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Quantum Monte Carlo calculations of electron scattering from '2C in the short-time approximation
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The short-time approximation is a method introduced to evaluate electroweak nuclear response for systems
with A > 12, extending the reach of first-principle many-body quantum Monte Carlo calculations. Using
realistic two- and three-body nuclear interactions and consistent one- and two-body electromagnetic currents,
we calculate longitudinal and transverse response densities and response functions of '>C. We compare the

resulting cross sections with experimental data for electron-nucleus scattering, finding good agreement.
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I. INTRODUCTION

The coming online of next-generation neutrino-oscillation
experiments [1-4], including the Deep Underground Neutrino
Experiment (DUNE), has brought a new wave of interest
in first-principle calculations of nuclear responses. DUNE is
designed to function within a broad range of neutrino en-
ergies, up to 10 GeV, where different reaction mechanisms
are at play, including the quasielastic, resonance production,
and deep inelastic scattering regimes [5,6]. A solid under-
standing of all these processes is required for a reliable
interpretation of the experimental data. Specifically, accurate
calculations of neutrino-nucleus cross sections are needed to
reconstruct the energy of the incoming neutrinos entering
the neutrino oscillation probabilities, and thus reliably extract
neutrino oscillation parameters. Though computationally ex-
pensive, ab initio nuclear methods—including the quantum
Monte Carlo (QMC) methods adopted in the present work—
retain the complexity of many-nucleon dynamics through
the use of realistic many-nucleon interactions, as well as
one- and two-body electroweak currents. The latter describe,
respectively, the interaction of nucleons and pairs of corre-
lated nucleons with external probes, such as electrons and
neutrinos.

In this work, we focus on electron-nucleus scattering in
the quasielastic regime. In this regime, many-body dynam-
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ics, that is nucleonic correlations and electroweak currents,
have been shown to be important to explain the available
experimental data. For example, ab initio calculations in light
nuclei correctly reproduce the observed enhancement of the
electromagnetic transverse nuclear response with respect to
the longitudinal one [7-14], a phenomenon that originates
from the combined effect of two-nucleon correlations and
the interference between one- and two-body electromagnetic
currents [11,12,15].

Electron scattering shares common nuclear effects with
neutrino-nucleus interactions, including multi-nucleon ef-
fects, and it comes with a wealth of experimental data without
the need for leptonic energy reconstruction. In fact, in these
experiments, the electrons can be collimated to produce
monoenergetic beams. For these reasons, electron-nucleus
scattering data are extensively used to validate and test many-
body nuclear models [16—18]. The synergy between electron
and neutrino scattering processes has been recognized by re-
cently established collaborations [19,20], aimed at fostering
collaborative efforts within the electron and neutrino physics
communities.

The QMC effort has been extensively directed to calcu-
lations of inclusive electroweak response functions in the
quasielastic regime. Most notably, the Green’s function Monte
Carlo (GFMC) method has been utilized to calculate “He and
12 response functions induced by electrons and neutrinos,
leading to an excellent agreement with the available experi-
mental data [11,21,22]. Due to its increasing computational
cost with the number of nucleons, the GFMC method is cur-
rently limited to the study of nuclei with A < 12. Additionally,
it is not suitable to describe kinematic regions characterized
by large values of energy and momentum transfer, which
would require the implementation of relativistic corrections at
the vertex, where the correlated clusters of nucleons interact
with the external probe.
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An alternative approach that addresses these shortcomings
relies on the spectral function of the nucleus [23-25]. This
method is based on the factorization of the final hadronic
states and has the advantage of being applicable to larger
nuclear systems. Additionally, it can accommodate relativistic
kinematics, meson-production, and other inelastic processes
[24,25].

