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Radiative corrections are essential for an accurate determination of V,,; from superallowed g decays. In view
of recent progress in the single-nucleon sector, the uncertainty is dominated by the theoretical description of
nucleus-dependent effects, limiting the precision that can currently be achieved for V,,. In this work, we provide
a detailed account of the electroweak corrections to superallowed S decays in effective field theory (EFT),
including the power counting, potential and ultrasoft contributions, and factorization in the decay rate. We present
a first numerical evaluation of the dominant corrections in light nuclei based on quantum Monte Carlo methods,
confirming the expectations from the EFT power counting. Finally, we discuss strategies how to extract from
data the low-energy constants that parametrize short-distance contributions and whose values are not predicted
by the EFT. Combined with advances in ab initio nuclear-structure calculations, this EFT framework allows one
to systematically address the dominant uncertainty in V,q4, as illustrated in detail for the 'O — '“N transition.
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I. INTRODUCTION

Superallowed B decays constitute the prime source of in-
formation on V,4, the first element of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [1,2]. That is, by measuring the
decay half-life ¢, the traditional master formula [3,4]

1 GEVulPm
= %(1 + AR)(1+ 8p)(1 +8xs — 8¢) x f

ey

in principle allows one to extract V,,; at high precision,
provided that the various radiative corrections (RC) can be
controlled at a sufficient level. In the traditional decomposi-
tion (1), f denotes a phase-space factor that includes the Fermi
function, which captures the main effect of the Coulomb inter-
action of the outgoing electron in the nuclear field. This factor
depends on the nuclear electroweak (EW) form factor and
involves corrections related to nuclear recoil, atomic electron
screening, and atomic overlap [3-5]. Next, é¢ is defined by
Mp = (f|zt]i) = M}O)(l — 8¢c/2), i.e., it measures the devia-
tion of the Fermi matrix element from M(FO) = /2 as expected
in the isospin limit. Further RC are contained in the so-called
outer correction 85, comprising infrared- (IR) sensitive effects
not included in the Fermi function, while the remaining, inner
RC are separated into a universal, single-nucleon correction
AX and nucleus-dependent RC dns [6,7]. In this paper, we
provide a detailed description of an approach to superallowed
B decays in effective field theory (EFT) [8], including the fac-
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torization assumptions inherent in Eq. (1) and a first numerical
evaluation of the dominant RC in light nuclei.

Revisiting the formalism for superallowed § decays in this
manner is highly motivated by precision tests of the Standard
Model, most notably the unitarity of the first row of the CKM
matrix

|Vud|2 + |Vus|2 + |Vub|2 =1. (2)

First, a global fit of all available constraints on V,,; and
Vs, with the V;, contribution being numerically irrelevant
at present, suggests a deficit of 2.80 [9]. Despite a separate
tension in V,; originating from determinations of K,3 and
Ky» decays, requiring experimental clarification [9,10], V4
has attracted renewed interest following a reevaluation of the
universal RC associated with A} [11-17], given the signif-
icant increase in the possible deficit in Eq. (2). Implications
for beyond-the-Standard-Model scenarios [18,19] have been
investigated studying vectorlike quarks [20-23] and leptons
[24,25], modifications of the Fermi constant [26,27], the vio-
lation of lepton flavor universality [28-33], as well as in the
context of Standard Model EFT [34-37]. The significance of
all these conclusions ultimately depends on the reliability of
RC in superallowed 0T — O transitions [3], which currently
provide the most precise value for V,;.

The experimental component of the resulting uncertainty,
obtained after an average over a large number of isotopes,
is currently subleading compared to the theory uncertainties
from the RC, in stark contrast to alternative probes. In neutron
decay, uncertainties in the experimental input still dominate
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the uncertainty in V,,4. These arise from the lifetime t, [38]
and especially the decay parameter A [39], which currently
limits the precision of the V,; determination from the neutron,
also in view of Ref. [40]. Pion B decay would permit an
even cleaner determination of V,,; in a purely mesonic sys-
tem [41-43], yet the experimental challenges are substantial
[44,45]. In this situation, improvements in the RC for super-
allowed g decays would have a direct impact on the unitarity
test (2).

For the single-nucleon RC contained in AV recent im-
provements include a comprehensive EFT analysis [46] and
a first lattice-QCD calculation [47], but the reliability of
nucleus-dependent corrections remains a serious concern,
both for §¢ [48-55] and éns [4,6,7], motivating the develop-
ment of an EFT framework also for the nuclear corrections.
To this end, we start with a discussion of the general EFT
approach, the power counting, and the relevant momentum
regions in Sec. II. We will show that the dominant contri-
butions can be expressed in terms of two-body (2b) currents
[8], which are discussed in detail in Sec. III. We find that, at
the required precision, also contact terms need to be included.
Similarly to the case of neutrinoless double-8 decay [56-60],
these come with unknown coefficients, but here their values
can be determined by a simultaneous fit to different isotopes.
Ultrasoft contributions, generated by photons with very small
momenta, are addressed in Sec. IV, in the context of which
we also make the connection to the dispersive approach of
Refs. [4,7]. In particular, such a comparison is useful to clarify
whether the expected EFT scalings hold in the presence of
low-lying intermediate states, such as the 3" and 17 levels of
108 in the '°c — 9B 0t — 07 transition [61]. In Sec. V we
combine all the ingredients into a master formula for the decay
rate, with particular attention to the question to what extent the
factorization assumptions in Eq. (1) can be justified from the
EFT perspective. First numerical evaluations are presented in
Sec. VI, to see whether the expectations from the EFT power
counting are realized in practice. Based on these results, we
discuss the application to '*O — '“N in Sec. VII, as a con-
crete numerical example to illustrate the formalism. Strategies
for the determination of the contact terms are discussed in
Sec. VIII, before summarizing our findings and sketching
future work in Sec. IX.

To keep this paper readable, we have put many tech-
nical, but crucial, discussions into several appendices. In
Appendix A we discuss the role of energy-dependent poten-
tials, in particular, subtleties that arise for the zero component
of the momentum transfer, while Appendices B and C provide
the potentials in coordinate space as well as the required
subtraction of ultrasoft contributions. Appendices D and E
discuss the renormalization group (RG) evolution to low-
energy scales, Appendix F details about the comparison to the
dispersive approach used in the literature, and Appendix G
various corrections to the phase-space integrals that are not
the focus of this work.

II. EFFECTIVE FIELD THEORY

The main advantage of an EFT approach to the evaluation
of RC to nuclear 8 decay is that the different scales inherent to

the problem can be taken into account in a systematic manner.
While the overall scale is set by GrgZ,, where Gr denotes
the Fermi constant [62] and g.yx, the low scale of the order of
the Qgc value of the reaction, the relevant energies for RC
range from the EW scale over hadronic scales down to gext.
The different regimes are as follows:

(1) Low-energy scales: gext =~ m, = Ey, with the electron
endpoint energy Ey = Qgc — M.

(2) Nuclear scales: ¥y ~ R~ ~ M, ~ kp =O(100 MeV),
with pion mass M, nucleon binding momentum y,
inverse nuclear radius R~!, and the Fermi momentum
kr.

(3) Chiral/hadronic scales: A, ~ 4w F; ~ my >~ 1GeV,
where A, denotes the cutoff scale of chiral perturba-
tion theory (xPT) (the pion decay constant is taken
in the conventions F; = 92.3 MeV), coinciding with
typical hadronic scales of the order of the nucleon
mass my.

(4) EW scale: My >~ 100 GeV.

The matching scales in the EFT for the different regions
are denoted by ftexi, iy, Iy, and py, Tespectively, see Fig. 1
for an illustration of the different scales. They satisfy the
hierarchy

ext < Mn < AX < MW, (3)

leading us to define expansion parameters

qX qx M
Erecoil=O<Aet>v E¢=O<A;t>, 6X=O(A_ﬂ>,
X T X

“

in terms of which we will organize the RC, together with the
respective scaling in the fine-structure constant o = e?/(47).
To reach the required precision at the 10~* level, one needs the
RC at O(a), O(aey), O(aey), but also some leading O(ar?)
contributions, including leading logarithms (LL) and next-to-
leading logarithms (NLL), O(a?L?) and O(a’L) with L ~
log My /Ay orlog A, /qGex, respectively, as well as Coulomb-
and Z-enhanced corrections.

To capture all these effects related to multiple different
scales, one needs to use a tower of EFTs, as done for meson
decays [63,64] and neutron decay [46,65]. In this section, we
provide a detailed account of the various EFTs and the power
counting, starting with the contributions from hard photons.

A. Hard photon contributions

We begin by discussing the important contributions that
arise from the exchange of hard photons, i.e., photons with
virtuality A2 < Q% < My,. Between the EW scale and the
hadronic scale, the relevant EFT is the Fermi theory ob-
tained by integrating out the heavy Standard Model particles,
commonly referred to as low-energy EFT (LEFT) [66]. The
relevant part of the LEFT effective Lagrangian reads

Ligrr = —23V2GrVig Cg(n) eLyveiiyy"d, + He.  (5)

Here G is implicitly understood to be defined from muon
decay [62], absorbing a set of RC, and the Wilson coefficient
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FIG. 1. Hierarchy of scales in the EFT. The left panel summarizes the different EFTs and their interactions, the right panel the associated

photon modes.

Cy () encodes the RC due to hard photons. The correspond-

ing anomalous dimension is known to O(a) [67], O(a?) [46],
and O(aay) [67], and the RG equations allow one to evaluate
Ch() at the hadronic scale u >~ u,, thus resumming the LL
and NLL of the ratio My /A . This correction is universal for
all hadronic 8 decay processes.

At the hadronic scale, we next match onto an EFT written
in terms of nucleons, pions, light leptons, and photons [65,68],
according to the exact and broken symmetries of low-energy
EW interactions, QED, and QCD. We give more details of
this chiral EFT below, but here we already present a few key
interactions that will be necessary. We focus on the effects
induced by hard photons in single-nucleon (), mesonic, and
nucleon-nucleon (NN) interactions.

First, the leading-order (LO) EW one-body (1b) La-
grangian is

Elb = —\/EGFVW{ éL)/uVLN(gvl)M - 2gASp’)T+N +--,
(©6)

in terms of the nucleon N7 = (p, n) isodoublet, the nucleon
four-velocity v, and spin S,,, and isospin Pauli matrices t¢. In
the nucleon rest frame, v* = (1, 0), and $* = (0, 6/2), with
o the spin Pauli matrices. The ellipsis denotes omitted terms
involving pion fields or of higher order in €,. At this level,
the effects of hard photons are captured in the deviation of
the (scale-dependent) vector coupling gy (1) from one (and

ga(p) from gSCD [65]). The vector coupling gy () can be

represented as follows [46]:

] _ (11)
gv(n) = U(p, Mx)|:1 + Daa (ko) = % K(% Z_Z)}
-1
y <1 . @3@4)) UGy i) Cylaa). ()

From right to left, the terms appearing in the above expres-
sion represent contributions of virtual photons of decreasing
virtuality. Ch(w) is the LEFT Wilson coefficient defined in
Eq. (5), evaluated at the weak scale uy >~ My . The function
U(y, ww) encodes the RG evolution from py down to p,
and sums the LL and NLL of My /A,. The term involving
B(a) is a scheme-dependent quantity that enters the match-
ing onto xPT [46]. Similarly, both U(u,, uw) and Clg(uw)
depend on the arbitrary parameter a, while the product of
these three factors is scheme independent. The terms in square
bracket in Eq. (7) represent the contributions to gy from
matching LEFT onto chiral EFT. This involves a perturbative
term

2 2 2

K(i, @) RN (1 _ M)log@
Mo Ky 8 4 " ud 47 na

_V ®)

and a nonperturbative contribution Uy, ;(te0), which is a sub-

tracted version of the standard y W box D‘;W of Refs. [12,13]

and can be expressed in terms of the unpolarized structure
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function T3(v, Q%) (v = ¢°, Q% = —¢?) as follows:

g )_62 d*q v+ Q| Ta(v. Q%)
had \M0) = ; Qr)y 0 2myv

2 1 o (149)
_§Q2+M3<1_ . )} ©)

The leftmost factor U (i, u ) in Eq. (7) encodes the running
of gy (1) in chiral EFT, whose anomalous dimension is known
to O(a?) [46]. Note that to NLL accuracy gy does not depend
on the scales pw, (1o, and i, , see Ref. [46] for further details.
In this work, we will need as input for the nuclear-level EFT
the value

gv(n = My=) = 1.01494(12), (10)

where the error is dominated by the nonperturbative contri-

bution E:ad(ll«o) [46], which was evaluated with input from
Refs. [9,12-17]. It is also interesting to give gy at the nucleon
mass scale, which is related to AX in the traditional approach,

gv(n = my) = 1.01153(12). (1n

A matching formula similar to Eq. (7) holds for the axial
effective coupling g4(u) in Eq. (6). While details will be
given in Ref. [69], for the purposes of this analysis we note
that the short-distance (uw — () and long-distance (u, —
Uext) RG evolution factors are the same for gy and gy4, so
that g4 /gy is scale independent and contains nonperturbative
information from matching at the scale p >~ p, and @ > .

Next, hard photons generate contributions to the pion chiral
Lagrangian

L, = ZezF”szT atnT 4+, (12)

where Z, is a low-energy constant (LEC) determined from
Mﬁi — M}%O = 282FﬂzZﬂ. Diagrams involving Z, lead to
isospin-breaking corrections to g4 [65] and, as we will see
below, to RC to nuclear § decay. In this work, we define
the isospin limit by M,; = M 0, including corrections from
the pion mass splitting as generated by hard photons via
the chiral Lagrangian. For the nucleon, we did not find any
relevant isospin-breaking effects, for the numerics we use
my = (m, +mp)/2 =0.939 GeV.

Hard photons also generate EW 2b contact operators be-
tween nucleons at O(Gra). The interactions with the lowest
number of derivatives act in an S wave. There are two 'S
operators, with isospin 7 = 1,2, and one spin-dependent
operator connecting 'Sy and 3§, waves. Omitting terms in-
volving pions, we can write

L%E’ = —ﬁezGFVudéLyMUL[U"g]‘\f\l’NTT+NNTN
+ v gBNTTINNTTN + 28/ ANt PN NTSAN]
4. (13)

Naive dimensional analysis would indicate that g} ,, 3 =
O(Af), but as we will discuss in more detail below, the RG

equations require the two 'Sy LECs to scale as

1
Wiva = O(AXF2>' (14)

The values of these LECs are not known at present, but could
be determined in a global analysis of superallowed B decays
together with V,,4, see Sec. VIII. Finally, hard photons also
lead to isospin-breaking corrections to NN strong interactions
[70,71], which play a role in the evaluation of .

B. Power counting in the hadronic EFT

Having integrated out hard photons, we can now investi-
gate various RC in chiral EFT with dynamical photons and
leptons. Before doing any actual calculations we would like
to identify the diagrams that give the most important contribu-
tions by formulating a power counting (PC). This is somewhat
complicated by the fact that we encounter diagrams involving
loops with virtual pions, nucleons, and photons. In the pres-
ence of more than one nucleon, we can identify three regions
for the loop momentum g:

(1) Soft: ¢° ~ |q| ~ M,
(2) Potential: ¢° ~ q*/my == Gext |q| = M.
(3) Ultrasoft: ¢° = |q| = gexe = M2 /my.

The most common loops in chiral EFT involve virtual
pions corresponding to a soft scaling for which one has to
track powers of Q >~ M,, >~ y =~ kp. Diagrams with soft loops
can be estimated by the following PC rules:

(i) Soft: Each loop integration picks up a factor Q* /(47 )>.
Each pion or photon propagator scales as 1/Q?. Each
heavy-baryon nucleon propagator or electron propaga-
tor scales as 1/Q.

Diagrams with two nucleons in the intermediate state be-
come sensitive to a different momentum scaling. In such
diagrams the contour integration over the zeroth component
of the loop integral cannot be performed in a way to avoid all
nucleon poles so that ¢° ~ Q?/my. The nucleon propagators
then scale as my/Q% ~ 1/q.. In addition, these loops also
pick up an enhancement of 4 [72,73]. These potential dia-
grams can be counted with the PC rules

(i) Potential: Each loop integration picks up a factor
Q° /(4 my). Each pion or photon propagator scales as
1/Q?. Electron propagators scale as 1/Q, but nucleon
propagators are associated with a factor my /Q>.

As an example, let us consider an insertion of a LO
pion exchange in a diagram. It gives rise to an addi-
tional loop Q°/(4wmy), two extra nucleon propagators ~~
(my/Q%)?, one extra pion propagator ~ 1/Q?, and two LO
pion-nucleon vertices >~ (g4 Q/F; )2, Altogether, this amounts
to g3 Omy /(4 F?) and after identifying g4 ~ 1, Q >~ Fy, and
my >~ A, ~ 4w F; we obtain gﬁQmN/(4JTFHZ) ~ O(1). This
counting implies that insertions of the LO strong NN potential
are not suppressed and must be resummed leading to nuclear
bound states and intermediate excited states. These iterations
lead to the red, green, and blue ovals in Fig. 2.
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FIG. 2. Representative diagrams for RC to superallowed decays in EFT. Leptons, nucleons, photons, and pions are denoted by plain,
double, wavy, and dashed lines, respectively. A blue circle denotes the insertion of the EW current, including O(«) corrections from hard
photon exchange, see Eq. (6). Black circles denotes 1b EW and EM currents and pion-nucleon vertices from the chiral Lagrangian. The red
and green ovals denote the wave functions of the initial and final nuclei, the blue oval the nuclear Green’s function.

Finally, we have diagrams in which the only external scales
involved are of O(gex) [such loops do not involve virtual
pions to (9(67;)]. These ultrasoft loops scale similarly to soft
loops on replacing Q — Gext:

(iii) Ultrasoft: Each loop integration picks up a factor
g2 ./(4m)%. Each photon propagator scales as 1/¢2.
Each heavy-baryon nucleon propagator or electron
propagator scales as 1/qext.

