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Radiative corrections are essential for an accurate determination of Vud from superallowed β decays. In view

of recent progress in the single-nucleon sector, the uncertainty is dominated by the theoretical description of

nucleus-dependent effects, limiting the precision that can currently be achieved for Vud . In this work, we provide

a detailed account of the electroweak corrections to superallowed β decays in effective field theory (EFT),

including the power counting, potential and ultrasoft contributions, and factorization in the decay rate. We present

a first numerical evaluation of the dominant corrections in light nuclei based on quantum Monte Carlo methods,

confirming the expectations from the EFT power counting. Finally, we discuss strategies how to extract from

data the low-energy constants that parametrize short-distance contributions and whose values are not predicted

by the EFT. Combined with advances in ab initio nuclear-structure calculations, this EFT framework allows one

to systematically address the dominant uncertainty in Vud , as illustrated in detail for the 14O → 14N transition.
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I. INTRODUCTION

Superallowed β decays constitute the prime source of in-

formation on Vud , the first element of the Cabibbo-Kobayashi-

Maskawa (CKM) matrix [1,2]. That is, by measuring the

decay half-life t , the traditional master formula [3,4]

1

t
=

G2
F |Vud |2m5

e

π3 log 2

(

1 + �V
R

)

(1 + δ′
R)(1 + δNS − δC ) × f

(1)

in principle allows one to extract Vud at high precision,

provided that the various radiative corrections (RC) can be

controlled at a sufficient level. In the traditional decomposi-

tion (1), f denotes a phase-space factor that includes the Fermi

function, which captures the main effect of the Coulomb inter-

action of the outgoing electron in the nuclear field. This factor

depends on the nuclear electroweak (EW) form factor and

involves corrections related to nuclear recoil, atomic electron

screening, and atomic overlap [3–5]. Next, δC is defined by

MF = 〈 f |τ+|i〉 = M
(0)
F (1 − δC/2), i.e., it measures the devia-

tion of the Fermi matrix element from M
(0)
F =

√
2 as expected

in the isospin limit. Further RC are contained in the so-called

outer correction δ′
R, comprising infrared- (IR) sensitive effects

not included in the Fermi function, while the remaining, inner

RC are separated into a universal, single-nucleon correction

�V
R and nucleus-dependent RC δNS [6,7]. In this paper, we

provide a detailed description of an approach to superallowed

β decays in effective field theory (EFT) [8], including the fac-

torization assumptions inherent in Eq. (1) and a first numerical

evaluation of the dominant RC in light nuclei.

Revisiting the formalism for superallowed β decays in this

manner is highly motivated by precision tests of the Standard

Model, most notably the unitarity of the first row of the CKM

matrix

|Vud |2 + |Vus|2 + |Vub|2 = 1. (2)

First, a global fit of all available constraints on Vud and

Vus, with the Vub contribution being numerically irrelevant

at present, suggests a deficit of 2.8σ [9]. Despite a separate

tension in Vus originating from determinations of Kℓ3 and

Kℓ2 decays, requiring experimental clarification [9,10], Vud

has attracted renewed interest following a reevaluation of the

universal RC associated with �V
R [11–17], given the signif-

icant increase in the possible deficit in Eq. (2). Implications

for beyond-the-Standard-Model scenarios [18,19] have been

investigated studying vectorlike quarks [20–23] and leptons

[24,25], modifications of the Fermi constant [26,27], the vio-

lation of lepton flavor universality [28–33], as well as in the

context of Standard Model EFT [34–37]. The significance of

all these conclusions ultimately depends on the reliability of

RC in superallowed 0+ → 0+ transitions [3], which currently

provide the most precise value for Vud .

The experimental component of the resulting uncertainty,

obtained after an average over a large number of isotopes,

is currently subleading compared to the theory uncertainties

from the RC, in stark contrast to alternative probes. In neutron

decay, uncertainties in the experimental input still dominate
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the uncertainty in Vud . These arise from the lifetime τn [38]

and especially the decay parameter λ [39], which currently

limits the precision of the Vud determination from the neutron,

also in view of Ref. [40]. Pion β decay would permit an

even cleaner determination of Vud in a purely mesonic sys-

tem [41–43], yet the experimental challenges are substantial

[44,45]. In this situation, improvements in the RC for super-

allowed β decays would have a direct impact on the unitarity

test (2).

For the single-nucleon RC contained in �V
R , recent im-

provements include a comprehensive EFT analysis [46] and

a first lattice-QCD calculation [47], but the reliability of

nucleus-dependent corrections remains a serious concern,

both for δC [48–55] and δNS [4,6,7], motivating the develop-

ment of an EFT framework also for the nuclear corrections.

To this end, we start with a discussion of the general EFT

approach, the power counting, and the relevant momentum

regions in Sec. II. We will show that the dominant contri-

butions can be expressed in terms of two-body (2b) currents

[8], which are discussed in detail in Sec. III. We find that, at

the required precision, also contact terms need to be included.

Similarly to the case of neutrinoless double-β decay [56–60],

these come with unknown coefficients, but here their values

can be determined by a simultaneous fit to different isotopes.

Ultrasoft contributions, generated by photons with very small

momenta, are addressed in Sec. IV, in the context of which

we also make the connection to the dispersive approach of

Refs. [4,7]. In particular, such a comparison is useful to clarify

whether the expected EFT scalings hold in the presence of

low-lying intermediate states, such as the 3+ and 1+ levels of
10B in the 10C → 10B 0+ → 0+ transition [61]. In Sec. V we

combine all the ingredients into a master formula for the decay

rate, with particular attention to the question to what extent the

factorization assumptions in Eq. (1) can be justified from the

EFT perspective. First numerical evaluations are presented in

Sec. VI, to see whether the expectations from the EFT power

counting are realized in practice. Based on these results, we

discuss the application to 14O → 14N in Sec. VII, as a con-

crete numerical example to illustrate the formalism. Strategies

for the determination of the contact terms are discussed in

Sec. VIII, before summarizing our findings and sketching

future work in Sec. IX.

To keep this paper readable, we have put many tech-

nical, but crucial, discussions into several appendices. In

Appendix A we discuss the role of energy-dependent poten-

tials, in particular, subtleties that arise for the zero component

of the momentum transfer, while Appendices B and C provide

the potentials in coordinate space as well as the required

subtraction of ultrasoft contributions. Appendices D and E

discuss the renormalization group (RG) evolution to low-

energy scales, Appendix F details about the comparison to the

dispersive approach used in the literature, and Appendix G

various corrections to the phase-space integrals that are not

the focus of this work.

II. EFFECTIVE FIELD THEORY

The main advantage of an EFT approach to the evaluation

of RC to nuclear β decay is that the different scales inherent to

the problem can be taken into account in a systematic manner.

While the overall scale is set by GF q2
ext, where GF denotes

the Fermi constant [62] and qext the low scale of the order of

the QEC value of the reaction, the relevant energies for RC

range from the EW scale over hadronic scales down to qext.

The different regimes are as follows:

(1) Low-energy scales: qext ≃ me ≃ E0, with the electron

endpoint energy E0 = QEC − me.

(2) Nuclear scales: γ ≃ R−1 ≃ Mπ ≃ kF =O(100 MeV),

with pion mass Mπ , nucleon binding momentum γ ,

inverse nuclear radius R−1, and the Fermi momentum

kF .

(3) Chiral/hadronic scales: �χ ≃ 4πFπ ≃ mN ≃ 1 GeV,

where �χ denotes the cutoff scale of chiral perturba-

tion theory (χPT) (the pion decay constant is taken

in the conventions Fπ = 92.3 MeV), coinciding with

typical hadronic scales of the order of the nucleon

mass mN .

(4) EW scale: MW ≃ 100 GeV.

The matching scales in the EFT for the different regions

are denoted by µext, µπ , µχ , and µW , respectively, see Fig. 1

for an illustration of the different scales. They satisfy the

hierarchy

qext ≪ Mπ ≪ �χ ≪ MW , (3)

leading us to define expansion parameters

ǫrecoil = O

(

qext

�χ

)

, ǫ/π = O

(

qext

Mπ

)

, ǫχ = O

(

Mπ

�χ

)

,

(4)

in terms of which we will organize the RC, together with the

respective scaling in the fine-structure constant α = e2/(4π ).

To reach the required precision at the 10−4 level, one needs the

RC at O(α), O(αǫχ ), O(αǫ/π ), but also some leading O(α2)

contributions, including leading logarithms (LL) and next-to-

leading logarithms (NLL), O(α2L2) and O(α2L) with L ≃
log MW /�χ or log �χ/qext, respectively, as well as Coulomb-

and Z-enhanced corrections.

To capture all these effects related to multiple different

scales, one needs to use a tower of EFTs, as done for meson

decays [63,64] and neutron decay [46,65]. In this section, we

provide a detailed account of the various EFTs and the power

counting, starting with the contributions from hard photons.

A. Hard photon contributions

We begin by discussing the important contributions that

arise from the exchange of hard photons, i.e., photons with

virtuality �2
χ � Q2 � M2

W . Between the EW scale and the

hadronic scale, the relevant EFT is the Fermi theory ob-

tained by integrating out the heavy Standard Model particles,

commonly referred to as low-energy EFT (LEFT) [66]. The

relevant part of the LEFT effective Lagrangian reads

LLEFT = −2
√

2GFVud Cr
β (µ) ēLγµνL ūLγ µdL + H.c. (5)

Here GF is implicitly understood to be defined from muon

decay [62], absorbing a set of RC, and the Wilson coefficient
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FIG. 1. Hierarchy of scales in the EFT. The left panel summarizes the different EFTs and their interactions, the right panel the associated

photon modes.

Cr
β (µ) encodes the RC due to hard photons. The correspond-

ing anomalous dimension is known to O(α) [67], O(α2) [46],

and O(ααs) [67], and the RG equations allow one to evaluate

Cr
β (µ) at the hadronic scale µ ≃ µχ , thus resumming the LL

and NLL of the ratio MW /�χ . This correction is universal for

all hadronic β decay processes.

At the hadronic scale, we next match onto an EFT written

in terms of nucleons, pions, light leptons, and photons [65,68],

according to the exact and broken symmetries of low-energy

EW interactions, QED, and QCD. We give more details of

this chiral EFT below, but here we already present a few key

interactions that will be necessary. We focus on the effects

induced by hard photons in single-nucleon (N), mesonic, and

nucleon-nucleon (NN) interactions.

First, the leading-order (LO) EW one-body (1b) La-

grangian is

L1b
W = −

√
2GFVud ēLγµνLN̄ (gV v

µ − 2gASµ)τ+N + · · · ,

(6)

in terms of the nucleon NT = (p, n) isodoublet, the nucleon

four-velocity vµ and spin Sµ, and isospin Pauli matrices τ a. In

the nucleon rest frame, v
µ = (1, 0), and Sµ = (0, σ/2), with

σ the spin Pauli matrices. The ellipsis denotes omitted terms

involving pion fields or of higher order in ǫχ . At this level,

the effects of hard photons are captured in the deviation of

the (scale-dependent) vector coupling gV (µ) from one (and

gA(µ) from g
QCD
A [65]). The vector coupling gV (µ) can be

represented as follows [46]:

gV (µ) = Ũ (µ,µχ )

[

1 + �
V

had(µ0) −
α(µχ )

2π
κ

(

µ

µ0

,
µ0

µχ

)]

×
(

1 +
α(µχ )

π
B(a)

)−1

U (µχ , µW ) Cr
β (µW ). (7)

From right to left, the terms appearing in the above expres-

sion represent contributions of virtual photons of decreasing

virtuality. Cr
β (µW ) is the LEFT Wilson coefficient defined in

Eq. (5), evaluated at the weak scale µW ≃ MW . The function

U (µχ , µW ) encodes the RG evolution from µW down to µχ

and sums the LL and NLL of MW /�χ . The term involving

B(a) is a scheme-dependent quantity that enters the match-

ing onto χPT [46]. Similarly, both U (µχ , µW ) and Cr
β (µW )

depend on the arbitrary parameter a, while the product of

these three factors is scheme independent. The terms in square

bracket in Eq. (7) represent the contributions to gV from

matching LEFT onto chiral EFT. This involves a perturbative

term

κ

(

µ

µ0

,
µ0

µχ

)

=
5

8
+

3

4
log

µ2

µ2
0

+
(

1 −
αs

(

µ2
0

)

4π

)

log
µ2

0

µ2
χ

(8)

and a nonperturbative contribution �
V

had(µ0), which is a sub-

tracted version of the standard γW box �V
γW of Refs. [12,13]

and can be expressed in terms of the unpolarized structure
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function T3(ν, Q2) (ν ≡ q0, Q2 ≡ −q2) as follows:

�
V

had(µ0) =
e2

i

∫

d4q

(2π )4

ν2 + Q2

Q4

[

T3(ν, Q2)

2mNν

−
2

3

1

Q2 + µ2
0

(

1 −
αs

(

µ2
0

)

π

)]

. (9)

The leftmost factor Ũ (µ,µχ ) in Eq. (7) encodes the running

of gV (µ) in chiral EFT, whose anomalous dimension is known

to O(α2) [46]. Note that to NLL accuracy gV does not depend

on the scales µW , µ0, and µχ , see Ref. [46] for further details.

In this work, we will need as input for the nuclear-level EFT

the value

gV (µ = Mπ± ) = 1.01494(12), (10)

where the error is dominated by the nonperturbative contri-

bution �
V

had(µ0) [46], which was evaluated with input from

Refs. [9,12–17]. It is also interesting to give gV at the nucleon

mass scale, which is related to �V
R in the traditional approach,

gV (µ = mN ) = 1.01153(12). (11)

A matching formula similar to Eq. (7) holds for the axial

effective coupling gA(µ) in Eq. (6). While details will be

given in Ref. [69], for the purposes of this analysis we note

that the short-distance (µW → µχ ) and long-distance (µπ →
µext) RG evolution factors are the same for gV and gA, so

that gA/gV is scale independent and contains nonperturbative

information from matching at the scale µ ≃ µχ and µ ≃ µπ .

Next, hard photons generate contributions to the pion chiral

Lagrangian

Lπ = 2e2F 2
π Zπ π+π− + · · · , (12)

where Zπ is a low-energy constant (LEC) determined from

M2
π± − M2

π0 = 2e2F 2
π Zπ . Diagrams involving Zπ lead to

isospin-breaking corrections to gA [65] and, as we will see

below, to RC to nuclear β decay. In this work, we define

the isospin limit by Mπ = Mπ0 , including corrections from

the pion mass splitting as generated by hard photons via

the chiral Lagrangian. For the nucleon, we did not find any

relevant isospin-breaking effects, for the numerics we use

mN = (mn + mp)/2 = 0.939 GeV.

Hard photons also generate EW 2b contact operators be-

tween nucleons at O(GF α). The interactions with the lowest

number of derivatives act in an S wave. There are two 1S0

operators, with isospin T = 1, 2, and one spin-dependent

operator connecting 1S0 and 3S1 waves. Omitting terms in-

volving pions, we can write

L2b
W = −

√
2e2GFVud ēLγµνL

[

v
µgNN

V 1N†τ+N N†N

+ v
µgNN

V 2N†τ+N N†τ 3N + 2gNN
V 3N†τ+N N†SµN

]

+ · · · . (13)

Naive dimensional analysis would indicate that gNN
V 1,V 2,V 3 =

O(�−3
χ ), but as we will discuss in more detail below, the RG

equations require the two 1S0 LECs to scale as

gNN
V 1,V 2 = O

(

1

�χF 2
π

)

. (14)

The values of these LECs are not known at present, but could

be determined in a global analysis of superallowed β decays

together with Vud , see Sec. VIII. Finally, hard photons also

lead to isospin-breaking corrections to NN strong interactions

[70,71], which play a role in the evaluation of δC .

B. Power counting in the hadronic EFT

Having integrated out hard photons, we can now investi-

gate various RC in chiral EFT with dynamical photons and

leptons. Before doing any actual calculations we would like

to identify the diagrams that give the most important contribu-

tions by formulating a power counting (PC). This is somewhat

complicated by the fact that we encounter diagrams involving

loops with virtual pions, nucleons, and photons. In the pres-

ence of more than one nucleon, we can identify three regions

for the loop momentum q:

(1) Soft: q0 ≃ |q| ≃ Mπ ,

(2) Potential: q0 ≃ q2/mN ≃ qext, |q| ≃ Mπ .

(3) Ultrasoft: q0 ≃ |q| ≃ qext ≃ M2
π/mN .

The most common loops in chiral EFT involve virtual

pions corresponding to a soft scaling for which one has to

track powers of Q ≃ Mπ ≃ γ ≃ kF . Diagrams with soft loops

can be estimated by the following PC rules:

(i) Soft: Each loop integration picks up a factor Q4/(4π )2.

Each pion or photon propagator scales as 1/Q2. Each

heavy-baryon nucleon propagator or electron propaga-

tor scales as 1/Q.

Diagrams with two nucleons in the intermediate state be-

come sensitive to a different momentum scaling. In such

diagrams the contour integration over the zeroth component

of the loop integral cannot be performed in a way to avoid all

nucleon poles so that q0 ≃ Q2/mN . The nucleon propagators

then scale as mN/Q2 ≃ 1/qext. In addition, these loops also

pick up an enhancement of 4π [72,73]. These potential dia-

grams can be counted with the PC rules

(ii) Potential: Each loop integration picks up a factor

Q5/(4πmN ). Each pion or photon propagator scales as

1/Q2. Electron propagators scale as 1/Q, but nucleon

propagators are associated with a factor mN/Q2.

As an example, let us consider an insertion of a LO

pion exchange in a diagram. It gives rise to an addi-

tional loop Q5/(4πmN ), two extra nucleon propagators ≃
(mN/Q2)2, one extra pion propagator ≃ 1/Q2, and two LO

pion-nucleon vertices ≃ (gAQ/Fπ )2. Altogether, this amounts

to g2
AQmN/(4πF 2

π ) and after identifying gA ≃ 1, Q ≃ Fπ , and

mN ≃ �χ ≃ 4πFπ we obtain g2
AQmN/(4πF 2

π ) ≃ O(1). This

counting implies that insertions of the LO strong NN potential

are not suppressed and must be resummed leading to nuclear

bound states and intermediate excited states. These iterations

lead to the red, green, and blue ovals in Fig. 2.
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FIG. 2. Representative diagrams for RC to superallowed decays in EFT. Leptons, nucleons, photons, and pions are denoted by plain,

double, wavy, and dashed lines, respectively. A blue circle denotes the insertion of the EW current, including O(α) corrections from hard

photon exchange, see Eq. (6). Black circles denotes 1b EW and EM currents and pion-nucleon vertices from the chiral Lagrangian. The red

and green ovals denote the wave functions of the initial and final nuclei, the blue oval the nuclear Green’s function.

Finally, we have diagrams in which the only external scales

involved are of O(qext) [such loops do not involve virtual

pions to O(ǫ1
/π )]. These ultrasoft loops scale similarly to soft

loops on replacing Q → qext:

(iii) Ultrasoft: Each loop integration picks up a factor

q4
ext/(4π )2. Each photon propagator scales as 1/q2

ext.

Each heavy-baryon nucleon propagator or electron

propagator scales as 1/qext.

Let us now apply these PC rules to the diagrams in Fig. 2

starting with diagram 2(a). This diagram involves at LO just

the single nucleon β-decay vertex proportional to GF . In addi-

tion, there appear A + 1 intermediate nucleon propagators and

A − 1 loop integrations but these are common to all diagrams

and can be omitted when estimating their relative importance.

We thus estimate

Aa ≃ O(GF ). (15)

Diagram 2(b) involves (apart from the blue oval which counts

as O(1), see above) one ultrasoft loop because the loop mo-

menta can always be routed in such a way that the electron, the

photon, and one nucleon propagator only become sensitive to

the external scale qext. With respect to Aa, this diagram then

picks up one ultrasoft loop q4
ext/(4π )2, two insertions of the

charge ≃ e2, and the combinations of one ultrasoft electron,

one photon, and on nucleon propagator that become 1/q4
ext.

Altogether we obtain

Ab ≃ O

(

GF

α

π

)

. (16)

However, explicit calculation shows that part of the diagram

is actually enhanced by a factor π2 leading to O(GF α π )

contributions. These π2-enhanced terms are usually collected

in the Fermi function [74], while the terms following the PC

estimates are collected in the Sirlin function [75]; see Sec. V

for the matching to the traditional notation.

