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Accurately estimating correlations between demographic
parameters: A comment on Deane et al. (2023)

Abstract

Estimating correlations among demographic parameters
is an important method in population ecology. A recent
paper by Deane et al. (Ecology and Evolution 13:€9847,
2023) attempted to explore the effects of different priors
for covariance matrices on inference when using mark-
recovery data. Unfortunately, Deane et al. (2023) made
a mistake when parameterizing some of their models.
Rather than exploring the effects of different priors, they
examined the effects of the use of incorrect equations
on inference. In this manuscript, we clearly describe the
mistake in Deane et al. (2023). We then demonstrate the
use of an alternative and appropriate method and reach
different conclusions regarding the effects of priors onin-
ference. Consistent with other recent literature, informa-
tive inverse Wishart priors can lead to flawed inference,
while vague priors on covariance matrix components have

little impact when sample sizes are adequate.

1 | INTRODUCTION

Estimating temporal or within-individual correlations among de-
mographic parameters from capture-reencounter data is often em-
ployed to investigate community (Zipkin et al., 2023), population
(Riecke et al., 2019), and evolutionary (Fay et al., 2022) demography.
Models that estimate correlated random effects from multivariate
normal distributions can be useful for these types of analyses and
allow for inference regarding processes such as synchronous re-
sponses to environmental stressors (Riecke et al., 2019), the effects
of human harvest on survival rates of wildlife populations (Ergon
et al., 2018), or latent variation in individual quality (Fay et al., 2022).
When these analyses are performed using Bayesian statistical ap-
proaches, prior choice can affect posterior estimates and subse-
quent inference about the strength of correlations and resulting

parameter estimates. Recent papers have sought to explore the

consequences of prior choice on estimates of correlations at both
the population- and individual-level using capture-recapture data
(Fay et al., 2022; Riecke et al., 2019), and concluded that commonly
used priors for covariance matrices, such as the conjugate inverse-
Wishart distribution, may lead to erroneous inference.

Deane et al. (2023) explored a similar line of inquiry using mark-
recovery data. Specifically, they attempted to examine the effects of
three prior structures for covariance matrices, as well as different sample
sizes (i.e., number of releases), on posterior estimates of the correlation
between survival and band-recovery rates. This approach may allow
for inference regarding the effects of hunting on survival in harvested
populations. Two of the three priors (‘Wishart’ and ‘Uniform’) used in
Deane et al. for capture-recovery data are identical to priors described
in Riecke et al. (2019) for capture-recapture data. Deane et al. (2023)
also described a third prior, which they referred to as the ‘Gamma’ prior.
Unfortunately, incorrect equations related to the ‘Gamma’ prior were
used in both the text and code of Deane et al. (2023) that led to un-
interpretable parameter estimates and associated erroneous inference.

In this Letter to the Editor, we first demonstrate basic errors in
equations in Deane et al. (2023) so that others can avoid similar mis-
takes (Section 2). We then demonstrate an accurate and effective
method for placing gamma priors on the standard deviations of a co-
variance matrix for bivariate normal distributions (Section 3). Third,
we discuss some of the errors in interpretation in Deane et al. (2023)
after obtaining parameter estimates from correctly parameterized
models (Section 4). Finally, we note that many different effective ap-
proaches for placing priors on covariance matrices exist, highlight
several key areas of agreement with Deane et al. (2023), and describe

best practices for avoiding similar errors in the future (Section 5).

2 | ERRORS IN IMPLEMENTATION

Deane et al. (2023) estimated correlations (p) between logit-
transformed survival (S) and band-recovery (f) probabilities. Given a
correctly specified covariance matrix (X) equal to,
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the correct formulation of a precision matrix (i.e., the inverse of a co-
variance matrix) is,
of — 050t
agafz(l—pz) ofafz(l—p2)
—050¢p ag
Ggafz(l—pz) agafz(l—pz)

> t=

Precision matrices are useful for the calculation of partial cor-
relations, and are used by some MCMC samplers (e.g., JAGS;
Plummer, 2003) to parameterize multivariate normal distributions.
In equation (7) of their manuscript, Deane et al. (2023) specified the

inverse of a covariance matrix (i.e., the precision matrix) as,
1 1 5

= —)p
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This differs from Equation (2) and is incorrect (Lauritzen, 1996).

> t=

The Authors indicated in the text that this parameterization (equa-
tion 7in Deane et al., 2023) is ‘like the default priors specified for mul-
tivariate normal distributions in Program MARK (White & Burnham,
1999). This statement is inaccurate. The gamma priors used in
Program MARK are assigned to standard deviations, not precisions.
More importantly, the equations used by Program MARK to specify
covariance matrices are valid (G. C. White, personal communication).

