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ABSTRACT

Recent (sub)millimetre polarization observations of protoplanetary discs reveal toroidally aligned, effectively prolate dust grains
large enough (at least ~ 100um) to efficiently scatter millimetre light. The alignment mechanism for these grains remains
unclear. We explore the possibility that gas drag aligns grains through gas—dust relative motion when the grain’s centre of mass is
offset from its geometric centre, analogous to a badminton birdie’s alignment in flight. A simple grain model of two non-identical
spheres illustrates how a grain undergoes damped oscillations from flow-induced restoring torques which align its geometric
centre in the flow direction relative to its centre of mass. Assuming specular reflection and subsonic flow, we derive an analytical
equation of motion for spheroids where the centre of mass can be shifted away from the spheroid’s geometric centre. We show
that a prolate or an oblate grain can be aligned with the long axis parallel to the gas flow when the centre of mass is shifted
along that axis. Both scenarios can explain the required effectively prolate grains inferred from observations. Application to a
simple disc model shows that the alignment time-scales are shorter than or comparable to the orbital time. The grain alignment
direction in a disc depends on the disc (sub-)structure and grain Stokes number (St) with azimuthal alignment for large St grains

in sub-Keplerian smooth gas discs and for small St grains near the gas pressure extrema, such as rings and gaps.

Key words: polarization — protoplanetary discs.

1 INTRODUCTION

Dust grains within gaseous protoplanetary discs are the raw material
for forming planets (e.g. Drazkowska et al. 2023). Their studies have
been revolutionized by the Atacama Large Millimeter/submillimeter
Array (ALMA), especially through disc-scale observations of linear
continuum polarization (e.g. Kataoka et al. 2016b; Stephens et al.
2017, 2020, 2023; Alves et al. 2018; Bacciotti et al. 2018; Girart
et al. 2018; Lee et al. 2018; Ohashi et al. 2018; Sadavoy et al. 2018,
2019; Dent et al. 2019; Harrison et al. 2019; Takahashi et al. 2019;
Asoetal.2021; Tang et al. 2023; Harrison et al. 2024; Liu et al. 2024;
Lin et al. 2024a). The origin of disc polarization is often attributed to
scattering when dust grains have grown large enough to efficiently
scatter millimetre/submillimetre light. Measuring polarization can
constrain the properties of dust grains, like the distribution, grain
sizes, porosity, etc (e.g. Kataoka et al. 2015, 2016a; Yang et al.
20164, 2017; Kirchschlager & Bertrang 2020; Yang & Li 2020; Lin
et al. 2020b; Zhang et al. 2023; Yang et al. 2024; Zamponi et al.
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2024). Alternatively, if grains are aligned, then the thermal emission
is intrinsically polarized (e.g. van de Hulst 1957; Yang et al. 2016b;
Kirchschlager, Bertrang & Flock 2019; Lin et al. 2020a, 2022).
Polarized thermal emission from aligned grains has been used to
trace the magnetic field in the envelopes around protostars. Polariza-
tion successfully measured the expected hour-glass morphology of
the magnetic field (e.g. Girart, Rao & Marrone 2006; Stephens et al.
2013; Maury et al. 2018; Kwon et al. 2019; Huang et al. 2024).
The widely accepted explanation is through radiative alignment
torques, i.e. RATs (Dolginov 1972; Dolginov & Mytrophanov 1976;
Draine & Weingartner 1996, 1997; Lazarian & Hoang 2007a) which
allow grains to be aligned to the magnetic field or radiation field
through internal and external alignment (see e.g. Lazarian 2007,
Lazarian, Andersson & Hoang 2015 for a review). Internal alignment
refers to the alignment of the angular momentum, J, to the axis
of maximum moment of inertia due to energy dissipation (Purcell
1979; Lazarian & Efroimsky 1999; Hoang & Lazarian 2009; Hoang
et al. 2022). As a result, the long axis of the grain should be
perpendicular to J and the polarization of an ensemble of grains
should appear effectively oblate. External alignment occurs when J
becomes aligned with an external field, like the magnetic field B or

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
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the radiation field (Lazarian & Hoang 2007a; Lazarian et al. 2015).
When producing polarization after internal and external alignments,
the grains as an ensemble should be effectively oblate with their short
axes aligned along the external field.

In the disc-scales, however, recent observations have revealed
compelling evidence for the presence of grains that appear effectively
prolate with their long axes aligned toroidally around the disc. For
example, multiwavelength observations of HL Tau have unveiled
transitions in the polarization morphology from the very large array
(VLA) Q-band (A = 7.1 mm) to ALMA bands 3,4, 5, 6, and 7 ranging
from A =3.1t00.87 mm (Stephens etal. 2014,2017; Lin et al. 2024a).
The change in pattern cannot be solely attributed to scattering.
In particular, band 3 (A =3.1 mm) shows an azimuthally oriented
polarization pattern that was shown to require toroidally aligned,
effectively prolate grains based on the azimuthal variation in the
polarization (Kataoka et al. 2017; Yang et al. 2019; Mori & Kataoka
2021). Since the optical depth decreases with increasing wavelength,
scattering can become less of a factor at longer wavelengths. Multi-
wavelength models have shown that scattering of toroidally aligned,
prolate grains can produce the observed polarization transition (Lin
et al. 2022, 2024a). In addition, recent high angular resolution
observations (5 au resolution) at ALMA Band 7 (A = 0.87 mm)
revealed azimuthally oriented polarization in the first gap, but
signatures of scattering polarization in the rings. Stephens et al.
(2023) demonstrated that by incorporating optical depth changes
between rings and gaps, scattering of toroidally aligned, prolate
grains can also explain the observed polarization substructure.

Signatures of toroidally aligned, prolate grains akin to those
observed from HL Tau also exist in discs around other sources.
Haro 6-13, V892 Tau, DG Tau, and GG Tau show polarization
that is predominantly parallel to the disc minor axis (a signature of
scattering) at the shorter wavelength, A ~ 0.9 mm, and azimuthally
oriented polarization at the longer wavelength, A ~ 3 mm (Bacciotti
et al. 2018; Harrison et al. 2019; Ohashi et al. 2023; Tang et al. 2023;
Harrison et al. 2024). For AS 209, the polarization along the disc
major axis has polarization angles parallel to the disc minor axis, but
the polarization in the outer regions appears azimuthally oriented (at
Band 7 from Mori et al. 2019 and at Band 6 from Harrison et al.
2021). The polarization pattern is reminiscent of HL Tau where the
optical depth in the inner region is large while the optical depth in
the outer region is low leading to a scattering signature in the inner
region and a signature of toroidally aligned, prolate grains in the
outer region (Stephens et al. 2017; Lin et al. 2024a).

An alternative to radiative alignment is mechanical alignment
where interactions with the gas can align the dust grains. One type
of mechanical alignment is the Gold mechanism that allows the
alignment of grains along their long axes under the presence of gas—
dust relative motion (Gold 1952a, b; Purcell 1969). Although the
mechanism can explain the necessary prolate grains, the required
relative motion should be supersonic which does not apply to
protoplanetary discs (e.g. Nakagawa, Sekiya & Hayashi 1986; Lesur
et al. 2023).

Another type of mechanical alignment is through the helicity of
grains, where grains spin up under the presence of gas—dust relative
motion (Lazarian & Hoang 2007b). This mechanism also requires
internal alignment, which, along with external alignment, ensures
that the short axes of grains become aligned to the direction of the
gas flow or the magnetic field B. While the proposed mechanism no
longer requires supersonic drift, it is expected to produce effectively
oblate grains because of internal alignment. The observation of
prolate grains suggests a lack of internal alignment which may not be
too surprising since internal alignment time-scales are much longer
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than the gas damping time-scale for grains larger than ~ 10pum in
protoplanetary disc environments (Hoang et al. 2022).

A potential solution is through a modification to the radiative
alignment paradigm using the so-called ‘wrong’ internal alignment
(Hoang & Lazarian 2009). For large grains without internal align-
ment, the short axes can become perpendicular to J (in contrast to the
‘right’ alignment mentioned above where the short axes are parallel
to J). When J becomes externally aligned to the expected toroidal
B-field of a protoplanetary disc, it can match the desired toroidally
aligned prolate grains if grains contain large amounts of iron clusters
(Thang et al. 2024). However, alignment with the B-field appears
difficult in disc environments because the Larmor precession time-
scale can be much longer than the gas damping time-scale unless the
former is greatly shortened by, e.g. superparamagnetic inclusions
(Tazaki, Lazarian & Nomura 2017; Yang 2021).

The various examples from observations call for an answer to
why grains are toroidally aligned and effectively prolate, but a
robust explanation remains inconclusive. Understanding the grain
alignment mechanism is not only interesting in its own right, but it
will also permit the measurement of the underlying grain-aligning
vector field in the disc. In this paper, we investigate a novel type of
mechanical alignment, where the offset between the centre of mass
of a grain and its geometric centre creates restoring torques when the
grain feels a systematic flow of gas with respect to its centre of mass,
i.e. an aerodynamic flow (denoted by the vector ‘A’ hereafter). The
mechanism is motivated by how a badminton birdie flying through the
air oscillates and quickly aligns aerodynamically along the direction
of flight against the gaseous headwind in terrestrial environments'
(Cohen et al. 2015). To highlight the central role of the offset
between geometric and mass centres, we will term the mechanism
‘badminton birdie-like alignment’ (or ‘birdie-like alignment’ for
short) to distinguish it from other forms of mechanical alignment
(the expected degree of the offset will be discussed below). We
ignore internal relaxation since the effect is slow for large grains and
only consider the rotational motion of grains due to torques provided
by gas drag. In discs with subsonic gas—dust bulk relative motion, we
will show that the proposed mechanism can achieve fast alignment
within an orbital time for most regions in discs, which opens a new
window on mapping the field of aerodynamic flow acting on grains
— the A-field — through dust continuum polarization observations.

The paper is organized as follows. Section 2 builds the physical
intuition by using a simple grain model composed of two spheres
to illustrate the key alignment behaviour and alignment time-scales
under the presence of a gas flow. Section 3 derives the torque on a
grain of arbitrary shape and calculates the alignment of spheroids
(both prolate and oblate) whose solutions for polarization are known
enabling connections to observed disc polarization from aligned
grains. Section 4 implements the spheroid alignment model in a
simple disc model with gas and dust velocity fields to assess the
alignment time-scale and alignment directions. Section 5 provides a
discussion, and we summarize our results in Section 6.