We emphasize that trying to account for numerical fac-

tors in the PC is only possible in case there are universal

features of certain topologies, e.g., the factors of 4π that

can be associated with NN loops [72,73], but, in general, the

PC cannot be expected to capture numerical enhancements

of dimensionless integrals.1 Another example for the intrica-

cies of such π -enhanced contributions concerns the multiple

scattering series in pion-deuteron and NN scattering [79–83],

for which Coulombic pion propagators produce π2-enhanced

contribution that do not correspond to a special momentum

scaling. For that reason, we only consider the universal 4π

factors mentioned above, while other enhanced contributions,

such as the numerical enhancement in the Fermi function,

require explicit calculations.

Next, in diagram 2(c) the additional loop can be either

ultrasoft or potential. Let us first consider the ultrasoft scaling,

in which case the extra loop gives q4
ext/(4π )2, the vertices

again e2, the electron and photon propagator are both ultrasoft

and give rise to 1/q3
ext. The extra nucleon propagator, however,

has potential scaling and picks up mN/Q2. This implies

Aus
c ≃ O

(

GF

α

π

qextmN

Q2

)

= O

(

GF

α

π

)

, (17)

where we again identified qext = Q2/mN . Accordingly, the

ultrasoft part of diagram 2(c) thus appears at the same order

as diagram 2(b), and we will show that the sum of these di-

agrams amounts to the Fermi and Sirlin functions. Assuming

potential scaling instead, the extra loop in diagram 2(c) gives

Q5/(4πmN ), the vertices e2, the photon and electron propa-

gator combined 1/Q3, and the nucleon propagator mN/Q2.

1In some cases, e.g., triangle diagrams for isospin-breaking correc-

tions to pion-nucleon scattering [76–78], π enhancements that one

might be able to guess from the topology of the diagram can be

further accompanied by large numerical prefactors, which can only

be found by an explicit calculation.
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This would combine to a PC scaling O(GF α) as well, but

it turns out that the actual diagram vanishes unless one loop

momentum picks up an external scale, which costs a power

qext/Q = ǫ/π . This implies the nonvanishing part of the dia-

gram becomes

A
pot,ǫ/π

c ≃ O(GF α ǫ/π ). (18)

Instead of using an external scale, we can also use a next-to-

leading (NLO) EM vertex, which brings in a power Q/�χ =
ǫχ . In that case the diagram scales as

A
pot,ǫχ

c ≃ O(GF α ǫχ ). (19)

Both assigned scalings of A
pot
c contribute at the order in which

we are interested and we will compute the effects of these

diagrams explicitly below. We can finally consider the con-

tribution to diagram 2(c) from ultrasoft photons coupling to

NLO EM and weak vertices, e.g., to the nucleon magnetic

moment. These NLO vertices scale as qext/mN ≃ qext/�χ so

that

Aus,NLO
c ≃ O

(

GF

α

π

qext

�χ

)

= O

(

GF

α

π
ǫrecoil

)

, (20)

which are thus beyond the order of this calculation.

Turning to diagram 2(d), we encounter one additional po-

tential loop. There is no ultrasoft contribution due to the pion

propagator. The diagram involves an EM contribution to the

pion-mass splitting that scales as �M2
π = O(e2�2

χ/(4π )2).

In addition, we have one potential loop ≃ Q5/(4πmN ), one

nucleon propagator mN/Q2, the pion propagator ≃ �M2
π/Q4,

and the combination of weak and strong pion vertices

GF Q/F 2
π . As in diagram 2(c), the contribution vanishes unless

we consider one external momenta, or a subleading vertex

from the chiral Lagrangian. Together, we then obtain

Ad ≃ O(GF α ǫ/π , GF α ǫχ ), (21)

and thus the same scaling as A
pot
c . Moreover, the parts of

diagrams 2(c) that scale as O(GF α ǫχ ) lead to divergences

that must be absorbed by diagram 2(e). With the scaling of

the LECs in Eq. (14), one obtains

Ae ≃ O(GF α ǫχ ), (22)

of exactly the right size to be able to absorb the divergence.

We now turn to the diagrams on the second line of Fig. 2.

Diagram 2(f) involves two additional loops. The first loop is

a potential loop, but in the second loop the nucleon pole can

always be avoided and thus this loop acquires soft scaling.

Putting all factors together we obtain

A f ≃ O
(

GF α ǫ2
χ

)

, (23)

beyond the accuracy we consider.

Diagram 2(g) involves two photon exchanges. If both loops

have potential scaling, then we obtain corrections that scale as

Ag ≃ O(GF α2). (24)

Since, numerically, α ≃ ǫ/π , we have to consider such cor-

rections. In the ultrasoft limit one would naively obtain an

additional suppression by (4π )2, but again we find enhanced

terms that will contribute to the Fermi function. In fact, only

the combination of potential and ultrasoft contributions will

lead to regulator-independent results.

Diagrams 2(h) and 2(i) involve three-body (3b) corrections.

Assuming two potential loops in diagram (h) leads to an

assigned scaling Ah ≃ O(GF αǫχ ) and Ai ≃ O(GF α2) and

thus potentially relevant. We will see that, similarly to Ag,

Ai is connected to the Fermi function. While Ah seems po-

tentially relevant as well, it must be emphasized that the PC

for three-nucleon processes is not very well tested. Our PC

follows Ref. [84], but using the rules of Refs. [85,86] would

demote Ah ≃ O(GF αǫ2
χ ), and the latter scaling was borne out

explicitly in calculations of 3b corrections to nuclear electric

dipole moments [87,88]. For this reason, we will not explicitly

compute the 3b corrections in this work, but stress that it

would be interesting and important to verify their sizes.

Finally, we also remark on PC estimates for δC . Generaliz-

ing the theorems from Refs. [89–91], it was shown in Ref. [48]

that there are no first-order corrections, and therefore δC scales

with O(α2). A diagram with two Coulomb photon exchanges

would have two potential loops, four nucleon propagators, and

e4/Q4 from the photons combining to O(GF α2m2
N/k2

F ), and

thus be sizable. NLO correction in which the Coulomb ex-

change e2/Q2 is replaced by e2/�2
χ [70,71] would then appear

at O(GF α2) and could thus still be relevant. Ultimately, the

counting of such corrections to Coulomb photon exchanges

depends on the way in which δC is evaluated in practice, in

particular, which corrections are included in the employed

nuclear wave functions.

We conclude our discussion of the PC with a summary of

the main observations, see Ref. [8]:

(1) Ultrasoft modes in diagrams 2(b) and 2(c) contribute

to the Fermi and Sirlin functions, while corrections

beyond these functions are suppressed by O(αǫrecoil),

and therefore do not have to be considered.

(2) Potential modes in diagram 2(c) scale like O(αǫ/π )

and O(αǫχ ) relative to LO, and therefore need to be

included.

(3) Soft modes first contribute suppressed by O(αǫ2
χ ), and

thus will not be considered.

(4) Hard modes generate several relevant contributions:

(i) O(α) corrections to gV ; (ii) O(αǫχ ) two-nucleon

contact terms gNN
V 1,V 2 needed to absorb divergences in-

duced by potential modes; (iii) O(αǫ/π , αǫχ ) effects

via the pion mass splitting.

(5) There are sizable two-photon-exchange diagrams that

scale as O(α2) compared to the LO contribution, and

thus have to be considered. Potential, soft, and ultrasoft

scalings are relevant for these contributions.

Accordingly, the dominant contributions to be combined

into δNS can be evaluated as the matrix element of EW po-

tentials between the initial and final nuclear states, and these

effects will be described in detail in Sec. III, while the role of

ultrasoft contributions will be discussed further in Sec. IV.

O(α2) corrections are particularly important to justify the

factorization of the decay rate, see Sec. V. Moreover, the

interplay of potential and ultrasoft modes becomes crucial to

obtain regulator-independent results.
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C. Nuclear β decay in EFT

In chiral EFT with dynamical photons and leptons, the

starting point for the calculations of nuclear decay amplitudes

is the Hamiltonian obtained after integrating out pions and

photons with momenta that have soft and potential scaling,

only ultrasoft photons are left as dynamical degrees of free-

dom. The Hamiltonian takes the schematic form

Heff = Hnucl + HEM + HEW. (25)

Hnucl contains the nucleon kinetic terms and the strong inter-

action potentials, up to a given chiral order. HEM contains EM

interactions

HEM = HQED +
A

∑

i=1

eAµ
vµ

(

1 + τ (i)3

2

)

+ · · · , (26)

where HQED is the QED Hamiltonian describing interactions

of electrons and photons. The last term is the LO nucleon

coupling to ultrasoft photons, with the ellipsis representing

suppressed terms such as magnetic moment and other recoil

terms (see, for example, Ref. [92]). The EW Hamiltonian is

given by

HEW =
√

2GFVud ēLγµνL J
µ

W ,

J
µ

W =
A

∑

n=1

(gV δµ0 − gAδµiσ (n)i )τ (n)+ + (J 2b)µ + · · ·

+ δµ0
(

V0 + E0V
0
E

)

+ δµiVi + pµ
e Vme

+ · · · . (27)

The first two contributions to the weak nuclear current J
µ

W

represent the standard 1b and 2b terms, while the ellipsis

refers to higher-order terms such as weak magnetism. The

remaining contributions, in the last line in Eq. (27), represent

the weak 2b currents of order O(αǫ/π , αǫχ ), also called weak

potentials in what follows. These are induced by integrating

out hard, soft, and potential photons, while the ellipsis denotes

terms further suppressed in ǫχ and ǫ/π . Accordingly, the weak

nuclear current J
µ

W takes the general form

J
µ

W =
∑

i

C
(i)
W (µ)

(

J
(i)

W

)µ
(28)

in terms of scale-dependent effective couplings C
(i)
W (µ) =

{gV (µ), gA(µ), gNN
V 1,V 2(µ), . . .} that include EM effects due

to hard, soft, and potential photons multiplying one- and

few-nucleon operators (J
(i)

W )
µ

. The matrix elements of these

operators, dressed by ultrasoft photon exchanges according

to Eq. (26), evaluated between initial and final nuclear

states, eventually determine the RC to nuclear β decays, see

Sec. V. In the next two sections, we describe the derivation

of the operators (J
(i)

W )
µ

, their matrix elements, and their

anomalous dimensions controlling the evolution of C
(i)
W (µ)

for qext < µ < kF .

III. POTENTIAL CONTRIBUTIONS

A. Electroweak potentials at O(αǫχ) and O(αǫ/π )

Topologies such as diagram (c) in Fig. 2 receive contri-

butions from the potential region, for which the transition

operator reduces to a 2b current, or EW potential. At lowest

order, the potentials are calculated from tree-level diagrams,

with the above assumptions on the scaling of the photon mo-

mentum. The tree-level diagrams built from the LO and NLO

chiral Lagrangian are shown in the first and second row of

Fig. 3, respectively, with diagrams (a0)–(c0) formally giving

the leading contribution at O(α). Considering diagram (a0)

first, in the potential region the photon three-momentum qγ is

much larger than the external momenta, and we can thus ex-

pand the diagram in powers of |pe|/|qγ |. Since the one-body

LO vector and axial currents are momentum independent,

because of the structure of the lepton propagator, the diagram

is odd in photon three-momentum qγ , and thus its matrix

element vanishes in 0+ states. Similarly, diagrams (b0) and

(c0) are odd in qγ and we therefore find no correction at O(α).

The first nonvanishing contribution to the EW potentials in

Eq. (27) from the diagrams in the first row of Fig. 3 is propor-

tional to the electron or neutrino momenta pe and pν , and thus

gives rise to corrections scaling as O(αEe/Mπ ) = O(αǫ/π ).

We find

V0
E =

1

3

(

1

2
+

4Ee

E0

)

VE + Vπ
E ,

Vme
=

1

2
VE + Vπ

me
, (29)

see Appendix A for details. VE is induced by photon ex-

change, with the result

VE (q) = gV

∑

j<k

e2 1

q4

(

τ+( j)P(k)
p + P( j)

p τ+(k)
)

. (30)

Next, Vπ
E is proportional to the pion mass splitting, and it has

a more complicated structure

Vπ
E (q) =

g2
AZπe2

3

∑

j<k

(

τ+( j)τ
(k)
3 + τ

( j)
3 τ+(k)

) 1
[

q2 + M2
π

]2

×

{

σ ( j) · σ (k)

(

1 −
1

3

q2

q2 + M2
π

−
2

3

q4

(

q2 + M2
π

)2

)

+
2

3
S( jk)

(

1

2

q2

q2 + M2
π

+
q4

(

q2 + M2
π

)2

)}

,

Vπ
me

(q) = −
g2

AZπe2

3

∑

j<k

(

τ+( j)τ
(k)
3 + τ

( j)
3 τ+(k)

) 1
[

q2 + M2
π

]2

×

{

σ ( j) · σ (k)

(

1 −
4

3

q2

q2 + M2
π

−
2

3

q4

(

q2 + M2
π

)2

)

+
2

3
S( jk)

(

2
q2

q2 + M2
π

+
q4

(

q2 + M2
π

)2

)}

, (31)

with

P( j)
p,n =

1
( j) ± τ

( j)
3

2
,

S( jk) = σ ( j) · σ (k) −
3q · σ ( j) q · σ (k)

q2
. (32)
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FIG. 3. Lowest-order diagrams contributing to the EW potentials V0
E , Vme

, and V0. Single, double, and dashed lines denote leptons,

nucleons, and pions, respectively. Dots and circled dots refer to interactions from the LO and NLO chiral Lagrangians, diamonds to

isospin-breaking interactions.

The initial and final momenta of nucleon j are labeled by

p j and p′
j , respectively, with q = p j − p′

j = −(pk − p′
k ) and

P j = p j + p′
j . In momentum space these potentials scale as

O(e2qext/k4
F ) and contribute to δNS to O(αǫ/π ) [recall that

the LO diagram (a) in Fig. 2 when evaluated between two

nucleons scales as O(1/k3
F )]. The EW potentials in coordinate

space are given in Appendix B. The potentials induced by the

pion mass splitting are given in agreement with our conven-

tions for the isospin limit, defined by the mass of the neutral

pion. If the isospin-symmetric calculation is performed for a

different choice of the pion mass, then all potentials depending

on Zπ need to be adapted accordingly.

The momentum dependence of the photon-nucleon inter-

actions in the NLO chiral Lagrangian, given, for example,

in Ref. [92], allows one to build potentials that are inde-

pendent of the lepton energy and momentum. Focusing on

spin/isospin structures that give nonvanishing contributions

to 0+ → 0+ superallowed β decays, we can write

V0 = V
mag

0 + V rec
0 + VCT

0 . (33)

The magnetic potential is induced by diagram (a1), while

the recoil potential receives contributions from both photon

exchange and the pion mass splitting, see diagrams 3 (a1),

(b1), and (c1). We find

V
mag

0 (q) =
∑

j<k

e2

3

gA

mN

1

q2

(

σ ( j) · σ (k) +
1

2
S( jk)

)

×
[

(1 + κp)τ+( j)P(k)
p + κnτ

+( j)P(k)
n + ( j ↔ k)

]

,

(34)

V rec
0 (q, P) =

∑

j<k

[

− i
e2gA

4mN

τ+( j)P(k)
p

q4
((P j − Pk ) × q) · σ ( j)

−
Zπe2g2

A

mN

τ+( j)τ
(k)
3

(

q2 + M2
π

)2
σ ( j) · q σ (k) · P j

+( j ↔ k)

]

, (35)

where κp = 1.79, κn = −1.91 are the proton and neutron

anomalous magnetic moments. The coordinate-space ex-

pression of Eqs. (34) and (35) is given in Sec. VI and

Appendix B. V
mag

0 has a Coulombic scaling, ≃1/q2, with

an isospin-one/-two component proportional to (1 + κp) ±
κn, respectively. In momentum space this class of po-

tentials scales as O(e2/(k2
F �χ )) and contributes to δNS

at O(αǫχ ).

When applied to 1S0 wave functions obtained at LO in

chiral EFT, the Coulomb-like potential in Eq. (34) gives rise

to nuclear matrix elements that are logarithmically dependent

on the ultraviolet (UV) cutoff used in the solution of the

Lippmann-Schwinger or Schrödinger equation [56,57]. This

signals sensitivity to UV physics, related to the exchange of

hard photons with virtual momenta larger than �χ , which

can be absorbed by the 2b short-range operators in Eq. (13).

To properly renormalize nuclear matrix elements, gNN
V 1,V 2 need

to scale as O(1/(F 2
π �χ )). Their contribution to the effective

Hamiltonian is

VCT
0 = e2

(

gNN
V 1O1 + gNN

V 2O2

)

, (36)

where

O1 =
∑

j �=k

τ+( j)
1

(k), O2 =
∑

j<k

[

τ+( j)τ
(k)
3 + ( j ↔ k)

]

.

(37)

Following essentially the same steps discussed in

Refs. [56,57] we can derive the cutoff dependence of

gNN
V 1,V 2. First, we introduce the dimensionless couplings

g̃NN
V 1,V 2 as

gNN
V 1,V 2 =

1

mN

(

mNC1S0

4π

)2

g̃NN
V 1,V 2, (38)

where C1S0
= 3CT − CS is the LO NN contact interaction in

the 1S0 channel. At LO in chiral EFT, the RG equations for

g̃NN
V 1,V 2 are the same in dimensional regularization and several
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FIG. 4. Diagrams contributing to the O(α2) 2b and 3b potentials. The diagrams in the top line receive contributions from one soft and one

potential photon. In the 3b diagrams, both photons follow potential scaling.

cutoff schemes [57] and are given by

dg̃NN
V 1

d log µ
= −gA(1 + κp + κn) = −1.12,

dg̃NN
V 2

d log µ
= −gA(1 + κp − κn) = −5.99, (39)

where µ denotes the renormalization scale in the MS or

power-divergence-subtraction schemes, or the UV cutoff

scale. Beyond LO, the RG equations depend more explicitly

on the chosen scheme.

B. The α2 potential

At the precision of O(10−4) required for the analysis of

superallowed β decays, it is important to also consider sub-

leading corrections in α. We focus here on O(α2) corrections,

which have an interplay with ultrasoft corrections that are

enhanced by Z2 log µext/µπ or Z log µext/µπ . The diagrams

in Fig. 4 generate 2b and 3b O(α2) potentials whose matrix el-

ements are proportional to Z and Z2. Subtracting the ultrasoft

limit of the same diagrams, as discussed in Appendix C, the

diagrams in Fig. 4 induce O(α2) corrections to the potential

V0. These potentials can be captured by

V0 → V0 + CδVδ + C3b
δ V3b

δ + C+V+ + C3b
+ V3b

+ . (40)

The diagrams in the first line of Fig. 4 induce the 2b potentials

Vδ (q) =
∑

j<k

(2π )3δ(3)(q)
(

τ+( j)P(k)
p + τ+(k)P( j)

p

)

,

V+(q,�) =
∑

j<k

4π2

[q2]
3
2

+,�

(

τ+( j)P(k)
p + τ+(k)P( j)

p

)

, (41)

where the + distribution is defined as
∫

d3q

(2π )3

1

[q2]
3
2

+,�

f (q)

=
∫

d3q

(2π )3

1

[q2]
3
2

( f (q) − θ (�e−γE +1 − |q|) f (0)). (42)

We calculate the diagrams in dimensional regularization,

with d = 4 − 2ǫ, and work in the MSχ scheme defined in

Appendix C. In this scheme, the matching coefficients are

given by

Cδ = −gV (µ)
α2

2

(

log
µ2

�2
−

13

8
+ 2γE

)

, (43)

C+ = gV (µ)
α2

2
. (44)

The + distribution depends on an arbitrary subtraction scale

�, which, for convenience, we multiplied by the factor

exp(−γE + 1). When calculating matrix elements, the depen-

dence on the subtraction scale � cancels out between Cδ and

V+. It is instructive to also give the potentials in coordinate

space

Vδ (r) =
∑

j<k

(

τ+( j)P(k)
p + τ+(k)P( j)

p

)

, (45)

V+(r,�) = −
∑

j<k

log
(

r2
jk�

2
)(

τ+( j)P(k)
p + τ+(k)P( j)

p

)

, (46)

where r jk = |r j − rk|.
The 3b potential is derived in Appendix C. For this discus-

sion, the most important contribution has the form

V3b
δ =

∑

i �= j �=k

τ+(i)P( j)
p P(k)

p (2π )3δ(3)(q j )(2π )3δ(3)(qk ), (47)

with matching coefficient

C3b
δ = −gV (µ)α2

(

1

4
log

µ2

�2
+

γE

2
−

3

8

)

. (48)

In coordinate space, V3b
δ assumes the simple form

V3b
δ (r) =

∑

i �= j �=k

τ+(i)P( j)
p P(k)

p . (49)
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V3b
+ depends on the logarithm of the nucleon distances and, in

coordinate space, it is given by

C3b
+ V3b

+ (r,�) = −gV (µ)
α2

2

∑

i �= j �=k

log

[

�

2
(ri j + rik + r jk )

]

× τ+(i)P( j)
p P(k)

p . (50)

The momentum-space expression is given in Eqs. (C16) and

(C20). As for the 2b potential, the dependence on the sub-

traction scale � cancels between V3b
δ and V3b

+ . The matrix

elements of Vδ and V3b
δ are given in terms of Fermi matrix

elements, and the sum over the additional nucleons induces

factors of Z and Z2. For β+ decays, we have

〈 f |Vδ|i〉 = ZM
(0)
F ,

〈 f |V 3b
δ |i〉 = Z (Z − 1)M

(0)
F , (51)

while for β−

〈 f |Vδ|i〉 = (Z − 1)M
(0)
F ,

〈 f |V 3b
δ |i〉 = (Z − 2)(Z − 1)M

(0)
F , (52)

where Z is the charge of the final-state nucleus.

