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Abstract
The eastern North Carolina Coastal Area Management Act region is one of the most
hurricane-prone areas of the United States. Hurricanes incur substantial damage and economic
losses because structures located near the coast tend to be high value as well as particularly
exposed. To bolster disaster mitigation and community resilience, it is crucial to understand how
hurricane hazards drive social and economic impacts. We integrate detailed hazard simulations,
property data, and labor compensation estimates to comprehensively analyze hurricanes’ economic
impacts. This study investigates the spatial distribution of probabilistic hurricane hazards, and
concomitant property losses and labor impacts, pinpointing particularly hard hit areas.
Relationships between capital and labor losses, social vulnerability, and asset values reveal the latter
as the primary determinant of overall economic consequences.

1. Introduction

Hurricanes are the most costly type of natural dis-
aster in the United States (Smith andKatz 2013, NCEI
2023), with property damage being a major driver
of economic losses. Coastal and peri-coastal devel-
opment has led to structures being located in areas
that are at risk of tropical storm-force winds and
surge flooding, increasing the exposure of residen-
tial and nonresidential assets. Along the Atlantic and
Gulf coasts, built up areas experiencing >6 m s−1

average maximum wind gust speed exposures have
nearly doubled since 1980—with low- and medium-
density development accounting for the bulk of
such areas in high-risk locations such as eastern
North Carolina (NC) (Iglesias et al 2021). Under
the 2022 Community Disaster Resilience Zones Act,
the Federal EmergencyManagement Agency (FEMA)
must ‘identify census tracts which are most at risk
from the effects of natural hazards and climate
change.’ Of the thirteen NC tracts thus designated,

all but one are in Coastal Area Management Act
(CAMA) counties.

Prior research has sought to normalize trends
in recorded hurricane losses (typically, insurance
claims—e.g. Smith and Matthews 2015, Bakkensen
et al 2018) as a way of disentangling the contribu-
tions of hazard characteristics (Zhai and Jiang 2014)
and their potential climate-change driven intensifica-
tion (Pielke 2021), development-driven increases in
exposure, building-code/-quality driven declines in
the susceptibility of assets to damage (e.g. Done et al
2018), as well as the interactions among these drivers
(Nair et al 2020). A particular concern is the manner
in which losses scale with income, and the implica-
tions for inequality in the burden of hurricane risk.
Geiger et al (2016) find that U.S. hurricane losses
increase sub-linearly with exposed population and
supra-linearly with per capita income, but their infer-
ence relies on population-downscaled state GDP as
a proxy for exposure, and its robustness is contested
(Geiger et al 2016, Rybski et al 2017).
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Underlying such aggregate trends are socioeco-
nomic processes that act in opposing directions.
Properties located close to the coast are proximate to
amenities (e.g. viewsheds, water recreation accessibil-
ity) that command a price premium, but such proper-
ties are alsomore exposed to the disamenity of coastal
hazards (e.g. storm surge, hurricane force winds
without the shielding effects of terrain) and associated
price discounts. Holding constant hazard exposures
as well as property vulnerability and damage, areas
with higher-income, less socially vulnerable popu-
lations who can afford expensive housing will tend
to incur larger total losses simply because exposed
assets are worth more. Conversely, marginalized
populations (who are disproportionately adversely
impacted by major hurricanes—Benevolenza and
DeRigne 2019) tend to reside in relatively low-cost,
low-value areas and housing contexts. In a com-
petitive economic equilibrium, the former discounts
would provide actuarially fair compensation for the
disutility of elevated hazard exposure as well as dam-
age susceptibility, leading to sorting of low-income,
more socially vulnerable residents into harm’s way.
This outcome is consistent with findings of a high
degree of overlap between areas of high flood expos-
ure and high social vulnerability, in Louisiana (Shao
et al 2020) and across the broader southeastern US
(Tate et al 2021).

These two phenomena highlight the question
that motivates the present study: do hurricane losses
respond more to asset values—and thus tend to
decline with social vulnerability, or hazard expos-
ure and damage susceptibility—and tend to increase
with social vulnerability? Evidence is circumstan-
tial and inconclusive. Examining the impact of hur-
ricane Katrina on Mississippi’s Gulf coast, Burton
(2010) found extensive overlap among areas with the
largest residential building damage (but not monet-
ary losses) and high social vulnerability, with indicat-
ors of the latter having statistically significant explan-
atory power in census tracts where damage was
extensive or catastrophic. The empirical economic
literature has uncovered copious evidence of haz-
ard risk signals in property markets. Sale prices of
homes are significantly discounted due to expos-
ure to future sea level rise (Bernstein et al 2021),
inundation from hurricane Sandy—even for prop-
erties that did not sustain direct damage (Ortega
and Taspinar 2018), and a proxy for pluvial risk
constructed by interacting storm runoff percentiles
with stationary flood depth exposures on differ-
ent return periods (Pollack et al 2023). However,
hedonic analyses that focus on mean estimates shed
little light on whether hazard discounts vary with
household incomes, property values or other cor-
relates of social vulnerability in ways distinct from
exposures.

Perhaps the closest to a direct answer is Nair et al
(2020), who find that the balance between the risk
discount and the amenity premium is heterogeneous
over broad geographic scales. They attribute losses
in peninsular Florida to socioeconomic exposure and
vulnerability, but losses in the central Gulf Coast to
the multiplicative interaction between climate haz-
ards and socioeconomic exposure/vulnerability. But
at finer spatial scales, Pollack et al’s (2023) find-
ing of no statistically significant discount for proper-
ties close to the shoreline suggests that the amenity
premium dominates along the coast, where prices are
often substantially higher compared to similar prop-
erties inland. Similarly, the degree of housing mar-
ket overvaluation due to undercapitalization of flood
hazards is particularly large along the Atlantic and
Gulf coasts, both in dollar values and as a percentage
of observed property values Gourevitch et al (2023).
The suggestion is that asset values may be the domin-
ant driver of coastal hazard losses.

The paper’s approach to reconciling these dis-
parate findings differs from the top–down empir-
ical analyses of the determinants of insured losses or
property prices cited above. We make three contribu-
tions. First, we extend Pollack et al’s (2022) bottom-
up approach, computing losses by combining hazard
outputs from simulations of multiple synthetic hur-
ricane events with data on the locations, vulnerab-
ilities to wind speeds and flood depths, and values,
of ∼1.6 million structures across the 44-county east-
ern NC coastal region. Second, we develop and apply
a novel quasi-empirical model to estimate the short-
run consequences of property damage for labor com-
pensation. The latter declines in response to tropical
cyclone shocks—especially among low-income indi-
viduals (Wu et al 2019)—as residents and firms real-
locate time away from labor and production of out-
put to remediating damage to residences and busi-
ness establishments, respectively: opportunity costs
that increase with damage severity (Groen et al 2020).
Third, we aggregate structure and labor losses to the
scale of census tracts and elucidate their relationship
with social vulnerability scores, disentangling the rel-
ative importance of the exposure and asset effects
described above. Our main finding is that the intens-
ity of both capital losses and forgone labor earnings
are negatively correlated with social vulnerability, a
result that can be traced to the inverse relationship
between vulnerability and the benchmark value of
exposed assets.

2. Data andmethods

2.1. Data
2.1.1. Hurricanes and hazard modeling
NC is one of the world’s most hurricane-prone areas,
experiencing more than 60 storm events over the past
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century (Landsea and Franklin 2013). Hurricanes
exert substantial impacts on its coastal environment
due to both strong wind gusts and storm surge
driven toward and onto land by onshore winds. Given
hurricanes’ rarity (category 2 or greater hurricanes
impact theNC coast with an annual occurrence prob-
ability of about 0.3—Landsea and Franklin 2013), the
historical record is generally too short to adequately
represent the true spatial and temporal extent of the
hazard. Risk assessment requires the hurricane pop-
ulation to be ‘inflated’ to capture the full range of
probable events. Two approaches are typically used.
The first is the joint probability method, which gen-
erates combinations of attributes such as central pres-
sure, radius of maximum winds, translation speed
by sampling from the observed distributions of these
parameters while accounting for known correlations
among them (Vickery and Blanton 2008, Toro et al
2010). The resulting parameter sets are then distrib-
uted over a set of hypothetical but realistic track
shapes. The second is a stochastic empirical track
model (ETM) that generates a large set of events
by sampling cyclone parameter distributions, genesis
and lysis rates, and genesis locations, and computing
storm trajectories by integrating displacement distri-
butions, terminating a storm when specific criteria
are met (e.g. lysis characteristics, distance onto con-
tinental land area, insufficient environmental condi-
tions).

Here we use stochastic hurricane tracks from
Vickery andBlanton (2008), generated using the ETM
(Vickery et al 2000) to compute a synthetic and long-
term storm event set that impacts the NC coast. More
specifically, the ETMdataset was originally developed
as part of a FEMA-funded coastal hazard analysis for
the NC coast (Vickery and Blanton 2008, Blanton
et al 2012). It included observed cyclone parameters
through the year 2007 to generate a 10 000 year storm
population for the entire North Atlantic basin. Each
storm track in the ETM dataset is described by lon-
gitude/latitude position, and cyclone parameters such
as central pressure and radius to maximum winds.
As described in Apivatanagul et al (2011), the large
candidate set of storms was reduced to an ensemble
of 97 events that approximate the quantiles of distri-
bution of the storm surge and wind speed hazards.
Importantly, this method enables the assignment of
an annual probability to each storm, facilitating com-
putation of the moments of hazard exposures and
losses. The 97 tracks are shown in figure A1, panel
(A), colored by the central pressure, with the thick
track indicating themost intense storm. (Storm para-
meter distributions are shown in figure A1, panels (B)
and (C))

For each hurricane event, coastal storm surge and
wind speeds are computed using the ADCIRC model
(Luettich and Westerink 1992, Westerink et al 2008),
a linear, triangular finite-element simulation that
solves a form of the shallow water wave equations.

ADCIRC has been applied extensively to investig-
ate regional and local tidal phenomena and coupled
storm surge and wave hindcasts (Blanton et al 2004,
Atkinson et al 2008, Dietrich et al 2010), and develop
comprehensive hazard datasets for use in FEMA’s
coastal flood insurance studies for theUSAtlantic and
Gulf coasts (e.g. Niedoroda et al 2010, Blanton et al
2012, Hanson et al 2013).

Apivatanagul et al (2011) ran ADCIRC in its two-
dimensional, depth-integrated form on a ∼500 m
grid in the NC coastal area. Land elevations and water
bottom depths, frictional characteristics, land rough-
ness lengths, and canopy cover are specified at each
triangle centroid, or node, using available digital elev-
ationmodels and land cover databases (e.g. the USGS
National Elevation Model (Gesch et al 2002) and the
National Land Cover Database (Homer et al 2012)).
The ADCIRC model configuration did not include
tides or wind waves. Cyclone wind and pressure
fields were computed using ADCIRC’s internal vortex
model, using storm parameters as defined in the 97-
event ensemble. Specific parameter settings and con-
figuration details were set the same as used for the
FEMA study for coastal NC, detailed in Blanton et al
(2012). Each simulation generated full time histories
of the water levels and winds at each node (figure A2,
panel (A)), from which maximum inundation (max-
imum water level—topographic elevation) and wind
speeds were calculated and used as inputs into loss
modeling. (Surge and wind speeds for the strongest
storm are shown in figure A2, panel (B))

2.1.2. Assets
The catalog of potentially exposed assets comes from
the National Structure Inventory (NSI—USACE
2022). The NSI records the geolocation, value, occu-
pancy characteristics, and structural and economic
attributes of individual buildings. Our study area
encompasses approximately 1.6 million structures,
two thirds of which are single-family homes. We
use the structures’ and ADCIRC nodes’ geocodes
to impute property-level maximum surge and wind
hazard exposures for each storm (figure 1—expected
values in panels (A) and (C), worst case values in
panels (B) and (D)).

