
It’s Hard to HAC Average Linkage!
MohammadHossein Bateni #

Google Research, New York, NY, USA

Laxman Dhulipala #

University of Maryland, College Park, MD, USA

Kishen N. Gowda #

University of Maryland, College Park, MD, USA

D. Ellis Hershkowitz #

Brown University, Providence, RI, USA

Rajesh Jayaram #

Google Research, New York, NY, USA

Jakub Łącki #

Google Research, New York, NY, USA

Abstract
Average linkage Hierarchical Agglomerative Clustering (HAC) is an extensively studied and applied
method for hierarchical clustering. Recent applications to massive datasets have driven significant
interest in near-linear-time and efficient parallel algorithms for average linkage HAC.

We provide hardness results that rule out such algorithms. On the sequential side, we establish
a runtime lower bound of n3/2−ϵ on n node graphs for sequential combinatorial algorithms under
standard fine-grained complexity assumptions. This essentially matches the best-known running
time for average linkage HAC. On the parallel side, we prove that average linkage HAC likely cannot
be parallelized even on simple graphs by showing that it is CC-hard on trees of diameter 4. On the
possibility side, we demonstrate that average linkage HAC can be efficiently parallelized (i.e., it is in
NC) on paths and can be solved in near-linear time when the height of the output cluster hierarchy
is small.

2012 ACM Subject Classification Theory of computation → Parallel algorithms; Theory of compu-
tation → Streaming, sublinear and near linear time algorithms; Theory of computation → Graph
algorithms analysis

Keywords and phrases Clustering, Hierarchical Graph Clustering, HAC, Fine-Grained Complexity,
Parallel Algorithms, CC

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.18

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2404.14730 [6]

Funding LD and KNG were supported by NSF grant CNS-2317194.

Acknowledgements We thank the anonymous reviewers for their useful comments.

1 Introduction

Hierarchical clustering is a fundamental method for data analysis which organizes data points
into a hierarchical structure so that similar points appear closer in the hierarchy. Unlike other
common clustering methods, such as k-means, hierarchical clustering does not require the
the number of clusters to be fixed ahead of time. This allows it to capture structures that are
inherently hierarchical – such as phylogenies [18] and brain structure [11]. One of the most
widely used and studied methods for hierarchical clustering is Hierarchical Agglomerative

EA
T
C
S

© MohammadHossein Bateni, Laxman Dhulipala, Kishen N. Gowda, D. Ellis Hershkowitz,
Rajesh Jayaram, and Jakub Łącki;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 18; pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bateni@google.com
https://orcid.org/0000-0003-1814-1293
mailto:laxman@umd.edu
https://orcid.org/0000-0003-0685-064X
mailto:kishen19@cs.umd.edu
https://orcid.org/0000-0001-6573-9445
mailto:delhersh@gmail.com
https://orcid.org/0000-0003-0862-3715
mailto:rkjayaram@google.com
https://orcid.org/0000-0003-0332-6332
mailto:jlacki@google.com
https://orcid.org/0000-0001-9347-0041
https://doi.org/10.4230/LIPIcs.ICALP.2024.18
https://arxiv.org/abs/2404.14730
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 It’s Hard to HAC Average Linkage!

Clustering (HAC) [22,24,37]. HAC produces a hierarchy by first placing each point in its
own cluster and then iteratively merging the two most similar clusters until all points are
aggregated into a single cluster. The similarity of two clusters is given by a linkage function.
HAC is included in many popular scientific computing libraries such as scikit-learn [35],
SciPy [40], ALGLIB [36], Julia, R, MATLAB, Mathematica and many more [33,34]. This
cluster hierarchy is often equivalently understood as a binary tree – a.k.a. dendrogram –
whose internal nodes correspond to cluster merges.

The proliferation of massive datasets with billions of points has driven the need for more
efficient HAC algorithms that can overcome the inherent Θ(n2) complexity required to read
all pairwise distances [16,17,29]. Finer-grained running time bounds for HAC were recently
obtained by assuming that only m = o(n2) pairs of points have nonzero similarity, and
analyzing the running time as a function of both n and m. This is a natural assumption
in practice, as in large datasets of billions of datapoints, typically a small fraction of pairs
exhibit nonnegligible similarity. In this case, the input to HAC is an edge-weighted graph,
where each vertex represents an input point and each edge weight specifies the similarity
between its endpoints. This approach is convenient for large-scale applications since (1) very
large clustering instances can be compactly represented as sparse weighted graphs and (2)
the running time of HAC can be decoupled from the running time of nearest-neighbor search.

A particularly common linkage function for HAC is average linkage, which both optimizes
reasonable global objectives [31] and exhibits good empirical performance [5,12,20,23,27,
29,30,32,44]. Here, the similarity of two clusters is the average edge weight between them
(non-present edges are treated as having weight 0). In other words, average linkage HAC
repeatedly merges the two clusters with the highest average edge weight between them (see
Figure 1 for an example).

v1

v2

v4

v3 v5

8

4 2

2

2

2

(a) Input G.

v1

v2

v4

v3 v5

8

4 2

2

2

2

(b) HAC Output.

v1 v2 v4 v5v3

8 4

3/2

1/2

(c) Dendrogram.

Figure 1 An example of average linkage HAC run on an input graph G. Edges labeled with
weights. 1a gives G. 1b gives the cluster hierarchy output by HAC. 1c gives the corresponding
dendrogram with internal nodes labeled with the weight of their corresponding merge.

A natural algorithmic question then is how quickly can we solve average linkage HAC
on n node and m edge graphs? Recent work has provided a partial answer to this basic
question in sequential and parallel models of computation. In particular, [15] showed that
average linkage HAC can be solved in Õ(n

√
m) time, thus providing a sub-quadratic time

algorithm for sufficiently sparse graphs. A follow-up paper studied average linkage HAC in
the parallel setting and showed that the problem is P-complete and so likely does not admit
NC algorithms [16]. However, the P-completeness result of [16] holds for worst case graphs
whereas typical applications of HAC are on highly structured graphs – namely those which
are meant to capture relevant properties of an underlying metric – and so there is still hope
for parallelizing average linkage HAC on more structured instances.

M. Bateni, L. Dhulipala, K. N. Gowda, D. E. Hershkowitz, R. Jayaram, and J. Łącki 18:3

In fact, such structured instances of average linkage HAC are known to admit much
faster algorithms in the sequential setting: the sequential algorithm of [15] implies that if the
input graph is planar (or, more generally, minor-free) average linkage HAC can be solved in
time Õ(m). More generally, if each graph obtained by contracting all clusters at each step of
average linkage HAC has O(1) arboricity1, then it is possible to solve average linkage HAC
in time Õ(m); it follows that average linkage HAC can be solved in sequential time Õ(m) on
trees or planar graphs. In light of these improved sequential results for highly structured
graphs, it becomes natural to hope for efficient parallel algorithms on structured graphs such
as low arboricity graphs or, even, just trees.