IV. ULTRASOFT PHOTONS

After integrating out the soft and potential photon modes

we obtain a theory that features ultrasoft photons as dynamic

degrees of freedom, augmented by the potentials collected

in HEW, see Eq. (27), discussed in the previous section. The

obtained potentials can be seen as the matching coefficients

between the two theories. To minimize the logarithms that

appear in these coefficients, it is natural to perform the match-

ing at a scale µπ ≃ R−1 ≃ kF , as can be seen explicitly from

the arguments of the logarithms in Eqs. (43)–(46) and (48)–

(50). The remaining steps are then the evolution of the weak

currents (J
(i)

W )
µ

and their coefficients C
(i)
W from µ ≃ µπ to

µ ≃ µext and the computation of the matrix element at the

low-energy scale.

A. Evolution to µ ≃ µext

The anomalous dimension of gV , which determines its RG

equation, is known to O(α2) and equivalent to the case of

neutron decay. New divergences appear when going beyond

the 1b sector, which are sensitive to the charge of the external

states and lead to enhancement factors of the charge of the

final-state nucleus, Z . One finds that exchanges of ultrasoft

photons between the electron and additional nucleon lines

generate interactions proportional to factors of the conserved

charge

Q ≡
∫

x

N̄QN (x), Q =
1+ τ3

2
, (53)

where
∫

x
=

∫

d3x. These contributions are divergent and re-

quire the inclusion of additional interactions that can be

written as

HEW =
√

2GFVud ēLγµνL

[ ∞
∑

n=0

c
(i,n)
W (µ)Qn

]

(

J
(i)

W

)µ
,

(

J
(i)

W

)µ =
{

v
µτ+, vµV0, vµE0V

0
E , pµ

e Vme
, vµV+, vµV3b

+
}

,

(54)

with the label i running over the type of 1b, 2b, and 3b

interactions, i = {gV ,V0, V0
E , Vme

,V+,V3b
+ }. The appearance

of the Qn operators gives rise to factors of Zn when acting

on the final state. The matching of the previous section mostly

induces the interactions with n = 0, while, for i = gV , also the

n = 1 and n = 2 terms are generated, corresponding to Vδ and

V3b
δ .

As discussed in Appendix D, after dressing the c
(i,n)
W with

additional ultrasoft photons exchanges one obtains diver-

gences that are canceled by the counterterms of the c
(i,m>n)
W

interactions. These effects lead to an RG equation for the

effective coupling, C
(i)
eff (µ) ≡

∑∞
n=0 c

(i,n)
W Zn, which is the com-

bination that appears in the matrix element.

Through O(α2Z2 log kF

me
) and O(α2Z log kF

me
) we have

dC
(i)
eff (µ)

d log µ
= γ (i)C

(i)
eff (µ),

γ (gV ) =
α

π
γ̃0 +

(

α

π

)2

γ̃1 + [
√

1 − α2Z (Z ± 1) − 1],

γ (V0,Vme ,V+ ) = [
√

1 − α2Z (Z ± 1) − 1] + O(αZ0),

γ (V0
E ) = [

√

1 − α2Z2 − 1] + O(α2Z, αZ0), (55)

for β± decays. The quantities

γ̃0 = −
3

4
, γ̃1 =

5ñ

24
+

5

32
−

π2

6
, (56)

with ñ = 1 for µ � Mπ , are the one- and two-loop anomalous

dimensions of gV , while the terms in square brackets capture

the effect from the c
(i,n>0)
W coefficients. The matching of the

previous section then gives the following boundary conditions

at µ = µπ :

C
(gV )

eff = gV

[

c
(gV ,0)
W + Zc

(gV ,1)
W + Z2c

(gV ,2)
W

]

,

c
(gV ,0)
W = 1 + (−1 ± 1)

(

1
2
Cδ − C3b

δ

)

,

c
(gV ,1)
W = Cδ − 2C3b

δ ± C3b
δ , c

(gV ,2)
W = C3b

δ ,

C
(V+ )

eff = C+, C
(V3b

+ )

eff = C3b
+ , C

(V0,Vme ,V
0
E )

eff = 1. (57)

As can be seen from Eq. (55), we do not control the

Z-independent O(α, α2) pieces for i ∈ {V0, Vme
,V+,V3b

+ }.
In addition, although the c

(i,n>0)
W coefficients affect most of

the 1b and 2b interactions in the same way, this is not the

case for the energy-dependent potential, i = V0
E . Due to its

different leptonic structure,2 we expect γ (V0
E ) to differ start-

ing at O(α2Z ), as indicated in Eq. (55). These uncontrolled

anomalous dimensions only affect the potentials that appear

2Its momentum dependence affects the loop integrals that deter-

mine the anomalous dimensions. One can show that, to O(αnZn), the

effect reduces to the previous integrals multiplied by Ee, thanks to the

δ functions of the internal photon energies discussed in Appendix D.

However, this is not guaranteed to hold at subleading powers in Z .

These potentials include ultrasoft photon vertices through the covari-

ant derivative, ēLv · ←−
D γ0νL , which we expect to affect the anomalous

dimension at O(α2Z ).
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at O(αǫχ ) or O(αǫ/π ), so that their contributions are expected

to appear beyond the order at which we work.3 The above RG

equation can be solved to give

C
(i)
eff (µ) = U (i)(µ,µπ )C

(i)
eff (µπ ), (58)

which allows us to evolve the Hamiltonian from the scale

µπ ≃ kF down to µext ≃ me. The explicit form of the kernel

U (gV ) is given in Eq. (E11) in Appendix E.

The RG equations in Eq. (55) capture large logarithms to

order (α2Z2L)n for all effective couplings, to order (α2ZL)n

for C
(i)
eff with i ∈ {gV ,V0,Vme

,V+,V3b
+ }, as well as terms of

order (αL)n and (α2L)n for C
(gV )

eff . In the traditional approach,

the first series is included in the standard Fermi function

F , via logarithms of a fixed and somewhat arbitrary nuclear

radius R, see Eq. (G2). The first (n = 1) term in the second

series reproduces the logarithmic term in the α2Z correction

first identified in Ref. [93], and included in the δ2 correction

to δ′
R [94,95]. Finally, the (αL)n series is resummed in δ′

R

[96]. In principle, additional contributions to the anomalous

dimensions, at higher order in α or subleading in Z , are known

as well [97]. To consistently include their effects, however,

would require higher-order terms in the matrix element at µext

and the matching at the scale µπ . For example, including the

O(α3) anomalous dimension would also require the matching

and matrix element to O(α2). Exceptions are the O(α3Z3)

and O(α3Z2) contributions to Eq. (55). Due to the fact that

there are no O(αZ ) terms in γ (i) we do not need knowledge of

O(α2Z ) contributions to the matrix element in order to control

all O(α3Z2L) terms. The relevant anomalous dimensions have

been computed in Refs. [97,98] and add to Eq. (55) as

δγ (i) =
α3

4π
Z2

(

6 −
π2

3

)

, i ∈
{

gV ,V0,Vme
,V+,V3b

+
}

,

(59)

where a possible O(α3Z3) term vanishes. Here δγ (i) captures

terms at the same order as corrections that are usually included

in δ3 [95,99]. We will refrain from including this anomalous

dimension in the explicit example of 14O discussed in Sec. VI,

as its effects are O(10−5), and smaller than the uncertainty due

to missing O(α2Z ) terms discussed below.

B. The amplitude at µ ≃ µext

The final step is the calculation of the amplitude generated

by the operators evaluated at µ ≃ µext,

−A = 〈 f eν̄|HEW|i〉 =
√

2GFVud

∑

i

C
(i)
eff (µ)M(i)(µ),

M(i) = 〈 f eν̄|(ēLγµνL )
(

J
(i)

W

)µ|i〉. (60)

Here the M(i) involve the matrix elements of the usual 1b

operator and the subleading potentials in (J
(i)

W )
µ

, while the

large logarithms and the effects of the c
(i,n)
W are captured

3Note, however, that the leading terms can have a significant effect

since α2Z2 log Mπ

me
≃ 0.4 for Z = 37 in the case of the heaviest nuclei

considered in Ref. [3].

by C
(i)
eff . As the M(i) do not involve large logarithms, one

might expect an evaluation to O(α/(4π )) to be adequate, as

two-loop corrections scaling as O(α2/(4π )2) would be below

O(10−4). However, as is well known, certain loop contribu-

tions related to the Fermi function are enhanced with respect

to this expectation by factors of π2 and Z , which requires us

to take into account certain classes of higher-loop diagrams.

1. Ultrasoft loop contributions

We can consider the loop expansion for each of the matrix

elements, M(i) = M
(i)
0 + M

(i)
1 + · · · , where M(i)

n captures

the effects of n-loop diagrams involving ultrasoft photons. To

illustrate the structure of these contributions we first focus on

the topologies of Figs. 2(b) and 2(c) at one loop. The class

of diagrams in which the photon connects the electron and

nuclear lines leads to the following amplitude (in Feynman

gauge):

M
(i)
1 =

∑

n

∫

d4q

(2π )4
Lµν (q)

{

〈 f |
(

J
(i)

W

)µ|n〉〈n|J ν |i〉
Ei − En + q0 + iǫ

+
〈 f |J ν |n〉〈n|

(

J
(i)

W

)µ|i〉
E f − En − q0 + iǫ

}

,

Lµν (q) = ie2ū(pe)γν

/pe
+ /q + me

(pe + q)2 − m2
e + iǫ

γµPLv(pν )

×
1

q2 + iǫ
, (61)

where J ν is the EM current, while |n〉 and En denote in-

termediate nuclear states and their energies.4 We can restrict

the integration to the ultrasoft regime by expanding both the

currents and energy denominators in q/kF . As we discuss in

more detail in Sec. IV C, the only non-negligible effects then

arise from the contributions of the LO EM current, J µ =
N̄Qv

µN . After expanding, the EM current effectively acts as

a conserved charge, so that 〈 f |Jν |n〉 = vνZδn f . The factors in

curly brackets in Eq. (61) then simplify

M
(i)
1 =

∫

d4q

(2π )4
〈 f |

(

J
(i)

W

)µ|i〉Lµν (q)vν

×
{

1

−q0 + iǫ
− 2π iδ(q0)(Z − 1)

}

. (62)

Most of the (J
(i)

W )
µ

are independent of the photon momentum,

so that the matrix elements and the ultrasoft loop factor-

ize. The exception is again the case of i = V0
E , for which

corrections to this factorization are expected to appear at

4The derivation of Eq. (61) requires few assumptions. A very sim-

ilar expression is able to capture the contributions from the soft and

potential regions if one does not perform the ultrasoft expansion in

q/kF and replaces the (J
(i)

W )
µ

with the weak current in the theory

with propagating soft pions and photons. In fact, one could derive

an analogous expression at the quark level. The expression would

involve the quark-level currents for Jµ and J
µ

W , with the intermediate

states running over all eigenstates of the QCD Hamiltonian, which

would capture the k � �χ region as well.

055502-11



VINCENZO CIRIGLIANO et al. PHYSICAL REVIEW C 110, 055502 (2024)

O(α/(4π )). Since V0
E itself contributes at O(αǫ/π ), we neglect

these corrections here.

The resulting loop integral in Eq. (62) is equivalent to

what one would obtain in a theory with nonrelativistic initial-

and final-state nuclei as degrees of freedom, discussed in

Refs. [98,100]. Here the first term in curly brackets is identical

to the contribution in the single-nucleon case. The remaining

one-loop diagrams, as well as the contributions from real ra-

diation graphs with an additional photon, ≃ M1γ , also reduce

to the case of neutron decay and scale as α/(4π ). This allows

us identify their contributions to the squared amplitude with

the same Sirlin function that appears in the 1b case, while

enhanced terms, ≃ πα/β are collected in the Fermi function,

F̄ , with Z = 1. Finally, the δ function in the second term of

Eq. (62) reduces the effects of the photon propagator to that

of a static Coulomb potential. It therefore contributes to the

Fermi function and effectively takes the O(α) Fermi function,

F̄ (Z = 1), to F̄ (Z ).

The one-loop and real-radiation corrections then combine

into
∣

∣M
(i)
0 + M

(i)
1

∣

∣

2 +
∣

∣M
(i)
1γ

∣

∣

2
d�(γ ) ∝ F̄ (β )[1 + δ̃′

R(µ)], (63)

where β = |pe|/Ee and δ̃′
R captures the effect of the Sirlin

function,

δ̃′
R(Ee, µ) =

α(µ)

2π

[

3

2
log

µ2

m2
e

+
5

4
+ ĝ(Ee, E0)

]

, (64)

ĝ(Ee, E0) = g(Ee, E0) −
3

2
log

m2
N

m2
e

, (65)

with g(Ee, E0) the Sirlin function of Ref. [75],

g(Ee, E0) =
3

2
log

m2
N

m2
e

−
3

4
+

1 + β2

β
log

1 + β

1 − β

+
1

12β

(

Ē

Ee

)2

log
1 + β

1 − β

+ 4

[

1

2β
log

1 + β

1 − β
− 1

][

log
2Ē

me

−
3

2
+

Ē

3Ee

]

−
1

β

[

4 Li2

(

2β

1 + β

)

+ log2

(

1 + β

1 − β

)]

, (66)

with Ē = E0 − Ee. To this order the Fermi function for β±

decays is given by

F̄ (β ) = 1 ∓
παZ

β
. (67)

As mentioned above, we are interested in terms beyond

the one-loop level that are enhanced by factors of π2 or Z

compared to the naive expectation of α2/(4π )2. This type of

contribution arises from ladder diagrams in which ultrasoft

photons are exchanged between the electron and the nucleus.

Within the EFT framework, these diagrams reduce to the

expressions one would obtain in a theory with nonrelativistic

initial (final) nuclei of charge Z − 1 (Z). These graphs were

computed to all orders in αnZn in exactly this formulation in

Refs. [98,100], which allows us to capture the enhanced terms.

Combined with the nonenhanced O(α/4π ) terms in the Sirlin

function, we obtain for the spin-summed squared amplitude
∑

spins

|A|2 = 4EeEν (1 + aβ · p̂ν )F̄ (β,µ)[1 + δ̃′
R(µ)]

×

∣

∣

∣

∣

∣

〈 f |
∑

i

C
(i)
eff (µ)V (i)hi(Ee)|i〉

∣

∣

∣

∣

∣

2

, (68)

where hV0
E

= E0, hVme
= m2

e/Ee, while hi = 1 otherwise. The

employed factorization between the Fermi and Sirlin func-

tions holds up to corrections of O(α2Z ). All potentials apart

from Vme
contribute equally to the electron-neutrino correla-

tion coefficient a, so that

a =

∣

∣〈 f |
∑

i �=Vme
C

(i)
eff (µ)V (i)hi(Ee)|i〉

∣

∣

2

∣

∣〈 f |
∑

i C
(i)
eff (µ)V (i)hi(Ee)|i〉

∣

∣

2
, (69)

to which we will come back in Sec. IV B 2.

After translating the results of Refs. [98,100] from MS to

MSχ , the Fermi function to all orders in Znαn is given by

F̄ (β,µ) =
4η

(1 + η)2

2(1 + η)

Ŵ(2η + 1)2
|Ŵ(η + iy)|2eπy

×
(

2|pe|
µ

e1/2−γE

)2(η−1)

, (70)

with η =
√

1 − α2Z2 and y = ∓Zα/β, which differs from

the traditionally employed Fermi function [101] by 4η/(1 +
η)2 ≈ 1 − α4Z4/16. It can be checked that the combination

|C(i)
eff (µ)|2F̄ (β,µ)[1 + δ̃′

R(µ)] is independent of µ to O(α),

O(α2), and O(αnZn).5 To simplify the expression, the scale

in the Fermi function is often chosen as µ = 1/Re1/2−γE , with

a nuclear radius R, but to keep track of the scale dependence

in a more transparent way we display the full expression (70).

As we discuss in more detail below, Eq. (68) contains

all the needed ingredients to obtain the decay rate. In this

form, the ultrasoft contributions, often referred to as outer

corrections, are captured by F̄ (β,µ)[1 + δ̃′
R(µ)], while the

evolution between µ ≃ µext and µ � µπ as well as physics

from shorter distance scales is collected in the Wilson coef-

ficients C
(i)
eff . Finally, the nuclear-structure dependence arises

from the matrix elements of the V (i), to which we will turn

next.

2. Nuclear matrix elements

In the EFT approach the required nuclear matrix elements

of the EW potentials obtained in the previous section can be

identified as contributions to δNS,
∣

∣

∣

∣

∣

〈 f |
∑

i

C
(i)
eff (µ)V (i)hi(Ee)|i〉

∣

∣

∣

∣

∣

2

≡
∣

∣C
(gV )

eff (µ)
∣

∣

2|MF |2(1 + δ̃NS), (71)

5The µ dependence from the O(αnZn−1) pieces of the anomalous

dimensions should be canceled by terms of the same order in the

Fermi function, which we currently do not control.
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where MF is the Fermi matrix element and δ̃NS is an electro-

magnetic correction that depends on the nuclear structure.

To account for isospin breaking in the nuclear states,

the Fermi matrix element is traditionally written as MF =
M

(0)
F (1 − δ̄C/2), with M

(0)
F = 〈 f (0)|τ+|i(0)〉 computed in terms

of the isospin-symmetric nuclear states |i(0)〉 and | f (0)〉.
For the nuclear structure correction, we find that

δ̃NS = δ
(0)
NS(µ) + δE

NS(Ee, µ) (72)

receives Ee-independent contributions of O(αǫχ ), as well as

Ee-dependent contributions of O(αǫ/π ). To this order, δNS is

entirely determined by matrix elements of appropriate poten-

tials between the initial and final states

δ̃NS =
2

MF

∑

i

C
(i)
eff (µ)

C
(gV )

eff (µ)
〈 f |V (i)hi(Ee)|i〉. (73)

As described above, the RG evolution is known to different

orders for the different potentials. However, as the V (i) con-

tribute at O(αǫχ,/π ), we neglect these differences and write

C
(i)
eff (µ)/C

(gV )

eff (µ) ≃ C
(i)
eff (µπ )/gV (µπ ). Similarly, MF in prin-

ciple includes isospin-breaking corrections, but to the order

we consider we can approximate the nuclear wave functions

by those in the isospin limit, i(0) and f (0), which also allows

the use of MF ≃ M
(0)
F . With these simplifications one obtains

δ
(0)
NS =

2〈 f (0)|V0 + C+V+ + C3b
+ V3b

+ |i(0)〉
gV (µπ )M

(0)
F

=
2

gV (µπ )M
(0)
F

〈 f (0)|Vmag

0 + V rec
0 + VCT

0

+ C+V+ + C3b
+ V3b

+ |i(0)〉, (74)

and

δE
NS = ∓

2

gV (µπ )M
(0)
F

〈i(0)|V0
E E0 +

m2
e

Ee

Vme
| f (0)〉

= ∓
2

gV (µπ )M
(0)
F

[

〈 f (0)|VE |i(0)〉
(

E0 + 8Ee

6
+

m2
e

2Ee

)

+ 〈 f (0)|Vπ
E |i(0)〉E0 + 〈 f (0)|Vπ

me
|i(0)〉

m2
e

Ee

]

, (75)

while the neutrino-electron correlation simplifies to

a = 1 ±
2

gV (µπ )M
(0)
F

m2
e

Ee

〈 f (0)|Vme
|i(0)〉. (76)

The upper (lower) signs in the above equations refer to β+

(β−) decays.

