it is only proportional inversely to the square 

root of ρg and in addition, benefits from an increased level of gas 

flow at larger radii. From the adopted parameters, the St is ∼ 10 −3 

at 1 au and increases with increasing radius to ∼ 0 . 1 because the 

midplane density decreases while the grain size is fixed (Fig. 11 b). 

The increasing St allows the grain to better decouple and experience 

stronger flow speed A (Fig. 11 c). 

As discussed previously for the disc and grain parameters chosen 

in this illustrative example, the direction of the flow is predominantly 

in the radial direction in the simple power-law prescription of a disc 

(Fig. 11 c). More comprehensive calculations of the gas and dust 

Figure 11. The resulting power-law profiles of a disc. Panel (a): the mean 

free path of the gas. Panel (b): the St . Panel (c): the dashed and dotted lines 

are the absolute values of radial and azimuthal components of the gas flow, 

respectively. The black line is the magnitude of the gas flow A . Panel (d): the 

solid line is the damping time t d , the dashed line is the oscillation time t o , 

and the dotted line is the Keplerian orbital time t K . 

velocity in structured discs are necessary to address the question of 

the alignment direction. 

5  DISCUSSION  

5.1 Comparison to other mechanical alignment mechanisms 

The badminton birdie-like alignment mechanism utilizes the grains’ 

interactions with the ambient gas to achieve alignment, which makes 

it a type of mechanical (or aerodynamic) alignment. A popular type 

of mechanical alignment is alignment due to helicity, which is the 
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ability to spin up a grain in the presence of gas flow (Lazarian & 

Hoang 2007b ). We showed that even without helicity, a grain can be 

aligned along the gas flow with the birdie-like alignment mechanism. 

These are two completely dif ferent ef fects. Our general torque 

equation, equation ( 37 ), likely captures the helicity effect through 

the diagonal terms of M . While those terms are 0 for spheroids 

(equation 54 ), if they are non-zero, the grains will obtain a torque in 

the same direction of A in grain body frame which corresponds to 

the definition of helicity. We leave a detailed exploration of the case 

of non-zero helicity to a future study. Equation ( 37 ) also expects 

a driving torque from specular reflection if K is non-zero. Recall 

that for spheroids, K = 0 . Ho we v er, if K e xists (depending on the 

grain geometry), then gas pressure can generate a torque in the grain 

frame and spin up the grain. The torque does not require a gas 

flow, making it different from the flow-induced restoring torque from 

the birdie-like alignment process. This is similar to the systematic 

torques proposed by Purcell ( 1979 ), but they differ in physical origin. 

Interestingly, the driving torque goes as ∝ c 2 s which is much larger 

than the restoring torque (related to M ) which is ∝ v th A . K would 

have to be very small to not be ef fecti ve. If K can increase the 

rotational energy of the grain beyond the escape energy (2 P s ; see 

Sections 2 and 3 ), birdie-like alignment effect may be o v erwhelmed 

by the rapid spin. Nevertheless, since K is determined entirely from 

the surface features of a grain which we expect to be random in 

general, we speculate that even if K is the dominant component 

for certain grains, the alignment direction should also be random 

as an ensemble and produce a net zero polarization. We leave a 

more comprehensive exploration of the non-zero K case to a future 

study. 

Another type of mechanical alignment is the Gold alignment 

mechanism (Gold 1952a , b ). We can describe the polarization from 

the Gold alignment mechanism through two main parts: the first 

being the actual Gold alignment part and the second being the 

polarization from the projection of grains once they are Gold aligned. 

The first part utilizes prolate grains under the presence of a flow 

of gas particles. Since the gas particles predominantly impact the 

grains along the long axis (the other two axes are negligible), the 

angular momentum is entirely parallel to the short axis, and the 

angular momentum is mostly confined to a plane perpendicular to 

the gas flow. As a collection, the angular momentum directions are 

random around the direction of the flow and, for any instance, the 

directions of the long axes of the grains are random around their 

own angular momentum. The second part is the polarization that is 

a natural result of projection of the collection of prolate grains with 

this configuration. Polarization mostly comes from the grains whose 

angular momenta are perpendicular to the observer as long as the 

flow is not directed to the observer. 

Our formulation of equation ( 37 ) does not immediately produce 

the results of Gold alignment. The grain structure from Gold ( 1952a ) 

corresponds to a prolate which has K = 0 and also the centre of 

mass is the same as the geometric centre, making M = 0 . As a 

result, the torque from A is al w ays 0 regardless of how large A is. 

