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Abstract

Multi-group data, which include the same set of variables on separate groups of samples,

are commonly seen in practice. Such data structure consists of data from multiple groups

and can be challenging to analyze due to data heterogeneity. We propose a novel Joint and
Individual Component Regression (JICO) model to analyze multi-group data. Our proposed
model decomposes the response into shared and group-specific components, which are driven

by low-rank approximations of joint and individual structures from the predictors respectively.
The joint structure has the same regression coefficients across multiple groups, whereas individual
structures have group-specific regression coefficients. We formulate this framework under the
representation of latent components and propose an iterative algorithm to solve for the joint and
individual scores. We utilize the Continuum Regression (CR) to estimate the latent scores, which
provides a unified framework that covers the Ordinary Least Squares (OLS), the Partial Least
Squares (PLS), and the Principal Component Regression (PCR) as its special cases. We show
that JICO attains a good balance between global and group-specific models and remains flexible
due to the usage of CR. We conduct simulation studies and analysis of an Alzheimer’s disease
dataset to further demonstrate the effectiveness of JICO. R package of JICO is available online at
https://CRAN.R-project.org/package=JICO.
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1 Introduction

Many fields of scientific research involve the analysis of heterogeneous data. In particular,
data may appear in the form of multiple matrices, with data heterogeneity arising from either
variables or samples. One example is the multi-view/source data, which include different
sets of variables on the same set of samples. The sets of variables may come from different
platforms/sources/modalities. For instance, in genomics studies, measurements are collected
as different biomarkers, such as mRNA and miRNA (Muniategui et al., 2013). Another
example is the multi-group data, which include the same set of variables on disparate sets

of samples, which leads to heterogenous subpopulations/subgroups in the entire population.
For instance, in the Alzheimer’s Disease (AD) study, subjects can have different subtypes,
such as Normal Control (NC), Mild Cognitive Impairment (MCI), and AD.

We study the classical regression problem with one continuous response for multi-group
data. Although there are many well-established regression techniques for homogeneous data
(Hoerl and Kennard, 1970; Tibshirani, 1996), they may not be suitable for multi-group

data. One naive approach is to ignore data heterogeneity and fit a global model using

these techniques. However, a single global model can be too restrictive because the diverse
information from different subgroups may not be identified. On the other hand, one can
train separate group-specific models. Despite its flexibility, the information that is jointly
shared across different groups is not sufficiently captured. Therefore, it is desirable to

build a flexible statistical model that can simultaneously quantify the jointly shared global
information and individual group-specific information for heterogeneous data.

There are several existing methods in the literature under the context of regression for
multi-group data. Meinshausen and Biithlmann (2015) took a conservative approach and
proposed a maxmin effect method that is reliable for all possible subsets of the data. Zhao

et al. (2016) proposed a partially linear regression framework for massive heterogeneous
data, and the goal is to extract common features across all subpopulations while exploring
heterogeneity of each subpopulation. Tang and Song (2016); Ma and Huang (2017); Chen et
al. (2021) proposed fused penalties to estimate regression coefficients that capture subgroup
structures in a linear regression framework. Wang et al. (2018) studied a locally-weighted
penalized model to perform subject-wise variable selection. Wang et al. (2023) proposed a
factor regression model for heterogeneous subpopulations under the high-dimensional factor
decomposition. However, these models either are not specifically designed to identify the
globally-shared and group-specific structures, or impose strong theoretical assumptions on
the covariates. On the other hand, there exist some related works for multi-source data.
Lock et al. (2013) proposed JIVE to learn joint and individual structures from multiple

data matrices by low-rank approximations. Some extensions of JIVE can be found in Feng
et al. (2018); Gaynanova and Li (2019). All of these decomposition methods are fully
unsupervised. Recently, Li and Li (2021) proposed a supervised integrative factor regression
model for mult-source data and studied its statistical properties with hypothesis tests. Palzer
et al. (2022) proposed sJIVE that extends JIVE with supervision from the response. These
methods are supervised, but focused on regressions for multi-source data.
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In this paper, we consider the supervised learning problem of predicting a response with
multi-group data. We propose a Joint and Individual COmponent Regression (JICO), a
novel latent component regression model that covers JIVE as a special case. Our proposed
model decomposes the response into jointly shared and group-specific components, which
are driven by low-rank approximations of joint and individual structures from the predictors
respectively. The joint structure shares the same coefficients across all groups, whereas
individual structures have group-specific coefficients. Moreover, by choosing different ranks
of joint and individual structures, our model covers global and group-specific models as
special cases. To estimate JICO, we propose an iterative algorithm to solve for joint and
individual scores using latent component representation. To construct the latent scores, we
utilize the Continuum Regression (CR) (Stone and Brooks, 1990), which provides a unified
framework that covers OLS, PLS, and PCR as special cases. Some follow-up studies and
modern extensions of CR can be found in Bjorkstrom and Sundberg (1996); Lee and Liu
(2013). Embracing this flexibility and generaliziblity from CR, our proposed JICO model
extends to the heterogeneous data setup and is able to achieve different model configurations
on the spectrum of CR under this more complicated setting. It attains a good balance
between global and group-specific models, and further achieves its flexibility by extending
CR.

