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L E T T E R  T O  T H E  E D I T O R

Accurately estimating correlations between demographic 
parameters: A comment on Deane et al. (2023)

Abstract
Estimating correlations among demographic parameters 
is an important method in population ecology. A recent 
paper by Deane et  al. (Ecology and Evolution 13:e9847, 
2023) attempted to explore the effects of different priors 
for covariance matrices on inference when using mark-
recovery data. Unfortunately, Deane et  al. (2023) made 
a mistake when parameterizing some of their models. 
Rather than exploring the effects of different priors, they 
examined the effects of the use of incorrect equations 
on inference. In this manuscript, we clearly describe the 
mistake in Deane et al. (2023). We then demonstrate the 
use of an alternative and appropriate method and reach 
different conclusions regarding the effects of priors on in-
ference. Consistent with other recent literature, informa-
tive inverse Wishart priors can lead to flawed inference, 
while vague priors on covariance matrix components have 
little impact when sample sizes are adequate.

1  |  INTRODUC TION

Estimating temporal or within-individual correlations among de-
mographic parameters from capture-reencounter data is often em-
ployed to investigate community (Zipkin et  al.,  2023), population 
(Riecke et al., 2019), and evolutionary (Fay et al., 2022) demography. 
Models that estimate correlated random effects from multivariate 
normal distributions can be useful for these types of analyses and 
allow for inference regarding processes such as synchronous re-
sponses to environmental stressors (Riecke et al., 2019), the effects 
of human harvest on survival rates of wildlife populations (Ergon 
et al., 2018), or latent variation in individual quality (Fay et al., 2022). 
When these analyses are performed using Bayesian statistical ap-
proaches, prior choice can affect posterior estimates and subse-
quent inference about the strength of correlations and resulting 
parameter estimates. Recent papers have sought to explore the 

consequences of prior choice on estimates of correlations at both 
the population-  and individual-level using capture-recapture data 
(Fay et al., 2022; Riecke et al., 2019), and concluded that commonly 
used priors for covariance matrices, such as the conjugate inverse-
Wishart distribution, may lead to erroneous inference.

Deane et  al.  (2023) explored a similar line of inquiry using mark-
recovery data. Specifically, they attempted to examine the effects of 
three prior structures for covariance matrices, as well as different sample 
sizes (i.e., number of releases), on posterior estimates of the correlation 
between survival and band-recovery rates. This approach may allow 
for inference regarding the effects of hunting on survival in harvested 
populations. Two of the three priors (‘Wishart’ and ‘Uniform’) used in 
Deane et al. for capture-recovery data are identical to priors described 
in Riecke et al.  (2019) for capture-recapture data. Deane et al.  (2023) 
also described a third prior, which they referred to as the ‘Gamma’ prior. 
Unfortunately, incorrect equations related to the ‘Gamma’ prior were 
used in both the text and code of Deane et al.  (2023) that led to un-
interpretable parameter estimates and associated erroneous inference.

In this Letter to the Editor, we first demonstrate basic errors in 
equations in Deane et al. (2023) so that others can avoid similar mis-
takes (Section 2). We then demonstrate an accurate and effective 
method for placing gamma priors on the standard deviations of a co-
variance matrix for bivariate normal distributions (Section 3). Third, 
we discuss some of the errors in interpretation in Deane et al. (2023) 
after obtaining parameter estimates from correctly parameterized 
models (Section 4). Finally, we note that many different effective ap-
proaches for placing priors on covariance matrices exist, highlight 
several key areas of agreement with Deane et al. (2023), and describe 
best practices for avoiding similar errors in the future (Section 5).

2  |  ERRORS IN IMPLEMENTATION

Deane et  al.  (2023) estimated correlations (ρ) between logit-
transformed survival (S) and band-recovery (f) probabilities. Given a 
correctly specified covariance matrix (Σ) equal to,
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the correct formulation of a precision matrix (i.e., the inverse of a co-
variance matrix) is,

Precision matrices are useful for the calculation of partial cor-
relations, and are used by some MCMC samplers (e.g., JAGS; 
Plummer, 2003) to parameterize multivariate normal distributions. 
In equation (7) of their manuscript, Deane et al. (2023) specified the 
inverse of a covariance matrix (i.e., the precision matrix) as,

This differs from Equation (2) and is incorrect (Lauritzen, 1996). 
The Authors indicated in the text that this parameterization (equa-
tion 7 in Deane et al., 2023) is ‘like the default priors specified for mul-
tivariate normal distributions in Program MARK (White & Burnham, 
1999)’. This statement is inaccurate. The gamma priors used in 
Program MARK are assigned to standard deviations, not precisions. 
More importantly, the equations used by Program MARK to specify 
covariance matrices are valid (G. C. White, personal communication).