Let us now apply these PC rules to the diagrams in Fig. 2
starting with diagram 2(a). This diagram involves at LO just
the single nucleon S-decay vertex proportional to Gr. In addi-
tion, there appear A + 1 intermediate nucleon propagators and
A — 1 loop integrations but these are common to all diagrams
and can be omitted when estimating their relative importance.
We thus estimate

Aqs = O(Gp). as)

Diagram 2(b) involves (apart from the blue oval which counts
as O(1), see above) one ultrasoft loop because the loop mo-
menta can always be routed in such a way that the electron, the
photon, and one nucleon propagator only become sensitive to
the external scale g.x. With respect to A, this diagram then
picks up one ultrasoft loop g%, /(47)?, two insertions of the
charge ~ €%, and the combinations of one ultrasoft electron,
one photon, and on nucleon propagator that become 1/g%,,.
Altogether we obtain

Ay =~ O(GF %) (16)

However, explicit calculation shows that part of the diagram
is actually enhanced by a factor 72 leading to O(Gr a )
contributions. These 72-enhanced terms are usually collected
in the Fermi function [74], while the terms following the PC
estimates are collected in the Sirlin function [75]; see Sec. V
for the matching to the traditional notation.

We emphasize that trying to account for numerical fac-
tors in the PC is only possible in case there are universal
features of certain topologies, e.g., the factors of 4m that
can be associated with NN loops [72,73], but, in general, the
PC cannot be expected to capture numerical enhancements
of dimensionless integrals.! Another example for the intrica-
cies of such m-enhanced contributions concerns the multiple
scattering series in pion-deuteron and NN scattering [79-83],
for which Coulombic pion propagators produce 7>-enhanced
contribution that do not correspond to a special momentum
scaling. For that reason, we only consider the universal 47
factors mentioned above, while other enhanced contributions,
such as the numerical enhancement in the Fermi function,
require explicit calculations.

Next, in diagram 2(c) the additional loop can be either
ultrasoft or potential. Let us first consider the ultrasoft scaling,
in which case the extra loop gives g2 /(47)?, the vertices
again ¢?, the electron and photon propagator are both ultrasoft
and give rise to 1/¢2 ,. The extra nucleon propagator, however,
has potential scaling and picks up my /Q>. This implies

ar=0(Gr 28y —o(c %), an
¢ T Q? T
where we again identified gex = 0% /my. Accordingly, the
ultrasoft part of diagram 2(c) thus appears at the same order
as diagram 2(b), and we will show that the sum of these di-
agrams amounts to the Fermi and Sirlin functions. Assuming
potential scaling instead, the extra loop in diagram 2(c) gives
Q’ /(4mrmy), the vertices e?, the photon and electron propa-
gator combined 1/Q%, and the nucleon propagator my/Q?.

'In some cases, e.g., triangle diagrams for isospin-breaking correc-
tions to pion-nucleon scattering [76—78], m enhancements that one
might be able to guess from the topology of the diagram can be
further accompanied by large numerical prefactors, which can only
be found by an explicit calculation.
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This would combine to a PC scaling O(Gra) as well, but
it turns out that the actual diagram vanishes unless one loop
momentum picks up an external scale, which costs a power
gext/Q = €z. This implies the nonvanishing part of the dia-
gram becomes

AP~ O(Gr a €g). (18)

Instead of using an external scale, we can also use a next-to-
leading (NLO) EM vertex, which brings in a power Q/A, =
€. In that case the diagram scales as

AN~ O(Graey). (19)

Both assigned scalings of A2 contribute at the order in which
we are interested and we will compute the effects of these
diagrams explicitly below. We can finally consider the con-
tribution to diagram 2(c) from ultrasoft photons coupling to
NLO EM and weak vertices, e.g., to the nucleon magnetic
moment. These NLO vertices scale as Gexi/mn > Gext/ Ay SO
that

ABNLO ~ O(GF 3"—) = 0<GF 3emﬂ>, 20)
T Ay b4
which are thus beyond the order of this calculation.

Turning to diagram 2(d), we encounter one additional po-
tential loop. There is no ultrasoft contribution due to the pion
propagator. The diagram involves an EM contribution to the
pion-mass splitting that scales as AM; = O(e* A% /(47)?).
In addition, we have one potential loop ~ Q3 /(4w my), one
nucleon propagator my/Q?, the pion propagator >~ AM2/Q*,
and the combination of weak and strong pion vertices
GrQ/ Fn2 As in diagram 2(c), the contribution vanishes unless
we consider one external momenta, or a subleading vertex
from the chiral Lagrangian. Together, we then obtain

Ad ~ O(Gp()(é;;, GFOlEX), (21)

and thus the same scaling as AP”. Moreover, the parts of
diagrams 2(c) that scale as O(Gr « €, ) lead to divergences
that must be absorbed by diagram 2(e). With the scaling of
the LECs in Eq. (14), one obtains

Ao~ OGraey), (22)

of exactly the right size to be able to absorb the divergence.

We now turn to the diagrams on the second line of Fig. 2.
Diagram 2(f) involves two additional loops. The first loop is
a potential loop, but in the second loop the nucleon pole can
always be avoided and thus this loop acquires soft scaling.
Putting all factors together we obtain

A ~ O(Grae}), (23)

beyond the accuracy we consider.
Diagram 2(g) involves two photon exchanges. If both loops
have potential scaling, then we obtain corrections that scale as

Ag =~ O(Gr o?). (24)

Since, numerically, a >~ €;, we have to consider such cor-
rections. In the ultrasoft limit one would naively obtain an
additional suppression by (47)?, but again we find enhanced
terms that will contribute to the Fermi function. In fact, only

the combination of potential and ultrasoft contributions will
lead to regulator-independent results.

Diagrams 2(h) and 2(i) involve three-body (3b) corrections.
Assuming two potential loops in diagram (h) leads to an
assigned scaling A, >~ O(Gr ae,) and A; =~ O(Gr o?) and
thus potentially relevant. We will see that, similarly to A4,,
A; is connected to the Fermi function. While 4; seems po-
tentially relevant as well, it must be emphasized that the PC
for three-nucleon processes is not very well tested. Our PC
follows Ref. [84], but using the rules of Refs. [85,86] would
demote A, >~ O(Gr aef( ), and the latter scaling was borne out
explicitly in calculations of 3b corrections to nuclear electric
dipole moments [87,88]. For this reason, we will not explicitly
compute the 3b corrections in this work, but stress that it
would be interesting and important to verify their sizes.

Finally, we also remark on PC estimates for §c. Generaliz-
ing the theorems from Refs. [8§9-91], it was shown in Ref. [48]
that there are no first-order corrections, and therefore ¢ scales
with O(a?). A diagram with two Coulomb photon exchanges
would have two potential loops, four nucleon propagators, and
¢*/Q* from the photons combining to O(GFoczm%\, /k2), and
thus be sizable. NLO correction in which the Coulomb ex-
change e /Q” is replaced by ¢*/ A’ [70,71] would then appear
at O(Gra?) and could thus still be relevant. Ultimately, the
counting of such corrections to Coulomb photon exchanges
depends on the way in which §¢ is evaluated in practice, in
particular, which corrections are included in the employed
nuclear wave functions.

We conclude our discussion of the PC with a summary of
the main observations, see Ref. [8]:

(1) Ultrasoft modes in diagrams 2(b) and 2(c) contribute
to the Fermi and Sirlin functions, while corrections
beyond these functions are suppressed by O(a€recoil)s
and therefore do not have to be considered.

(2) Potential modes in diagram 2(c) scale like O(aey)
and O(«xe, ) relative to LO, and therefore need to be
included.

(3) Soft modes first contribute suppressed by O(aei ), and
thus will not be considered.

(4) Hard modes generate several relevant contributions:
(i) O(a) corrections to gy; (ii) O(ae,) two-nucleon
contact terms g} ,, needed to absorb divergences in-
duced by potenti:al modes; (iii) O(aey, ae,) effects
via the pion mass splitting.

(5) There are sizable two-photon-exchange diagrams that
scale as O(a?) compared to the LO contribution, and
thus have to be considered. Potential, soft, and ultrasoft
scalings are relevant for these contributions.

Accordingly, the dominant contributions to be combined
into dns can be evaluated as the matrix element of EW po-
tentials between the initial and final nuclear states, and these
effects will be described in detail in Sec. III, while the role of
ultrasoft contributions will be discussed further in Sec. IV.
O(a?) corrections are particularly important to justify the
factorization of the decay rate, see Sec. V. Moreover, the
interplay of potential and ultrasoft modes becomes crucial to
obtain regulator-independent results.
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C. Nuclear § decay in EFT

In chiral EFT with dynamical photons and leptons, the
starting point for the calculations of nuclear decay amplitudes
is the Hamiltonian obtained after integrating out pions and
photons with momenta that have soft and potential scaling,
only ultrasoft photons are left as dynamical degrees of free-
dom. The Hamiltonian takes the schematic form

Hep = Hyye + Hem + Hew. (25)

H,, contains the nucleon kinetic terms and the strong inter-
action potentials, up to a given chiral order. Hgy contains EM
interactions

A 1+ ¢®3
— I _ e
Hem = HQED + ;EA UM( ) ) + , (26)
where Hggp is the QED Hamiltonian describing interactions
of electrons and photons. The last term is the LO nucleon
coupling to ultrasoft photons, with the ellipsis representing
suppressed terms such as magnetic moment and other recoil
terms (see, for example, Ref. [92]). The EW Hamiltonian is

given by
Hew = V2Gp Vi ey, N

A
Ty =D _(gvd"" = gad" o™y 4 (T +

n=1

+ 800V + EgVR) + 8V + pV, + . (2T)

The first two contributions to the weak nuclear current 7,
represent the standard 1b and 2b terms, while the ellipsis
refers to higher-order terms such as weak magnetism. The
remaining contributions, in the last line in Eq. (27), represent
the weak 2b currents of order O(aey, aey), also called weak
potentials in what follows. These are induced by integrating
out hard, soft, and potential photons, while the ellipsis denotes
terms further suppressed in €, and e;. Accordingly, the weak
nuclear current .7, takes the general form

Tw =Y G (7)) (28)

in terms of scale-dependent effective couplings Cv(é)(,u,) =
{gv (), gA(;L),gM\{VZ(M) .} that include EM effects due
to hard, soft, and potentlal photons multiplying one- and
few-nucleon operators (7, (’)) The matrix elements of these
operators, dressed by ultrasoft photon exchanges according
to Eq. (26), evaluated between initial and final nuclear
states, eventually determine the RC to nuclear 8 decays, see
Sec. V. In the next two sections, we describe the derivation
of the operators (\7‘;’))#, their matrix elements, and their
anomalous dimensions controlling the evolution of C‘S‘ﬂ)(u)
for gexy < 1 < kp.

III. POTENTIAL CONTRIBUTIONS
A. Electroweak potentials at O (ae,) and O(aey)

Topologies such as diagram (c) in Fig. 2 receive contri-
butions from the potential region, for which the transition
operator reduces to a 2b current, or EW potential. At lowest

order, the potentials are calculated from tree-level diagrams,
with the above assumptions on the scaling of the photon mo-
mentum. The tree-level diagrams built from the LO and NLO
chiral Lagrangian are shown in the first and second row of
Fig. 3, respectively, with diagrams (a0)—(c0) formally giving
the leading contribution at O(«). Considering diagram (a0)
first, in the potential region the photon three-momentum q,, is
much larger than the external momenta, and we can thus ex-
pand the diagram in powers of |p.|/|q, |. Since the one-body
LO vector and axial currents are momentum independent,
because of the structure of the lepton propagator, the diagram
is odd in photon three-momentum q,, and thus its matrix
element vanishes in 0% states. Similarly, diagrams (b0) and
(c0) are odd in q,, and we therefore find no correction at O(«).

The first nonvanishing contribution to the EW potentials in
Eq. (27) from the diagrams in the first row of Fig. 3 is propor-
tional to the electron or neutrino momenta p, and p,,, and thus
gives rise to corrections scaling as O(aE,/M;) = O(aey).

We find
VO—I LAk Vg + Vi
E=3\2 " g ) ETE
1
Vme = EVE + Vze’ (29)

see Appendix A for details. Vg is induced by photon ex-
change, with the result

V(@) =gv ) &

Jj<k

(cFDPE + PO, (30)

Next, Vg is proportional to the pion mass splitting, and it has
a more complicated structure

1

giz,,ez ho) ()
Vg(q) — ( +(J).[( ) +1 J T+(k))
Z 3 3 q2 + MTZE]Z

j<k [
l q2 2 q4
3q2+M§ 3 (q2 +M72r)2
2
3

1 ¢ q'
+ ZSUP + :
26 M (g4 a)°

7162
Z( +() (k)+T(]) +(k))

1

Vi (@) = PP
3 Jj<k [q2 +Mr25]
2 4
o g4 24
3@ +M; 3 (g +M,2,)2
2 q2 q4
+ 2800 (2 + 31)
2 2 2 ’
3 ¢ +M (g2 +M2)
with
. 1D £ O
PY) — — 3
p.n 2 ’

U q . g®
§Ub _ gl) . gt _ 290" q 0 (32)
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-

B

(@0) (bO) (c0)
:
(a1) (b1) (c1) (d1)

FIG. 3. Lowest-order diagrams contributing to the EW potentials V2, V,,., and V°. Single, double, and dashed lines denote leptons,
nucleons, and pions, respectively. Dots and circled dots refer to interactions from the LO and NLO chiral Lagrangians, diamonds to

isospin-breaking interactions.

The initial and final momenta of nucleon j are labeled by
p; and p’;, respectively, with q = p; — p’; = —(px — p;) and
P,=p,+ p}. In momentum space these potentials scale as
O(ezqext/k}ﬁ) and contribute to dns to O(aey) [recall that
the LO diagram (a) in Fig. 2 when evaluated between two
nucleons scales as O(1/k3.)]. The EW potentials in coordinate
space are given in Appendix B. The potentials induced by the
pion mass splitting are given in agreement with our conven-
tions for the isospin limit, defined by the mass of the neutral
pion. If the isospin-symmetric calculation is performed for a
different choice of the pion mass, then all potentials depending
on Z, need to be adapted accordingly.

The momentum dependence of the photon-nucleon inter-
actions in the NLO chiral Lagrangian, given, for example,
in Ref. [92], allows one to build potentials that are inde-
pendent of the lepton energy and momentum. Focusing on
spin/isospin structures that give nonvanishing contributions
to 0T — 07 superallowed B decays, we can write

V= Ve Ve 05 (33)

The magnetic potential is induced by diagram (al), while
the recoil potential receives contributions from both photon
exchange and the pion mass splitting, see diagrams 3 (al),
(bl), and (c1). We find

Vg = Y el (Gm o0y L S(jk>>
0 - 2
ik 3 my q 2

x [+ k)T PPY 410, T PO 4 (j < k)],

(34)

g, THOP® A

Vi(q.P) = [ —i——— (P, = P) x q) - 0"/
0 ]gk 4mN q4 J

Zpetd Tt

() (k)
o/ .qao" -P;
my (q2 _|_M7%)2 !

+(j < k):|, (35)

where «, =1.79, k, = —1.91 are the proton and neutron
anomalous magnetic moments. The coordinate-space ex-
pression of Egs. (34) and (35) is given in Sec. VI and
Appendix B. V¢ has a Coulombic scaling, ~1/q?, with
an isospin-one/-two component proportional to (1 4 «,) &
Ky, respectively. In momentum space this class of po-
tentials scales as O(e?/(kzA,)) and contributes to dns
at O(aey).

When applied to 'S, wave functions obtained at LO in
chiral EFT, the Coulomb-like potential in Eq. (34) gives rise
to nuclear matrix elements that are logarithmically dependent
on the ultraviolet (UV) cutoff used in the solution of the
Lippmann-Schwinger or Schrédinger equation [56,57]. This
signals sensitivity to UV physics, related to the exchange of
hard photons with virtual momenta larger than A,, which
can be absorbed by the 2b short-range operators in Eq. (13).
To properly renormalize nuclear matrix elements, ngzlv vo need
to scale as O(1/ (FHZA ). Their contribution to the effective
Hamiltonian is

Vst = (g1 01+ &/502), (36)
where
0, = Z .L.+(_i)]l(k)’ 0, = Z [.C+(j).[3(k) +(j < k)]
J#k j<k
37

Following essentially the same steps discussed in
Refs. [56,57] we can derive the cutoff dependence of
gj‘\/'/\l"vz. First, we introduce the dimensionless couplings

NN
viy2 a8

N 1 (myCis, \
8/‘\/,1,V2 = m_N 4 V1,v2» (38)

where Cig, = 3Cr — Cs is the LO NN contact interaction in
the 'Sy channel. At LO in chiral EFT, the RG equations for
gf‘iflv v2 are the same in dimensional regularization and several
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g L
24

§ 2
% §

FIG. 4. Diagrams contributing to the O(a?) 2b and 3b potentials. The diagrams in the top line receive contributions from one soft and one
potential photon. In the 3b diagrams, both photons follow potential scaling.

cutoff schemes [57] and are given by
gy

dlog
gy

dlog

— —ga(1+Kp+ k) = — 112,

= —ga(l +xp — k) = —5.99, (39)

where u denotes the renormalization scale in the MS or
power-divergence-subtraction schemes, or the UV cutoff
scale. Beyond LO, the RG equations depend more explicitly
on the chosen scheme.