1.1 Our Contributions
In this work, we continue the line of work which studied the computational complexity
of different variants of HAC [1, 15, 16, 19, 39] and perform a careful investigation into the
complexity of average linkage HAC. In particular, we study HAC on n node and m edge graphs
and investigate whether near-linear time algorithms, or more efficient parallel algorithms are
possible, namely:
1. Near-Linear Time Algorithms: Can we improve over the best known Õ(n

√
m) upper

bound for average linkage HAC and obtain near-linear time sequential algorithms?
2. NC Algorithms: are there polylog(n) depth parallel algorithms for average linkage HAC

with poly(n) work for highly structured instances, e.g., trees, or minor-closed graphs?
We give both new lower bounds which (conditionally) rule out near-linear time and NC
algorithms, and provide conditions under which these impossibility results can be bypassed.

First, we demonstrate that near-linear time algorithms are impossible under standard
fine-grained complexity assumptions.

▶ Theorem 1. If average linkage HAC can be solved by a combinatorial algorithm in O(n3/2−ϵ)
time for any ϵ > 0, then the Combinatorial Boolean Matrix Multiplication (Combinatorial
BMM) Conjecture is false.

Our reduction also implies a second (weaker) conditional lower bound that also holds
for non-combinatorial algorithms (e.g., algebraic algorithms) based on the running time of
matrix multiplication. In particular, for two n × n binary matrices, it is well known that
matrix multiplication can be solved in time O(nω) where 2 ≤ ω < 2.3716 [43]. In this setting,
we obtain the following result:

▶ Theorem 2. If average linkage HAC can be solved by an algorithm in O(nω/2−ϵ) time
for some ϵ > 0, then boolean matrix multiplication can be solved in O(nω−ϵ′) time for some
ϵ′ > 0.

Notably, Theorem 1 shows that the prior running time of Õ(n
√

m) of [15] is optimal up to
logarithmic factors under standard fine-grained complexity assumptions, at least for graphs
consisting of O(n) many edges. We obtain this conditional lower bound by showing that a
carefully constructed instance of HAC can be used to solve the triangle detection problem,
which is sub-cubically equivalent to Boolean Matrix Multiplication [42]. We obtain a bound
of (essentially) Ω(n3/2) since our reduction incurs a quadratic time and space blowup when
transforming an input triangle detection instance to an instance of average linkage HAC.

1 A graph has arboricity at most α if all of its edges can be covered by at most α trees.

ICALP 2024

18:4 It’s Hard to HAC Average Linkage!

We next turn to the parallel setting. Here, we show that HAC – even on trees – is unlikely
to admit efficient parallel algorithms. More formally, we show that average linkage HAC on
low diameter trees is as hard as any problem in the complexity class Comparator Circuit
(CC) [13, 38]. It is believed that CC is incomparable with NC and that CC-hardness is
evidence that a problem is not parallelizable [13,28].

▶ Theorem 3. Average linkage HAC is CC-hard, even on trees of diameter 4.

We note that it is known that CC ⊆ P and so the P-hardness of [16] already suggests the
impossibility of efficient parallel algorithms on general graphs. However, our result suggests
the impossibility of efficient parallel algorithms even on very simple graphs (trees of diameter
4). We obtain this result by reducing from the lexicographically first maximal matching
(LFM Matching) problem and an intermediate problem which we call Adaptive Minimum,
which captures some of what makes HAC intrinsically difficult to parallelize.

On the positive side, we demonstrate that average linkage HAC on path graphs is in
NC, under the mild assumption that the aspect ratio is polynomial. While the class of path
graphs is restrictive, even on paths average linkage is highly non-trivial and naively running
HAC requires resolving chains of Ω(n) sequential dependencies. For example, consider a path
of vertices (v1, v2, . . . , vn) where the edge {vi, vi+1} has weight 1 + i · ϵ for some small ϵ > 0
and initially each vertex is in its own cluster. Initially, vn’s most similar neighbor is vn−1
and so vn would like to merge with vn−1 but vn−1’s most similar neighbor is vn−2 and so on.
Thus, whether or not vn gets to merge with vn−1 depends on the merge behavior of Θ(n)
other clusters and so it is not at all clear that NC algorithms should be possible for this
setting. Nonetheless, we show the following.

▶ Theorem 4. Average linkage HAC on paths is in NC. In particular, there is an algorithm
for average linkage HAC that runs in O(log2 n log log n) depth with O(n log n log log n) work.

The above algorithm leverages the fact that in average linkage HAC the maximum edge
similarity monotonically decreases. In particular, it works in O(log n) phases where each
phase consists of merges of equal similarity up to constants. The goal then becomes to
efficiently perform merges until every edge is no longer within a constant of the starting
maximum similarity of the phase. The starting point of the algorithm is to observe that Ω(n)
sequential dependencies of clusters of equal size can be resolved efficiently in parallel in a
phase by noting that in this phase only the odd-indexed edges merge in the chain. Thus,
each edge can decide if it is odd-indexed in parallel by, e.g., using prefix-sum, which is well
known to be solvable in linear work in NC.

For chains with clusters of general weights, we decompose dependency chains into short
((O(log n)-length) subchains where resolving dependencies within the subchain must be
done sequentially but in the current phase each subchain’s merge behavior only depends on
whether or not its closest neighboring subchains merges into it or not. Thus, each subchain
can compute its merge behavior for these two cases and then, similar to the equal weights
setting, we propagate merge behavior across subchains efficiently in parallel.

To complement our sequential lower bound with a positive result, we demonstrate that
it is possible to achieve near-linear running time, provided the dendrogram has low height.
Thus, if the output dendrogram is a relatively balanced tree, then near-linear time algorithms
are possible.

▶ Theorem 5. There is an implementation of the nearest-neighbor chain algorithm for
average linkage HAC that runs in O(m · h log n) time where h is the height of the output
dendrogram.

M. Bateni, L. Dhulipala, K. N. Gowda, D. E. Hershkowitz, R. Jayaram, and J. Łącki 18:5

The above result is in fact obtained by a relatively simple (but to the best of our knowledge,
new) analysis of existing classic HAC algorithms. In particular, we show that the nearest-
neighbor chain [7, 21] and heap-based algorithms [27] for HAC, which were developed over
40 years ago achieve this bound. Due to space constraints, we prove Theorem 5 in the full
version [6].

2 Preliminaries

The input to the HAC algorithm is an undirected weighted graph G = (V, E, w), where
w : V × V → R+ ∪ {0} is a function assigning nonnegative weights to the edges. For
convenience we assume w(x, y) = 0 when xy ̸∈ E. The vanilla version of average linkage
HAC is given as Algorithm 1. It starts by putting each vertex in a cluster of size 1 and then
repeats the following step. While there is a pair of clusters of positive similarity, find two
most similar clusters and merge them together, that is, replace them by their union. The
similarity between two clusters is the total edge weight between them divided by the product
of the cluster sizes. We refer to this version as the static graph version, since the graph is
not changed throughout the run of the algorithm.

Throughout the paper we usually work with a different (equivalent) way of presenting
the same algorithm which is given as Algorithm 2. In this version we maintain a graph G

whose vertices are clusters. The size of the vertex is the size of the cluster it represents.
The normalized weight of an edge xy in G is w(x, y) divided by the product of the sizes of
x and y.