Deane et al. (2023) used a second incorrect formulation of this 
equation in the code they wrote to analyze their simulated data as 
well as the real mallard data, where they formulated the covariance 
(Σ) and precision (Ω) matrices as,

This is also incorrect (Lauritzen,  1996). To be clear, Deane 
et al. (2023) assumed that they were placing a gamma prior on the 
precisions 

(
� =

1

�2

)
 of survival and band-recovery probabilities. In 

both the text and the code, they assigned this prior to a complex 
function including all the parameters in the covariance matrix. For 
example, the authors assign this prior to Ω11 =

�2
f

�2
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,

Unfortunately, this parameterization is incorrect. The dispar-
ity between the correct formulation of a precision matrix and the 
two incorrect equations used by Deane et al. (2023) led to errors in 

the results of their manuscript. Furthermore, it led to an erroneous 
conclusion that the use of gamma priors for precisions resulted in 
estimates of correlations that are more extreme (i.e., further from 
0) than truth. In Section 3, we demonstrate that this conclusion was 
inaccurate. Unfortunately, given the use of incorrect equations in 
their analyses, we suggest that the estimates and conclusions from 
Deane et al. (2023) regarding the ‘Gamma’ prior they described are 
unreliable. In the next section of this letter, we demonstrate how to 
appropriately apply gamma priors to standard deviations of a cova-
riance matrix.

3  |  CORREC TLY IMPLEMENTING A 
GAMMA PRIOR

3.1  |  Data simulation and analysis

Here we demonstrate how to specify gamma priors for the stand-
ard deviations of demographic parameters estimated using a bivari-
ate normal distribution. For each simulation (n = 500) we generated 
mean hunting 

(
�� = − 1

)
 and natural 

(
�� = − 1

)
 mortality hazard 

rates. We then simulated correlated temporal variation (�) between 
the two mortality hazard rates given a multivariate normal distri-
bution with mean zero and an appropriate covariance matrix con-
structed using values of σ and ρ that varied among simulations,

We simulated correlated hunting 
(
h�

)
 and natural 

(
h�
)
 mortal-

ity hazard rates (Ergon et  al.,  2018) and transformed those rates 
to survival (S), natural mortality (η), hunting mortality (κ) and band-
recovery (f) probabilities assuming constant crippling loss (c = .2) and 
band reporting (b = .5) probabilities to correspond to classic ring-
recovery models (Brownie et al., 1985),

We then simulated mark-recovery m-arrays (M), where we first 
specified cell probabilities (P) for each cell of the m-array, and then 
simulated outcomes (i.e., band recoveries) as a multinomial trial,
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Like Deane et  al.'s  (2023) ‘intensive’ monitoring scenario, we 
released 10k individuals per year for 36 years. We analyzed each 
simulated dataset (Supplementary Code) using the data gener-
ating model and two different (‘Uniform’ and ‘Gamma’) priors on 
the standard deviations to recover parameter estimates from the 
simulated data. In the first model, which follows the ‘Uniform’ pa-
rameterization described in Riecke et al. (2019), we applied vague 
uniform priors to the standard deviations of the mortality hazard 
rates, � ∼ uniform(0, 5) . In the second model, we applied vague 
gamma priors to the standard deviations of the mortality hazard 
rates, � ∼ gamma(1, 1). We specified a uniform prior for the cor-
relation between mortality hazard rates, � ∼ uniform(−1, 1) and 
weakly informative priors for the means of the mortality hazard 
rates, � ∼ normal(−1, 1) for both the ‘Uniform’ and ‘Gamma’ ap-
proaches. We fixed the values of crippling loss probability, c = .2

, and band reporting probability, b = .5, for both models. Readers 
should note that our simulation study differs slightly from Deane 
et  al.  (2023) in that we did not explore the effects of different 
numbers of releases on inference. Furthermore, we use Stan (Stan 
Development Team, 2024b) rather than JAGS to take advantage 
of more efficient sampling. Thus, the goal of our simulation was 
simply to demonstrate that vague gamma and uniform priors on 
the standard deviations of mortality hazard rates or probabilities 
should not have major impacts on inference if researchers use ap-
propriate equations.