B. The o potential

At the precision of O(107*) required for the analysis of
superallowed B decays, it is important to also consider sub-
leading corrections in «r. We focus here on O(a?) corrections,
which have an interplay with ultrasoft corrections that are
enhanced by 72 log text/Mn OF Z10g flext/ - The diagrams
in Fig. 4 generate 2b and 3b O(«?) potentials whose matrix el-
ements are proportional to Z and Z2. Subtracting the ultrasoft
limit of the same diagrams, as discussed in Appendix C, the
diagrams in Fig. 4 induce O(a?) corrections to the potential
V. These potentials can be captured by

VO V04 GVs + GOV + Co YV + CPVEL (40)
The diagrams in the first line of Fig. 4 induce the 2b potentials

Vs(q) = Z(2ﬂ)35(3)(q)(t+(j)Pp(") + T+(k)PI§j))’

Jj<k

Vi(q, A) = Z (T+(j)Pr('k) + ‘L’+(k)PI§j)), E8))

Jj<k [qz]iA

where the + distribution is defined as

d3q 1
/ Qny gyt 1@
[9°]3 A
d? 1
= Gy gt @~ BAT —anfO). (42)

We calculate the diagrams in dimensional regularization,
with d = 4 — 2¢, and work in the M_SX scheme defined in
Appendix C. In this scheme, the matching coefficients are
given by

C ( )O[2 1 wo_ B +2 (43)
= — _— o0g — — — .
s gvit) ==\ 108 5 3 VE

2
Cy = gv(u)%. (44)

The + distribution depends on an arbitrary subtraction scale
A, which, for convenience, we multiplied by the factor
exp(—yg + 1). When calculating matrix elements, the depen-
dence on the subtraction scale A cancels out between Cs and
V;. It is instructive to also give the potentials in coordinate
space

Vy(r) = Z (c*VPW 4 PPy, (45)
i<k
Vi, A) = = log (1 A?) (tHPPY + tHOPD) - (46)
Jj<k

where rj; = [r; — 1.
The 3b potential is derived in Appendix C. For this discus-
sion, the most important contribution has the form

VP ="t OPIPR ) 5% () 21)’ 8% (), (47)
i#j#k

with matching coefficient

1 u>  ye 3
3b __ 2
G° = —gv(na <Z]0g A2 + 5 7 3) (48)

In coordinate space, V;° assumes the simple form

Vi = 3t Opip®), (49)
i#j#k
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Vib depends on the logarithm of the nucleon distances and, in
coordinate space, it is given by

2
o A
CPVIRE M) =—gv()— ) log [E(“i + rie + r_,~k>]
ik

x THOPIPO. (50)
The momentum-space expression is given in Eqs. (C16) and
(C20). As for the 2b potential, the dependence on the sub-
traction scale A cancels between V3" and V3. The matrix
elements of Vs and V;® are given in terms of Fermi matrix
elements, and the sum over the additional nucleons induces
factors of Z and Z2. For B+ decays, we have

(fIVsli)y = ZM,

(FIViPliy = 22 — HMY, (51)
while for ~
(fIVsli) = (Z — DM,

(fIVS®li) = (Z —2)Z — M}, (52)

where Z is the charge of the final-state nucleus.

IV. ULTRASOFT PHOTONS

After integrating out the soft and potential photon modes
we obtain a theory that features ultrasoft photons as dynamic
degrees of freedom, augmented by the potentials collected
in Hgyw, see Eq. (27), discussed in the previous section. The
obtained potentials can be seen as the matching coefficients
between the two theories. To minimize the logarithms that
appear in these coefficients, it is natural to perform the match-
ing at a scale u; ~ R~ ~ kr, as can be seen explicitly from
the arguments of the logarithms in Egs. (43)—-(46) and (48)—
(50). The remaining steps are then the evolution of the weak
currents (jé,’))u and their coefficients C‘S[’,) from pu >~ u, to
W~ Wexy and the computation of the matrix element at the
low-energy scale.

A. Evolution to gt &~ ey

The anomalous dimension of gy, which determines its RG
equation, is known to O(a?) and equivalent to the case of
neutron decay. New divergences appear when going beyond
the 1b sector, which are sensitive to the charge of the external
states and lead to enhancement factors of the charge of the
final-state nucleus, Z. One finds that exchanges of ultrasoft
photons between the electron and additional nucleon lines
generate interactions proportional to factors of the conserved
charge
1+t

>
where /x =/ d3x. These contributions are divergent and re-
quire the inclusion of additional interactions that can be
written as

Hew = V2GpVigery,vL [Z C%’")(M)Q”} (T,

n=0

0= / NONG), Q= (53)

(jvg))" = {v*r™, VMV R EGVY, pEV s vV v"Vf’},
(54)

with the label i running over the type of 1b, 2b, and 3b
interactions, i = {gy, V°, V2, ) 22 Z Vib}. The appearance
of the Q" operators gives rise to factors of Z" when acting
on the final state. The matching of the previous section mostly
induces the interactions with n = 0, while, for i = gy, also the
n = 1 and n = 2 terms are generated, corresponding to Vs and
Vb, |

As discussed in Appendix D, after dressing the c&,’”) with
additional ultrasoft photons exchanges one obtains diver-
gences that are canceled by the counterterms of the cl">"
interactions. These effects lead to an RG equation for the
effective coupling, Ce(g(u) =y c&;") Z", which is the com-
bination that appears in the matrix element.

Through O(«?Z? log ff) and O(a’Z log ;kTF) we have

dCi(n) _
dlogn

2
J/(gV) — %370 + (%) N+l —a?2Z(Z£1)—1],

y V' VeV = [T = 2Z(Z £ 1) — 114 0(Z?),
vy = [V1 — a222 — 1] + O*Z, aZ"), (55)

for B* decays. The quantities

3 5 5 #?
Yo = -, V) = — _— = —, 56
Yo 2 Y1 24 + 0 6 (56)

with i = 1 for u < M, are the one- and two-loop anomalous
dimensions of gy, while the terms in square brackets capture
the effect from the ¢~ coefficients. The matching of the

previous section then gives the following boundary conditions
at (b = fy:
0 1 2 (gv.2
Ce(fng) — gv[cégv ) —i—ZC‘(,‘%V ) +Z C‘(gv )]7

yOC ),

=1 1 (G - ).

C‘(qul) =Cs — 2C§b + C3b, C&%V’Z) — C3b

’

Ve V) _

V. (V3h) V()
C;ff+) =Cy, G’ :Cib’ Céff L. (57)

As can be seen from Eq. (55), we do not control the
Z-independent O(a, a?) pieces for i e {V°, V> Vi, Vib}.
In addition, although the c{;"”" coefficients affect most of
the 1b and 2b interactions in the same way, this is not the
case for the energy-dependent potential, i = V2. Due to its

different leptonic structure,” we expect y(Vg) to differ start-
ing at O(«?Z), as indicated in Eq. (55). These uncontrolled
anomalous dimensions only affect the potentials that appear

2Its momentum dependence affects the loop integrals that deter-
mine the anomalous dimensions. One can show that, to O(«"Z"), the
effect reduces to the previous integrals multiplied by E,, thanks to the
8 functions of the internal photon energies discussed in Appendix D.
However, this is not guaranteed to hold at subleading powers in Z.
These potentials include ultrasoft photon vertices through the covari-
ant derivative, e, v - (5)/0 v, which we expect to affect the anomalous
dimension at O(aZ).
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at O(ae, ) or O(aey), so that their contributions are expected
to appear beyond the order at which we work.? The above RG
equation can be solved to give

C(w) = UD(u, ta)CD11r ), (58)

which allows us to evolve the Hamiltonian from the scale
Ur = kp down to pexy = m,. The explicit form of the kernel
U®) is given in Eq. (E11) in Appendix E.

The RG equations in Eq. (55) capture large logarithms to
order («>Z>L)" for all effective couplings, to order («>ZL)"
for C(;t) with i € {gv, Vo, Vin,» V4, V3 }, as well as terms of

order («L)" and («®L)" for C(gV) In the traditional approach,
the first series is included in the standard Fermi function
F, via logarithms of a fixed and somewhat arbitrary nuclear
radius R, see Eq. (G2). The first (n = 1) term in the second
series reproduces the logarithmic term in the «>Z correction
first identified in Ref. [93], and included in the §, correction
to 8 [94,95]. Finally, the («L)" series is resummed in &}
[96]. In principle, additional contributions to the anomalous
dimensions, at higher order in o or subleading in Z, are known
as well [97]. To consistently include their effects, however,
would require higher-order terms in the matrix element at piey
and the matching at the scale u,. For example, including the
O(a®) anomalous dimension would also require the matching
and matrix element to O(a?). Exceptions are the O(a’Z?)
and O(a3Z?) contributions to Eq. (55). Due to the fact that
there are no O(aZ) terms in y ¥ we do not need knowledge of
O(«?Z) contributions to the matrix element in order to control
all O(a®Z2L) terms. The relevant anomalous dimensions have
been computed in Refs. [97,98] and add to Eq. (55) as

3 2
sy =L 72(6- 7).
47 3

where a possible O(a>Z?) term vanishes. Here 8" captures
terms at the same order as corrections that are usually included
in 83 [95,99]. We will refrain from including this anomalous
dimension in the explicit example of '*Q discussed in Sec. VI,
as its effects are ©(10~?), and smaller than the uncertainty due
to missing O(?Z) terms discussed below.

€ {8V, V()s Vme9 V+s Vib}v

(59)

B. The amplitude at g ~ prey

The final step is the calculation of the amplitude generated
by the operators evaluated at ;& >~ [lext,

= (feb|Hewli) = V2GrVia ZC(Q(N)M(I)(M)

MO = (fev|@yvn) ()" 1. (60)

Here the M involve the matrix elements of the usual 1b
operator and the subleading potentials in (jW ), while the

large logarithms and the effects of the c&,”) are captured

3Note, however, that the leading terms can have a significant effect
since a?Z*log 2= ~ 0.4 for Z = 37 in the case of the heaviest nuclei
considered in Ref [3].

by Cél'cz As the M do not involve large logarithms, one
might expect an evaluation to O(«/(47)) to be adequate, as
two-loop corrections scaling as O(«?/(47)?) would be below
O(10~*). However, as is well known, certain loop contribu-
tions related to the Fermi function are enhanced with respect
to this expectation by factors of 72 and Z, which requires us
to take into account certain classes of higher-loop diagrams.

1. Ultrasoft loop contributions

We can consider the loop expansion for each of the matrix
elements, MY = M(()’) + MY 4 ..., where MY captures
the effects of n-loop diagrams involving ultrasoft photons. To
illustrate the structure of these contributions we first focus on
the topologies of Figs. 2(b) and 2(c) at one loop. The class
of diagrams in which the photon connects the electron and
nuclear lines leads to the following amplitude (in Feynman

gauge):

FUTY 1) () T i)
(t)
Z/Q )* Luvg ){ E,—E, 4+ qo + i€

N (FITV 1) (nl (T0) 1)
Ef—E,—qo+ie |’

Pe+g+me
(Pe+q)2—m§+ie

L;w(‘]) = iezl/_l(pe)yv VMPLU(Pv)

1

x q* + i€’ D)
where 7V is the EM current, while |n) and E, denote in-
termediate nuclear states and their energies.* We can restrict
the integration to the ultrasoft regime by expanding both the
currents and energy denominators in g/kp. As we discuss in
more detail in Sec. IV C, the only non-negligible effects then
arise from the contributions of the LO EM current, J* =
NQu*N. After expanding, the EM current effectively acts as
a conserved charge, so that (f|J,|n) = v,Z3,. The factors in
curly brackets in Eq. (61) then simplify

M = [ L i

{ 1
X S —
—qo + 1€

Most of the (T, Jyr )" are independent of the photon momentum,
so that the matrlx elements and the ultrasoft loop factor-
ize. The exception is again the case of i = V2, for which
corrections to this factorization are expected to appear at

— 27i8(qo)(Z — 1)}. (62)

4The derivation of Eq. (61) requires few assumptions. A very sim-
ilar expression is able to capture the contributions from the soft and
potential regions if one does not perform the ultrasoft expansion in
q/kr and replaces the (jvi,i))“ with the weak current in the theory
with propagating soft pions and photons. In fact, one could derive
an analogous expression at the quark level. The expression would
involve the quark-level currents for 7, and 7, b with the intermediate
states running over all eigenstates of the QCD Hamiltonian, which
would capture the kK > A, region as well.
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O(a/(4)). Since VY itself contributes at O(aey ), we neglect
these corrections here.

The resulting loop integral in Eq. (62) is equivalent to
what one would obtain in a theory with nonrelativistic initial-
and final-state nuclei as degrees of freedom, discussed in
Refs. [98,100]. Here the first term in curly brackets is identical
to the contribution in the single-nucleon case. The remaining
one-loop diagrams, as well as the contributions from real ra-
diation graphs with an additional photon, >~ M, , also reduce
to the case of neutron decay and scale as «/(47). This allows
us identify their contributions to the squared amplitude with
the same Sirlin function that appears in the 1b case, while
enhanced terms, >~ /B are collected in the Fermi function,
F, with Z = 1. Finally, the § function in the second term of
Eq. (62) reduces the effects of the photon propagator to that
of a static Coulomb potential. It therefore contributes to the
Fermi function and effectively takes the O(«) Fermi function,
F(Z =1),t0 F(Z).

The one-loop and real-radiation corrections then combine
nto

IMP + MO 4 [MDPdd? o FBIL +Fr()], (63)

where B8 = |p.|/E. and 3;3 captures the effect of the Sirlin
function,
< a(u) pu? 5
Sp(Eey pt) = —— 1 — + -+ 8&(E., Ey)|, (64
R(Ees 1) 7 |2 gm§+4+g( o) [, (64)
3.
8(E., Eo) = g(E., Eo) — 5 10 Py (65)
with g(E,, Ey) the Sirlin function of Ref. [75],
3. my 3 1+p 1+ 8
E., Ey) = —1 — - = —
8(E., Eo) g -1t 5 5 log 7— 8
N
1 (E
+o () o 0
126\ E, y
1 3 E
+4| — log — =
28 1 3E

1 . 28 2 + B
B 5[4“2(1 +ﬂ> +log (1 —ﬁ)]’ (¢0)

with E = Ey — E,. To this order the Fermi function for g*

decays is given by

me
FB)=1F —/ (67)
p

As mentioned above, we are interested in terms beyond
the one-loop level that are enhanced by factors of 72 or Z
compared to the naive expectation of «?/(47)?. This type of
contribution arises from ladder diagrams in which ultrasoft
photons are exchanged between the electron and the nucleus.
Within the EFT framework, these diagrams reduce to the
expressions one would obtain in a theory with nonrelativistic
initial (final) nuclei of charge Z — 1 (Z). These graphs were
computed to all orders in «”Z" in exactly this formulation in
Refs. [98,100], which allows us to capture the enhanced terms.
Combined with the nonenhanced O(«/47) terms in the Sirlin

function, we obtain for the spin-summed squared amplitude

D AP =4EE (1 +aB - p)F (B, i1 + ()]
spins

2

(/1 Z CHUVOR(ED| (68)

where ]’lvo Ey, by, =m /Ee, while h; = 1 otherwise. The
employed factorization between the Fermi and Sirlin func-
tions holds up to corrections of O(a?Z). All potentials apart
from V), contribute equally to the electron-neutrino correla-
tion coefficient a, so that

I i, CRGDVOREDID|
(13 CLGOVOREN|

to which we will come back in Sec. IVB 2. L
__ After translating the results of Refs. [98,100] from MS to
MS, , the Fermi function to all orders in Z"«" is given by

4n  2(1+n)
(I+m)?T@2n+1)

2(p. 2(n—1)
x <—|p |e1/2—VE> , (70)
m

with n = +/1 — a2Z? and y = FZa/B, which differs from
the traditionally employed Fermi function [101] by 4n/(1 +
n)? ~ 1 —a*Z*/16. It can be checked that the combination
IC( (WIPF (B, w1 +8 (w)] is independent of p to O(«),
(’)(az) and O(a"Z").> To simplify the expression, the scale
in the Fermi function is often chosen as ;. = 1/Re!/>~7% with
a nuclear radius R, but to keep track of the scale dependence
in a more transparent way we display the full expression (70).

As we discuss in more detail below, Eq. (68) contains
all the needed ingredients to obtain the decay rate. In this
form, the ultrasoft contributions, often referred to as outer
corrections, are captured by F (8, ,u)[l + 3 ()], while the
evolution between i = ey and u 2 p, as well as physics
from shorter distance scales is collected in the Wilson coef-
ficients C;l'cz Finally, the nuclear-structure dependence arises
from the matrix elements of the V@, to which we will turn
next.

, (69)

F(B.pu) = IT(n + iy)|2e™

2. Nuclear matrix elements

In the EFT approach the required nuclear matrix elements
of the EW potentials obtained in the previous section can be
identified as contributions to dys,

2

(1 Z DGV OR(Ei)
2 -
= |Ce(§fV)(M)‘ IMF|*(1 + 8xs), (71)
>The u dependence from the O(a"Z"~") pieces of the anomalous

dimensions should be canceled by terms of the same order in the
Fermi function, which we currently do not control.
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where M is the Fermi matrix element and dys is an electro-
magnetic correction that depends on the nuclear structure.

To account for isospin breaking in the nuclear states,
the Fermi matrix element is traditionally written as My =
MO (1 = 5¢/2), with MY = (£©|+]i®) computed in terms
of the isospin-symmetric nuclear states |i?’) and | f(©).

For the nuclear structure correction, we find that

Sns = 80 (1) + SEg(Ee, ) (72)

receives E,-independent contributions of O(ae, ), as well as
E,-dependent contributions of O(aey). To this order, dns is
entirely determined by matrix elements of appropriate poten-
tials between the initial and final states

(i)
25 Cnll) iy, (73)

SNSZ
Mr 2 C ()

As described above, the RG evolution is known to different
orders for the different potentials. However, as the V% con-
tribute at O(ae, ), we neglect these differences and write
CHG/Caf (1) = Cl(1x) /gy (). Similarly, M in prin-
ciple includes isospin-breaking corrections, but to the order
we consider we can approximate the nuclear wave functions
by those in the isosgin limit, /® and f©, which also allows
the use of My >~ M, ). With these simplifications one obtains

50 _ 2OV + CY, 4+ CPVRI)
h 8v (K )Mi(:o)

(FOVF + Ve + V5T

v ()M
+Cy Y, + COVT|O), (74)
and
E (©0) (750 m; (0)
8k = F——(ONV2E) + =V 1)
gv (i MY E E,
2 Ey+ 8E, 2
= :F—m)[(fm)%”(m)(M + ﬂ)
gv(ix )Mp 6 2E,
2
+ (FONVEIONEy + (f(O)IV,’,ZEIi(O))%}, (75)
e

while the neutrino-electron correlation simplifies to

2 mz
— ¢
gv(uo)Mp” Ee

The upper (lower) signs in the above equations refer to 8+
(B7) decays.