A diagram illustration of JICO is shown in Figure 1. The left side shows the decomposition
of the data matrices into the joint, individual and error matrices that share the same column
dimension. The joint and individual matrices are further decomposed into the score and
loading matrices. The right side shows the decomposition of the response vector into the
joint, individual and error components. The joint and individual components are further
regressed on the score matrices to obtain the joint and individual coefficients.

As noted by the reviewers of our paper, the success of JICO relies on a good choice

of tuning parameters, which is at the cost of extra computational time. For that reason,

we give more details of tuning parameter selections in Appendix D of the Supplementary
Materials. We further study the impact of different initial values on JICO in Appendix

E, and its convergence and computational time in Appendix F. We conclude that JICO is
robust to different choices of initial values and its extra computational time is affordable
compared with traditional methods, such as PCR and PLS. Given its superior performance
than these methods, we believe the extra computational cost is worthwhile. More details on
the trade-offs between performance improvement and computational cost can also be found
in Appendix F.

The rest of this paper is organized as follows. In Section 2, we briefly review JIVE and
introduce our proposed JICO model. We further provide sufficient conditions to make JICO
identifiable. In Section 3, after two motivating special cases, we introduce our iterative
algorithm. In Sections 4 and 5, we evaluate the performance of JICO by simulation studies
and real data analysis on the Alzheimer’s disease dataset, respectively. In Section 6, we
conclude this paper with some discussion and possible extensions. Proofs and additional
details are provided in the Supplementary Materials.
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2 Motivation and Model Framework

Lemma 1.

Suppose we observe data pairs (X,, Y,)7_, from G groups, where X, € R"**” and Y, € R"
are the data matrix and the response vector for the gth group respectively. Each data matrix

has the same set of p explanatory variables, whereas the samples vary across groups. We let

X =[X/,..X;17 €R"™*Pand Y = [Y/,...Y,] € R", where n = ¥9_ |,

Our model is closely related to JIVE, which provides a general formulation to decompose
multiple data matrices into joint and individual structures. The JIVE decomposes X, as

X, =J;+A,+E,

2.1

where J, € R™ * P represents the joint structure of X,, A, € R * ? represents the individual

structure of X,, and E, € R" % ? is the error matrix. We consider that Y, has a similar

decomposition into joint and individual signals

Y,=J; + Al +e,

(2.2)

where e, € R" is the noise from the g-th group. Let X, = J, + A, and Y, = J; + A} be the
noiseless counterparts of X, and Y,. Lemma 1 gives conditions to ensure that J,, A,, J;, and

A, are identifiable.

Given (X, Y,)¢_,, where Y, € col(X,). There exist unique J, and A, such that.
i X,=J+A,
ii. row(J,) = ... = row(Js) C row(X,);

iii. row(J,) Lrow(A)), forg=1,...,G;
i G
. . n . row(4A,) = {0,,.}.

Moreover, ifcol(J,) L col(A,), then there exist unique J) and A such thatY,=J, + A} and
they satisfy J} € col(J,) and A} € col(A,).

Lemma 1 shows that X, can be uniquely decomposed into the sum of J, and A, if we require
them to satisfy conditions (77)—(7v), following similar statements as in Feng et al. (2018). To
ensure the unique decomposition of Y,, we need to further require col(J,) L col(A,), which is
different from Palzer et al. (2022), that requires row(J,) L row(A,).

In practice, only X, and Y, are observable. In Lemma 2, we show in (a) that the identifiable

conditions in Lemma 1 can still be achieved given the observed {X,,Y,}c_,, when we
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construct X, and Y, under certain identifiability constraints. We achieve this by finding an
. G

arbitrary set of bases w,, ..., wx € R” that span N | row(X,) and w, ,, ..., W, & that spans the
g =

space of solutions to (A.1) as shown in the proof of Lemma 2 in Appendix A. Using these
bases, we can construct J, and A, such that they satisfy other identifiable conditions in
Lemma 1, and construct X, as X, = J, + A,. Moreover, in Lemma 2(b), we show that if J, and
A, are assumed to have low ranks, they can be further decomposed as J, = S,U, where S, is

a n, X K score matrix, U is a K x p loading matrix, and K = rank(J,); and A, = T,U,, where

T, is a n, X K, score matrix and U, is a K, X p loading matrix, and K, = rank(A,). Under this

formulation, if'S,'T, = Ok x,, then (2.1) and (2.2) can be expressed as

X, =S,U+TU, +E,,

(2.3)

Y, =S,a+ T, +e,

(2.4)

where a € RK and a, € RX: are the coefficients of the joint and individual components
respectively. Model (2.4) gives a unified framework to model multi-group data. When K = 0,
the joint term S,a vanishes and (2.4) reduces to a group-specific model of Y, = T,a, + ¢,. On
the other hand, when K, = -+ = K, = 0, the individual term T,e, vanishes and (2.4) reduces

to a global model of Y, = S, + e,. When K # 0 and K, # 0, (2.4) has both global and
group-specific components, thus lies between the above two extreme cases.