Whenever two clusters merge, their corresponding vertices are merged into one, i.e., the
edge between them is contracted and the size of the new vertex is the sum of the sizes of the
vertices that merged. In the following we sometimes say that a vertex x merges into vertex
y. In this case we simply assume that the name of the resulting vertex is y and the size of y

is increased by the size of x. See Figure 2.

v1

v2

v4

v3 v5

8

4 2

2

2

2

(a) Input G.

v4

v3 v5

1

v1:2 2

24

(b) 1 merge.

v5

3/2

1

v1:2

v3:4

(c) 2 merges.

v5

1/2

v1:4

(d) 3 merges.

v1:5

(e) 4 merges.

Figure 2 An example of average linkage HAC run on an input graph G where we imagine we
contract merged clusters. Intermediate vertices labeled with the vertices of G their corresponding
cluster contains. Edges labeled with their weight and next merged edge is dashed.

The output of HAC is a dendrogram – a rooted binary tree representing the cluster
merges performed by the algorithm. Every node of the dendrogram is a cluster built by the
algorithm. There are exactly |V | leaves corresponding to the single-element clusters that are
formed in the beginning of the algorithm. Whenever two clusters C1 and C2 are merged, we
add to the dendrogram a new node C1 ∪C2 whose children are C1 and C2. See Figure 1c for
the dendrogram of Figure 2.

We use the classic multithreaded model [4, 9, 10] (formally, the MP-RAM [9]) to analyze
the parallel algorithms. We assume a set of threads that share the memory. Each thread acts
like a sequential RAM plus a fork instruction that forks two new child threads. When a

ICALP 2024

18:6 It’s Hard to HAC Average Linkage!

Algorithm 1 Average linkage HAC – static graph version.

Input: G = (V, E, w)
1 Function Similarity(C1, C2, w):
2 return

∑
x∈C1,y∈C2

w(x, y)/(|C1| · |C2|)

3 Function HAC(G):
4 C ← clustering where each vertex of G is in a separate cluster
5 while ∃C1,C2∈C s.t. C1 ̸= C2 and Similarity(C1, C2, w) > 0 do
6 (C1, C2) = arg max(C1,C2)∈C×C Similarity(C1, C2, w)
7 C := (C \ {C1, C2}) ∪ {C1 ∪ C2}.

Algorithm 2 Average linkage HAC – graph contraction version.

Input: G = (V, E, w)
1 Function Similarity(x, y, w, S):
2 return w(x, y)/(S(x) · S(y))
3 Function HAC(G):
4 S := a function mapping each element of V to 1
5 while ∃xy∈E s.t. Similarity(x, y, w, S) > 0 do
6 xy = arg maxxy∈E Similarity(x, y, w, S)
7 Contract x with y in G creating a vertex z. The parallel edges that are

created are merged into a single edge whose weight is the sum of the merged
edge weights. Any resulting self-loops are removed.

8 Set S(z) := S(x) + S(y)

thread performs a fork, the two child threads can both start by running their next instructions,
and the original thread is suspended until both children terminate. A computation starts
with a single root thread and finishes when that root thread finishes. A parallel for-loop
can be viewed as executing forks for a logarithmic number of levels. A computation can
thus be viewed as a DAG (directed acyclic graph). We say the work is the total number of
operations in this DAG and span (depth) is equal to the longest path in the DAG. We note
that computations in this model can be cross-simulated in standard variants of the PRAM
model in the same work (asymptotically), and losing at most a single logarithmic factor in
the depth [9].

3 An Ω(n3/2−ϵ) Conditional Lower Bound for Average Linkage HAC

In this section, we show an Ω(n3/2−ϵ) conditional lower bound on the time required to solve
average linkage HAC on general weighted graphs. Specifically, we show this lower bound
assuming the Combinatorial Boolean Matrix Multiplication (BMM) conjecture, a central
conjecture in fine-grained complexity about the time required to multiply two n× n boolean
matrices [2, 42].

▶ Conjecture 6 (Combinatorial BMM). Combinatorial algorithms cannot solve Boolean Matrix
Multiplication in time O(n3−ϵ) for ϵ > 0.

We refer to [2] for an in-depth discussion of the somewhat informal notion of “combinatorial”
algorithms and more on Conjecture 6 and its history.

M. Bateni, L. Dhulipala, K. N. Gowda, D. E. Hershkowitz, R. Jayaram, and J. Łącki 18:7

In this work we will make use of an equivalent characterization of the BMM conjecture
due to [42]. Specifically, [42] shows that the BMM problem is sub-cubically equivalent to
the Triangle Detection problem: the problem of deciding whether or not an input graph G

contains a triangle (i.e., cycle of 3 vertices). The following summarizes this result.

▶ Theorem 7 (Theorem 1.3 of [42]). Combinatorial algorithms cannot solve Triangle Detection
in time O(n3−ϵ) for ϵ > 0 unless Conjecture 6 is false.

Thus, we give a reduction from Triangle Detection to average linkage HAC. Our reduction
will quadratically increase the number of vertices of the input Triangle Detection instance,
and therefore give an Ω(n3/2−ϵ) lower bound for average linkage HAC. In the rest of this
section, we show the following quadratic-blowup reduction from Triangle Detection to average
linkage HAC.

▶ Theorem 8. Given a Triangle Detection instance on graph G with t vertices and m edges,
there is a reduction that runs in O(t2) time and constructs an instance of average linkage
HAC on graph G′ with t + t2 vertices and t2 + m edges. Furthermore, given the sequence of
merges performed by average linkage HAC on G′, we can solve Triangle Detection on G in
time O(t2).

As a corollary of this reduction and Theorem 7, we obtain the following conditional
lower-bound on the running time of HAC.

▶ Theorem 1. If average linkage HAC can be solved by a combinatorial algorithm in O(n3/2−ϵ)
time for any ϵ > 0, then the Combinatorial Boolean Matrix Multiplication (Combinatorial
BMM) Conjecture is false.

As a second corollary, we obtain a conditional lower-bound in terms of the optimal running
time of matrix multiplication for two n× n binary matrices. Matrix multiplication can be
solved in time O(nω) where 2 ≤ ω < 2.3716 [43]. An extensive line of research on matrix
multiplication over the past thirty years has only improved ω from 2.376 to 2.3716, with the
current state-of-the-art being due to a very recent result of Williams et al. [43] (for a subset
of the historical advances in this area see, e.g., [3, 14,26,41]). The fastest known algorithm
for triangle detection works by simply reducing the problem to matrix multiplication and
therefore runs in O(nω) time. Surprisingly, despite triangle detection only returning a single
bit (whether a triangle exists or not in G), the problem can be used to give a sub-cubic
reduction for boolean matrix multiplication (where the output is n2 bits). In particular, an
algorithm for triangle detection running in time O(n3−δ) for some δ > 0 yields an algorithm
for matrix multiplication in time O(n3−δ/3) [42]. Using this fact, we can derive a conditional
lower bound based on the value of ω.

▶ Theorem 2. If average linkage HAC can be solved by an algorithm in O(nω/2−ϵ) time
for some ϵ > 0, then boolean matrix multiplication can be solved in O(nω−ϵ′) time for some
ϵ′ > 0.

An interesting open question is whether there are faster non-combinatorial algorithms
that can leverage fast matrix multiplication or Strassen-like techniques and improve over the
Ω(n3/2−ϵ) barrier for combinatorial algorithms for average linkage HAC.