2.1.3. Hazus damage functions
The relationships that link individual buildings’ flood
and wind hazard exposures to the damage, loss of
function and reduction in economic value they sus-
tain, are taken from the Hazus (Vickery et al 2006,
FEMA 2022a, 2022b). Following the approach used
by Klima et al (2012), we extract hazard-damage
relationships differentiated by building characterist-
ics (e.g. roof and wall material, basement presence)
and sector (28 detailed ‘occupancy classes’), yielding
damage functions for a reduced set of 39 structural
archetypes that spans the universe of buildings in our
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Figure 1. Hurricane hazards, property value and social vulnerability. (A), (B) Property-level expected and worst-case maximum
storm surge depth (ft). (C), (D) Property-level expected and worst-case maximum wind speed (mph). (E), (F) Census tract value
of buildings/contents (Bn $), and 2020 social vulnerability index.

NSI dataset (table A1, figures A3 and A4). Each indi-
vidual building is thenmatched to an archetype based
on its characteristics, enabling identical wind expos-
ures to generate substantially different amounts of
damage, depending on the building.

2.1.4. Employment and wages
To capture the potential impacts of property dam-
age on jobs and labor compensation, we build on
Belasen and Polachek (2008) and Metzler et al
(2021), using the Longitudinal Employer Household
Dynamics Origin-Destination Employment Statistics
(LODES) dataset (US Census Bureau 2023). LODES
tabulates annual commuting flows between census
blocks, working population and number of jobs at
each residence origin andworkplace destination from
2002. LODES does not provide wage data directly,
but apportions origin-destination flows into three
broad wage intervals. For each class, we use American
Community Survey annual microdata (Ruggles et al
2024) to calculate the average wage for workers in

each wage interval in workplace tracts corresponding
to census Public Use Microsample Areas (PUMAs—
combinations of contiguous census tracts, the highest
geographic resolution at which wages are available).
The average wage calculated for each combination
of PUMA and wage class is assigned to all workers
within the same class in all workplace census tracts
in that PUMA, and then calculate the average tract-
level wages as the weighted average of the three wage
classes, with tracts’ shares of workers in each class as
weights (see appendix)

2.1.5. Social vulnerability
To investigate inequality in the incidence of hurricane
losses, we use the US Centers for Disease Control
Agency for Toxic Substances and Disease Registry
(CDC/ATSDR) social vulnerability index (SVI) for
the year 2020 at the census tract level (Flanagan
et al 2018). The index is an aggregate of 16 primary
variables tabulated by the US Census, grouped
into four themes (socioeconomic status, household
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characteristics, racial/ethnic minority status, housing
type and transportation)6.

2.2. Loss modeling
2.2.1. Capital losses
Our high-resolution asset data allow us to model
capital losses at the scale of individual properties.
Extending Pollack et al (2022), the indexes i = indi-
vidual properties, g=matched hazard layer grid cells,
O = occupancy classes, h = hazard types, j = eco-
nomic sectors, and s = storm events. We also let
the variablesDh denote property- and hazard-specific
damage functions, v denote a property’s value and xh

denote its hazard exposure. Property-level capital loss
(KL) is then computed as

KLi,s =max
h

{
Dh

o(i)

[
xhg(i),s

]}
· vi. (1)

We sum these losses and the value of exposed
property over areal units (indexed by a—i.e. census
blocks, tracts and counties), and take the ratio to
compute the sector-, area-, and storm-specific capital
damage intensity:

κj,a,s =
∑

o(i)∈j,i∈a

KLi,s/
∑

o(i)∈j,i∈a

vi . (2)

Using πs to denote each storm’s probability, the
expected aggregate fractional loss is

E [κa] =
∑

o(i),i∈a

∑
s

π sKLi,s/
∑

o(i),i∈a

vi. (3)

The critical implication that aggregates losses
(e.g., at the census tract level) depend as much on the
demography of exposed assets (distributions of dam-
age susceptibility, D, value, v, and their correlation
over space) as the details of the hazard field.

2.2.2. Labor losses
Labor losses are fundamentally driven by capital stock
destruction. Damage to structures lowers local pro-
duction capacity, generating excess demand for cap-
ital goods for reconstruction. In the aftermath of hur-
ricanes there may be significant shortages of both
labor and commodities that bid up wages and prices.
We develop a simple model of the short-run equi-
librium of the economy post-disaster to demonstrate
the relevant mechanisms. Abstracting from the con-
founding effects of migration, our welfare indicator
is the change in the per capita real earnings of a
population of constant size. Using w and r to index
census tracts of work and residence, letting Nr and
Er denote the baseline pre-storm event population

6 The SVI is constructed by calculating the tract percentile ranks for
each of the 16 variables, summing the ranks within each theme and
ranking the resulting sums, and finally summing the four theme
ranks and ranking the overall sum.

and per capita real earnings of households residing in
census tract r, labor losses can be expressed as:

LLr (s) =
(
EHurricaner (s)− EBaseliner

)
·Nr (4)

where, given residence-workplace commuting flows,
F, workplace wages, V, and the price level at the
residence location, P, per capita real earnings are
defined as:

Ejr =

(∑
w

Vj
wF

j
r,w/P

j
r

)/∑
w

Fjr,w, j

= Baseline, Hurricane. (5)

We empirically model changes in commuting
flows and wages as functions of the fractional capital
stock losses at commuting households’ residence tract
origins and workplace tract destinations,

F̂r,w = φ F (κr,κw)and V̂w = φV (κr,κw) (6)

and impute changes in local price levels using
the equilibrium conditions of the labor market
(see appendix). These results are integrated into
equations (5) and (6), which we numerically para-
meterize using LODES data for 2019 and combine
with tract-level fractional capital stock losses to estim-
ate labor losses via equation (4).

3. Results

3.1. Hurricane hazards, assets and societal
exposures
Figure 1 panels (A)–(D) summarize the intensity
of hurricane hazards, illustrating the expected and
worst-case surge inundation depths and peak wind
gust speeds for 97 hurricane events at property loca-
tions. Properties prone to flooding (>0.6 ft) are along
the coasts and estuaries, especially New Hanover,
Pender, and Brunswick counties. Wind impacts a
broader area, with terrain slowing wind speeds inland
away from the coastline. The most intense hurricane
(figure A1, panel (A), thick line) makes landfall in
New Hanover county traveling north, exposing New
Hanover, Pender, and Onslow counties to >6 ft
surge flooding and >180 mph wind gusts. Relatively
high property values in New Hanover, Bladen, Wake,
Currituck, and Dare counties (panel (E)) highlight
these areas’ potential for larger economic losses from
structural damage.

3.2. Property losses
Figure 2 panels (A)–(F) summarize expected and
worst-case property-level losses from wind, flood,
and total combined structure and content damages.
Exposed coastal properties in New Hanover, Pender,
and Onslow counties experience the largest flood
damage and loss, both in expectation and the worst
case (panels (A) and (B)). The entire region is subject
to wind damage, with expected losses concentrated

5
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Figure 2. Hurricane surge, wind and total damage (percent of structure and content value). (A), (B) Property-level expected and
worst-case storm surge damage. (C), (D) Property-level expected and worst-case wind damage. (E), (F) Census tract-level
expected and worst-case total damage. (G), (H) Smoothed probability-weighted variation of % losses with SVI, coastal (dotted)
and inland (dashed) census tracts.

along the southeast and eastern coasts, followed by
the southwest and middle regions, and the smal-
lest losses in the inland northwest (panel (C)). For
the worst-case event, losses exceed 80% of the total
values of properties in the vicinity of the south-
to-north track, and decline longitudinally outward
from that locus (panel (D)). Expected aggregate losses
(panel (E)) exceed 0.5% (1%) of the total value
of structures and their contents in census tracts in

coastal regions (figure A2, panel (A)), especially New
Hanover, Brunswick, Pender, and Carteret counties.
The worst-case storm incurs huge capital losses in
Cape Fear and along the entire EasternCarolina coast,
exceeding 40% of the total exposed property value
(panel (F)).

Our main result is shown in panels (G) and (H):
in coastal regions (figure A2, panel (A)), tract-level
total losses decrease with SVI, an effect that is
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Figure 3. Census tract damage exposure of buildings and building values, and regional losses. (A), (B) Expected percentage of
structures and total structure and content value with expected non-zero damage. (C), (D) Smoothed variation of
probability-weighted % of affected structures and value with SVI, coastal (cyan) and inland (green) census tracts. (E) Expected
percentage loss by region, social vulnerability index quartile, and Hazus occupancy class. Regions as in figure (B).

concentrated in residential occupancy classes, which
reflects vulnerable households’ propensity to locate
inland, away from coastal amenities and associated
high housing values and costs. There is no similar

relationship inland, except for easily wind-damaged
mobile homes.

Figure 3 provides further elaboration. Across
both coastal and inland census tracts, the fraction
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Figure 4. Labor losses (percent of value of earnings). (A), (B) Expected and worst case losses by residence census tracts. (C)
Smoothed variation of total jobs and monthly earnings ($’000) by place of residence. (D) Probability-weighted % losses with SVI,
all (black), coastal (blue) and inland (green) census tracts.

of structures sustaining non-zero damage is largely
invariant to SVI (panels (A) and (C)), which is
inconsistent with the hypothesis thatmore vulnerable
households face systematically larger hazard expos-
ures. Conversely, the fraction of tracts’ structure and
content value that sustains non-zero damage declines
strongly with SVI (panels (B) and (D)), consistent
with the hypothesis that the value of exposed assets is
the major driver of overall losses. The upshot is that
coastal regions incurmuch larger losses across a range
of occupancy classes (panel (E)), which reach as high
as 23% in the least socially vulnerable census tracts.
Industrial and residential sectors bear the brunt of
losses, up to 12% for single-family homes. Inland,
losses are smaller and evenly distributed across sectors
and tracts of different vulnerability. Across sectors
and individual counties, the bulk of losses is driven by
damage from wind as opposed to surge (figure A5).

3.3. Labor losses
Figure 4 summarizes the labor losses. Panels (A) and
(B) present the spatial distribution of the expec-
ted and worst-case labor losses at the census tract
level. The expected labor losses are declining along
a southeast-to-northwest axis: counties such as New
Hanover, Brunswick, Pender, and Carteret suffer the
most significant labor losses, with values exceeding
1%, while counties like Franklin, Halifax, Nash, and

Warren realize positive labor earnings due to resid-
ents can commute to affected areas to earn higher
wages. In the worst case, substantial labor losses are
located near the hurricane’s track, surpassing 40% in
counties like New Hanover, Pender, Onslow, Duplin,
and Wake, and decay with distance from the track.
Comparing figure 4 with figure 2, we also find distinct
differences between labor and capital losses, indic-
ating the significant redistribution effect caused by
commuting households. Panel (C) shows the distri-
bution of wages and jobs by residence tract in the
baseline case. Panel (D) presents the calculated labor
losses increase as the SVI falls. This relationship holds
in both coastal and inland tracts and is more salient
in coastal tracts.