Before combining these ingredients to form an expression
for the decay rate in Sec. V, we first discuss the ultrasoft
effects due to subleading terms in the EM current, J,, and
their connection to the dispersive approach.

a=1% (O i) (76)

C. Comparison to the dispersive approach

Although the dependence on the intermediate states in
Eq. (61) disappeared in Eq. (62), this is no longer the case
when going beyond LO in J,. In particular, contributions
from the magnetic moment allow the EM current to connect

to excited states of the initial- or final-state nucleus. This
leads to a sensitivity to the intermediate-state energies and re-
quires knowledge of overlap factors of the form (n|Jy,,li) =~

€vhry, qg(n|S, |i). These contributions capture similar effects
to those discussed in Refs. [4,7], in which the contributions
due to low-lying nuclear states were studied and estimated to
be sizable, due to an increased sensitivity to IR scales. In con-
trast, in the EFT we estimate the impact of intermediate states
on Ayof as follows: First, the magnetic moment appears at
O(g/my). Second, the only scales appearing in the integrand
of Eq. (61) are p, > m, or E; y — E,, both of the order of gex,

implying that A7 will scale as

O(gqem) = O(geremﬂ)’ (77)
T my T

beyond the level of precision we need to consider.

To clarify the relation with the dispersive approach, we
considered a toy model for T3(v, Q) that displays all the
relevant features expected from the magnetic ultrasoft contri-
butions

(v, 0% M
00N M gew a8
My my s — M? + ie
where s = M? +1v? — q®> + 2Mv, M?> — M?> = 2MA, and g4
(gm) parameterizes the coupling to the EW (EM) current. In
the dispersive approach, T3 enters a master formula [7] similar
to Eq. (9)°
e dq M}
M(Fo) (27.[)4 Qz + M&/
Tyv.0%) Q' +Mvid (79)
(pe —qrQ* Mv
and for low-lying intermediate states with mass M, corre-
sponding to A > 0, it was found that [,y becomes singular
for E, — 0 [4], which would call into question the EFT pre-

diction (77). Evaluating the integral (79) by summing the three
residues in the upper half plane we find

Oyw =

Dtoy,A _ 3gAgM gA
ywo (0)
4My;° T my

2A
log =— A?
Ny + O(A7), (80)

see Appendix F for the individual residues. Accordingly, since
A ™ gext, the result does scale as expected in Eq. (77).

However, we observe that the individual residues exhibit
divergences for E, — 0, only the sum is again regular. Simi-
larly, in the dispersive approach one finds that the so-called
residue correction, required to be able to perform a Wick
rotation in Eq. (79), scales as

Ma 24
sasw |22 22 L0, @81

Dtoy, res el
W =
4 M}O) my T\ my

see Appendix F for details. The result is finite for E, — 0,
but it scales as O(a/€recoil) and could therefore be relevant

SFor simplicity, we consider the limit m, = 0, which suffices to
determine the relevant scales. See Ref. [4] for the general expression.

055502-13



VINCENZO CIRIGLIANO et al.

PHYSICAL REVIEW C 110, 055502 (2024)

numerically. This apparent mismatch is resolved because also
the Wick-rotated integral scales with +/A in such a way that
the combined result indeed reproduces Eq. (80)
(0} oy, Wick oy, Tes

Oy =000 — O™ (82)
While 03" itself could therefore indeed be enhanced com-
pared to the ultrasoft scaling (77), the EFT predicts that the
most sizable contributions of size O(w,/€ecoil) should cancel
between residue and Wick-rotated contributions.

V. DECAY RATE AND FACTORIZATION

A. Grouping contributions according to EFT

Putting together the various terms discussed in the previous
sections, the EFT-based master formula for the nuclear 07 —
0" decay rate takes the form

AU _ 2CeVoal o, ) C(ED B, )
dE.dQ2.d<2, Q2n)
X [1+ 8p(Ee, 1)I(1 = 8¢) [1 + Sns(Ee)]
x [c& ], (83)
with
W (Ee, pePy) = wo(E) (1 +apB - py) (84)
and
wo(Ee) = |pe|Ee(Eo — E.). (85)

The factor C(E,) encodes corrections due to the nuclear EW
form factor, nuclear recoil, atomic electron screening, and
atomic overlap [3,4] not discussed in this work. We provide
a detailed prescription on how to infer C(E,) from the stan-
dard calculation of the shape factor in Refs. [5,96,102] in
Appendix G. The other correction factors going from left to
right represent the effects of photons of increasing virtuality:
F and 6’ arise from ultrasoft photons, 8¢ and dys from soft,

potential, and hard photons, and C g #v) encodes the effect of
hard and soft photons through the runnmg and matching from
the EW scale all the way down to ;t ~~ ey The key quantities
contributing to the decay rate are:

(1) The Fermi function F, given in Eq. (70).

(2) The generalization of the traditional outer corrections,
S;e’ that can be read off from Eqgs. (64)—(66).

(3) The structure-dependent correction dys, which can
be obtained from Egs. (72)—(75), in terms of
the effective couplings C(’f(u Uz) (with =
{gv, V°, V2, Vi, V4, ViP}) and transition-dependent
nuclear matrix elements. The effective couplings at
W =~ Uy can be obtained from Egs. (10), (44), (43),
(48), (57). In Sec. VI, we will provide the first ab
initio results for light nuclei, in particular for the phe-
nomenologically relevant Q0 — N decay.

(4) The effective vector coupling constant CéffV)(/L ~
Mext), Which can be obtained by solving the RG equa-
tions (55) with boundary condition at u ~ i, from
Eq. (10).

We will give an explicit example of how these different
ingredients can be combined for the case of '*O in Sec. VIL
As discussed in the previous section, the dependence on the
scale p cancels among the various terms in Eq. (83), up to
higher-order terms not included in our analysis. Large loga-
rithms appear in CéffV)(/L > [Lext) and are resummed using the
RG equations.

Finally, on integrating over the phase space we arrive at the
final formula for the half-life:

l: G%|Vud|2m [ (gV)(/L)]
t m3log2 L

X [1 4+ 85()] (14 8ns) (1 = 8¢) f(w),  (86)

where
_ 1 Eo - _
Fw = s [ dEwnENCE P B0 )

and we defined the phase-space average

- B dE,wo(E,) C(Ee) F(B, 1) G(E,, 10)
G(u) = fm 0 , (88)
[ dEawo(E.) C(E) F(B. 10)

for G(E,, 1) € (Sg(Ee, 1), Sns(Ee)}-

At first sight, Eq. (86) looks very similar to Eq. (1), but
important differences arise in the details, most notably related
to the separation of scales. For this reason, we next provide
a discussion of how the above decay rate formula compares
with the one commonly used in the literature.

B. Comparison with the literature

We have cast the EFT-based formula for the half-life,
Eq. (86), in a form that resembles the traditional master for-
mula in Eq. (1), in order to facilitate the mapping between
the two approaches. Comparison of the two formulas shows
that [Cé‘ft”(u)]2 — 1 is related to AX and that the quantities
f. 8, Ons, and 8¢ are related to the corresponding unbarred
quantities that appear in Eq. (1). However, we emphasize that
these quantities do not coincide and can be quite different.
Foremost, these differences originate from the fact that the
traditional master formula does not fully exploit the separa-
tion of scales in the problem, while the EFT maximally does
so. This has several implications, which we delineate in this
subsection, summarized in Table I. The main observations are
as follows:

(1) The EFT clearly identifies corrections of size
O(Graey) that at the two-nucleon level appear as
local interactions proportional to the LECs g}y 1Lya-
These are currently not accounted for in the traditional
approach, where they appear implicitly, through the
high-energy part of matrix elements of quark-level EW
currents between nuclear states, the so-called nuclear
y W box contribution.

(2) The EFT power counting allows one to greatly sim-
plify the calculation of nuclear-structure-dependent
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TABLE 1. Comparison of the corrections in the EFT decomposition (83) to the traditional form of the decay rate [3], with the fourth column
highlighting the main differences.

EFT Traditional Comments

Vector coupling Ce(ff") A} F, 8 Contains the matching and RG evolution between py and piey, most of which is

Egs. (55), (57), (10) usually collected in A}. Additionally, Ce(ff” resums terms ~«L as well as ~a?Z’L
and ~a>ZL, which are traditionally collected in the Sirlin function, the Fermi
function, and §,, respectively.

Outer correction SIQ 8% 8y contains large logarithms in the Sirlin function and é,, 83, 8,2, while S’R does not,

Eqgs. (64)—(66) as they are captured by Cc(ff”.

Isospin breaking 8¢ 3¢ In both approaches defined as the deviation of (f|t*|i) from +/2. In the EFT,
computing 8¢ requires using chiral interactions consistent with those used to obtain
SNS .

Nuclear structure 51(\?5) Ons.A» ONS.B In the EFT, nuclear-structure dependence arises from the matrix elements of

Eq. (74) potentials. The parts of V;*** and V= induced by photon exchange correspond to
the effects captured by dns g. The (quenching) correction dxs o does not appear in
the EFT at the current order, however, the pion-induced parts of V§* capture
similar effects, as do 2b currents that renormalize g4 and other higher-order
diagrams. There is no analog of V§T proportional to g}y .v2 nor the pion-exchange
potentials in the traditional approach.

Eq. (75) 8L Onses Lo, Co & gives contributions that scale as «ZREy ., which traditionally appear in the
finite-size correction, Ly, and shape factor, Cy.

Fermi function F F F is obtained diagrammatically, while F is the solution of the Dirac equation. This

Eq. (70) results in differences at O(«*Z*). In addition, F contains factors of «>Z>L, while F
d(()es) not include large logarithms, which, in the EFT approach, are resummed in
ci.

Other C Ly, Co, U, S, 1R Several corrections are unchanged in the current EFT approach. These include

Appendix G atomic screening and overlap factors, S and r, as well as recoil corrections, R.

Similarly, for the corrections due to the finite size and charge distribution of the
nucleus, Ly, Cy, and U, we do not change terms that appear beyond O(a), O(a?),
or O(aZRE, ). These effects are collected in C following the traditional

approach.

3

“

effects (8ns versus ys), since the computation of dys
in the EFT requires the matrix element of a 2b current
between initial and final nuclear states, while the cal-
culation of éys in the dispersive approach [7] requires a
summation over intermediate nuclear states, which can
be very hard to accomplish in some ab initio nuclear
structure methods. The approach in Ref. [103] is closer
to ours, in that potentials are evaluated between initial
and final states.

The EFT method allows one to sum large logarithms
through the RG equations. For example, already in the
single-nucleon case, only in the EFT approach we can
include the corrections to the vector amplitude to NLL
accuracy, e.g., corrections to gy of order o? log .
Some effects that are present in both approaches end
up being labeled differently. For example, the large
logarithms associated with the running of C e(ffV)(u),

captured by Céfng)(p, ~ lext) in the EFT, in the tra-
ditional approach appear in multiple places, such as
Ak, 8%, and in the Fermi function. The EFT la-
beling has the advantage that changes in the scale
are properly taken into account via the RG evolu-
tion, while the decomposition at a fixed scale in the
traditional approach requires an ultimately arbitrary
choice.

We discuss two specific cases in more detail. First,
subtleties arise when comparing (1 +AX)(1 +68z) to

(gv)
[C, ffv

€

()I*(1 4+ 8;). In the standard approach, the large

logarithm associated with the running of gy — C%") between

eff

my and ¢ex 1S taken into account in the outer corrections
8. In fact, the large logarithm of my/m, appears in the
Sirlin function. Therefore, in the EFT approach the standard
breakdown of RC corresponds to

®

(ii)

055502-15

Evaluating the coupling gy (1) at a scale pu >~ A, =~
my and identifying A} in the master formula (1) with

Sa(mzv)) _1

S (89)

Ap = [gv(mN>]2<1 +

Numerically, using the nonperturbative input for the
single-nucleon matrix elements from Refs. [12-17],
we find A} = 2.471(25)% [46].

Shifting the large logarithm log7* and the
corresponding LL. RG evolution into the Sirlin

function g(E., Ey) and hence S;r To LO this
simply amounts to replacing in Eq. (65) 8 —
o/(2m)g(E,, Ey) + - - -, where the ellipsis represents
higher-order corrections of O(Za?) and O(Z%a?), see
Refs. [93-95,99,104].
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Second, the relation between f(1 + dns) and f(1 + Sns)
involves the following caveats. The traditional Fermi func-
tion and F (B, ) differ in the logarithmic terms of O(«>Z?),
which in the EFT are resummed in Cég, so that one can only
identify dng in the master formula (1) with the phase-space
average dys, defined via Eq. (88), up to O(a?) terms.

VI. MATRIX ELEMENTS IN LIGHT NUCLEI

Having derived the shape of RC corrections to super-
allowed B decays, we now consider explicit transitions
involving relatively light nuclei. We focus on three transitions:
°Li(0*) — °He(0"), °Be(0") — °Li(0%), and *O(0%) —
N (0"). The first two transitions do not happen in nature, but
we can use them as a theoretical laboratory because the nu-
clear wave functions can be calculated to very high accuracy.
The decay of '*Q is measured very accurately, with half-life of
ti2 = 70619(11) ms, branching fraction BR = 99.446(13)%,
and Qpc = 2831.543(76) keV [3], corresponding to a frac-
tional uncertainties below 1.6 x 10™4. °Li(0") — °He(0") is
an example of a transition where the initial state has isospin
T, = 0, while for the °Be and '*Q transitions the initial state
has T, = —1.7

The nuclear wave functions are obtained using the varia-
tional Monte Carlo (VMC) method, described, for example,
in Refs. [105,106], with the next-to-next-to-leading-order
(N2LO) local chiral potential of Ref. [107], and value of the
cutoff Ry = 1 fm. We will perform a preliminary study here
with just one set of wave functions, but a more comprehensive
study should include wave functions obtained from different
chiral potentials, cutoffs, and variational methods. All isospin-
breaking terms in the nuclear potential, including Coulomb,
have been turned off. In this limit, the Fermi matrix element
should be M") = /2. We obtain M\ //2 = 1.0010(6) and
M(FO)/ﬁ =0.9990(5) for A =6 and A = 14, respectively.
The error corresponds to the statistical uncertainty of the
VMC method. In Sec. VIC we discuss the impact of including
isospin breaking in the nuclear potential and improving the
nuclear wave function with the auxiliary field diffusion Monte
Carlo (AFDMC) method.

The potentials Vg, VE, Vi, Vi, V§T, and V, are local
potentials. We will express a generic local EW potential as
a sum of a Fermi (F), Gamow-Teller (GT), and tensor (T)
components

e \"

Vo = (H) Y VaN® + VG @) + Vi), (90)
N=p,n

where we separated the contributions arising from couplings

to neutrons and protons, and we have m = 1 for the potentials

in Sec. IIT A and m = 2 for V.

"We adopt here the standard nomenclature in the 0t — 0% liter-
ature, in which the proton has isospin 7, = —1/2 and the neutron
T, = +1/2, see, e.g., Ref. [3]. This is opposite to the more common
nuclear and particle physics convention, in which the proton has
T, =1/2.

The F, GT, and T matrix components are defined as

Viy = D[t PP + (< k),

Jj<k
V(?T’N = ZhgT(ij)G(‘i) . a<k>[r+(j>P1<vk) + (e b)),
Jj<k
Vy =Y L i)V ®[ PP + (G o b)), O
Jj<k

where rj; = |r; — ri| and
S(ij)(f') =3t. 6P .00 —g®.gW0. (92)

The radial functions /4 for the O(«) and O(a?) potentials are
given in Appendices B and C. Notice that all radial functions
are defined to be dimensionless. In the case of Vg, V7, and Vn’;
this is achieved by introducing a factor of R4 = 1.24'/3 fm.
We stress that dys does not depend on this choice.

Recoil corrections induce nonlocal potentials, such as
those given in Eq. (35). The evaluation of nonlocal potential
is more time consuming. Since, as we will see, potentials
induced by the pion mass splitting tend to yield smaller con-
tributions to dns, we will focus in this study on the first term
in Eq. (35). This gives rise to a coupling of the spin and
orbital angular momentum, which we denote by “spin-orbit”
(so) term. We write

2

Vionlocal = :_T[Vso
Vio = Y ho(ri) [t PPPLy - 0 + (j < b)),
J<k )
where Lj; = —irj; x (V; — V;)/2 and the radial function is

given in Eq. (B4).
In addition to the matrix elements, we will also show the
2b operator densities C. We define them through

My = /000 dr CS,(r) = (FIVili), (94)

where i = {F, GT, T, so}. With these definitions, the O(xe, )
and O(a?) corrections to Syg are given by

Se=o————
0
gv (MY

x| D0 (Mg + My + MG y) + Mo
N=n,p

At (95)
F oo
gv (oM "
The evaluation of the CT matrix elements requires a choice
for the numerical size of the LECs g)/| and g)y. We use
RG-improved naive dimensional analysis, see the discussion
surrounding Eq. (36), for the linear combinations

11
g £

" my QF, )2

and we will treat their contributions as an uncertainty.

(96)
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The energy-dependent O(aey ) corrections are

SE —a—— " _R,E, fEMp + MGTN +M1€71Tv)
N gy (MY g NXn:p ’
+ fm D (MG +MT) | ©7

N=n,p

where the factors fz and ,Z arise from the phase-space aver-

age, see Eq. (88), and are given by

7 1 4<E>+1E+1 m?
ETE\37 T 6T o\E )
. 1 [m?
T (e, 98
e E()<Ee> ( )
with
[5 dE,wo(E,) C(E,)F (B, n) E!

