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Abstract
Multi-group data, which include the same set of variables on separate groups of samples, 
are commonly seen in practice. Such data structure consists of data from multiple groups 
and can be challenging to analyze due to data heterogeneity. We propose a novel Joint and 
Individual Component Regression (JICO) model to analyze multi-group data. Our proposed 
model decomposes the response into shared and group-specific components, which are driven 
by low-rank approximations of joint and individual structures from the predictors respectively. 
The joint structure has the same regression coefficients across multiple groups, whereas individual 
structures have group-specific regression coefficients. We formulate this framework under the 
representation of latent components and propose an iterative algorithm to solve for the joint and 
individual scores. We utilize the Continuum Regression (CR) to estimate the latent scores, which 
provides a unified framework that covers the Ordinary Least Squares (OLS), the Partial Least 
Squares (PLS), and the Principal Component Regression (PCR) as its special cases. We show 
that JICO attains a good balance between global and group-specific models and remains flexible 
due to the usage of CR. We conduct simulation studies and analysis of an Alzheimer’s disease 
dataset to further demonstrate the effectiveness of JICO. R package of JICO is available online at 
https://CRAN.R-project.org/package=JICO.
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1 Introduction
Many fields of scientific research involve the analysis of heterogeneous data. In particular, 
data may appear in the form of multiple matrices, with data heterogeneity arising from either 
variables or samples. One example is the multi-view/source data, which include different 
sets of variables on the same set of samples. The sets of variables may come from different 
platforms/sources/modalities. For instance, in genomics studies, measurements are collected 
as different biomarkers, such as mRNA and miRNA (Muniategui et al., 2013). Another 
example is the multi-group data, which include the same set of variables on disparate sets 
of samples, which leads to heterogenous subpopulations/subgroups in the entire population. 
For instance, in the Alzheimer’s Disease (AD) study, subjects can have different subtypes, 
such as Normal Control (NC), Mild Cognitive Impairment (MCI), and AD.

We study the classical regression problem with one continuous response for multi-group 
data. Although there are many well-established regression techniques for homogeneous data 
(Hoerl and Kennard, 1970; Tibshirani, 1996), they may not be suitable for multi-group 
data. One naive approach is to ignore data heterogeneity and fit a global model using 
these techniques. However, a single global model can be too restrictive because the diverse 
information from different subgroups may not be identified. On the other hand, one can 
train separate group-specific models. Despite its flexibility, the information that is jointly 
shared across different groups is not sufficiently captured. Therefore, it is desirable to 
build a flexible statistical model that can simultaneously quantify the jointly shared global 
information and individual group-specific information for heterogeneous data.

There are several existing methods in the literature under the context of regression for 
multi-group data. Meinshausen and Bühlmann (2015) took a conservative approach and 
proposed a maxmin effect method that is reliable for all possible subsets of the data. Zhao 
et al. (2016) proposed a partially linear regression framework for massive heterogeneous 
data, and the goal is to extract common features across all subpopulations while exploring 
heterogeneity of each subpopulation. Tang and Song (2016); Ma and Huang (2017); Chen et 
al. (2021) proposed fused penalties to estimate regression coefficients that capture subgroup 
structures in a linear regression framework. Wang et al. (2018) studied a locally-weighted 
penalized model to perform subject-wise variable selection. Wang et al. (2023) proposed a 
factor regression model for heterogeneous subpopulations under the high-dimensional factor 
decomposition. However, these models either are not specifically designed to identify the 
globally-shared and group-specific structures, or impose strong theoretical assumptions on 
the covariates. On the other hand, there exist some related works for multi-source data. 
Lock et al. (2013) proposed JIVE to learn joint and individual structures from multiple 
data matrices by low-rank approximations. Some extensions of JIVE can be found in Feng 
et al. (2018); Gaynanova and Li (2019). All of these decomposition methods are fully 
unsupervised. Recently, Li and Li (2021) proposed a supervised integrative factor regression 
model for mult-source data and studied its statistical properties with hypothesis tests. Palzer 
et al. (2022) proposed sJIVE that extends JIVE with supervision from the response. These 
methods are supervised, but focused on regressions for multi-source data.
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In this paper, we consider the supervised learning problem of predicting a response with 
multi-group data. We propose a Joint and Individual COmponent Regression (JICO), a 
novel latent component regression model that covers JIVE as a special case. Our proposed 
model decomposes the response into jointly shared and group-specific components, which 
are driven by low-rank approximations of joint and individual structures from the predictors 
respectively. The joint structure shares the same coefficients across all groups, whereas 
individual structures have group-specific coefficients. Moreover, by choosing different ranks 
of joint and individual structures, our model covers global and group-specific models as 
special cases. To estimate JICO, we propose an iterative algorithm to solve for joint and 
individual scores using latent component representation. To construct the latent scores, we 
utilize the Continuum Regression (CR) (Stone and Brooks, 1990), which provides a unified 
framework that covers OLS, PLS, and PCR as special cases. Some follow-up studies and 
modern extensions of CR can be found in Björkström and Sundberg (1996); Lee and Liu 
(2013). Embracing this flexibility and generaliziblity from CR, our proposed JICO model 
extends to the heterogeneous data setup and is able to achieve different model configurations 
on the spectrum of CR under this more complicated setting. It attains a good balance 
between global and group-specific models, and further achieves its flexibility by extending 
CR.