Given (X, Y, )¢, we can construct X, and Y, such that

a. There exist unique matrices J, and A, such thatX, = J, + A,, conditions (i1)—(iv)
inLemma 1 and col(J,) L col(A,) still hold.

b. There exist matrices U, U,, S,, T, such that J, and A, can be expressed as
J.=S,U and A, =T,U,, whereS,'T, = Ox.,. Moreover, there exist J, and A;
that gives Y, = J + A} and can be expressed as J, = S,a and A} = T,a,, where

a=(SS)"'SY anda, = (T,T,)"'T,Y,, withS =[S/, ....Ss']".

There exist matrices W € RP?* K and W, e RP* Ke such that J, = S,U and A, = T,U, defined
byS,=XW, T,=XW, U= (W’W)_IW’ andU, = (Wg’Wg)_IWg’ as in Lemma 2(b) satisty
conditions (1)) —(iv) in Lemma 1 and col(J,) L col(A,), ifW'W, = 0 and WX, X,W, = 0, for all
g.

Corollary 1 follows directly from the proof of Lemma 2(b). As a remark, the columns
of W and W, form the sets of bases that span the row spaces of J, and A, respectively.
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Hence, W'W, = 0 is a sufficient and necessary condition for row(J,) L row(A,). Moreover,
note that in Lemma 2(b), S,'T, = 0 directly implies that A,'J, = 0, the latter being a sufficient
condition for col(J,) L col(A,). Therefore, in Corollary 1, W'X,'X,W, = 0 provides a sufficient
condition for col(J,) L col(A,), which satisfies one of the identifiability constraints for the
unique decomposition of X, in Lemma 1. In Section 3, we describe the algorithm to solve for

W and W, respectively.

3 Model Estimation

The key to estimate (2.3) and (2.4) is the constructions of score matrices S, and T,. To
motivate our estimation procedure, in Sections 3.1, we discuss the joint and individual score
estimation under two special cases respectively. In Section 3.2, we introduce an iterative
algorithm for the general case.

3.1 Joint and Individual Score Estimation

We first consider a special case that K, =0, g = 1, ..., G. Under this setup, the individual
components vanish and (2.3) and (2.4) reduce to the following model:

X=SU+E, Y =Sa+e,

3.1

where S =[S/, ....Ss/], E=[E/,...,E;/|,ande=[e/,...,e;]".

The formulation of (3.1) covers many existing classic methods. For example, in PCR, S
is chosen to be the score matrix of the first K principal components of X'X. However,

the principal components are inherently unsupervised and ignore the information from

Y. Among the other supervised methods, PLS regression is a popular approach that
incorporates regression on the latent scores. When K = 1 and p < n, the standard OLS can
also be cast under the above setup.

According to the proof of our Lemma 2, S can be constructed with the basis matrix W. For
the estimation of W, we utilize the continuum regression (CR) (Stone and Brooks, 1990)
algorithm, the result of which covers OLS, PLS, and PCR as special cases. For k =1, ..., K,
CR sequentially solves w, from the following optimization problem:

max cov(Xw, Y)zvar(Xw)y -1

w
st. ww=1wXXw,;=0; j=1,...k—-1ifk>2,

(3.2)

where cov(Xw, Y) = w'X'Y and var(Xw) = w’X'Xw, once columns of X and Y are centralized
to have mean zero. Here, y > 0 is a tuning parameter that controls how much variability of X
is taken into account for the construction of S. When y — oo, the objective function in (3.2)

is dominated by var(Xw)! ~ 'and Y does not play a role. The CR solution of W then seeks
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to find the principal component directions that maximize the variation of X. It can be shown
that (3.2) coincides with OLS and PLS solutions when y = 0 and 1 respectively.

Let W denote the solution to (3.2) and S = XW. Then « can be estimated by a = (S’S)_IS’Y.

As illustrated in Lemma 2, J, is the projection of X, onto the column space spanned by W.

Hence, we have J, = XgW(W’W)_IW’, which further gives U = (W'W)~ w.

Next we consider our model estimation under the special case that K = 0. In this case, the
joint component vanishes, and (2.3) and (2.4) reduce to the following individual model:

X, = TU,+E, Y, = T,a, +e,.

(3.3)

Same as the above discussion for joint score estimation, we utilize CR to construct
T, = X,W, as linear transformation of X,, where W, is a p x K, basis matrix, whose columns
span row(A,). Let W, = [w,., ..., w, | Given group g, for k = 1, ..., K,, CR sequentially solves

w,, from the following optimization problem:

max cov(X,w, Yg)zvar(ng)y -1

w
s.t. ww=1,
wX,/Xw,;=0; j=1,..,k=1ifk>2.

(3.4)

Denote W, the solution to (3.4). Similar to the joint estimation, once T, = X,W, is
constructed, «, can be obtained as the least square solution: e, = (Tg’Tg)_ng’Yg. Afterwards,

we can have A, = XgWg(Wg/Wg)_IWg’ and U, = (Wg’Wg)_IWg/.