The short-time approximation (STA) was introduced in
the context of QMC calculations to evaluate nuclear inclu-
sive response functions and densities induced by electrons
and neutrinos [12]. This approach is based on a factorization
scheme that consistently retains two-nucleon dynamics, both
correlations and consistent electroweak currents. At present,
the STA algorithm has been implemented within the varia-
tional Monte Carlo (VMC) method [26] for calculations of
electron scattering from the alpha particle [12], *H and 3He
[13]. STA calculations were found to be in excellent agree-
ment with both the experimental data and the results from the
GFMC method, a method that is computationally exact for
these light systems.

The STA presents several advantages: Because of the
adopted factorization scheme, it can be extended to i)
phenomenologically describe exclusive processes, such as
meson-production and nucleon knockout; and ii) incorporate
relativistic kinematics at the vertex. Further, this algorithm
can be applied to QMC methods, e.g., the auxiliary field
diffusion Monte Carlo (AFDMC) method [[26,27], and refer-
ences therein], suitable to treat nuclei of experimental interest
with mass number A > 12. These accurate microscopic cal-
culations of lepton-nucleus cross sections serve as improved
inputs to the neutrino event generators used for the neutrino
energy reconstruction procedures. As a proof of concept, the
responses generated with the STA for electrons scattering
from the o particle have been used within the GENIE event
generator [28] and fully tested against the world quasielastic
electromagnetic data [29], thus paving the way for analogous
developments for neutrino-nucleus cross sections.

In this work, we tackle, for the first time, systems with A =
12—that is, '>’C—implementing the STA within the VMC
method, and present results for nuclear response densities,
response functions and cross sections. The structure of this
paper is as follows. In Sec. II, we provide the nuclear Hamilto-
nian and the electromagnetic currents used in our calculation,
and describe the VMC method used to generate the ground
state of 2C. In Sec. III, we introduce the formalism of the
STA, used to evaluate response densities. The interpolation
scheme developed to generate response functions on an arbi-
trarily fine grid of momentum transfer is presented in Sec. IV.
We summarize our results in Sec. V, and present our conclu-
sions in Sec. VI.

II. NUCLEAR MANY-BODY HAMILTONIAN AND
ELECTROMAGNETIC CURRENTS

QMC methods, many-body interactions, and elec-
troweak currents have been extensively reviewed in
Refs. [9,14,26,30,31]. Here, we briefly sketch the VMC
method, highlight the salient features of many-body
interactions and currents relevant to this study, and refer the

interested reader to the aforementioned review articles for de-
tails. In this work, we use the many-body nuclear Hamiltonian

H= ZT+ZUU+ > Vi (M

i<j i<j<k

where 7; is the single-nucleon nonrelativistic kinetic
energy, and v;; and Vi denote two- and three-nucleon
interaction operators, respectively. Specifically, we used the
phenomenological Argonne v;g (AV18) two-nucleon potential
[32] supplemented by the Urbana-X [33] three-nucleon
interaction. The AV 18 consists of one-pion-exchange (OPE)
contributions, and phenomenological short-to-intermediate
range terms. It is fitted to the Nijmegen np and pp scattering
database [34], along with the deuteron binding energy,
achieving a x2/datum ~ 1. While the AVI8 interaction
is fitted to scattering data in the laboratory energy range
[0,350]MeV, it reproduces nucleon-nucleon phase shifts
beyond the fitting range (up to ~1 GeV). The Urbana X
interaction represents an intermediate approach between the
Urbana IX (UIX) and Illinois-7 (IL7) potentials discussed
in Sec. II B of Ref. [26]. Specifically, Urbana X retains the
long-range two-pion P-wave term and short-range central
repulsion from the UIX potential supplemented with a
two-pion S-wave term. These three terms have the same
strength as IL7. However, Urbana X does not include the
three-pion-ring term or the isospin-dependent short-range
repulsive terms that are present in the IL7 model [33]. VMC
wave functions optimized with UX are commonly used as the
starting wave functions for GFMC calculations with IL7.