A diagram illustration of JICO is shown in Figure 1. The left side shows the decomposition 
of the data matrices into the joint, individual and error matrices that share the same column 
dimension. The joint and individual matrices are further decomposed into the score and 
loading matrices. The right side shows the decomposition of the response vector into the 
joint, individual and error components. The joint and individual components are further 
regressed on the score matrices to obtain the joint and individual coefficients.

As noted by the reviewers of our paper, the success of JICO relies on a good choice 
of tuning parameters, which is at the cost of extra computational time. For that reason, 
we give more details of tuning parameter selections in Appendix D of the Supplementary 
Materials. We further study the impact of different initial values on JICO in Appendix 
E, and its convergence and computational time in Appendix F. We conclude that JICO is 
robust to different choices of initial values and its extra computational time is affordable 
compared with traditional methods, such as PCR and PLS. Given its superior performance 
than these methods, we believe the extra computational cost is worthwhile. More details on 
the trade-offs between performance improvement and computational cost can also be found 
in Appendix F.

The rest of this paper is organized as follows. In Section 2, we briefly review JIVE and 
introduce our proposed JICO model. We further provide sufficient conditions to make JICO 
identifiable. In Section 3, after two motivating special cases, we introduce our iterative 
algorithm. In Sections 4 and 5, we evaluate the performance of JICO by simulation studies 
and real data analysis on the Alzheimer’s disease dataset, respectively. In Section 6, we 
conclude this paper with some discussion and possible extensions. Proofs and additional 
details are provided in the Supplementary Materials.
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2 Motivation and Model Framework

Suppose we observe data pairs Xg, Y g g = 1
G  from G groups, where Xg ∈ ℝng × p and Y g ∈ ℝng

are the data matrix and the response vector for the gth group respectively. Each data matrix 
has the same set of p explanatory variables, whereas the samples vary across groups. We let 

X = [X1′, …, XG′]′ ∈ ℝn × p and Y = Y 1′, …, Y G′ ′ ∈ ℝn, where n = ∑g = 1
G ng.

Our model is closely related to JIVE, which provides a general formulation to decompose 
multiple data matrices into joint and individual structures. The JIVE decomposes Xg as

Xg = Jg + Ag + Eg,

(2.1)

where Jg ∈ ℝng × p represents the joint structure of Xg, Ag ∈ ℝng × p represents the individual 

structure of Xg, and Eg ∈ ℝng × p is the error matrix. We consider that Y g has a similar 
decomposition into joint and individual signals

Y g = Jg
Y + Ag

Y + eg,

(2.2)

where eg ∈ ℝng is the noise from the g-th group. Let Xg = Jg + Ag and Y g = Jg
Y + Ag

Y  be the 
noiseless counterparts of Xg and Y g. Lemma 1 gives conditions to ensure that Jg, Ag, Jg

Y , and 
Ag

Y  are identifiable.

Lemma 1.

Given Xg, Y g g = 1
G , where Y g ∈ col Xg . There exist unique Jg and Ag such that:

i. Xg = Jg + Ag;

ii. row J1 = … = row JG ⊂ row Xg ;

iii. row Jg ⊥ row Ag , for g = 1, …, G;

iv. ∩
g = 1

G
row Ag = 0p × 1 .

Moreover, if col Jg ⊥ col Ag , then there exist unique Jg
Y  and Ag

Y  such that Y g = Jg
Y + Ag

Y  and 
they satisfy Jg

Y ∈ col Jg  and Ag
Y ∈ col Ag .

Lemma 1 shows that Xg can be uniquely decomposed into the sum of Jg and Ag if we require 
them to satisfy conditions (ii)–(iv), following similar statements as in Feng et al. (2018). To 
ensure the unique decomposition of Yg, we need to further require col Jg ⊥ col Ag , which is 
different from Palzer et al. (2022), that requires row Jg ⊥ row Ag .

In practice, only Xg and Y g are observable. In Lemma 2, we show in (a) that the identifiable 
conditions in Lemma 1 can still be achieved given the observed Xg, Y g g = 1

G , when we 
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construct Xg and Y g under certain identifiability constraints. We achieve this by finding an 

arbitrary set of bases w1, …, wK ∈ ℝp that span ∩
g = 1

G
row Xg  and wg, 1, …, wg, Kg that spans the 

space of solutions to (A.1) as shown in the proof of Lemma 2 in Appendix A. Using these 
bases, we can construct Jg and Ag such that they satisfy other identifiable conditions in 
Lemma 1, and construct Xg as Xg = Jg + Ag. Moreover, in Lemma 2(b), we show that if Jg and 
Ag are assumed to have low ranks, they can be further decomposed as Jg = SgU, where Sg is 
a ng × K score matrix, U is a K × p loading matrix, and K = rank Jg ; and Ag = TgUg, where 
Tg is a ng × Kg score matrix and Ug is a Kg × p loading matrix, and Kg = rank Ag . Under this 
formulation, if Sg′Tg = 0K × Kg, then (2.1) and (2.2) can be expressed as

Xg = SgU + TgUg + Eg,

(2.3)

Y g = Sgα + Tgαg + eg,

(2.4)

where α ∈ ℝK and αg ∈ ℝKg are the coefficients of the joint and individual components 
respectively. Model (2.4) gives a unified framework to model multi-group data. When K = 0, 
the joint term Sgα vanishes and (2.4) reduces to a group-specific model of Y g = Tgαg + eg. On 
the other hand, when K1 = ⋯ = Kg = 0, the individual term Tgαg vanishes and (2.4) reduces 
to a global model of Y g = Sgα + eg. When K ≠ 0 and Kg ≠ 0, (2.4) has both global and 
group-specific components, thus lies between the above two extreme cases.