Deane et al. (2023) used a second incorrect formulation of this
equation in the code they wrote to analyze their simulated data as
well as the real mallard data, where they formulated the covariance
(X) and precision () matrices as,

T=07"1

@11 (\/wuwzz)ﬂ*

Q= \
(\/ a’nwzz)l’* W32

w41 ~gamma(1.001,0.001), (4)
w,, ~gamma(1.001,0.001),
p* = (2Xp;rior) -1

p;rior ~beta(1,1)

This is also incorrect (Lauritzen, 1996). To be clear, Deane
et al. (2023) assumed that they were placing a gamma prior on the
precisions <'r = Giz) of survival and band-recovery probabilities. In
both the text and the code, they assigned this prior to a complex
function including all the parameters in the covariance matrix. For

2

example, the authors assign this prior to Q; = ﬁ,
SUf

Q4 ~ gamma(1.001,0.001). (5)
Unfortunately, this parameterization is incorrect. The dispar-

ity between the correct formulation of a precision matrix and the

two incorrect equations used by Deane et al. (2023) led to errors in

the results of their manuscript. Furthermore, it led to an erroneous
conclusion that the use of gamma priors for precisions resulted in
estimates of correlations that are more extreme (i.e., further from
0) than truth. In Section 3, we demonstrate that this conclusion was
inaccurate. Unfortunately, given the use of incorrect equations in
their analyses, we suggest that the estimates and conclusions from
Deane et al. (2023) regarding the ‘Gamma’ prior they described are
unreliable. In the next section of this letter, we demonstrate how to
appropriately apply gamma priors to standard deviations of a cova-

riance matrix.

3 | CORRECTLY IMPLEMENTING A
GAMMA PRIOR

3.1 | Datasimulation and analysis

Here we demonstrate how to specify gamma priors for the stand-
ard deviations of demographic parameters estimated using a bivari-
ate normal distribution. For each simulation (n=500) we generated
mean hunting (4, = — 1) and natural (4, = — 1) mortality hazard
rates. We then simulated correlated temporal variation (¢) between
the two mortality hazard rates given a multivariate normal distri-
bution with mean zero and an appropriate covariance matrix con-

structed using values of ¢ and p that varied among simulations,

o ~gamma(20, 80),
p~uniform(-=0.9,0),

O'f G0, (6)
= ,

2
G 0P o,

e ~bivariate normal(0, X).

We simulated correlated hunting (h,) and natural (h,) mortal-
ity hazard rates (Ergon et al.,, 2018) and transformed those rates
to survival (S), natural mortality (5), hunting mortality (x) and band-
recovery (f) probabilities assuming constant crippling loss (c=.2) and
band reporting (b=.5) probabilities to correspond to classic ring-

recovery models (Brownie et al., 1985),

In(h¢) =p,+e,
In(hmt) =HytEy

S;= e~ (heethye)

h 7)
—(1— nt (
nt ( St) hﬂ,t+h,(t
hxt
=(1- :
k= St)hmt+hu
fi=xi(1-0b

We then simulated mark-recovery m-arrays (M), where we first
specified cell probabilities (P) for each cell of the m-array, and then

simulated outcomes (i.e., band recoveries) as a multinomial trial,

d ‘6 ¥TOT ‘8SLLSKOT

:sdny woyy

QSULOI'T suowwo)) dAnear)) dqedridde oy £q pauraA0S a1 sA[ONIR Y (9sN JO AN 10§ AIRIqIT dUITUQ AJ[IA| UO (SUONIPUOI-PUB-SULI) /W0 KA[1M ATRIQI[OUI[UO,/:Sd}]) SUONIPUO)) PUE SWLIS [, A 39S “[$70T/60/61] U0 A1eIqIT SuIuQ AS[IAN © ANISIOATUN) 9)BIS OPEIO[O)) - SUOO PIABC Aq 98T0L €999/Z001 0 T/10P/WOd" AA[IM".



LETTER TO THE EDITOR

0 i>j
fi i=j
Pij=‘ k=j-1
<H5k>1; i<j<T+1 @8)
k=i

1- 3 P

M, 1711, ~ multinomial (10,000, P; 1.7, 4, )-

j=T+1

Like Deane et al.'s (2023) ‘intensive’ monitoring scenario, we
released 10k individuals per year for 36years. We analyzed each
simulated dataset (Supplementary Code) using the data gener-
ating model and two different (‘Uniform’ and ‘Gamma’) priors on
the standard deviations to recover parameter estimates from the
simulated data. In the first model, which follows the ‘Uniform’ pa-
rameterization described in Riecke et al. (2019), we applied vague
uniform priors to the standard deviations of the mortality hazard
rates, o ~ uniform(0,5). In the second model, we applied vague
gamma priors to the standard deviations of the mortality hazard
rates, o ~ gamma(1, 1). We specified a uniform prior for the cor-
relation between mortality hazard rates, p ~ uniform(-1,1) and
weakly informative priors for the means of the mortality hazard
rates, u ~ normal(—1,1) for both the ‘Uniform’ and ‘Gamma’ ap-
proaches. We fixed the values of crippling loss probability, ¢ =.2
, and band reporting probability, b =.5, for both models. Readers
should note that our simulation study differs slightly from Deane
et al. (2023) in that we did not explore the effects of different
numbers of releases on inference. Furthermore, we use Stan (Stan
Development Team, 2024b) rather than JAGS to take advantage
of more efficient sampling. Thus, the goal of our simulation was
simply to demonstrate that vague gamma and uniform priors on
the standard deviations of mortality hazard rates or probabilities
should not have major impacts on inference if researchers use ap-