The nuclear variational wave function, |Wy ), is generated
by minimizing the energy expectation value with respect to
a number of variational parameters. The wave function cor-
rectly reflects the long- and short-range physics induced by
the two- and three-nucleon potentials through two- and three-

body correlation operators, U;; and Ulf,ﬁv T, respectively, and it
reads
Pv) 51_[ L+ Uy + Z R, @
i<j k#i, j

where the Jastrow wave function W, is fully antisymmetric
and has the correct quantum numbers for the ground state. The
overall antisymmetry of the wave function is preserved via the
symmetrization operator S acting on the two- and three-body
correlation operators.

In order to study and predict nuclear electromagnetic cross
sections, we make use of electroweak current operators that
describe the interaction of nuclei with electroweak fields. In
particular, the electromagnetic charge, p, and current, j, are
decomposed into one- and two-body operators as

P = ZP;(‘D + ZPU((])

i<j

i= ZJ:(Q) +) i(@),

l<j

3

where q is the momentum transferred to the nucleus and the
index i denotes a nucleon. The single nucleon charge and
current operators (p;, j;) are obtained from a nonrelativistic
reduction of the nucleon electroweak covariant currents [7],
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and are written in terms of the nucleonic form factors required
to correctly reproduce fall-off at increasing values of three-
momentum transfer.

The two-body operators (p;;, ji;) used in this work
have been most recently summarized in Refs. [35,36], and
consist, primarily, of contributions of one-pion-exchange
(OPE) range. More specifically, the two-body electromag-
netic current operator, J;;, consists of model-independent
and model-dependent terms, the former being constructed
by requiring that they satisfy the current conservation rela-
tion within the AV18. In this sense, two-body currents are
consistent with the nucleon-nucleon interaction, in that their
behavior at both short and long ranges is consistent with
that of the two-nucleon correlations. The model-dependent
terms cannot be constrained via current conservation. The
dominant contribution to the model-dependent component is
associated with the excitation of intermediate (virtual) A-
isobars; in this type of contribution, the external probe excites
the nucleon to a A that decays emitting a pion which is
reabsorbed by another nucleon [36,37]. The two-body charge
operator, p;;(q), consists of one-pion range terms, which pro-
vide contributions with a size comparable to that of a (small)
relativistic correction. Incidentally, the observed large excess
of the electromagnetic transverse strength is primarily due
to the interplay between one- and two-nucleon currents with
two-nucleon correlations of one-pion range [12], a dynamical
feature we need to preserve when developing approximate
algorithms for larger nuclear systems.

III. THE SHORT-TIME APPROXIMATION

We express the cross section for inclusive electron scat-
tering on a nucleus in terms of longitudinal and transverse
nuclear response functions of the form

Ru(@, )= > S (W05 @I% /) (9 10a (@] W)

M f
x 8(Ef — E; — w), “)

where w and q are the energy and momentum carried by
the probe, R, is the longitudinal component (¢ = L) induced
by the electromagnetic charge operator, Op = p, and Ry is
the transverse component (¢ = T') induced by the electro-
magnetic (vector) current operator, Or = j. |\¥;) is the VMC
ground state of the system with energy E; and spin J;, and | W)
is the final state with energy E¢. An average of the projections
M; of the initial state with spin J; is understood.

Without loss of generality, the response can be equivalently
written as the matrix element of a current-current correlator by
replacing the sum over final states appearing in Eq. (4) with a
real-time propagator, as

©dr
Ry(q, ) = f o ey
oo 2T
X Y (0@ e 0l (@)W).  (5)
M;
The STA uses a factorization scheme in which two-body

physics is retained in both currents and strong interaction.
Hence, in the equation above, H =~ Hj, = T1 + T, + v;» only

includes up to two-nucleon interactions (in our case, the
AV18). The final states considered here are only those with
correlated nucleon pairs interacting with the external probe.
This leads to a reduced computational cost compared to cal-
culations where the full A-nucleon system is propagated, with
pairs and triplets participating in the scattering process. For
example, for 12~ we found a reduced factor of ~10 difference
in computing time with respect to exact GFMC calculations.