3.1 Reduction
We now prove Theorem 8 by giving a quadratic-time reduction from triangle detection to
average linkage HAC. The reduction is loosely inspired by a recent lower-bound result for
multidimensional range queries [25]. The input to the reduction is an unweighted graph G

ICALP 2024

18:8 It’s Hard to HAC Average Linkage!

on t vertices with m edges; the problem is to detect whether G has a triangle. To do this,
we will construct a HAC instance on an edge-weighted graph G′ with t + t2 vertices and
t2 + m edges. We will show that the specific way in which an exact HAC algorithm merges
the edges in this instance reveals whether or not G has a triangle.

Constructing G′

Let NG(v) denote the neighbors of a vertex v ∈ G (note that v /∈ NG(v)). We define G′ as
follows. We start by adding all vertices and edges from G, that is the t vertices v1, . . . , vt

from G, including all of their incident edges NG(vi). We call these the core vertices. The
initail weight of the edges between any two core vertices is set to 1.

In addition to the core vertices, we add an additional t2 leaf vertices that we connect to
the core vertices with specific edge weights. We add the t2 leaf vertices over a sequence of t

rounds where the i-th round connects one new leaf vertex to every core vertex. The weights
to the newly added leaves depend on the neighbors of the node vi in the original graph G,
and are set as follows:
(1) A core vertex vj is connected to its new leaf with an edge of weight (1/i)−ϵ if vj ∈ NG(vi).
(2) A core vertex vj is connected to its new leaf with an edge of weight (1/i)+ϵ if vj /∈ NG(vi).
See Figure 3 for an illustration of our reduction.

v1

v2

v3v4

v5

(a) Input G.

v1

v2

v3v4

v5

1 + ϵ

1 − ϵ
1 − ϵ

1 + ϵ1 + ϵ

(b) Round 1.

v1

v2

v3v4

v5

1
2

− ϵ

1
2

− ϵ

1
2
+ ϵ

1
2
+ ϵ

1
2
+ ϵ

(c) Round 2.

v1

v2

v3v4

v5
1
3

− ϵ

1
3

− ϵ

1
3
+ ϵ

1
3
+ ϵ

1
3

− ϵ

(d) Round 3.

v1

v2

v3v4

v5

1
4

− ϵ

1
4
+ ϵ

1
4
+ ϵ

1
4

− ϵ

1
4
+ ϵ

(e) Round 4.

v1

v2

v3v4

v5

1
5

− ϵ
1
5

− ϵ

1
5

− ϵ

1
5
+ ϵ

1
5
+ ϵ

(f) Round 5.

Figure 3 Our triangle detection reduction where we compute G′ from G by adding t = 5 nodes
over t rounds. 3f gives G′. Each node labeled according to its round and corresponding vertex in G.
Edges labelled with their weight in the round they are added (edges of G have weight 1). For the
ith round we highlight in red vi and the edges added with weight 1/i − ϵ.

Running HAC on G′

Having defined G′, let us consider the merges that the exact HAC algorithm will make
on this instance. In this section, for succinctness we use weight to refer to the normalized
(i.e., average linkage) weight. HAC will begin by merging the maximum weight edges. The
maximum weight initially depends on the structure of NG(v1). First, all core vertices that

M. Bateni, L. Dhulipala, K. N. Gowda, D. E. Hershkowitz, R. Jayaram, and J. Łącki 18:9

are not in NG(v1) will merge with their round 1 leaves (since these edges have weight 1 + ϵ)
increasing their cluster size to 2. This leaves all core vertices in NG(v1). Any edge in G′

between two such core vertices will have weight 1, and will be merged next. Crucially, any
merge in this round with a weight of 1 indicates a triangle incident on v1 since the two core
vertex endpoints of the edge must be contained in NG(v1), hence connected by edges to v1.
If no edges of weight 1 merge, the remaining leaves that we added to core vertices in NG(v1)
merge into their neighboring core vertex.

Assuming we did not merge any weight 1 edges in the first round, at this point the cluster
size of each core vertex is 2, and so the weight of any edge originally in G (between two core
vertices) will be 1/4. The edge weights to leaves in round 2 will be ((1/2)±ϵ)/2 = 1/4±(ϵ/2),
which is larger than 1/4 for edges of Type 2. Therefore, the same argument for how edges
merge in round 1 can be inductively applied to the next round. The edge weights in round i

for edges between core vertices will be 1/i2, and by the same argument as before, the Type 2
(Type 1) edges will be larger (smaller) by ϵ/i. As a result of how an exact average linkage
HAC will merge the edges of G′, we obtain the following lemma:

▶ Lemma 9. Consider the sequence of merges performed by the HAC algorithm on G′. If the
merge sequence consists of t2 merges, which first merge all leaf vertices, and only then makes
merges between core vertices, then G does not contain any triangles. If the merge sequence
merges any edge between two core vertices in the first t2 merges, then G contains a triangle.

Completing the Reduction

We will now complete the proof of Theorem 8. Suppose we are given an instance of Triangle
Detection on n vertices. Conjecture 6 implies that this instance cannot be solved by
combinatorial algorithms in O(n3−ϵ) time for any ϵ > 0.

Let the time complexity of HAC on a graph G with n vertices and m edges be THAC(n, m).
Suppose HAC can be solved combinatorially in O(n3/2−ϵ) time. Given a Triangle Detec-
tion instance on n vertices we create a graph G′ with O(n2) vertices and O(n2) edges, and run
HAC on G′. The running time of the reduction is O(n2), and the running time of HAC on G′

is O((n2·(3/2−ϵ)) = O(n3−2ϵ), which will falsify Conjecture 6 by Theorem 7. Thus, conditional
on Conjecture 6, there is no algorithm for HAC running in time THAC(n, m) = O(n3/2−ϵ) for
any constant ϵ > 0, completing the proof of Theorems 8 and 1. The same argument, under
the assumption that triangle detection cannot be solved in O(nω−ϵ) time for any constant
ϵ > 0 implies Theorem 2.

4 Average Linkage HAC is Hard to Parallelize Even on Trees

In this section we prove that average linkage HAC is likely hard to parallelize by showing it is
CC-hard even on low depth trees. We begin with some preliminaries. The formal definition
of CC-hardness we will use is as follows.

▶ Definition 10 (CC-Hard). A problem is CC-hard if all problems of CC are logspace-
reducible to it.

For our purposes we will not need to define the class CC. Rather, we only need the above
definition of CC-hardness and a single CC-hard problem, LFM Matching. Recall that a
matching of a graph G = (V, E) is a subset of edges M ⊆ E if each vertex is incident to at
most one edge of M . A matching is said to be maximal if each e = {u, v} ̸∈M satisfies the
property that either u or v is incident to an edge of M . The greedy algorithm for maximal
matching initializes M as ∅ and then simply iterates over the edges of E in some order and
adds the current edge e to M if the result of doing so is a matching.

ICALP 2024

18:10 It’s Hard to HAC Average Linkage!

▶ Problem 1 (LFM Matching). An instance of lexicographically first maximal matching
(LFM Matching) consists of a bipartite graph G = (V = L ⊔ R, E) with vertices ordered
as L = (l0, l1, . . . , ln−1) and R = (r0, r1, . . . , rn−1). The lexicographically first maximal
matching is the matching obtained by running the greedy algorithm for maximal matching on
edges ordered first by their endpoint in L and then by their endpoint in R. That is, in this
ordering e = {li, rj} precedes e′ = {li′ , rj′} iff (1) i < i′ or (2) i = i′ and j < j′. Our goal is
to decide if a designated input edge is in the LFM Matching.