3.2 JICO Algorithm

In this section, we consider the general case where K or K, can be both nonzero. Since
solving (3.2) and (3.4) simultaneously can be hard with both joint and individual structures
specified in the full model (2.3) and (2.4), we propose to iteratively solve one of them while
fixing the other. This leads to the following iterative procedure.

. Given W,, solve the following constrained problem sequentially for w,, ..., wy:

max cov(XJOint w, YJOirlt )2var(XJ0im w)y -1
w
st. ww=1,
W/Xloint ’XJointwj =0 =1, k—1ifk>2
W/w= OKgxl; g=1,...,G,
ngxéndiVIXJgOin‘w = 0Kg>< sg=1..G.

(3.5)
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. Given W, for any 1 < g < G, solve the following constrained problem

sequentially for w, ,,...,w, K

, w2 -1
max cov(XL"d‘Vw, Y,Iz"d“)

w

Var(XL"di"w)y
st. ww=1,
wXPYXE M, =05 j=1,..,k—1ifk>2,
W'w = 0gx;
rygJoint /~xrIndiv
WX X Mw=0.

(3.6)

. Repeat the above two procedures until convergence.
Note that in (3.5) and (3.6), we denote

X, -T\Ug Y, -Ta
xJoint _ . . yJloint _ .

>

X — TeUg Ye—Teac

and X} =X, - S,U, Y/ =Y,-S,a; g =1,...,G. Moreover, the last two constraints in
(3.5) and (3.6) correspond to the two sufficient conditions in Corollary 1 to satisfy the
identifiability conditions row(J,) L row(A,) and col(J,) L col(A,) needed in Lemma 1.

We formulate (3.5) and (3.6) into a generic CR problem, and derive an algorithm to solve it
in Appendix B of the Supplementary Materials. Furthermore, we describe the convergence
criterion for the iterative procedure and give its pseudo code in Appendix C. Empirically, the
algorithm always meets our convergence criteria, albeit there are no theoretical guarantees.
In practice, we recommend starting the algorithm with multiple initial values and choose

the one with the smallest cross-validated mean squared error. To predict the response using
JICO estimates, we let S, ., = X, .wW and T, ..., = X, ..«W,, where X, ., is the test set. Then the

prediction of response is given by S, @ + Ty ou@,.

In practice, we need to select tuning parameters K, K, and y. As a rule of thumb, we propose
to select the optimal y by fine-tuning it in a wide range with a coarse grid search of ranks K
and K,. For rank selection, we recommend tuning ranks by performing an exhaustive search
onKe{0,1,...,D}and K, = -- = K; € {0, 1, ..., D,}, where D, and D, are two user-defined
integers. We describe how to select the tuning parameters in more details and perform a
sensitivity study on how the selection affects JICO’s numerical performance in Appendix D
of the Supplementary Materials.

Finally, we point out that our method includes JIVE-predict (Kaplan and Lock, 2017) as a
special case. JIVE-predict is a two-stage method that implements JIVE on X first and then
regresses the responses on the loading matrix. When we let y — o in (3.2) and (3.4), JICO is
equivalent as performing JIVE on X. For that reason, our method in that case is equivalent to
JIVE-predict.
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4 Simulation Studies

One significant advantage of our proposed model is its flexibility of lying in between global
and group-specific models. Moreover, the choice of parameter y in CR allows it to identify
the model that best fits the data. In this section, we conduct multiple simulation studies to
further demonstrate the advantage of our proposed model.

We consider three simulation settings in this section. In the first two settings, we generate
data according to models that contain both global and group-specific components. The data
are generated in a way that PCR and PLS solutions are favored respectively. In the last
setting, we simulate data from two special cases: a global model and a group-specific model.
The data are simulated so that the OLS is favored for both cases. For all three settings, JICO
can adaptively choose the correct model parameter y so that it has the optimal performance.
Moreover, we further illustrate how the rank selection impacts the performance of JICO by
examining the results using mis-specified ranks.

We fix G =2, p =200, n, = n, = 50. In each replication, we generate 100 training samples
to train the models and evaluate the corresponding Mean Squared Error (MSE) in an
independent test set of 100 samples. We repeat simulations for 50 times.

For g =1,...,G, we generate X, as i.i.d. samples from .#(0,1,,,). For the sake of simplicity,

we generate Y, by the following model with two latent components:

Y, =aS,+ T, +e,

4.1)

where S, = X,w € R"s is the joint latent score vector with an coefficient a, T, = X,w, € R is
the individual latent score vector with an coefficient «,, and e, is generated as i.i.d. samples
from (0, 0.04). Here, w and w, are all p x 1 vectors, and are constructed such that w'w, = 0.

We vary the choices of w, w, a, and a,, which will be discussed later.

4.1 PCR Setting

In this section, we simulate the model which favors y = . In this case, CR solutions to (3.2)
and (3.4) coincide with PCR, which are essentially the top eigenvectors of the corresponding
covariance matrices.