Correlating at most two nucleons at a time requires that
we retain terms linear in ¢+ when performing the short-time
expansion of the propagator. Including the full two-nucleon
propagator also includes ladder diagrams where pairs of nu-
cleons scatter multiple times. Higher order terms will involve
the propagation of three or more nucleons. This procedure
ensures the conservation of sum rules and energy-weighted
sum rules. At the next order, we are dropping terms quadratic
in ¢t which have the form 7;vj and v;; vy, including per-
mutations of the indices. The terms we drop are at most of
the order of ~O(((Ix) t)?), where (Ty) is the average kinetic
energy per particle. In a simple, nonrelativistic Fermi gas
approximation, this is related to the Fermi energy Er of the
system (Iy) = 3Er/5 ~ 30MeV. We can use this value to
roughly gauge the kinematics where the STA is valid. Note
that quasielastic physics peaks at an energy transfer

2
wqe=vm2+lq|2—m—>&, (6)

2m

where m is the nucleon mass, and we explicitly give the
nonrelativistic expression of wge for the purpose of this dis-
cussion. The associated timescale, t,. = a)q_e', constrains the
values of |q| where the STA is a valid description of these
processes, which is thus roughly Er/we < 1, or, equiva-
lently, |q| > kg, with kg being the Fermi momentum. For
sufficiently low values of |q|, the region dominated by low-
energy nuclear phenomena—such as collective excitations
and low-lying discrete levels—overlaps with the quasielastic
peak. Because low-energy nuclear phenomena are not explic-
itly included in the STA, one should not expect the quasielastic
STA response to be valid when the two processes compete
and potentially interfere. Physically, the lower limit in |q],
appearing when only two nucleons at a time are correlated,
arises from the absence of quantum interference effects and
Pauli blocking required to describe physics close to the nu-
clear Fermi surface, characterized by kr ~ 270 MeV/c.

With the connection between short-time and propagating
only two active nucleons now established, we may consider
the form of the response function under such an approx-
imation. Restricting the current-current correlator to terms
containing at most two active nucleons in the final states, the
correlator appearing in Eq. (5) becomes

0[ e—th 0= Z OlT e—th Oi + Z OIT e—th 0]
i

i
+ Z(Oj'efil‘lt 01] + OjjefthOi
i#]
+00e M 0y)), 7

where the index « has been dropped for convenience and
terms including a sum over i # j # k are neglected. From the
equation above, it is apparent that, while three-nucleon effects
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are not accounted for in the final state (although they are
fully included in the ground state), interference terms between
one- and two-nucleon currents along with the AV18 two-
nucleon correlations are consistently retained within the STA.
In the remainder of this work, by ‘one-body’ contribution we
indicate the sum of the first two terms in Eq. (7), that cor-
respond to the one-body diagonal and one-body off-diagonal
contributions, respectively. With ‘two-body’ contributions we
indicate the sum of the terms appearing in the parenthesis.
These corrections are dominated by the one- and two-body
interference contributions (first two terms in the parenthesis),
supplemented by a small correction coming from the pure
two-body operators (last term in the parenthesis). After the
insertion of a complete set of two nucleon states [12], the
response in Eq. (5) can be evaluated as an integral of a re-
sponse density, D, (e, E. ), over the relative energy, e, and
center of mass energy, E. ., of the interacting pair (or, equiv-
alently, over relative and CM momenta, p’ and P, of the
pair of struck nucleons). The response density gives access to
explicit information about two-nucleon dynamics in the final
states, and, upon its integration over the relative and center of
mass energies of the active pair of nucleons, one obtains the
corresponding response function, R, (q, w), as

Ry(q, w) = / de/ dE; . Dy(e, Ecin.)
0 0
X0(w—+E;i —e—E.p). 8)