Before combining these ingredients to form an expression

for the decay rate in Sec. V, we first discuss the ultrasoft

effects due to subleading terms in the EM current, Jµ, and

their connection to the dispersive approach.

C. Comparison to the dispersive approach

Although the dependence on the intermediate states in

Eq. (61) disappeared in Eq. (62), this is no longer the case

when going beyond LO in Jν . In particular, contributions

from the magnetic moment allow the EM current to connect

to excited states of the initial- or final-state nucleus. This

leads to a sensitivity to the intermediate-state energies and re-

quires knowledge of overlap factors of the form 〈n|J ν
mag|i〉 ≃

ǫναβγ
vαqβ〈n|Sγ |i〉. These contributions capture similar effects

to those discussed in Refs. [4,7], in which the contributions

due to low-lying nuclear states were studied and estimated to

be sizable, due to an increased sensitivity to IR scales. In con-

trast, in the EFT we estimate the impact of intermediate states

on Ausoft as follows: First, the magnetic moment appears at

O(q/mN ). Second, the only scales appearing in the integrand

of Eq. (61) are pe ≃ me or Ei, f − En, both of the order of qext,

implying that A
mag

usoft will scale as

O

(

α

π

qext

mN

)

= O

(

α

π
ǫrecoil

)

, (77)

beyond the level of precision we need to consider.

To clarify the relation with the dispersive approach, we

considered a toy model for T3(ν, Q2) that displays all the

relevant features expected from the magnetic ultrasoft contri-

butions

iT
toy

3 (ν, Q2)

Mν
=

M

mN

gAgM

s − M̄2 + iǫ
, (78)

where s = M2 + ν2 − q2 + 2Mν, M2 − M̄2 = 2M�, and gA

(gM) parameterizes the coupling to the EW (EM) current. In

the dispersive approach, T3 enters a master formula [7] similar

to Eq. (9)6

�γW = −
e2

M
(0)
F

∫

d4q

(2π )4

M2
W

Q2 + M2
W

×
T3(ν, Q2)

(pe − q)2Q2

Q2 + Mν
pe·q
p·pe

Mν
, (79)

and for low-lying intermediate states with mass M̄, corre-

sponding to � > 0, it was found that �γW becomes singular

for Ee → 0 [4], which would call into question the EFT pre-

diction (77). Evaluating the integral (79) by summing the three

residues in the upper half plane we find

�
toy,�

γW =
3gAgM

4M
(0)
F

α

π

�

mN

log
2�

M
+ O(�2), (80)

see Appendix F for the individual residues. Accordingly, since

� ≃ qext, the result does scale as expected in Eq. (77).

However, we observe that the individual residues exhibit

divergences for Ee → 0, only the sum is again regular. Simi-

larly, in the dispersive approach one finds that the so-called

residue correction, required to be able to perform a Wick

rotation in Eq. (79), scales as

�
toy, res
γW =

gAgM

M
(0)
F

√

M

mN

α

π

√

2�

mN

+ O(�3/2), (81)

see Appendix F for details. The result is finite for Ee → 0,

but it scales as O(α
√

ǫrecoil) and could therefore be relevant

6For simplicity, we consider the limit me = 0, which suffices to

determine the relevant scales. See Ref. [4] for the general expression.
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numerically. This apparent mismatch is resolved because also

the Wick-rotated integral scales with
√

� in such a way that

the combined result indeed reproduces Eq. (80)

�
toy
γW = �

toy, Wick
γW − �

toy, res
γW . (82)

While �
toy, res
γW itself could therefore indeed be enhanced com-

pared to the ultrasoft scaling (77), the EFT predicts that the

most sizable contributions of size O(α
√

ǫrecoil) should cancel

between residue and Wick-rotated contributions.

V. DECAY RATE AND FACTORIZATION

A. Grouping contributions according to EFT

Putting together the various terms discussed in the previous

sections, the EFT-based master formula for the nuclear 0+ →
0+ decay rate takes the form

dŴ

dEed�ed�ν

=
2(GFVud )2

(2π )5
W (Ee, pe pν ) C̃(Ee) F̄ (β,µ)

× [1 + δ̃′
R(Ee, µ)](1 − δ̄C ) [1 + δ̃NS(Ee)]

×
[

C
(gV )

eff (µ)
]2

, (83)

with

W (Ee, pe pν ) = w0(Ee) (1 + a β · p̂ν ) (84)

and

w0(Ee) = |pe|Ee(E0 − Ee)2. (85)

The factor C̃(Ee) encodes corrections due to the nuclear EW

form factor, nuclear recoil, atomic electron screening, and

atomic overlap [3,4] not discussed in this work. We provide

a detailed prescription on how to infer C̃(Ee) from the stan-

dard calculation of the shape factor in Refs. [5,96,102] in

Appendix G. The other correction factors going from left to

right represent the effects of photons of increasing virtuality:

F̄ and δ̃′
R arise from ultrasoft photons, δ̄C and δ̃NS from soft,

potential, and hard photons, and C
(gV )

eff encodes the effect of

hard and soft photons through the running and matching from

the EW scale all the way down to µ ≃ µext. The key quantities

contributing to the decay rate are:

(1) The Fermi function F̄ , given in Eq. (70).

(2) The generalization of the traditional outer corrections,

δ̃′
R, that can be read off from Eqs. (64)–(66).

(3) The structure-dependent correction δ̃NS, which can

be obtained from Eqs. (72)–(75), in terms of

the effective couplings C
(i)
eff (µ ≃ µπ ) (with i =

{gV ,V0, V0
E , Vme

,V+, V3b
+ }) and transition-dependent

nuclear matrix elements. The effective couplings at

µ ≃ µπ can be obtained from Eqs. (10), (44), (43),

(48), (57). In Sec. VI, we will provide the first ab

initio results for light nuclei, in particular for the phe-

nomenologically relevant 14O → 14N decay.

(4) The effective vector coupling constant C
(gV )

eff (µ ≃
µext), which can be obtained by solving the RG equa-

tions (55) with boundary condition at µ ≃ µπ from

Eq. (10).

We will give an explicit example of how these different

ingredients can be combined for the case of 14O in Sec. VII.

As discussed in the previous section, the dependence on the

scale µ cancels among the various terms in Eq. (83), up to

higher-order terms not included in our analysis. Large loga-

rithms appear in C
(gV )

eff (µ ≃ µext) and are resummed using the

RG equations.

Finally, on integrating over the phase space we arrive at the

final formula for the half-life:

1

t
=

G2
F |Vud |2m5

e

π3 log 2

[

C
(gV )

eff (µ)
]2

× [1 + δ̄′
R(µ)] (1 + δ̄NS) (1 − δ̄C ) f̄ (µ), (86)

where

f̄ (µ) =
1

m5
e

∫ E0

me

dEew0(Ee) C̃(Ee) F̄ (β,µ), (87)

and we defined the phase-space average

Ḡ(µ) =
∫ E0

me
dEew0(Ee) C̃(Ee) F̄ (β,µ) G̃(Ee, µ)
∫ E0

me
dEew0(Ee) C̃(Ee) F̄ (β,µ)

, (88)

for G̃(Ee, µ) ∈ {δ̃′
R(Ee, µ), δ̃NS(Ee)}.

At first sight, Eq. (86) looks very similar to Eq. (1), but

important differences arise in the details, most notably related

to the separation of scales. For this reason, we next provide

a discussion of how the above decay rate formula compares

with the one commonly used in the literature.

B. Comparison with the literature

We have cast the EFT-based formula for the half-life,

Eq. (86), in a form that resembles the traditional master for-

mula in Eq. (1), in order to facilitate the mapping between

the two approaches. Comparison of the two formulas shows

that [C
(gV )

eff (µ)]2 − 1 is related to �V
R and that the quantities

f̄ , δ̄′
R, δ̄NS, and δ̄C are related to the corresponding unbarred

quantities that appear in Eq. (1). However, we emphasize that

these quantities do not coincide and can be quite different.

Foremost, these differences originate from the fact that the

traditional master formula does not fully exploit the separa-

tion of scales in the problem, while the EFT maximally does

so. This has several implications, which we delineate in this

subsection, summarized in Table I. The main observations are

as follows:

(1) The EFT clearly identifies corrections of size

O(GF αǫχ ) that at the two-nucleon level appear as

local interactions proportional to the LECs gNN
V 1,V 2.

These are currently not accounted for in the traditional

approach, where they appear implicitly, through the

high-energy part of matrix elements of quark-level EW

currents between nuclear states, the so-called nuclear

γW box contribution.

(2) The EFT power counting allows one to greatly sim-

plify the calculation of nuclear-structure-dependent
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TABLE I. Comparison of the corrections in the EFT decomposition (83) to the traditional form of the decay rate [3], with the fourth column

highlighting the main differences.

EFT Traditional Comments

Vector coupling

Eqs. (55), (57), (10)

C
(gV )

eff �V
R , F, δ′

R Contains the matching and RG evolution between µW and µext, most of which is

usually collected in �V
R . Additionally, C

(gV )

eff resums terms ≃αL as well as ≃α2Z2L

and ≃α2ZL, which are traditionally collected in the Sirlin function, the Fermi

function, and δ2, respectively.

Outer correction

Eqs. (64)–(66)

δ̃′
R δ′

R δ′
R contains large logarithms in the Sirlin function and δ2, δ3, δα2 , while δ̃′

R does not,

as they are captured by C
(gV )

eff .

Isospin breaking δ̄C δC In both approaches defined as the deviation of 〈 f |τ+|i〉 from
√

2. In the EFT,

computing δ̄C requires using chiral interactions consistent with those used to obtain

δ̃NS.

Nuclear structure

Eq. (74)

δ
(0)

NS δNS,A, δNS,B In the EFT, nuclear-structure dependence arises from the matrix elements of

potentials. The parts of V
mag

0 and V rec
0 induced by photon exchange correspond to

the effects captured by δNS,B. The (quenching) correction δNS,A does not appear in

the EFT at the current order, however, the pion-induced parts of V rec
0 capture

similar effects, as do 2b currents that renormalize gA and other higher-order

diagrams. There is no analog of VCT
0 proportional to gNN

V 1,V 2 nor the pion-exchange

potentials in the traditional approach.

Eq. (75) δE
NS δNS,E, L0,C0 δE

NS gives contributions that scale as αZRE0,e, which traditionally appear in the

finite-size correction, L0, and shape factor, C0.

Fermi function

Eq. (70)

F̄ F F̄ is obtained diagrammatically, while F is the solution of the Dirac equation. This

results in differences at O(α4Z4). In addition, F contains factors of α2Z2L, while F̄

does not include large logarithms, which, in the EFT approach, are resummed in

C
(gV )

eff .

Other

Appendix G

C̃ L0,C0,U, S, r, R Several corrections are unchanged in the current EFT approach. These include

atomic screening and overlap factors, S and r, as well as recoil corrections, R.

Similarly, for the corrections due to the finite size and charge distribution of the

nucleus, L0, C0, and U , we do not change terms that appear beyond O(α), O(α2),

or O(αZRE0,e). These effects are collected in C̃ following the traditional

approach.

effects (δNS versus δ̄NS), since the computation of δ̄NS

in the EFT requires the matrix element of a 2b current

between initial and final nuclear states, while the cal-

culation of δNS in the dispersive approach [7] requires a

summation over intermediate nuclear states, which can

be very hard to accomplish in some ab initio nuclear

structure methods. The approach in Ref. [103] is closer

to ours, in that potentials are evaluated between initial

and final states.

(3) The EFT method allows one to sum large logarithms

through the RG equations. For example, already in the

single-nucleon case, only in the EFT approach we can

include the corrections to the vector amplitude to NLL

accuracy, e.g., corrections to gV of order α2 log mN

me
.

(4) Some effects that are present in both approaches end

up being labeled differently. For example, the large

logarithms associated with the running of C
(gV )

eff (µ),

captured by C
(gV )

eff (µ ≃ µext) in the EFT, in the tra-

ditional approach appear in multiple places, such as

�V
R , δ′

R, and in the Fermi function. The EFT la-

beling has the advantage that changes in the scale

are properly taken into account via the RG evolu-

tion, while the decomposition at a fixed scale in the

traditional approach requires an ultimately arbitrary

choice.

We discuss two specific cases in more detail. First,

subtleties arise when comparing (1 + �V
R )(1 + δ′

R) to

[C
(gV )

eff (µ)]2(1 + δ̄′
R). In the standard approach, the large

logarithm associated with the running of gV → C
(gV )

eff between

mN and qext is taken into account in the outer corrections

δ′
R. In fact, the large logarithm of mN/me appears in the

Sirlin function. Therefore, in the EFT approach the standard

breakdown of RC corresponds to

(i) Evaluating the coupling gV (µ) at a scale µ ≃ �χ ≃
mN and identifying �V

R in the master formula (1) with

�V
R = [gV (mN )]2

(

1 +
5α(mN )

8π

)

− 1. (89)

Numerically, using the nonperturbative input for the

single-nucleon matrix elements from Refs. [12–17],

we find �V
R = 2.471(25)% [46].

(ii) Shifting the large logarithm log mN

me
and the

corresponding LL RG evolution into the Sirlin

function g(Ee, E0) and hence δ̃′
R. To LO this

simply amounts to replacing in Eq. (65) δ̃′
R →

α/(2π )g(Ee, E0) + · · · , where the ellipsis represents

higher-order corrections of O(Zα2) and O(Z2α3), see

Refs. [93–95,99,104].
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Second, the relation between f (1 + δNS) and f̄ (1 + δ̄NS)

involves the following caveats. The traditional Fermi func-

tion and F̄ (β,µ) differ in the logarithmic terms of O(α2Z2),

which in the EFT are resummed in C
(i)
eff , so that one can only

identify δNS in the master formula (1) with the phase-space

average δ̄NS, defined via Eq. (88), up to O(α2) terms.

VI. MATRIX ELEMENTS IN LIGHT NUCLEI

Having derived the shape of RC corrections to super-

allowed β decays, we now consider explicit transitions

involving relatively light nuclei. We focus on three transitions:
6Li(0+) → 6He(0+), 6Be(0+) → 6Li(0+), and 14O(0+) →
14N(0+). The first two transitions do not happen in nature, but

we can use them as a theoretical laboratory because the nu-

clear wave functions can be calculated to very high accuracy.

The decay of 14O is measured very accurately, with half-life of

t1/2 = 70619(11) ms, branching fraction BR = 99.446(13)%,

and QEC = 2831.543(76) keV [3], corresponding to a frac-

tional uncertainties below 1.6 × 10−4. 6Li(0+) → 6He(0+) is

an example of a transition where the initial state has isospin

Tz = 0, while for the 6Be and 14O transitions the initial state

has Tz = −1.7

The nuclear wave functions are obtained using the varia-

tional Monte Carlo (VMC) method, described, for example,

in Refs. [105,106], with the next-to-next-to-leading-order

(N2LO) local chiral potential of Ref. [107], and value of the

cutoff R0 = 1 fm. We will perform a preliminary study here

with just one set of wave functions, but a more comprehensive

study should include wave functions obtained from different

chiral potentials, cutoffs, and variational methods. All isospin-

breaking terms in the nuclear potential, including Coulomb,

have been turned off. In this limit, the Fermi matrix element

should be M
(0)
F =

√
2. We obtain M

(0)
F /

√
2 = 1.0010(6) and

M
(0)
F /

√
2 = 0.9990(5) for A = 6 and A = 14, respectively.

The error corresponds to the statistical uncertainty of the

VMC method. In Sec. VI C we discuss the impact of including

isospin breaking in the nuclear potential and improving the

nuclear wave function with the auxiliary field diffusion Monte

Carlo (AFDMC) method.

The potentials VE , Vπ
E , Vπ

me
, V

mag

0 , VCT
0 , and V+ are local

potentials. We will express a generic local EW potential as

a sum of a Fermi (F), Gamow-Teller (GT), and tensor (T)

components

VO =
(

e2

4π

)m
∑

N=p,n

(

VO

F,N (r) + VO

GT,N (r) + VO

T,N (r)
)

, (90)

where we separated the contributions arising from couplings

to neutrons and protons, and we have m = 1 for the potentials

in Sec. III A and m = 2 for V+.

7We adopt here the standard nomenclature in the 0+ → 0+ liter-

ature, in which the proton has isospin Tz = −1/2 and the neutron

Tz = +1/2, see, e.g., Ref. [3]. This is opposite to the more common

nuclear and particle physics convention, in which the proton has

Tz = 1/2.

The F, GT, and T matrix components are defined as

VO

F,N =
∑

j<k

hO

F (r jk )
[

τ+( j)P
(k)
N + ( j ↔ k)

]

,

VO

GT,N =
∑

j<k

hO

GT(r jk ) σ ( j) · σ (k)
[

τ+( j)P
(k)
N + ( j ↔ k)

]

,

VO

T,N =
∑

j<k

hO

T (r jk )S(i j)(r̂)
[

τ+( j)P
(k)
N + ( j ↔ k)

]

, (91)

where r jk = |r j − rk| and

S(i j)(r̂) = 3r̂ · σ (i) r̂ · σ ( j) − σ (i) · σ ( j). (92)

The radial functions h for the O(α) and O(α2) potentials are

given in Appendices B and C. Notice that all radial functions

are defined to be dimensionless. In the case of VE , Vπ
E , and Vπ

me

this is achieved by introducing a factor of RA = 1.2A1/3 fm.

We stress that δ̄NS does not depend on this choice.

Recoil corrections induce nonlocal potentials, such as

those given in Eq. (35). The evaluation of nonlocal potential

is more time consuming. Since, as we will see, potentials

induced by the pion mass splitting tend to yield smaller con-

tributions to δNS, we will focus in this study on the first term

in Eq. (35). This gives rise to a coupling of the spin and

orbital angular momentum, which we denote by “spin-orbit”

(so) term. We write

Vnonlocal =
e2

4π
Vso

Vso =
∑

j<k

hso(r jk )
[

τ+( j)P(k)
p L jk · σ ( j) + ( j ↔ k)

]

,

(93)

where L jk = −ir jk × (∇ j − ∇k )/2 and the radial function is

given in Eq. (B4).

In addition to the matrix elements, we will also show the

2b operator densities C. We define them through

MO

i,N =
∫ ∞

0

dr CO

i,N (r) = 〈 f |VO

i,N |i〉, (94)

where i = {F, GT, T, so}. With these definitions, the O(αǫχ )

and O(α2) corrections to δNS are given by

δ
(0)
NS = α

2

gV (µπ )M
(0)
F

×





∑

N=n,p

(

M
mag

GT,N
+ M

mag
T,N + MCT

GT,N

)

+ Mso





+ α2 2

gV (µπ )M
(0)
F

M+
F,p. (95)

The evaluation of the CT matrix elements requires a choice

for the numerical size of the LECs gNN
V 1 and gNN

V 2 . We use

RG-improved naive dimensional analysis, see the discussion

surrounding Eq. (36), for the linear combinations

gNN
V 1 ± gNN

V 2 =
1

mN

1

(2Fπ )2
, (96)

and we will treat their contributions as an uncertainty.
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The energy-dependent O(αǫ/π ) corrections are

δE
NS = α

2

gV (µπ )M
(0)
F

RAE0



 f̃E ME
F,p +

∑

N=n,p

(

MEπ
GT,N + MEπ

T,N

)

+ f̃ π
me

∑

N=n,p

(

M
meπ
GT,N

+ M
meπ
T,N

)



, (97)

where the factors f̃E and f̃ π
me

arise from the phase-space aver-

age, see Eq. (88), and are given by

f̃E =
1

E0

(

4

3
〈Ee〉 +

1

6
E0 +

1

2

〈

m2
e

Ee

〉)

,

f̃ π
me

=
1

E0

〈

m2
e

Ee

〉

, (98)

with

〈

En
e

〉

=
∫ E0

me
dEew0(Ee) C̃(Ee) F̄ (β,µ) En

e
∫ E0

me
dEew0(Ee) C̃(Ee) F̄ (β,µ)

. (99)

For the 14O → 14N transition, the endpoint energy is E0 =
QEC − me = 2320.544(76) keV, corresponding to f̃E = 0.95,

f̃ π
me

= 0.096, and RAE0 = 3.4 × 10−2.