Therefore, we would expect that spinning grains damped by the gas 

should eventually stop at an orientation that is entirely determined 

by the initial conditions (see equation 17 ). One may notice that from 

equation ( 17 ) the spin axis will be around ˆ e 2 , which is defined to 

be perpendicular to A , and we may obtain polarization from the 

Gold-projection effect (second part). However, the polarization is 

an artificial result because we have assumed that grains can only 

oscillate around ˆ e 2 . In 3D, with M = 0 , the orientation of angular 

momenta and the resulting final orientation should be entirely random 

with respect to A . 

One possible reconciliation is that we have assumed that the speed 

of each patch of the surface is small compared to the sound speed 

of gas (Appendix B ). Numerous studies have found that the Gold 

alignment requires supersonic drifts (Gold 1952a ; Purcell 1969 ; 

Lazarian 1994 ). Thus, it appears consistent with Gold alignment 

that equation ( 37 ) should not produce a torque for any A without 

the offset between the centre of mass and geometric centre. We 

suspect that Gold alignment corresponds to the supersonic version 

of equation ( 37 ), but leave the verification to a future investigation. 

5.2 Does birdie-like alignment work in the ISM or protostellar 

envelopes? 

We estimate the damping and oscillation time-scales for a grain in 

ISM conditions. Using equation ( 60 ), the damping time is 

t d,s ∼ 3 . 5 × 10 7 yr 

(

ρs 

3 g cm −3 

)(

c 

0 . 1 µm 

)(

20 cm −3 

n g 

)(

0 . 3 km s −1 

v th 

)

(80) 

when adopting ā = 0 . 9 and ḡ = 0 . 01; again, c is the grain size, 

which we normalize by the classic size of 0.1 μm for the ISM. Using 

equation ( 61 ), the oscillation time is 

t o,s ∼ 110 h 

√ 
ρs 

3 g cm −3 

(

c 

0 . 1 μm 

)

×

√ 

20 cm −3 

n g 

√ 

0 . 3 km s −1 

v th 

√ 

1 cm s −1 

A 

also using ā = 0 . 9 and ḡ = 0 . 01. We can easily see that the low- 

density environment means the grains will oscillate rapidly, while it 

takes a long time to damp out the oscillations. 

For the ISM, ho we ver, there can be other processes that can 

systematically spin up the grain to rates comparable to thermal 

rotation, like radiative torques (Draine & Weingartner 1996 ; Hoang & 

Lazarian 2009 ). We can parametrize the rotational energy from other 

spin-up processes as f kT where f is a multiplication factor and kT 

is the thermal energy. If the grains are in thermal equilibrium, we 

would expect f = 3 / 2. We provide an estimation of how much flow 

is necessary to trap the grain into oscillation using 2 P s > f kT . The 

relation gives a threshold flow speed A t,s : 

A > A t,s ≡
f v th 

n g c 3 
Ă t,s , 

Ă t,s ≡
1 

16 ̄a ̄g E[1 − x 2 ] 
, (81) 

where Ă t,s is a dimensionless factor and the physical combination 

is the characteristic threshold drift speed. For ā = 0 . 9 and ḡ = 0 . 01, 

we get Ă t,d ∼ 5. 

Adopting the same parameters used for equation ( 80 ), we get an 

impractical A t,d = 8 f × 10 18 cm s −1 . In contrast, A t,d ∼ 0 . 5 cm s −1 

for a disc using the conditions from equation ( 31 ) with the same ̄a and 

ḡ . The main issue is that the threshold flow speed is v ery sensitiv e 

to the grain size c, with A t,s ∝ c −3 , meaning it is much harder to 

trap small grains. The secondary issue is that the density is much 

lower in the ISM than in protoplanetary discs. Thus, the birdie-like 

mechanism is unlikely to compete with other mechanisms that can 

provide thermal rotational energy to grains in the ISM. 