Lemma 2.

Given Xg, Y g g = 1
G , we can construct Xg and Y g such that

a. There exist unique matrices Jg and Ag such that Xg = Jg + Ag, conditions (ii)–(iv) 
in Lemma 1 and col Jg ⊥ col Ag  still hold.

b. There exist matrices U, Ug, Sg, Tg such that Jg and Ag can be expressed as 
Jg = SgU and Ag = TgUg, where Sg′Tg = 0K × Kg. Moreover, there exist Jg

Y  and Ag
Y

that gives Yg = Jg
Y + Ag

Y  and can be expressed as Jg
Y = Sgα and Ag

Y = Tgαg, where 
α = S′S −1S′Y  and αg = Tg′Tg

−1Tg′Y g, with S = S1′, …, SG′ ′.

Corollary 1.

There exist matrices W ∈ ℝp × K and Wg ∈ ℝp × Kg such that Jg = SgU and Ag = TgUg defined 
by Sg = XgW, Tg = XgWg, U = W′W −1W′ and Ug = Wg′Wg

−1Wg′ as in Lemma 2(b) satisfy 
conditions (ii)–(iv) in Lemma 1 and col Jg ⊥ col Ag , if W′Wg = 0 and W′Xg′XgWg = 0, for all 
g.

Corollary 1 follows directly from the proof of Lemma 2(b). As a remark, the columns 
of W and Wg form the sets of bases that span the row spaces of Jg and Ag respectively. 
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Hence, W′Wg = 0 is a sufficient and necessary condition for row Jg ⊥ row Ag . Moreover, 
note that in Lemma 2(b), Sg′Tg = 0 directly implies that Ag′Jg = 0, the latter being a sufficient 
condition for col Jg ⊥ col Ag . Therefore, in Corollary 1, W′Xg′XgWg = 0 provides a sufficient 
condition for col Jg ⊥ col Ag , which satisfies one of the identifiability constraints for the 
unique decomposition of Xg in Lemma 1. In Section 3, we describe the algorithm to solve for 
W and Wg respectively.

3 Model Estimation
The key to estimate (2.3) and (2.4) is the constructions of score matrices Sg and Tg. To 
motivate our estimation procedure, in Sections 3.1, we discuss the joint and individual score 
estimation under two special cases respectively. In Section 3.2, we introduce an iterative 
algorithm for the general case.

3.1 Joint and Individual Score Estimation

We first consider a special case that Kg = 0, g = 1, …, G. Under this setup, the individual 
components vanish and (2.3) and (2.4) reduce to the following model:

X = SU + E, Y = Sα + e,

(3.1)

where S = S1′, …, SG′ ′, E = E1′, …, EG′ ′, and e = e1′, …, eG′ ′.

The formulation of (3.1) covers many existing classic methods. For example, in PCR, S
is chosen to be the score matrix of the first K principal components of X′X. However, 
the principal components are inherently unsupervised and ignore the information from 
Y . Among the other supervised methods, PLS regression is a popular approach that 
incorporates regression on the latent scores. When K = 1 and p < n, the standard OLS can 
also be cast under the above setup.

According to the proof of our Lemma 2, S can be constructed with the basis matrix W. For 
the estimation of W, we utilize the continuum regression (CR) (Stone and Brooks, 1990) 
algorithm, the result of which covers OLS, PLS, and PCR as special cases. For k = 1, …, K, 
CR sequentially solves wk from the following optimization problem:

max
w

cov(Xw, Y )2var(Xw)γ − 1

s.t. w′w = 1, w′X′Xwj = 0; j = 1, …, k − 1 if k ≥ 2,

(3.2)

where cov Xw, Y = w′X′Y  and var Xw = w′X′Xw, once columns of X and Y  are centralized 
to have mean zero. Here, γ ≥ 0 is a tuning parameter that controls how much variability of X
is taken into account for the construction of S. When γ ∞, the objective function in (3.2) 
is dominated by var(Xw)γ − 1 and Y  does not play a role. The CR solution of W then seeks 
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to find the principal component directions that maximize the variation of X. It can be shown 
that (3.2) coincides with OLS and PLS solutions when γ = 0 and 1 respectively.

Let W denote the solution to (3.2) and S = XW. Then α can be estimated by α = S′S −1S′Y . 
As illustrated in Lemma 2, Jg is the projection of Xg onto the column space spanned by W. 

Hence, we have Jg = XgW W′W −1W′, which further gives U = W′W −1W′.

Next we consider our model estimation under the special case that K = 0. In this case, the 
joint component vanishes, and (2.3) and (2.4) reduce to the following individual model:

Xg = TgUg + Eg, Y g = Tgαg + eg .

(3.3)

Same as the above discussion for joint score estimation, we utilize CR to construct 
Tg = XgWg as linear transformation of Xg, where Wg is a p × Kg basis matrix, whose columns 
span row Ag . Let Wg = wg1, …, wgKg . Given group g, for k = 1, …, Kg, CR sequentially solves 
wgk from the following optimization problem:

max
w

cov Xgw, Y g
2var Xgw γ − 1

s.t. w′w = 1,
w′Xg′Xgwgj = 0; j = 1, …, k − 1 if k ≥ 2 .