A. Monte Carlo methods

In this work we use the VMC and the AFDMC tech-

niques described in Refs. [105,106]. These methods have been

extensively used to calculate diagonal matrix elements, i.e.,

observables of a given nuclear state. Here, for the first time,

we extended those methods to calculate off-diagonal matrix

elements.

We need to calculate matrix elements between different

states, including their normalization:

〈M〉 =
〈� f |O|�i〉

√

〈� f |� f 〉〈�i|�i〉
=

〈� f |O|�i〉
〈�i|�i〉

√

〈�i|�i〉
〈� f |� f 〉

. (100)

Let {W } be a set of configurations (including the nucleons’

positions and their spin and isospin amplitudes) that are ob-

tained from VMC or AFDMC sampling, see Ref. [106] for

details. We can rewrite the above as:

〈� f |O|W 〉〈W |�i〉
〈�i|W 〉〈W |�i〉

√

〈�i|W 〉〈W |�i〉
〈� f |W 〉〈W |� f 〉

. (101)

Within VMC, the configurations {Wi} are sampled with

probability |�i|2. The above can now be evaluated over the

configurations as follows:

〈M〉 =
∑

i

〈� f |O|Wi〉
〈�i|Wi〉

√

√

√

√

1
∑

i

|〈� f |Wi〉|2
|〈�i|Wi〉|2

. (102)

Within AFDMC the matrix elements are obtained in a

similar way, but the calculated observables are “mix,” because

the AFDMC propagation cannot be performed simultaneously

for �i and � f , but one of the two states is obtained within

VMC. In practice, we perform three sets of calculations. 〈M〉v
corresponds to the case with both initial and final wave func-

tions obtained from VMC, and 〈M〉i( f ) to the ones in which

the initial (final) wave function is obtained from AFDMC,

respectively. The results referred to as AFDMC in this paper

then amount to the extrapolation obtained by combining VMC

and the mix calculations as:

〈M〉 = 〈M〉i + 〈M〉 f − 〈M〉v, (103)

as described in Refs. [108,109].

The AFDMC trial wave function we use takes the form:

〈RS|�〉 = 〈RS|
∏

i< j

f 1
i j

∏

i< j<k

f 3c
i jk

×



1 +
∑

i< j

6
∑

p=2

f
p

i j O
p

i j f
3p

i j +
∑

i< j<k

Ui jk



|�〉Jπ ,T ,

(104)

where |RS〉 represents the sampled 3A spatial coordinates and

the 4A spin/isospin amplitudes for each nucleon, and the pair

correlation functions f
p=1,6

i j ≡ f p=1,6(ri j ) are obtained as the

solution of Schrödinger-like equations in the relative distance

between two particles, as explained in Ref. [105].

The term |�〉 is taken as a shell-model-like wave function.

It consists of a sum of Slater determinants constructed using

single-particle orbitals:

〈RS|�〉Jπ ,T =
∑

n

cn

[

∑

CJM D{φα (ri, si )}J,M

]

Jπ ,T
, (105)

where ri are the spatial coordinates of the nucleons, and si

represents their spinor. J is the total angular momentum, M

its projection, T the total isospin, and π the parity. The deter-

minants D are coupled with Clebsch-Gordan coefficients CJM

in order to reproduce the experimental total angular momen-

tum, total isospin, and parity (Jπ , T ). The cn are variational

parameters multiplying different components having the same

quantum numbers. Each single-particle orbital φα consists of

a radial function multiplied by the spin/isospin trial states:

φα (ri, si ) = �n j (ri)
[

Ylml
(r̂i)χγ (si)

]

j,m j
, (106)

where the spherical harmonics Ylml
(r̂i) are coupled to the spin

state χγ (si ) in order to have single-particle orbitals in the j

basis. The radial parts �(r) are obtained from the bound-state

solutions of the Woods-Saxon wine-bottle potential:

v(r) = Vs

[

1

1 + e(r−rs )/as
+ αs e−(r/ρs )2

]

, (107)

where the five parameters Vs, rs, as, αs, and ρs can be different

for orbitals belonging to different states, such as 1S1/2, 1P3/2,

1P1/2,..., and they are optimized in order to minimize the

variational energy. Details can be found in Ref. [106].

It is important to note that the wave function essen-

tially consists of three separate parts. The correlations, the

shell-model components, and the single-particle orbitals. If

Coulomb interactions are neglected, then it is possible to

construct the wave function, for example, for 6Li by taking
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FIG. 5. VMC magnetic and contact matrix elements for the 6Be → 6Li, 14O → 14N, and 6Li → 6He transitions. The tensor matrix

element is multiplied by a factor of 10. Coulomb and isospin-breaking corrections in the nuclear potential have been turned off.

the 6He one and just flipping the isospin of one neutron.

Likewise, the 6Be one can be obtained by taking 6He and

flipping two neutrons into two protons. This will be what

we call “no-Coulomb.” However, when Coulomb interactions

are included in the Hamiltonian, all the variational parameters

mentioned earlier should be re-optimized in order to minimize

the energy of the nucleus.

B. Numerical results

In Fig. 5, we show the GT and T densities for V
mag

0 and the

GT densities8 for VCT
0 for the A = 6 and A = 14 transitions.

The corresponding matrix elements are obtained by taking the

integral of the densities, and the contributions to δ
(0)
NS are then

obtained through Eq. (95) and are given in Table II.

The shape and relative importance of the different terms

is very similar between the three transitions under consider-

ation. The biggest difference is that for Tz = −1 transitions,

the dominant contribution arises from the proton magnetic

moment with a smaller component from the neutron magnetic

moment. This behavior is opposite to that of the Tz = 0 transi-

tion, where the neutron magnetic moment provides the biggest

contribution. The tensor matrix element is very small for all

three systems, which is also seen for neutrinoless double-β

decay.

8The Fermi and GT matrix elements for the short-distance operator

are related through a Fierz relation: MCT
GT,N = −3MCT

F,N .

The short-distance densities always have the same sign,

independent of the Tz value. For our choice of LECs in

Eq. (96), the proton and neutron components add up and VCT
0

contributes at about 10% for 6Be, 25% for 14O, and 20% for
6Li. We stress that this is just an estimate as it solely depends

on the numerical values of the LECs in Eq. (96). Replacing

2Fπ → Fπ would be as reasonable and would quadruple the

short-distance effects leading to O(1) changes in δ
(0)
NS. Clearly,

the short-distance terms must be included in the analysis of

RC corrections to superallowed β decays.

In the left panel of Fig. 6, we show the spin-orbit density.

For 14O, it provides a 30% correction to the magnetic matrix

elements. For the A = 6 system, the spin-orbit contribution

is smaller by a factor of five. In the right panel of Fig. 6

we show the matrix element of V+, setting the subtraction

scale � = µ = R−1
A . While the peaks of the densities show

a growing trend with Z , the matrix elements do not share this

behavior. Numerically, the V+ contributions provide roughly

10% corrections to the magnetic terms. We notice that M+
F,p

can be set to zero for an appropriate choice of �, shifting

this contribution to the matching coefficient C
(gV )

eff . For 14O →
14N, M+

F,p vanishes for �−1 = 3.4 fm, which, as we will see, is

close to the scale set by the 14N charge radius. Since the matrix

element of V+ is relatively small, we postpone the evaluation

of the similar 3b potential V3b
+ to a future study.

We can now sum all contributions to δ
(0)
NS and compare

to values obtained in the literature. Focusing on the 14O
transition, we find

δ
(0)
NS(14

O) = −(1.76 + 0.11 ± 0.88) × 10−3, (108)
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TABLE II. Contributions to δNS from the EW potentials defined in Sec. III. The top part of the table shows the energy-independent

corrections induced by the GT and T components of V
mag

0 , by VCT
0 , and by the spin-orbit term in V rec

0 . The last column shows the O(α2)

correction from V+. The bottom part of the table shows the energy-dependent corrections from VE and from the GT component of Vπ
E . We

neglect the T component of Vπ
E .

δ
(0)

NS V
mag

GT,p V
mag

GT,n V
mag

T VCT
GT,p VCT

GT,n Vso V+

6Be −4.07 × 10−3 0.40 × 10−3 0.46 × 10−4 4.44 × 10−4 1.17 × 10−4 −1.57 × 10−4 −1.60 × 10−4

14O −4.96 × 10−3 1.86 × 10−3 1.64 × 10−4 5.61 × 10−4 3.13 × 10−4 +1.18 × 10−3 −1.14 × 10−4

6Li −0.58 × 10−3 2.79 × 10−3 −5.01 × 10−5 1.12 × 10−4 4.43 × 10−4 −2.06 × 10−4 −1.13 × 10−4

δE
NS VE

F,p VEπ
GT,p VEπ

GT,n V
meπ
GT,p V

meπ
GT,n

14O 2.07 × 10−3 −2.16 × 10−5 1.22 × 10−5 −7.65 × 10−7 4.10 × 10−7

where the first term encodes the magnetic and spin-orbit

terms, the second is the O(α2) potential V+, and the un-

certainty is estimated from the short-distance contributions.

Keeping in mind the caveats discussed in Sec. V, it is still

instructive to compare these contributions to the results in

Refs. [3,103]. δ
(0)
NS should correspond to δNS,B, which includes

just the magnetic and spin-orbit terms but not the short-

distance effects nor V+. Reference [3] quotes

δNS,B(14
O) = −1.96(50) × 10−3, (109)

whose central value is about 10% larger than ours if we ne-

glect V+. This closeness is probably coincidental considering

the rather different nuclear methods applied and the fact that

the magnetic contributions depend on the applied regulator.

That being said, this (qualitative) agreement is comforting.

Numerically, the main difference lies in the short-distance

contributions, which we have solely assigned to the overall

uncertainty for now, leading to an error twice as large as in

Ref. [3], but we stress again that this is based on Eq. (96). It

will be crucial to pin down these contributions and we discuss

strategies how to do so in Sec. VIII.

For the unphysical 6Be → 6Li and the 6Li → 6He transi-

tions, we find

δ
(0)
NS( 6Be) = −(3.79 + 0.16 ± 0.56) × 10−3,

δ
(0)
NS( 6Li) = +(1.95 − 0.11 ± 0.56) × 10−3. (110)

In addition to δNS,B, Ref. [3] also includes the correction

δNS,A, which in the EFT approach corresponds to diagrams

further suppressed in the power counting, e.g., 3b corrections

that lead to an apparent quenching of gA. While their size

seems to be roughly in line with the EFT expectation, this

class of diagrams is largest among the omitted higher-order

chiral corrections, and should be studied in future work, see

Sec. IX. In Ref. [3], δNS,A is also estimated from quasielastic

single-nucleon knockout processes, which in our approach

would correspond to a weak axial and EM magnetic current

acting on the same nucleon line, also entering at higher order

in the power counting.

Next, we examine the energy-dependent potentials. In

Fig. 7 we show the matrix element densities CE
F,p (left panel)

and CEπ
GT,N (right panel), corresponding to the potentials VE

and Vπ
E , for A = 6 and A = 14. We neglect the tensor po-

tential. In coordinate space, the radial function is hE
F,p(r) =

r/(2RA), so that CE
F,p has significant support at large distances,

r ≃ (4–5) fm. If one set hE
F,p(r) = 1, then the integral of CE

F,p

would simply count the protons in the final state. Even after

restoring the r dependence, we can see that the matrix element

grows with Z as there appear no nodes unlike in the V+ den-

sity. The correction is sizable and gives rise to a contribution

at the 10−3 level.

The matrix element ME
F is well approximated by re-

placing the radial function hE
F,p with h̃E

F,p = R/(2RA) with

R =
√

5/3
√

〈r2〉, and
√

〈r2〉 the charge radius of the daugh-

ter nucleus. For 14N, with
√

〈r2〉 = 2.558(7) fm [110],

FIG. 6. Left: Spin-orbit density. Right: Density for the α2 potential, setting � = µ = R−1
A .
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FIG. 7. Matrix elements of the energy-dependent potential VE (left) and Vπ
E (right).

we find

M̃E
F,p =

√
2

ZR

2RA

= 5.56, (111)

which deviates from ME by 10%. For 14O, we can thus write

the correction to δNS as

δE
NS = αZR

(

4

3
〈Ee〉 +

1

6
E0 +

1

2

〈

m2
e

Ee

〉)

+ α
2

M
(0)
F

RAE0 f̃E

(

ME
F,p − M̃E

F,p

)

, (112)

where the term in the second line amounts to a correction of

2.0 × 10−4, significantly smaller than the first line. The term

in the first line has a dependence of Z and R that is similar

to terms usually captured in the finite-nuclear-size corrections

L0(Z, Ee) and in the shape correction C(Z, Ee). Using the

analytic expressions from Refs. [5,111], one would find for

the ≃ αRZ terms

L0(Z, Ee)C(Z, Ee) − 1 ⊃ αZR

(

48

35
Ee +

6

35
E0 +

17

35

m2
e

Ee

)

.

(113)

The numerical factors are very close to the ones in Eq. (112),

indicating that the leading part of the EFT expression in-

deed captures similar physics. While the precise values of the

coefficients in Refs. [5,111] depend on the assumed charge

distribution, see also Ref. [112], the EFT allows one to sys-

tematically evaluate higher-order corrections. To avoid double

counting with δE
NS, it is then necessary to subtract a set of

O(αZREe) corrections to the shape factor. Our prescription

is discussed in detail in Appendix G.

In the right panel of Fig. 7, we show the corrections in-

duced by the pion mass splitting. Most of the support is in

the region of r ≃ M−1
π , so that the overall size depends quite

strongly on the behavior of the Fourier transforms (B1) in

this range. For instance, for Vπ
me

the GT radial wave func-

tion, proportional to 15 − 21Mπ r + M2
π r2, has a zero crossing

around r ≃ 0.74M−1
π , suppressing the nuclear matrix ele-

ment.9 Accordingly, this contribution to δE
NS is at the 10−7

level and significantly smaller than anticipated from the power

counting. In contrast, the GT wave function for Vπ
E behaves

as 12 + 12Mπ r − M2
π r2, with zeros at r ≃ −0.93M−1

π (and

r ≃ 13M−1
π ), which explains why this contribution does not

suffer the same suppression due to an accidental cancellation.

Nevertheless, the total contribution is still small, at the 10−5

level, and an order of magnitude below our power-counting

estimates. It remains to be seen whether this behavior persists

in heavier nuclei.

Altogether we obtain

δE
NS(14

O) = 2.06(41) × 10−3, (114)

where we assigned a 20% uncertainty from higher-order chiral

corrections.

C. Validation of the Monte Carlo calculations

A full analysis of the theoretical error on δNS requires

using different nuclear Hamiltonians, cutoffs, and many-body

methods. We defer this important analysis to a future complete

study. Here we validate the results discussed in the previous

section in two ways. First of all, we study the effect of restor-

ing isospin-breaking components in the nuclear potential. In

the left panel of Fig. 8 we show the GT matrix elements M
mag

GT,N

for the 6Li → 6He transition, with and without turning on the

Coulomb potential. We see that the effect of isospin-breaking

interactions on the matrix elements is minimal. This gives us

confidence that also the matrix element for 14O → 14N will

be minimally affected by isospin breaking. AFDMC uses the

VMC wave functions as starting point, and, via an evolution

in imaginary time, provides a more accurate description of the

nuclear ground state [105]. Since AFDMC is computation-

ally more demanding, especially for heavier nuclei, here we

checked the impact of using AFDMC wave functions for the
6Li → 6He transition. The results are showed in the right

panel of Fig. 8, where we compare the GT and spin-orbit ma-

trix elements in VMC and AFDMC, including the Coulomb

9There is another zero crossing at r ≃ 20M−1
π , but at these distances

the radial functions are strongly suppressed due to the e−Mπ r depen-

dence.
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FIG. 8. Left: Impact on δNS matrix element from including the Coulomb potential in the nuclear Hamiltonian. Right: Comparison of VMC

and AFDMC matrix elements for A = 6.

potential in both cases. Combining these results we find

δ
(0)
NS

∣

∣

AFDMC
− δ

(0)
NS

∣

∣

VMC
= −2.9 × 10−5, (115)

corresponding to a 1.5% deviation. It will be important to

confirm this behavior for 14O and larger nuclei.

VII. AN EXPLICIT APPLICATION: 14O →
14N

To illustrate how to use the EFT master formula in Eq. (86)

we now discuss in some detail the evaluation of the dif-

ferent ingredients for the 14O → 14N transition. For this

particular decay we have an explicit computation of the

nuclear-structure corrections in δ̄NS, as provided in the pre-

vious section.

We will now explicitly evaluate the various terms in

Eq. (86). The experimental result for the lifetime is given in

Ref. [3] (using input for half-lives from Refs. [113–122], for

branching fractions from Refs. [123–126], and the electron-

capture correction PEC = 8.8 × 10−4)

t = 71075(15) × 10−3 s, (116)

with an uncertainty of 0.02%, while the uncertainty in the

prefactor [62,127]

G2
F m5

e

π3 log 2
= 3.350722(3) × 10−4 s−1 (117)

can be neglected.

The next step involves C
(gV )

eff (µ). C
(gV )

eff (µ) depends on the

matching scale at which potentials and soft modes are in-

tegrated out, and on the low-energy scale µext at which we

stop the RG evolution, see Eq. (58). We evaluate C
gV

eff at three

low-energy scales

µext = {E0, 2E0, 4E0}, (118)

where for 14O [3,128–130]

E0 = 2320.544(76) keV. (119)

We will take the spread in our final answer due to the varia-

tion of µext as an estimate of the uncertainty due to missing

O(α2Z ) terms in the ultrasoft matrix element. For the match-

ing scale, as discussed below Eq. (70), we set

µπ = R−1 exp
(

1
2

− γE

)

= 55.3 MeV. (120)

To be consistent with the evaluation of δNS in the previous

section we have to set � = R−1
A . From Eq. (57) we then obtain

C
(gV )

eff (µπ ) = 1.00060 gV (µπ ) = 1.01721(12), (121)

and by solving the RG equations in Eqs. (55) and (58)

C
gV

eff (µext) = {1.01100, 1.00873, 1.00645}gV (µπ )

= {1.02778, 1.02547, 1.02315}. (122)

We obtained gV (µπ ) by evolving the value at µ = Mπ+ with

the kernel given in Eq. (E14)

gV (µπ ) = 1.01659(12). (123)

The error, which is dominated by the nonperturbative con-

tribution �
V

had(µ0), is approximately scale independent. We

investigated the dependence on the matching scale by varying

it between µπ/2 and 2µπ , and found a negligible change, of

order 10−5. We use the fine-structure constant in the MSχ

scheme, defined in Appendix E, which gives

α−1(µπ ) = 136.145. (124)

The next term is δ̄′
R, which is evaluated as in Eq. (64) and

then averaged through Eq. (88). For 14O this procedure leads

to

δ̄′
R(µext) = {−6.61712,−4.20287,−1.78341} × 10−3.

(125)

Before discussing the nuclear-structure corrections, we first

address the phase-space factor in Eq. (87). This is rather

complicated due to the factor C̃(Ee), which includes various

corrections not discussed in this work, while, at the same time,

including corrections that do overlap with parts of our δ̄NS and

therefore need to be separated. We present our procedure in

detail in Appendix G and here give our numerical result

f̄ (µext) = {42.3632, 42.4318, 42.5009}. (126)

Combining the scale-dependent quantities then leads to

[

C
(gV )

eff

]2
f̄ (1 + δ̄′

R) = {44.453, 44.433, 44.412}. (127)

We see that the residual dependence on µext induces an un-

certainty of the order ≃ 2×10−4. We stress that this is much

smaller than the scale variations of the individual pieces that
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make up Eq. (127). The remaining scale dependence is dom-

inated by the missing O(α2Z ) corrections in the amplitude at

µ ≃ µext, and is thus expected within the EFT. As key result,

we obtain the estimate for the combination of phase-space,

“inner,” and “outer” corrections

[

C
(gV )

eff

]2
f̄ (1 + δ̄′

R) = 44.433(11)gV
(20)µ, (128)

where we separated the uncertainty from gV (µπ ) and varying

µext.