E;l = e — - e‘ (99)
i [ dEawo(E.) C(E) F(B. 1)

For the '*O — !N transition, the endpoint energy is Ep =
QEC —m, = 2320.544(76) keV, corresponding to fr = 0.95,
S, = 0.096, and RAEp = 3.4 x 102,

A. Monte Carlo methods

In this work we use the VMC and the AFDMC tech-
niques described in Refs. [105,106]. These methods have been
extensively used to calculate diagonal matrix elements, i.e.,
observables of a given nuclear state. Here, for the first time,
we extended those methods to calculate off-diagonal matrix
elements.

We need to calculate matrix elements between different
states, including their normalization:

(Wi W;)
(Wi W)

(Urlolw)
(W [Wp) (Wi W)

_ {(Yr|O|Y;)
(Wi W;)

(100)

Let {W} be a set of configurations (including the nucleons’
positions and their spin and isospin amplitudes) that are ob-
tained from VMC or AFDMC sampling, see Ref. [106] for
details. We can rewrite the above as:

(Wr|OIW) (W W)
(Wi W) (W)

(Wil W) (W W)
(W W) (W)

(101)

Within VMC, the configurations {W;} are sampled with
probability |¥;|>. The above can now be evaluated over the
configurations as follows:

1
Z K7L
AT

Within AFDMC the matrix elements are obtained in a
similar way, but the calculated observables are “mix,” because
the AFDMC propagation cannot be performed simultaneously

102
(Wi Wi) (10

V.| O|W;
<M>=Z< f| |W;)

for W; and W, but one of the two states is obtained within
VMC. In practice, we perform three sets of calculations. (M),
corresponds to the case with both initial and final wave func-
tions obtained from VMC, and (M);s) to the ones in which
the initial (final) wave function is obtained from AFDMC,
respectively. The results referred to as AFDMC in this paper
then amount to the extrapolation obtained by combining VMC
and the mix calculations as:

(M) = (M); + (M) — (M),

as described in Refs. [108,109].
The AFDMC trial wave function we use takes the form:

(103)

(RS|W) = (RSI[ [ £ T] £
i<j i<j<k
x 1+ZZf’}Of}ﬁi~”+ 2 Ui 19,1,
i<j p=2 i<j<k

(104)

where |RS) represents the sampled 3A spatial coordinates and
the 4A spin/isospin amplitudes for each nucleon, and the pair
correlation functions fi’j’.zl’6 = f”zlﬁ(r,-j) are obtained as the
solution of Schrodinger-like equations in the relative distance
between two particles, as explained in Ref. [105].

The term |®) is taken as a shell-model-like wave function.
It consists of a sum of Slater determinants constructed using
single-particle orbitals:

(RSI®)sr = D" o Y- Con Didariesboaa |+ (105)

where r; are the spatial coordinates of the nucleons, and s;
represents their spinor. J is the total angular momentum, M
its projection, T the total isospin, and m the parity. The deter-
minants D are coupled with Clebsch-Gordan coefficients Cpy
in order to reproduce the experimental total angular momen-
tum, total isospin, and parity (J*, T). The ¢, are variational
parameters multiplying different components having the same
quantum numbers. Each single-particle orbital ¢, consists of
a radial function multiplied by the spin/isospin trial states:

G (riy 5i) = P (ri)[Yim, (P xy (5:)] (106)

where the spherical harmonics Y},,, (7;) are coupled to the spin
state x, (s;) in order to have single-particle orbitals in the j
basis. The radial parts ®(r) are obtained from the bound-state
solutions of the Woods-Saxon wine-bottle potential:

+ o e(’//)x)zi|

: 9
Jimj

v(r) = (107)

[1 + e(r=rs)/as
where the five parameters V, ry, as, oy, and p; can be different
for orbitals belonging to different states, such as 15,2, 1P5,2,
1Pi3,..., and they are optimized in order to minimize the
variational energy. Details can be found in Ref. [106].

It is important to note that the wave function essen-
tially consists of three separate parts. The correlations, the
shell-model components, and the single-particle orbitals. If
Coulomb interactions are neglected, then it is possible to
construct the wave function, for example, for °Li by taking
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FIG. 5. VMC magnetic and contact matrix elements for the %Be — SLi, Y0 — "N, and °Li — ®He transitions. The tensor matrix
element is multiplied by a factor of 10. Coulomb and isospin-breaking corrections in the nuclear potential have been turned off.

the ®He one and just flipping the isospin of one neutron.
Likewise, the ®Be one can be obtained by taking ®*He and
flipping two neutrons into two protons. This will be what
we call “no-Coulomb.” However, when Coulomb interactions
are included in the Hamiltonian, all the variational parameters
mentioned earlier should be re-optimized in order to minimize
the energy of the nucleus.

B. Numerical results

In Fig. 5, we show the GT and T densities for V;™** and the
GT densities® for V§T for the A = 6 and A = 14 transitions.
The corresponding matrix elements are obtained by taking the
integral of the densities, and the contributions to 81(\105) are then
obtained through Eq. (95) and are given in Table II.

The shape and relative importance of the different terms
is very similar between the three transitions under consider-
ation. The biggest difference is that for 7, = —1 transitions,
the dominant contribution arises from the proton magnetic
moment with a smaller component from the neutron magnetic
moment. This behavior is opposite to that of the 7, = 0 transi-
tion, where the neutron magnetic moment provides the biggest
contribution. The tensor matrix element is very small for all
three systems, which is also seen for neutrinoless double-8
decay.

8The Fermi and GT matrix elements for the short-distance operator
are related through a Fierz relation: MG y = —3M§},.

The short-distance densities always have the same sign,
independent of the 7, value. For our choice of LECs in
Eq. (96), the proton and neutron components add up and VOCT
contributes at about 10% for °Be, 25% for *Q, and 20% for
®Li. We stress that this is just an estimate as it solely depends
on the numerical values of the LECs in Eq. (96). Replacing
2F, — F; would be as reasonable and would quadruple the
short-distance effects leading to O(1) changes in 61(\?; . Clearly,
the short-distance terms must be included in the analysis of
RC corrections to superallowed S decays.

In the left panel of Fig. 6, we show the spin-orbit density.
For !*Q, it provides a 30% correction to the magnetic matrix
elements. For the A = 6 system, the spin-orbit contribution
is smaller by a factor of five. In the right panel of Fig. 6
we show the matrix element of V., setting the subtraction
scale A = pu = R;l. While the peaks of the densities show
a growing trend with Z, the matrix elements do not share this
behavior. Numerically, the V; contributions provide roughly
10% corrections to the magnetic terms. We notice that M;{ »
can be set to zero for an appropriate choice of A, shifting
this contribution to the matching coefficient C8). For 40 —
4N, M{p vanishes for A~! = 3.4 fm, which, as we will see, is

close to the scale set by the '#N charge radius. Since the matrix
element of V. is relatively small, we postpone the evaluation
of the similar 3b potential V3" to a future study.

We can now sum all contributions to 51(\?5) and compare
to values obtained in the literature. Focusing on the '“O
transition, we find

80 (M0) = —(1.76 + 0.11 £ 0.88) x 1073, (108)
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TABLE II. Contributions to dys from the EW potentials defined in Sec. III. The top part of the table shows the energy-independent
corrections induced by the GT and T components of V¢, by VST, and by the spin-orbit term in V. The last column shows the O(a?)

correction from V... The bottom part of the table shows the energy-dependent corrections from Vg and from the GT component of V. We
neglect the T component of V7.

0 mag mag mag
81(\13) VGT%/? VGT%H VT ¢ Vg:lr‘,p Vg:lr‘,n VSO V+
°Be —4.07 x 1073 0.40 x 1073 0.46 x 107* 4.44 x 1074 1.17 x 1074 —1.57 x 107 —1.60 x 107*
40 —4.96 x 1073 1.86 x 1073 1.64 x 1074 5.61 x 10~* 3.13 x 10~* +1.18 x 1073 —1.14 x 107*
Li —0.58 x 1073 2.79 x 1073 —5.01 x 1073 1.12 x 1074 4.43 x 1074 —2.06 x 107* —1.13 x 107*
8 IES Vfl':: 14 Vg']lz ¥4 Vg')lf n Vé”%”p Vg’"i’j:l
40 2.07 x 1073 —2.16 x 1073 1.22 x 1073 —7.65 x 1077 4.10 x 1077

where the first term encodes the magnetic and spin-orbit
terms, the second is the O(a?) potential V,, and the un-
certainty is estimated from the short-distance contributions.
Keeping in mind the caveats discussed in Sec. V, it is still
instructive to compare these contributions to the results in
Refs. [3,103]. 81(\105) should correspond to s g, which includes
just the magnetic and spin-orbit terms but not the short-
distance effects nor V. Reference [3] quotes

ns.3(1*0) = —1.96(50) x 1073, (109)

whose central value is about 10% larger than ours if we ne-
glect V. This closeness is probably coincidental considering
the rather different nuclear methods applied and the fact that
the magnetic contributions depend on the applied regulator.
That being said, this (qualitative) agreement is comforting.
Numerically, the main difference lies in the short-distance
contributions, which we have solely assigned to the overall
uncertainty for now, leading to an error twice as large as in
Ref. [3], but we stress again that this is based on Eq. (96). It
will be crucial to pin down these contributions and we discuss
strategies how to do so in Sec. VIII.

For the unphysical ®Be — °Li and the °Li — °He transi-
tions, we find

59 (5Be) = —(3.79 + 0.16 £ 0.56) x 1073,

80(OLi) = 4+(1.95 — 0.11 £ 0.56) x 107°. (110)
Fat Vso
0.03 K ‘% 4 101N M° =0.114
: N % 4+  ®Be-SLi M =-0.015
: “ } SLi-tHe M® = -0.02
~0.02 N .
Co.01 s -,
0_00-‘7—
0 2 4 8 10 12

6
r(fm)

In addition to éns p, Ref. [3] also includes the correction
Ons.4, which in the EFT approach corresponds to diagrams
further suppressed in the power counting, e.g., 3b corrections
that lead to an apparent quenching of g4. While their size
seems to be roughly in line with the EFT expectation, this
class of diagrams is largest among the omitted higher-order
chiral corrections, and should be studied in future work, see
Sec. IX. In Ref. [3], dns.4 is also estimated from quasielastic
single-nucleon knockout processes, which in our approach
would correspond to a weak axial and EM magnetic current
acting on the same nucleon line, also entering at higher order
in the power counting.

Next, we examine the energy-dependent potentials. In
Fig. 7 we show the matrix element densities CE » (left panel)
and Cg¥ y (right panel), corresponding to the potentials Vg
and VZ, for A =6 and A = 14. We neglect the tensor po-
tential. In coordinate space, the radial function is h,’f:y p(r) =
r/(2Ry), so that CE , has significant support at large distances,
r > (4-5) fm. If one set Ay, ,(r) = 1, then the integral of Cf. ,
would simply count the protons in the final state. Even after
restoring the r dependence, we can see that the matrix element
grows with Z as there appear no nodes unlike in the V', den-
sity. The correction is sizable and gives rise to a contribution
at the 1073 level.

The matrix element ME is well approximated by re-
placing the radial function hf , with if , = R/(2R) with

R = /5/3/(r?), and /(r?) the charge radius of the daugh-
ter nucleus. For YN, with /(r?) =2.558(7)fm [110],

1.00
:l\.. Vi
)
0.75 Y 4 M0-UN ME, =152
N 3 t ®Be-CLiMf, =212
0.50 : 6Li-SHe Mf, = 1.5
o :
a 2
025 K
O 0.00 5
-0.25{ % s
.« .
«
-0.50{ o &
v
0 ] 4 6 10 12 14

8
r(fm)

FIG. 6. Left: Spin-orbit density. Right: Density for the a? potential, setting A = u = R; .
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FIG. 7. Matrix elements of the energy-dependent potential Vg (left) and VI (right).

we find

ZR
22" —5.56,
2R,

Mﬁp: (111)

which deviates from Mg by 10%. For 140, we can thus write
the correction to dns as

SE 4 1 1 mz
dxs = 9ZR §<Ee> + EE() + S\E

+aiR Eofe(Mf, — Mf ) (112)
M;?O) ALOJE F,p F,p ’

where the term in the second line amounts to a correction of
2.0 x 1074, significantly smaller than the first line. The term
in the first line has a dependence of Z and R that is similar
to terms usually captured in the finite-nuclear-size corrections
Lyo(Z,E,) and in the shape correction C(Z, E,). Using the
analytic expressions from Refs. [5,111], one would find for
the >~ ¢RZ terms

Lo(Z,E.)C(Z,E,) — 1 D aZR 48E+6E+17mg
A s Le o 35 e 35 0 35Eg .
(113)

The numerical factors are very close to the ones in Eq. (112),
indicating that the leading part of the EFT expression in-
deed captures similar physics. While the precise values of the
coefficients in Refs. [5,111] depend on the assumed charge
distribution, see also Ref. [112], the EFT allows one to sys-
tematically evaluate higher-order corrections. To avoid double
counting with 81’\“}5, it is then necessary to subtract a set of
O(aZRE,) corrections to the shape factor. Our prescription
is discussed in detail in Appendix G.

In the right panel of Fig. 7, we show the corrections in-
duced by the pion mass splitting. Most of the support is in
the region of r >~ M_!, so that the overall size depends quite
strongly on the behavior of the Fourier transforms (B1) in
this range. For instance, for V,’Zy the GT radial wave func-
tion, proportional to 15 — 21M, r + Mﬁ r?, has a zero crossing
around r ~ 0.74M_!, suppressing the nuclear matrix ele-

T

ment.” Accordingly, this contribution to 8% is at the 1077
level and significantly smaller than anticipated from the power
counting. In contrast, the GT wave function for VI behaves
as 12+ 12M,r — M2r?, with zeros at r >~ —0.93M_! (and
r >~ 13M_"), which explains why this contribution does not
suffer the same suppression due to an accidental cancellation.
Nevertheless, the total contribution is still small, at the 107>
level, and an order of magnitude below our power-counting
estimates. It remains to be seen whether this behavior persists
in heavier nuclei.
Altogether we obtain

SE.(1*0) = 2.06(41) x 1073, (114)

where we assigned a 20% uncertainty from higher-order chiral
corrections.

C. Validation of the Monte Carlo calculations

A full analysis of the theoretical error on dng requires
using different nuclear Hamiltonians, cutoffs, and many-body
methods. We defer this important analysis to a future complete
study. Here we validate the results discussed in the previous
section in two ways. First of all, we study the effect of restor-
ing isospin-breaking components in the nuclear potential. In

the left panel of Fig. 8 we show the GT matrix elements Mgy

for the °Li — ®He transition, with and without turning on the
Coulomb potential. We see that the effect of isospin-breaking
interactions on the matrix elements is minimal. This gives us
confidence that also the matrix element for *0 — N will
be minimally affected by isospin breaking. AFDMC uses the
VMC wave functions as starting point, and, via an evolution
in imaginary time, provides a more accurate description of the
nuclear ground state [105]. Since AFDMC is computation-
ally more demanding, especially for heavier nuclei, here we
checked the impact of using AFDMC wave functions for the
®Li — ©°He transition. The results are showed in the right
panel of Fig. 8, where we compare the GT and spin-orbit ma-
trix elements in VMC and AFDMC, including the Coulomb

There is another zero crossing at 7 ~ 20M ', but at these distances
the radial functions are strongly suppressed due to the ™" depen-
dence.
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FIG. 8. Left: Impact on dns matrix element from including the Coulomb potential in the nuclear Hamiltonian. Right: Comparison of VMC

and AFDMC matrix elements for A = 6.

potential in both cases. Combining these results we find

s© -0 =-29x1077,

NS |AFDMC NSIvMC — (1 ]5)

corresponding to a 1.5% deviation. It will be important to
confirm this behavior for '*Q and larger nuclei.

VIL. AN EXPLICIT APPLICATION: “Q — YN

To illustrate how to use the EFT master formula in Eq. (86)
we now discuss in some detail the evaluation of the dif-
ferent ingredients for the 'O — '“N transition. For this
particular decay we have an explicit computation of the
nuclear-structure corrections in dys, as provided in the pre-
vious section.

We will now explicitly evaluate the various terms in
Eq. (86). The experimental result for the lifetime is given in
Ref. [3] (using input for half-lives from Refs. [113-122], for
branching fractions from Refs. [123—-126], and the electron-
capture correction Pgc = 8.8 x 1074

t =71075(15) x 1073s, (116)

with an uncertainty of 0.02%, while the uncertainty in the
prefactor [62,127]

Gimg
3 log?2

can be neglected.

The next step involves Ce(ff”(u). Cé‘gf”(u) depends on the
matching scale at which potentials and soft modes are in-
tegrated out, and on the low-energy scale (ie at which we
stop the RG evolution, see Eq. (58). We evaluate Cff‘; at three
low-energy scales

=3.350722(3) x 107*s7! (117)

Mexe = {Ep, 2Ey, 4Eo}, (118)
where for 140 [3,128-130]
Eo = 2320.544(76) keV. (119)

We will take the spread in our final answer due to the varia-
tion of [Lexe as an estimate of the uncertainty due to missing
O(a?Z) terms in the ultrasoft matrix element. For the match-
ing scale, as discussed below Eq. (70), we set

iz =R "exp (3 — y£) = 553 MeV. (120)

To be consistent with the evaluation of §xg in the previous
section we have to set A = R;l . From Eq. (57) we then obtain

C(1r) = 1.00060 gy (1) = 1.01721(12),
and by solving the RG equations in Eqgs. (55) and (58)
Ci(pex)) = {1.01100, 1.00873, 1.00645} gy (1)
= {1.02778, 1.02547, 1.02315}.