(3.4)

Denote Wg the solution to (3.4). Similar to the joint estimation, once Tg = XgWg is 

constructed, αg can be obtained as the least square solution: αg = Tg′Tg
−1Tg′Y g. Afterwards, 

we can have Ag = XgWg Wg′Wg
−1Wg′ and Ug = Wg′Wg

−1Wg′.

3.2 JICO Algorithm

In this section, we consider the general case where K or Kg can be both nonzero. Since 
solving (3.2) and (3.4) simultaneously can be hard with both joint and individual structures 
specified in the full model (2.3) and (2.4), we propose to iteratively solve one of them while 
fixing the other. This leads to the following iterative procedure.

• Given Wg, solve the following constrained problem sequentially for w1, …, wK:

max
w

cov XJoint w, Y Joint 2var XJoint w γ − 1

s.t. w′w = 1,

w′XJoint ′XJointwj = 0; j = 1, …, k − 1 if k ≥ 2,
Wg′w = 0Kg × 1; g = 1, …, G,
Wg′Xg

Indiv′Xg
Jointw = 0Kg × 1; g = 1, …, G .

(3.5)
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• Given W, for any 1 ≤ g ≤ G, solve the following constrained problem 
sequentially for wg, 1, …, wg, Kg:

max
w

cov Xg
Indivw, Y g

Indiv 2var Xg
Indivw γ − 1

s.t. w′w = 1,
w′Xg

Indiv′Xg
Indivwgj = 0; j = 1, …, k − 1 if k ≥ 2,

W′w = 0K × 1;
W′Xg

Joint ′Xg
Indivw = 0 .

(3.6)

• Repeat the above two procedures until convergence.

Note that in (3.5) and (3.6), we denote

XJoint =
X1 − T1UG

⋮
XG − TGUG

, Y Joint =
Y 1 − T1α1

⋮
Y G − TGαG

,

and Xg
Indiv = Xg − SgU, Y g

Indiv = Y g − Sgα; g = 1, …, G. Moreover, the last two constraints in 
(3.5) and (3.6) correspond to the two sufficient conditions in Corollary 1 to satisfy the 
identifiability conditions row Jg ⊥ row Ag  and col Jg ⊥ col Ag  needed in Lemma 1.

We formulate (3.5) and (3.6) into a generic CR problem, and derive an algorithm to solve it 
in Appendix B of the Supplementary Materials. Furthermore, we describe the convergence 
criterion for the iterative procedure and give its pseudo code in Appendix C. Empirically, the 
algorithm always meets our convergence criteria, albeit there are no theoretical guarantees. 
In practice, we recommend starting the algorithm with multiple initial values and choose 
the one with the smallest cross-validated mean squared error. To predict the response using 
JICO estimates, we let Sg, test = Xg, testW and Tg, test = Xg, testWg, where Xg, test is the test set. Then the 
prediction of response is given by Sg, testα + Tg, testαg.

In practice, we need to select tuning parameters K, Kg and γ. As a rule of thumb, we propose 
to select the optimal γ by fine-tuning it in a wide range with a coarse grid search of ranks K
and Kg. For rank selection, we recommend tuning ranks by performing an exhaustive search 
on K ∈ 0, 1, …, D1  and K1 = ⋯ = KG ∈ 0, 1, …, D2 , where D1 and D2 are two user-defined 
integers. We describe how to select the tuning parameters in more details and perform a 
sensitivity study on how the selection affects JICO’s numerical performance in Appendix D 
of the Supplementary Materials.

Finally, we point out that our method includes JIVE-predict (Kaplan and Lock, 2017) as a 
special case. JIVE-predict is a two-stage method that implements JIVE on X first and then 
regresses the responses on the loading matrix. When we let γ ∞ in (3.2) and (3.4), JICO is 
equivalent as performing JIVE on X. For that reason, our method in that case is equivalent to 
JIVE-predict.
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4 Simulation Studies
One significant advantage of our proposed model is its flexibility of lying in between global 
and group-specific models. Moreover, the choice of parameter γ in CR allows it to identify 
the model that best fits the data. In this section, we conduct multiple simulation studies to 
further demonstrate the advantage of our proposed model.

We consider three simulation settings in this section. In the first two settings, we generate 
data according to models that contain both global and group-specific components. The data 
are generated in a way that PCR and PLS solutions are favored respectively. In the last 
setting, we simulate data from two special cases: a global model and a group-specific model. 
The data are simulated so that the OLS is favored for both cases. For all three settings, JICO 
can adaptively choose the correct model parameter γ so that it has the optimal performance. 
Moreover, we further illustrate how the rank selection impacts the performance of JICO by 
examining the results using mis-specified ranks.

We fix G = 2, p = 200, n1 = n2 = 50. In each replication, we generate 100 training samples 
to train the models and evaluate the corresponding Mean Squared Error (MSE) in an 
independent test set of 100 samples. We repeat simulations for 50 times.

For g = 1, …, G, we generate Xg as i.i.d. samples from N 0, Ip × p . For the sake of simplicity, 
we generate Y g by the following model with two latent components:

Y g = αSg + αgT g + eg,

(4.1)

where Sg = Xgw ∈ ℝng is the joint latent score vector with an coefficient α, T g = Xgwg ∈ ℝng is 
the individual latent score vector with an coefficient αg, and eg is generated as i.i.d. samples 
from N 0, 0.04 . Here, w and wg are all p × 1 vectors, and are constructed such that w′wg = 0. 
We vary the choices of w, wg α, and αg, which will be discussed later.