Finally, for the remaining corrections we use δ̄C = δC =
3.30(25) × 10−3 [3] and

δ̄NS = δ
(0)
NS + δE

NS,

δ
(0)
NS = −1.87(88) × 10−3, (129)

δE
NS = 2.06(41) × 10−3,

as obtained in the previous section. Inserting everything into

Eq. (86), we can extract the CKM element

Vud = 0.97364(10)exp(12)gV
(22)µ(12)δC

(43)gNN
V

(20)δE
NS

= 0.97364(56)total, (130)

with a total uncertainty of 0.06%. This uncertainty is dom-

inated by the unknown LECs appearing in δ
(0)
NS, and would

reduce to �Vud = 3.6 × 10−4 if this error could be eliminated.

Among the remaining uncertainties, the experimental one is

still subleading, at the level of �Vud = 1.0 × 10−4.

It is instructive to compare our results with other determi-

nations in the literature. Equation (130) is consistent with the

determination from neutron decay [46]

V neutron
ud = 0.97402(42), (131)

where we quoted the variant based on Refs. [38,39] for

lifetime and asymmetry, respectively, while PDG averages

including the scale factor almost double the (experiment-

dominated) uncertainty. Equation (130) is also consistent with

the global survey from Ref. [3]

V
[3]

ud
= 0.97373(31), (132)

but for a more detailed comparison we concentrate on the
14O → 14N transition alone. In this case, Ref. [3] quotes the

different error components of the Ft value as

Ft = 3070.2(0.8)exp(2.0)δNS
(0.8)δC

[2.3]total s, (133)

where we added all uncertainties in quadrature (the exper-

imental error being derived from the f t value), resulting

in a slightly larger error than quoted in Ref. [3], Ft =
3070.2(1.9) s.10 From the breakdown in Eq. (133), one obtains

V
[3]

ud

[

14
O

]

= 0.97405(13)exp(9)�V
R
(12)δC

(31)δNS
[37]total,

(134)

10On the other hand, the uncertainty in Eq. (134) is slightly underes-

timated, because δ′
R is only included in the error analysis of the global

fit in Ref. [3], so that the overall comparison should be realistic.

where the total error is close to the full analysis (132) because

it is dominated by the systematic uncertainty in δNS. In our

analysis (130), we find a lower central value, albeit consistent

within uncertainties. The experimental error is close, as is

the uncertainty propagated from the single-nucleon hadronic

matrix elements, contained in gV and �V
R , respectively. The

uncertainties on δC are identical by construction, so that the

main difference originates from the effects represented by δNS

and δ̄NS, see the discussion in Sec. V B. Here, the EFT allows

one to separate uncertainties related to RG corrections, labeled

by µ in Eq. (130), from the genuine uncertainties of the matrix

elements, and therein higher-order corrections from LECs.

In particular, from this breakdown there is a clear path to-

wards establishing Vud at a similar level as quoted in Eq. (132)

once the LECs are determined following the strategies out-

lined in the subsequent section. In view of the error analysis

presented here for 14O → 14N, a few light transitions together

with the corresponding nuclear-structure calculations should

suffice to obtain a competitive determination of Vud , including

a robust estimate of the nuclear-structure uncertainties.

VIII. DETERMINATION OF THE LOW-ENERGY

CONSTANTS

A key finding of our EFT analysis of superallowed β

decays is that at the required level of precision contribu-

tions from contact terms have to be included, renormalizing

O(GF αǫχ ) potential-photon corrections. The two associated

LECs gNN
V 1,V 2, see Eq. (13), encode effects of hard photons that

are not predicted by symmetry arguments, and their values

thus have to be determined by other means. This situation

is similar to neutrinoless double-β decay [56,57], ultimately

tracing back to potential matrix elements evaluated with chiral
1S0 wave functions [131], but the crucial difference is that

for superallowed β decays a purely data-driven strategy to

determine the LECs is possible.

That is, while a reduction of the number of LECs using

large-Nc arguments might be possible [132] and independent

theoretical determinations using lattice QCD or a Cottingham-

like approach [58,59] could be envisioned, the contact terms

can also be determined from a global fit to measured superal-

lowed transitions, with Vud and gNN
V 1,V 2 as degrees of freedom.

Given that there are O(10) precisely measured decays, such

a simultaneous extraction is feasible if the matrix elements

for systems with different A are not degenerate and if their

errors can be quantified in a reliable manner. The latter should

be possible for a wide range of targets with modern ab ini-

tio nuclear-structure techniques. The results we presented in

Sec. VI make it appear unlikely that degeneracies in the A

dependence of the matrix elements occur.

As further refinements of such a data-driven strategy to

extract the LECs simultaneously with Vud one may con-

sider decays with initial mI = −1 or mI = 0 separately.

The LECs appear in the linear combinations gNN
V 1〈 f ||O1||i〉 ∓√

3/5gNN
V 2〈 f ||O2||i〉, respectively, where 〈 f ||O1,2||i〉 are the

reduced matrix elements of the operators from Eq. (13). If

the reduced matrix elements were (approximately) propor-

tional for different isotopes, then the combined analysis of

systems with the same mI would be (primarily) sensitive to
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a single unknown together with Vud , and the comparison of

determinations from mI = −1 and mI = 0 decays could then

be taken as a consistency check of the Vud determination from

superallowed β decays. It remains to be seen how the reduced

matrix elements behave, empirically, for the nuclei in ques-

tion.

IX. CONCLUSIONS AND OUTLOOK

In this work we provided the details of a comprehensive

EFT analysis of superallowed β decays [8], spanning scales

that range from EW physics down to nuclear transitions. In

particular, we identified the set of contributions that needs to

be included at O(10−4) precision relevant for a competitive

determination of Vud , see classes 1–5 in Sec. II B, finding that

the nuclear-structure-dependent terms usually represented by

δNS can be expressed as potential matrix elements of EW

transition operators evaluated between initial and final nu-

clear wave functions. We provided a detailed account of these

potential corrections in Sec. III. Among the identified cor-

rections are terms such as the magnetic and recoil potentials

already present in the literature [103], while others have not

been considered in the past. Most importantly, the EFT allows

for a systematic evaluation of all contributions, including ef-

fects from pion exchange, and predicts that renormalization

requires the consideration of short-range operators at the same

order.

We also provided a detailed account of ultrasoft modes, see

Sec. IV, as well as a careful consideration of scale dependence

and RG corrections. The understanding of ultrasoft photons

is critical to be able to map our results onto the traditional

decomposition of the decay rate and justify factorization

assumptions, see Sec. V. This mapping, together with the

appropriate caveats, is summarized in Table I. Moreover, ul-

trasoft contributions play a prominent role in the comparison

to a dispersive approach for δNS [6,7], and we demonstrated

how the EFT scaling applies in the presence of low-lying

states, such as the 3+ and 1+ levels of 10B in the 10C → 10B
transition. We showed that individual terms can display an en-

hancement by
√

ǫrecoil, but the total effect should comport with

the EFT expectation. Finally, we confirmed the EFT power

counting with VMC calculations of 6Be → 6Li, 6Li → 6He,

and 14O → 14N transitions, see Sec. VI, and outlined a data-

driven strategy to determine the coefficients of the O(GF αǫχ )

contact operators, see Sec. VIII.

Combined with advances in ab initio nuclear-structure cal-

culations to evaluate the nuclear matrix elements identified in

this work with quantified uncertainties, our framework should

allow one to systematically address the dominant uncertainty

in Vud as determined from superallowed β decays. To this

end, we addressed all contributions expected to be relevant at

O(10−4), but there are several subleading effects whose role

should be investigated in future work:

(1) The 2b and 3b O(αǫ2
χ ) corrections: the largest class

of omitted diagrams identified in Sec. II, Figs. 2(f)

and 2(h), includes corrections that amount to a mod-

ification of the axial-vector coupling via 2b currents,

contributing to the apparent quenching of gA in β

decays. In the literature, see, e.g., Ref. [3], similar

corrections are included in an ad-hoc quenching of

gA and other shell-model parameters. Numerically, the

hierarchy of these corrections does appear to comply

with the power-counting expectation, but a dedicated

ab initio evaluation would clearly be desirable.

(2) Shape corrections in the phase-space factor: the stan-

dard evaluation of the phase-space factor in Eq. (1)

involves corrections related to the EW form factor and

nuclear recoil. Both effects are, in principle, present

in the EFT, and therefore care has to be taken to not

double count the same effects at different places in

the calculation, see Appendix G. In this work, we pre-

sented the decomposition of the decay rate in the EFT,

leaving a dedicated study of the phase-space average

to future work.

(3) Subleading terms in the Fermi function O(α2Z ): the

calculation from Refs. [98,100] captures the leading

effects αnZn in MS, converted to the the MSχ scheme

[133] in Eq. (70), but neglecting terms O(αnZn−1) with

n � 2. Corrections of size O(α2Z ) could potentially

be relevant for large Z . In analogy to neutron decay

[46], one could consider a matching to a nonrelativistic

theory to capture the leading terms in an expansion in

β, but since this expansion will be less accurate than

for neutron decay, a dedicated calculation appears to

be necessary.

In addition, while our focus has been on δNS, we stress that

δC and δNS should be calculated in the same ab initio frame-

work, e.g., to ensure that the isospin-breaking corrections

contained in δC are consistent with the definition of the isospin

limit in δNS (in this work, we used the mass of the neutral

pion).

With these caveats in mind, our results as summarized in

the master formula for superallowed β decays in Eqs. (83)

and (86) pave the way for a modern EFT reinterpretation

of the experimental program, see Sec. VII for an illustra-

tive application to the 14O → 14N transition, and enables ab

initio nuclear many-body computations of nuclear-structure-

dependent corrections. Our findings can be used to perform

state-of-the-art extractions of Vud from nuclear processes with

controlled uncertainty quantification and to use precision β-

decay experiments to search for physics beyond the Standard

Model.
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APPENDIX A: ENERGY-DEPENDENT POTENTIALS

The potentials VE and Vπ
E are obtained from diagrams

(a0)–(c0) in Fig. 3. The energy dependence of these potentials

results from expanding in small pe,ν/qγ , which leads to terms

≃ēLγ · pe,ννL that can be rewritten in terms of E0 and me

using the equations of motion of the leptons. In addition,

however, one obtains contributions proportional to q0, where

q = (p′
1 − p1)/2 − (p′

2 − p2)/2 is the difference of the rel-

ative momenta of the nucleons. It is not immediately clear

how to deal with such terms, which are also encountered, for

example, in the construction of the 2b contributions to weak

and EM currents [134] and the one-pion-exchange potential

[135]. In principle, one could use the equations of motion

of the nucleons to relate q0 to the kinetic energies of the

nucleons, however, this implicitly relies on the use of a field

redefinition [136]. As we discuss below, the required field

redefinition generates a shift in the potential.

Focusing on the somewhat simpler example of the VE

potential, the terms proportional to q0 lead to a term in the

Lagrangian of the form:

Lq0
= −

√
2GFVud ēL/vνL

∫

r

[

(N̄QN )(x + r/2)

×
(

i
∂

∂x0

− i

←−
∂

∂x0

)

V (r)(N̄τ+N )(x − r/2)

]

, (A1)

where Q is defined in Eq. (53) and V (r) ≃ α|r| is the VE

potential in coordinate space, while the derivatives in brackets

give rise to a factor of 2q0 if we take p1 (p2) to be the momenta

of the nucleons that couple to the EM (weak) currents. Here

the x coordinate has a timelike component, while only the

spacelike components of r appear, so that all the fields are

evaluated at equal times. When writing the potential as a

term in the Lagrangian, the nucleon fields should in principle

appear in a different ordering, namely, ≃
∫

r
N̄ (x + r/2)N̄ (x −

r/2)V (r)N (x − r/2)N (x + r/2). However, in this case, the

difference is proportional to V (0) = 0.

Before discussing the consequences of the abovementioned

field transformation in more detail, we discuss another way of

rewriting Eq. (A1), which will lead to the same conclusions.

In particular, we can use the fact that the time evolution of an

operator is determined by its commutator with the Hamilto-

nian. Using integration by parts to get rid of the derivative on

the weak current, together with i∂0O = [O, H], we obtain

Lq0
= 2

√
2GFVud ēL/vνL

∫

r

[N̄QN, H](x + r/2)V (r)(N̄τ+N )(x − r/2)

+
√

2GFVud iv · ∂ (ēL/vνL )

∫

r

(N̄QN )(x + r/2)V (r)(N̄τ+N )(x − r/2), (A2)

where the second term is proportional to E0, since iv · ∂ (ēL/vνL ) → −E0ēL/vνL when the lepton fields act on the external state,

while the first term becomes ≃ [H, J0
EM] ≃ ∂ · JEM = 0 up to the 2b part of the EM current. This 2b part would lead to 3b terms

in Eq. (A2) and can be neglected. Comparing Eq. (A1) with Eq. (A2) then implies the following replacement rule for q0:

q0 → E0/2, (A3)

so that the q0 terms contribute to the part of the potential ≃ E0 in Eq. (29).

A very similar argument holds for the Vπ
E potential although we can no longer use V (0) = 0, since Vπ

E (r) does not vanish

as |r| → 0. In this case, it is simpler to use the ordering of the fields corresponding to a genuine potential instead of rewriting

everything in terms of currents as in Eq. (A1). Doing so leads to a slightly modified form of Eq. (A2),

Lq0
= 2

√
2GFVud ēL/vνL

∫

r

N̄i(x − r/2)[N̄QN (x + r/2), H]V (r)(τ+N (x − r/2))i

+
√

2GFVud iv · ∂ (ēL/vνL )

∫

r

(N̄QN )(x + r/2)V (r)(N̄τ+N )(x − r/2), (A4)

where i is an isospin index. This form is equivalent to Eq. (A2) when V (0) = 0, but differs otherwise. With this change, the rest

of the argument goes through unchanged and the same replacement rule of Eq. (A3) applies.
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1. Field redefinitions

Alternatively to using i∂0O = [O, H], the Lq0
term can be removed through a transformation of the form,

N (x) → N (x) + δN (x) = N (x) + ξ

∫

y

V (y)[N̄Q2N (x + y)] Q1N (x), (A5)

where Q1,2 are (isospin) operators. Similar transformations, which allow one to alter terms in the potential, have been considered,

e.g., in Refs. [59,136]. The shift resulting from the kinetic part of the Lagrangian, N̄iv · DδN + H.c., leads to a new term of the

same form as Eq. (A1). In other words, the transformation can remove Lq0
from the Lagrangian, for some choice of the operators

Q1,2 and ξ .

To evaluate the complete shift in the Lagrangian we can first use integration by parts to write

Lq0
= −2

√
2GFVud ēL/vνL

∫

r

[

(N̄QN )(x + r/2)

(

− i

←−
∂

∂x0

)

V (r)(N̄τ+N )(x − r/2)

]

+
√

2GFVud iv · ∂ (ēL/vνL )

∫

r

(N̄QN )(x + r/2)V (r)(N̄τ+N )(x − r/2). (A6)

Using the field redefinition in Eq. (A5) with

Q1 = Q =
1+ τ3

2
, Q2 = i

√
2GFVudτ

+ēL/vνL + H.c., ξ = 2i, (A7)

then removes the first line in Eq. (A6) due to a shift in the kinetic term, ≃ δ(N̄v · DN ).

The remaining terms in the Lagrangian are also transformed, for which it is useful to write δN as a commutator

δN (x) = −2i

∫

y,z

V (y)(N̄Q2N (z + y)) [N̄Q1N (z), N (x)], (A8)

where z0 = x0 so that all the appearing fields are again evaluated at equal times. This allows us to write the total shift in the

Lagrangian as

δL(x) = −2i

∫

y,z

[N̄Q1N (z),L(x)]V (y)N̄Q2N (z + y)

= −2i

∫

y,z

[N̄Q1N (z), iN̄v · DN (x)]V (y)N̄Q2N (z + y) − 2i

∫

y,z

[N̄Q1N (z),L(x) − iN̄v · DN (x)]V (y)N̄Q2N (z + y),

(A9)

here the shift from the kinetic term in the second line removes the first line in Eq. (A6), while the term in square brackets in the

last line corresponds to the Hamiltonian density. The term ≃ q0 together with Eq. (A9) contributes to the action as follows:

∫

d4x
[

Lq0
(x) + δL(x)

]

=
∫

d4x

[

− 2i

∫

y,z

[N̄Q1N (x), H]V (y)N̄Q2N (x + y)

+
√

2GFVud iv · ∂ (ēL/vνL )

∫

r

(N̄QN )(x + r/2)V (r)(N̄τ+N )(x − r/2)

]

, (A10)

where we relabeled x and z and used the fact that H =
∫

x
[L(x) − iN̄v · DN (x)]. After plugging in the expressions for Q1,2, this

reproduces the Lagrangian in Eq. (A2).

2. Comparison to relativistic corrections in the traditional approach

Instead of integrating by parts first to obtain Eq. (A2), we could have used i∂0O = [O, H] directly, leading to

Lq0
= −

√
2GFVud ēL/vνL

[

−
∫

r

[N̄QN, H](x + r/2)V (r)(N̄τ+N )(x − r/2) +
∫

r

(N̄QN )(x + r/2)V (r)[N̄τ+N, H](x − r/2)

]

.

(A11)

Again neglecting [H, J0
EM] ≃ ∂ · JEM = 0 leaves the commutator with the weak current. This way of rewriting Eq. (A1) leads to

a contribution that looks similar to the relativistic terms discussed, e.g., in Ref. [5], around Eq. (130). In particular, the nucleon
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mass splitting and the Coulomb potential in H give rise to terms of the form

Lq0
=

√
2GFVud ēL/vνL

∫

r

(N̄QN )(x + r/2)V (r)

×
[

(mp − mn)N̄τ+N (x − r/2) +
∫

r′
(N̄QN )(x − r/2)VC (r′)(N̄τ+N )(x − r/2 − r′)

]

. (A12)

Assuming that the matrix element of the potentials are roughly given by their value at |r| = RA, i.e., that 〈V (RA) − V (r)〉 is

small, allows us to evaluate the appearing currents as conserved charges,
∫

x
(N̄QN )(x) = Q → Z . This then gives a contribution

proportional to

αZR

[

mp − mn +
αZ

R

]

, (A13)

while the relativistic corrections discussed in Ref. [5] take the same form up to a factor 6/5 in front of the Coulomb contribution.

This factor depends on the assumed charge distribution of the nucleus, see the analog discussion around Eq. (113). Nevertheless,

the form of Eq. (A13) is qualitatively similar, implying that the two approaches are capturing the same physical effects.

APPENDIX B: O(αǫχ) AND O(αǫ/π ) POTENTIALS IN COORDINATE SPACE

For the numerical implementation, it is convenient to also provide the matrix elements in coordinate space, see Eqs. (90) and

(91). The radial functions needed for the energy-dependent corrections VE and Vπ
E are

hE
F,p(r) = −

r

2RA

,

hEπ
GT,p(r) = −hEπ

GT,n(r) =
g2

AZπ

3

e−Mπ r

72MπRA

(

12 + 12Mπ r − M2
π r2

)

,

h
meπ
GT,p

(r) = −h
meπ
GT,n

(r) =
g2

AZπ

3

e−Mπ r

72MπRA

(

15 − 21Mπ r + M2
π r2

)

, (B1)

hEπ
T,p(r) = −hEπ

T,n(r) =
g2

AZπ

3

e−Mπ r

72MπRA

(

9Mπ r − M2
π r2

)

,

h
meπ
T,p (r) = −h

meπ
T,n (r) = −

g2
AZπ

3

e−Mπ r

72MπRA

(

18Mπ r − M2
π r2

)

.