The response density given above has purely elastic contri-
butions coming from the ground state for which the associated
response is o |(Wy|O0,(q)|Wo)|?. The elastic contribution be-
comes more prominent as the momentum transfer decreases,
and it coincides with the fully elastic response in the limit
of |q| — 0. In this work, we subtract the elastic contribution
adopting the procedure introduced in Ref. [13]. Specifically,
we calculate the elastic response density D¢ as

D¥(q,p,P)
= (V0| Ou(q) | Yo)I*

X Y (Wl W (P, P, AN (WD, P, B)1W0),  (9)
B

where W, schematically denotes intermediate states with two
active nucleons, and the sum runs over all two body quan-
tum numbers S. The expression above is obtained under the
assumption that, at low values of momentum transfer, the in-
ternal nuclear dynamics of the ground state dominates [13]. At
|q] = 300 MeV/c, where the elastic contribution is relevant,
we subtract the longitudinal contribution Dzl(e, E.n.) (Fig.
1) from the total longitudinal response density Dy (e, Ecm.)
(Fig. 2).

As discussed above, responses calculated for |q| <
300 MeV/c do not reproduce the correct threshold behavior.
This is enforced by redistributing the strength of the response
below a threshold wy, to higher values of w. This is achieved
through the insertion of a Gaussian distribution controlled
by a width parameter w, and imposing that the sum rule is
preserved. A detailed description of this procedure can be

s

[<b}

= 5,000

g

<0

Q 50 50

100
100 150 150
E, . [MeV] e [MeV]

FIG. 1. Elastic contribution to the total longitudinal response
density of '?C at |q| = 300MeV/c, as a function of relative energy
and center of mass energy. See text for explanation.

found in Ref. [12]. In the present calculation, we use wy =
25MeV and @ = 15MeV.

IV. CROSS SECTIONS AND INTERPOLATION SCHEME

The inclusive double differential cross section for electron-
nucleus scattering is written in terms of the nuclear response
functions as

o _ (49 g ArR 10
dE.dS, (d_Qe>M[ LRL(q, ®) + ArRr(q, w)], (10)
where the leptonic kinematic factors read
7\’ 1g° b
AL=<¥> , AT=—§¥+tan23, (11)
g = 300 MeV
T
Z
= 5,000
S0
3 50
150 150
Ec.m. [MQV] e [MeV]

FIG. 2. Total longitudinal response density of '’C at |q| =
300MeV/c, as a function of relative energy and center of mass
energy. See text for explanation.
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FIG. 3. Calculated (gray) and interpolated (red) integral func-
tions of *He at values of |q| in the range [300, 700] MeV /c. Each
integral function is obtained by interpolating neighboring exact inte-
gral functions corresponding to values of |q| spaced by 100 MeV /c.

while the Mott cross section is defined as

( do ) [ a cos (6,/2) T
dQ. )y L2E.sin®(6,/2)]
In the equations above, « is the fine structure constant and
¢* = w* — |q|?, while E, is the final electron energy, and 6,
is the electron scattering angle.

While the STA algorithm allows for a reduced computa-
tional cost, calculations of '2C’s nuclear response densities
within the STA are still demanding, which prevents from ob-
taining response functions calculated over a finely spaced grid
in momentum transfer. These are required to accurately com-
pute the cross sections. Several interpolation schemes [29,38]
have been adopted to generate response functions from the
calculated and sparse ones. For example, the approach of
Ref. [38] exploits the scaling behavior of the response func-
tions to generate response functions for arbitrary values of w
and q.