To simulate this setup, given training data X = [X,’, X,']’, we let w be the top eigenvector
corresponding to X'X. We further set w, as the top eigenvector of X,'X,, where

X, = X, (I - ww’) is the data matrix after projecting X, into the linear subspace that is
orthogonal to w. This projection ensures that the construction of w and w, satisfies w'w, = 0.

To generate Y,, weleta=1,a,=1,g=1, 2.

We train JICO on a wide range of y € [0, o), using different combinations of K, K,, K,
with 300 iterations. Figure 2(a) demonstrates the MSEs evaluated on the test data over 50
repetitions. For better illustration, we plot MSE curves as a function of a, with a = y/(y + 1),
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which is a one-to-one monotone map from y € [0, o) to a € [0,1]. In particular, when
a=0,0.5and 1, we have y = 0,1 and oo, which correspond to the cases of OLS, PLS

and PCR respectively. The solid curve demonstrates the model performance given true
ranks K = K, = K, = 1, whereas the gray curves show the performance of models with
mis-specified ranks. In particular, we consider four mis-specified rank combinations. Among
them, two rank combinations (K = 1, K, = K, = 0; K = 2, K, = K, = 0) correspond to joint
models. The other two combinations (K =0,K, = K, = 1; K =0, K, = K, = 2) correspond to
group-specific models. We can see from Figure 2(a) that the absolute minimum is given
by the model with true ranks and « = 1, which refers to the underlying true model. When
we look at the curves on the spectrum of a as a whole, the joint models with K =1

or 2, K, = K, = 0 always perform worse than the model with K = K, = K, = 1, because
they are unable to capture the group-specific information from the underlying model. The
model with true ranks performs better than the individual models with K =0, K, = K, = 1
or 2 for larger values of a, because the latter models cannot capture as much global
information as the former. However, the model with K = K, = K, = 1 performs worse

than the individual models for smaller values of a, where the latter achieves much more
acceptable performances. This means that the choice of optimal ranks for our model can
be sensitive to the choice of y. For smaller y values, individual models tend to be more
reliable under the PCR setting. We notice that the end of the curve is not very smooth
when = 2, K, = K, = 0. One possible reason is that the solution path of CR can sometimes
be discontinuous with respect to y (Bjorkstrom and Sundberg, 1996), consequently the CR
algorithm may be numerically unstable for certain y values.

We further illustrate the performance of JICO by comparing it with several existing
methods. In particular, we include ridge regression (Ridge), partial least squares (PLS) and
principal component regression (PCR). For JICO, we select the models trained under true
ranks K = K, = K, = 1 (performance as illustrated by the solid curve in Figure 2(a)), with

¥ = 0,1, 0o, which correspond to the cases of OLS, PLS and PCR respectively. For a fair
comparison, for PLS and PCR methods, we fix the number of components to be 2 for both
a global fit and a group-specific fit. Table 1(a) summarizes the MSEs of these methods.
The numbers provided in the brackets represent the standard error. The first two columns
summarize the performance for each group (g = 1, 2), and the last column summarizes the
overall performance. The JICO model with y = oo performs significantly better than the
rest, because it agrees with the underlying true model. Among other mis-specified methods,
group-specific PLS is relatively more robust to model mis-specification.

4.2 PLS Setting

In this section, we consider the model setup that is more favorable to y = 1. In this scenario,
the CR solutions to (3.2) and (3.4) coincide with the PLS solutions. Same as in Section 4.1,
we still consider the construction of weights as linear transformations of the eigenvectors.

Given training data X = [X,’, X,’]’, denote V., as the matrix of top ¢ eigenvectors of X'X.
We let w = V1,/+/q, where 1, denotes a g x 1 vector with elements all equal to 1. In this

way, the q top eigenvectors contribute equally to the construction of S,. Similarly, we let
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X, = X,(I - ww’) and V, be the p x g, matrix of top ¢, eigenvectors of X,’X,. Then we let
w, = V.1, /\/q.. To construct a model more favorable to PLS, in this section, we let g = n/2

and ¢, = n,/2. We generate Y, from (4.1) by letting « = 1 and o, = 0.5.

Similar to the PCR setting, in Figure 2(b), we illustrate the MSE curves of JICO models
with different rank combinations on a spectrum of a, where y = a/(1 — a). Again, the solid
curve represents the model with true ranks, while the gray curves represent models with
mis-specified ranks. The absolute minimum is given by the solid curve at a around 0.5,
which corresponds to the underlying true model. Moreover, the solid curve gives almost
uniformly the best performance on the spectrum of a compared with the gray curves, except
on a small range of a close to 0. Hence, under the PLS setting, the optimal ranks can be less
sensitive to the choice of y. At initial values of a, the solid curve almost overlaps with the
gray curve that represents the joint model with K = 1, K, = K, = 0. This means that when y
is close to 0, the individual signals identified by the full model with K = K, = K, = 1 can be
ignored. Therefore, the two group-specific models that capture more individual information
give the best performance in this case. For a values closer to 1, the gray curve that represents
the joint model with K =2, K, = K, = 0 is very close to the solid curve. This means that

the effects of individual components estimated by JICO tend to become more similar across
groups for larger y.