4. Discussion and conclusions

We have combined detailed wind and surge hazards
for 97 storms representative of easternNC’s hurricane
climatology, property-level on the characteristics and
values of residential and nonresidential structures
and their values, and structure-matched wind and
flood damage functions to estimate community-scale
expected and worst-case hurricane losses. We fur-
ther analyzed the implications of property damage at
workers’ census tracts of employment and residence
for labor losses.

8
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Table 1. Capital and labor losses by region (million 2021 $). Main estimate is the expected value for the 97-storm set, inter-quartile
range shown in square braces.

Capital stock losses

Residential Commercial Industrial Other Total Labor Losses

Triangle J
298.9 41.0 17.6 17.3 374.8 80.0
[11.5, 506.2] [0, 44.5] [0, 22.4] [0, 22.9] [11.5, 578.1] [17.5, 152.0]

Kerr-Tar
7.2 1.0 1.1 0.5 9.7 −1.1
[0.5, 21.3] [0, 1.8] [0, 2.1] [0, 1.4] [0.5, 27.2] [−5.5,−4.5]

Upper Coastal Plain
36.2 9.5 6.2 4.1 56.0 −21.5
[3, 124.5] [0, 20.5] [0, 13.9] [0, 12.8] [3, 173.6] [−81.3,−75.8]

Mid-Carolina
209.0 58.5 14.9 19.5 301.8 40.3
[4.3, 353.2] [0, 61] [0, 22.6] [0, 32.9] [4.3, 469.8] [26.7, 58.1]

Lumber River
125.1 38.8 34.3 24.2 222.4 16.9
[1.6, 143.1] [0, 21.8] [0, 31.1] [0, 22.9] [1.6, 216.2] [−9.8, 2.6]

Cape Fear
879.8 178.4 61.6 47.9 1167.7 137.9
[9, 4377.6] [0, 748.8] [0, 251.7] [0, 187.5] [9, 5701.1] [87.9, 728.7]

Eastern Carolina
532.8 121.4 38.4 40.1 732.8 78.4
[34.2, 5190.1] [3.6, 1205.8] [0.7, 389.3] [0.7, 351.9] [38.9, 7177.5] [56.3, 607.9]

Mid-East
81.3 16.2 7.4 6.0 111.0 13.0
[6.2, 474.1] [0.1, 81.3] [0, 42.4] [0, 36.3] [6.4, 638.5] [−1.0, 53.5]

Albermarle
151.1 24.9 6.6 7.2 189.9 16.5
[19.3, 601.8] [4.2, 118.4] [1.9, 38.2] [1.5, 40.2] [28.9, 794.5] [11.7, 70.1]

Study Region
2321.4 489.8 188.2 166.8 3166.2 431.2
[89.7, 11 792] [8, 2303.8] [2.6, 813.7] [2.2, 708.8] [104.2, 15 776.5] [129.8, 3020.8]

As summarized in table 1, the expected value
of damage to structures and their contents exceeds
$3 Bn, 60% of which is incurred by coastal regions
(Cape Fear and Eastern Carolina), and 70% of which
is accounted for by residential buildings. Losses are
heavy-tailed (Pollack et al 2022). For capital losses
ranked across storm events, expected damage exceeds
the 25th percentile by a factor of 30 and is in turn
one-fifth of the 75th percentile. Annual labor losses
are about one-seventh of capital stock losses, fol-
low similar regional patterns and across storms are
less strongly skewed. Regarding the paper’s motivat-
ing question, both categories of losses decline with
the social vulnerability of affected areas. This phe-
nomenon manifests despite much weaker relation-
ships between the SVI and either the total stock
of buildings subject to hurricane damage, or total
jobs and earnings per worker, which we attribute
to the inverse relationship between SVI and house-
holds’ income and the values of their own and the
encompassing community’s assets. In summary, two
key conclusions can be drawn from our analysis of
property and labor: (1) there is a sustainable differ-
ence between capital and labor losses, with capital
losses predominating, and (2) both types of losses

increase when the SVI decreases, across both coastal
and inland regions.

An advantage of our bottom-up approach is
in pinpointing ‘outlier’ communities that are both
socially vulnerable and disproportionately exposed to
hurricane losses. Among census tracts with >80th
percentile SVI scores, those with expected labor
losses exceeding 1.5% of annual earnings include
Shallotte (206.01), Morehead City (705.01), Hatteras
Island (705.02), and Wilmington (103, 108, 111),
and those with expected capital losses exceeding 20%
of aggregate structure and content values include
Leland (201.01), Myrtle Head (206.01), Bolton (302),
Hatteras Island (705.02), Wilmington (103, 108, 110,
111) and Highsmith (601). Such information is cru-
cial for implementing mitigation and adaptation
policies’ goal of allocating resources to communities
most ‘at risk’ and ‘in need’. Even so, our main res-
ult suggests that additional metrics may be needed to
capture impacts on marginalized/vulnerable popula-
tions that own low-value assets, and for whom small
absolute losses likely mask substantial risks to their
livelihoods and well-being.

While there are only a few prior studies against
which our results can be contrasted, their total losses
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lie within the interquartile range of our estimates.
In ESP’s (2021) analysis of building vulnerabilities
to 100y return period hurricane winds across south-
eastern NC (Brunswick, New Hanover, Onslow, and
Pender counties), aggregate property losses reach $6
Bn. Similarly, Mazumder et al (2023) analyze dam-
age to buildings in Onslow county from hurricane
Helene-1958 and five derivative synthetic storms,
and estimate losses totaling $5.5–$9.5 Bn. Similar
to the present work, FEMA Hazus Loss Library’s
(FEMA 2023) 20y retrospective analyses of NC cyc-
lones estimates substantial economic costs—$2.4 Bn
and $1.2 Bn for hurricanes Florence and Isabel, and
$1.2 M and $3.5 M for hurricanes Alex and Ivan,
whose impacts are more localized. At the tract level,
the event-specific capital exposures and losses are
negatively correlated with social vulnerability, gener-
ally corroborating our main result (table A2).

Notwithstanding, our findings are subject to
multiple caveats. Perhaps most consequential is the
potential limitations of our wind model (Holland
1980) relative to newer parametric schemes (e.g.
Chavas et al 2015, Chavas and Lin 2016) that adjust
the radial structure of cyclone wind fields, or high-
resolution dynamical simulations (e.g. Rotunno et al
2009, Wu et al 2018) that resolve <10 km-scale
high wind streaks (Hendricks et al 2021, Nolan et al
2021a, 2021b) or ∼100 m scale coherent eddies (so-
called tornado-scale vortices—Wu et al 2018, Liu
et al 2021, 2022) that are embedded in, and loc-
ally enhance peak wind gusts and damage associated
with, the broader cyclonic flow (Wurman and Kosiba
2018, Sanchez Gomez et al 2023). Notwithstanding,
methods to translate burgeoning scientific insights
from these alternatives into new methods for oper-
ational risk analysis are still in their infancy (e.g.,
Stern et al 2021, Wang et al 2022), and are fraught
with uncertainties regarding the precise location and
magnitude of gust enhancement as storms’ charac-
teristics interact with their onshore boundary layer
environment.

Additionally, our focus on wind and storm
surge does not account for damage and losses that
can extend far inland due to precipitation-driven
increases in river flows into coastal areas (fluvial
flooding) and water accumulation on land (pluvial
flooding). Capturing the fluvial component requires a
multi-model system that includes a hydrological/hy-
draulic model to route water into coastal rivers, and
provide additional boundary conditions for ADCIRC
(e.g. Dresback et al 2013, Blanton et al 2018,Davidson
et al 2018). Such coupling is essential to capture
potential interactions between rainfall- and surge-
related inundation that can generate hurricane-
driven compound flooding (Wahl et al 2015,Gori et al
2020, Zhang et al 2020). However, modeling the spa-
tial and temporal evolution of hurricane-related pre-
cipitation fields remains a key challenge, and the state
of the art is rapidly evolving (Brackins and Kalyanapu

2020, Gori et al 2020, Nakamura et al 2024, Vosper
et al 2023, Yang et al 2023).

The foregoing considerations suggest that true
damages likely exceed those shown in table 1, espe-
cially in non-coastal areas. But an open question is the
extent to which incorporating high-resolution wind
modeling and/or inland flooding could alter the rela-
tionship between SVI and losses. Additional losses
depend on the uncertain distribution of tornadic
wind and inundation hazards and their interaction
over space with depth-damage functions whose slope
depends on affected structures’ attributes, further
modulated by the max() function in equation (1).
These issues are ripe for investigation.

A second limitation stems from the simplified
nature of Hazus’ damage functions, particularly for
flooding. The shapes of depth-damage relationships
are not strongly modulated by structural attributes.
Moreover, limited information on such character-
istics in the NSI often necessitated assignment of
averaged damage functions to individual buildings.
Potential biases that attend these modeling choices
can mischaracterize true building-level losses, but
establishing the magnitude of over- or underestim-
ation requires comparisons with more sophistic-
ated structural engineering models (e.g. Nofal et al
2021)—an effort that is well beyond the scope of
the present study. The threat to our inference is that
biases obscure the consequences of sorting of vulner-
able households into less hurricane-resistant, more
damage-susceptible structures, and the true SVI-loss
relationship. Notwithstanding, such errors are likely
at least partially mitigated by the high spatial resolu-
tion of our building inventory—notwithstanding the
unavoidable coarseness of our wind hazards (Pollack
et al 2022).

Third, our analysis is static, treating hurricanes
as independent discrete events and capital damage
as immediate losses to which labor losses are dir-
ectly tied. In reality, labor losses will depend on
the dynamics of recovery and endogenous labor
market responses to them. We do not account
for the impact of residence or workplace damage
on migration or business interruption that trigger
separation of workers from their pre-storm jobs,
which can account for almost all of the decline in
earnings in the first-year post-storm (Groen et al
2020). Intertemporal losses can be mitigated by
faster resumption of business activity and hiring,
and restoration of transportation lifelines that con-
nect residences and employers (Sue Wing et al 2023).
Symmetrically, they can be amplified by damage from
successive hurricane events that occur before the eco-
nomy has had a chance to fully recover, prolong-
ing business interruption, housing insecurity and
unemployment.

We close by briefly outlining next steps. Ongoing
research by the authors and their collaborators seeks
to describe more comprehensively the fluvial, pluvial
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and compound flooding components of hurricane
hazards. Our strategy extends Blanton et al’s (2018)
coupled modeling system to incorporate a para-
metric rainfall model and a larger suite of storm
events from a recent stochastic tropical storm data-
set (Bloemendaal et al 2020). We anticipate that the
resulting hazard information, in conjunction with
improvements to the bottom-up loss methodology
presented here, will yield more detailed and complete
assessments of economic losses, and further elucid-
ate interactions between hurricane hazards, the built
environment, and human behavior.
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Appendix

A1. Social vulnerability and its measurement
As outlined by the CDC/ATSDR (2020), it is cru-
cial for communities to prepare for the challenges
posed by natural hazards. However, many social
factors, known as social vulnerability, can signi-
ficantly impact a community’s ability to minimize
economic losses from such disasters. These factors
include, but are not limited to, poverty, crowding, and
age demographics. Cutter et al (2003) initially con-
structed an index of social vulnerability (SVI) at the
county level to effectively assess and rank social vul-
nerability based on 11 independent factors. Following
this approach, the CDC/ATSDR created their own
version of the SVI for the entire United States at the
census tract level, with the most recent update being
in 2020.