4.1 PCR Setting

In this section, we simulate the model which favors γ = ∞. In this case, CR solutions to (3.2) 
and (3.4) coincide with PCR, which are essentially the top eigenvectors of the corresponding 
covariance matrices.

To simulate this setup, given training data X = X1′, X2′ ′, we let w be the top eigenvector 
corresponding to X′X. We further set wg as the top eigenvector of Xg′Xg, where 
Xg = Xg I − ww′  is the data matrix after projecting Xg into the linear subspace that is 
orthogonal to w. This projection ensures that the construction of w and wg satisfies w′wg = 0. 
To generate Y g, we let α = 1, αg = 1, g = 1, 2.

We train JICO on a wide range of γ ∈ 0, ∞ , using different combinations of K, K1, K2, 
with 300 iterations. Figure 2(a) demonstrates the MSEs evaluated on the test data over 50 
repetitions. For better illustration, we plot MSE curves as a function of a, with a = γ/ γ + 1 , 
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which is a one-to-one monotone map from γ ∈ 0, ∞  to a ∈ 0,1 . In particular, when 
a = 0,0.5 and 1, we have γ = 0,1 and ∞, which correspond to the cases of OLS, PLS 
and PCR respectively. The solid curve demonstrates the model performance given true 
ranks K = K1 = K2 = 1, whereas the gray curves show the performance of models with 
mis-specified ranks. In particular, we consider four mis-specified rank combinations. Among 
them, two rank combinations K = 1, K1 = K2 = 0; K = 2, K1 = K2 = 0  correspond to joint 
models. The other two combinations K = 0, K1 = K2 = 1; K = 0, K1 = K2 = 2  correspond to 
group-specific models. We can see from Figure 2(a) that the absolute minimum is given 
by the model with true ranks and a = 1, which refers to the underlying true model. When 
we look at the curves on the spectrum of a as a whole, the joint models with K = 1
or 2, K1 = K2 = 0 always perform worse than the model with K = K1 = K2 = 1, because 
they are unable to capture the group-specific information from the underlying model. The 
model with true ranks performs better than the individual models with K = 0, K1 = K2 = 1
or 2 for larger values of a, because the latter models cannot capture as much global 
information as the former. However, the model with K = K1 = K2 = 1 performs worse 
than the individual models for smaller values of a, where the latter achieves much more 
acceptable performances. This means that the choice of optimal ranks for our model can 
be sensitive to the choice of γ. For smaller γ values, individual models tend to be more 
reliable under the PCR setting. We notice that the end of the curve is not very smooth 
when = 2, K1 = K2 = 0. One possible reason is that the solution path of CR can sometimes 
be discontinuous with respect to γ (Björkström and Sundberg, 1996), consequently the CR 
algorithm may be numerically unstable for certain γ values.

We further illustrate the performance of JICO by comparing it with several existing 
methods. In particular, we include ridge regression (Ridge), partial least squares (PLS) and 
principal component regression (PCR). For JICO, we select the models trained under true 
ranks K = K1 = K2 = 1 (performance as illustrated by the solid curve in Figure 2(a)), with 
γ = 0,1, ∞, which correspond to the cases of OLS, PLS and PCR respectively. For a fair 
comparison, for PLS and PCR methods, we fix the number of components to be 2 for both 
a global fit and a group-specific fit. Table 1(a) summarizes the MSEs of these methods. 
The numbers provided in the brackets represent the standard error. The first two columns 
summarize the performance for each group g = 1, 2 , and the last column summarizes the 
overall performance. The JICO model with γ = ∞ performs significantly better than the 
rest, because it agrees with the underlying true model. Among other mis-specified methods, 
group-specific PLS is relatively more robust to model mis-specification.

4.2 PLS Setting

In this section, we consider the model setup that is more favorable to y = 1. In this scenario, 
the CR solutions to (3.2) and (3.4) coincide with the PLS solutions. Same as in Section 4.1, 
we still consider the construction of weights as linear transformations of the eigenvectors.

Given training data X = X1′, X2′ ′, denote Vp × q as the matrix of top q eigenvectors of X′X. 
We let w = V1q/ q, where 1q denotes a q × 1 vector with elements all equal to 1. In this 
way, the q top eigenvectors contribute equally to the construction of Sg. Similarly, we let 
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Xg = Xg I − ww′  and Vg be the p × qg matrix of top qg eigenvectors of Xg′Xg. Then we let 
wg = Vg1qg/ qg. To construct a model more favorable to PLS, in this section, we let q = n/2
and qg = ng/2. We generate Y g from (4.1) by letting α = 1 and αg = 0.5.