(121)

(122)

We obtained gy (14 ) by evolving the value at © = M+ with
the kernel given in Eq. (E14)

gv(ir) = 1.01659(12). (123)

The error, which is dominated by the nonperturbative con-

tribution E}‘:ad(ﬂo), is approximately scale independent. We
investigated the dependence on the matching scale by varying
it between /2 and 21, and found a negligible change, of
order 107, We use the fine-structure constant in the MS,
scheme, defined in Appendix E, which gives

o N(ur) = 136.145. (124)

The next term is 8y, which is evaluated as in Eq. (64) and
then averaged through Eq. (88). For 40 this procedure leads
to

S (i) = {—6.61712, —4.20287, —1.78341} x 107>,
(125)

Before discussing the nuclear-structure corrections, we first
address the phase-space factor in Eq. (87). This is rather
complicated due to the factor C(E,), which includes various
corrections not discussed in this work, while, at the same time,
including corrections that do overlap with parts of our dxg and
therefore need to be separated. We present our procedure in

detail in Appendix G and here give our numerical result
Fiex) = {42.3632, 42.4318, 42.5009}. (126)

Combining the scale-dependent quantities then leads to

[CEOT 71+ 8;) = (44.453, 44,433, 44,412}, (127)

We see that the residual dependence on iy induces an un-
certainty of the order ~2x 10~*. We stress that this is much
smaller than the scale variations of the individual pieces that
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make up Eq. (127). The remaining scale dependence is dom-
inated by the missing O(a?Z) corrections in the amplitude at
L > Wext, and is thus expected within the EFT. As key result,
we obtain the estimate for the combination of phase-space,
“inner,” and “outer” corrections

[Ce(ff”] F(1 4 5p) = 44.433(11),, (20),.,

where we separated the uncertainty from gy (i1, ) and varying
Hext- B

Finally, for the remaining corrections we use d¢ = 8¢ =
3.30(25) x 1073 [3] and

(128)

Sns = 5(0) + SNS’

5“” —1.87(88) x 1072, (129)

SE, =2.06(41) x 1072,

as obtained in the previous section. Inserting everything into
Eq. (86), we can extract the CKM element

Via = 0.97364(10)exp (12), (22),0(12)5.(43) g (20)s5z,
= 0.97364(56)oal» (130)

with a total uncertainty of 0.06%. This uncertainty is dom-

inated by the unknown LECs appearing in SNS, and would
reduce to AV,; = 3.6 x 10~* if this error could be eliminated.
Among the remaining uncertainties, the experimental one is
still subleading, at the level of AV,; = 1.0 x 1074

It is instructive to compare our results with other determi-
nations in the literature. Equation (130) is consistent with the
determination from neutron decay [46]

yheuon — ().97402(42), (131)

where we quoted the variant based on Refs. [38,39] for
lifetime and asymmetry, respectively, while PDG averages
including the scale factor almost double the (experiment-
dominated) uncertainty. Equation (130) is also consistent with
the global survey from Ref. [3]

VBl =0.97373(31), (132)

but for a more detailed comparison we concentrate on the
40 — %N transition alone. In this case, Ref. [3] quotes the
different error components of the F¢ value as

Ft = 3070.2(0.8)exp(2.0)55 (0.8)5.[2.3Jota S, (133)

where we added all uncertainties in quadrature (the exper-
imental error being derived from the ft value), resulting
in a slightly larger error than quoted in Ref. [3], Ft =
3070.2(1.9) s.'° From the breakdown in Eq. (133), one obtains

VEI“0] = 0.97405(13)exp(9) ar (12)5, (31)ss [37 ot
(134)

190n the other hand, the uncertainty in Eq. (134) is slightly underes-
timated, because 8y, is only included in the error analysis of the global
fit in Ref. [3], so that the overall comparison should be realistic.

where the total error is close to the full analysis (132) because
it is dominated by the systematic uncertainty in dns. In our
analysis (130), we find a lower central value, albeit consistent
within uncertainties. The experimental error is close, as is
the uncertainty propagated from the single-nucleon hadronic
matrix elements, contained in gy and A%, respectively. The
uncertainties on §¢ are identical by construction, so that the
main difference originates from the effects represented by dns
and Jyg, see the discussion in Sec. V B. Here, the EFT allows
one to separate uncertainties related to RG corrections, labeled
by w in Eq. (130), from the genuine uncertainties of the matrix
elements, and therein higher-order corrections from LECs.

In particular, from this breakdown there is a clear path to-
wards establishing V,; at a similar level as quoted in Eq. (132)
once the LECs are determined following the strategies out-
lined in the subsequent section. In view of the error analysis
presented here for 'O — 4N, a few light transitions together
with the corresponding nuclear-structure calculations should
suffice to obtain a competitive determination of V,,4, including
a robust estimate of the nuclear-structure uncertainties.

VIII. DETERMINATION OF THE LOW-ENERGY
CONSTANTS

A key finding of our EFT analysis of superallowed S
decays is that at the required level of precision contribu-
tions from contact terms have to be included, renormalizing
O(Gruae, ) potential-photon corrections. The two associated
LECs &Y v2- see Eq. (13), encode effects of hard photons that
are not predicted by symmetry arguments, and their values
thus have to be determined by other means. This situation
is similar to neutrinoless double-8 decay [56,57], ultimately
tracing back to potential matrix elements evaluated with chiral
1Sy wave functions [131], but the crucial difference is that
for superallowed B decays a purely data-driven strategy to
determine the LECs is possible.

That is, while a reduction of the number of LECs using
large-N, arguments might be possible [132] and independent
theoretical determinations using lattice QCD or a Cottingham-
like approach [58,59] could be envisioned, the contact terms
can also be determined from a global fit to measured superal-
lowed transitions, with V,4 and g}}\ |, as degrees of freedom.
Given that there are O(10) prec1sely measured decays, such
a simultaneous extraction is feasible if the matrix elements
for systems with different A are not degenerate and if their
errors can be quantified in a reliable manner. The latter should
be possible for a wide range of targets with modern ab ini-
tio nuclear-structure techniques. The results we presented in
Sec. VI make it appear unlikely that degeneracies in the A
dependence of the matrix elements occur.

As further refinements of such a data-driven strategy to
extract the LECs simultaneously with V,; one may con-
sider decays with initial m; = —1 or m; = 0 separately.
The LECs appear in the linear combinations g"\f}' (flIO1117) F
V37585 (f110211i), respectively, where (f||O,||i) are the
reduced matrix elements of the operators from Eq. (13). If
the reduced matrix elements were (approximately) propor-
tional for different isotopes, then the combined analysis of
systems with the same m; would be (primarily) sensitive to
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a single unknown together with V,;, and the comparison of
determinations from m; = —1 and m; = 0 decays could then
be taken as a consistency check of the V,; determination from
superallowed S decays. It remains to be seen how the reduced
matrix elements behave, empirically, for the nuclei in ques-
tion.

IX. CONCLUSIONS AND OUTLOOK

In this work we provided the details of a comprehensive
EFT analysis of superallowed § decays [8], spanning scales
that range from EW physics down to nuclear transitions. In
particular, we identified the set of contributions that needs to
be included at O(10~*) precision relevant for a competitive
determination of V4, see classes 1-5 in Sec. II B, finding that
the nuclear-structure-dependent terms usually represented by
dns can be expressed as potential matrix elements of EW
transition operators evaluated between initial and final nu-
clear wave functions. We provided a detailed account of these
potential corrections in Sec. III. Among the identified cor-
rections are terms such as the magnetic and recoil potentials
already present in the literature [103], while others have not
been considered in the past. Most importantly, the EFT allows
for a systematic evaluation of all contributions, including ef-
fects from pion exchange, and predicts that renormalization
requires the consideration of short-range operators at the same
order.

We also provided a detailed account of ultrasoft modes, see
Sec. IV, as well as a careful consideration of scale dependence
and RG corrections. The understanding of ultrasoft photons
is critical to be able to map our results onto the traditional
decomposition of the decay rate and justify factorization
assumptions, see Sec. V. This mapping, together with the
appropriate caveats, is summarized in Table 1. Moreover, ul-
trasoft contributions play a prominent role in the comparison
to a dispersive approach for dns [6,7], and we demonstrated
how the EFT scaling applies in the presence of low-lying
states, such as the 31 and 17 levels of '°B in the °C — °B
transition. We showed that individual terms can display an en-
hancement by ,/€ccoil, but the total effect should comport with
the EFT expectation. Finally, we confirmed the EFT power
counting with VMC calculations of °Be — °Li, °Li — °He,
and 'O — *N transitions, see Sec. VI, and outlined a data-
driven strategy to determine the coefficients of the O(Graey )
contact operators, see Sec. VIII.

Combined with advances in ab initio nuclear-structure cal-
culations to evaluate the nuclear matrix elements identified in
this work with quantified uncertainties, our framework should
allow one to systematically address the dominant uncertainty
in V,; as determined from superallowed B decays. To this
end, we addressed all contributions expected to be relevant at
O(10™%), but there are several subleading effects whose role
should be investigated in future work:

(1) The 2b and 3b O(aef() corrections: the largest class
of omitted diagrams identified in Sec. II, Figs. 2(f)
and 2(h), includes corrections that amount to a mod-
ification of the axial-vector coupling via 2b currents,
contributing to the apparent quenching of g4 in B

decays. In the literature, see, e.g., Ref. [3], similar
corrections are included in an ad-hoc quenching of
g4 and other shell-model parameters. Numerically, the
hierarchy of these corrections does appear to comply
with the power-counting expectation, but a dedicated
ab initio evaluation would clearly be desirable.

(2) Shape corrections in the phase-space factor: the stan-
dard evaluation of the phase-space factor in Eq. (1)
involves corrections related to the EW form factor and
nuclear recoil. Both effects are, in principle, present
in the EFT, and therefore care has to be taken to not
double count the same effects at different places in
the calculation, see Appendix G. In this work, we pre-
sented the decomposition of the decay rate in the EFT,
leaving a dedicated study of the phase-space average
to future work.

(3) Subleading terms in the Fermi function O(a*Z): the
calculation from Refs. [98,100] captures the leading
effects @"Z" in MS, converted to the the M_SX scheme
[133]in Eq. (70), but neglecting terms O(«"Z"~") with
n > 2. Corrections of size O(a?Z) could potentially
be relevant for large Z. In analogy to neutron decay
[46], one could consider a matching to a nonrelativistic
theory to capture the leading terms in an expansion in
B, but since this expansion will be less accurate than
for neutron decay, a dedicated calculation appears to
be necessary.

In addition, while our focus has been on dns, we stress that
d¢ and Sng should be calculated in the same ab initio frame-
work, e.g., to ensure that the isospin-breaking corrections
contained in 8¢ are consistent with the definition of the isospin
limit in éys (in this work, we used the mass of the neutral
pion).

With these caveats in mind, our results as summarized in
the master formula for superallowed 8 decays in Egs. (83)
and (86) pave the way for a modern EFT reinterpretation
of the experimental program, see Sec. VII for an illustra-
tive application to the 'O — '“N transition, and enables ab
initio nuclear many-body computations of nuclear-structure-
dependent corrections. Our findings can be used to perform
state-of-the-art extractions of V,; from nuclear processes with
controlled uncertainty quantification and to use precision 8-
decay experiments to search for physics beyond the Standard
Model.
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APPENDIX A: ENERGY-DEPENDENT POTENTIALS

The potentials Vg and Vg are obtained from diagrams
(a0)—(c0) in Fig. 3. The energy dependence of these potentials
results from expanding in small p,., /q,,, which leads to terms
ey - Pe,yVr that can be rewritten in terms of Ey and m,
using the equations of motion of the leptons. In addition,
however, one obtains contributions proportional to gy, where
q = (p) —p1)/2 — (p), — p2)/2 is the difference of the rel-
ative momenta of the nucleons. It is not immediately clear
how to deal with such terms, which are also encountered, for
example, in the construction of the 2b contributions to weak
and EM currents [134] and the one-pion-exchange potential
[135]. In principle, one could use the equations of motion

J

of the nucleons to relate g to the kinetic energies of the
nucleons, however, this implicitly relies on the use of a field
redefinition [136]. As we discuss below, the required field
redefinition generates a shift in the potential.

Focusing on the somewhat simpler example of the Vg
potential, the terms proportional to g lead to a term in the
Lagrangian of the form:

Ly = —V2GpVigerpvr [ |:(1\7QN)(X +r/2)

r

«
X (zi — ii)V(r)(l\_/tJrN)(x — r/2)], (A1)
aX() BX()

where Q is defined in Eq. (53) and V(r) >~ «|r| is the Vg
potential in coordinate space, while the derivatives in brackets
give rise to a factor of 2¢ if we take p; (p,) to be the momenta
of the nucleons that couple to the EM (weak) currents. Here
the x coordinate has a timelike component, while only the
spacelike components of r appear, so that all the fields are
evaluated at equal times. When writing the potential as a
term in the Lagrangian, the nucleon fields should in principle
appear in a different ordering, namely, ~ [ N(x +r/2)N(x —
r/2)V(r)N(x —r/2)N(x +r/2). However, in this case, the
difference is proportional to V (0) = 0.

Before discussing the consequences of the abovementioned
field transformation in more detail, we discuss another way of
rewriting Eq. (A1), which will lead to the same conclusions.
In particular, we can use the fact that the time evolution of an
operator is determined by its commutator with the Hamilto-
nian. Using integration by parts to get rid of the derivative on
the weak current, together with idyO = [O, H], we obtain

Ly, = 2V2GrVageLpvL f [NON, H](x + r/2)V ()Nt N)(x — r/2)

+ V2GpV,giv - 3@ pvr) /(NQN)(x +r/2)VIE)(NTtTN)(x —r/2),

(A2)

where the second term is proportional to Ey, since iv - d(e.pv.) — —Epe,yv, when the lepton fields act on the external state,
while the first term becomes >~ [H, JSM] ~ 9 - Jgm = 0 up to the 2b part of the EM current. This 2b part would lead to 3b terms
in Eq. (A2) and can be neglected. Comparing Eq. (A1) with Eq. (A2) then implies the following replacement rule for go:

qo —> Eo/2,

(A3)

so that the g( terms contribute to the part of the potential >~ E, in Eq. (29).

A very similar argument holds for the Vg potential although we can no longer use V (0) = 0, since Vg (r) does not vanish
as [r| — 0. In this case, it is simpler to use the ordering of the fields corresponding to a genuine potential instead of rewriting
everything in terms of currents as in Eq. (A1). Doing so leads to a slightly modified form of Eq. (A2),

Ly, = 2V2Gr Va2 pvy /1\7i(x —1/2)INON(x +1/2), HIV(X)(t "N(x — 1/2));

+ V2GVyaiv - 3(@LpvL) /(NQN)(X +1/2)V(I)NTN)(x —1/2),

(A4)

where i is an isospin index. This form is equivalent to Eq. (A2) when V (0) = 0, but differs otherwise. With this change, the rest
of the argument goes through unchanged and the same replacement rule of Eq. (A3) applies.
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1. Field redefinitions

Alternatively to using idyO = [O, H], the L,, term can be removed through a transformation of the form,
N@x) — N(x)+8N(x) =N(x)+ & /V(y)[l\_leN(x + YY) O1N(x), (AS)
y

where Q) ; are (isospin) operators. Similar transformations, which allow one to alter terms in the potential, have been considered,
e.g., in Refs. [59,136]. The shift resulting from the kinetic part of the Lagrangian, Niv - DSN + H.c., leads to a new term of the
same form as Eq. (A1). In other words, the transformation can remove £, from the Lagrangian, for some choice of the operators

QOirand &.
To evaluate the complete shift in the Lagrangian we can first use integration by parts to write

<—
Ly, = =2v2GViaerpur / [(NQN)(X + 1‘/2)< - i%)WI‘)WﬁN)(x - r/2)}
0

r

+ V2GpVyaiv - 9(@LpvL) /(NQN)(x +r/2)V(IE)NTN)(x —1/2). (A6)

Using the field redefinition in Eq. (AS5) with

1413

5 = iN2GpVytte v, + He., & =2i, (A7)

O1=0=

then removes the first line in Eq. (A6) due to a shift in the kinetic term, ~ §(Nv - DN).
The remaining terms in the Lagrangian are also transformed, for which it is useful to write N as a commutator

SN (x) = —2i/ VINON(z +y) INQIN(2), N(x)], (A8)
y.z

where zg = x¢ so that all the appearing fields are again evaluated at equal times. This allows us to write the total shift in the
Lagrangian as

SL(x) = —21'/ [NOIN(2), LIV (Y)NON(z +y)
Y.z

= —Zi/ [NQIN(z),iNv - DN(X)IV(y)NQ:N(z +y) — Zi/ [NQN(z), L(x) —iNv - DNV (y)NQ:N(z +y),
y.z y.z
(A9)

here the shift from the kinetic term in the second line removes the first line in Eq. (A6), while the term in square brackets in the
last line corresponds to the Hamiltonian density. The term =~ g, together with Eq. (A9) contributes to the action as follows:

/ d*x[Lg,(x) + 8L(x)] = / d“x[ —2i / [NQIN(x), HIV(Y)NQ:>N(x +y)
Y.z
+ V2GVyqiv - 3(Erpvr) /(NQN)(x +r1/2)V ()Nt N)(x — r/Z)}, (A10)

where we relabeled x and z and used the fact that H = fx[ﬁ(x) — iNv - DN(x)]. After plugging in the expressions for Qj », this
reproduces the Lagrangian in Eq. (A2).