As discussed in the main text, this study employs
the CDC/ATSDR’s SVI, which is calculated using 4
key themes that encompass 16 different variables.
These themes are Socioeconomic Status, Household
Composition and Disability, Minority Status and
Language, and Housing and Transportation. Table
A1.1 provided below details the specific variables cat-
egorized under these themes (CDC/ATSDR 2020).
As mentioned in the footnote of the main text, the
SVI is constructed by calculating the tract percentile
ranks for each of the 16 variables, summing the ranks
within each theme and ranking the resulting sums,
and finally summing the four theme ranks and rank-
ing the overall sum.

Table A1.1. Themes and variables of social vulnerable index.

Themes Variables

Socioeconomic status

Below 150% poverty
Unemployed
Housing cost burden
No high school diploma
No health insurance

Household
characteristics

Aged 65 & older
Aged 17 & younger
Civilian with a disability
Single-parent households
English language proficiency

Racial and ethnic
minority status

Race

Housing type and
transportation

Multi-unit structures
Mobile homes
Crowding
No vehicle
Group quarters

A2. Flood and wind damage functions
FEMA’s Hazus model is a highly effective tool
for analyzing risks of natural hazards, including
a comprehensive suite of damage and loss func-
tions specifically designed for accurate loss estim-
ation. This study utilizes these pre-established
functions to conduct our damage and loss
calculations.

A2.1. Flood
The Hazus flood model (FEMA 2022b) offers an
array of flood damage loss functions for both struc-
tures and contents, elaborated in sections 5 and 6,
specifically in tables 5–2, 5–3, 5–4, 6–1, and 6–2.
These functions delineate the relationship between
flood depths (measured in feet) and the percent-
age damage losses across various building occupan-
cies. Given our paper’s focus on surge flooding res-
ulting from hurricanes, we selectively applied func-
tions suited for coastal regions. As previously dis-
cussed, our study encompasses 28 occupancy classes,
with each class assigned a specific damage loss func-
tion. To enhance the precision of damage loss calcu-
lations, the category ‘RES1’ (single-family residences)
is further subdivided into 8 groups based on the num-
ber of stories and the presence of basements, leading
to a total of 35 functions for flood loss assessment
(illustrated in table A1 column ‘Flood’ and figure A3).
Notably, the functions related to the eight subcategor-
ies of ‘RES1’ are originally derived from the Federal
Insurance Administration, while the functions for the
remaining 27 occupancy categories originate from
the U.S. Army Corps of Engineers, Galveston District
(USACE-Galveston). It is important to mention that
the flood functions utilized are extracted from the
Hazus database.
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A2.2. Wind
The Hazus hurricane model (FEMA 2022a) offers
a comprehensive array of wind damage loss func-
tions for structures and contents, detailed in sections
5 and 8. Unlike flood-related functions, the wind
damage functions account for a variety of critical
factors, including terrains and the structural resist-
ance of buildings, among others. Specifically, a build-
ing’s resistance is determined by a combination of
several characteristics such as the roof, walls, con-
nections, windows, etc, leading to plenty of different
wind functions for estimating potential damages and
losses. Overall, Hazus has compiled a comprehensive
set of wind damage loss functions in its database, each
considering different resistances, building types, and
terrains.

To facilitate analysis, Hazus has categorized these
wind functions based on defined hurricane-specific
building types, as outlined in table 4–4 within
section 4 (FEMA 2022c). This classification considers
factors such as building types, occupancy classes, the
number of stories, construction year, and other relev-
ant details. Our study classifies buildings within the
NSI according to these 39 hurricane-specific build-
ing types. We then average the functions associated
with each type, drawn from the Hazus database, to
represent the damage and loss function for that cat-
egory. As a result, this research incorporates a total of
39 wind functions, featured in the ‘Wind’ column of
table A1 and visualized in figure A4, for assessing both
structural and content-related damages and losses.
These functions illustrate the relationship between
gust wind speeds and the percentage of damages and
losses.

A3. Labor losses
A3.1. Empirical Analysis
In this section, we use historical data to characterize
the impacts of hurricane-driven capital stock destruc-
tion on commuting flows and wages.

Our proxies for capital losses are taken from the
Hazus Loss Library. To compute fractional losses
suffered by residence and workplace census tracts,
κr and κw, we divide estimated damage to building
and content stocks by the total exposed value of these
stocks. We include all recorded hurricanes affecting
NC from 2003–2018, 15 events in total, which we
aggregate to an annual time step by computing the
ratio of total annual damage to the value of the stock.
We do not extend our historical dataset beyond 2019
to avoid the severe confounding labor market effects
of the COVID-19 pandemic.

We first quantify the impact of hurricanes on
commuting flows. We restrict the universe of NC
census tracts to the subset that experience any
hurricane-driven capital stock losses over the study
period, and construct the matching subset of LODES
commuting flows for which affected tracts are ori-
gins, destinations, or both. The result is a list of tract

dyads linked by historically observed commuting,
from which we filter entries with cumulative flows
<30 workers over the study period, for a final sample
of 83 625 tract pairs.

Our empirical model of residence-workplace
flows is the gravity model:

F̃r,w,t = ξ F + ρFF̃r,w,t−1 +βF
1 L̃w,t−1 +βF

2 Ñr,t−1

+ γF
1 logVr,t−1 + γF

2 logVw,t−1 + δF1κw,t−1

+ δF2κr,t−1 +XF
r,wη

F +µF
r,w + τ Ft + εFr,w,t

(A3.1.1)

where t indexes years, Fr,w is the flow of workers
from residence tract to workplace tract w, Lw and
Nr denote total employment in workplace tracts and
total working population in residence tracts, and V
and κ denote wages and fractional capital losses at
origin and destination tracts. We control for unob-
served geographically-varying time-invariant con-
founders by including tract-pair fixed effects, µF, for
time-varying common shocks by including year fixed
effects, τ F, andwe include additional dummy controls
associated with tracts’ metropolitan statistical area,
XF. A large fraction of tract pairs in our sample have
zero commuting flows in any given year, which poses
a challenge for estimation. To deal with this issue, we
apply the inverse hyperbolic sine transformation to F,
L, andH, indicated by a tilde over a variable. The latter
enable the estimated parameters of interest (βF, γF,
δF) to be converted to elasticities or semi-elasticities
(Bellemare and Wichman 2020). Finally, we cluster
the standard errors at the tract-pair level.

Next, we quantify the hurricanes’ impact on
wages in workplace tracts. For tracts with non-zero
employment, we estimate the following model:

log Vw,t = ξ V + ρVlog Vw,t−1 +βVlog Lw,t−1

+ δVκw,t−1 + ηVXV
w +µV

w + τVt + εVw,t.

(A3.1.2)

Here, XV is a dummy variable that equals one
if the tract w is located in a metropolitan area
and zero otherwise, while µV and τV denote tract
fixed effects and year fixed effects that control
for unobserved spatially-varying time-invariant con-
founders and time-varying common shocks, respect-
ively. Standard errors are clustered at the tract level.
We initially followed equation (6) and included as
covariates loss ratios at workplaces (κw) as well as
the compensation-weighted average loss ratios at the
residence tract origins corresponding to each work-
place (κw). However, the twometrics were highly cor-
related due to the spatially contiguous damage from
hurricanes’ wind fields, which introduced severemul-
ticollinearity into the regression. Accordingly, κw was
dropped as a covariate in favor of our preferred spe-
cification shown in equation (A3.1.2).

The empirical results are presented in table
A3.1.1. We find that hurricanes positively affect both
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Table A3.1.1. Regression Results

Variables
Origin-destination
flow Wage at workplace

Lag of working
population in
workplace

0.451∗∗∗ 0.0454∗∗∗

(0.003 54) (0.003 93)
Lag of working
population in
residence

0.466∗∗∗ —

(0.004 77) —
Lag of wage in
workplace

0.130∗∗∗ 0.452∗∗∗

(0.008 71) (0.0114)
Lag of wage in
residence

−0.0159 —

(0.0126) —
Capital loss ratio in
workplace

3.080∗∗∗ 1.364∗∗∗

(1.134) (0.485)
Capital loss ratio in
residence

−0.913 —

(1.058) —
Constant Yes Yes
Lag of work flow Yes —
MSA control Yes Yes
Group fixed effect Yes Yes
Year fixed effect Yes Yes
Observations 1170 750 30 467
R-squared 0.166 0.548
Number of groups 83 625 2181

Note: Robust standard errors in parentheses. ∗∗∗ p< 0.01, ∗∗

p< 0.05, ∗ p< 0.1.

commuting inflows and local wages of the affected
tracts. These findings are consistent with previous
literature arguing that more job opportunities will
be created after hurricanes. The high labor demand
increases wages and attracts more people to work in
the affected areas. It is also worth noting that elast-
icities of capital losses on wages and workflows are
large, indicating the phenomenal impacts of hur-
ricanes on the local labor market in NC. However,
higher wages and workflows do not necessarily indic-
ate an improvement in welfare. There are at least two
additional impacts to be quantified before any con-
clusions about welfare aremade: (1) higher wages and
more workers also indicate higher prices of goods,
which would have a negative effect on the household’s
real income; (2) changes in the commuting work-
flow could lead to the redistribution of income, then
who actually gets benefits from hurricanes becomes
unclear. More sophisticated calculation is required to
uncover the impact of hurricanes on the entire region.

A3.2. Welfare Analysis
Our approach is deliberately simple. We assume that
in each census tract there is a representative producer
that generates output of a final good, Q, with a local

price, P, from quantities of labor (L) and capital (K)
according to Cobb-Douglas production technology
with capital-output elasticity, α,

Qw = Kw
αwLw

1−αw . (A3.2.1)

The condition for short-run equilibrium in the
labor market is equivalence of the real wage and the
marginal product of labor:

Vw/Pw = (1−αw)Kw
αwLw

−αw (A3.2.2)

from which the price level can be recovered as:

Pw = (1−αw)
−1Kw

−αwLw
αwVw. (A3.2.3)

Using a hat over a variable to indicate its log-
arithmic differential, or fractional change (e.g. x̂=
dlog(x) = dx/x), (A3.2.3) can be expressed in log-
differential form. Noting that κw is simply the work-
place capital loss computed in equation (3), the frac-
tional change local price level is:

P̂w = αwκw +αwL̂w + V̂w. (A3.2.4)

In each census tract, the final good is consumed by
the households who reside there. Households’ level of
consumption is determined by the wage they receive
and the price of the final good. However, households
do not necessarily work in the census tract where they
reside. In particular, a representative individual resid-
ing in residence tract, r, and working in workplace
tract, w, will enjoy utility determined by the level of
per capita real earnings, given in levels and fractional
changes by (5) and (6) in the main text.

The immediate implication is that real income
and welfare in any given location will depend on two
separate effects. For households who both live and
work in census tract j (j = r= w), equation (6) in
conjunction with our empirical results suggest that
hurricane-driven damage to the capital stock reduces
real income and welfare: κj > 0⇒ L̂j > 0⇒ Êj < 0.
For households who live and work in different census
tracts, j = r ̸= w, our empirical results suggest that
households are incentivized to work in locations with
higher wages, and will switch jobs and workplaces in
an attempt to adapt to hurricane shocks. The cru-
cial implication is that changes real income and wel-
fare in any given residence location will depend upon
the magnitude of changes in commuting flows from
that location and the changes in wages at those flows’
workplace destinations, Fr,w.