2 DOUBLE-SPHERE ILLUSTRATION

This section begins with the simplest model to illustrate the alignment
under gas drag using a double-sphere model (Cohen et al. 2015).
Given the simple spherical shape, the gas drag in the Epstein regime
has a simple analytical form (Epstein 1924). We first describe the

!Other examples from human activities include the jianzi or the hago (in the
game of hanetsuki).
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Figure 1. Schematic of the double sphere model. The dust grain is composed
of two spheres, labelled ‘black’ (circle with a dark shade) and ‘white’ (circle
without a shade), with radii ¢, and ¢, respectively. Point O is the centre of
mass of the grain. The radius vectors from the centre of mass to the centre of
each sphere are r, and r,, respectively. The distance between the centres of
the spheres is / denoted by a dashed line. A is the gas velocity relative to the
centre of mass of the grain, i.e. the aerodynamic flow from the perspective of
the grain, and is along €3. The spin of the grain is along &. 6 is the angle of
r, from &3 in the counterclockwise direction in this figure. Since alignment
occurs at = 0 when m,/m, > g.z/goz, the black sphere has a larger mass
and is smaller than the white sphere.

necessary formulation of the problem, and then parametrize the
model to focus on the physical quantities that determine alignment.
We will show that the asymmetry between the two spheres induces
oscillation due to a systematic gas—dust relative motion. The spin
of the grain through gas leads to damping of the oscillation and
eventually to alignment.

2.1 Problem setup

Consider a grain composed of two spheres connected by a mass-less
rigid pole. We use point O to denote the centre of mass and let A
be the systematic velocity of the gas with respect to O. Fig. 1 shows
a schematic of the double sphere. To distinguish each sphere, we
use subscripts ‘@’ and ‘o’ to represent the black and white spheres,
respectively. The radius vectors from O to the centre of each sphere
are r, and r, respectively, with corresponding lengths denoted as r,
and r,. By definition of the centre of mass, the lengths are related to
the mass through

Moty = M1 , (D

where m, and m, are the masses of the spheres. The ith sphere (i = o
or o) is characterized by radius ¢; and its radius and mass are related
through

4

i = 76 Pi> 2
m 3 SiP 2)

where p; is the material density for the ith sphere, which can be
different for the two spheres.

We use the Cartesian coordinate system centred on the centre of
mass O with unit directions é;, é,, and é;. Let é; be along the
direction of the gas flow A. We define the angle between r, and é;
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as 6. Without loss of generality, let €; be in the plane formed by r,
and é;. The aerodynamic drag force will be in this plane, producing a
torque around the &, axis, which will be the axis of the flow-induced
grain rotating motion, denoted by @ = wé;.
The drag force in the Epstein regime is (Epstein 1924):

F= —%”pggzvmu 3)
for a spherical grain of radius ¢ embedded in a gas with mass density
p,- For convenience, we will also use the gas number density n, =
0g/(um ) where m, is the mass of a proton and w is the mean
molecule weight which we assume as 2.3 for molecular hydrogen-
dominated gas. vy, is the average speed of the gas molecules with a
Maxwell-Boltzmann distribution

| 8kT
Vth = 5 (4)
T pm )

where k is the Boltzmann constant and 7 is the gas temperature. u
is the velocity of the sphere relative to the gas.> The Epstein regime
applies if the mean free path of the gas molecules is much larger than
the size of the particle. For discs, the mean free path is generally
of the order of ~cm near ~ 1au and larger at larger radii where
the gas density is lower (Armitage 2015). Thus, the Epstein regime
is appropriate in the outer disc where resolved dust polarization is
detected (see Section 4.2 for an estimate of the mean free path).

Each sphere provides a cross-section for gas drag to induce a
torque I'; = r; x F; on the grain. The velocity u; for the ith sphere
travelling relative to the gas is

ui=wxr,—A ©)

when incorporating the rotation of the grain (with angular velocity
). Applying the relative velocity from equation (5) to the drag force
from equation (3) gives

4

3

The total torque on the grainis I' = I', + I, from both spheres.

We can easily identify that the torque T is only non-zero along é,
meaning we only have to consider the component I'; (I'} = I'; = 0).
There is only one equation of motion:

T = ——pouns [ri x (@ x r)) —r; x Al. (6)

I =lo, @)

where [ is the moment of inertia and  is the angular acceleration.
For the double-sphere model, we can easily derive the moment of
inertia as

/ =Zmi<§§i2+ri2), ®)

i
where the second term comes from the parallel axis theorem.

Using equations (6) and (7), we get a second-order differential
equation:

Io+ Dw+ Psinf =0, 9

>There are several quantities related to velocity used throughout the paper
that deserve clarification. We use ‘A’ to denote the bulk motion of gas relative
to the centre of mass of a grain. We use ‘u’ to denote the motion of a piece of
a grain relative to the gas. For Section 2, u is the speed for one of the spheres,
while for Section 3, u corresponds to the speed of an infinitesimal surface. In
Section 4, we will use ‘v’ to describe the velocity field of the disc.

MNRAS 534, 3713-3733 (2024)
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Potential Energy U

—180

Figure 2. A schematic of how the orientation of the grain relates to the potential well created by the existence of aerodynamic flow. Top panel: the orientation
of an example double-sphere grain model that satisfies m,/m, > ¢2/c?2 like in Fig. 1 The heavier sphere has a darker colour, while the less massive sphere
is white. The lines with arrows denote the direction of the gas flow. The circular arrow depicts the direction of the flow-induced torque, which always tries to
align the grain and resists any angular displacement. As such, the flow-induced torque is a ‘restoring’ torque. When aligned, the less massive sphere follows
the direction of the flow, analogous to how the heavier head of the badminton birdie leads the less massive tail against a headwind. Bottom panel: the energy
potential U as a function of 6. The depth of the potential well is 2P. Alignment occurs at § = 0 where U is minimal.

where

47
D = ?ngth(g.zr.z"'gozrg)
4

3

P = pgvthA(—g.zr. + gfro).

The second term is a torque that is proportional to @ and acts to
oppose it, serving as the damping torque. The third term is a 6-
dependent torque induced by the gas flow through relative dust-gas
drift.

In the limit of small 8, equation (9) simply describes a damped
harmonic oscillator. The motion of a damped harmonic oscillator is
characterized by two time-scales: the undamped period of oscillation
t, and the damping time #,. The undamped period of oscillation is
simply
t, = 2—” 10)

Wo
where w, is the undamped angular frequency
P

o = . 11
2 T an

The damping time describes the time-scale for the oscillation
amplitude to decrease:

g = B (12)

Although these expressions are derived from analytical solutions to
the damped harmonic oscillator, it remains beneficial to use them as
characteristic time-scales for equation (9) beyond the limit of small 6.

MNRAS 534, 3713-3733 (2024)

Evidently, with the birdie-like alignment mechanism, the time-scale
to reach alignment is in fact the damping time, which we discuss in
more detail below.

2.2 Alignment direction

When P # 0 (i.e. when the two grains are not identical and A # 0),
we can easily understand why this grain has to be aligned by defining
the potential energy from the 6-dependent torque:

0
= —/ (—=Psin®")dd’ = —P cosH, (13)
0

where 0’ is a dummy variable and the reference potential energy
at 6 =0 is —P. We first consider P > 0, in which case U is
a minimum at € = 0. The —cos6f dependence of U is easy to
understand through Fig. 2 which shows a schematic of how the
orientation of the grain relates to U described by equation (13). The
direction of the 6-dependent torque depends on the orientation of
the grain and acts against the displacement of 6 from 0 attempting
to trap the grain in alignment. At 6 = 0, the torque vanishes and the
grain is kept stable with the white sphere following the direction
of the flow (the less massive and/or larger sphere follows A).
The anti-alignment point, & = 7, also does not produce a torque,
but is unstable. The 6-dependent torque is thus a restoring torque
within the potential well, which we call the ‘flow-induced restoring
torque’.

The existence of the damping torque (w-dependent torque) di-
minishes the spin, which eventually decreases the rotational energy
until 0 = 0, i.e. the grain becomes aligned, which corresponds to
the minimum energy state. Alternatively, if P < 0O (for example, the
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white sphere becomes the heavier sphere), then U reaches a minimum
at 0 = m though the less massive and/or larger sphere still follows
the direction of the flow (recall that 6 is specifically defined using
r.; see Fig. 1).

From equation (13), the peak of the potential well is simply 2P.
If the total energy (rotational plus potential energy) of a grain is
greater than 2 P, the grain will not be trapped in a potential well, but
continue to spin (and not oscillate). For an initially aligned grain, one
can easily derive that the escape angular speed is wesc = 2w,, 1.€. a
grain spinning faster than we, cannot be trapped in oscillation. As
gas damping dissipates the rotational energy of the grain, the grain
will inevitably land in a potential well and begin oscillating until it
reaches alignment at 0 = 0.

Observing the expression of P from equation (9), we can realize
that the quantity —g2r, + ¢2r, is the first moment of the cross-
sections of the spheres. We can define the ‘geometrical centre’ of the
double-sphere grain by

_ _§.2 7o + S 02 o
T Ty
and use r, to denote the vector from the centre of mass to the
geometrical centre. When r, > 0, the geometrical centre shifts
towards the white sphere and the final alignment angle at 6 =0
issuch thatr, || A. Conversely, when r, < 0, the geometrical centre
moves closer to the black sphere, and the final alignment angle at
0 = 7 also means r, || A. In other words, the asymmetry between
the two spheres causes an offset between the centre of mass and the
geometrical centre and the grain becomes susceptible to alignment
with A. The final alignment orientation is such that the geometrical
centre points along the direction of the flow relative to the centre of
mass. When r, = 0, the geometrical centre corresponds to the centre
of mass leading to P = 0.

Since the centre of mass is related to the mass of the spheres, we
can express how alignment depends on the mass or density. To fulfill
P > 0, it requires

(14)

2

Me &,
> >

me go

as5)

where we used the definition of P and equation (1). If the spheres
have equal mass, m, = m,, then the black sphere should be smaller
than the white sphere (¢, > ¢,) to reach alignment at 6 = 0.

Equivalently, we can re-express P > 0 using the material density
and obtain
Pele 1. (16)
Po Go
This expression explains that both an asymmetry in the material
density and/or in the size can create alignment. If p, = p., the black
sphere needs to be larger than the white sphere ¢, > ¢, to reach
alignment at & = 0 (note the opposite relation because the material
density is fixed as opposed to keeping the total mass fixed).

Lastly, we consider the behaviour when the flow-induced torque
is non-existent. From equation (9), we can see that P can equal 0
when the two spheres are identical or when A = 0, while D is always
greater than 0. When P = 0, the equation reduces to /@ + Dw = 0,
which can be integrated once to yield the time evolution of the grain
misalignment angle relative to the flow:

0(t) = 0(0) + %w(om(l — e /), (17)

where 6(0) and w(0) are the initial conditions of 6 and w. Equation
(17) means that the grain does not oscillate. The final orientation of
0(t — 00) is 6(0) + w(0)z,/2. In other words, without the restoring

Birdie-like alignment 3717

torque (P = 0), the final alignment angle depends on the initial
conditions. If the initial conditions for the grains are random and the
direction of rotation is also random, then the ensemble should not
have any preferred alignment direction (see Section 5 for a discussion
on the resulting polarization).