In Table 1(b), we summarize the MSEs of JICO models trained with true ranks

K =K,=K,=1andy = 0,1, oo, along with other methods as described in Section 4.1. JICO
with y = 1 shows the best performance among all methods, followed by the global PLS
method, since the true model favors PLS and the coefficient a, = 0.5 for the group-specific

component is relatively small.

4.3 OLS Setting

In this section, we simulate the setting that favors y = 0, which corresponds to the case of
OLS in CR. It is shown in Stone and Brooks (1990) that when y = 0, there is only one
non-degenerate direction that can be constructed from the CR algorithm. Hence, under the
JICO framework, the model that favors y = 0 embraces two special cases: a global model
with K = 1, K, = 0 and a group-specific model with =0, K, = 1.

For the two cases, we simulate Y, with (a) « = 1, a, = 0 and (b) a = 0, «, = 1 respectively. The
construction of w and w, is the same as that in Section 4.2 with ¢ = n and ¢, = n,.

Figure 3 illustrates MSE curves of the two cases, where (a) represents the case of the global
model and (b) represents the case of the group-specific model. In both cases, the absolute
minimum can be found on the solid curves at a = 0, which represents the MSE curves

from the models with true ranks K = 1, K, = 0 and K =0, K, = 1 respectively. In (a), there
are two competitive models against the model with true ranks: another global model with

K =2, K, = 0 and the model with K = K, = K, = 1. They both achieve the same performance
with the solid curve at a = 0, and stay low at larger values of a. This is because, when

y is mis-specified, additional model ranks help capture more information from data. The
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K =2, K, = 0 model performs better because the underlying model is a global model. This
is also true for (b). The global minimum can be found at a = 0 on the solid curve, while

the K = 0, K, = 2 model performs better when a gets larger. Again, this is because larger K,
helps capture more information from data. The K = K, = K, = 1 model does not perform as
well, because the estimated joint information dominates, which does not agree with the true
model. We observe some discontinuities on the K = 2, K, = 0 curve, since the CR solution
path can sometimes be discontinuous with respect to y as discussed in the PCR setting in
Section 4.1.

In Table 1 (c¢) and (d), we summarize the MSEs of JICO models trained with the true

ranks with y = 0,1, co and other methods described in Section 4.1. For a fair comparison,

the number of components for PCR and PLS is chosen to be 1 for both global and
group-specific fits. The JICO model with y = 0, along with Ridge always achieve better
performance than all other methods. It is interesting to notice that in (c), the JICO models
with y = 1 and o coincide with global PLS and PCR respectively, and hence they achieve the
same performances. Similarly, in (d), JICO models with y = 1 and oo coincide with group-
specific PLS and PCR respectively, and they achieve the same performance correspondingly.
In addition, when = 1, K, = 0, the solution of CR algorithm coincides with the global OLS
model. Thus the JICO model with y = 0 and the global Ridge have similar performance in
(c). Similarly, when = 0, K, = 1, the JICO model with y = 0 and group-specific Ridge have

similar performance in (d).

5 Applications to ADNI Data Analysis

We apply our proposed method to analyze data from the Alzheimer’s Disease (AD)
Neuroimaging Initiative (ADNI). It is well known that AD accounts for most forms

of dementia characterized by progressive cognitive and memory deficits. The increasing
incidence of AD makes it a very important health issue and has attracted a lot of scientific
attentions. To predict the AD progression, it is very important and useful to develop
efficient methods for the prediction of disease status and clinical scores (e.g., the Mini
Mental State Examination (MMSE) score and the AD Assessment Scale-Cognitive Subscale
(ADAS-Cog) score). In this analysis, we are interested in predicting the ADAS-Cog score
by features extracted from 93 brain regions scanned from structural magnetic resonance
imaging (MRI). All subjects in our analysis are from the ADNI2 phase of the study. There
are 494 subjects in total in our analysis and 3 subgroups: NC (178), eMCI (178) and AD
(145), where the numbers in parentheses indicate the sample sizes for each subgroup. As a
reminder, NC stands for the Normal Control, and eMCI stands for the early stage of Mild
Cognitive Impairment in AD progression.

For each group, we randomly partition the data into two parts: 80% for training the model
and the rest for testing the performance. We repeat the random split for 50 times. The testing
MSE:s and the corresponding standard errors are reported in Table 2. Both groupwise and
overall performance are summarized. We compare our proposed JICO model with ridge
regression (Ridge), PLS, and PCR. We perform both a global and a group-specific fit for
Ridge, PLS, and PCR, where the regularization parameter in Ridge and the number of
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components in PCR or PLS are tuned by 10-fold cross validation (CV). For our proposed
JICO model, we demonstrate the result by fitting the model with fixed y = 0,0.25,1, o0, or
tuned y respectively. In practice, using exhaustive search to select the optimal values for K
and K, can be computationally cumbersome, because the number of combinations grows
exponentially with the number of candidates for each parameter. Based on our numerical
experience, we find that choosing K, to be the same does not affect the performance on
prediction too much. Details are discussed in Appendix D of the Supplementary Materials.
Therefore, in all these cases, the optimal ranks for JICO are chosen by an exhaustive search
inK € {0, 1} and K, = K, = K; € {0, 1} to see which combination gives the best MSE. We
choose K and K, to be small to improve our model interpretations. The optimal value of y is
chosen by 10-fold CV.