VE only has a Fermi-component coupling to protons, while the pion-mass-splitting contributions only induce GT and T

components. The factor of RA was introduced to make the radial functions, and thus the matrix elements, dimensionless. The

magnetic contribution induces both a Gamow-Teller and tensor component, with radial functions given by

h
mag

GT,p
(r) = 4h

mag
T,p (r) =

gA

3mN

1 + κp

r
, h

mag

GT,n
(r) = 4h

mag
T,n (r) =

gA

3mN

κn

r
. (B2)

The recoil terms in Eq. (35) are nonlocal, and their Fourier transform is given by

V rec
0 (r) =

e2

4π

gA

2mN

∑

j<k

[

−
τ+( j)P(k)

p

r jk

L jk · σ ( j) − ZπgAτ+( j)τ
(k)
3

e−Mπ r

r
(2σ ( j) · r jk σ (k) · ∇ + σ ( j) · σ (k)) + ( j ↔ k)

]

, (B3)

so that the spin-orbit radial function is given by

hso(r) = −
gA

2mN

1

r
. (B4)

Finally, the short-range potential is given by

VCT
0 (r) = e2

∑

j<k

(

gNN
V 1τ

+( j) + gNN
V 2τ

+( j)τ
(k)
3

)

δ(3)(r jk ). (B5)

To compare with the magnetic potential, it is convenient to perform a Fierz transformation on O1 and O2 and write them as

N†τ+N N†N → − 1
3
N†στ+N · N†σN, N†τ+N N†τ 3N → − 1

3
N†στ+N · N†στ 3N. (B6)
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The δ function in Eq. (B5) can be regularized in various ways. In this work, we use nuclear wave functions obtained with the

local N2LO chiral potential of Ref. [107], in which the δ function is replaced by

δ(3)(r) → δR0
(r) =

1

πŴ
(

3
4

)

R3
0

exp

(

−
r4

R4
0

)

. (B7)

We can thus express the short-range potential via the radial functions

hCT
GT,p(r) = −

4π

3

(

gNN
V 1 + gNN

V 2

)

δR0
(r), hCT

GT,n(r) = −
4π

3

(

gNN
V 1 − gNN

V 2

)

δR0
(r). (B8)

APPENDIX C: SUBTRACTION OF THE ULTRASOFT REGION IN THE DERIVATION

OF THE O(αǫ/π ) AND O(α2 ) POTENTIALS

The calculation of the photon-exchange potentials at O(αǫ/π ) and O(α2) requires some care as the ultrasoft and potential

modes can overlap when q → 0. To properly define the EW potentials we then need to subtract the ultrasoft region. We discuss

here how we perform these subtractions.

1. O(α) two-body potential

We start by discussing VE , which, in momentum space, behaves like 1/q4 and it is thus sensitive to IR contributions. In a 2b

calculation, the momentum-space matrix element of VE could be written as

〈 f |VE |i〉 ≡
∫

d3q1

(2π )3

1

q4
1

∫

d3q2

(2π )3
[ψ∗(q2)ψ (q1 + q2) − ψ∗(q2)ψ (q2)], (C1)

where ψ is a 2b wave function. In many-body calculation ψ would correspond to the many-body wave function after integrating

over all relative momenta but one. The second term in Eq. (C1) corresponds to subtracting the ultrasoft limit |q1| ≪ |q2|, so that

the matrix element of VE is well defined in the IR. Going to coordinate space, this expression becomes

〈 f |VE |i〉 =
∫

d3r ψ∗(r)

[∫

d3q

(2π )3

1

q4
(eiq·r − 1)

]

ψ (r) = −
1

4π

∫

d3r ψ∗(r)
r

2
ψ (r), (C2)

coinciding with the result one would obtain by taking the Fourier transform of 1/q4 in dimensional regularization. Equation (C1)

is reminiscent of the “zero-bin” subtraction devised in Ref. [137], which is needed in order to avoid double counting due to the

different photon modes with overlapping (IR) momentum regions. We will use the same idea for the more complicated O(α2)

potentials.

2. O(α2 ) two-body diagrams

The diagrams in the first row of Fig. 4 lead to the amplitude

A =
∑

i< j

gV

e4

(4π )2
(µ̄2)2ǫ 2π2

[q2]
3
2
+ǫ

[

1 + ǫ

(

3

4
− γE + log(16π )

)]

ū(pe)γ 0PLv(pν )
(

τ+(i)P( j)
p + τ+( j)P(i)

p

)

. (C3)

Here we work in dimensional regularization, with d = 4 − 2ǫ dimensions and in the MSχ scheme [133], which subtracts the

combination

1

ǫ
− γE + log(4π ) + 1, (C4)

including an additional finite piece compared to the standard MS scheme. At O(α2), we implement this scheme by introducing

the scale

µ̄2 = µ2 eγE −1

4π
. (C5)

To interpret Eq. (C3) as a potential, and obtain the matching coefficients in Eqs. (43) and (44), we follow a strategy very similar

to Eq. (C1). We consider the amplitude A to be applied to a test function ϕ(q) (which stands here for the product of nuclear wave

functions) and we subtract the value ϕ(0), which corresponds to the regime in which the photon momentum becomes ultrasoft.

Schematically, we have to consider matrix elements of the form

∫

dd−1q

(2π )d−1
(µ̄2)2ǫ 2π2

[q2]
3
2
+ǫ

(ϕ(q) − ϕ(0)), (C6)
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which we can rewrite as
∫

dd−1q

(2π )3
(µ̄2)2ǫ 2π2

[q2]
3
2
+ǫ

(ϕ(q) − θ (�e−γE +1 − |q|)ϕ(0)) −
∫

dd−1q

(2π )d−1
(µ̄2)2ǫ 2π2

[q2]
3
2
+ǫ

θ (|q| − �e−γE +1)ϕ(0). (C7)

The first term is IR and UV finite, and we can simply drop the dimensional regulator ǫ and obtain the plus distribution in Eq. (42).

The second term is equivalent to the application of a potential that is a δ function in momentum space, with coefficient

−
∫

dd−1q

(2π )3
(µ̄2)2ǫ 2π2

[q2]
3
2
+ǫ

θ (|q| − �e−γE +1) = −
1

4ǫ
−

1

2
log

µ2

�2
+ 1 −

5

4
γE + log(16π ). (C8)

When combined with the O(ǫ) contribution coming from the loop, and subtracting the divergence in the MSχ scheme, we obtain

Cδ = −gV

α2

2

[

log
µ2

�2
−

13

8
+ 2γE

]

. (C9)

3. Three-body diagrams

For the 3b diagrams we encounter amplitudes of the form

A3b = gV

e4

2

∑

i �= j �=k

ū(pe)γ 0PLv(pν ) τ+(i)P( j)
p P(k)

p

(

1

q2
i

1

q2
j

1

q2
k

+
1

[

q2
k

]2

(

1

q2
j

−
1

q2
i

)

)

, (C10)

with the momenta satisfying qi + q j + qk = 0. This potential acts on functions of q j and qk . As in the 2b case, the amplitudes

receive contributions from the regions in which q j and qk are ultrasoft, q j, qk → 0, which need to be subtracted to obtain a 3b

potential. We focus here on the first term of Eq. (C10), which leads to logarithmic divergences. We can thus write

(µ̄2)2ǫ

∫

dd−1q j

(2π )d−1

∫

dd−1qk

(2π )d−1

1

q2
j

1

q2
k

1

(q j + qk )2
[ϕ(q j, qk ) − ϕ(0, 0)]

= (µ̄2)2ǫ

∫

dd−1q j

(2π )d−1

∫

dd−1qk

(2π )d−1

1

q2
j

1

q2
k

1

(q j + qk )2
[ϕ(q j, qk ) − θ (�̃ − |q j |)θ (�̃ − |qk|)ϕ(0, 0)]

− (µ̄2)2ǫ

∫

dd−1q j

(2π )d−1

∫

dd−1qk

(2π )d−1

1

q2
j

1

q2
k

1

(q j + qk )2
[θ (�̃ − |q j |)θ (−�̃ + |qk|) + θ (−�̃ + |q j |)θ (�̃ − |qk|)

+ θ (−�̃ + |q j |)θ (−�̃ + |qk|)]ϕ(0, 0), (C11)

where ϕ is a test function, �̃ = �e−γE +1, and µ̄ is defined in Eq. (C5).

The first term is now IR finite. We can set d = 4, and this term is represented by the distribution
[

1

q2
j

1

q2
k

1

(q j + qk )2

]

+,�

(C12)

defined as
∫

d3q j

(2π )3

∫

d3qk

(2π )3

[

1

q2
j

1

q2
k

1

(q j + qk )2

]

+,�

ϕ(q j, qk )

≡
∫

d3q j

(2π )3

∫

d3qk

(2π )3

1

q2
j

1

q2
k

1

(q j + qk )2

[

ϕ(q j, qk ) − θ (�̃ − |q j |)θ (�̃ − |qk|)ϕ(0, 0)
]

. (C13)

The integrals in the second and third line of Eq. (C11) can be performed, giving

−(2π )3δ(3)(q j )(2π )3δ(3)(q j )
1

(4π )2

[

1

4

(

1

ǫ
+ 2 log

µ2

�̃2

)

+
7ζ (3)

2π2
+

1

4

]

. (C14)

The 3b diagrams thus lead to the following correction to V0:

V0|3b = C̃3b
δ V3b

δ + C3b
+ Ṽ3b

+ , (C15)

with V3b
δ defined in Eq. (47), and V3b

+ ,

Ṽ3b
+ (q) =

∑

i �= j �=k

(4π )2

[

1

q2
j

1

q2
k

1

(q j + qk )2

]

+,�

τ+(i)P( j)
p P(k)

p . (C16)
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The matching coefficients are given by

C̃3b
δ = −gV α2

(

1

4
log

µ2

�2
+

γE

2
+

7ζ (3)

4π2
−

3

8

)

, C3b
+ = gV

α2

2
. (C17)

In coordinate space, we can obtain the Fourier transform of V3b
+ in the limit of large �,

Ṽ3b
+ (r) = −

∑

i �= j �=k

(

log

[

�

2
(ri j + rik + r jk )

]

−
7ζ (3)

2π2

)

τ+(i)P( j)
p P(k)

p . (C18)

Notice that the term proportional to ζ (3) cancels between C̃3b
δ and Ṽ3b

+ . It is thus convenient to define a coefficient,

C3b
δ = C̃3b

δ + gV α2 7ζ (3)

4π2
= −gV α2

(

1

4
log

µ2

�2
+

γE

2
−

3

8

)

, (C19)

and a potential,

V3b
+ (q) = Ṽ3b

+ (q) −
7ζ (3)

2π2
V3b

δ (q), (C20)

V3b
+ (r) = −

∑

i �= j �=k

log

[

�

2
(ri j + rik + r jk )

]

τ+(i)P( j)
p P(k)

p . (C21)

so that terms scaling as O(α2Z (Z − 1)) are fully captured by C3b
δ , while V3b

+ is a purely logarithmic correction. In coordinate

space, the 3b potentials read

C3b
δ V3b

δ + C3b
+ V3b

+ = −gV

α2

2

∑

i �= j �=k

(

log

[

µ

2
(ri j + rik + r jk )

]

+ γE −
3

4

)

τ+(i)P( j)
p P(k)

p . (C22)

APPENDIX D: RENORMALIZATION GROUP EQUATIONS BELOW µ = µπ

As discussed in Sec. II C, integrating out potential and soft photons leads to an effective theory containing ultrasoft photons

as propagating degrees of freedom, supplemented by static potentials. Compared to the theory above µ = µπ , additional

divergences arise that depend on the charge of the nucleus, instead of the nucleon charges. This can be seen from the effective

action generated by the exchange of n photons between a single electron line and up to n nucleon lines

S
(n)
eff ⊃ e2n

∫

q1...qn

∫

y,x1...xn

ēL(0)/v
/p + /q1

(p + q1)2
. . . /v

/p + /q1
+ · · · + /qn

(p + q1 + · · · + qn)2
γµνL(y)

e−iq1·(x1−y)

q2
1

· · ·
e−iqn·(xn−y)

q2
n

T
[

j0(x1) . . . j0(xn) j
µ
W (y)

]

,

(D1)

where
∫

q
≡

∫

dd q

(2π )d for momenta and
∫

x
≡

∫

dd x for positions, while j
µ
W = −

√
2GFVud gV N̄v

µτ+N and jµ = N̄vµQN are the

EW and EM currents, with Q defined in Eq. (53), and p and qi are the momenta of the electron and ith photon, respectively.

In principle, there are additional contributions that correspond to diagrams in which one of the photons connects to the same

electron/nucleon line. Using the symmetry arguments discussed in Ref. [97], one can show that such terms first contribute

at O(α2Z0), or when going beyond O(α2). Here we focus on the terms ≃ (α2Z2)n and (α2Z ). Since the exchanged photons

are ultrasoft, small ratios of qi/kF should be expanded. In particular, we have |xi − y| ≃ 1/kF , so that the exponentials

become e−iqi ·(xi−y) ≃ e−iq0
i (x0

i −y0 ). The only xi dependence then appears in the EM currents, which, after integration, lead to

time-independent conserved charges, Q ≡
∫

xi
j0(xi ), allowing us to write

S
(n)
eff ⊃ e2n

∫

q1...qn

∫

y,x0
1 ...x0

n

ēL/v
/p + /q1

(p + q1)2
. . . /v

/p + /q1
+ · · · + /qn

(p + q1 + · · · + qn)2
γµνL

e−iq0
1 (x0

1−y0 )

q2
1

· · ·
e−iq0

1 (x0
n−y0 )

q2
n

T
[

Qn j
µ
W (y)

]

. (D2)

Once the factors of Q in the time-ordered product act on states, they give rise to factors of the charge of the initial- or final-state

nucleus, depending on whether they appear before or after jW . In the following we organize these terms by powers of Z .

1. Contributions of O(αnZn)

Focusing on the terms ≃ Zn, with Z the charge of the daughter nucleus, we can move all factors of Q to the left of j
µ
W using

j
µ
WQ = Q j

µ
W + [ j

µ
W ,Q]. Neglecting the commutator contributions, each term in the time-ordered product gives rise to Qn j

µ
W ,

multiplied by Heaviside functions, θ (±(x0
i − y0)). As each time ordering, or combination of Heaviside functions, comes with
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the same coefficient they simply add up to one, leading to

S
(n)
eff ⊃ e2n

∫

q1...qn

∫

y

ēL/v
/p + /q1

(p + q1)2
. . . /v

/p + /q1
+ · · · + /qn

(p + q1 + · · · + qn)2
γµνL

2πδ
(

q0
1

)

q2
1

· · ·
2πδ

(

q0
n

)

q2
n

Qn j
µ
W (y) + O

(

Qn−1
[

j
µ
W , Q

])

+ · · · ,

(D3)

where the terms involving one or more commutators lead to fewer factors of Q and are subleading in Z .

The remaining integrals over qi lead to divergences for even values of n. The result is proportional to the original operator

structure, but comes with additional factors of Q, namely, ≃ ēLγµνL Q
n jW . In contrast, terms at odd n give structures that

involve the electron momentum, ≃ p · γ/|p|. The integrals can be done iteratively by noticing that each combination of two

photon exchanges leads to integrals of the same form. The required integrals are very similar to those discussed in Ref. [100]

and given by
∫

q

/vγ · (p + q)

[(p + q)2]
1+a

1

q2
≡ J1(a)

/vγ · p

[p2]
5−d+2a

2

,

∫

q1,q2

γ · (p + q1)

(p + q1)2

γ · (p + q1 + q2)

[(p + q1 + q2)2]
1+a

1

q2
1

1

q2
2

≡ −J2(a)
1

[p2]
4−d+a

, (D4)

with

J1(a) =
Ŵ
(

d−3
2

)

Ŵ
(

d−1−2a
2

)

Ŵ
(

5−d+2a
2

)

(4π )
d−1

2 Ŵ(1 + a)Ŵ(d − 2 − a)
, J2(a) =

Ŵ
(

d−3
2

)2
Ŵ
(

d−1−2a
2

)

Ŵ(4 − d − a)Ŵ(d − 3 − a)

(4π )d−1Ŵ(1 + a)Ŵ(d − 2 − a)Ŵ
(

3d−9−2a
2

) . (D5)

The effective action induced by an even or odd number of photon exchanges then becomes

S
(n)
eff ⊃ e2nQn

∫

y

j
µ
W (y)ēLγµνL

1

[p2]
nǫ

n/2−1
∏

k=0

J2(2kǫ), (n even),

S
(n)
eff ⊃ −e2nQn

∫

y

j
µ
W (y)

ēL/vγ · pγµνL

[p2]
1/2+nǫ

J1((n − 1)ǫ)

n−3
2

∏

k=0

J2(2kǫ), (n odd). (D6)

The divergences contained in these expression need to be absorbed by counterterms and require the presence of additional terms

in the Lagrangian, namely,

L ⊃

[ ∞
∑

n=0

cnQ
n

]

ēLγµνL j
µ
W , (D7)

where c0 = 1 gives rise to the 1b EW current, while cn �=0 absorb the divergences induced by terms with n > 0 in Eq. (D6).

Combining the amplitudes generated by S
(n)
eff with those from cn and demanding the sum to be finite, we can determine the

counterterms contained in c = (c0, c1 . . . , cn)T . This procedure requires including terms in which the cn operators are dressed

with additional photon exchanges, whose contributions are described by integrals of the same form as in Eq. (D4). The

bare couplings c
(b)
i are renormalized by the renormalization constants Zi j = 1 +

∑

n=1 Z
(n)
i j /ǫn according to c

(b)
i = Zi jc j . After

obtaining the counterterms, Zi j , one finds that the amplitudes involving p-dependent structures, resulting from odd numbers of

photons in Eq. (D6), are rendered finite.

With the above definitions, the anomalous dimensions are given by γi j = 2 d
d log α

Z
(1)
i j , for which one finds

d

d log µ
c = γ c, γ = −







































0 . . . 0

0 0
α2

2
0 0

0 α2

2
0 0

α4

8
0 α2

2
0 0

...

0 α4

8
0 α2

2
0 0

α6

16
0 α4

8
0 α2

2
0 0

0 α6

16
0 α4

8
0 α2

2
0 0

5α8

128
0 α6

16
0 α4

8
0 α2

2
0 0

...
. . .







































. (D8)

These RG equations imply that each ci contributes to ci+2, with an anomalous dimensions −α2/2, which determines the LL

contributions ≃ [α2Z2 log µ]n. NLL ≃ [α4Z4 log µ]n arise from the contributions of ci to ci+4, proportional to −α4/8. It turns

out that this sequence of (sub)leading anomalous dimensions sums up to a square root [98,100]. This can be seen by noting that
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the matrix elements of the Lagrangian in Eq. (D7) are proportional to an effective coupling of the form C(µ) =
∑

n cn(µ)Zn,

which indeed follows the RG equation,

d

d log µ
C = γ ′C, γ ′ =

√

1 − α2Z2 − 1. (D9)

2. Contributions of O(αnZn−1)

The anomalous dimensions are not just an expansion in (α2Z2)n, but also involve contributions with fewer powers of Z . To

capture the first of these, we can go back to Eq. (D2) and, instead of neglecting all commutator terms, focus on the terms that

involve a single commutator. Such contributions are proportional to ≃ αnQn−1 → αnZn−1, giving the first subleading terms in Z .

Following similar steps as before, most of the integrals over x0
i again lead to δ functions, ≃ δ(q0

i ). However, as we are interested

in terms with one commutator, say [ jW , j0(xi )], the ith coordinate only contributes with one Heaviside function, θ (−(x0
i − y0))

(since j0(xi ) does not need to be moved through jW for the other time-ordering). This leads to the following terms:

S
(n)
eff ⊃ e2n

∫

q1...qn

∫

y

ēL/v
/p + /q1

(p + q1)2
. . . /v

/p + /q1
+ · · · + /qn

(p + q1 + · · · + qn)2
γµνL

n
∑

l=1





n
∏

k �=l

2πδ
(

q0
k

)

q2
k





1

q2
l

i

v · ql + iǫ
Qn−1

[

j
µ
W (y),Q

]

. (D10)

The factor of [v · ql + iǫ]−1 can be written as the sum of a symmetric and antisymmetric term in v · ql . The antisymmetric piece

requires an odd number of q0
l factors in the numerator of the electron line in order to contribute. The denominators of the electron

propagators are even as all other q0
i are set to zero through δ functions, and we can take p0 to vanish as well, since p only serves

as an IR regulator. One can show that these terms therefore become proportional to the only external vector, p, and contribute

terms of the form p/|p|, which do not correspond to local counterterms and are therefore not relevant for the RG equations.