2.3 Parametrization

While the above discussion allows a qualitative description of
alignment, we utilize a parametrization of the double-sphere model
to facilitate the quantitative description. In particular, we aim to
quantify how ¢, and ¢, depend on the characteristic properties of the
grain, in addition to the level of asymmetry between the spheres. We
define the characteristic length [ of the entire grain through

l=ry+r, (18)

which is simply the length between the centre of the two spheres. We
define the ratio of the sizes through

e=2 (19)
gO

and the sum of the sizes is constrained by

ot ¢ = A, (20)

where A is the fraction of / that the radius of each sphere occupies
with A < 1. A = 1 means the two spheres are in contact. The sizes
are thus

€A /
Co = T+e”
S l 21
so = 1+e’
In addition to the size, we define the ratio of the densities through
k=2, (22)
Po

We denote the total mass of the grain through m = m, + m, and
along with definitions of € and «, one can find that

3

€«
me = m,
14 €3k
1
[ S 23
" l+63/cm 23)

Since r; for each sphere is related to the centre of mass through
equation (1), we can re-express r; by

1

(] = 717
) 1+ €3k
ek
= 24
s 1+ e 24

It is also convenient to consider the overall material density p
which is the total mass encompassed by the total volume of the two
spheres:

m 3 (1+¢€)
s = — R 25
= B 1o 25)
One can find that

1+

Pe = 1+€3KKI()S

1+6°
o = s 26
P T o’ (26)

MNRAS 534, 3713-3733 (2024)
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We can now determine the coefficients to equation (9). The
moment of inertia is
/- 4T A1+ €%) 3k
TP A r et |1+ ek

2 2 5
+ M+ @)

The coefficient to the drag term is

47 4 AEX(1+ efe?)

D=— [fre— 28
3 PgUth (1 + (1 + )2 (28)
Lastly, we find
P 4 AP A2e(ex — 1) (29
= — PV A —————— .
3 AT T o2 1 e0)

Note that the factor ex — 1 is equivalent to equation (16) and
determines the sign of P, which, in turn, determines the alignment
direction.

With the coefficient determined, we can assess the damping time
t4 and oscillation time 7,. We will use #, 4 and ¢, 4 to denote #; and 7,
of the double-sphere model, respectively. The damping time for the
double-sphere is

osl
lid = tid »
PgVth
21+ e+ [ €

e2(1+e)(1 +€*k?) |1+ €3

b 2 2 5
g = + A+ )|, (30)

where 7; 4 is a dimensionless factor that encapsulates the asymmetry.
We will use a breve () to denote the dimensionless factors that
only depend on the geometry of the grain. The physical quantity
psl/(pgvm) is equivalent to the stopping time of a spherical grain
with radius / and material density p;. The stopping time is the
characteristic time-scale for the aerodynamic drag force to stop the
motion of a moving grain (Armitage 2015). The relation between
the damping time and the stopping time of a single sphere is not
too surprising. As the double-sphere grain spins, each sphere moves
relative to the gas. Requiring each sphere to stop its relative motion
with respect to the gas is equivalent to stopping the spin of the
system, i.e. rotational damping. Thus, the damping time should be
on the order of the stopping time. However, this effect cannot be
captured for a single spherical grain as we will see in Section 3.
Plugging in some typical numbers for a protoplanetary disc for the
stopping time, we get

psl

PgVth

Os l 10°cm™3 1kms™!
~ 25yr .
3gem™3 1 mm ng Vth

Since increasing gas density dampens the grain spin more quickly
(ts < 1/p,), we expect that grains are better aligned in higher gas
densities. Also, since #; o [, larger grains are more difficult to be
damped and should be less aligned.

Fig. 3(a) shows the asymmetry factor 7; 4 for different values of
size ratio € and density ratio « while adopting A = 1 (i.e. contacting
spheres). We find that the value is of the order of unity across the
parameter space. When € = 1 and x = 1 (the symmetric case), then
14 = 1.4. Note that the flow speed A does not contribute to the
damping time, but only determines the oscillation potential (and
hence frequency) around the dust—gas drift direction.

s

(€2Y)
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Figure 3. Dimensionless factors for the double-sphere model as a function
of € (ratio of radii between the two spheres) and « (ratio of material
density). Panel (a): the damping time dimensionless factor, 7; 4. Panel (b): the
oscillation time dimensionless factor, 7, 4. As € — 1 and k — 1, f, 4 — 00
meaning there is no oscillation when the two spheres are equivalent.

The oscillation time for the double-sphere is

2
ta,d - Ps to,d 5
PgVmA

. A1+ €3) e
lod = 27
e2(14+e)exk — D |14+ €3k

where 7, , is a dimensionless factor for the oscillation time and
the physical quantity in front of it is the characteristic oscillation
time. Plugging in the same numbers for a protoplanetary disc as
equation (31) and adopting A = 10 ms™! (see Section 4 below), the
characteristic oscillation time is ~ 5 min.

Fig. 3(b) shows f, 4 as a function of size ratio € for different values
of density ratio k. While most of the parameter space shows 7, 4 ~ 10,
its value increases rapidly as € and « decreases to 1. Nevertheless,
evenifk = 1.0l ande = 1,0orx = 1 and € = 1.01, 7, ; ~ 50. Thus,
t, 4 1s much shorter than the damping time and the Keplerian orbital
periods of the outer disc even for 1 per cent asymmetry.

Since t, 4 < 14,4, the grain undergoes many oscillations before
the amplitude of oscillation diminishes. The oscillation behaviour is

2
+ gkz(l +ex)|, (32)
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more akin to an underdamped harmonic oscillator which enters its
equilibrium state (i.e. becomes aligned) gradually. We can understand
why through the damping ratio defined by ¢ = D/(2+/1 P) where
¢ <1,¢=1, and ¢ > 1 correspond to underdamped, critically
damped, and overdamped oscillators, respectively. Applying the
constants from equation (9), we have

_ PgVUth ¢
Sa = oA Sa »
i = e(1 + €*k?) (1+¢)
T+ ) A+ S)er — 1)
ek 2 -3
— + ZA+€ 33

where £, encapsulates the dimensionless, asymmetry factors. Using
typical conditions of discs used in equation (31), we have ¢; ~
4x1077Z; and &; ~ 6 for € = 1.01 and k = 1. One can see that
{a < 1 because the gas mass density p, is drastically smaller than
grain material density p, (by 15 orders of magnitude with n, = 10°
cm™?), which is more than enough to compensate for the difference
between the dust—gas relative speed A and the thermal speed vy, .

Fig. 4 shows the phase portrait (or trajectory maps) of the damped
oscillations given by equation (9). The phase portrait shows the
evolution of # and w for the dynamical system.> We used the same
values from equation (31) along with € = 1.01, x =1, and A =
10ms~'. Fig. 4 also shows the separatrix described by (w/wy)> =
2(1 + cos ) which separates the bounded and unbounded region.
One can derive this relation by equating the total energy (kinetic and
potential energy) of the system to the energy at the unstable point.
Grains in the unbounded regions continually spin without regard to
the alignment direction. However, as the grain loses energy through
damping, it will cross the separatrix at some point and become bound
within a potential well (see Appendix A for an example phase portrait
when the grain is more damped). We can see that 6 of a grain oscillates
around the alignment pointat® = O and is repelled atd = —m and .

To conclude the results from the double-sphere model, the asym-
metry in the structure (a combination of the cross-section and mass)
and the existence of gas flow lead to restoring torques that make the
grain oscillate instead of a spin-up. As the grain oscillates, the torque
from gas damping opposes any grain rotating motion which dampens
the magnitude of oscillation. Even a 1 per cent level of asymmetry
allows the grain to undergo severely underdamped oscillations. The
damped oscillations eventually reach an orientation where the grain
geometric centre aligns along the gas flow with respect to its centre
of mass. The time-scale to align the grain is related to the damping
time-scale which is comparable to the stopping time of the entire
grain. In other words, the grain asymmetry and gas flow determine
the direction of alignment and the damping time determines how
quickly the grain reaches alignment.

3 SPHEROID MODEL

The double-sphere model of a grain allowed estimates of the
oscillation behaviour depending on the level of asymmetry and the
time-scales for alignment. In addition, the model will always be
aligned along the long axis connecting the two spheres, which hints
at a potential solution that can match the requirement of effectively
aligned prolate grains constrained from observations. However,

3We use the Python package PHASEPORTRAIT available at https:/
phaseportrait.github.io
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the shape of the model is too idealized to assess its polarization
from thermal emission. In this section, we utilize an axisymmetric
ellipsoid, i.e. spheroid (prolate and oblate), and assess the alignment
behaviour. The polarization from spheroids is well established, both
in the dipole limit (van de Hulst 1957) and for arbitrary sizes
using the T-matrix technique (Waterman 1971; Mishchenko & Travis
1994). The spheroidal alignment model can be directly compared to
observed polarization.

3.1 Problem setup

Similar to the previous section, we aim to solve the total torque I of a
spinning grain embedded in a flowing background of gas. Obtaining
I' will allow us to derive the equation of motion. While the double-
sphere model only adds torque from two discrete points (the centres
of the two spheres), a smooth object, like a spheroid, requires us to
integrate the torque over its surface S:

r=7§rxdF, (34)
S

where r is the radius vector of a surface element do from the centre
of mass O and dF is the infinitesimal force from the gas acting on
the surface element.

Assuming specular reflection, gas drag in the Epstein regime, and
subsonic relative motion, Appendix B shows that dF at each point
of the surface follows

dF = —p, {cszn + v[hN(u)} do, (35)

where # is the unit normal direction of do and u is the velocity of the
surface relative to the gas. N = nn is a projection tensor that simply
returns a vector from the part of  that is normal to the surface do.
The negative sign means the force is opposite to the direction of n.
¢, is the isothermal sound speed ¢, = /kT /(um,,).