As shown in Table 2, JICO performs the best among all competitors. Fitting JICO with

y = 0.25 yields the smallest overall MSE. JICO with parameters chosen by CV performs
slightly worse, but is still better than the other global or group-specific methods. The results
of JICO with y = 0, 1 and o0, which correspond to OLS, PLS, and PCR, are also provided
in Table 2. Even though their prediction is not the best, an interesting observation is that
they always have better performance than their global or group-specific counterparts. For
example, when y = 1, JICO has much better overall prediction than the group-specific PLS.
This indicates that it is beneficial to capture global and individual structures for regression
when subpopulations exist in the data.

In Table 2, global models perform the worst, because they do not take group heterogeneity
into consideration. The group-specific Ridge appears to be the most competitive one among
group-specific methods. Note that for the AD group, our JICO model with y = 0.25 or tuned
y outperforms the group-specific Ridge method by a great margin.

To get our results more interpretable, we further apply the JICO model to NC and

AD groups. We run 50 replications of 10-fold CV to see which combination of tuning
parameters gives the smallest overall MSE. The best choice is y = 00, K = 1, Kyc = K4p = 3.
Then, we apply JICO using this choice and tuning parameters and display the heatmaps

of the estimated J, (left column) and A, (right column) in Figure 4. Rows of heatmaps
represent samples and columns represent MRI features. We use the Ward’s linkage to
perform hierarchical clustering on the rows of J,, and arrange the rows of J, and A, in

the same order for each group. Moreover, we apply the same clustering algorithm to the
columns of J, to arrange the columns in the same order across the two disease groups for
both joint and individual structures. Figure 4 shows that JICO separates joint and individual
structures effectively. The joint structures across different disease groups share a very similar
pattern, whereas the individual structures appear to be very distinct. We further magnify the
right column of Figure 4 in Figure 5 with the brain region names listed. We find that the
variation in A, for the AD group is much larger than the counterpart for the NC group. We
highlight the brain regions that differ the most between the two groups. The highlighted
regions play crucial roles in human’s cognition, thus are important in AD early diagnosis
(Michon et al., 1994; Killiany et al., 1993). For example, Michon et al. (1994) suggested that
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anosognosia in AD results in part from frontal dysfunction. Killiany et al. (1993) showed
that the temporal horn of the lateral ventricles can be used as antemortem markers of AD.

6 Discussion

In this paper, we propose JICO, a latent component regression model for multi-group
heterogeneous data. Our proposed model decomposes the response into jointly shared and
group-specific components, which are driven by low-rank approximations of joint and
individual structures from the predictors respectively. For model estimation, we propose

an iterative procedure to solve for model components, and utilize CR algorithm that covers
OLS, PLS, and PCR as special cases. As a result, the proposed procedure is able to extend
many regression algorithms covered by CR to the setting of heterogeneous data. Extensive
simulation studies and a real data analysis on ADNI data further demonstrate the competitive
performance of JICO.

JICO is designed to be very flexible for multi-group data. It is able to choose the optimal
parameter to determine the regression algorithm that suits the data the best, so that the
prediction power is guaranteed. At the same time, it is also able to select the optimal

joint and individual ranks that best describe the degree of heterogeneity residing in each
subgroup. The JICO application to ADNI data has effectively illustrated that our proposed
model can provide nice visualization on identifying joint and individual components from
the entire dataset without losing much of the prediction power.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Diagram of JICO for two groups. X, € R"s % ”: data matrix from group g. J, € R" ™ ?:

submatrix of X, corresponding to the joint structure. A, € R" * ?: submatrix of X,

corresponding to the individual structures. E, € R":* ?: error matrix. Y, € R"s: response from

group g. J; € R": subvector of Y, corresponding to the joint component. A; € R™: subvector

of Y, corresponding to the individual components. e, € R": noise vector. S, € R * K.

joint score matrix. U € RKXP. joint loading matrix. T, €

R X Kg:

individual score matrix.

U, € RK«* 7. individual loading matrix. & € RX: coefficients for the joint component.

a, € RKe: coefficients for the individual components.
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Fig. 2.
MSE curves for JICO models with different ranks under the PCR setting (a) and PLS setting
(b).
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Fig. 3.
MSE curves for JICO models with different ranks under OLS settings (a) and (b). (a) is
generated under a global model and (b) is generated under a group-specific model.
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Heatmaps of joint and individual structures from NC and AD estimated from JICO.

Fig. 4.
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Fig. 5.