2. Comparison to relativistic corrections in the traditional approach

Instead of integrating by parts first to obtain Eq. (A2), we could have used idyO = [O, H] directly, leading to

Ly = —ﬁGFVMdéL;évL[ - [[NQN, Hl(x +r/2V(@)NT"N)(x —r/2) + /(NQN)(x +r/2)VE)[NtTN, Hl(x — r/Z)}.
(A1)

Again neglecting [H, J}(E)M] >~ d - Jgm = 0 leaves the commutator with the weak current. This way of rewriting Eq. (A1) leads to
a contribution that looks similar to the relativistic terms discussed, e.g., in Ref. [5], around Eq. (130). In particular, the nucleon
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mass splitting and the Coulomb potential in H give rise to terms of the form

Ly = x/EGFVudéL;évL /(IVQN)(x +1r/2)V(r)

X |:(m,, —m,)NttN(x —r/2) + / (NON)(x —r/2)Ve()(NTTN)(x —1r/2 — r/):|. (A12)

Assuming that the matrix element of the potentials are roughly given by their value at |r| = Ry, i.e., that (V(R4) — V(1)) is
small, allows us to evaluate the appearing currents as conserved charges, fx (NON)(x) = Q — Z. This then gives a contribution
proportional to

oZ
aZR[mp —m, + 7i|, (A13)

while the relativistic corrections discussed in Ref. [5] take the same form up to a factor 6/5 in front of the Coulomb contribution.
This factor depends on the assumed charge distribution of the nucleus, see the analog discussion around Eq. (113). Nevertheless,
the form of Eq. (A13) is qualitatively similar, implying that the two approaches are capturing the same physical effects.

APPENDIX B: O(ae,) AND O(aey) POTENTIALS IN COORDINATE SPACE

For the numerical implementation, it is convenient to also provide the matrix elements in coordinate space, see Egs. (90) and
(91). The radial functions needed for the energy-dependent corrections Vg and Vi are

,
hip(r) = =50
Ep 2R,
Ex Ex gaZn M 22
hGT p(V) hGTn( ) 3 m(lZ—f— 12M7-[}" —Mﬂ}" ),
W KT (r) = $ile e 15—21M M7 Bl
GTp(r) - GTn( ) 3 T2M RA( - 7Tr+ =t )’ ( )
gZZ e Mxr
hy7 —hT M1 — M2r?),
»(r) = (r)= 3 T RA( r ,,r)
ey (r) = —hpy (r) = _&iln ——— (18Mr — M217).
3 72MLR, m

Vg only has a Fermi-component coupling to protons, while the pion-mass-splitting contributions only induce GT and T
components. The factor of R4 was introduced to make the radial functions, and thus the matrix elements, dimensionless. The
magnetic contribution induces both a Gamow-Teller and tensor component, with radial functions given by

8 14k, 84 Kn

iy, (r) = 4hp(r) = 3y e, (r) = 4y (r) = 3y T (B2)
The recoil terms in Eq. (35) are nonlocal, and their Fourier transform is given by
2 ) p) '
Vie(r) = 34 Z L0V Zygart O 26D etV 40 a0) 4 (o k)| B
4w 2my “ Tjk r
so that the spin-orbit radial function is given by
ga 1
hso(r) = —5—-. (B4)
2my r
Finally, the short-range potential is given by
V(():T(r) =¢ Z (g/‘\/q\],‘t+(j) + g/‘\/”\2’1+(j)r3(k))8(3)(rjk). (BS)

j<k
To compare with the magnetic potential, it is convenient to perform a Fierz transformation on O; and O, and write them as

N'T*NN'N - —iINTet*N -N'oN, N't*NN'T’N - —INTet*N-N'or’N. (B6)
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The § function in Eq. (B5) can be regularized in various ways. In this work, we use nuclear wave functions obtained with the
local N2LO chiral potential of Ref. [107], in which the § function is replaced by

D) — 8, (r) = ! exp (—ﬁ). (B7)
7l(3)R3 R}
We can thus express the short-range potential via the radial functions
CT 4 CT 4
Gt p(r) = —— (&) + &5)8r, (1), hgr.,(r) = —— (g} — &V3)dr, (). (B3)

3 3

APPENDIX C: SUBTRACTION OF THE ULTRASOFT REGION IN THE DERIVATION
OF THE O(ae;) AND O(a*) POTENTIALS

The calculation of the photon-exchange potentials at O(aey) and O(a?) requires some care as the ultrasoft and potential
modes can overlap when q — 0. To properly define the EW potentials we then need to subtract the ultrasoft region. We discuss
here how we perform these subtractions.

1. O(x) two-body potential

We start by discussing Vg, which, in momentum space, behaves like 1/q* and it is thus sensitive to IR contributions. In a 2b
calculation, the momentum-space matrix element of Vg could be written as

(f1Veli) / o ! / T Ly + @) — @V )] n
)= — — ,
E enrq ] @ny ©)vq T~ q2 qQ2)viqz
where ¥ is a 2b wave function. In many-body calculation ¥ would correspond to the many-body wave function after integrating
over all relative momenta but one. The second term in Eq. (C1) corresponds to subtracting the ultrasoft limit |q;| < |qz], so that
the matrix element of Vg is well defined in the IR. Going to coordinate space, this expression becomes

(FIVeli) = / Zroro| [LLL o _ ]y = - L / Bry* () =y (r) (C2)
£ Q) q* 4 27l

coinciding with the result one would obtain by taking the Fourier transform of 1/q* in dimensional regularization. Equation (C1)
is reminiscent of the “zero-bin” subtraction devised in Ref. [137], which is needed in order to avoid double counting due to the
different photon modes with overlapping (IR) momentum regions. We will use the same idea for the more complicated O(a?)
potentials.

2. O(a?) two-body diagrams
The diagrams in the first row of Fig. 4 lead to the amplitude

& 3
A=) ov G @7

i<j [qz] %+€

272

3 - -
[1 + 6(1 — e+ log(16n)>}ﬁ(pe)y°PLv(pu) (c*OPY) 4 c+0pD), (C3)

Here we work in dimensional regularization, with d = 4 — 2¢ dimensions and in the M_SX scheme [133], which subtracts the
combination

1
- —vetloglém) + 1, (C4)

including an additional finite piece compared to the standard MS scheme. At O(«?), we implement this scheme by introducing
the scale

(C5)

To interpret Eq. (C3) as a potential, and obtain the matching coefficients in Egs. (43) and (44), we follow a strategy very similar
to Eq. (C1). We consider the amplitude A to be applied to a test function ¢(q) (which stands here for the product of nuclear wave
functions) and we subtract the value ¢(0), which corresponds to the regime in which the photon momentum becomes ultrasoft.
Schematically, we have to consider matrix elements of the form

dd—lq
(27{)d71

2 2
o 2’]16 (p(@) — p(0)), (C6)
q 2
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which we can rewrite as
dd ]
(2m)3

2 2 dd—l 2 2
(327 ———(p(@) — 0(Ae ! — |q))p(0)) — / L (@ —Z—6(lq] - Ae T )p(0). (C7)
[q?] " 2m) [q?) 7

The first term is IR and UV finite, and we can simply drop the dimensional regulator € and obtain the plus distribution in Eq. (42).
The second term is equivalent to the application of a potential that is a § function in momentum space, with coefficient
dd 1 2 1 2

2w 1 u
¢ —yp+1
_ YE —_ _ _ _ _
) ) » ]%H@(Iql Ae ) = e 28

5
+1 =7 ve +log(16m). (C)

When combined with the O(e) contribution coming from the loop, and subtracting the divergence in the mx scheme, we obtain

C « 1 ” 13 +2 (C9)
=—gy—| log— — — .
§ 8v 2 4 A2 8 YE

3. Three-body diagrams

For the 3b diagrams we encounter amplitudes of the form

4 111 11
A =gvS Y wpey Po(p,) THOPYPO( oy =) (C10)
2 "\ ¢ qq ¢ q
i j#k i) Sk [qk] J i

with the momenta satisfying q; + q; + qx = 0. This potential acts on functions of q; and qx. As in the 2b case, the amplitudes
receive contributions from the regions in which q; and q are ultrasoft, q;, qx — 0, which need to be subtracted to obtain a 3b
potential. We focus here on the first term of Eq. (C10), which leads to logarithmic divergences. We can thus write

oy [ [ L]
Qr )" : (Zn)d“ q; q; (q; + q)?
d g, 11
= (1 )26/ d 1 d—kl 2 2 2
QoY= ] @) ¢ 4} (45 + o)

lo(q;, qx) — ¢(0, 0)]

[p(aj, ar) — 6(A — |q;DO(A — |q))¢(0, 0)]

—(‘2)26/ o / S L L oA~ DA + )+ (= + lay DA — e
et e a | (o + a0 v . v “

+0(=A +1q;D0 (= A + 1q)]e(0, 0), (C1D)

where ¢ is a test function, A = Ae !, and & is defined in Eq. (C5).
The first term is now IR finite. We can set d = 4, and this term is represented by the distribution

11 1
- (C12)
|:Q§ q; (q; + (Ik)2:|+’A

d*q; /‘ d3q; 11 1
— so(q j» Qi)
/ @2r) ] @2n)3 q] qk (q; + (lk)2 e
g (g 111
Q) ) (27) q; q; (q; + qr)?
The integrals in the second and third line of Eq. (C11) can be performed, giving

defined as

[e(q), a0) — O(A — 1a;DO(A — qx e (0, 0)]. (C13)

—2r)* 8% (q;)(27)*8%(q;) Ll - +2lo i + 7t6) + (C14)
v 4 (4 )2 | 4 3 x2) T om2 T4

The 3b diagrams thus lead to the following correction to Vy:

VWi, = CO VP 4 CP PP, (C15)
with V;® defined in Eq. (47), and V3,
PP(q) — 4| L1 1 +0) pli) ph) Cl6
Y= @’ o | TURR (C16)
ik TR S N
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The matching coefficients are given by

~ 1 w> ye ¢33 o?
C;b = —ngl2<Z IOg F + ? + 472 - g ) Cib = gV7~ (C17)

In coordinate space, we can obtain the Fourier transform of V3" in the limit of large A,
- A 7¢(3) Nl
Vib(r) = — Z <log |:5(rij + rir + ij)j| — W Tt )PI(JJ)P;Jk)' (C18)
ik

Notice that the term proportional to ¢ (3) cancels between C;° and V3. It is thus convenient to define a coefficient,

~ 7¢(3) 1w ye 3
C;b = gb +gvol2 42 = —gv()tz(é—L 10g p + 7 — g y (C19)
and a potential,
- 7¢(3)
Vi = Vi@ - S5V @, (C20)
A -
V) =— ) log |:E(r,- i+ rjk):|r+(’)P[§J)P[(,k). (C21)

ik
so that terms scaling as O(@*Z(Z — 1)) are fully captured by C;°, while Vib is a purely logarithmic correction. In coordinate
space, the 3b potentials read
3b v,3b 3b v,3b o’ K 3\ pti) p)
GV +CPVY = —gv— > (tog S0+ it | +ye = 3 JTORPRE. (C22)
i#j#k

APPENDIX D: RENORMALIZATION GROUP EQUATIONS BELOW u = u,

As discussed in Sec. 11 C, integrating out potential and soft photons leads to an effective theory containing ultrasoft photons
as propagating degrees of freedom, supplemented by static potentials. Compared to the theory above pu = pu,, additional
divergences arise that depend on the charge of the nucleus, instead of the nucleon charges. This can be seen from the effective
action generated by the exchange of n photons between a single electron line and up to 7 nucleon lines

B + q p + q + - + g efiql'(xlfy) efiqw(xrl*y) . . .
S 2 eZn/ / er(0)y Prd ¥ ! YL (y) e T[jo(x1) ... joxa)jiy O]
" PP . P+ q1)? P+aq+-+qg)P2" q q? [ WOl
(DD

where fq =/ % for momenta and [, = [ dx for positions, while jij = —+/2GrV,qgyNv*t*N and j, = Nv,ON are the
EW and EM currents, with Q defined in Eq. (53), and p and g; are the momenta of the electron and ith photon, respectively.
In principle, there are additional contributions that correspond to diagrams in which one of the photons connects to the same
electron/nucleon line. Using the symmetry arguments discussed in Ref. [97], one can show that such terms first contribute
at O(a?Z), or when going beyond O(«?). Here we focus on the terms ~ («?Z?)" and («>Z). Since the exchanged photons
are ultrasoft, small ratios of ¢;/kr should be expanded. In particular, we have |x; —y| =~ 1/kp, so that the exponentials
become e~ ~ ¢=i4!a! ") The only x; dependence then appears in the EM currents, which, after integration, lead to
time-independent conserved charges, Q = fx’ Jo(x;), allowing us to write

:00,0_ 0 00,0_ 0

~ P+ pP+dg, +--+4q e~ i (i —y") e i1 (6, —y") )

Sé?f) ) ez”/ / o OeLyj( + 1)2 ﬁ( + 1++ n)zyllva ) ) T[Qn.]‘l)[l'/(y)] (Dz)
q1..-Gn Jy.x7..x) P T4 P T4 dn q1 qn

Once the factors of Q in the time-ordered product act on states, they give rise to factors of the charge of the initial- or final-state
nucleus, depending on whether they appear before or after ji . In the following we organize these terms by powers of Z.

1. Contributions of O(«"Z")

Focusing on the terms 2 Z", with Z the charge of the daughter nucleus, we can move all factors of Q to the left of jj, using
Jw Q= Qji + Ly Ql. Neglecting the commutator contributions, each term in the time-ordered product gives rise to Q" ji,,
multiplied by Heaviside functions, Q(j:(x? —y%)). As each time ordering, or combination of Heaviside functions, comes with
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the same coefficient they simply add up to one, leading to

" " _ + + +4, 27 qo 2mé(q Y e
Sir > ¢ /q . /yeL’é(f+czl)2""é(f+cil+ +ci>2y" ; qg ... qi oo+ 0@ [ @+
(D3)

where the terms involving one or more commutators lead to fewer factors of Q and are subleading in Z.

The remaining integrals over q; lead to divergences for even values of n. The result is proportional to the original operator
structure, but comes with additional factors of Q, namely, >~ é,y, v, Q" jw. In contrast, terms at odd n give structures that
involve the electron momentum, > p - y/|p|. The integrals can be done iteratively by noticing that each combination of two
photon exchanges leads to integrals of the same form. The required integrals are very similar to those discussed in Ref. [100]
and given by

py-(p+q 1 248 y-@+q) y-p+at+q) 11
g =N @O > D RS ey (D4
alP+9?1 74 P 2 Jaw PTA) [((p+q+q)] A9 [p?]
with
I(453)r (4=42)  (3=4t2a M(42)°T(“52)r@ —d —al'd -3 —a
J](Cl)_ ( 2 ) ( 2 ) ( 2 ) Jz(a)= ( 2 ) ( 2 ) ( ) (Sd_g_z ) (DS)
@Am)TT(1+a)d—-2—a) @m)-'T1 +a)'(d —2 — a)F(T“)
The effective action induced by an even or odd number of photon exchanges then becomes
n/2—1
S0 5 f e —e [ Bk, (o even),
M [p°] k=0
%
" N . e . v
S D —e"'Q" f Jv’f/(Y)—L[f)};]l/IdeLll((n = De) [ [n(2ke).  (n 0dd). (D6)
Y k=0

The divergences contained in these expression need to be absorbed by counterterms and require the presence of additional terms
in the Lagrangian, namely,

£> [Z e Q”} eLyvL Jls (D7)
n=0

where ¢y = 1 gives rise to the 1b EW current, while ¢, absorb the divergences induced by terms with n > 0 in Eq. (D6).
Combining the amplitudes generated by Sg'f) with those from ¢, and demanding the sum to be finite, we can determine the
counterterms contained in ¢ = (co, ¢; ..., ¢,)” . This procedure requires including terms in which the ¢, operators are dressed
with additional photon exchanges, whose contributions are described by integrals of the same form as in Eq. (D4). The
bare couplings cf are renormalized by the renormalization constants Z;; = 14+ _, Z(") /€" according to c! ® = Z;jcj. After
obtaining the counterterms, Z;;, one finds that the amplitudes involving p-dependent structures resulting from odd numbers of
photons in Eq. (D6), are rendered finite.

With the above definitions, the anomalous dimensions are given by y;; = 2 ZD | for which one finds

dloga ij
0 0
0 0
aZ
7 00
0 £ 0 0
4 2
d £ 0 £ 0 0 o3
= . y = — Dt4 az
dlog p o 5 0 % 0 0
% 0 % 0 % 0 0
6 4 2
% 0 % 0 % 0 0
5a8 a® ot o?
% 0 % 0 £ 0 %5 0 0

These RG equations imply that each ¢; contributes to c;;,, with an anomalous dimensions —«?/2, which determines the LL
contributions ~ [«?Z?log ]". NLL ~ [«*Z*1og u]" arise from the contributions of ¢; to c; 4, proportional to —a*/8. It turns
out that this sequence of (sub)leading anomalous dimensions sums up to a square root [98,100]. This can be seen by noting that
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the matrix elements of the Lagrangian in Eq. (D7) are proportional to an effective coupling of the form C(u) = >, c,(n)Z",
which indeed follows the RG equation,

C=y'C, y =+1—-0a%Z22-1. (DY)
dlogu

2. Contributions of O(«"Z"1)

The anomalous dimensions are not just an expansion in («>Z?)", but also involve contributions with fewer powers of Z. To
capture the first of these, we can go back to Eq. (D2) and, instead of neglecting all commutator terms, focus on the terms that
involve a single commutator. Such contributions are proportional to ~ o Q"~! — «"Z"~!, giving the first subleading terms in Z.
Following similar steps as before, most of the integrals over x? again lead to § functions, =~ S(q?). However, as we are interested
in terms with one commutator, say [jw, jo(x;)], the ith coordinate only contributes with one Heaviside function, 9(—(x? —y%)
(since jo(x;) does not need to be moved through jy, for the other time-ordering). This leads to the following terms:

+q pHd, ++4g 275 ( qk) 1 i L
S(”)De2”/ /w Pra ! "y — _ o[y, Q]. (D10)
o weandy @R ra " LIZI g G |4iv-aitie v . €]

The factor of [v - g; + i€]~! can be written as the sum of a symmetric and antisymmetric term in v - ¢;. The antisymmetric piece
requires an odd number of ¢! factors in the numerator of the electron line in order to contribute. The denominators of the electron
propagators are even as all other ¢? are set to zero through § functions, and we can take p° to vanish as well, since p only serves
as an IR regulator. One can show that these terms therefore become proportional to the only external vector, p, and contribute
terms of the form p/|p|, which do not correspond to local counterterms and are therefore not relevant for the RG equations.