The welfare impact on households residing in
tract r can be approximated by the fractional change
in per capita real earnings, or LLr (s)/

(
EBaseliner ·Nr

)
by equation (4). Given that total employment at each
workplace tract is Lw =

∑
k
Fk,w, the welfare impact

can be elaborated by log-differentiating equation (5)
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and using (A3.2.4) to eliminate the change in the price
level:

Êr =
∑
w

θr,w
(
V̂w + F̂r,w − P̂r

)
−
∑
w

ζr,wF̂r,w

=
∑
w

θr,wF̂r,w +
∑
w

θr,w
(
V̂w − V̂r −αrκr −αrL̂r

)
−
∑
w

ζr,wF̂r,w

=
∑
w

(θr,w − ζr,w) F̂r,w

+
∑
w

θr,w
(
V̂w − V̂r −αrκr −αr

∑
k

ωk,rF̂k,r
)

=−αrκr +
∑
w

θr,w
(
V̂w − V̂r

)
+
∑
w

(θr,w − ζr,w) F̂r,w −αr

∑
k

ωk,rF̂k,r

(A3.2.5)

where ζr,w = Fr,w/
∑
k
Fr,k and θr,w = Fr,wVw/

∑
k
Fr,kVk

denote the shares of each place of work in a particular
residence tract’s total working population and total
earnings, respectively, and ωr,w = Fr,w/Lw denotes
the share of each place of residence in a particular
workplace tract’s total labor demand.

Equation (A3.2.5) decomposes hurricane-driven
changes in earnings into four sources. The first term
is the direct impact of capital stock destruction, the
second is the effect of adjustments in relative wages,
the third is the effect of worker adaptation due to
switching workplaces, while the last is the impact of
changes in worker inflows on wages earned by work-
ers who are employed in the same tract in which they
reside. The latter three indirect terms illustrate the
importance of the commuting network’s endogen-
ous response to the spatial distribution of hurricane-
driven physical destruction, with the potential to spa-
tially redistribute the economic impacts of hurricane
shocks. The differing signs of the effects highlights the
fact that, from a theoretical standpoint, whether earn-
ings increase or decline is undetermined. To address
this question we turn to numerical simulation.

A3.3. Parameterization and Numerical Simulation
We numerically parameterize the algebraic model in
section 2.2.1 and then quantify the welfare changes
of the households living in the studied area using
the simulated hurricanes. By equation (5), shocks
to per capita real are driven by shifts in commut-
ing flows, Fr,w, wages, Vw, and local prices, Pw. The
series Fr,w and Vw are estimated via the fitted regres-
sion equations (A3.1.1) and (A3.1.2), as follows. We
take the year 2019 as our benchmark period, and
impose the hypothetical simulated hurricane events
with different occurrence probabilities as computed
by Avipatanagul et al (2011).

Our first step is to estimate baseline com-
muting flows and wages in the absence of hur-
ricanes. We compute these by combining the fitted
equations (A3.1.1) and (A3.1.2) with values for L, N,
V and F for 2019 in the LODES dataset, excluding
the terms that capture the effects of hurricane-driven
capital losses on commuting and wage outcomes:

F̃Baseliner,w =
̂̂
ξF + ̂̂ρFF̃r,w + ̂̂βF

1L̃w +
̂̂
β
F

2Ñr + ̂̂γF

1 logVr

+ ̂̂γF

2 logVw +XF
r,w
̂̂ηF + ̂̂µF

r,w (A3.3.1)

logVBaseline
w =

̂̂
ξ
V

+ ̂̂ρVlog Vw +
̂̂
β
V

log Lw (A3.3.2)

+ ̂̂ηVXV
w +

̂̂µV

w

where a double hat indicates fitted values.
Our second step is to calculate the tract-level

capital loss ratio for each simulated hurricane event
κ(s), following section 2.2.1, from which we estimate
counterfactual with-hurricane commuting flows and
wages:

F̃Hurricaner,w (s) = F̃Baseliner,w +
̂̂
δ
F

1κw (s)+
̂̂
δ
F

2κr (s)

(A3.3.3)

log VHurricane
w (s) = log VBaseline

w +
̂̂
δ
V

1κw (s) .
(A3.3.4)

Our third step is to use (A3.2.2) to estimate
Pw in the baseline and counterfactual scenarios. To
accomplish this, at each workplace tract, aggregate

labor is computed as: LBaselinew =
∑

k sinh
(
F̃Baselinek,w

)
and LHurricanew (s) =

∑
k sinh

(
F̃Hurricanek,w (s)

)
, aggregate

capital is calculated in the baseline by aggregating
the value of properties the NSI, KBaseline

w =
∑

i∈w vi,
and in the counterfactual scenario by KHurricane

w (s) =
KBaseline
w (1−κw (s)). We calculate tract level capital

income share, αw, using 2019 IMPLAN accounts
(IMPLAN® 2019) for NC, from which we obtain the
labor shares of producers’ factor input, Ac, in the
counties, c, in our study area. Recognizing that the
ratio of capital and labor income shares at the county
level is simply constituent tracts’ aggregate value of
labor compensation divided by the corresponding
aggregate value of capital remuneration, the Implan
data facilitate calculation of the county-level average
rates of return on capital, RORc, as:

RORc =
Ac

1−Ac

∑
w(c)VwLw∑
w(c)Kw

. (A3.3.5)

The further assumption that tract-level markets
for capital result in rates of return that are identical
and equal to the average of the encompassing county
allows tract-level labor share parameters, αw, to be
recovered as:

αw =
Vw(c)Lw(c)

Vw(c)Lw(c) +RORcKw(c)
. (A3.3.6)
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Figure A1. (A) Hurricane tracks colored by minimum central pressure (mb), worst-case storm shown in bold. (B), (C)
Distributions of most extreme and on-track minimum central pressures and radii of maximum winds for the 97 hurricane set.

Local price levels in the baseline and counterfac-
tual scenarios can then be calculated by plugging the
corresponding input values into the right-hand side
of (A3.2.3).

The resulting values of price levels, wages, and
commuting flows permit equation (5) to be evaluated
in the baseline and counterfactual hurricane
scenarios:

EBaseliner =

(∑
w

VBaseline
w FBaseliner,w /PBaseliner

)
/
∑
w

FBaseliner,w

(A3.3.7)

EHurricaner (s) =

(∑
w

VHurricane
w (s)FHurricaner,w (s)/ (A3.3.8)

× PHurricaner (s)
)
/
∑
w

FHurricaner,w (s)

in turn facilitating calculation of percentage and
total labor losses as EHurricaner (s)/EBaseliner − 1 and
equation (4).

A4. Additional Explanations for the Results
Panels (A) and (B) in figure 2 provide a detailed visu-
alization of surge flood damages to buildings across
different scenarios. Panel (A) focuses on expected
damages, highlighting significant impacts in coastal
regions like Cape Fear and Eastern Carolina, where
numerous buildings are projected to sustain damages
of 1% or more. The color gray represents buildings
with 0% damage, indicating no impact from flood-
ing. Panel (B) examines a worst-case scenario where
an extreme hurricane hits New Hanover County
and tracks northward, causing substantial damage,
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Figure A2. (A) 44-county CAMA study area showing ADCIRC grid, major regions (coastal: name in blue, inland: name in green),
and inset for panel (B) (dashed blue). (B) Storm surge above mean sea level (color surface) and wind speed in m/s (contours) for
the most intense hurricane in the 97-member storm set (track indicated by the thick black line). The coastline indicates mean sea
level; water levels inland of that line represent overland inundation. Note the highest water levels are up the two estuaries, and in
the land area in the northeast corner of the figure, indicating substantial inundation in these locations.

particularly in NewHanover County, Pender County,
and southern Onslow County, where buildings could
suffer over 80% flood damage. Conversely, coastal
areas in the northeastern part of the state are estim-
ated only to face around 10% damage.

Panels (C) and (D) in figure 2 shift the concen-
tration to wind-related damages. In panel (C), under
expected conditions, the southeast regions, notably
Cape Fear and Eastern Carolina, could endure wind
damage to buildings exceeding 1% or 2%. In con-
trast, the southwest and central regions are likely to
experience lower wind damage, approximately 0.6%,
while the northern regions might see negligible dam-
age, close to 0%, due to milder hurricane effects.
Panel (D) explores the severe hurricane scenario,
where buildings not directly in the hurricane’s path
are estimated to incur relatively lower wind damage
about 30%–50% compared to those on the path, and
those in northeastern areas would experience min-
imal impact, around 0%. Panels (E) and (F) aggregate
capital losses at the census tract level, showing pat-
terns consistent with those observed in the individual
building analyses.

Furthermore, panels (G) and (H) of figure 2
explore the relationship between losses and the SVI.
For residential occupancies, losses decrease as SVI
increases, where coastal areas indicate a reduction
from 3% to 1.2% and inland areas from 2.5% to 1.2%,
as SVI goes from 0 to 1. Non-residential occupancies
exhibit a similar but less obvious trend, a decrease
from 1.8% to 0.7% in coastal areas and from 1.1%
to 0.7% in inland areas. Notably, single-family homes
face the highest losses, followed bymobile homes and
multi-family units, regardless of SVI. Coastal losses
for these groups decline from 4.9%, 3.5%, and 3% to
2%, 1.2%, and 1%, respectively, with increasing SVI.
Inland, single-family and multi-family losses remain
stable across SVI levels at 1.3% and 0.6%, respect-
ively. However,mobile homes show a unique opposite
pattern where losses increase with SVI, moving from
0.7% to 1.2%.

Panels (A) and (B) in figure 3 highlight the per-
centage of buildings and total values experiencing
expected non-zero damages across various census
tracts. In particular, numerous tracts along the south-
east, middle, and northeast coastal areas report that
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Figure A3.Hazus sectoral flood damage functions (% of value lost)—see table A1.

over 28% of buildings (panel (A)) and over 23% of
total values (panel (B)) are affected by hurricane dam-
age. Additionally, certain populous inland tracts, such
as those inWakeCounty, exhibit similar trends, where
over 28% of buildings and 23% of total values suffer
non-zero hurricane damage.

Panels (C) and (D) in figure 3 explore the correl-
ation between hurricane impacts on structures and
the SVI. Panel (C) reveals that between 25% and 30%
of buildings sustain non-zero damage, regardless of
their location in coastal or inland regions, across the
entire range of SVI scores, showing no significant
variation. Panel (D) indicates that the percentage of
total value affected by non-zero damages decreases
as SVI increases, from a range of 25%–30% down to
about 17.5%–22.5% for both coastal and inland areas.

This pattern suggests that buildings in lower vulner-
ability categories, typically situated in zones prone to
damage, face higher losses.

Panel (E) in figure 3 focuses on the expected per-
centage of losses categorized by SVI and occupancy
types. It demonstrates that expected losses in inland
areas are comparatively minor, under 0.4% across
different occupancy classes. Single-family dwellings
experience the highest percentage of losses, exceed-
ing 1.2% for the least vulnerable groups, with mobile
homes and multi-family buildings facing around 1%
and 0.8% losses, respectively, within the residential
sector. The industrial sector, particularly within food
and drug, heavy, and light industry occupancies, also
suffers considerable losses, nearing 1% for groups
with low vulnerability. Losses in the commercial
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Figure A4.Hazus structural wind damage functions (% of value lost)—see table A1.
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Figure A5. Percent loss of building and content values by county and occupancy class. Regions: (1) Albermarle, (2) Eastern
Carolina, (3) Cape Fear, (4) Mid-East, (5) Lumber River, (6) MidCarolina, (7) Upper Coastal Plain, (8) Kerr-Tar, (9) Triangle J.

and public sectors are notably lower, staying
below 0.6%.