The following summarizes known hardness of LFM Matching.

▶ Theorem 11 ([28,38]). LFM Matching is CC-hard.

Next, we introduce the search variant of the HAC problem whose CC-hardness we will
prove.

▶ Problem 2 (Average Linkage HAC). An instance of Average Linkage HAC consists an
undirected graph G = (V, E), along with edge weights w : E → R≥0. Consider the sequence
(C1, C ′

1), (C2, C ′
2), . . . of cluster merges produced by the procedure HAC(G) from Algorithm 1.

Given any pair of vertices u, v ∈ G, the goal of the Average Linkage HAC problem is to output
the index i such that u, v first merge together at step i, namely u ∈ Ci and v ∈ C ′

i (or u ∈ C ′
i

and v ∈ Ci).

To prove the hardness of Average Linkage HAC, we will first prove the hardness of an
intermediate problem, called Adaptive Minimum. The construction of the Adaptive Minimum
problem will be more amenable to our reductions, and therefore simplify the following
exposition. See Figure 4 for an illustration of Adaptive Minimum.

▶ Problem 3 (Adaptive Minimum). An instance of Adaptive Minimum consists of a (0-based
indexed) n× n matrix A where each row contains a permutation of {0, . . . , n− 1} and some
index x ∈ [0, n). The goal is to simulate the following algorithm. Start with I = {0, . . . , n−1}
and execute the following steps for i = 0, . . . , x:
1. Let ki = arg minj∈I A[i, j].
2. Set I := I \ {ki}.
Our goal is to compute kx.

3
0

0

0
0

1
1

1
1

2
2

2
2

2

3

3
3

3

4
4

4
4

4

0 1

(a) Input A.

3
0

0

0
0

1
1

1
1

2
2

2
2

2

3

3
3

3

4
4

4
4

4

0 1

2

(b) Step 1.

0

0
0

1
1

1
1

2
2

2
2

2

3

3
3

3

4
4

4
4

4

0 1

2
3 0 1

(c) Step 2.

0

0
0

1
1

1
1

2
2

2
2

2

3

3
3

3

4
4

4
4

4

0 1
3 0

2
1
3

(d) Step 3.

0

0
0

1
1

1
1

2
2

2
2

2

3

3
3

3

4
4

4
4

4

0 1

2
3 0 1

3
4

(e) Step 4.

0

0
0

1
1

1
1

2
2

2
2

2

3

3
3

3

4
4

4
4

4

0 1

2
3 0 1

3
4
0

(f) Step 5.

Figure 4 Adaptive Minimum on matrix A. The row considered in each step is shown in blue. ki

for the i-th row written to the right of A in green with witnessing entry of A also in green. Indices
removed from I in relevant rows crossed out in red.

Observe that both problems 2 and 3 are defined as having an algorithm output an index
i ∈ {1, 2, . . . }. Thus, these can be considered search problems instead of decision problems.
We choose to work with the search versions of these problems for simplicity of our reductions,
however, our reduction naturally extends to the decision variants (e.g., where the algorithm
is given u, v ∈ V and an index i and asked if u, v merge on step i).

We first prove the CC-hardness of this intermediate problem. See Figure 5 for an
illustration of our reduction from LFM Matching to Adaptive Minimum.

M. Bateni, L. Dhulipala, K. N. Gowda, D. E. Hershkowitz, R. Jayaram, and J. Łącki 18:11

▶ Lemma 12. Adaptive Minimum is CC-hard.

Proof. By Theorem 11 and the definition of CC-hardness (Definition 10), it suffices to argue
that LFM Matching (Problem 1) is logspace reducible to Adaptive Minimum (Problem 3).
We begin by describing our reduction and then observe that it only requires logarithmic
space. The basic idea of the reduction is to associate with each vertex on the left side of our
instance of LFM Matching a row of the matrix of Adaptive Minimum and each vertex on the
right side of LFM Matching a column of the matrix of Adaptive Minimum.

More formally, consider an instance of LFM Matching on graph G = (V = L⊔R, E) where
our goal is to decide if a given edge e is in the LFM matching. We consider the following
instance of Adaptive Minimum to solve this on a 2n× 2n size matrix A. We will refer to an
index i as a dummy index if i ≥ n− 1.

Consider a vertex li ∈ L connected to vertices Ri ⊆ R in G, for some i ≤ n− 1. We will
construct the ith row of A to correspond to a permutation πi that first gives the indices of
all neighbors of li in R sorted according to the ordering of R then gives all dummy indices
then gives the indices of non-neighbors of li in R. Specifically, the first |Ri| indices of πi will
be the indices of Ri (sorted by their order in R), the next n indices will be dummy indices
n, n + 1, . . . 2n− 1 and the remaining n− |Ri| indices will be the indices of vertices in R \Ri

(sorted, say, by their order in R). For i ≥ n we can construct our permutation arbitrarily.
Lastly, let x (the index for which we would like to compute kx in our instance of Adaptive
Minimum) be the index of the endpoint of e in L. Once Adaptive Minimum computes kx, we
verify whether or not it corresponds to the endpoint of e in R to determine the final output
of the LFM Matching instance. Again, see Figure 5.

We now argue correctness of the reduction. A straightforward proof by induction on i

demonstrates that at the beginning of the ith round of the Adaptive Minimum algorithm we
have that I consists of at least n− i dummy indices and j < n is not in I only if rj is in the
LFM Matching and is matched to some li′ for i′ < i. It follows that e = (li, rj) is in the LFM
Matching iff ki = j, showing correctness of our reduction.

It remains to show that the above reduction can be done with logspace. In order to do
so, we must argue that A[i, j] can be computed with logspace for every i and j. Doing so is
trivial if i is a dummy index, so consider i < n.

If j ≤ |Ri| then A[i, j] is just the index of the jth vertex of Ri (i.e., neighbor of li) in the
ordering given by R.
If j ∈ [|Ri|, |Ri|+ n] then A[i, j] just is j − |Rj |+ n.
If j > |Ri| + n then A[i, j] is the index of the (j − |Ri| − n)th vertex in R \ Ri (i.e.,
non-neighbors of li) when vertices of R \Ri are sorted according to the ordering on R.

All three of the above quantities can easily be computed in logspace. ◀

Concluding, we use the CC-hardness of Adaptive Minimum to prove the CC-hardness of
Average Linkage HAC.

▶ Theorem 3. Average linkage HAC is CC-hard, even on trees of diameter 4.

Proof. Our reduction shows how to reduce an instance of Adaptive Minimum (Problem 3) of
size n to an instance of average linkage HAC on a tree. We build a rooted tree, in which
each root-to-leaf path has length 2 (i.e., the tree has depth 2). We call the neighbors of
the root internal nodes. Observe that each node is either the root, an internal node or a
leaf. The fact that the tree is rooted is only for the convenience of the description. In the
construction, we will begin by assigning each node an initial size (see the definition of size in
Section 2) which is possibly larger than 1 (but at most poly(n)). We will later show how to
remove these variable sizes, and reduce to the case where all nodes have initial size 1 (as in
the original definition of HAC).