Similar to the PCR setting, in Figure 2(b), we illustrate the MSE curves of JICO models 
with different rank combinations on a spectrum of a, where γ = a/ 1 − a . Again, the solid 
curve represents the model with true ranks, while the gray curves represent models with 
mis-specified ranks. The absolute minimum is given by the solid curve at a around 0.5, 
which corresponds to the underlying true model. Moreover, the solid curve gives almost 
uniformly the best performance on the spectrum of a compared with the gray curves, except 
on a small range of a close to 0. Hence, under the PLS setting, the optimal ranks can be less 
sensitive to the choice of γ. At initial values of a, the solid curve almost overlaps with the 
gray curve that represents the joint model with K = 1, K1 = K2 = 0. This means that when γ
is close to 0, the individual signals identified by the full model with K = K1 = K2 = 1 can be 
ignored. Therefore, the two group-specific models that capture more individual information 
give the best performance in this case. For a values closer to 1, the gray curve that represents 
the joint model with K = 2, K1 = K2 = 0 is very close to the solid curve. This means that 
the effects of individual components estimated by JICO tend to become more similar across 
groups for larger γ.

In Table 1(b), we summarize the MSEs of JICO models trained with true ranks 
K = K1 = K2 = 1 and γ = 0,1, ∞, along with other methods as described in Section 4.1. JICO 
with y = 1 shows the best performance among all methods, followed by the global PLS 
method, since the true model favors PLS and the coefficient αg = 0.5 for the group-specific 
component is relatively small.

4.3 OLS Setting

In this section, we simulate the setting that favors y = 0, which corresponds to the case of 
OLS in CR. It is shown in Stone and Brooks (1990) that when γ = 0, there is only one 
non-degenerate direction that can be constructed from the CR algorithm. Hence, under the 
JICO framework, the model that favors γ = 0 embraces two special cases: a global model 
with K = 1, Kg = 0 and a group-specific model with = 0, Kg = 1.

For the two cases, we simulate Y g with (a) α = 1, αg = 0 and (b) α = 0, αg = 1 respectively. The 
construction of w and wg is the same as that in Section 4.2 with q = n and qg = ng.

Figure 3 illustrates MSE curves of the two cases, where (a) represents the case of the global 
model and (b) represents the case of the group-specific model. In both cases, the absolute 
minimum can be found on the solid curves at a = 0, which represents the MSE curves 
from the models with true ranks K = 1, Kg = 0 and K = 0, Kg = 1 respectively. In (a), there 
are two competitive models against the model with true ranks: another global model with 
K = 2, Kg = 0 and the model with K = K1 = K2 = 1. They both achieve the same performance 
with the solid curve at a = 0, and stay low at larger values of a. This is because, when 
γ is mis-specified, additional model ranks help capture more information from data. The 
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K = 2, Kg = 0 model performs better because the underlying model is a global model. This 
is also true for (b). The global minimum can be found at a = 0 on the solid curve, while 
the K = 0, Kg = 2 model performs better when a gets larger. Again, this is because larger Kg

helps capture more information from data. The K = K1 = K2 = 1 model does not perform as 
well, because the estimated joint information dominates, which does not agree with the true 
model. We observe some discontinuities on the K = 2, Kg = 0 curve, since the CR solution 
path can sometimes be discontinuous with respect to γ as discussed in the PCR setting in 
Section 4.1.

In Table 1 (c) and (d), we summarize the MSEs of JICO models trained with the true 
ranks with γ = 0,1, ∞ and other methods described in Section 4.1. For a fair comparison, 
the number of components for PCR and PLS is chosen to be 1 for both global and 
group-specific fits. The JICO model with γ = 0, along with Ridge always achieve better 
performance than all other methods. It is interesting to notice that in (c), the JICO models 
with γ = 1 and ∞ coincide with global PLS and PCR respectively, and hence they achieve the 
same performances. Similarly, in (d), JICO models with y = 1 and ∞ coincide with group-
specific PLS and PCR respectively, and they achieve the same performance correspondingly. 
In addition, when = 1, Kg = 0, the solution of CR algorithm coincides with the global OLS 
model. Thus the JICO model with γ = 0 and the global Ridge have similar performance in 
(c). Similarly, when = 0, Kg = 1, the JICO model with γ = 0 and group-specific Ridge have 
similar performance in (d).

5 Applications to ADNI Data Analysis
We apply our proposed method to analyze data from the Alzheimer’s Disease (AD) 
Neuroimaging Initiative (ADNI). It is well known that AD accounts for most forms 
of dementia characterized by progressive cognitive and memory deficits. The increasing 
incidence of AD makes it a very important health issue and has attracted a lot of scientific 
attentions. To predict the AD progression, it is very important and useful to develop 
efficient methods for the prediction of disease status and clinical scores (e.g., the Mini 
Mental State Examination (MMSE) score and the AD Assessment Scale-Cognitive Subscale 
(ADAS-Cog) score). In this analysis, we are interested in predicting the ADAS-Cog score 
by features extracted from 93 brain regions scanned from structural magnetic resonance 
imaging (MRI). All subjects in our analysis are from the ADNI2 phase of the study. There 
are 494 subjects in total in our analysis and 3 subgroups: NC (178), eMCI (178) and AD 
(145), where the numbers in parentheses indicate the sample sizes for each subgroup. As a 
reminder, NC stands for the Normal Control, and eMCI stands for the early stage of Mild 
Cognitive Impairment in AD progression.