Assume the grain spins as a solid body with angular velocity
® around the center of mass. Each point of the surface will travel
relative to the gas as

Uu=wxr—A. (36)

The expression is directly related to equation (5), but in this case,
the u is the relative velocity of a surface element and not a complete
sphere that was assumed for the double-sphere model. Substituting
equation (36) and equation (35) into equation (34) yields three terms
to the total torque on the spheroid:

T = —p,c’K + pgvnlw + p,vMA (37)

with

Kzfrxnda,
s

L= 7{r x N(rx)do,
s

ME%I‘XNdO‘,
s

where K is a vector and L and M are tensors. We have rearranged the
expression such that only quantities that depend on the location of the
surface are kept inside each integral. Note that the cross product, r x,
is a 2-rank tensor that can be implemented as a matrix calculation. The
first term is a driving torque that exists regardless of any A or w. The
second term is the damping torque since it is related to . The third
term depends on A and, as we will see later, produces the restoring
torque. Equation (37) is particularly useful since each integral only
depends on the structure of the grain and does not depend on the

MNRAS 534, 3713-3733 (2024)
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Figure 4. The phase portrait (trajectory map) of the double-sphere grain under the presence of gas flow A. The horizontal axis is 6, while the vertical axis
is the angular velocity w normalized by the oscillation frequency w,. The black circles correspond to stable equilibrium points that serve as the attractors for
alignment. The plus signs are the unstable equilibrium points. The blue curve is the separatrix that separates the bounded and unbounded regions. Regions inside

the separatrix are bounded and oscillate around the attractors.

environmental properties, like A or p,, or its dynamic state, like 6
or . This opens the possibility of pre-calculating these integrals
for any grain as its unique physical property before considering its
dynamic behaviour.

3.2 Strictly axisymmetric spheroid

Thus far, we have not utilized any assumption about the geometry
of the spheroid. We now evaluate each term in equation (37) using a
dedicated coordinate system shown in Fig. 5. The setup is equivalent
to Section 2. Let €, €;, and é; represent the Cartesian, unit directions
of the lab frame that is centred at the origin O. We define é; to be
along the direction of gas flow A and let the grain rotate around é.

Let the body frame of the spheroid also be a Cartesian coordinate
system with its centre denoted by G. We use I;l, 132, and 133 to denote
the unit vectors. b5 is along the axis of asymmetry and b, is parallel
to &;. The angle between 133 and &5 is 6. The relation between these
two sets of unit vectors is simply

b = wye;, (38)

where we adopt the Einstein summation convention and i and j are
indices from 1 to 3. W;; are the elements of the matrix

cosf 0 —sin6

W= 0 1 0 (39)
sinf 0 cos#@
In the body frame, the surface of the spheroid follows
b*+b3 b3
T2 ) (40)
a c

MNRAS 534, 3713-3733 (2024)

where by, b, and b3 are coordinates in the body frame along b 1s
132, and 1;3, respectively. In addition, c is the length of the spheroid
along the axis of symmetry (not to be confused with the isothermal
sound speed c; or the speed of light) and a is the length along the axis
perpendicular to that. A prolate has ¢ > a, while an oblate has ¢ < a.
Note that to fulfill the assumption of drag in the Epstein regime, the
longest axis of the spheroid should be smaller than the mean free path
of the gas (which is estimated in Section 4.2 below for an illustrative
disc).

Considering axisymmetric particles makes the surface integral
easier to compute via a surface of revolution. We parametrize the
surface by introducing the azimuthal angle ¢ around the b axis

b\ _ [wcos¢

by)  \wsing )’
where ¢ starts from b, and increases following the right-hand rule.
Furthermore, w is the perpendicular distance from the surface to the

axis of symmetry, which depends on b3, and serves as the generatrix
for the surface integration:

w(bs) = ay/1 — b3,

where b3 = bs/c is by normalized by c. We will use the bar symbol
to denote length quantities normalized by c. With the generatrix, we
can derive the surface element to be

do = acy/1+ (a2 — 1)b3dbsde,

where a = a/c.

(41)

(42)

(43)
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Figure 5. Schematic of a prolate and an oblate where the centre of mass is shifted along the axis of symmetry. We use ellipses to represent the cross-sections of
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Oblate

the two spheroids in the eje3-plane. The quantity a is the length from the spheroid centre along the axis perpendicular to the axis of symmetry, while c is the
length from the centre along the axis of symmetry. For the prolate, the axis of symmetry is the long axis (¢ > a), while for the oblate, the axis of symmetry is
the short axis (¢ < a). €1, 3, and €3 are lab frame unit vectors where &, points out of the page. l;l N I;z, and l;g are body frame unit vectors, where 52 also points
out of the page and by is along the axis of symmetry. The offset of the centre of the spheroid from the centre of mass O is g. Since the centre of mass is shifted
along the axis of symmetry, g || b3. The arrow to the upper right of each grain (in green) is the direction of the gas flow A.

The normal vector of the spheroid is related to the gradient of
equation (40). We express the unit normal vector by n = 7i;b;:

iy | V1 —b3cose
fio | = ——n—— | /1 —D3si . (44)
i) Vit@- DB %5 sing

abs
We use a tilde to denote components using b; as basis vectors.
The radius vector of the surface from O can be decomposed to

r=g-+s, (45)

where g points from the centre of mass to the geometric centre G
and s points from G to the surface. The components of s using b;
basis vectors are

5 a\/1—bicos¢

51 = | ay/1—b3sing (46)
53 chy

For the offset vector g, we first consider the offset along the axis
of symmetry to follow the strict assumption of axisymmetry. If the
length between O and G is g, we have g = g133. We later relax this
assumption and explore the effects of g when it is not along the axis
of symmetry.

With the relevant details of the surface defined, we can now solve
for K, L, and M. When integrating over the surface, we find a
common occurrence of an integral in the form of

: fo
—dx,
-1 y/1+(@*—1)x?

where x is a dummy variable for integration and f(x) is some
function that depends on x. The dummy variable x originates from b3
as we integrate over the surface. The definition of E[ f(x)] implicitly

E[f(0)] = @7)

depends on a for easier notation. Appendix C shows the analytical
solutions to the E-integrals used in this paper.
For K, we make use of equation (45) for r and obtain:

K:gx?{nda—}—?{sxndazo. (48)
s s
Note that the integral in the first term, fs ndo, is always 0 for a closed
surface.* The latter term integrates to 0 for a spheroid.
For L, using equation (45) gives four terms:
L=gx ?{Nda(gx)—l—g X %N(sx)da +7§s x Ndo (g x)
s s s
+ %s x N(s x)do. (49)
s

It is convenient to know that the integral of N expressed in b, basis
vectors is

aE[l — x? 0 0
?{Nda =nc? 0 ak[l — x?] 0 ) (50)
s 0 0 233 E[x?]

For the first term of equation (49), using the 51- basis vectors, we find
that

100
g x dea(gx) = —nc*ag*E[l —x*1{010], (51)
s 000

4Under the current context, this is true since we assumed that the entire surface
of a grain reflects gas equally through equation (35). If certain patches of the
grain reflect gas differently, then there is an interesting possibility that the
integral may not have to be 0.

MNRAS 534, 3713-3733 (2024)
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where g = g/c. Each element in the second term integrates to 0.
Since N is a symmetric 2-rank tensor and both sx and gx are
antisymmetric 2-rank tensors, the third term is equivalent to the
transpose of the second term. Lastly, the fourth term is a symmetric
tensor, which means there are only six independent elements when
expressed as a matrix in general. For the spheroid, four of the
independent elements integrate to 0 leaving only two non-zero
elements:

100
%s x N(sx)do = —wcta(l —a*)?E[x>—x*1{010 (52)
s 000

Thus, we find that

~

Liy=Ly=-7c a[ 2E[l — X1+ (1 —a»*Ex? = xY|  (53)

while the rest of the elements are zero.
Lastly, for M, using the b; basis vectors, we have

ngéNda—l—jéstda
s s

1

M

0-10
=nclagE[l—x*1|1 0 0], (54)
000

where we found that the second term is 0.
We can now derive the torque from equation (37). Given the
assumed A = Aés, we can express A = A;b; and find that

A = —Asin8b, + Acosdb, (55)

using equatlon (39). Since we only consider rotation around &, and
&, = by, the angular velocity is simply @ = wé; = wh,. Applying
to equation (37), the torque is thus

I, = —,ogvlhnc4w& [ng[l — X1+ (1 - c‘zz)zE[x2 — x4
—p A c*agE[l — x*]sin@ (56)

and we find that ['; = I'; = 0. Note that I'; = [', also because &, =
b,. Thus, we see that the torque is only limited along &, which is
what we expect when we only consider  along é;.

The moment of inertia around the axis passing through the
geometric centre G and perpendicular to the axis of symmetry is

4
I = %csmﬂ(l +a) (57)

for a homogenous spheroid with material density p,. However, to
shift the centre of mass O away from the geometric centre G, the
spheroid cannot be homogenous. Nevertheless, based on the double-
sphere model, the necessary shift is relatively small compared to
the size of the grain, so the homogenous sphere remains a good
approximation even in this case. Using I, and the parallel axis
theorem, we have

47
Iy = 5 pa’(1+a" +587), (58)
where we can see that /; corresponds to /; when g < 1. As an
approximation, we simply adopt /; as the moment of inertia for the
spheroid. The subscript ‘s’ stands for ‘spheroid’.
The equation of motion has the same form as the double-sphere
model:

I;& + Dyw + Pssinf =0, (59

MNRAS 534, 3713-3733 (2024)

where

D, = pyvarcia [ng[l — X4+ (1 =@ ER? — x4

P, = pgvthAnc3c'ng[l —xz]

meaning the spheroid will also behave as a damped oscillator.

We find that the potential energy is U; = — P, cos 6, which is
again proportional to — cos 6§ and means the final alignment angle
isat@ =0 for P, >0 oratf =mx for P, <O0. Since E[1 — x?] is
always positive for all @ > 0, the sign of P; comes entirely from the
sign of g and is independent of 4. In other words, both prolate and
oblate grains will become aligned with their axis of symmetry along
the gas flow, such that the direction from the centre of mass to the
geometric centre follows the direction of the gas flow (g || A).