ICALP 2024

18:12 It’s Hard to HAC Average Linkage!

l0

l1

r0

r1

(a) LFM Matching.

l0

l1

r0

r1

(b) Solution.

3
0
0

1
1

23

30 1
2
2

30 1 2
(c) Adaptive Minimum.

1

3

0
3

0
0

1
1

23

30 1
2
2

30 1 2
2

(d) Solution.

Figure 5 Reduction from LFM Matching to Adaptive Minimum. 5a gives the LFM Matching
instance and 5b its solution. 5c gives the Adaptive Minimum instance from the reduction and 5d its
solution.

The basic idea of our construction is as follows. Our HAC instance will consist of a rooted
tree where each child of the root corresponds to a column of A in our Adaptive Minimum
instance. HAC merges will then happen in phases where each phase corresponds to a row of
A. In a given phase, exactly one internal node will merge with the root which will correspond
to this internal node’s column being minimum for the corresponding row of A. In order to
guarantee this, each child of the root will have its own carefully selected children such that
merging with these children guarantees the desired behavior in every phase.

More formally, the tree is constructed as follows. The root r of the tree has initial size
n8. It has n children, each of initial size n4 – we denote them by v0, . . . , vn−1. The root is
connected to its children using edges of weight 1, i.e., w(r, vi) = 1 for all i = 0, 1, . . . , n− 1
(thus, the normalized weight of the edges {rvi}n−1

i=0 are each 1
n12 at the start). Each internal

node has n(n + 1) children (leaf nodes) grouped into n groups of n + 1 leaves each. We write
Ci,j = {vi,j,0, vi,j,1, . . . , vi,j,n} to denote the j-th group of children of the i-th internal vertex.
All the leaves vi,j,k have initial size 1. Thus, the vertices in the full graph in our construction
consists of the root r, internal nodes {v0, v1, . . . , vn−1} and leaves ∪n−1

i=0 ∪
n−1
j=0 ∪n

k=0{vi,j,k}
Let ri = n8 + i · n4 (for 0 ≤ i < n). For each pair of an internal node and each of its

groups there are only two distinct edge weights for edges between the internal node and the
leaves in the group. Specifically, for an internal node vj and group Cj,i of its children we
have A[i, j] + 1 edges of weight 1

ri−1 and n−A[i, j] edges of weight 1
ri+i·n3 . Specifically, we

set

w(vj , vj,i,k) =
{

1
ri−1 if 0 ≤ k ≤ A[i, j]

1
ri+i·n3 if A[i, j] < k ≤ n

We call the two weights high-weight and low-weight edges, respectively. Note that their
normalized weights are 1

n4(ri−1) and 1
n4(ri+i·n3) respectively. Observe that the setting of

high-weight and low-weight edges is independent of the internal node vj , although the number
of high versus low-weight edges depends on A[i, j]. Moreover, note that even low-weight
edges of any group Cj,i have higher weights than high-weight edges of group Cj,i+1:

1
n4(ri + i · n3) >

1
n4(ri+1 + (i + 1) · n3) ⇐⇒

1
n8 + i · n4 + i · n3 >

1
n8 + (i + 1)n4 − 1 ⇐⇒

i · n3 < n4 − 1.

M. Bateni, L. Dhulipala, K. N. Gowda, D. E. Hershkowitz, R. Jayaram, and J. Łącki 18:13

which follows from the fact that i ≤ n− 1. We now demonstrate that the average linkage
HAC on this instance works in n phases numbered from 0 to n− 1, where in each phase i,

n− 1 internal nodes contract all of their incident group i edges, and
one internal node contracts all of its high-weight edges to group i, after which it merges
with the root.

Because of the internal node merging with the root, the root has incident leaves, but they
are connected with edges of (normalized) edge weights ≤ 1

n15 and so they will be irrelevant
until all phases have been completed. We show that if we denote by ki the index of the
internal node which merges with the root in phase i, the sequence k0, . . . , kn−1 is a correct
solution to the Adaptive Minimum problem.

In order to analyze the algorithm, we prove the following claim. For convenience, let us
define wi = n4 + i · (n + 1).

▷ Claim 13. In the beginning of phase i, the graph is as follows:
1. The size of the root node is ri + i2 ·∆i for some ∆i ∈ [0, n + 1].
2. Exactly i internal nodes have been merged with the root, and the corresponding values

k0, . . . , ki−1 have been computed correctly.
3. The size of each of the n− i remaining internal nodes is wi.
4. For all remaining internal nodes, all leaves in groups 0, . . . , i− 1 have been merged into

their parents, and no leaves in groups i, . . . , n− 1 have been merged.
5. The root may have incident leaves (resulting from internal nodes contracting into it)

connected to the root with edges of normalized weights ≤ 1
n15 .

Proof. We prove the above claim using induction on i. The base case of i = 0 follows directly
from how the tree is constructed.

We now simulate a single phase. The edges between the root and the internal nodes have
(normalized) weights 1

wi(ri+i2·∆i) > 1
n15 . Hence, the additional leaf nodes incident to the

root (see Item 5 of the Claim) are irrelevant. Thus, the highest weight edge in the graph is
surely incident to one of the internal nodes. Observe that the relative order of edge weights
between an internal node v and its children does not change as the leaves are merged into v.
Therefore, given that groups 0, . . . , i − 1 do not exist anymore, among edges between the
internal nodes and leaves, the edges of group i have the highest weights. In the beginning
of a phase the high-weight edges in that group have normalized weights 1

wi(ri−1) and the
low-weight edges have weight 1

wi(ri+i·n2) .
Hence, we have that if we sort the edges by their normalized weights, the top 3 classes of

edges are, starting from the highest weight:
1. High-weight edges between internal nodes and leaves of group i.
2. Edges between the root and the internal nodes.
3. Low-weight edges between internal nodes and leaves of group i.
We will show that the phase consists of the following sub-phases.
1. First, there is some number of subphases, where each of n− i internal nodes contract one

incident high-weight edge.
2. Then, there is exactly one subphase, where n−i−1 nodes contract an incident high-weight

edge and one internal node merges with the root.
3. Then, the remaining n− i− 1 internal nodes merge with all of their group i leaves (we

do not analyze the order in this subphase, as it is irrelevant).

ICALP 2024

18:14 It’s Hard to HAC Average Linkage!

Assume that each internal node has at least one high-weight edge in group i. Then, the
algorithm will execute a Type 1 subphase: the first n− i steps of the algorithm would merge
exactly one high-weight edge incident to each internal node. Note that when an edge incident
to an internal node v merges, the weight of v increases, and so the incident edge weights
decrease. This guarantees that in the considered n− i steps exactly one merge per internal
node happens.

Type 1 subphases of n− i steps continue as long as each each internal node has at least
one high-weight group i edge in the beginning of the subphase. Each Type 1 subphase also
causes the weight of each internal node to increase by 1. Clearly, since nodes are being
merged into internal nodes, the ordering of edge weights incident to any internal node does
not change.