We next assess the dense cores of molecular clouds, since dust 

polarization is routinely measured in dense cores and protostellar 

envelopes (e.g. Stephens et al. 2013 ; Galametz et al. 2018 ; Maury 

et al. 2018 ; Le Gouellec et al. 2019 ; Yen et al. 2020 ; Pattle et al. 
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2021 ; Cox et al. 2022 ; Le Gouellec, Maury & Hull 2023 ; Huang 

et al. 2024 ; Lin et al. 2024b ). We find that the damping time is 

t d,s ∼ 7 × 10 4 yr 

(

ρs 

3 g cm −3 

)

×
(

c 

1 μm 

)(

10 5 cm 
−3 

n g 

)(

0 . 3 km s −1 

v th 

)

, (82) 

where we adopted c = 1 μm to account for some grain growth from 

classic ISM values of 0.1 μm (e.g. Pagani et al. 2010 ) and we 

assumed ā = 0 . 9 and ḡ = 0 . 01. The time-scale appears less than 

or comparable to the lifetimes of the Class 0/I sources embedded 

in envelopes (Evans Neal J. et al. 2009 ; Williams & Cieza 2011 ). 

Applying the same conditions, the oscillation time is 

t o,s ∼ 16 h 

√ 
ρs 

3 g cm −3 

(

c 

1 μm 

)

√ 

10 5 cm −3 

n g 

×

√ 

0 . 3 km s −1 

v th 

√ 

1 cm s −1 

A 
. 

The value for A is unclear, but it can be much less than the adopted 

value if the small grains are well coupled to the gas. Following 

equation ( 81 ), we find that A t,s ∼ 1 . 5 f × 10 12 cm s −1 . The large 

threshold suggests that birdie-like alignment is unlikely to trap grains 

in oscillation in dense cores of molecular clouds or protostellar 

envelopes if other processes can drive thermal rotation unless the 

grains in such regions have already grown much larger than 1 μm (as 

indicated by multifrequency dust continuum observations in some 

cases, e.g. Kwon et al. 2009 ). 

5.3 Connection to obser v ations 

The drag force from gas plays an important role in the disc 

dynamics of dust and is a key ingredient to explain dust rings due 

to pressure bumps (e.g. Pinilla et al. 2012 ; Dullemond et al. 2018 ), 

the streaming instability (e.g. Youdin & Goodman 2005 ; Squire & 

Hopkins 2020 ), or pebble accretion (Ormel 2017 ). The birdie-like 

alignment mechanism makes continuum polarization observations 

direct evidence of gas drag and offers a possibility to probe parts 

of the dust kinematics. While the Doppler shifts of molecular line 

emission can trace the gas kinematics, empirical constraints on the 

dust kinematics are harder to come by. Our work adds to the idea that 

continuum polarization can measure the relative velocities between 

the gas and dust (Kataoka, Okuzumi & Tazaki 2019 ; Mori et al. 2019 ; 

Tang et al. 2023 ), but we offer a new physical justification that grains 

can be aligned along the long axis even with highly subsonic drift. 

Se veral discs sho w polarization that is elliptical in the polarization 

orientation with HL Tau as the most prominent example seen from the 

multiwavelength polarization (Stephens et al. 2017 ; Lin et al. 2024a ) 

and the high angular resolution polarization (Stephens et al. 2023 ). If 

polarization is indeed due to birdie-aligned grains, the A -field should 

be in the azimuthal direction with a 180 ◦ de generac y. 

Intriguingly, there are two discs with a spiral pattern, namely AS 

209 (Mori et al. 2019 ) and GG Tau (Tang et al. 2023 ) that are rele v ant 

to our discussion. The polarization patterns for both are nearly 

azimuthal, but with a slight deviation by 4 . 5 ◦ and 7 . 1 ◦, respectively. 

The direction of deviation for both follows an inward spiral. For both 

sources, the conventional alignment of grains with helicity cannot 

easily explain the inward spiral and they fa v our a scenario where 

prolate grains drift inwards and in the azimuthal direction, which 

is better explained by the Gold mechanism (Mori et al. 2019 ; Tang 

et al. 2023 ). The immediate benefit from the birdie-like alignment is 

that while the Gold mechanism requires supersonic drift, the birdie- 

like alignment only requires subsonic drift and reproduces the same 

orientation that the Gold mechanism offers. Whether or not the birdie- 

like alignment can produce the inward spiral depends on the proper 

treatment of the gas and dust velocity in a disc, or around a ring for 

these two sources in particular, which is beyond the scope of this 

paper. 