propriate equations.
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3.2 | Computational details

We conducted all analyses in R (R Core Team, 2023) and Stan
(Stan Development Team, 2024a) using the rstan package (Stan
Development Team, 2024b). For each simulation (n=500) we sam-
pled four MCMC chains for 25k iterations, discarding the first 10k
iterations and retaining every 5th sample. In the following figures
we report posterior distribution medians from each iteration. We ex-
cluded simulations (n=0) in which either model type did not achieve
>1000 effective samples or R < 1.01 for the correlation (p) parame-
ters. This led to a total of 500 simulations that were used to calculate
summary statistics.

3.3 | Results

Both the ‘Uniform’ and ‘Gamma’ parameterizations we describe in
Section 3 adequately recovered simulated correlation parameter
values (Figure 1). Parameter coverage, or the proportion of the data
generating parameter values that fall within the 95% credible inter-
val of the correlation posterior distribution, was very slightly less
than acceptable for both the gamma (.936) and uniform (.936) model
parameterizations. The average distance between the median of the
posterior distribution for the correlation parameter and the values
used to generate simulated estimates were .023 for models using
gamma priors, and .021 for uniform priors (Figure 1). If we compare
parameter estimates to the actual simulated correlations (i.e., the
correlations of the simulated points), coverage improved for both
the gamma (.998) and uniform (.998) parameterizations, and the
distance between the median of the posterior distributions and the
true correlation of the simulated points was minimal for both gamma
(-.0003) and uniform (-.002) models. In other words, the models

accurately estimated the correlation of the observed data, but the

Uniform Gamma Scatterplot of correlations
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FIGURE 1 Scatterplots of the median estimated values of correlations between hunting and natural mortality hazard rates from models
using uniform (left) and gamma (center) priors for mortality hazard rate standard deviations regressed against the data generating values of
p, as well as the estimates from the two models regressed against each other (right). Note that these two models produce nearly identical
estimates of correlations between mortality hazard rates (right), as there is little difference between the priors for standard deviations, no
difference between the priors for correlations, and no dependency between the correlation and standard deviation parameters (Figure 2) for

either model.
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correlation of the observed data may differ slightly from the true
underlying correlation due to the duration of the study (T=36). In
summary, both approaches recovered the simulated parameter val-

ues and produced nearly identical results (Figure 1).

4 | ERRORS IN INTERPRETATION AND
INFERENCE

Deane et al. (2023) incorrectly interpreted the meaning of dispa-
rate results from their three priors. Specifically, they concluded that
‘using Gamma priors will lead to overestimating the magnitude of
negative correlation and Wishart priors likely underestimated the
magnitude of negative correlation between survival and recovery’.
Later in the discussion, they concluded that ‘variable prior influ-
ence among different priors is an expected outcome of Bayesian
estimation’.

This is not entirely correct. Our simulations reveal quite clearly
that the Uniform and Gamma priors we describe here produced
nearly identical estimates (Figure 1). When different vague priors are
used with adequate data and implemented appropriately, we should
expect posterior estimates to be robust. Critically, major changes in
posterior distributions as a result of minor changes in prior distri-
butions should serve as a warning sign for ecologists writing com-
plex models with robust datasets. It is only when informative priors
(e.g., the inverse Wishart prior), very ‘weak’ data, or simply incorrect
equations (Deane et al., 2023) are used that we should expect major
disparities in inference among priors.

The conjugate inverse-Wishart prior has been repeatedly shown
to be problematic in these types of analyses (Alvarez et al., 2014;
Fay et al,, 2022; Link & Barker, 2005; Riecke et al., 2019). While
its use often leads to underestimation of correlations in capture-
reencounter analyses due to an inherent dependency between the