At some point, in the beginning of a subphase there is an internal node that does not
have any incident high-weight edge in group i. Assume that this happened after p Type
1 subphases have completed. Thus, the size of each internal node is wi + p. Since by the
construction each internal node had a different number of high-weight edges in group i, there
is exactly one node v with no high-weight incident edges and that node merges with the
root. This is when Type 2 subphase happens. First, n− i− 1 internal nodes contract with a
high-weight incident group i edge. At this point the edge weights are as follows. The weight
of an edge between v and the root is 1

(wi+p)(ri+i2·∆i) and the weight of a high-weight edge in
group i is 1

(wi+p+1)(ri−1) . We have that the former is larger since

(wi + p)(ri + i2 ·∆i) < (wi + p + 1)(ri − 1) ⇐⇒
(wi + p) · i2 ·∆i < ri − 1 ⇐⇒

(n4 + i · (n + 1) + p) · i2 ·∆i < n8 + i · n4 − 1⇐
(n4 + n · (n + 1) + n) · n · n2 < n8 + i · n3 − 1.

Thus, the internal node with no incident high-weight edges in group i merges with the root.
Observe that this is exactly the internal node which had the lowest number of high-weight
edges in group i among all remaining internal nodes. This immediately implies that ki is
computed correctly, proving Item 2.

We now show that in the remaining part of the phase the n− i− 1 remaining internal
nodes contract their incident group i edges. First, observe that the new size of the root
node is

ri + wi + p + i2 ·∆i =
(
n8 + i · n4 + n4)

+
(
i · (n + 1) + i2 ·∆i + p

)
= ri+1 + (i + 1)2∆i+1

for some ∆i+1 ∈ [0, n + 1]. Note that we use the fact that both ∆i and p are upper bounded
by n + 1, which implies i · (n + 1) + i2 ·∆i + p ≤ (i + 1)2(n + 1). This proves Item 1. Thus
for an internal node of weight w, the weight of its edge to the root is

1
w · (ri+1 + (i + 1)2∆i+1) ≤

1
w · ri+1

= 1
w · (n8 + (i + 1) · n4) .

On the other hand, its low-weight edges to group i leaves have weight
1

w(n8 + i(n4 + n2)) .

As a result, in the remaining part of the current phase all internal nodes will contract all
their incident group i edges. This implies Item 4. Thus, the size of each internal node within
the phase increases to wi + (n + 1) = n4 + i · (n + 1) + n + 1 = n4 + (i + 1)(n + 1), as required.
This proves Item 3 and completes the proof. ◁

M. Bateni, L. Dhulipala, K. N. Gowda, D. E. Hershkowitz, R. Jayaram, and J. Łącki 18:15

Finally, we now claim that, given an instance of Adaptive Minimum with input index
x ∈ [0, n) and an algorithm which can compute the solutions to Problem 2, we can compute
the solution kx to Problem 3 in logspace. To see this, note that it suffices to determine the
value kx as defined above given an algorithm for Average Linkage HAC. To see this, note that
for any internal node i, we can query the Average Linkage HAC algorithm to determine which
time step ti it merged with the root. This does not directly tell us which phase i merged with
the root, but for a given i we can determine if it merged in phase x by comparing ti with tj

for all j ∈ {0, 1, . . . , n− 1} \ {i}, and checking if there are exactly x− 1 values of tj smaller
than ti. This clearly can be verified in log-space. Repeating for all i ∈ {0, 1, . . . , n − 1}
allows us to correctly determine the identity of the internal node that merged with the root
in phase x, and therefore the value of kx, in logspace as required.

To complete the proof of the Lemma it remains to show how to drop the assumption on
the node sizes being initially not all equal to 1. In order to obtain a node of size w it suffices
to create a node of weight 1 and initially connect it to w − 1 auxiliary nodes using very high
weight edges. This will force the algorithm to merge all these auxiliary nodes and increase
the size of that node to w. Since the auxiliary leaves are connected only to the root and
internal nodes (the leaves in our construction have weight 1), the diameter of the tree does
not increase. ◀

5 Average Linkage HAC on Paths in NC

In this section, we present an Õ(n) work and O(polylog(n)) depth algorithm for solving average
linkage HAC on path graphs, provided that the aspect ratio of the input instance is bounded
by poly(n). The aspect ratio is defined as A = Wmax/Wmin, where Wmax = arg maxe∈E w(e)
and Wmin = arg mine∈E w(e) (note that this definition excludes all non-edges, which implicitly
have a weight of 0).

In average linkage HAC, the weight (i.e., similarity) of edges monotonically decreases
over time. Thus, our idea is to partition the edges into buckets where the edges in any
bucket have the same similarity, up to constant factors. Next, we process these buckets
in phases, from the highest similarity bucket to the lowest. In each phase, we perform a
modified version of the classic nearest-neighbor chain algorithm, wherein we compute the
nearest-neighbor chains for the graph induced on the edges in that bucket, and process each
chain independently. We note that when we use the terminology nearest neighbor of a vertex
in what follows, we refer to the neighbor along the highest weight edge incident to the vertex.

Initially, each cluster is a singleton, and we might end up with Ω(n) sequential dependencies
to resolve. However, we observe that in this special case when the size of every cluster is
equal, starting with the reciprocal pair, every alternate edge in this chain can be merged
independently, and the rest of the edges will be moved to a later bucket. We can compute
the edges that will be merged easily via a simple prefix-sum routine [8]. However, when
the cluster sizes are arbitrary, this observation no longer holds. Nonetheless, we show that
we can partition each chain further into O(log n)-sized subchains such that, even though
the dependencies within a subchain must be resolved sequentially, the dependencies across
subchains can be resolved in parallel using a similar application of prefix-sum.

We state the following theorems showing (1) that our parallel algorithm is highly efficient
(it runs near-linear time in the number of nodes) and runs in poly-logarithmic depth and
(2) that our algorithm implies that the dendrogram height of a path input with polynomial
aspect ratio is always poly-logarithmic. Due to space constraints, we defer the proofs and
the details of the algorithm to the full version [6].

ICALP 2024

18:16 It’s Hard to HAC Average Linkage!

▶ Theorem 4. Average linkage HAC on paths is in NC. In particular, there is an algorithm
for average linkage HAC that runs in O(log2 n log log n) depth with O(n log n log log n) work.

▶ Theorem 14. Average linkage HAC on path graphs with poly(n) aspect-ratio returns a
dendrogram with height at most O(log2 n).

6 Conclusion

In this paper, we studied the parallel and sequential complexity of hierarchical graph clustering.
We gave new classic and fine-grained reductions for Hierarchical Agglomerative Clustering
(HAC) under the average linkage measure that likely rule out efficient algorithms for exact
average linkage, parallel or otherwise. We also showed that such impossibility results can be
circumvented if the output dendrogram has low height or is a path. An interesting question is
whether such structure can be leveraged for other variants of interest of average linkage HAC:
for example, can we can obtain dynamic algorithms for HAC that are also parameterized by
the height?

References
1 Amir Abboud, Vincent Cohen-Addad, and Hussein Houdrouge. Subquadratic high-dimensional

hierarchical clustering. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Annual Conference on Neural Information Processing Systems
(NeurIPS), volume 32. Curran Associates, Inc., 2019.

2 Amir Abboud, Nick Fischer, and Yarin Shechter. Faster combinatorial k-clique algorithms.
arXiv preprint, 2024. arXiv:2401.13502.

3 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
522–539. SIAM, 2021.

4 N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multiprogrammed
multiprocessors. ACM Transactions on Computer Systems, 34(2), April 2001.