Instead, the terms even in q0
l again lead to a δ function, [v · ql + iǫ]−1 = πδ(v · ql ) + (odd in v · ql ). After these simpli-

fications, all terms in the sum over l in Eq. (D10) contribute equally. Using this and the fact that [ j
µ
W ,Q] = − j

µ
W (due to

[τ+, 1+τ3

2
] = −τ+), one finds

S
(n)
eff ⊃ e2n

∫

q1...qn

∫

y

ēL/v
/p + /q1

(p + q1)2
. . . /v

/p + /q1
+ · · · + /qn

(p + q1 + · · · + qn)2
γµνL

(

−
n

2

)

[

n
∏

k

2πδ
(

q0
k

)

q2
k

]

Qn−1 j
µ
W (y), (D11)

which reproduces the same integrals as those encountered in the previous subsection.

All in all, this then leads to new entries in Eq. (D8), which are similar to the cn → cm contributions of the previous section,

but contribute to cm−1 instead, with a relative factor of −|m − n|/2. Explicitly, these subleading terms give

γ (1) =







































0 . . . 0
α2

2
0

0 α2

2
0

α4

4
0 α2

2
0

0 α4

4
0 α2

2
0

...
3α6

16
0 α4

4
0 α2

2
0

0 3α6

16
0 α4

4
0 α2

2
0

5α8

32
0 3α6

16
0 α4

4
0 α2

2
0

0 5α8

32
0 3α6

16
0 α4

4
0 α2

2
0

...
. . .







































, (D12)

which should be added to Eq. (D8).

APPENDIX E: RENORMALIZATION GROUP EVOLUTION KERNELS

We provide here a few more details on the solution of the RG equations for Cβ , gV , and C
(gV )

eff , which resum large logarithms

between µW and µext.

1. Cβ between µW and µχ

The evolution matrix U (µχ , µW ) that appears in Eq. (7) captures the effect of the RG evolution of Cβ , which, in the MS

scheme, is given by [67,138,139]

dCβ (µ)

d log µ
=

[

α

π
γ0 +

(

α

π

)2

γ1 +
α

π

αs

4π
γse

]

Cβ (µ), γ0 = −1, γ1 =
ñ

18
(2a + 1), γse = 1, ñ =

∑

f

n f Q2
f , (E1)
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where n f is the number of active fermions and Q f their charge. Further, a is a parameter related to the (arbitrary) choice of

scheme used to treat evanescent operators, which drops out in observables. To NLL, this RG equation is solved by Cβ (µ) =
U (µ,µW )Cβ (µW ), with

U (µ,µW ) =
(

α(µ)

α(µW )

)− 2γ0
β0

(

αs(µ)

αs(µW )

)− 2γse
β0,s

α(µ)

4π
[

1 −
2γ1

β0

α(µ) − α(µW )

π

]

, β0 = −4/3ñ, β0,s =
11Nc − 2n f

3
. (E2)

Control of terms ≃ O(α2L) in principle requires the two-loop beta function, ≃ β1, of α. However, it turns out that the dependence

on β1 cancels in the solution of the RG equation, after expanding α in terms of β1 [46]. The running couplings in the above

expressions should therefore be evaluated using the solutions of the one-loop beta functions

dα(µ)

d log µ
= −

β0(µ)

2π
α2(µ),

dαs(µ)

d log µ
= −

β0,s(µ)

2π
α2

s (µ),

1

α(µ)
=

1

α(µW )
+

β0(µ)

2π
log

µ

µW

,
1

αs(µ)
=

1

αs(µW )
+

β0,s(µ)

2π
log

µ

µW

, (E3)

with the boundary conditions αs(MZ ) = 0.1178 and α(MZ ) = 1/127.951 [127].

At low energies, the combination that enters the matching for gV in Eq. (7), can be written as

C̄β (µ) =
Cβ (µ)

1 + α(µ)

π
B(a)

= U (µ,µW )
Cβ (µW )

1 + α(µ)

π
B(a)

. (E4)

Although the evolution factor and the Wilson coefficient are separately a dependent, one can show that the above combination

is scheme independent by using the matching coefficient,

Cβ (µW ) = 1 +
α

π

[

log
MZ

µW

+ B(a)

]

, B(a) =
a

6
−

3

4
. (E5)

Putting everything together, one finds C̄β (µχ ) = 1.01092 at µχ = mN .

2. gV and C
(gV )

eff between µχ and µext

At µχ , the quark-level operator Oβ is matched onto the chiral theory, where we work in the MSχ scheme [133]. This results

in the matching of Eq. (7), which requires the nonperturbative input [9,12–17,46],

�
V

had(µ0) = [1.030(48) + 0.49(11) + 0.04(1)] × 10−3 +
α

8π

(

1 −
αs

π

)

log
µ2

0

Q2
0

= 1.38(12) × 10−3, (E6)

for Q2
0 = 2 GeV2 and µ0 = 1 GeV. Here the first, second, and third numbers in square brackets arise from the elastic, Regge,

and resonance contributions. Combining Eqs. (E4) and (E6) we obtain the boundary condition for gV in Eq. (11),

gV (µ = mN ) = 1.01153(12). (E7)

In order to evolve gV to lower scales, we will also need the evolution of the QED coupling αχ in the MSχ scheme. The

relation between the fine-structure constant in this scheme and in the on-shell scheme, α−1
OS = 137.036, is discussed in detail in

Appendix A of Ref. [46]. αχ satisfies

µ
dαχ (µ)

dµ
= −

β0(µ)

2π
α2

χ (µ) + O
(

α3
χ

)

, β0(µ) = −
4

3
ñℓ(µ) −

1

3
ñπ (µ), ñℓ,π (µ) =

∑

ℓ,π

Q2
ℓ,πnℓ,π θ (µ − mℓ,π ), (E8)

with nℓ = 1, Qℓ = −1 for leptons and nπ = 1, Qπ = 1 for pions. The matching relation at a given scale µχ is [46]

1

αχ (µχ )
=

1

αOS

+
1

3π

∑

ℓ=e,µ

(

1 + log
m2

ℓ

µ2
χ

)

θ (µχ − mℓ) +
1

12π

(

1 + log
M2

π

µ2
χ

)

θ (µχ − Mπ ). (E9)

This formula accounts for the electron, muon, and pion thresholds. The running of αχ between thresholds is then given by

1

αχ (µ)
=

1

αχ (µχ )
+

β0(µ)

2π
log

µ

µχ

. (E10)

In the following, and in the main text of the manuscript, we drop the subscript χ and α is always understood to be given in this

scheme. The RG kernel in Eq. (58), for the evolution of C
(gV )

eff between µπ and µext, is given by

U (gV )(µext, µπ ) = exp

[

−
2

β0

(

γ̃0 log r + γ̃1

α(µπ )

π
(r − 1) + π [u(α(µext), Z ) − u(α(µπ ), Z )]

)]

, (E11)
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with

γ̃0 = −
3

4
, γ̃1 =

5

24
ñ +

5

32
−

π2

6
, r =

α(µext)

α(µπ )
, (E12)

and

u(α, Z ) =
1

α
(1 −

√

1 − Z (1 + Z )α2) −
√

Z (1 + Z ) arcsin(
√

Z (1 + Z )α). (E13)

The running of gV between µχ and µπ is accomplished by a very similar kernel [46], without the u functions, i.e.,

Ũ (µπ , µχ ) = exp

[

−
2

β0

(

γ̃0 log rπ + γ̃1

α(µχ )

π
(rπ − 1)

)]

, rπ =
α(µπ )

α(µχ )
. (E14)

Note that control of terms ≃ O(α2L) would again require the two-loop beta function, ≃ β1 of α. Similarly to the Cβ case,

however, this dependence drops out when expanding α in β1, justifying the use of the one-loop solution for α in the above

equations.

APPENDIX F: TOY MODEL FOR THE DISPERSIVE APPROACH

Restoring the iǫ prescriptions, the loop integral for our toy example becomes

�
toy
γW =

−igAgM

M
(0)
F

M

mN

α

π

∫

dν

2π

∫ 1

−1

dz

∫ �

0

d|q| q2 |q|(|q| − νz)

[(pe − q)2 + iǫ][q2 + iǫ][s − M̄2 + iǫ]
, (F1)

with poles at

ν
(1)
± = ±|q| ∓ iǫ, ν

(2)
± = Ee ±

√

E2
e + q2 − 2Ee|q|z ∓ iǫ, ν

(3)
± = −M ±

√

M2 + q2 − 2M� ∓ iǫ. (F2)

In writing Eq. (F1), we have set M2
W /(Q2 + M2

W ) → 1 and regulated the UV divergence by a momentum cutoff �, which also

makes the power divergences at intermediate steps visible. That is, the individual residue contributions for the three poles in

Eq. (F2) (upper plane) are

�(1)
γW =

gAgM

M
(0)
F

M

mN

α

π

1

8EeM

(

�2 + 2�� + 2�2 log
�

�

)

,

�(2)
γW =

gAgM

M
(0)
F

M

mN

α

π

[

−
1

8EeM

(

�2 + 2�� + 2�2 log
�

�

)

+
�2

8M2
−

(M − �)�

2M2
+

(M − �)�

4M2

(

1 − 3 log
�

�

)]

,

�(3)
γW =

gAgM

M
(0)
F

M

mN

α

π

[

−
�2

8M2
+

(M − �)�

2M2
−

M2 − 2M� − 4�2

16M2

+
3

16M2

(

(M − 2�)2 log

[

1 −
2�

M

]

− 2(M2 − 2M� + 2�2) log
2�

M

)]

, (F3)

leading to the sum

�
toy
γW = −

3gAgM

16M
(0)
F MmN

α

π

[

2M2 log
2�

M
+

M

3
(M − 6�) − (M − 2�)2 log

[

1 −
2�

M

]

− 4�(M − �) log
2�

M

]

= −
gAgM

16M
(0)
F

α

π

M

mN

(

1 + 6 log
2�

M

)

+
3gAgM

4

α

π

�

mN

log
2�

M
+ O(�2), (F4)

in which the power divergences in � and the singularities in 1/Ee cancel.

In the dispersive approach, there are two contributions that impede a straightforward Wick rotation, when ν
(2)
− moves into the

first quadrant and when ν
(3)
+ moves into the third. The former residue contribution vanishes for Ee → 0, but the latter gives rise

to

�
toy, res
γW =

gAgM

4M
(0)
F MmN

α

π

[

(5M − 6�)
√

M�
√

2
−

3

4
(M − 2�)2 log

(
√

M −
√

2�)2

M − 2�

]

=
gAgM

M
(0)
F

√

M

mN

α

π

√

2�

mN

+ O(�3/2), (F5)
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and therefore displays a scaling that differs from Eq. (F4).

However, to obtain the full result, Eq. (81) needs to be sub-

tracted from the Wick-rotated integral, which can be brought

into the following form:

�
toy, Wick
γW = −

2gAgM

M
(0)
F

M

mN

α

π

∫

dν

2π

×
∫ �

0

d|q|q2 q2

(ν2 + q2)2[ν2+q2 − 2M(�+iν)]
.

(F6)

From the form of the denominator, one sees that the scale

q2 = 2M�, which determines the maximum momentum up to

which ν
(3)
+ lies in the third quadrant, again plays a role in the

evaluation of the integral, and indeed the dependence on
√

�

drops out in the difference of Eqs. (F6) and (F5). By explicit

evaluation one can show that �
toy
γW = �

toy, Wick
γW − �

toy, res
γW .

APPENDIX G: CORRECTIONS TO THE PHASE SPACE

We describe here the corrections to the phase space C̃

that enter the differential rate in Eq. (83) and the half-life in

Eq. (86), as well as the interplay between the EFT formula-

tion and the corrections included in the β decay literature,

summarized in Refs. [5,96,102]. In the standard framework,

the most important corrections to the Fermi function arise

from deviations of the nuclear charge distribution from a point

charge, captured in the factors L0(Z, Ee) and U (Z, Ee), from

the momentum dependence of the weak form factor, C(Z, Ee),

and from atomic effects S(Z, Ee) and r(Z, Ee). Some of these

corrections depend on nuclear parameters, such as the radius

of the nuclear charge distribution or of the weak form factor.

In an EFT approach, this dependence is reproduced by matrix

element of one-, two- or higher-body operators, so that some

pieces of the standard phase-space corrections need to be sub-

tracted in order to avoid double counting. We first introduce

the relevant correction factors, after which we combine them

and discuss the issue of double counting.

1. Atomic screening S

We start from atomic corrections, which are identical to

the standard approach. To calculate the half-life in Sec. VII

we use the expressions from Refs. [96,102]. For the screening

factor S, we have

S(Z, Ee) =
p̃ Ẽe F (Z, Ẽe)

p Ee F (Z, Ee)
. (G1)

Here F is the standard Fermi function

F (Z, Ee) =
2(1 + η)

Ŵ(2η + 1)2
|Ŵ(η + iy)|2eπy × (2|pe|R)2(η−1),

(G2)

where η =
√

1 − α2Z2 and y = ∓Zα/β, while Ẽe and p̃ are

given by

Ẽe = Ee − meV0, p̃ =
(

Ẽ2
e − m2

e

)1/2
, (G3)

with V0

V0 = ∓N (Z + 1)α2(Z + 1)
4
3 , (G4)

for positron and electron emission, respectively. N (Z + 1) is

a slowly varying function of the charge of the parent nucleus,

N (8) = 1.42, see Ref. [102].

2. Atomic overlap r

The factor r takes into account the mismatch between the

atomic states before and after β decay. It was first considered

in Ref. [96], and it is given by

r(Z, Ee) = 1 −
1

E0 − Ee

∂2

∂Z2
B(G), (G5)

with

B(G) = 13.080(Z + 1)2.42 eV, (G6)

for 5 � Z � 9.

3. Finite-size correction L0

L0 encodes the effects of the nuclear charge distribution

on the motion of the electron/positron emerging from the β

decay. References [3,96,102] computed this correction numer-

ically, by solving the Dirac equation with different nuclear

charge distributions. Here we follow Ref. [5], which provides

analytical expressions from which it is easier to identify pos-

sible double counting with the ab initio approach. For 14O, we

checked that the phase space f obtained with the expressions

from Ref. [5] agrees with Ref. [3] within uncertainties. L0 is

given by [5]

L0(Z, Ee) = 1 +
13

60
(αZ )2 ± αZREe

(

(41 − 26γ )

15(2γ − 1)

+
γ (17 − 2γ )

30(2γ − 1)

m2
e

E2
e

)

+ a−1

m2
eR

Ee

+
5

∑

n=0

an(EeR)n + A(meR − 0.0164)(αZ )4.5,

(G7)

with A = 0.41 for electrons, A = 0.22 for positrons. The co-

efficients an have an expansion in α

an =
6

∑

x=1

bx,n(αZ )x. (G8)

The coefficients are tabulated in Tables I and II of Ref. [5].

4. Shape factor C0

A useful analytical expression for the shape factor C is

given by [5]

C(Z, Ee) = 1 + (E0R)2

(

−
1

5
+

4

15

Ee

E0

+
2

15

m2
e

EeE0

−
4

15

E2
e

E2
0

)

+ αZR

(

±
6

35
E0 ±

13

35
Ee ∓

1

70

m2
e

Ee

)

−
233

630
(αZ )2,

(G9)
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where we neglected an O(m2
eR2) term, whose effect is nu-

merically small since E0 ≫ me [140]. There are corrections to

this approximate form, which, although small for light nuclei,

can become relevant for heavier nuclei. For completeness

we therefore include a more general expression, which can

be separated into an isoscalar and isovector component. The

former takes the form

C(Z, Ee)0

= 1 + (E0R)2F1110

(

−
1

3
+

4

9

Ee

E0

+
2

9

m2
e

EeE0

−
4

9

E2
e

E2
0

)

+ αZR

(

±
2

9
E0F1111 ±

2

3
Ee(F1221 − F1111/3)

±
F1211

3

m2
e

Ee

)

−
F1222

3
(αZ )2, (G10)

with

F1111 = 0.757 + 0.0069(1 − e−A/1.008), F1110 = 3/5,

F1221 = 0.844 − 0.0182(1 − e−A/1.974), (G11)

F1222 = 1.219 − 0.0640(1 − e−A/1.550),

and A a fit parameter related to the assumed charge distribu-

tion, ranging from 1.67 for 14O to 3.00 for 54Co [111]. This

should then be combined with the isovector correction,

C(Z, E )I = 1 −
8

5

wξR2

5A′ + 2
,

ξ =
1

6

[

(E0 − E )2 + (Ee + V0)2 − m2
e

]

,

V0 = ∓3αZ/(2R), (G12)

with A′ another fit parameter and w a fraction that depends on

the shell of the last nucleon, both of which are listed in Table

8 of Ref. [111]. As the difference between C0CI and Eq. (G9)

is small for 14O, we use the simpler expression of Eq. (G9)

in our numerical analysis for 14O, but note that the difference

becomes sizable for larger nuclei.

5. Nuclear recoil R

Finally, the correction due to recoil effects is given by

R(E0) = 1 −
3E0

2MA

, (G13)

with MA the mass of the nucleus.

6. Combination and comparison to the EFT approach

In an ab initio setup, the nuclear charge distribution and

the weak form factor emerge from calculations with nucleon

degrees of freedom. The O(α0) term in C is captured by the

momentum dependence of the LO weak form factor. Having

an ab initio calculation of the form factor, we can replace R

in the O(α0) terms in Eq. (G9) by the weak radius RW [52],

given by

R2
W = 5

3

〈

r2
W

〉

, (G14)

FIG. 9. VMC calculation of the weak form factor for 14O →
14N. The blue dots show the VMC calculation, with the error bar

denoting the 2σ statistical error. The line is obtained by a fit to a

polynomial function of q2, including terms up to q4.

where 〈r2
W 〉 is defined in analogy to the charge form factor as

MF (q2) = MF (0)

(

1 −
〈

r2
W

〉q2

6
+ · · ·

)

. (G15)

The O(αZR) terms in Eqs. (G7) and (G9) are captured by

matrix elements of the energy-dependent potentials VE and

Vπ
E , while terms of O(α2Z2) are captured in the matching

coefficients Cδ and C3b
δ , and by the matrix elements of the

potentials V+ and V3b
+ . To avoid double counting, we therefore

define

Lsub
0 (Z, Ee)

= L0(Z, Ee) ∓ αZREe

(

1 +
m2

e

2Ee

)

−
13

60
(αZ )2

−αZ

(

b1,−1

m2
eR

Ee

+ b1,0 + b1,1EeR

)

− b2,0(αZ )2,

(G16)

Csub(Z, Ee)

= 1 + (E0RW )2

(

−
1

5
+

4

15

Ee

E0

+
2

15

m2
e

EeE0

−
4

15

E2
e

E2
0

)

.

(G17)

Lsub
0 contains terms of O(α3), O(α2ǫ/π ), or higher. These are

beyond the accuracy of our EFT calculation, and could be

reproduced in the EFT by deriving two- and higher-body

transition operators at higher order in ǫ/π , and by calculating

ultrasoft matrix elements at the same order. For 14O, the cor-

rection from Lsub
0 (Z, Ee) amounts to about an O(10−4) shift to

f̄ , and gives us a sense of the size of subleading corrections.

The shift is smaller than the effect of the scale variation,

which we take as the theoretical error on f̄ . Concerning the

U correction, which takes into account deviations from a

uniform charge distribution, we use the expression in Eq. (29)

of Ref. [5]. In conclusion, our definition of C̃ is given by

C̃(Ee) = Csub(Z, Ee)Lsub
0 (Z, Ee)U (Z, Ee)S(Z, Ee)r(Z, Ee).

(G18)

Figure 9 shows a VMC calculation of the weak form

factor for the transition 14O → 14N, using the same chiral
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interaction discussed in Sec. VI. By fitting the VMC results

to the functional form

MF (q2) = MF (0)

(

1 −
〈

r2
W

〉q2

6
+

〈

r4
W

〉q4

5!

)

, (G19)

we obtain

√

〈r2
W 〉 = 2.73(4) fm, where the error reflects only

the statistical error of the VMC data points. Since

√

〈r2
W 〉

differs from the charge radius of 14N by only about 10%, in the

numerical evaluations in Sec. VII we will keep using R rather

than RW , as done in most of the superallowed-β-decay litera-

ture. For 14O, the difference amounts to a ≃ 10−5 shift in the

half-life t , much smaller than other theoretical uncertainties.

For future refined studies and further cross checks, one could

instead consider the weak radii, as at least for some nuclei

they can be compared to experiment [140], while the weak

form factor is a prediction of the nuclear-structure calculations

with which the wave functions are determined.
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