5.4 Caveats and future developments 

There are several assumptions made in this exploratory work. First, 

we assume that angular momentum is predominantly around ˆ e 2 (the 

direction of the gas flow-induced torque) when, generally, we might 

expect angular momentum around the other two axes as well. In the 

general case, the rotating motion around e 2 (and b 2 considered in 

this paper) will become precession in 3D. For example, if the grain 

contains significant angular momentum around ˆ b 3 , 
 2 will induce 

precession around ˆ e 3 . Ho we v er, we can e xpect that the damping 

torque should inevitably diminish the spin and precession at time- 

scales of the order of t d (which is rather short in the high-density 

disc environment where the birdie alignment is most applicable) and 

reach alignment akin to what is explored in this work. Note that 

a spheroid will not exhibit drag when spinning around its axis of 

asymmetry, but it should exist for realistic, irregular grains. Another 

side effect of the assumption is that grains may artificially exhibit 

polarization simply from the Gold projection effect in the unlikely 

limiting case of M = 0 as described in Section 5.1 . 

Another assumption is that the level of A is fixed as the grain 

oscillates. Ho we ver, the geometric cross-section in the direction of 

A varies as the grain oscillates. Since we know the force on each 

patch of the surface, it is a simple e x ercise to deriv e the total force on 

the axisymmetric spheroid using equation ( 35 ), equation ( 36 ), and 

equation ( 45 ): 

F = 

∮ 

S 

d F = −ρg v th 

∮ 

S 

N d σ ( ω × g − A ) . (83) 

For a spheroid, we know 
∮ 

S N d σ from equation ( 50 ). For the case of a 

sphere, g = 0 and ̄a = 1, we reco v er the Epstein drag of a sphere with 

specular reflection (equation 3 ; note that u = −A for that equation). 

We can identify in equation ( 83 ) that ω × g − A is the velocity of 

the centre of the spheroid relative to the gas as it oscillates around the 

centre of mass. The relation means that the force that determines the 

translational motion of the grain can also depend on the rotational 

motion and a fully self-consistent study of the velocity of the grain 

in a disc requires incorporating the equation of rotational motion. 

Nevertheless, since we are particularly interested in the scenario 

when ω is small (near alignment) and we found that g only needs to 

be ∼ 1 per cent of the length scale for alignment, we do not expect 

the flow to vary much with oscillation. 

The last assumption of importance is the grain structure. We 

utilized two cases of an axisymmetric spheroid: the strictly axisym- 

metric case where the offset between the geometric and mass centres 

is along the axis of symmetry and the quasi-axisymmetric case where 

the offset can be anywhere in the spheroid. The assumption allowed 

us to study alignment analytically. To explain the disc polarization 

observations, the centre of mass should be shifted along the long 

axis of the prolate or oblate instead of the short axis even though 

birdie-like alignment does permit prolates or oblates to be aligned 

with A along the short axes. In other words, observations suggest 

that the predominant grain structure fa v ours the offset vector g to 

be along the long axes. It is unclear how grain growth can lead to 

this structure, but we can view this as a result that the grain growth 
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mechanism should strive to explain. Our formulation of equation 

( 37 ) allows one to pre-calculate the dynamical properties of the 

grain ( K , L , and M ) independent of environmental properties or 

dynamical state. Equation ( 37 ) should no w allo w a direct connection 

between grain structure and its alignment permitting studies of 

several geometries quickly. This is a very attractive possibility as 

we can study the alignment of a population of grains each with a 

unique geometry, allowing the prediction of the degree of alignment 

and thus formulate testable predictions of polarization for various 

grain growth mechanisms. We leave a more detailed exploration of 

these assumptions to future studies. 

6  C O N C L U S I O N S  

Disc scale polarization has shown evidence of effectively prolate 

grains aligned azimuthally. Ho we ver, the alignment mechanism is 

unclear. In this paper, we demonstrate the possibility that grains can 

be aligned by the gas flow when the centre of mass is offset from 

its geometric centre, as in the case of a badminton birdie. Our main 

results are summarized as follows: 

(i) To build our physical intuition, we first utilize a simple model 

of a grain that is composed of two spheres connected by a rigid, 

mass-less rod. We show that the grain behaves as a damped oscillator 

under the presence of a systemic flow of gas, A , if the two spheres 

of the grain are not identical. The oscillation is due to restoring 

torques generated by A and the asymmetry between the spheres, 

i.e. the ‘flow-induced restoring torques’ which resists the angular 

displacement from the direction of alignment. The oscillation can 

be described by a potential well near the direction of alignment. As 

the gas damps the grain oscillation, the grain reaches alignment 

such that the geometric centre follows the direction of the flow 

with respect to its centre of mass. We derive the damping time and 

oscillation time and show that the oscillation time is much shorter 

than the damping time for typical circumstellar disc conditions (i.e. 

underdamped oscillations). The damping time-scale is set by the 

dust stopping time and the dust properties, particularly the degrees 

of grain elongation and asymmetry. 