Instead, the terms even in q? again lead to a & function, [v-q; +ie]™' =n8(v - g;) + (odd inv - g;). After these simpli-
fications, all terms in the sum over [ in Eq. (D10) contribute equally. Using this and the fact that [jj,, Q] = —jj, (due to
[z, %] = —1™1), one finds

) _ Pt Prat+--+4, 2775( [l
S& o /q,“,q,l/em(p+q1)2"'p(p+q1+~--+qn)2y"vL< 2)[]:[ p Q" ), (D11)

which reproduces the same integrals as those encountered in the previous subsection.
All in all, this then leads to new entries in Eq. (D8), which are similar to the ¢, — ¢, contributions of the previous section,
but contribute to c¢,,—; instead, with a relative factor of —|m — n|/2. Explicitly, these subleading terms give

0 0
H
0 < o0
Cl4 112
T 05 0
@ 0 < 9
1) 4 2
yo |2 : . , (D12)

w 90 % 0 % 0
R S S
g5 % 55t
0 ¥ o ¥ o < o £ 0

which should be added to Eq. (D8).

APPENDIX E: RENORMALIZATION GROUP EVOLUTION KERNELS

We provide here a few more details on the solution of the RG equations for Cg, gy, and Ce(ff”, which resum large logarithms
between y and flex.

1. Cg between py and iy

The evolution matrix U (u,, uw) that appears in Eq. (7) captures the effect of the RG evolution of Cg, which, in the MS
scheme, is given by [67,138,139]

dCs(n) |« a)’ i i 2
= — 7 Vse C =_1’ = 75 2 1 ) se — 17 = ) El
dlog v Y+ s Ve [Co(), 70 Yi 18( a+l1), vy f anQf (ED)
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where ny is the number of active fermions and Q; their charge. Further, a is a parameter related to the (arbitrary) choice of
scheme used to treat evanescent operators, which drops out in observables. To NLL, this RG equation is solved by Cg(u) =
U (. 1w )Cp(p ), with

2y _ 2yse a(u)

Ul ) = ( a(p) )_%<M> fos 5 |:1 _ %M]’ Bo = —4/3i, Pos = M (E2)
a () o (pew) Bo 7 3

Control of terms >~ O(a>L) in principle requires the two-loop beta function, ~ B, of a. However, it turns out that the dependence
on B cancels in the solution of the RG equation, after expanding « in terms of g; [46]. The running couplings in the above
expressions should therefore be evaluated using the solutions of the one-loop beta functions

da(n)  Bo(n) , dog(w)  Pos(p) ,
= - a”(u), =- oy (),
dlogu 2 dlogu 2
1 1 1 1 s
_ Bo(p) log -, _ 4 Pos() log -, (E3)
a(p)  aluw) 2z mww o oas(u)  ag(uw) 25 Hw
with the boundary conditions o«;(Mz) = 0.1178 and (M) = 1/127.951 [127].
At low energies, the combination that enters the matching for gy in Eq. (7), can be written as
_ Cg() Cp(uw)
Cp(n) = —= = U (1, pw)— s (E4)

1+ “WBa) 1+ 4 B(@a)

Although the evolution factor and the Wilson coefficient are separately a dependent, one can show that the above combination
is scheme independent by using the matching coefficient,

o MZ 3
Cppw) = 1+ —[1og 24 B(a)], Bla)= - — = (ES)
T Mw 4

N

Putting everything together, one finds Cg (i, ) = 1.01092 at u,, = my.

2. gy and Ce(ff") between u, and ey

At ji,, the quark-level operator O is matched onto the chiral theory, where we work in the MS, scheme [133]. This results
in the matching of Eq. (7), which requires the nonperturbative input [9,12—-17,46],

= 3, ¢ Ys 14 -3
Dhua(10) = [1.03048) + 0.49(11) + 0.04(D] x 107 + (1= 22 Jlog 53 = 1.3812) x 1077, (E6)
0

for Q(Z) = 2GeV? and 1o = 1 GeV. Here the first, second, and third numbers in square brackets arise from the elastic, Regge,
and resonance contributions. Combining Eqgs. (E4) and (E6) we obtain the boundary condition for gy in Eq. (11),

gv(u = my) = 1.01153(12). (E7)

In order to evolve gy to lower scales, we will also need the evolution of the QED coupling a, in the MS, scheme. The

relation between the fine-structure constant in this scheme and in the on-shell scheme, cx551 = 137.036, is discussed in detail in
Appendix A of Ref. [46]. o, satisfies

doy (W) Bo
" _

4 1
i 5 : )ai(m +0(a)),  Po(n) = =3 = S (W), e (0) = > 0h e 0 —mez).  (E8)

(%4
with n, =1, Qy = —1 for leptons and n, = 1, O, = 1 for pions. The matching relation at a given scale p, is [46]
1 1 1 m? 1 M2
= —+ — l—i-log—2 Oy —mg) + — l—Hog—2 Oy —My). (E9)
ay(uy) aps 3w o Wy 127 Wy

This formula accounts for the electron, muon, and pion thresholds. The running of «, between thresholds is then given by

S S s
ay(n) oy (py) 2w My

(E10)

In the following, and in the main text of the manuscript, we drop the subscript x and « is always understood to be given in this

scheme. The RG kernel in Eq. (58), for the evolution of Cé;gf” between (1, and e, IS given by

a(

U(gV)(Mexta Hz) = €Xp |:__
0

2 b
F <77o logr+7 Z )(r — D+ wlu(a(pex), Z) — u(or(pn), Z)])}, (E1D)
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with
3 5 5 72 o (Mex
o= =2 Pi= it -, = e, E12)
4 24 32 6 oa(y)
and
1
ulw,Z)=—(1-— \/1 —Z( +Z2)a?) — \/Z(l + Z)arcsin(v/Z(1 + Z)a). (E13)
o
The running of gy between u, and ., is accomplished by a very similar kernel [46], without the u functions, i.e.,
- 2 (. a(py) o(phr)
U(M;T,MX)ZCXP[——<)/010grn+]/] (re = 1) I'm = =, (E14)
:30 O{(,LLX)

Note that control of terms ~ O(a>L) would again require the two-loop beta function, >~ B; of «. Similarly to the Cy case,

however, this dependence drops out when expanding « in S, justifying the use of the one-loop solution for « in the above
equations.

APPENDIX F: TOY MODEL FOR THE DISPERSIVE APPROACH

Restoring the ie prescriptions, the loop integral for our toy example becomes

o —igagu M « lql(lq] — vz)
e I
W YO <) dlala’ [(pe — q)% + i€l + iells — M2+ ie] D
with poles at
v = +|q| Fie, v _Eej:\/E3+q2—2Ee|q|z:Fie, v = M+ VM2 + 2 —2MA Fie. (F2)

In writing Eq. (F1), we have set M7, /(Q* + M§3,) — 1 and regulated the UV divergence by a momentum cutoff A, which also
makes the power divergences at intermediate steps visible. That is, the individual residue contributions for the three poles in
Eq. (F2) (upper plane) are

W= M(O) my 7 SE,M

M a I A\ A2 M—MA (M- A)A A
O® _ 8asm B @) A2+ 2AA +2A%log — - 1-3log = )|,
M MO myw | BEM R Y AR 72 wr U ane %A

<A2+2AA+2A210 ﬁ)
g5 )

0% — gagm M « n M —AA  M?>—2MA —4A?
YW M;0> my 8M?2 2M? 16M?
+— 3 (M —2A)1 24 2M? —2MA +2A%)1 24 (F3)
o - — |- - og— ||,
16M?> g M 8
leading to the sum
38a8m 2N M 2A 2A
O = ——22°%  Z12M?log=— + —(M —6A) — (M —2A) log|1 — == | —4AM — A)log —
T VI v, n[ og -+ )= ( )" log Vi ( )log —
gagm a M 2A 3gagm a A
= 1+6lo —— log =— 4+ O(A? F4
16M(°)7Tm (+ gM>+ y— g + (A7), (F4)

in which the power divergences in A and the singularities in 1/E, cancel.
In the dispersive approach, there are two contributions that impede a straightforward Wick rotation, when v? moves into the

first quadrant and when vi) moves into the third. The former residue contribution vanishes for £, — 0, but the latter gives rise
to

~ aMOMmy

SM — 6A)MA 3 V2A)?
Dto‘i}res 8A8M (X ( ) . —(M N 2A)21 \/_ )
Y V2 4 M -2A

Ma 22
= 8a8n +O(AY), (F5)
My mN T\ my
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and therefore displays a scaling that differs from Eq. (F4).
However, to obtain the full result, Eq. (81) needs to be sub-
tracted from the Wick-rotated integral, which can be brought
into the following form:
oy Wiek __ 2848m M [ dv
rw MO myrm ) 27
A 2
q
X d 2 .
/0 9 g — 2M (At
(F6)

From the form of the denominator, one sees that the scale
q’> = 2M A, which determines the maximum momentum up to
which v(f) lies in the third quadrant, again plays a role in the
evaluation of the integral, and indeed the dependence on VA
drops out in the difference of Eqs. (F6) and (F5). By explicit
evaluation one can show that (7%, = (7% Wiek _ ™.

APPENDIX G: CORRECTIONS TO THE PHASE SPACE

We describe here the corrections to the phase space C
that enter the differential rate in Eq. (83) and the half-life in
Eq. (86), as well as the interplay between the EFT formula-
tion and the corrections included in the B decay literature,
summarized in Refs. [5,96,102]. In the standard framework,
the most important corrections to the Fermi function arise
from deviations of the nuclear charge distribution from a point
charge, captured in the factors Ly(Z, E,) and U (Z, E,), from
the momentum dependence of the weak form factor, C(Z, E,),
and from atomic effects S(Z, E,) and r(Z, E,). Some of these
corrections depend on nuclear parameters, such as the radius
of the nuclear charge distribution or of the weak form factor.
In an EFT approach, this dependence is reproduced by matrix
element of one-, two- or higher-body operators, so that some
pieces of the standard phase-space corrections need to be sub-
tracted in order to avoid double counting. We first introduce
the relevant correction factors, after which we combine them
and discuss the issue of double counting.

1. Atomic screening S

We start from atomic corrections, which are identical to
the standard approach. To calculate the half-life in Sec. VII
we use the expressions from Refs. [96,102]. For the screening
factor S, we have

PE.F(Z,E,)
S(Z E,) = ————=. (G1)
PE.F(Z,E,)
Here F is the standard Fermi function
2(1+1n)

F(Z,E,) = IT(n + iy)|%e™ x (2|p|R)* ™Y,

(G2)
where n = /1 — «2Z2 and y = FZ«a/B, while E, and p are
given by

r2n+ 1)

E,=E,—mV, p=(E-m)"  (G3)
with Vj

Vo = TN(Z + Da*(Z + 1), (G4)

for positron and electron emission, respectively. N(Z 4 1) is
a slowly varying function of the charge of the parent nucleus,
N(8) = 1.42, see Ref. [102].

2. Atomic overlap r

The factor r takes into account the mismatch between the
atomic states before and after B decay. It was first considered
in Ref. [96], and it is given by

1 92
Z,E)=1-— —B(G), G5
r(Z, E.) E—E 1220 (G5)
with
B(G) = 13.080(Z + 1)**? eV, (G6)

for5<Z <09.

3. Finite-size correction L,

Ly encodes the effects of the nuclear charge distribution
on the motion of the electron/positron emerging from the S
decay. References [3,96,102] computed this correction numer-
ically, by solving the Dirac equation with different nuclear
charge distributions. Here we follow Ref. [5], which provides
analytical expressions from which it is easier to identify pos-
sible double counting with the ab initio approach. For 140, we
checked that the phase space f obtained with the expressions
from Ref. [5] agrees with Ref. [3] within uncertainties. Ly is
given by [5]

(41 — 26y)

13
Lo(Z,E,) =1+ —(aZ)*> + «ZRE,
0 E) =1+ pez)y £ <15(2y—1)

y(17=2y)m? mgR
302y — D E2) TR,
5
+ > ay(ER)" + A(m.R — 0.0164)(@Z)*”,
n=0
(G

with A = 0.41 for electrons, A = 0.22 for positrons. The co-
efficients a,, have an expansion in «

6
ay =Y bea@Z)". (G8)

x=1

The coefficients are tabulated in Tables I and II of Ref. [5].

4. Shape factor C

A useful analytical expression for the shape factor C is
given by [5]

1 4E 2 m 4 E?
C(ZE)=1+ERP -zt ——cp 2 e 22
5 15E, ' ISEE, 15E

razr(+8E e By Lm) 28 op

a — —E, F——"L)——(aZ),
35035 T 0 E, ) 630

(G9)
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where we neglected an O(m>R*) term, whose effect is nu-
merically small since Ey >> m, [140]. There are corrections to
this approximate form, which, although small for light nuclei,
can become relevant for heavier nuclei. For completeness
we therefore include a more general expression, which can
be separated into an isoscalar and isovector component. The
former takes the form

C(Z, Ec)o
4E,

1 2
=14 (ER?F1110| —= + ==2 + =
+ (EoR) (3+9E0+9

m? 4E?
EEy, 9E;

2 2
—|—aZR<:|: GEF 1111 £ ZE(F1221 — F1111/3)

F1211m2\ F1222
3 E—) - —5 @2y, (G10)
with
F1111 = 0.757 4 0.0069(1 — ¢~A/199%8) " F1110 = 3/5,
F1221 = 0.844 — 0.0182(1 — =4/, (G11)

F1222 = 1.219 — 0.0640(1 — ¢~4/1:5%0)

and A a fit parameter related to the assumed charge distribu-
tion, ranging from 1.67 for '*Q to 3.00 for >*Co [111]. This
should then be combined with the isovector correction,

8 wER?

CZE)y=1—=-—2"_,
Z.E) 554" +2

1
£ = 6[(150 —EY + (E. +V)* —m]],

Vo = F3aZ/(2R), (G12)

with A" another fit parameter and w a fraction that depends on
the shell of the last nucleon, both of which are listed in Table
8 of Ref. [111]. As the difference between CyC; and Eq. (G9)
is small for '*O, we use the simpler expression of Eq. (G9)
in our numerical analysis for '“Q, but note that the difference
becomes sizable for larger nuclei.

5. Nuclear recoil R
Finally, the correction due to recoil effects is given by

3E,
R(E))=1-— 2,

G13
M, (G13)

with M, the mass of the nucleus.

6. Combination and comparison to the EFT approach

In an ab initio setup, the nuclear charge distribution and
the weak form factor emerge from calculations with nucleon
degrees of freedom. The O(a”) term in C is captured by the
momentum dependence of the LO weak form factor. Having
an ab initio calculation of the form factor, we can replace R
in the O(a®) terms in Eq. (G9) by the weak radius Ry [52],
given by

Ry, = 3(ry), (G14)

1.00 by 4

0.99 ‘\‘\‘\‘\‘

0.95

0 5 10 15 25 30 35 40

20
|gl (MeV)

FIG. 9. VMC calculation of the weak form factor for “Q —
14N. The blue dots show the VMC calculation, with the error bar
denoting the 20 statistical error. The line is obtained by a fit to a
polynomial function of 2, including terms up to q*.

where (r3,) is defined in analogy to the charge form factor as

2
Mp(q?) = MF(0)<1 - (r&,)% +. )

The O(aZR) terms in Egs. (G7) and (G9) are captured by
matrix elements of the energy-dependent potentials Vg and
VI, while terms of O(e?Z?) are captured in the matching
coefficients Cs and C;°, and by the matrix elements of the
potentials V., and Vib. To avoid double counting, we therefore
define

L3™(Z, E,)

(G15)

— Lo(Z.E.) T «ZRE |4 e 13 0z
=Lol4, £.) F O e 2Ee 6005

MER 2
—aZ| by E + b1+ b11ER | — byo(aZ)”,
(G16)
C*™(Z, E.)
ot BoRy -y AE 2 me 4B
- omw 5 15E,  15E.E, 15E2)

(G17)

L3"™ contains terms of O(a?), O(a?ey ), or higher. These are
beyond the accuracy of our EFT calculation, and could be
reproduced in the EFT by deriving two- and higher-body
transition operators at higher order in €;, and by calculating
ultrasoft matrix elements at the same order. For '*Q, the cor-
rection from Lg“b (Z, E,) amounts to about an O(10~*) shift to
f, and gives us a sense of the size of subleading corrections.
The shift is smaller than the effect of the scale variation,
which we take as the theoretical error on f. Concerning the
U correction, which takes into account deviations from a
uniform charge distribution, we use the expression in Eq. (29)
of Ref. [5]. In conclusion, our definition of C is given by

C(E,) = C*™(Z, E,))Ly"™(Z, E.)U(Z, E.)S(Z, E.)r(Z, E,).
(G18)

Figure 9 shows a VMC calculation of the weak form
factor for the transition 'O — '*N, using the same chiral
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interaction discussed in Sec. VI. By fitting the VMC results
to the functional form

2 4
M(a?) = MF<0>(1 AL m”‘-),

5 < (G19)

we obtain (r&v) = 2.73(4) fm, where the error reflects only

the statistical error of the VMC data points. Since (rvzv)

differs from the charge radius of '*N by only about 10%, in the
numerical evaluations in Sec. VII we will keep using R rather
than Ry, as done in most of the superallowed-3-decay litera-
ture. For '*Q, the difference amounts to a ~ 107 shift in the
half-life ¢, much smaller than other theoretical uncertainties.
For future refined studies and further cross checks, one could
instead consider the weak radii, as at least for some nuclei
they can be compared to experiment [140], while the weak
form factor is a prediction of the nuclear-structure calculations
with which the wave functions are determined.
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