Given equation (59) we can explore the damping time 7, and
oscillation time ¢, analytically like in the previous section. We find
that

PsC o
tgs = qs,
PgVth

y 8 a(l +a*+5g>
las = 1552 2( —2gz) 2 _ 41 (60)
15 g?E[1 — x*]14+ (1 — a?)?E[x? — x*]

The damping time #,; is once again related to the stopping time
modified by a dimensionless quantity that depends on the structure
of the grain 7, ; (through @ and g). Fig. 6(a) shows how 7, ; depends
on a and g. If we have a sphere (& = 1) rotating about its geometric
centre (§ = 0), f; ; — oo (or equivalently, D; — 0) meaning it will
not be damped by the gas at all. The result makes sense since the
normal direction at each point of the sphere is always directed radially
from the centre of the sphere and thus the gas cannot produce any
torque as the sphere spins. However, if the centre of mass of the
sphere does not correspond to the geometrical centre (§ # 0), then
t4.5 is no longer infinite and its rotation can be damped. If we have
a homogenous spheroid (@ # 1) rotating about its geometric centre
(g = 0), i, is also finite since the normal directions of most of the
surface elements are no longer strictly in the radial direction from
O and gas can produce a torque. In general, as the non-sphericity
(l@a — 1]) increases, i, ; decreases. In other words, more non-spherical
grains (for both prolates and oblates) are better damped by the gas
and are aligned faster. With § = 0.01 and @ = 0.9, 7, ; ~ 80.
The oscillation time is

psct
to s
pgvthA

. \/16712 a(l +a® +5g%)

tog =

15 gE[l—x2] D)

which is also similar to the expression for the double-sphere. Fig. 6(b)
shows how 7, ; depends on the structure. For a given a, increasing
g decreases ¢, ; for both prolates and oblates, which means the key
to allowing a spheroid to oscillate lies in the offset between the
centre of mass from the geometric centre. For g — 0, 7, , — oo (or
equivalently, P; — 0) meaning the grain will not oscillate without the
offset. Fig. 6(b) also shows that increasing @ (more oblong) increases
f,.4- However, the large difference is in part due to keeping the length
along the axis of symmetry, c, fixed (long axis for a prolate, but short
axis for an oblate). With g = 0.01 and @ = 0.9, 7, ; ~ 35.
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Figure 6. Dimensionless factors for the strictly axisymmetric spheroid as
a function of g (the normalized distance from the centre of mass to the
spheroid centre, g/c) and a (the aspect ratio, a/c). Panel (a): the damping
time dimensionless factor, 7 4. Panel (b): the oscillation time dimensionless
factor, 7, 4. Black solid lines correspond to the spherical case, @ = 1. Dashed
lines correspond to prolates (a < 1), while dash-dotted lines correspond to
oblates (@ > 1).

3.3 Quasi-axisymmetric spheroid

Previously, we have enforced strict axisymmetry which requires the
centre of mass to be along the axis of symmetry. As a result, both
prolate and oblate cases will be aligned with their axis of symmetry
along the gas flow. Since polarization observations of discs favour
effectively prolate grains, we would naively continue our discussion
with prolate grains. However, if oblate grains are aligned along some
long axis and the direction of the short axis is random as an ensemble,
they can also appear effectively prolate around the azimuth of a disc if
the dust-gas drift velocity is azimuthal. We are particularly interested
in verifying if oblate grains can be aligned to the gas drift along the
long axis if g is along the long axis.

The benefits of axisymmetry lie in the integration of the surface
and g itself does not participate in the integration. In other words,
we can allow the centre of mass to be anywhere in the spheroid,
while keeping most of the derivation the same. If g is not along
the axis of symmetry, the grain is no longer strictly axisymmetric in
terms of the distribution of mass. However, since the surface remains

Birdie-like alignment 3723

(b) Alignment when g |l b,

Figure 7. Panel (a): a schematic of the coordinate system used to describe the
quasi-axisymmetric oblate following the same colouring scheme and notation
as Fig. 5. Without strictly requiring g to be parallel to bs, it can form an angle
Y from b3. The horizontal dotted line (in green) helps visualize the angle 6
formed by b3 and &;. The (blue) dotted line parallel to the direction of ghelps
visualize 1. Panel (b): a schematic of a quasi-axisymmetric oblate with g || b,
(or equivalently ¢ = 90°) when reaching alignment at 6 = —90°.

axisymmetric, we describe the model as a ‘quasi-axisymmetric’
model. We show that both the shape parameter @ and the offset
vector g determine the final alignment direction. In the case where
g lies along the long axis of an oblate, we find that the long axis of
the oblate will be aligned with the gas flow.

Following the same notation above, consider g that forms an angle
Y from bs. Fig. 7(a) shows a schematic of a quasi-axisymmetric
oblate. We pick by to be in the same plane as g and b3, which gives

& gsiny
al=( o (62)
3 gcos

using I;,v as basis vectors. The gas flow remains in the é&; direction.
We can choose €, such that g lies in the plane formed by é; and é;.
é, remains parallel to b,.

MNRAS 534, 3713-3733 (2024)
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We first evaluate K, L, and M using equation (62). We find that
K = 0.ForL, one only needs to re-evaluate the first term that depends
on g and is non-zero. We find that

Ly = —nc*ag*E[l — x*]cos
Lz =Ly = —nc*ag*E[l — x*]cos ¢ sinyr
In = —nctag? [E[l — X cos® ¢ + 282 E[x?] sin’ w}
L33 = —nc*ag?E[l — x*sin® ¢ (63)
while the rest of the elements of L are 0. When ¥ = 0, we recover
equation (53). For M, we find that
My, = —nc3c'1gE[l —xz] cos ¥
My = 7tc3dgE[l — xz] cos Y
My = =2 3@ gE[x?]siny
My, = nclagE[l — x?]siny (64)
while the rest of the elements of M are 0. When ¢ = 0, we recover
equation (54). Lastly, the moment of inertia remains equal to equation
(58).

The equation of motion becomes

I;&o + Dyw + P, sin® + P.cos6 =0, (65)

where the coefficients are

D, = povnrcta {(1 — @*)?E[x* — x* + g*E[1 — x*]cos* ¢

+2a%g* E[x*] sin® w]

P, = pyunAncagE[l — x*] cos ¥
P. = ZpgvthArrc3ﬁ3gE[x2] sinyr .

The subscript ‘q’ refers to the quasi-axisymmetric model, while the
subscript ‘c’ for P, refers to the coefficient of its cosine term (P, .’
would be too redundant). The existence of the extra cos6f term
in equation (65) alters the dynamical behaviour giving a potential
energy of

Uy, =—P,cosf + P.sin6. (66)

We can derive the alignment angle by finding 6,ig, such that U is a
minimum giving

— Pc
eaugn = atan2 Pq

A2 2]
atan2 (M) ) (67)
E[1 — x%]cos

where atan2 is the arctangent that gives an angle in the correct
quadrant by taking into account the sign of the arguments. The
alignment angle does not depend on the length of g, but only on ¥ and
a. Fig. 8(a) shows the alignment angle as a function of y for different
valuesof a. If = 0, i.e. g follows the axis of symmetry, then P, = 0
and 0., = 0 which recovers the previous results. If ¢ = 7/2, i.e.
g follows the axis perpendicular to the axis of symmetry for both
prolates and oblates, then P, = 0 and 0yjig, = —90°. This means that
an oblate will be aligned to A along its long axis if its centre of
mass is shifted along the long axis. A schematic of this conceptually
important case is shown in Fig. 7(b) for an oblate. In fact, if the centre
of mass is preferentially shifted towards the long axis of the oblate
(¥ >~ 45°), then the grain is preferentially aligned along the long
axis which is permitted by disc polarization when considering the
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Figure 8. Panel (a): the angle of alignment 6,y as a function of ¥ and for
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ensemble. Equation (67) also suggests a prolate will be aligned to A
along its short axis if g is shifted along that direction. We discuss the
implications in Section 5.

We can also derive the angle, 6,, that g forms with A which is
shown in Fig. 8(b). Evidently, 6§, does not entirely follow A, but is
modified by the shape of the grain. Nevertheless, it is within ~ 30°
for the range of a explored here.

4 ALIGNMENT IN A DISC

Sections 2 and 3 have established how grains are aligned and how
the alignment time-scales depend on environmental factors. This
section will now implement the axisymmetric spheroid model in
a simple disc environment to assess the alignment time-scales.
Observations of polarization permit either prolate grains aligned with
the long axis toroidally around the disc or oblate grains also aligned
with the long axis toroidally around the disc. For brevity, we will only
apply the results from the strictly axisymmetric prolate case. We first
describe how the gas and dust velocities depend on the properties
of the disc and grains in Section 4.1. In Section 4.2, we implement
the velocity profiles and analyse the alignment time-scales across the
disc.

GZ0Z aunf 6 U0 1sanb AQ GOZEBLL/E | LE/VIVES/PIPIME/SEIULY/WOO dNO"OlWapede//:SdRY WoJj papeojumoq



4.1 Disc velocity

We assume that the dynamics of gas are not affected by the dust. We
use (R, ®) to denote the cylindrical radius and azimuth of the disc.
Let the Keplerian frequency in the midplane be Q¢ = /GM,/R?
where M, is the stellar mass. It is also convenient to define the
Keplerian velocity vg = Qg R. We define a pressure scale height
as H =c¢;/Qk and let P, be the gas pressure. The azimuthal
velocity of the gas in the midplane follows from the radial force
balance:

vgo = vy 1 —1, (68)

where the dimensionless factor

1 P, <H)2alnPg

" Q2p,ROR ~ \R/) 3R

n=

represents the level of deviation from v due to the pressure gradient
(Nakagawa et al. 1986; Armitage 2015). It is convenient to define
the pressure gradient as 8 = 0 In P, /0 In R. We assume the gaseous
disc is accreting and parametrize an inward flow by

H\?2
Ug.R = —Q(E) VK, (69)

where « is a dimensionless parameter.’
The azimuthal velocity of the dust is (Armitage 2015):

1
Va0 = Vg, — EStvd.Ry (70)

where v, g is the radial velocity of the dust and St is the Stokes
number of the dust. The radial velocity of the dust is
Ug R — SU’]U K
Vir = 5. 71
d,R St2 +1 ( )
With these expressions, we can derive the aerodynamic flow of
gas experienced by the dust A through:

aSt+ 8 (H\’
AR=UV,r—Vyr=——|—=] v 72
R = Vg r — V4R St—|—St’1(R> K (72)

1 —a+pSt/H\’

o = Vgd — Vd,® 2 Stt st <R) Vg (73)

in the radial and azimuthal directions, respectively. The flow
speed is simply A = /A% + A%. We can also obtain the flow
direction x which determines the alignment direction of the
grain:

1 —o+ BSt }’ (74)

X = atan2 {f _
2 —(aSt+ B)
where x = 0 means the dust feels an outward radial gas flow, while
x = 90° means the dust feels an azimuthally directed flow along the
direction of disc rotation (i.e. a tailwind if the dust orbits azimuthally).
Since prolate grains are aligned along the long axis, the polarization
angle will be parallel to x, i.e. the polarization angle has a 180°
degeneracy and only ranges from 0° to 180°.
Fig. 9 shows the gas flow direction as a function of St for different
levels of «. When o = 0 (Fig. 9, first column), the gas does not
accrete (vg g = 0), while v, ¢ is always sub-Keplerian due to the

SNote that the o here is simply a parametrization for the inward flow since we
do not presume the origin. Thus, it is not immediately related to the typical
a-viscosity prescription from Shakura & Sunyaev (1973). Nevertheless, if
viscosity serves as the origin of the inward flow, then our parameter « should
only differ from the «-viscosity by a factor of 1.5.
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pressure gradient 8 from equation (68) (Figs 9a and d). The velocity
of the dust depends on St. When St < 1, the dust is completely
coupled to the gas and the dust velocity equals the gas velocity.
The gas flow, A, is thus close to 0 (Fig. 9g). As St increases to
~ 1, v4.¢ begins to increase (becomes less negative) and v, g drops
quickly. This is the well-known scenario where dust grains move
inwards quickly when St ~ 1 (i.e. the radial drift; Armitage 2015).
The gas flow is predominantly in the radial direction making x ~ 0°
for relatively small particles with St <« 1 (Fig. 9j). When St > 1,
the grains decouple from the gas and maintain a Keplerian orbit
(va.0 = vk, vg.g = 0). The gas flow becomes opposite to the az-
imuthal direction making x ~ —90° and the dust feels an azimuthal
headwind (Fig. 9j). Thus, for prolate grains aligned to the gas flow
along the long axis, the polarization direction should be parallel to the
radial direction when St < 1 and parallel to the azimuthal direction
when St > 1.