3.2  |  Computational details

We conducted all analyses in R (R Core Team, 2023) and Stan 
(Stan Development Team,  2024a) using the rstan package (Stan 
Development Team, 2024b). For each simulation (n = 500) we sam-
pled four MCMC chains for 25k iterations, discarding the first 10k 
iterations and retaining every 5th sample. In the following figures 
we report posterior distribution medians from each iteration. We ex-
cluded simulations (n = 0) in which either model type did not achieve 
>1000 effective samples or �R < 1.01 for the correlation (ρ) parame-
ters. This led to a total of 500 simulations that were used to calculate 
summary statistics.

3.3  |  Results

Both the ‘Uniform’ and ‘Gamma’ parameterizations we describe in 
Section  3 adequately recovered simulated correlation parameter 
values (Figure 1). Parameter coverage, or the proportion of the data 
generating parameter values that fall within the 95% credible inter-
val of the correlation posterior distribution, was very slightly less 
than acceptable for both the gamma (.936) and uniform (.936) model 
parameterizations. The average distance between the median of the 
posterior distribution for the correlation parameter and the values 
used to generate simulated estimates were .023 for models using 
gamma priors, and .021 for uniform priors (Figure 1). If we compare 
parameter estimates to the actual simulated correlations (i.e., the 
correlations of the simulated points), coverage improved for both 
the gamma (.998) and uniform (.998) parameterizations, and the 
distance between the median of the posterior distributions and the 
true correlation of the simulated points was minimal for both gamma 
(−.0003) and uniform (−.002) models. In other words, the models 
accurately estimated the correlation of the observed data, but the 

(8)
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F I G U R E  1 Scatterplots of the median estimated values of correlations between hunting and natural mortality hazard rates from models 
using uniform (left) and gamma (center) priors for mortality hazard rate standard deviations regressed against the data generating values of 
ρ, as well as the estimates from the two models regressed against each other (right). Note that these two models produce nearly identical 
estimates of correlations between mortality hazard rates (right), as there is little difference between the priors for standard deviations, no 
difference between the priors for correlations, and no dependency between the correlation and standard deviation parameters (Figure 2) for 
either model.

 20457758, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70286 by D

avid K
oons - C

olorado State U
niversity , W

iley O
nline Library on [19/09/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



4 of 6  |     LETTER TO THE EDITOR

correlation of the observed data may differ slightly from the true 
underlying correlation due to the duration of the study (T = 36). In 
summary, both approaches recovered the simulated parameter val-
ues and produced nearly identical results (Figure 1).

4  |  ERRORS IN INTERPRETATION AND 
INFERENCE

Deane et  al.  (2023) incorrectly interpreted the meaning of dispa-
rate results from their three priors. Specifically, they concluded that 
‘using Gamma priors will lead to overestimating the magnitude of 
negative correlation and Wishart priors likely underestimated the 
magnitude of negative correlation between survival and recovery’. 
Later in the discussion, they concluded that ‘variable prior influ-
ence among different priors is an expected outcome of Bayesian 
estimation’.

This is not entirely correct. Our simulations reveal quite clearly 
that the Uniform and Gamma priors we describe here produced 
nearly identical estimates (Figure 1). When different vague priors are 
used with adequate data and implemented appropriately, we should 
expect posterior estimates to be robust. Critically, major changes in 
posterior distributions as a result of minor changes in prior distri-
butions should serve as a warning sign for ecologists writing com-
plex models with robust datasets. It is only when informative priors 
(e.g., the inverse Wishart prior), very ‘weak’ data, or simply incorrect 
equations (Deane et al., 2023) are used that we should expect major 
disparities in inference among priors.

The conjugate inverse-Wishart prior has been repeatedly shown 
to be problematic in these types of analyses (Alvarez et al., 2014; 
Fay et  al., 2022; Link & Barker, 2005; Riecke et  al., 2019). While 
its use often leads to underestimation of correlations in capture-
reencounter analyses due to an inherent dependency between the 
standard deviations and the correlation parameter(s), the shape 

of the logit-link, and the ranges of typical demographic parameter 
estimates, this problem can cause either under- or overestimation 
of correlations (Figure 2). In Section 3, we demonstrated that uni-
form and gamma priors for standard deviations of mortality hazard 
rates resulted in nearly identical parameter estimates for correla-
tions (Figure 1). Our results here and elsewhere (Riecke et al., 2019) 
suggest that these two approaches, which place vague priors on 
the standard deviations of the demographic parameters and do 
not induce dependencies between the standard deviations and 
the correlations (Figure 2), recover accurate estimates of simulated 
correlations when sample sizes are adequate (Riecke et al., 2019). 
As our simulations and basic theory indicate, the use of different 
vague priors in Bayesian analyses should not induce major varia-
tion in posterior estimates if the data are sufficient to estimate the 
parameters of interest. We suggest that Deane et al.'s (2023) con-
clusions are a consequence of misunderstandings of the equations 
and relevant literature underlying the simulations and analyses pre-
sented in their manuscript. We recommend that interested readers 
refer to other work (Alvarez et  al., 2014; Ergon et  al., 2018; Fay 
et al., 2022). Finally, we note that many expansions of these model 
types have been developed relatively recently, and that continued 
advances in Bayesian software development and statistics have led 
to additional useful parameterizations.