5 MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi
Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab Mirrokni. Affinity clustering:
Hierarchical clustering at scale. In Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 6864–6874, 2017.

6 MohammadHossein Bateni, Laxman Dhulipala, Kishen N Gowda, D Ellis Hershkowitz, Rajesh
Jayaram, and Jakub Łącki. It’s hard to hac with average linkage!, 2024. arXiv:2404.14730.

7 J-P Benzécri. Construction d’une classification ascendante hiérarchique par la recherche en
chaîne des voisins réciproques. Cahiers de l’analyse des données, 7(2):209–218, 1982.

8 Guy E Blelloch. Scans as primitive parallel operations. IEEE Transactions on computers,
38(11):1526–1538, 1989.

9 Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. Optimal parallel algorithms in
the binary-forking model. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2020.

10 Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multithreaded
computations. SIAM J. on Computing, 27(1), 1998.

11 Mélanie Boly, Vincent Perlbarg, Guillaume Marrelec, Manuel Schabus, Steven Laureys, Julien
Doyon, Mélanie Pélégrini-Issac, Pierre Maquet, and Habib Benali. Hierarchical clustering
of brain activity during human nonrapid eye movement sleep. Proceedings of the National
Academy of Sciences, 109(15):5856–5861, 2012.

12 Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hier-
archical clustering: Objective functions and algorithms. Journal of the ACM (JACM), 66(4),
2019.

https://arxiv.org/abs/2401.13502
https://arxiv.org/abs/2404.14730

M. Bateni, L. Dhulipala, K. N. Gowda, D. E. Hershkowitz, R. Jayaram, and J. Łącki 18:17

13 Stephen A Cook, Yuval Filmus, and Dai Tri Man Le. The complexity of the comparator
circuit value problem. ACM Transactions on Computation Theory (TOCT), 6(4):1–44, 2014.

14 Don Coppersmith and Shmuel Winograd. On the asymptotic complexity of matrix multiplica-
tion. SIAM Journal on Computing, 11(3):472–492, 1982.

15 Laxman Dhulipala, David Eisenstat, Jakub Lacki, Vahab Mirrokni, and Jessica Shi. Hierarchical
agglomerative graph clustering in nearly-linear time. In International Conference on Machine
Learning (ICML), pages 2676–2686, 2021.

16 Laxman Dhulipala, David Eisenstat, Jakub Lacki, Vahab Mirrokni, and Jessica Shi. Hierarchical
agglomerative graph clustering in poly-logarithmic depth. Annual Conference on Neural
Information Processing Systems (NeurIPS), 35:22925–22940, 2022.

17 Laxman Dhulipala, Jakub Łącki, Jason Lee, and Vahab Mirrokni. Terahac: Hierarchical
agglomerative clustering of trillion-edge graphs. Proceedings of the ACM on Management of
Data, 1(3):1–27, 2023.

18 Michael B Eisen, Paul T Spellman, Patrick O Brown, and David Botstein. Cluster analysis
and display of genome-wide expression patterns. Proceedings of the National Academy of
Sciences, 95(25):14863–14868, 1998.

19 Raymond Greenlaw and Sanpawat Kantabutra. On the parallel complexity of hierarchical
clustering and cc-complete problems. Complexity, 14(2):18–28, 2008.

20 Guan-Jie Hua, Che-Lun Hung, Chun-Yuan Lin, Fu-Che Wu, Yu-Wei Chan, and Chuan Yi
Tang. MGUPGMA: a fast UPGMA algorithm with multiple graphics processing units using
NCCL. Evolutionary Bioinformatics, 13:1176934317734220, 2017.

21 J Juan. Programme de classification hiérarchique par l’algorithme de la recherche en chaîne
des voisins réciproques. Cahiers de l’analyse des données, 7(2):219–225, 1982.

22 Benjamin King. Step-wise clustering procedures. Journal of the American Statistical Associ-
ation, 62(317):86–101, 1967.

23 Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, and Andrew McCallum. A hierarchical
algorithm for extreme clustering. In International Conference on Knowledge Discovery and
Data Mining (KDD), pages 255–264, 2017.

24 Godfrey N Lance and William Thomas Williams. A general theory of classificatory sorting
strategies: 1. hierarchical systems. The computer journal, 9(4):373–380, 1967.

25 Joshua Lau and Angus Ritossa. Algorithms and hardness for multidimensional range updates
and queries. In Innovations in Theoretical Computer Science Conference (ITCS), 2021.

26 François Le Gall. Faster algorithms for rectangular matrix multiplication. In Symposium on
Foundations of Computer Science (FOCS), pages 514–523. IEEE, 2012.

27 Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

28 Ernst W Mayr and Ashok Subramanian. The complexity of circuit value and network stability.
Journal of Computer and System Sciences, 44(2):302–323, 1992.

29 Nicholas Monath, Kumar Avinava Dubey, Guru Guruganesh, Manzil Zaheer, Amr Ahmed,
Andrew McCallum, Gokhan Mergen, Marc Najork, Mert Terzihan, Bryon Tjanaka, et al.
Scalable hierarchical agglomerative clustering. In International Conference on Knowledge
Discovery and Data Mining (KDD), pages 1245–1255, 2021.

30 Benjamin Moseley and Joshua R. Wang. Approximation bounds for hierarchical clustering:
Average linkage, bisecting k-means, and local search. In Annual Conference on Neural
Information Processing Systems (NeurIPS), pages 3094–3103, 2017.

31 Benjamin Moseley and Joshua R Wang. Approximation bounds for hierarchical clustering:
Average linkage, bisecting k-means, and local search. Journal of Machine Learning Research,
24(1):1–36, 2023.

32 Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint,
2011. arXiv:1109.2378.

33 Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.

ICALP 2024

https://arxiv.org/abs/1109.2378

18:18 It’s Hard to HAC Average Linkage!

34 Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview, ii.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(6):e1219, 2017.

35 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

36 JM Shearer and Michael A Wolfe. Alglib, a simple symbol-manipulation package. Communic-
ations of the ACM, 28(8):820–825, 1985.

37 Peter Henry Andrews Sneath. The principles and practice of numerical classification. Numerical
taxonomy, 573, 1973.

38 Ashok Subramanian. A new approach to stable matching problems. Stanford University, 1989.
39 Tom Tseng, Laxman Dhulipala, and Julian Shun. Parallel batch-dynamic minimum spanning

forest and the efficiency of dynamic agglomerative graph clustering. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 233–245, 2022.

40 Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al.
Scipy 1.0: fundamental algorithms for scientific computing in python. Nature methods,
17(3):261–272, 2020.

41 Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Annual ACM Symposium on Theory of Computing (STOC), pages 887–898, 2012.

42 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix
and triangle problems. In Symposium on Foundations of Computer Science (FOCS), pages
645–654, 2010.

43 Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 3792–3835. SIAM, 2024.

44 Ying Zhao and George Karypis. Evaluation of hierarchical clustering algorithms for document
datasets. In Conference on Information and Knowledge Management (CIKM), pages 515–524,
2002.

	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 An Omega(n(̂3/2-epsilon)) Conditional Lower Bound for Average Linkage HAC
	3.1 Reduction

	4 Average Linkage HAC is Hard to Parallelize Even on Trees
	5 Average Linkage HAC on Paths in NC
	6 Conclusion