Figure 4 elucidates the impact of hurricanes on
labor, with panels (A) and (B) showing the expec-
ted and worst-case scenario labor losses at residence

census tracts, respectively. According to panel (A), the
highest expected losses are in southeast coastal cit-
ies; those are populous areas with high-value houses
and facilities and a higher probability of hurricanes.
Residents in cities likeWilmington andMorehead are
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Table A1. Damage function codes and descriptions.

Flood Wind

RES1 1SNB Single family, 1 story, no basement WSF1 Wood, Single family, 1 story
RES1 1SWB Single family, 1 story, basement WSF2 Wood, Single family, 2+ story
RES1 2SNB Single family, 2 story, no basement WMUH1 Wood, Multi-unit, 1 story
RES1 2SWB Single family, 2 story, basement WMUH2 Wood, Multi-unit, 2+ story
RES1 3SNB Single family, 3+ story, no basement WMUH3 Wood, Multi-unit, 3+ stories
RES1 3SWB Single family, 3+ story, basement MSF1 Masonry, Single family, 1 story
RES1 SLNB Single family, split level, no basement MSF2 Masonry, Single family, 2+ story
RES1 SLWB Single family, split level, basement MMUH1 Masonry, Multi-unit, 1 story
RES2 Mobile home MMUH2 Masonry, Multi-unit, 2 story
RES3 Apartment MMUH3 Masonry, Multi-unit, 3+ story
RES4 Hotel/Motel MLRM1 Masonry, Low-Rise Strip Mall,<15 ft
RES5 Institutional dormitory MLRM2 Masonry, Low-Rise Strip Mall,>15 ft
RES6 Nursing Home MLRI Masonry, Low-rise Industrial/Warehouse/Factory
COM1 Retail MERBL Masonry, Engineered Residential, Low-Rise
COM2 Wholesale/Warehouse MERBM Masonry, Engineered Residential, Mid-Rise
COM3 Personal/Repair service MERBH Masonry, Engineered Residential, High-Rise
COM4 Professional/Technical services MECBL Masonry, Engineered Commercial, Low-Rise
COM5 Bank MECBM Masonry, Engineered Commercial, Mid-Rise
COM6 Hospital MECBH Masonry, Engineered Commercial, High-Rise
COM7 Medical Office/Clinic CERBL Concrete, Engineered Residential, Low-Rise
COM8 Entertainment/Recreation CERBM Concrete, Engineered Residential, Mid-Rise
COM9 Theatre CERBH Concrete, Engineered Residential, High-Rise
COM10 Garage CECBL Concrete, Engineered Commercial, Low-Rise
IND1 Heavy Industrial CECBM Concrete, Engineered Commercial, Mid-Rise
IND2 Light Industrial CECBH Concrete, Engineered Commercial, High-Rise
IND3 Food/Drug/Chemical SPMBS Steel, Pre-Engineered Metal, Small
IND4 Metals/Minerals processing SPMBM Steel, Pre-Engineered Metal, Medium
IND5 High Technology SPMBL Steel, Pre-Engineered Metal, Large
IND6 Construction SERBL Steel, Engineered Residential, Low-Rise
ARG1 Agriculture SERBM Steel, Engineered Residential, Mid-Rise
REL1 Church SERBH Steel, Engineered Residential, High-Rise
GOV1 Government services SECBL Steel, Engineered Commercial, Low-Rise
GOV2 Emergency response SECBM Steel, Engineered Commercial, Mid-Rise
EDU1 School SECBH Steel, Engineered Commercial, High-Rise
EDU2 College/university MHPFUD Manufactured Home, Pre-HUD

MH76HUD Manufactured Home, 1976 HUD
MH94HUD-I Manufactured Home, 1994 HUD Region I
MH94HUD-II Manufactured Home, 1994 HUD Region I
MH94HUD-III Manufactured Home, 1994 HUD Region III

expected to suffer more than 2% of their real earnings
due to hurricanes. The expected losses decrease dra-
matically as the locationsmove inland. Since residents
with low hurricane risk can commute to the affected
places to earn higher wages, we also see that some
cities in the northwest of our study area can bene-
fit from hurricanes. The extreme scenarios (panel
(B)) reveal that the central and southern areas endure
labor losses exceeding 30%, with the zones directly in
the hurricane tract facing over 50% losses. In contrast,
the northeast coastal regions report labor losses under
10%, attributed to their long distance from the hur-
ricane. There are places realizing positive gains even
in the worst scenario; they are far enough away from
the hurricane and close enough to the affected areas.
Comparing the labor losses with the capital losses in
figure 1, the distribution of labor losses no longer fol-
lows the distribution of capital losses, which reem-
phasizes the significance of the redistribution effect

of commuting in understanding the socioeconomic
consequences of hurricanes.

Panel (C) of figure 4 presents the baseline wages
and jobs on the coast and inland. The wage inland
shows an obvious decreasing pattern with SVI, while
the wages in the coastal area do not. The wages inland
are generally higher than those in the coastal area,
indicating the existence of wage premiums between
coastal and inland areas. The number of jobs in
figure 4 shows where most workers live in the stud-
ied area. More workers live in the low SVI regions,
and more workers live in the inland than in the
coastal area. Higher wages and more jobs imply that
risk is priced in the labor market; safe inland places
attract more workers to live there and generate more
job opportunities to support local economic develop-
ment. Panel (D) in figure 4 demonstrates that the rela-
tionship between the measured labor losses decreases
with SVI. This pattern is because more high-value
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Table A2. Hurricane events affecting North Carolina, simulated tract-level exposure and losses taken from Hazus Loss Library.

Event

Census
tracts
affected

Exposed
value
($ Bn)

Loss
($ Bn)

Loss
fraction
(%)

Exposure-SVI
correlation

Loss-SVI
correlation

Loss fraction—SVI
correlation

Ana (2015) 86 371 0.006 0.007 −0.227 −0.296 −0.196
Arthur (2014) 69 436 0.054 0.111 −0.212 0.191 0.152
Beryl (2012) 52 504 0.022 0.044 −0.210 −0.328 −0.347
Charley (2004) 241 451 0.307 0.161 −0.205 −0.173 −0.077
Ernesto (2006) 333 380 0.136 0.053 −0.219 −0.410 −0.364
Florence (2018) 613 1795 2.356 0.487 −0.215 −0.385 −0.380
Hanna (2008) 374 661 0.129 0.044 −0.265 −0.331 −0.291
Hermine (2016) 151 745 0.029 0.023 −0.258 −0.343 −0.423
Ian (2022) 1239 1795 0.414 0.039 −0.215 −0.139 −0.037
Irene (2011) 648 780 0.646 0.120 −0.278 −0.116 −0.129
Isabel (2003) 374 632 1.140 0.404 −0.277 −0.081 −0.078
Ivan (2004) 53 1384 0.003 0.008 −0.204 −0.310 −0.225
Matthew (2016) 96 462 0.018 0.023 −0.196 −0.272 −0.274
Michael (2018) 495 1177 0.038 0.009 −0.288 −0.399 −0.296
Ophelia (2005) 195 409 0.410 0.273 −0.195 −0.398 −0.401

capital stays in the lower SVI regions, and capital
losses dominate the changes in labor earnings after
hurricanes. This effect is more phenomenal in the
coastal areas than inland areas.

ORCID iDs

Dahui Liu https://orcid.org/0009-0008-2157-3314
Junkan Li https://orcid.org/0000-0003-1766-2636
Ian Sue Wing https://orcid.org/0000-0003-1177-
3589

References

Apivatanagul P, Davidson R, Blanton B and Nozick L 2011
Long-term regional hurricane hazard analysis for wind and
storm surge Coast. Eng. 58 499–509

Atkinson J et al 2008 Hurricane storm surge and wave modeling
in southern Louisiana: a brief overview Estuarine and
Coastal Modeling X ed M Spaulding (ASCE)
pp 467–506

Bakkensen L, Shi X and Zurita B 2018 The impact of disaster data
on estimating damage determinants and climate costs Econ.
Disasters Clim. Change 2 49–71

Belasen A R and Polachek S W 2008 How hurricanes affect wages
and employment in local labor markets Am. Econ. Rev.
98 49–53

Bellemare M F and Wichman C J 2020 Elasticities and the inverse
hyperbolic sine transformation Oxf. Bull Econ. Stat.
82 50–61

Benevolenza M A and DeRigne L 2019 The impact of climate
change and natural disasters on vulnerable populations: a
systematic review of literature J. Hum. Behav. Soc. Environ.
29 266–81

Bernstein A, Gustafson M and Lewis R 2021 Disaster on the
horizon: the price effect of sea level rise J. Financ. Econ.
134 253–72

Blanton B, Dresback K, Colle B, Kolar R, Vergara H, Hong Y,
Leonardo N, Davidson R, Nozick L and Wachtendorf T 2018
An integrated scenario ensemble-based framework for
hurricane evacuation modeling: part 2—Hazard modeling
Risk Anal. 40 117–33

Blanton B, Luettich R, Vickery P, Hanson J, Slover K and Langan T
2012 North Carolina Floodplain mapping program: coastal
flood insurance study—production simulations and
statistical analyses Technical Report TR-12-03 (Renaissance

Computing Institute, The University of North Carolina at
Chapel Hill)

Blanton B, Seim H, Luettich R, Lynch D, Werner F, Smith K,
Voulgaris G, Bingham F and Way F 2004 Barotropic
tides in the South Atlantic Bight J. Geophys. Res.
109 C12024

Bloemendaal N, Haigh I, de Moel H, Muis S, Haarsma R and
Aerts J 2020 Generation of a global synthetic
tropical cyclone hazard dataset using STORM Sci. Data
7 40

Brackins J and Kalyanapu A 2020 Evaluation of parametric
precipitation models in reproducing tropical cyclone rainfall
patterns J. Hydrol. 580 124255

Burton C G 2010 Social vulnerability and hurricane impact
modeling Nat. Hazards Rev. 11 58–68

Centers for Disease Control and Prevention/Agency for Toxic
Substances and Disease Registry (CDC/ATSDR)
2020 CDC SVI documentation 2020 (available at: www.
atsdr.cdc.gov/placeandhealth/svi/documentation/
SVI_documentation_2020.html)

Chavas D R and Lin N 2016 A model for the complete radial
structure of the tropical cyclone wind field. Part II: wind
field variability J. Atmos. Sci. 73 3093–113

Chavas D R, Lin N and Emanuel K 2015 A model for the complete
radial structure of the tropical cyclone wind field. Part I:
comparison with observed structure J. Atmos. Sci.
72 3647–62

Cutter S L, Boruff B J and Shirley W L 2003 Social vulnerability to
environmental hazards Soc. Sci. Q. 84 242–61

Davidson R et al 2018 An integrated scenario ensemble-based
framework for hurricane evacuation modeling: part
1—Evacuation modeling Risk Anal. 40 97–116

Dietrich J, Zijlema M, Westerink J, Holthuijsen L, Dawson C,
L. R Jr, Jensen R, Smith J, Stelling G and Stone G 2010
Modeling hurricane waves and storm surge using
integrally-coupled, scalable computations Coast. Eng.
58 45–65

Done J, Simmons K and Czajkowski J 2018 Relationship between
residential losses and hurricane winds: role of the Florida
building code ASCE-ASME J. Risk Uncertain. Eng. Syst. A
4 04018001