5  |  CONCLUSION

The continued expansion of Bayesian software and the careful and 
thoughtful work of statisticians has led to a plethora of options for 
placing priors on correlated random effects drawn from multivari-
ate normal distributions. These include but are not limited to; scaled 
inverse Wishart distributions (O'Malley & Zaslavsky, 2008), hierar-
chical half-t priors (Huang & Wand, 2013), the separation strategy 
proposed by Barnard et  al. (2000), Lewandoski-Kurowicka-Joe 

F I G U R E  2 Scatterplots of the natural log of standard deviations (σ) drawn from inverse Wishart (left), Uniform (center), and Gamma 
(right) priors in which lighter blue colors indicate increased absolute values of the correlation parameter (ρ). Note that the inverse Wishart 
induces a dependency between the standard deviations and the correlation which can lead to under- or over-estimation of the correlation as 
a function of the data and the prior (Alvarez et al., 2014; Riecke et al., 2019). The other two approaches do not induce the same dependency. 
In this example, this leads to accurate estimation of correlations among mortality hazard rates when using vague uniform or gamma priors 
for standard deviations of mortality hazard rates.
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priors (Lewandowski et al., 2009) as well as various modifications 
of the Cholesky decomposition approach (Chen & Dunson, 2003; 
Dunson,  2008; Fay et  al.,  2022). When using bivariate normal 
distributions, researchers can simply assign hyperpriors to each 
component of the covariance matrix (Riecke et  al.,  2019). While 
the approaches that involve inverse Wishart distributions (Huang 
& Wand, 2013; O'Malley & Zaslavsky, 2008) retain some of the 
same challenges of the inverse Wishart, all of the approaches listed 
above have advantages over the conjugate inverse Wishart prior. 
Further, they can be implemented using a wide array of Bayesian 
software such as JAGS (Plummer,  2003), NIMBLE (de Valpine 
et  al.,  2017), or Stan (Gelman et  al.,  2015), and many are read-
ily extendable to covariance matrices larger than 2 × 2. We note 
that these approaches are complex (Alvarez et  al., 2014; Tokuda 
et al., 2011) and we strongly recommend that ecologists and wild-
life managers interested in exploring these concepts use one of the 
many well-documented existing approaches developed by formally 
trained statisticians.

Although we have been critical in our letter, we do find areas of 
agreement with Deane et  al.  (2023). Like other related manuscripts 
(Fay et al., 2022; Riecke et al., 2019), Deane et al. (2023) demonstrated 
challenges associated with use of the inverse Wishart prior when es-
timating correlations among parameters. Similar to other recent work 
(Fay et al., 2022; Riecke et al., 2019), Deane et al. (2023) demonstrated 
a need for assessing variation in the annual number of marked individ-
uals for estimating correlations. We note that study duration may also 
be an important metric to consider when assessing posterior distribu-
tions of correlations, and that simply estimating correlations without 
considering underlying causal processes may lead to flawed inference 
(Riecke, Lohman, et al., 2022; Riecke, Sedinger, et al., 2022). Perhaps 
most importantly, we agree with Deane et al. (2023) that power analy-
ses, or simulation-based model validation, are an important component 
of assessing quality of inference. Deane et al. (2023) wrote that, ‘stud-
ies should demonstrate through simulation or power analysis that the 
ecological questions being assessed can be answered with the data and 
statistical methods employed’ We fully agree and add that when com-
plex problems are addressed, practitioners should take additional care 
to check their equations and code to ensure that the model parameter-
izations they have chosen are sensible, and that equations are accurate.

We again acknowledge that these techniques are complicated. 
As such, we strongly recommend that researchers that are unfa-
miliar with these approaches consult the literature and confer with 
one or more statisticians if possible as they implement these model 
types. Failure to do so can lead to inappropriate inference. As a final 
note, we strongly encourage data and code sharing as part of the 
publication process (Jenkins et  al.,  2023). Much of our response 
would not have been possible if the code from Deane et al. (2023) 
was not publicly available.
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