For each group, we randomly partition the data into two parts: 80% for training the model 
and the rest for testing the performance. We repeat the random split for 50 times. The testing 
MSEs and the corresponding standard errors are reported in Table 2. Both groupwise and 
overall performance are summarized. We compare our proposed JICO model with ridge 
regression (Ridge), PLS, and PCR. We perform both a global and a group-specific fit for 
Ridge, PLS, and PCR, where the regularization parameter in Ridge and the number of 
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components in PCR or PLS are tuned by 10-fold cross validation (CV). For our proposed 
JICO model, we demonstrate the result by fitting the model with fixed γ = 0,0.25,1, ∞, or 
tuned γ respectively. In practice, using exhaustive search to select the optimal values for K
and Kg can be computationally cumbersome, because the number of combinations grows 
exponentially with the number of candidates for each parameter. Based on our numerical 
experience, we find that choosing Kg to be the same does not affect the performance on 
prediction too much. Details are discussed in Appendix D of the Supplementary Materials. 
Therefore, in all these cases, the optimal ranks for JICO are chosen by an exhaustive search 
in K ∈ 0, 1  and K1 = K2 = K3 ∈ 0, 1  to see which combination gives the best MSE. We 
choose K and Kg to be small to improve our model interpretations. The optimal value of γ is 
chosen by 10-fold CV.

As shown in Table 2, JICO performs the best among all competitors. Fitting JICO with 
γ = 0.25 yields the smallest overall MSE. JICO with parameters chosen by CV performs 
slightly worse, but is still better than the other global or group-specific methods. The results 
of JICO with γ = 0, 1 and ∞, which correspond to OLS, PLS, and PCR, are also provided 
in Table 2. Even though their prediction is not the best, an interesting observation is that 
they always have better performance than their global or group-specific counterparts. For 
example, when y = 1, JICO has much better overall prediction than the group-specific PLS. 
This indicates that it is beneficial to capture global and individual structures for regression 
when subpopulations exist in the data.

In Table 2, global models perform the worst, because they do not take group heterogeneity 
into consideration. The group-specific Ridge appears to be the most competitive one among 
group-specific methods. Note that for the AD group, our JICO model with γ = 0.25 or tuned 
γ outperforms the group-specific Ridge method by a great margin.

To get our results more interpretable, we further apply the JICO model to NC and 
AD groups. We run 50 replications of 10-fold CV to see which combination of tuning 
parameters gives the smallest overall MSE. The best choice is γ = ∞, K = 1, KNC = KAD = 3. 
Then, we apply JICO using this choice and tuning parameters and display the heatmaps 
of the estimated Jg (left column) and Ag (right column) in Figure 4. Rows of heatmaps 
represent samples and columns represent MRI features. We use the Ward’s linkage to 
perform hierarchical clustering on the rows of Jg, and arrange the rows of Jg and Ag in 
the same order for each group. Moreover, we apply the same clustering algorithm to the 
columns of Jg to arrange the columns in the same order across the two disease groups for 
both joint and individual structures. Figure 4 shows that JICO separates joint and individual 
structures effectively. The joint structures across different disease groups share a very similar 
pattern, whereas the individual structures appear to be very distinct. We further magnify the 
right column of Figure 4 in Figure 5 with the brain region names listed. We find that the 
variation in Ag for the AD group is much larger than the counterpart for the NC group. We 
highlight the brain regions that differ the most between the two groups. The highlighted 
regions play crucial roles in human’s cognition, thus are important in AD early diagnosis 
(Michon et al., 1994; Killiany et al., 1993). For example, Michon et al. (1994) suggested that 
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anosognosia in AD results in part from frontal dysfunction. Killiany et al. (1993) showed 
that the temporal horn of the lateral ventricles can be used as antemortem markers of AD.

6 Discussion
In this paper, we propose JICO, a latent component regression model for multi-group 
heterogeneous data. Our proposed model decomposes the response into jointly shared and 
group-specific components, which are driven by low-rank approximations of joint and 
individual structures from the predictors respectively. For model estimation, we propose 
an iterative procedure to solve for model components, and utilize CR algorithm that covers 
OLS, PLS, and PCR as special cases. As a result, the proposed procedure is able to extend 
many regression algorithms covered by CR to the setting of heterogeneous data. Extensive 
simulation studies and a real data analysis on ADNI data further demonstrate the competitive 
performance of JICO.

JICO is designed to be very flexible for multi-group data. It is able to choose the optimal 
parameter to determine the regression algorithm that suits the data the best, so that the 
prediction power is guaranteed. At the same time, it is also able to select the optimal 
joint and individual ranks that best describe the degree of heterogeneity residing in each 
subgroup. The JICO application to ADNI data has effectively illustrated that our proposed 
model can provide nice visualization on identifying joint and individual components from 
the entire dataset without losing much of the prediction power.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Diagram of JICO for two groups. Xg ∈ ℝng × p: data matrix from group g . Jg ∈ ℝng × p: 

submatrix of Xg corresponding to the joint structure. Ag ∈ ℝng × p: submatrix of Xg

corresponding to the individual structures. Eg ∈ ℝng × p: error matrix. Y g ∈ ℝng: response from 

group g. Jg
Y ∈ ℝng: subvector of Y g corresponding to the joint component. Ag

Y ∈ ℝng: subvector 

of Y g corresponding to the individual components. eg ∈ ℝng: noise vector. Sg ∈ ℝng × K: 

joint score matrix. U ∈ ℝK × p: joint loading matrix. Tg ∈ ℝng × Kg: individual score matrix. 

Ug ∈ ℝKg × p: individual loading matrix. α ∈ ℝK: coefficients for the joint component. 

αg ∈ ℝKg: coefficients for the individual components.
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Fig. 2. 
MSE curves for JICO models with different ranks under the PCR setting (a) and PLS setting 
(b).
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Fig. 3. 
MSE curves for JICO models with different ranks under OLS settings (a) and (b). (a) is 
generated under a global model and (b) is generated under a group-specific model.