(ii) We derive a formula for the torque of a smooth body in 

the Epstein regime by considering subsonic relative motion and 

specular reflection of gas on each patch of the surface (equation 

37 ). We capture the surface properties of the grains rele v ant for the 

grain dynamics by K , L , and M which characterizes the driving 

torque from gas pressure, the damping torque as the grain spins, and 

the torque that arises from the existence of A , respectively. These 

quantities allow us to quantify the grain rotational motion without 

pre-determining environmental properties, like the gas density or 

temperature, and the dynamic state, like the orientation or angular 

velocity. 

(iii) We apply the torque equation to an axisymmetric spheroid 

(prolate and oblate) and obtain the damped oscillator equation of 

motion along with analytical solutions to the damping time and 

oscillation time. By considering a grain whose centre of mass is 

shifted along the axis of symmetry, which is characterized by g (the 

offset vector from the centre of mass to the centre of the spheroid), 

we find that the final alignment direction is such that g is parallel to 

A . In other words, for a prolate, the long axis is along the gas flow, 

or for an oblate, the short axis is along the gas flow. 

(iv) We further consider a grain whose centre of mass can be 

anywhere within the spheroidal surface and also derive analytical 

solutions to the damping time and oscillation time. We show that 

the final alignment direction depends on both g and the shape of the 

spheroid. In particular, if the centre of mass of an oblate is shifted 

along the long axis, then the oblate will be aligned along the long 

axis. Since disc polarization observations require ef fecti vely prolate 

grains, the birdie-like alignment mechanism requires the offset vector 

g to be along the long axis for both prolates and oblates. 

(v) We implement a simple disc model and calculate the gas and 

dust velocity fields. Using the power-law disc model with a pressure 

gradient, we expect the gas flow to be in the radial direction for 

small Stokes number, St , and in the azimuthal direction for large 

St . Ho we ver, in the centre of pressure bumps or gaps, where the 

pressure gradient can be small, the gas flow can be in the azimuthal 

direction for small St and in the radial direction for large St . Using 

just the power-law disc model to study the radial dependence of the 

mechanism, we show that the damping time is mostly less than the 

Keplerian time t K , but it can be comparable to or greater than t K 

at large radii near the disc outer edge. Typically, it takes a fraction 

of an orbit or only several orbits to align a grain in a disc. The 

very short alignment time-scale compared to the lifetime of the disc 

mak es birdie-lik e alignment a v ery promising mechanism to e xplain 

the inferred toroidally aligned, ef fecti vely prolate grains from several 

disc polarization observations and deserves further development. 
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AP PENDIX  A :  A D D I T I O NA L  EX AMPL E  O F  A  

PHA SE  P O RTR A I T  

Fig. 4 from Section 2 presented a phase portrait showing the damped 

oscillation behaviour of a double-sphere model of a grain. The 

typical disc conditions mean grains undergo highly underdamped 

oscillations. To illustrate how a better-damped phase portrait appears, 

we adopt n g = 10 12 cm 
−3 , v th = 0 . 2 km s −1 , A = 5 × 10 −5 cm s −1 , 

l = 1 mm, ε = 1, and κ = 1 . 01 and the results are shown in Fig. A1 . 

With a much higher gas density and smaller velocity difference, the 

trajectories now clearly spiral towards the attractors (final alignment 

points), even starting from initially unbound states considered in this 

plot. For reference, using equation ( 33 ), the damping ratio ζd ∼ 0 . 14 

in this illustrative case. 
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Figure A1. The phase portrait plotted in the same way as Fig. 4 . In this example, the grain is more damped. 

APPENDIX  B:  D E R I VAT I O N  O F  T H E  D R AG  

F O R C E  O N  A  SURFAC E  ELEMENT  

In this appendix, we assume rarefied, subsonic gas flow (i.e. Epstein 

regime) and obtain the drag force on a patch of surface. The validity 

of the Epstein regime in a disc is discussed in Section 4.2 . We will 

use a distribution of velocities of the gas for a moving observer 

and derive the transfer of momentum from the gas onto a patch of 

surface after integrating over the velocity distribution. The deri v ation 

is based on Epstein ( 1924 ). We will redefine the symbols utilized in 

this appendix for clarity and the same symbols in the main text may 

not correspond to the definition here. 