Dresback K et al 2013 Skill assessment of a real-time forecast
system utilizing a coupled hydrologic and coastal
hydrodynamic model during Hurricane Irene (2011) Cont.
Shelf Res. 71 78–94

ESP Associates Inc 2021 Southeastern North Carolina regional
hazard mitigation plan (Onslow County Government)
(available at: www.onslowcountync.gov/DocumentCenter/

21

https://orcid.org/0009-0008-2157-3314
https://orcid.org/0009-0008-2157-3314
https://orcid.org/0000-0003-1766-2636
https://orcid.org/0000-0003-1766-2636
https://orcid.org/0000-0003-1177-3589
https://orcid.org/0000-0003-1177-3589
https://orcid.org/0000-0003-1177-3589
https://doi.org/10.1016/j.coastaleng.2011.01.015
https://doi.org/10.1016/j.coastaleng.2011.01.015
https://doi.org/10.1007/s41885-017-0018-x
https://doi.org/10.1007/s41885-017-0018-x
https://doi.org/10.1257/aer.98.2.49
https://doi.org/10.1257/aer.98.2.49
https://doi.org/10.1111/obes.12325
https://doi.org/10.1111/obes.12325
https://doi.org/10.1080/10911359.2018.1527739
https://doi.org/10.1080/10911359.2018.1527739
https://doi.org/10.1016/j.jfineco.2019.03.013
https://doi.org/10.1016/j.jfineco.2019.03.013
https://doi.org/10.1111/risa.13004
https://doi.org/10.1111/risa.13004
https://doi.org/10.1029/2004JC002455
https://doi.org/10.1029/2004JC002455
https://doi.org/10.1038/s41597-020-0381-2
https://doi.org/10.1038/s41597-020-0381-2
https://doi.org/10.1016/j.jhydrol.2019.124255
https://doi.org/10.1016/j.jhydrol.2019.124255
https://doi.org/10.1061/(ASCE)1527-6988(2010)11:2(58)
https://doi.org/10.1061/(ASCE)1527-6988(2010)11:2(58)
https://www.atsdr.cdc.gov/placeandhealth/svi/documentation/SVI_documentation_2020.html
https://www.atsdr.cdc.gov/placeandhealth/svi/documentation/SVI_documentation_2020.html
https://www.atsdr.cdc.gov/placeandhealth/svi/documentation/SVI_documentation_2020.html
https://doi.org/10.1175/JAS-D-15-0185.1
https://doi.org/10.1175/JAS-D-15-0185.1
https://doi.org/10.1175/JAS-D-15-0014.1
https://doi.org/10.1175/JAS-D-15-0014.1
https://doi.org/10.1111/1540-6237.8402002
https://doi.org/10.1111/1540-6237.8402002
https://doi.org/10.1111/risa.12990
https://doi.org/10.1111/risa.12990
https://doi.org/10.1016/j.coastaleng.2010.08.001
https://doi.org/10.1016/j.coastaleng.2010.08.001
https://doi.org/10.1061/AJRUA6.0000947
https://doi.org/10.1061/AJRUA6.0000947
https://doi.org/10.1016/j.csr.2013.10.007
https://doi.org/10.1016/j.csr.2013.10.007
https://www.onslowcountync.gov/DocumentCenter/View/16736/00-2021-SENC-RHMP-FINAL-Full-Document?bidId=


Environ. Res. Lett. 19 (2024) 104003 D Liu et al

View/16736/00–2021-SENC-RHMP-FINAL-Full-
Document?bidId=)

Federal Emergency Management Agency 2022a Hazus hurricane
model technical manual 5.1 (available at: www.fema.gov/
sites/default/files/documents/fema_hazus-hurricane-model-
technical-manual-5-1.pdf)

Federal Emergency Management Agency 2022b Hazus flood
model technical manual 5.1 (available at: www.fema.gov/
sites/default/files/documents/fema_hazus-flood-model-
technical-manual-5-1.pdf)

Federal Emergency Management Agency 2022c Hazus inventory
technical manual 6.0 (available at: www.fema.gov/sites/
default/files/documents/fema_hazus-inventory-technical-
manual-6.pdf)

Federal Emergency Management Agency 2023 Hazus loss library
(available at: https://hazards.fema.gov/hll/library) (Accessed
5 December 2023)

Flanagan B, Hallisey A, Adams E and Lavery A 2018 Measuring
community vulnerability to natural and anthropogenic
hazards: the centers for disease control and prevention’s
social vulnerability index J. Environ. Health 80 34–36

Geiger T, Frieler K and Levermann A 2016 High-income does not
protect against hurricane losses Environ. Res. Lett. 11 084012

Gesch D, Oimoen M, Greenlee S, Nelson C, Steuck M and Tyler D
2002 The national elevation dataset Photogramm. Eng.
Remote Sens. 68 5–32

Gori A, Lin N and Xi D 2020 Tropical cyclone compound flood
hazard assessment: from investigating drivers to quantifying
extreme water levels Earth’s Future 8 e2020EF001660

Gourevitch J, Kousky C, Liao Y, Nolte C, Pollack A, Porter J and
Weill J 2023 Unpriced climate risk and the potential
consequences of overvaluation in US housing markets Nat.
Clim. Change 13 250–7

Groen J, Kutzbach M and Polivka A 2020 Storms and jobs: the
effect of hurricanes on individuals’ employment and
earnings over the long term J. Labor Econ. 38 653–85

Hanson J L, Forte M F, Blanton B, Gravens M and Vickery P 2013
Coastal storm surge analysis: storm surge results. report 5:
intermediate submission no. 3 Technical Report (DTIC
Document)

Hendricks E, Knievel J and Nolan D 2021 Evaluation of boundary
layer and urban canopy parameterizations for simulating
wind in miami during Hurricane Irma (2017)Mon. Weather
Rev. 149 2321–49

Holland G J 1980 An analytic model of the wind and pressure
profiles in hurricanes

Homer C G, Fry J A and Barnes C A 2012 The National Land
Cover Database (No. 2012–3020) (US Geological Survey)

Iglesias V et al 2021 Risky development: increasing exposure to
natural hazards in the United States Earth’s Future
9 e2020EF001795

IMPLAN® model 2019 Data, using inputs provided by the user
and IMPLAN group LLC, IMPLAN system (data and
software), 16905 Northcross Dr, Suite 120, Huntersville, NC
28078 (available at: www.IMPLAN.com)

Klima K, Lin N, Emanuel K, Morgan M G and Grossmann I 2012
Hurricane modification and adaptation in Miami-Dade
County, Florida Environ. Sci. Technol. 46 636–42

Landsea C and Franklin J 2013 Atlantic hurricane database
uncertainty and presentation of a new database formatMon.
Weather Rev. 141 3576–92

Liu Q, Wu L and Qin N 2022 Wind gusts associated with
tornado-scale vortices in the tropical cyclone boundary
layer: a numerical simulation Front. Earth Sci. 10 945058

Liu Q, Wu L, Qin N and Li Y 2021 Storm-scale and fine-scale
boundary layer structures of tropical cyclones simulated
with the WRF-LES framework JGR Atmos.
126 e2021JD035511

Luettich R A and Westerink J J 1992 A three dimensional
circulation model using a direct stress solution over the
vertical Computational Methods in Water Resources IX,
Volume 2: Mathematical Modeling in Water Resources ed
T Russell (Computational Mechanics Publications)

Mazumder R, Enderami S and Sutley E 2023 A novel framework
to study community-level social and physical impacts of
hurricane-induced winds through synthetic scenario
analysis Front. Built Environ. 9 1005264

Metzler R, Ellen I and Li X 2021 Localized commercial effects
from natural disasters: the case of Hurricane Sandy and New
York City Reg. Sci. Urban Econ. 86 103608

Nair S, King A, Gulledge J, Preston B, McManamay R and Clark C
2020 Economic losses from extreme weather in the U.S. Gulf
Coast region: spatially differential contributions of climate
hazard and socioeconomic exposure and vulnerability
Environ. Res. Lett. 15 074038

Nakamura J, Lall U, Kushnir Y and Harr P A 2024 A saturated
stochastic simulator: synthetic US Gulf coast tropical
cyclone precipitation fields Nat. Hazards 120 1295–318

Niedoroda A, Resio D, Toro G, Divoky D, Das H and Reed C 2010
Analysis of the coastal Mississippi storm surge hazard Ocean
Eng. 37 82–90

NOAA National Centers for Environmental Information 2023
Monthly global climate report 2023 for December 2022
(available at: https://www.ncei.noaa.gov/access/monitoring/
monthlyreport/global/202300) (Accessed 14 August 2024)

Nofal O, van de Lindt J, Do T, Yan G, Hamideh S, Cox D and
Dietrich J 2021 Methodology for regional multihazard
hurricane damage and risk assessment J. Struct. Eng.
147 04021185

Nolan D, McNoldy B and Yunge J 2021a Evaluation of the surface
wind field over land in WRF simulations of Hurricane
Wilma (2005). Part I: model initialization and simulation
validationMon. Weather Rev. 149 679–95

Nolan D, McNoldy B, Yunge J, Masters F J and Giammanco I M
2021b Evaluation of the surface wind field over land in WRF
simulations of Hurricane Wilma (2005). Part II: surface
winds, inflow angles, and boundary layer profilesMon.
Weather Rev. 149 697–713

Ortega F and Taspinar S 2018 Rising sea levels and sinking
property values: hurricane Sandy and New York’s housing
market J. Urban Econ. 106 81–100

Pielke R 2021 Economic ‘normalisation’ of disaster losses
1998–2020: a literature review and assessment Environ.
Hazards 20 93–111

Pollack A B, Sue Wing I and Nolte C 2022 Aggregation bias and its
drivers in large-scale flood loss estimation: a Massachusetts
case study J. Flood Risk Manage. 15 e12851

Pollack A B, Wrenn D H, Nolte C and Wing I S 2023 Potential
benefits in remapping the special flood hazard area:
evidence from the US housing market J. Housing Econ.
61 101956

Rotunno R, Chen Y, Wang W, Davis C, Dudhia J and Holland G J
2009 Large-eddy simulation of an idealized tropical cyclone
Bull. Am. Meteorol. Soc. 90 1783–8

Ruggles S, Flood S, Sobek M, Backman D, Chen A, Cooper G,
Richards S, Rogers R and Schouweiler M 2024 IPUMS USA:
Version 15.0 (IPUMS) (https://doi.org/10.18128/
D010.V15.0)

Rybski D, Prahl B and Kropp J 2017 Comment on ‘High-income
does not protect against hurricane losses Environ. Res. Lett.
12 098001

Sanchez Gomez M, Lundquist J, Deskos G, Arwade S R,
Myers A T and Hajjar J F 2023 Wind fields in Category 1–3
tropical cyclones are not fully represented in wind turbine
design standards JGR Atmos. 128 e2023JD039233

Shao W, Jackson N, Ha H and Winemiller T 2020 Assessing
community vulnerability to floods and hurricanes
along the Gulf Coast of the United States Disasters
44 518–47

Smith A and Katz R 2013 US billion-dollar weather and climate
disasters; data sources, trends, accuracy and biases Nat.
Hazards 67 387–410

Smith A and Matthews J 2015 Quantifying uncertainty and
variable sensitivity within the US billion-dollar
weather and climate disaster cost estimates Nat. Hazards
77 1829–51