Wang et al. Page 18

J Comput Graph Stat. Author manuscript; available in PMC 2025 January 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Fig. 4. 
Heatmaps of joint and individual structures from NC and AD estimated from JICO.
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Fig. 5. 
Heatmaps of individual structures from NC and AD estimated from JICO with MRI feature 
names. The highlighted regions are frontal lobe WM, temporal lobe WM, occipital lobe 
WM, parietal lobe WM, superior parietal lobule, middle temporal gyrus. The top row is from 
NC and the bottom row is from AD.
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Table 1

Groupwise and overall MSEs under the PCR, PLS and OLS settings. Numbers in brackets are standard errors.

Method g = 1 g = 2 Overall

a) PCR Example JICO γ = 0 1.994(0.063) 2.012(0.068) 2.003(0.053)

γ = 1 0.679(0.018) 0.701(0.026) 0.69(0.017)

γ = ∞ 0.04(0.001) 0.04(0.001) 0.04(0.001)

Global Ridge 1.734(0.056) 1.78(0.065) 1.757(0.052)

PLS 1.163(0.033) 1.194(0.045) 1.178(0.031)

PCR 0.946(0.04) 0.977(0.044) 0.961(0.022)

Group-specific Ridge 0.252(0.009) 0.27(0.009) 0.261(0.005)

PLS 0.254(0.009) 0.272(0.009) 0.263(0.005)

PCR 0.68(0.042) 0.71(0.05) 0.695(0.032)

b) PLS Example JICO γ = 0 0.57(0.023) 0.567(0.021) 0.569(0.018)

γ = 1 0.211(0.008) 0.218(0.008) 0.215(0.006)

γ = ∞ 1.236(0.038) 1.277(0.037) 1.256(0.025)

Global Ridge 1.698(0.064) 1.742(0.06) 1.72(0.055)

PLS 0.3(0.011) 0.297(0.01) 0.299(0.008)

PCR 1.229(0.036) 1.298(0.041) 1.263(0.025)

Group-specific Ridge 0.375(0.013) 0.425(0.016) 0.4(0.01)

PLS 0.412(0.014) 0.406(0.016) 0.409(0.008)

PCR 1.234(0.037) 1.25(0.036) 1.242(0.024)

c) OLS Example (a) JICO γ = 0 0.082 (0.002) 0.083 (0.003) 0.082 (0.002)

γ = 1 0.403 (0.011) 0.419 (0.011) 0.411 (0.007)

γ = ∞ 1.006 (0.031) 1.07 (0.03) 1.038 (0.02)

Global Ridge 0.084 (0.004) 0.084 (0.003) 0.084 (0.003)

PLS 0.221 (0.007) 0.226 (0.006) 0.223 (0.005)

PCR 0.991 (0.032) 1.069 (0.030) 1.030 (0.020)

Group-specific Ridge 0.574 (0.017) 0.599 (0.024) 0.586 (0.013)

PLS 0.572 (0.016) 0.599 (0.024) 0.585 (0.013)

PCR 0.996 (0.032) 1.061 (0.030) 1.028 (0.021)

(d) OLS Example (b) JICO γ = 0 0.063(0.002) 0.066(0.004) 0.064(0.002)

γ = 1 0.257(0.009) 0.27(0.009) 0.264(0.006)

γ = ∞ 1.004(0.031) 1.002(0.03) 1.003(0.023)

Global Ridge 0.646(0.021) 0.673(0.024) 0.66(0.019)

PLS 0.957(0.027) 0.971(0.032) 0.964(0.022)

PCR 1.023(0.031) 1.016(0.031) 1.019(0.023)

Group-specific Ridge 0.076(0.004) 0.072(0.005) 0.074(0.003)

PLS 0.113(0.003) 0.116(0.005) 0.115(0.003)

PCR 0.978(0.03) 0.987(0.029) 0.983(0.022)
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Table 2

Groupwise and overall MSEs on the ADNI data. Numbers in brackets are standard errors.

Method NC eMCI AD Overall

JICO γ = 0 6.671 (0.137) 11.319 (0.309) 55.798 (1.556) 22.821 (0.466)

γ = .25 6.316 (0.121) 10.394 (0.279) 40.853 (1.294) 17.951 (0.394)

γ = 1 6.443 (0.124) 10.353 (0.291) 44.054 (1.449) 18.929 (0.441)

γ = ∞ 6.608 (0.138) 11.121 (0.308) 49.997 (1.832) 21.013 (0.558)

CV 6.414 (0.129) 10.333(0.289) 41.297 (1.348) 18.096 (0.401)

Global Ridge 23.450 (0.751) 21.276 (0.796) 63.989 (2.657) 34.692 (0.840)

PLS 26.310 (0.787) 22.672 (0.915) 68.193 (3.183) 37.442 (0.982)

PCR 25.228 (0.771) 21.966 (0.802) 69.541 (2.969) 37.209 (0.907)

Group-specific Ridge 6.336 (0.116) 10.353 (0.278) 42.271 (1.315) 18.364 (0.392)

PLS 6.656 (0.136) 11.298 (0.306) 48.434 (1.725) 20.629 (0.524)

PCR 6.656 (0.136) 11.346 (0.304) 47.357 (1.484) 20.327 (0.454)
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