When « increases (Fig. 9, second and third column), v, z becomes
non-zero and travels inwards (Figs 9e and f). However, v, ¢ does
not change, since it remains completely determined by the pressure
gradient (Figs 9b and c). The main effect on the gas flow is when
St > 1 where the dust becomes Keplerian with v; g — 0. With a
non-zero v, g, the dust eventually matches v, r as the St increases
(Figs 9e and f) and v, g approaches zero from below, which leads
to a characteristic Stokes number St. in the high St regime where
A = 0 exactly:

St, =—=. (75)

The value of St, is formally co when « = 0 and of the order of 10?
when o = 0.01. It becomes ~ 10 when « increases to 0.1. For grains
with St > St., the alignment angle x becomes more negative than
—90°, although the deviation remains relatively small, so that the
alignment is approximately azimuthal.

The exploration shows that grains with large St can produce the
azimuthal direction of polarization, and increasing « lessens the strict
need for very large St. At face value, this may serve as evidence of
aerodynamically large grains that are fairly decoupled from the gas.
However, even with o = 0.1, which would require a fairly large
turbulence (Rosotti 2023) or magnetic-wind driven accretion (e.g.
Suriano et al. 2018), the required St is ~ 20 which is larger than
what is typically considered.

The issue may depend on the assumed pressure gradient. Dust rings
are fairly common (e.g. Andrews et al. 2018) and they can serve as
traps for large grains (e.g. Pinilla et al. 2012; Dullemond et al. 2018).
Gas kinematics also infer pressure bumps (Teague et al. 2018). With
quickly varying pressure gradients along the radius across rings, 8
may be closer to 0, for example, § = 0 at pressure maxima and
minima. Given how common dust rings are, we also explore the case
when 8 = 0 and show that small St can also produce gas flow parallel
to the azimuthal direction.

In the limit of g = 0, we have x — atan2[(—1)/(—2St)] as long
as « is non-zero. When St « 1, x — —90°, which would produce
polarization parallel to the azimuthal direction. Fig. 10(d) shows x
in the limit of 8 = 0. The reason is the following. With 8 = 0, the
azimuthal velocity of the gas is in Keplerian orbit, i.e. vy o = vg
(Fig. 10a). As the grains accrete with the gas from outer radii, they
become super-Keplerian and feel a headwind towards x = —90°
(Fig. 10c). In the case of large grains, St >> 1, they reach purely
Keplerian orbits and only feel the flow from the radial direction
due to the accreting gas. Although the flow speed is smaller by
one order of magnitude compared to Fig. 9(h), it only lengthens
the oscillation time 7, and does not alter the damping time #,. This
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Figure 9. Radial and azimuthal velocity profiles as a function of St for different levels of gas accretion, parametrized by «. The left to right columns correspond
to @ = 0 (no gas accretion), 0.01, and 0.1. The adopted pressure gradient, 3, is —2.75. Top row: the azimuthal velocity subtracted by the Keplerian velocity vg
normalized by (H /R)?vk . The black and green solid lines are the profiles for the dust and gas, respectively. The horizontal dotted line corresponds to v with
Keplerian rotation. Second row: the radial velocity for the dust and gas (black and green lines, respectively). The horizontal dotted line corresponds to vg = 0.
Third row: the gas flow which is the gas velocity relative to the dust velocity. The radial and azimuthal components of the gas flow, A and A, are shown
in solid and dashed lines, respectively. The horizontal dotted line corresponds to no relative velocity. Fourth row: the gas flow direction x in degrees. x = 0°
means radial, outward flow, while x = 90° means azimuthal flow in the rotation direction. The horizontal dotted lines mark 0° and —90° for visual guidance.

limiting case highlights the fact that the direction of the gas flow
can be complicated, especially in highly structured gas discs, and
requires further investigation.

4.2 Alignment time-scale

We make a simple prescription of a disc applying the velocity field
formulated above. We assume a stellar mass of M, = 0.5Mg. The
surface density is a power law truncated at an inner radius R, and an
outer radius Ry:

R\’
E(R) = Yia (7) s (76)
lau
where X1, is the surface density at 1 au. We adopt R, = 0.1 au, R, =
100 au, and p = 1. We assume a total disc mass that is 5 per cent of

the stellar mass, Myjs. = 0.05M,,, which gives %5, ~ 350 g cm™2.
The temperature of the disc follows

R —0.5
T(R)=200(£) : an
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The pressure scale height is H = ¢,/ Qg. The gas density in the
midplane is

)
R)= —— 78
pg(R) oo (78)

With this setup, the pressure gradient is 8 = —2.75. We adopt o =
0.01. For the prolate grain, we adopt c = 1 mm, @ = 0.9, and g =
0.01.
For reference, we estimate the mean free path of the gas by
1

s
I’lgO‘H2

)‘mfp = (79)
where oy, =2 x 101 cm? (Birnstiel, Dullemond & Brauer 2010).
Fig. 11(a) shows Ang as a function of radius in the disc. For our
adopted disc parameters, the A, is~ 8cmat R = lauto~ 2 x 10°
cm at = 100 au. Thus, the assumed millimetre grain should be well
within the Epstein regime, especially in the lower density regions
like in the outer regions of a disc.

Fig. 11(d) shows the time-scales as a function of radius in the
disc. We find that the damping time ¢, is around 4 d (~ 1072 yr)
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Figure 10. The velocity profiles when 8 = 0 and o = 0.01 plotted in the
same way as Fig. 9.

at R = 1 au, and reaches a thousand years at R = 100 au. Also, #;
is mostly smaller than the orbital time 75 at all radii up to 70 au,
meaning grain oscillations are mostly damped within a fraction of an
orbit. The increase in 7, with increasing radius is due to the decrease
in both the midplane density and temperature (equation 60). Given
that 7, is comparable to or less than 7¢, we reason that the alignment
mechanism can operate in discs even for a grain with a small offset
between its centre of mass and its geometric centre of g = 0.01.

The oscillation time ¢, is around a few minutes (~ 107> yr)
at R = lau and increases to an hour (~ 10~* yr) at R = 100 au.
Different from ¢4, the oscillation time 7, does not increase strongly
with radius, because it is only proportional inversely to the square
root of p, and in addition, benefits from an increased level of gas
flow at larger radii. From the adopted parameters, the St is ~ 1073
at 1au and increases with increasing radius to ~ 0.1 because the
midplane density decreases while the grain size is fixed (Fig. 11b).
The increasing St allows the grain to better decouple and experience
stronger flow speed A (Fig. 11c¢).

As discussed previously for the disc and grain parameters chosen
in this illustrative example, the direction of the flow is predominantly
in the radial direction in the simple power-law prescription of a disc
(Fig. 11c). More comprehensive calculations of the gas and dust
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Figure 11. The resulting power-law profiles of a disc. Panel (a): the mean
free path of the gas. Panel (b): the St. Panel (c): the dashed and dotted lines
are the absolute values of radial and azimuthal components of the gas flow,
respectively. The black line is the magnitude of the gas flow A. Panel (d): the
solid line is the damping time 74, the dashed line is the oscillation time #,,
and the dotted line is the Keplerian orbital time ¢ .

velocity in structured discs are necessary to address the question of
the alignment direction.

5 DISCUSSION

5.1 Comparison to other mechanical alignment mechanisms

The badminton birdie-like alignment mechanism utilizes the grains’
interactions with the ambient gas to achieve alignment, which makes
it a type of mechanical (or aerodynamic) alignment. A popular type
of mechanical alignment is alignment due to helicity, which is the
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ability to spin up a grain in the presence of gas flow (Lazarian &
Hoang 2007b). We showed that even without helicity, a grain can be
aligned along the gas flow with the birdie-like alignment mechanism.
These are two completely different effects. Our general torque
equation, equation (37), likely captures the helicity effect through
the diagonal terms of M. While those terms are O for spheroids
(equation 54), if they are non-zero, the grains will obtain a torque in
the same direction of A in grain body frame which corresponds to
the definition of helicity. We leave a detailed exploration of the case
of non-zero helicity to a future study. Equation (37) also expects
a driving torque from specular reflection if K is non-zero. Recall
that for spheroids, K = 0. However, if K exists (depending on the
grain geometry), then gas pressure can generate a torque in the grain
frame and spin up the grain. The torque does not require a gas
flow, making it different from the flow-induced restoring torque from
the birdie-like alignment process. This is similar to the systematic
torques proposed by Purcell (1979), but they differ in physical origin.
Interestingly, the driving torque goes as o ¢ which is much larger
than the restoring torque (related to M) which is « vy A. K would
have to be very small to not be effective. If K can increase the
rotational energy of the grain beyond the escape energy (2Ps; see
Sections 2 and 3), birdie-like alignment effect may be overwhelmed
by the rapid spin. Nevertheless, since K is determined entirely from
the surface features of a grain which we expect to be random in
general, we speculate that even if K is the dominant component
for certain grains, the alignment direction should also be random
as an ensemble and produce a net zero polarization. We leave a
more comprehensive exploration of the non-zero K case to a future
study.

Another type of mechanical alignment is the Gold alignment
mechanism (Gold 1952a, b). We can describe the polarization from
the Gold alignment mechanism through two main parts: the first
being the actual Gold alignment part and the second being the
polarization from the projection of grains once they are Gold aligned.
The first part utilizes prolate grains under the presence of a flow
of gas particles. Since the gas particles predominantly impact the
grains along the long axis (the other two axes are negligible), the
angular momentum is entirely parallel to the short axis, and the
angular momentum is mostly confined to a plane perpendicular to
the gas flow. As a collection, the angular momentum directions are
random around the direction of the flow and, for any instance, the
directions of the long axes of the grains are random around their
own angular momentum. The second part is the polarization that is
a natural result of projection of the collection of prolate grains with
this configuration. Polarization mostly comes from the grains whose
angular momenta are perpendicular to the observer as long as the
flow is not directed to the observer.