22

https://www.onslowcountync.gov/DocumentCenter/View/16736/00-2021-SENC-RHMP-FINAL-Full-Document?bidId=
https://www.onslowcountync.gov/DocumentCenter/View/16736/00-2021-SENC-RHMP-FINAL-Full-Document?bidId=
https://www.onslowcountync.gov/DocumentCenter/View/16736/00-2021-SENC-RHMP-FINAL-Full-Document?bidId=
https://www.fema.gov/sites/default/files/documents/fema_hazus-hurricane-model-technical-manual-5-1.pdf
https://www.fema.gov/sites/default/files/documents/fema_hazus-hurricane-model-technical-manual-5-1.pdf
https://www.fema.gov/sites/default/files/documents/fema_hazus-hurricane-model-technical-manual-5-1.pdf
https://www.fema.gov/sites/default/files/documents/fema_hazus-flood-model-technical-manual-5-1.pdf
https://www.fema.gov/sites/default/files/documents/fema_hazus-flood-model-technical-manual-5-1.pdf
https://www.fema.gov/sites/default/files/documents/fema_hazus-flood-model-technical-manual-5-1.pdf
https://www.fema.gov/sites/default/files/documents/fema_hazus-inventory-technical-manual-6.pdf
https://www.fema.gov/sites/default/files/documents/fema_hazus-inventory-technical-manual-6.pdf
https://www.fema.gov/sites/default/files/documents/fema_hazus-inventory-technical-manual-6.pdf
https://hazards.fema.gov/hll/library
https://doi.org/10.1088/1748-9326/11/8/084012
https://doi.org/10.1088/1748-9326/11/8/084012
https://doi.org/10.1029/2020EF001660
https://doi.org/10.1029/2020EF001660
https://doi.org/10.1038/s41558-023-01594-8
https://doi.org/10.1038/s41558-023-01594-8
https://doi.org/10.1086/706055
https://doi.org/10.1086/706055
https://doi.org/10.1175/MWR-D-20-0278.1
https://doi.org/10.1175/MWR-D-20-0278.1
https://doi.org/10.1029/2020EF001795
https://doi.org/10.1029/2020EF001795
https://www.IMPLAN.com
https://doi.org/10.1021/es202640p
https://doi.org/10.1021/es202640p
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.3389/feart.2022.945058
https://doi.org/10.3389/feart.2022.945058
https://doi.org/10.1029/2021JD035511
https://doi.org/10.1029/2021JD035511
https://doi.org/10.3389/fbuil.2023.1005264
https://doi.org/10.3389/fbuil.2023.1005264
https://doi.org/10.1016/j.regsciurbeco.2020.103608
https://doi.org/10.1016/j.regsciurbeco.2020.103608
https://doi.org/10.1088/1748-9326/ab7b9a
https://doi.org/10.1088/1748-9326/ab7b9a
https://doi.org/10.1007/s11069-023-06245-x
https://doi.org/10.1007/s11069-023-06245-x
https://doi.org/10.1016/j.oceaneng.2009.08.019
https://doi.org/10.1016/j.oceaneng.2009.08.019
https://www.ncei.noaa.gov/access/monitoring/monthlyreport/global/202300
https://www.ncei.noaa.gov/access/monitoring/monthlyreport/global/202300
https://doi.org/10.1061/(ASCE)ST.1943-541X.0003144
https://doi.org/10.1061/(ASCE)ST.1943-541X.0003144
https://doi.org/10.1175/MWR-D-20-0199.1
https://doi.org/10.1175/MWR-D-20-0199.1
https://doi.org/10.1175/MWR-D-20-0201.1
https://doi.org/10.1175/MWR-D-20-0201.1
https://doi.org/10.1016/j.jue.2018.06.005
https://doi.org/10.1016/j.jue.2018.06.005
https://doi.org/10.1080/17477891.2020.1800440
https://doi.org/10.1080/17477891.2020.1800440
https://doi.org/10.1111/jfr3.12851
https://doi.org/10.1111/jfr3.12851
https://doi.org/10.1016/j.jhe.2023.101956
https://doi.org/10.1016/j.jhe.2023.101956
https://doi.org/10.1175/2009BAMS2884.1
https://doi.org/10.1175/2009BAMS2884.1
https://doi.org/10.18128/D010.V15.0
https://doi.org/10.18128/D010.V15.0
https://doi.org/10.1088/1748-9326/aa88d8
https://doi.org/10.1088/1748-9326/aa88d8
https://doi.org/10.1029/2023JD039233
https://doi.org/10.1029/2023JD039233
https://doi.org/10.1111/disa.12383
https://doi.org/10.1111/disa.12383
https://doi.org/10.1007/s11069-013-0566-5
https://doi.org/10.1007/s11069-013-0566-5
https://doi.org/10.1007/s11069-015-1678-x
https://doi.org/10.1007/s11069-015-1678-x


Environ. Res. Lett. 19 (2024) 104003 D Liu et al

Stern D, Brya G, Lee C and Doyle J D 2021 Estimating the risk of
extreme wind gusts in tropical cyclones using idealized
large-eddy simulations and a statistical-dynamical model
Mon. Weather Rev. 149 4183–204

Sue Wing I, Rose A, Wei D and Wein A 2023 The long shadow of a
major disaster: modeled dynamic impacts of the
hypothetical HayWired earthquake on California’s economy
Int. Reg. Sci. Rev. accepted (https://doi.org/
10.1177/01600176231202451)

Tate E, Rahman M, Emrich C and Sampson C 2021 Flood
exposure and social vulnerability in the United States Nat.
Hazards 106 435–57

Toro G, Resio D, Divoky D, Niedoroda A and Reed C 2010
Efficient joint-probability methods for hurricane surge
frequency analysis Ocean Eng. 37 125–34

US Army Corps of Engineers 2022 National structure inventory:
technical documentation (available at: www.hec.usace.army.
mil/confluence/nsi/technicalreferences/latest/technical-
documentation)

US Census Bureau 2023 LEHD origin-destination employment
statistics (LODES) dataset structure: format version 8.0
(Census Bureau) (available at: https://lehd.ces.census.gov/
data/lodes/LODES8/LODESTechDoc8.0.pdf)

Vickery P and Blanton B 2008 North Carolina coastal flood
analysis system: hurricane parameter development Technical
Report TR-08-06 (Renaissance Computing Institute,
University of North Carolina at Chapel Hill)

Vickery P, Skerlj P, Lin J, Twisdale L, Young M and Lavelle F 2006
HAZUS-MH Hurricane model methodology II: damage and
loss estimation Nat. Hazards Rev. 7 94–103

Vickery P, Skerlj P and Twisdale L 2000 Simulation of hurricane
risk in the U.S. using an empirical track model J. Struct. Eng.
126 1222–37

Vosper E, Watson P, Harris L, McRae A, Santos-Rodriguez R,
Aitchison L and Mitchell D 2023 Deep learning for
downscaling tropical cyclone rainfall to hazard-relevant
spatial scales J. Geophys. Res. Atmos. 128 e2022JD038163

Wahl T, Jain S, Bender J, Meyers S D and Luther M 2015
Increasing risk of compound flooding from storm surge
and rainfall for major US cities Nat. Clim. Change
5 1093–7

Wang S, Lin N and Gori A 2022 Investigation of tropical cyclone
wind models with application to storm tide simulations JGR
Atmos. 127 2021JDo36359

Westerink J J, Luettich R, Feyen J, Atkinson J, Dawson C,
Roberts H, Powell M, Dunion J, Kubatko E and
Pourtaheri H 2008 A basin- to channel-scale unstructured
grid hurricane storm surge model applied to Southern
LouisianaMon. Weather Rev. 136 833–64

Wu L, Liu Q and Li Y 2018 Prevalence of tornado-scale vortices
in the tropical cyclone eyewall Proc. Natl Acad. Sci.
115 8307–10

Wu X, Xu Z, Liu H, Guo J and Zhou L 2019 What are the impacts
of tropical cyclones on employment? An analysis based on
meta-regression, weather Clim. Soc. 11 259–75

Wurman J and Kosiba K 2018 The role of small-scale vortices in
enhancing surface winds and damage in hurricane harvey
(2017)Mon. Weather Rev. 146 713–22

Yang J, Duan Z, Chen Y and Ou J 2023 Assessing parametric
rainfall models in reproducing tropical cyclone rainfall
characteristics Atmos. Res. 288 106726

Zhai A and Jiang J 2014 Dependence of US hurricane economic
loss on maximum wind speed and storm size Environ. Res.
Lett. 9 064019

Zhang Y et al 2020 Simulating compound flooding events in a
hurricane Ocean Dyn. 70 621–40

23

https://doi.org/10.1175/MWR-D-21-0059.1
https://doi.org/10.1175/MWR-D-21-0059.1
https://doi.org/10.1177/01600176231202451
https://doi.org/10.1177/01600176231202451
https://doi.org/10.1007/s11069-020-04470-2
https://doi.org/10.1007/s11069-020-04470-2
https://doi.org/10.1016/j.oceaneng.2009.09.004
https://doi.org/10.1016/j.oceaneng.2009.09.004
https://www.hec.usace.army.mil/confluence/nsi/technicalreferences/latest/technical-documentation
https://www.hec.usace.army.mil/confluence/nsi/technicalreferences/latest/technical-documentation
https://www.hec.usace.army.mil/confluence/nsi/technicalreferences/latest/technical-documentation
https://lehd.ces.census.gov/data/lodes/LODES8/LODESTechDoc8.0.pdf
https://lehd.ces.census.gov/data/lodes/LODES8/LODESTechDoc8.0.pdf
https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(94)
https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(94)
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222)
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222)
https://doi.org/10.1029/2022JD038163
https://doi.org/10.1029/2022JD038163
https://doi.org/10.1038/nclimate2736
https://doi.org/10.1038/nclimate2736
https://doi.org/10.1029/2021JD036359
https://doi.org/10.1029/2021JD036359
https://doi.org/10.1175/2007MWR1946.1
https://doi.org/10.1175/2007MWR1946.1
https://doi.org/10.1073/pnas.1807217115
https://doi.org/10.1073/pnas.1807217115
https://doi.org/10.1175/WCAS-D-18-0052.1
https://doi.org/10.1175/WCAS-D-18-0052.1
https://doi.org/10.1175/MWR-D-17-0327.1
https://doi.org/10.1175/MWR-D-17-0327.1
https://doi.org/10.1016/j.atmosres.2023.106726
https://doi.org/10.1016/j.atmosres.2023.106726
https://doi.org/10.1088/1748-9326/9/6/064019
https://doi.org/10.1088/1748-9326/9/6/064019
https://doi.org/10.1007/s10236-020-01351-x
https://doi.org/10.1007/s10236-020-01351-x

	Unequal economic consequences of coastal hazards: hurricane impacts on North Carolina
	1. Introduction
	2. Data and methods
	2.1. Data
	2.1.1. Hurricanes and hazard modeling
	2.1.2. Assets
	2.1.3. Hazus damage functions
	2.1.4. Employment and wages
	2.1.5. Social vulnerability

	2.2. Loss modeling
	2.2.1. Capital losses
	2.2.2. Labor losses


	3. Results
	3.1. Hurricane hazards, assets and societal exposures
	3.2. Property losses
	3.3. Labor losses

	4. Discussion and conclusions
	Appendix
	A1.  Social vulnerability and its measurement
	A2.  Flood and wind damage functions
	A2.1.  Flood
	A2.2.  Wind

	A3.  Labor losses
	A3.1.  Empirical Analysis
	A3.2.  Welfare Analysis
	A3.3.  Parameterization and Numerical Simulation

	A4.  Additional Explanations for the Results

	References