Hegatmaps of individual structures from NC and AD estimated from JICO with MRI feature
names. The highlighted regions are frontal lobe WM, temporal lobe WM, occipital lobe
WM, parietal lobe WM, superior parietal lobule, middle temporal gyrus. The top row is from
NC and the bottom row is from AD.
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Groupwise and overall MSEs under the PCR, PLS and OLS settings. Numbers in brackets are standard errors.

Table 1

Method g=1 g=2 Overall
a) PCR Example JICO y=0 1.994(0.063) | 2.012(0.068) | 2.003(0.053)
y= 0.679(0.018) | 0.701(0.026) | 0.69(0.017)
y=00 | 0.04(0.001) 0.04(0.001) 0.04(0.001)
Global Ridge | 1.734(0.056) | 1.78(0.065) 1.757(0.052)
PLS 1.163(0.033) | 1.194(0.045) | 1.178(0.031)
PCR 0.946(0.04) 0.977(0.044) | 0.961(0.022)
Group-specific | Ridge [ 0.252(0.009) | 0.27(0.009) 0.261(0.005)
PLS 0.254(0.009) | 0.272(0.009) | 0.263(0.005)
PCR 0.68(0.042) 0.71(0.05) 0.695(0.032)
b) PLS Example JICO y=0 0.57(0.023) 0.567(0.021) | 0.569(0.018)
y= 0.211(0.008) | 0.218(0.008) | 0.215(0.006)
y=00 | 1.236(0.038) | 1.277(0.037) | 1.256(0.025)
Global Ridge | 1.698(0.064) | 1.742(0.06) 1.72(0.055)
PLS 0.3(0.011) 0.297(0.01) 0.299(0.008)
PCR 1.229(0.036) | 1.298(0.041) | 1.263(0.025)
Group-specific | Ridge | 0.375(0.013) | 0.425(0.016) [ 0.4(0.01)
PLS 0.412(0.014) | 0.406(0.016) | 0.409(0.008)
PCR 1.234(0.037) | 1.25(0.036) 1.242(0.024)
¢) OLS Example (a) JICO y=0 0.082 (0.002) | 0.083 (0.003) | 0.082 (0.002)
y=1 0.403 (0.011) | 0.419(0.011) | 0.411 (0.007)
y=00 | 1.006(0.031) | 1.07 (0.03) 1.038 (0.02)
Global Ridge | 0.084 (0.004) | 0.084 (0.003) | 0.084 (0.003)
PLS 0.221 (0.007) | 0.226 (0.006) | 0.223 (0.005)
PCR 0.991 (0.032) | 1.069 (0.030) | 1.030 (0.020)
Group-specific | Ridge | 0.574(0.017) | 0.599 (0.024) | 0.586 (0.013)
PLS 0.572(0.016) | 0.599 (0.024) | 0.585(0.013)
PCR 0.996 (0.032) | 1.061 (0.030) | 1.028 (0.021)
(d) OLS Example (b) | JICO y=0 0.063(0.002) | 0.066(0.004) | 0.064(0.002)
y= 0.257(0.009) | 0.27(0.009) 0.264(0.006)
y=0c0 | 1.004(0.031) | 1.002(0.03) 1.003(0.023)
Global Ridge | 0.646(0.021) | 0.673(0.024) | 0.66(0.019)
PLS 0.957(0.027) | 0.971(0.032) | 0.964(0.022)
PCR 1.023(0.031) | 1.016(0.031) | 1.019(0.023)
Group-specific | Ridge | 0.076(0.004) | 0.072(0.005) | 0.074(0.003)
PLS 0.113(0.003) | 0.116(0.005) | 0.115(0.003)
PCR 0.978(0.03) 0.987(0.029) | 0.983(0.022)
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Groupwise and overall MSEs on the ADNI data. Numbers in brackets are standard errors.

Table 2

Method

NC

eMCI

AD

Overall

JICO

y=0

6.671 (0.137)

11.319 (0.309)

55.798 (1.556)

22.821 (0.466)

y=.25

6316 (0.121)

10.394 (0.279)

40.853 (1.294)

17.951 (0.394)

y=1

6.443 (0.124)

10.353 (0.291)

44.054 (1.449)

18.929 (0.441)

}/:00

6.608 (0.138)

11.121 (0.308)

49.997 (1.832)

21.013 (0.558)

(0%

6.414 (0.129)

10.333(0.289)

41297 (1.348)

18.096 (0.401)

Global

Ridge

23.450 (0.751)

21.276 (0.796)

63.989 (2.657)

34.692 (0.840)

PLS

26.310 (0.787)

22.672 (0.915)

68.193 (3.183)

37.442 (0.982)

PCR

25.228 (0.771)

21.966 (0.802)

69.541 (2.969)

37.209 (0.907)

Group-specific

Ridge

6.336 (0.116)

10.353 (0.278)

42.271 (1.315)

18.364 (0.392)

PLS

6.656 (0.136)

11.298 (0.306)

48.434 (1.725)

20.629 (0.524)

PCR

6.656 (0.136)

11.346 (0.304)

47.357 (1.484)

20.327 (0.454)
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