Our formulation of equation (37) does not immediately produce
the results of Gold alignment. The grain structure from Gold (1952a)
corresponds to a prolate which has K = 0 and also the centre of
mass is the same as the geometric centre, making M = 0. As a
result, the torque from A is always 0 regardless of how large A is.
Therefore, we would expect that spinning grains damped by the gas
should eventually stop at an orientation that is entirely determined
by the initial conditions (see equation 17). One may notice that from
equation (17) the spin axis will be around é,, which is defined to
be perpendicular to A, and we may obtain polarization from the
Gold-projection effect (second part). However, the polarization is
an artificial result because we have assumed that grains can only
oscillate around é,. In 3D, with M = 0, the orientation of angular
momenta and the resulting final orientation should be entirely random
with respect to A.
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One possible reconciliation is that we have assumed that the speed
of each patch of the surface is small compared to the sound speed
of gas (Appendix B). Numerous studies have found that the Gold
alignment requires supersonic drifts (Gold 1952a; Purcell 1969;
Lazarian 1994). Thus, it appears consistent with Gold alignment
that equation (37) should not produce a torque for any A without
the offset between the centre of mass and geometric centre. We
suspect that Gold alignment corresponds to the supersonic version
of equation (37), but leave the verification to a future investigation.

5.2 Does birdie-like alignment work in the ISM or protostellar
envelopes?

We estimate the damping and oscillation time-scales for a grain in
ISM conditions. Using equation (60), the damping time is

7 Os c 20cm™3 0.3kms™!
tis ~ 3.5 x 10'yr
’ 3gcem—3 0.1 um ng Vih

(80)

when adopting @ = 0.9 and g = 0.01; again, c¢ is the grain size,
which we normalize by the classic size of 0.1um for the ISM. Using
equation (61), the oscillation time is

fo ~ 110h, /L<L>
’ 3gem=3 \ 0.1pm
20cm=3 [0.3kms™! [lcms!
x ng Vih A
also using @ = 0.9 and g = 0.01. We can easily see that the low-
density environment means the grains will oscillate rapidly, while it
takes a long time to damp out the oscillations.

For the ISM, however, there can be other processes that can
systematically spin up the grain to rates comparable to thermal
rotation, like radiative torques (Draine & Weingartner 1996; Hoang &
Lazarian 2009). We can parametrize the rotational energy from other
spin-up processes as fkT where f is a multiplication factor and kT
is the thermal energy. If the grains are in thermal equilibrium, we
would expect f = 3/2. We provide an estimation of how much flow

is necessary to trap the grain into oscillation using 2P > fkT. The
relation gives a threshold flow speed A, ;:

A > At,.r = fv[}; wt,.v ’
necC-
. 1
Ay= o, 81
"7 16agE[l — X2 ®D

where Am is a dimensionless factor and the physical combination
is the characteristic threshold drift speed. For @ = 0.9 and g = 0.01,
we get A,,d ~ 5.

Adopting the same parameters used for equation (80), we get an
impractical A, y = 8f x 10'® cms~!. In contrast, A, ; ~ 0.5 cms™!
for a disc using the conditions from equation (31) with the same @ and
&. The main issue is that the threshold flow speed is very sensitive
to the grain size ¢, with A, o« ¢ =3, meaning it is much harder to
trap small grains. The secondary issue is that the density is much
lower in the ISM than in protoplanetary discs. Thus, the birdie-like
mechanism is unlikely to compete with other mechanisms that can
provide thermal rotational energy to grains in the ISM.

We next assess the dense cores of molecular clouds, since dust
polarization is routinely measured in dense cores and protostellar
envelopes (e.g. Stephens et al. 2013; Galametz et al. 2018; Maury
et al. 2018; Le Gouellec et al. 2019; Yen et al. 2020; Pattle et al.
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2021; Cox et al. 2022; Le Gouellec, Maury & Hull 2023; Huang
et al. 2024; Lin et al. 2024b). We find that the damping time is

Ps
tas ~7 x 100yr[ —2
¢ x yr<3gcm*3>

c 10°cm™\ /0.3kms™!
X s (82)
1 um ng Vth

where we adopted ¢ = 1pum to account for some grain growth from
classic ISM values of 0.1 pm (e.g. Pagani et al. 2010) and we
assumed @ = 0.9 and g = 0.01. The time-scale appears less than
or comparable to the lifetimes of the Class 0/I sources embedded
in envelopes (Evans Neal J. et al. 2009; Williams & Cieza 2011).
Applying the same conditions, the oscillation time is

Os c 105cm—3
3gem™3 \ 1pum ng

0.3kms=! [/lcms™!
X 1/ .
Uth A

The value for A is unclear, but it can be much less than the adopted
value if the small grains are well coupled to the gas. Following
equation (81), we find that A;; ~ 1.5f x 10> cms™!. The large
threshold suggests that birdie-like alignment is unlikely to trap grains
in oscillation in dense cores of molecular clouds or protostellar
envelopes if other processes can drive thermal rotation unless the
grains in such regions have already grown much larger than 1 pm (as
indicated by multifrequency dust continuum observations in some
cases, e.g. Kwon et al. 2009).

fys ~ 16h

5.3 Connection to observations

The drag force from gas plays an important role in the disc
dynamics of dust and is a key ingredient to explain dust rings due
to pressure bumps (e.g. Pinilla et al. 2012; Dullemond et al. 2018),
the streaming instability (e.g. Youdin & Goodman 2005; Squire &
Hopkins 2020), or pebble accretion (Ormel 2017). The birdie-like
alignment mechanism makes continuum polarization observations
direct evidence of gas drag and offers a possibility to probe parts
of the dust kinematics. While the Doppler shifts of molecular line
emission can trace the gas kinematics, empirical constraints on the
dust kinematics are harder to come by. Our work adds to the idea that
continuum polarization can measure the relative velocities between
the gas and dust (Kataoka, Okuzumi & Tazaki 2019; Mori et al. 2019;
Tang et al. 2023), but we offer a new physical justification that grains
can be aligned along the long axis even with highly subsonic drift.

Several discs show polarization that is elliptical in the polarization
orientation with HL Tau as the most prominent example seen from the
multiwavelength polarization (Stephens et al. 2017; Lin et al. 2024a)
and the high angular resolution polarization (Stephens et al. 2023). If
polarization is indeed due to birdie-aligned grains, the A-field should
be in the azimuthal direction with a 180° degeneracy.

Intriguingly, there are two discs with a spiral pattern, namely AS
209 (Mori et al. 2019) and GG Tau (Tang et al. 2023) that are relevant
to our discussion. The polarization patterns for both are nearly
azimuthal, but with a slight deviation by 4.5° and 7.1°, respectively.
The direction of deviation for both follows an inward spiral. For both
sources, the conventional alignment of grains with helicity cannot
easily explain the inward spiral and they favour a scenario where
prolate grains drift inwards and in the azimuthal direction, which
is better explained by the Gold mechanism (Mori et al. 2019; Tang
et al. 2023). The immediate benefit from the birdie-like alignment is

Birdie-like alignment 3729

that while the Gold mechanism requires supersonic drift, the birdie-
like alignment only requires subsonic drift and reproduces the same
orientation that the Gold mechanism offers. Whether or not the birdie-
like alignment can produce the inward spiral depends on the proper
treatment of the gas and dust velocity in a disc, or around a ring for
these two sources in particular, which is beyond the scope of this

paper.

5.4 Caveats and future developments

There are several assumptions made in this exploratory work. First,
we assume that angular momentum is predominantly around é, (the
direction of the gas flow-induced torque) when, generally, we might
expect angular momentum around the other two axes as well. In the
general case, the rotating motion around e, (and b, considered in
this paper) will become precession in 3D. For example, if the grain
contains significant angular momentum around bs, T', will induce
precession around é;. However, we can expect that the damping
torque should inevitably diminish the spin and precession at time-
scales of the order of 7; (which is rather short in the high-density
disc environment where the birdie alignment is most applicable) and
reach alignment akin to what is explored in this work. Note that
a spheroid will not exhibit drag when spinning around its axis of
asymmetry, but it should exist for realistic, irregular grains. Another
side effect of the assumption is that grains may artificially exhibit
polarization simply from the Gold projection effect in the unlikely
limiting case of M = 0 as described in Section 5.1.

Another assumption is that the level of A is fixed as the grain
oscillates. However, the geometric cross-section in the direction of
A varies as the grain oscillates. Since we know the force on each
patch of the surface, it is a simple exercise to derive the total force on
the axisymmetric spheroid using equation (35), equation (36), and
equation (45):

F = ?{dF = —PgVh 7{ Ndo(w x g — A). (83)
s s

For a spheroid, we know 565 Ndo from equation (50). For the case of a
sphere, g = 0 anda = 1, we recover the Epstein drag of a sphere with
specular reflection (equation 3; note that u = — A for that equation).
We can identify in equation (83) that ® x g — A is the velocity of
the centre of the spheroid relative to the gas as it oscillates around the
centre of mass. The relation means that the force that determines the
translational motion of the grain can also depend on the rotational
motion and a fully self-consistent study of the velocity of the grain
in a disc requires incorporating the equation of rotational motion.
Nevertheless, since we are particularly interested in the scenario
when w is small (near alignment) and we found that g only needs to
be ~ 1 per cent of the length scale for alignment, we do not expect
the flow to vary much with oscillation.

The last assumption of importance is the grain structure. We
utilized two cases of an axisymmetric spheroid: the strictly axisym-
metric case where the offset between the geometric and mass centres
is along the axis of symmetry and the quasi-axisymmetric case where
the offset can be anywhere in the spheroid. The assumption allowed
us to study alignment analytically. To explain the disc polarization
observations, the centre of mass should be shifted along the long
axis of the prolate or oblate instead of the short axis even though
birdie-like alignment does permit prolates or oblates to be aligned
with A along the short axes. In other words, observations suggest
that the predominant grain structure favours the offset vector g to
be along the long axes. It is unclear how grain growth can lead to
this structure, but we can view this as a result that the grain growth
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mechanism should strive to explain. Our formulation of equation
(37) allows one to pre-calculate the dynamical properties of the
grain (K, L, and M) independent of environmental properties or
dynamical state. Equation (37) should now allow a direct connection
between grain structure and its alignment permitting studies of
several geometries quickly. This is a very attractive possibility as
we can study the alignment of a population of grains each with a
unique geometry, allowing the prediction of the degree of alignment
and thus formulate testable predictions of polarization for various
grain growth mechanisms. We leave a more detailed exploration of
these assumptions to future studies.