We begin by considering the Maxwell velocity distribution for the 

gas which gives the number of molecules having velocity components 

in the Cartesian coordinates between ξ0 , η0 , ζ0 , and ξ0 + d ξ0 , η0 + 

d η0 , ζ0 + d ζ0 through: 

N ξ0 ,η0 ,ζ0 d ξ0 d η0 d ζ0 = N 

(

h 

π

)3 / 2 

e −h ( ξ2 
0 + η2 

0 + ζ 2 
0 ) d ξ0 dη0 d ζ0 , (B1) 

where N is the number of molecules per unit volume. h is defined by 

h ≡
m 

2 kT 
, 

where m is the mass of each molecule, k is the Boltzmann constant, 

and T is the temperature. 

Consider a travelling observer with a Cartesian coordinate system 

with axes x , y , and z. The observ er trav els relativ e to the rest frame 

of the gas with a speed of V and components αV , βV , and γV along 

the x , y , and z axes, respectively. Here, α, β, and γ are direction 

cosines (not to be confused with α and β from Section 4 ). Let ξ , η, 

and ζ be the velocity components of a molecule parallel to x , y , and 

z, respectively, seen by the observer. The transformation between the 

velocity in the observer frame to the velocity in the gas rest frame 

follows 

ξ = ξ0 − αV , 

η = η0 − βV , 

ζ = ζ0 − γV . (B2) 

Since V is constant, d ξ = d ξ0 , d η = d η0 , and d ζ = d ζ0 . Thus, the 

velocity distribution seen by the observer is 

N ξ,η,ζ d ξd ηd ζ = 

N 

(

h 

π

)3 / 2 

e −h [( ξ+ αV ) 2 + ( η+ βV ) 2 + ( ζ+ γV ) 2 ] d ξd ηd ζ (B3) 

We approximate the equation by considering the distribution to the 

first power of V which gives 

N ξ,η,ζ = N 

(

h 

π

)
3 
2 
[

1 − 2 hV ( αξ + βη + γ ζ ) 

]

e −h ( ξ2 + η2 + ζ 2 ) . (B4) 

We now wish to calculate the number of impinging particles 

onto some surface element d σ . Let the x-axis be the direction that 

is normal to the surface element. Within some unit time d t , the 

impinging particles with velocity ( ξ , η, ζ ) will be those that are 

enclosed within a cylinder with d σ as the base and −ξd t as the 

height: 

n ξ,η,ζ d ξd ηd ζd td σ = 

−N 

(

h 

π

)
3 
2 
[

ξ − 2 hV ξ ( αξ + βη + γ ζ ) 

]

× e −h ( ξ2 + η2 + ζ 2 ) d ξd ηd ζd td σ . 

(B5) 
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Each impinging particle carries a momentum of 

p i = m 

⎛ 

⎝ 

ξ

η

ζ

⎞ 

⎠ (B6) 

in the observer frame. Since we know the number of impinging 

particles onto the surface from equation ( B5 ), we can obtain the 

momentum from the impacts of all velocities 

p ( i) σ,t d t d σ = 

∫ 0 

−∞ 

d ξ

∫ ∞ 

−∞ 

d η

∫ ∞ 

−∞ 

d ζ p i n ξ,η,ζ d t d σ (B7) 

= −mN 

[

⎛ 

⎝ 

1 
4 h 
0 

0 

⎞ 

⎠ + 
V 

2 
√ 

πh 

⎛ 

⎝ 

2 α

β

γ

⎞ 

⎠ 

]

d td σ, (B8) 

where p 
( i) 
σ,t is the momentum per unit area and per unit time. 