standard deviations and the correlation parameter(s), the shape

Inverse Wishart Uniform
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of the logit-link, and the ranges of typical demographic parameter
estimates, this problem can cause either under- or overestimation
of correlations (Figure 2). In Section 3, we demonstrated that uni-
form and gamma priors for standard deviations of mortality hazard
rates resulted in nearly identical parameter estimates for correla-
tions (Figure 1). Our results here and elsewhere (Riecke et al., 2019)
suggest that these two approaches, which place vague priors on
the standard deviations of the demographic parameters and do
not induce dependencies between the standard deviations and
the correlations (Figure 2), recover accurate estimates of simulated
correlations when sample sizes are adequate (Riecke et al., 2019).
As our simulations and basic theory indicate, the use of different
vague priors in Bayesian analyses should not induce major varia-
tion in posterior estimates if the data are sufficient to estimate the
parameters of interest. We suggest that Deane et al.'s (2023) con-
clusions are a consequence of misunderstandings of the equations
and relevant literature underlying the simulations and analyses pre-
sented in their manuscript. We recommend that interested readers
refer to other work (Alvarez et al., 2014; Ergon et al., 2018; Fay
et al., 2022). Finally, we note that many expansions of these model
types have been developed relatively recently, and that continued
advances in Bayesian software development and statistics have led
to additional useful parameterizations.

5 | CONCLUSION

The continued expansion of Bayesian software and the careful and
thoughtful work of statisticians has led to a plethora of options for
placing priors on correlated random effects drawn from multivari-
ate normal distributions. These include but are not limited to; scaled
inverse Wishart distributions (O'Malley & Zaslavsky, 2008), hierar-
chical half-t priors (Huang & Wand, 2013), the separation strategy
proposed by Barnard et al. (2000), Lewandoski-Kurowicka-Joe

Gamma
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FIGURE 2 Scatterplots of the natural log of standard deviations (¢) drawn from inverse Wishart (left), Uniform (center), and Gamma
(right) priors in which lighter blue colors indicate increased absolute values of the correlation parameter (p). Note that the inverse Wishart
induces a dependency between the standard deviations and the correlation which can lead to under- or over-estimation of the correlation as
a function of the data and the prior (Alvarez et al., 2014; Riecke et al., 2019). The other two approaches do not induce the same dependency.
In this example, this leads to accurate estimation of correlations among mortality hazard rates when using vague uniform or gamma priors

for standard deviations of mortality hazard rates.
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priors (Lewandowski et al., 2009) as well as various modifications
of the Cholesky decomposition approach (Chen & Dunson, 2003;
Dunson, 2008; Fay et al.,, 2022). When using bivariate normal
distributions, researchers can simply assign hyperpriors to each
component of the covariance matrix (Riecke et al., 2019). While
the approaches that involve inverse Wishart distributions (Huang
& Wand, 2013; O'Malley & Zaslavsky, 2008) retain some of the
same challenges of the inverse Wishart, all of the approaches listed
above have advantages over the conjugate inverse Wishart prior.
Further, they can be implemented using a wide array of Bayesian
software such as JAGS (Plummer, 2003), NIMBLE (de Valpine
et al.,, 2017), or Stan (Gelman et al., 2015), and many are read-
ily extendable to covariance matrices larger than 2x2. We note
that these approaches are complex (Alvarez et al., 2014; Tokuda
et al., 2011) and we strongly recommend that ecologists and wild-
life managers interested in exploring these concepts use one of the
many well-documented existing approaches developed by formally
trained statisticians.

Although we have been critical in our letter, we do find areas of
agreement with Deane et al. (2023). Like other related manuscripts
(Fay et al., 2022; Riecke et al., 2019), Deane et al. (2023) demonstrated
challenges associated with use of the inverse Wishart prior when es-
timating correlations among parameters. Similar to other recent work
(Fay et al., 2022; Riecke et al., 2019), Deane et al. (2023) demonstrated
a need for assessing variation in the annual number of marked individ-
uals for estimating correlations. We note that study duration may also
be an important metric to consider when assessing posterior distribu-
tions of correlations, and that simply estimating correlations without
considering underlying causal processes may lead to flawed inference
(Riecke, Lohman, et al., 2022; Riecke, Sedinger, et al., 2022). Perhaps
most importantly, we agree with Deane et al. (2023) that power analy-
ses, or simulation-based model validation, are an important component
of assessing quality of inference. Deane et al. (2023) wrote that, ‘stud-
ies should demonstrate through simulation or power analysis that the
ecological questions being assessed can be answered with the data and
statistical methods employed’ We fully agree and add that when com-
plex problems are addressed, practitioners should take additional care
to check their equations and code to ensure that the model parameter-
izations they have chosen are sensible, and that equations are accurate.

We again acknowledge that these techniques are complicated.
As such, we strongly recommend that researchers that are unfa-
miliar with these approaches consult the literature and confer with
one or more statisticians if possible as they implement these model
types. Failure to do so can lead to inappropriate inference. As a final
note, we strongly encourage data and code sharing as part of the
publication process (Jenkins et al., 2023). Much of our response
would not have been possible if the code from Deane et al. (2023)
was not publicly available.

KEYWORDS
band-recovery models, Bayesian, demography, harvest, hunting,

multivariate normal, prior
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