6 CONCLUSIONS

Disc scale polarization has shown evidence of effectively prolate
grains aligned azimuthally. However, the alignment mechanism is
unclear. In this paper, we demonstrate the possibility that grains can
be aligned by the gas flow when the centre of mass is offset from
its geometric centre, as in the case of a badminton birdie. Our main
results are summarized as follows:

(1) To build our physical intuition, we first utilize a simple model
of a grain that is composed of two spheres connected by a rigid,
mass-less rod. We show that the grain behaves as a damped oscillator
under the presence of a systemic flow of gas, A, if the two spheres
of the grain are not identical. The oscillation is due to restoring
torques generated by A and the asymmetry between the spheres,
i.e. the ‘flow-induced restoring torques’ which resists the angular
displacement from the direction of alignment. The oscillation can
be described by a potential well near the direction of alignment. As
the gas damps the grain oscillation, the grain reaches alignment
such that the geometric centre follows the direction of the flow
with respect to its centre of mass. We derive the damping time and
oscillation time and show that the oscillation time is much shorter
than the damping time for typical circumstellar disc conditions (i.e.
underdamped oscillations). The damping time-scale is set by the
dust stopping time and the dust properties, particularly the degrees
of grain elongation and asymmetry.

(i) We derive a formula for the torque of a smooth body in
the Epstein regime by considering subsonic relative motion and
specular reflection of gas on each patch of the surface (equation
37). We capture the surface properties of the grains relevant for the
grain dynamics by K, L, and M which characterizes the driving
torque from gas pressure, the damping torque as the grain spins, and
the torque that arises from the existence of A, respectively. These
quantities allow us to quantify the grain rotational motion without
pre-determining environmental properties, like the gas density or
temperature, and the dynamic state, like the orientation or angular
velocity.

(iii) We apply the torque equation to an axisymmetric spheroid
(prolate and oblate) and obtain the damped oscillator equation of
motion along with analytical solutions to the damping time and
oscillation time. By considering a grain whose centre of mass is
shifted along the axis of symmetry, which is characterized by g (the
offset vector from the centre of mass to the centre of the spheroid),
we find that the final alignment direction is such that g is parallel to
A. In other words, for a prolate, the long axis is along the gas flow,
or for an oblate, the short axis is along the gas flow.

(iv) We further consider a grain whose centre of mass can be
anywhere within the spheroidal surface and also derive analytical
solutions to the damping time and oscillation time. We show that
the final alignment direction depends on both g and the shape of the
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spheroid. In particular, if the centre of mass of an oblate is shifted
along the long axis, then the oblate will be aligned along the long
axis. Since disc polarization observations require effectively prolate
grains, the birdie-like alignment mechanism requires the offset vector
g to be along the long axis for both prolates and oblates.

(v) We implement a simple disc model and calculate the gas and
dust velocity fields. Using the power-law disc model with a pressure
gradient, we expect the gas flow to be in the radial direction for
small Stokes number, St, and in the azimuthal direction for large
St. However, in the centre of pressure bumps or gaps, where the
pressure gradient can be small, the gas flow can be in the azimuthal
direction for small St and in the radial direction for large St. Using
just the power-law disc model to study the radial dependence of the
mechanism, we show that the damping time is mostly less than the
Keplerian time ¢, but it can be comparable to or greater than tx
at large radii near the disc outer edge. Typically, it takes a fraction
of an orbit or only several orbits to align a grain in a disc. The
very short alignment time-scale compared to the lifetime of the disc
makes birdie-like alignment a very promising mechanism to explain
the inferred toroidally aligned, effectively prolate grains from several
disc polarization observations and deserves further development.
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APPENDIX A: ADDITIONAL EXAMPLE OF A
PHASE PORTRAIT

Fig. 4 from Section 2 presented a phase portrait showing the damped
oscillation behaviour of a double-sphere model of a grain. The
typical disc conditions mean grains undergo highly underdamped
oscillations. To illustrate how a better-damped phase portrait appears,
we adopt n, = 102 ecm™3, vy, = 0.2kms™, A =5 x 105 cms™!,
!/ = 1mm, e = 1,and « = 1.01 and the results are shown in Fig. Al.
With a much higher gas density and smaller velocity difference, the
trajectories now clearly spiral towards the attractors (final alignment
points), even starting from initially unbound states considered in this
plot. For reference, using equation (33), the damping ratio {; ~ 0.14
in this illustrative case.
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Figure A1. The phase portrait plotted in the same way as Fig. 4. In this example, the grain is more damped.

APPENDIX B: DERIVATION OF THE DRAG
FORCE ON A SURFACE ELEMENT

In this appendix, we assume rarefied, subsonic gas flow (i.e. Epstein
regime) and obtain the drag force on a patch of surface. The validity
of the Epstein regime in a disc is discussed in Section 4.2. We will
use a distribution of velocities of the gas for a moving observer
and derive the transfer of momentum from the gas onto a patch of
surface after integrating over the velocity distribution. The derivation
is based on Epstein (1924). We will redefine the symbols utilized in
this appendix for clarity and the same symbols in the main text may
not correspond to the definition here.

We begin by considering the Maxwell velocity distribution for the
gas which gives the number of molecules having velocity components
in the Cartesian coordinates between &y, 19, o, and & + d&p, no +
dno, &o + d¢o through:

B\ 32
NSOJIU-COd‘i:Odnod;U =N (*) eih($§+ng+§(§)déodﬂod§0, (B])
T
where N is the number of molecules per unit volume. % is defined by
P
2T’

where m is the mass of each molecule, k is the Boltzmann constant,
and T is the temperature.

Consider a travelling observer with a Cartesian coordinate system
with axes x, y, and z. The observer travels relative to the rest frame
of the gas with a speed of V and components «V, BV, and y V along
the x, y, and z axes, respectively. Here, «, B, and y are direction
cosines (not to be confused with @ and $ from Section 4). Let &, n,
and ¢ be the velocity components of a molecule parallel to x, y, and
z, respectively, seen by the observer. The transformation between the
velocity in the observer frame to the velocity in the gas rest frame
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follows

E=&—aV,

n=mny— BV,

(=%—-vV. (B2)

Since V is constant, d§ = d&,, dn = dng, and d¢ = d¢y. Thus, the
velocity distribution seen by the observer is

N¢ . dédnds =

3/2
N (ﬁ) e~ ME+aV @BV VI ge dpd (B3)
Y

We approximate the equation by considering the distribution to the
first power of V which gives

3
h 2 2 2
Neye=N (;) {1 —2hV(aE + By + yo) | e MEHTHD (B

We now wish to calculate the number of impinging particles
onto some surface element do. Let the x-axis be the direction that
is normal to the surface element. Within some unit time dt, the
impinging particles with velocity (&, n, ¢) will be those that are
enclosed within a cylinder with do as the base and —&dt as the
height:

ng . cdsdndededo =
[
(%) [e-2mveas+pnero

x e M qedpde dido
(B5)
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Each impinging particle carries a momentum of

3

pi=m|n (B6)
¢

in the observer frame. Since we know the number of impinging

particles onto the surface from equation (BS5), we can obtain the
momentum from the impacts of all velocities

0 o0 o0
pldtdo = / de / dn / d¢ ping , (dtdo (B7)
ﬁ 20
=[O )+ {8 | |arao B8)
0 Y

where p(ai,), is the momentum per unit area and per unit time.

To calculate the momentum of the emerging gas, we assume spec-
ular reflection in which, after the impact, the velocity of the molecule
normal to the surface flips by a negative sign. The momentum of the
emerging molecule is thus p, = m(—§, n, ¢). Following the same
exercise as above,

0 0 o
pYdtdo = / de / dn / d¢ pene., dtdo (B9)
—ﬁ —2a
=-—mN 0 + — dtdo. B10
0 2\/ 7Th ﬁ ( )

We can obtain the force onto the surface by looking at the momentum
that is deposited by gas within the unit time:

dF = P — Prldido
o dr

N( 1 N 2V0[> 4
= -—mN| — + — |ndo,
2h  /mh

where dF is the force on do and n is the unit direction along
the x-axis, which was defined to be in the normal direction of the
surface. One can quickly realize that the force is only in the normal
direction because the momentum of the molecules along the y- or
z-directions has not changed. Also, the direction of the force is
antiparallel to n.

We can re-express the equation by connecting it to a few physical
quantities. 1/24 is simply the isothermal sound speed squared ¢? =
kT /m. Also, 2/+/7h is the average speed vy, = /8kT /(rm). The
quantity mN is the mass density p, as defined in the main text.
Furthermore, since Ve« is the velocity component along the x-axis,
we can express it as Vo = V - n. When expressed in the dot product
form and applied to rdo for equation (B11), one can quickly see
that (V - n)n is simply a vector from V that is projected onto the
normal direction. We can express this relation through a projection
tensor N = nn giving (V - n)n = N(V). Implementing these new

(B11)
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relations, we have

dF = —p, {cfn + va(V)} do, (B12)
which matches equation (35). Note that the first term is simply the
pressure which does not depend on V. The second term controls the
effect of the motion of the surface. When V is in the same direction
as n, the side of the surface that experiences reflection feels an extra
force in the direction opposite to n. When V is in the opposite
direction of n, the surface feels a reduced force.

APPENDIX C: ANALYTICAL SOLUTIONS TO
THE E-INTEGRALS

In the main text, equation (47) defines an integration form that
frequently appears in the equations of motion in Section 3. The actual
quantities that appeared are E[x?], E[1 — x?], and E[x? — x*]. Note
that E[ f(x) + g(x)] = E[f(x)] + E[g(x)] where f and g are some
functions of x. The property means we only need to solve for E[1],
E[x?], and E[x*]. Here we provide the analytical solutions.

For convenience, we can define the elongation factor for prolates
(whena < 1) as

V1-a? (C1)

and the elongation factor for oblates (when a > 1) as

e

e=+Var—1 (C2)

(not to be confused with € in Section 2). Both are positive quantities.
We find that

2 arcsin (e) , whena < 1

E[1]=<¢2 ,whena =1 (C3)
2 arcsinh () whena > 1
e

where arcsinh is the inverse hyperbolic sine. Furthermore,

N + arcsin (e)

- 3 ,whena < 1
Elx*1=1? ,whena =1 (C4)
ey )
73 Cal. 7““';’3]‘ © ,whena > 1.

Lastly, we can obtain

2 _2 et
_ QN1 dsn© gheng < 1
E[x*]=q? ,whena = 1 (C5)
2_34 /1462 .
(2e==3)4/ 1+¢ + 3 arcsinh () .whena > 1.

45

With equations (C3), (C4), and (C5), we can get E[1 — x?]=E[1]—
E[x?] and E[x? — x*] = E[x?] — E[x*].

4e4
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