To calculate the momentum of the emerging gas, we assume spec- 

ular reflection in which, after the impact, the velocity of the molecule 

normal to the surface flips by a ne gativ e sign. The momentum of the 

emerging molecule is thus p e = m ( −ξ, η, ζ ). Following the same 

e x ercise as abo v e, 

p ( e) 
σ,t d t d σ = 

∫ 0 

−∞ 

d ξ

∫ ∞ 

−∞ 

d η

∫ ∞ 

−∞ 

d ζ p e n ξ,η,ζ d t d σ (B9) 

= −mN 

⎡ 

⎣ 

⎛ 

⎝ 

− 1 
4 h 

0 

0 

⎞ 

⎠ + 
V 

2 
√ 

πh 

⎛ 

⎝ 

−2 α

β

γ

⎞ 

⎠ 

⎤ 

⎦ d td σ. (B10) 

We can obtain the force onto the surface by looking at the momentum 

that is deposited by gas within the unit time: 

d F ≡
[ p 

( i) 
σ,t − p 

( e) 
σ,t ]d td σ

d t 

= −mN 

(

1 

2 h 
+ 

2 V α
√ 

πh 

)

n d σ, (B11) 

where d F is the force on d σ and n is the unit direction along 

the x-axis, which was defined to be in the normal direction of the 

surface. One can quickly realize that the force is only in the normal 

direction because the momentum of the molecules along the y- or 

z-directions has not changed. Also, the direction of the force is 

antiparallel to n . 

We can re-express the equation by connecting it to a few physical 

quantities. 1 / 2 h is simply the isothermal sound speed squared c 2 s ≡
kT /m . Also, 2 / 

√ 
πh is the average speed v th ≡

√ 
8 kT / ( πm ) . The 

quantity mN is the mass density ρg as defined in the main text. 

Furthermore, since V α is the velocity component along the x-axis, 

we can express it as V α = V · n . When expressed in the dot product 

form and applied to n d σ for equation ( B11 ), one can quickly see 

that ( V · n ) n is simply a vector from V that is projected onto the 

normal direction. We can express this relation through a projection 

tensor N ≡ n n giving ( V · n ) n = N ( V ). Implementing these new 

relations, we have 

d F = −ρg 

[

c 2 s n + v th N ( V ) 

]

d σ, (B12) 

which matches equation ( 35 ). Note that the first term is simply the 

pressure which does not depend on V . The second term controls the 

effect of the motion of the surface. When V is in the same direction 

as n , the side of the surface that experiences reflection feels an extra 

force in the direction opposite to n . When V is in the opposite 

direction of n , the surface feels a reduced force. 

AP PENDIX  C :  A NA LY T I C A L  S O L U T I O N S  TO  

T H E  E- IN TEGRALS  

In the main text, equation ( 47 ) defines an integration form that 

frequently appears in the equations of motion in Section 3 . The actual 

quantities that appeared are E [ x 2 ], E [1 − x 2 ], and E[ x 2 − x 4 ]. Note 

that E[ f ( x) + g( x)] = E[ f ( x)] + E[ g( x)] where f and g are some 

functions of x. The property means we only need to solve for E[1], 

E[ x 2 ], and E[ x 4 ]. Here we provide the analytical solutions. 

F or conv enience, we can define the elongation factor for prolates 

(when ā < 1) as 

e ≡
√ 

1 − ā 2 (C1) 

and the elongation factor for oblates (when ā > 1) as 

ε ≡
√ 

ā 2 − 1 (C2) 

(not to be confused with ε in Section 2 ). Both are positive quantities. 

We find that 

E[1] = 

⎧ 

⎨ 

⎩ 

2 arcsin ( e) 
e , when ā < 1 

2 , when ā = 1 
2 arcsinh ( ε) 

ε , when ā > 1 

(C3) 

where arcsinh is the inverse hyperbolic sine. Furthermore, 

E[ x 2 ] = 

⎧ 

⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎩ 

−
√ 

1 −e 2 

e 2 
+ 

arcsin ( e) 
e 3 

, when ā < 1 
2 
3 , when ā = 1 √ 

1 + ε 2 

ε 2 
− arcsinh ( ε) 

ε 3 
, when ā > 1 . 

(C4) 

Lastly, we can obtain 

E[ x 4 ] = 

⎧ 

⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎩ 

− (2 e 2 + 3) 
√ 

1 −e 2 

4 e 4 
+ 

3 arcsin ( e) 
4 e 5 

, when ā < 1 
2 
5 , when ā = 1 

(2 ε 2 −3) 
√ 

1 + ε 2 

4 ε 4 
+ 

3 arcsinh ( ε) 
4 ε 5 

, when ā > 1 . 

(C5) 

With equations ( C3 ), ( C4 ), and ( C5 ), we can get E[1 − x 2 ] = E[1] −
E[ x 2 ] and E[ x 2 − x 4 ] = E[ x 2 ] − E[ x 4 ]. 
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