In this work, we develop an interpolation scheme that con-
serves the sum rules. Specifically, we calculate the normalized
cumulative integral of the response function, I;,7, at fixed
value of momentum transfer and as a function of w,

J5 Ruyr(@';q)de
Jo  Reyr (@' q)de”

and obtain a set of I,(w;q;) for each of the response func-
tions calculated within the STA at values of momentum
transfer ;. These are displayed in Fig. 3 for *He (solid
lines in the figure) for values of momentum transfer in the
range of |q;| = [300, 700] MeV/c with a 100 MeV/c spac-
ing. We then interpolate the I,(w;(q;)’s to obtain I;“t(a); q)
for any arbitrary value of q. Specifically, the interpolation is
carried out using two integral functions at the same value,
say I,(w;300MeV/c) = I,(w;400MeV/c) = 0.8 as shown
as an example in the figure, and the interpolated func-
tion, I™(w;q) = 0.8, is evaluated for any q in the range
[300, 400] MeV /c. The interpolated integral functions are
shown in Fig. 3 with dashed red lines (note that, for ‘He, we
generated integral functions and responses over a momentum
grid with 1 MeV/c spacing; in the figure, we only display

12)

13)

I r(w;q;) =

—— exact --- interpolated
0.04
— 0.031 — g1 =300 MeV/c
S — Qint = 350 MeV/c
< 0.024 \— G2 = 400 MeV/c
—_— Y
< 0.01 R
al AT =700 MeV/c
(ISR \
0.00 - /,.&321\’\&\
0.04 -
7 0.031
>
(V]
= 0.02
~
< 0.01 1
0.00 - 2 : =
100 200 300 400 500
w [MeV]

FIG. 4. Exact (gray) and interpolated (dashed red) longitudinal
(upper panel) and transverse (lower panel) response functions for
“He, calculated for values of |q| in the range of [300, 700] MeV /c,
with 50 MeV/c spacing. Each response is obtained by interpolating
neighboring exact responses, corresponding to values of |q| spaced
by 100 MeV/c. See text for details.

three interpolated functions). The corresponding interpolated
response function is recovered from /'™ (w;q) by taking its
derivative.

For “He, the computational cost is such that calculations
of nuclear responses on a fine grid of momentum transfer
are feasible and can be used to validate the interpolation
scheme described above. To this end, we use the STA to cal-
culate a set of longitudinal and transverse response functions
for momentum transfer in the range |q| = [300, 700] MeV /c,
with a 10 MeV/c spacing. We use the interpolation scheme
on a limited subset of ~10 responses and check that those
resulting from the interpolation procedure are in agreement
with the exact ones. To further illustrate the procedure, Fig. 4
shows the comparison between interpolated (dashed red lines)
and exact (solid gray lines) responses. In particular, the ex-
act responses for two momenta, say |q;| = 300 MeV/c and
|q2] =400 MeV/c as highlighted in the figure, are used to
calculate the interpolated response in the midpoint |qiy| =
(lqz2] — 1q11)/2 = 350 MeV/c, which is in perfect agreement
with the corresponding exact response.

The approach described above allows us to generate lon-
gitudinal and transverse response functions using a limited
number of calculated ones, while ensuring the unimodality
of the interpolated responses. Having tested the interpolation
scheme on “He, we apply it to '>C. Due to the aforemen-
tioned computational cost, in the case of 12¢ we calculate
the response densities and functions for only five values of
momentum transfer, namely |q| = 300, 450, 570, 650, and
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FIG. 5. Exact (gray) and interpolated (dashed red) longitudinal
(upper panel) and transverse (lower panel) response functions for
12¢, calculated for values of |q| in the range of [300, 800] MeV /c.

800MeV/c. The associated responses are displayed in Fig. 5
(solid gray lines) along with those obtained from them through
the interpolation scheme (dashed red lines).

We conclude this section by providing the values of the
longitudinal and transverse sum rules, Sz,7(q) in Table I.
These are defined as [12]

oo

GG @ = [ doRi(a.0) (14)

[0}

= ) (W0l Ou(@I¥)).  (15)

M;

where the factor G2 (Qée) denotes the square of the appropriate
combination of nucleon electromagnetic form factors [7,39]
evaluated at Q3 = q*> — . In Table I, we report the values
of the sum rules obtained by 1) integrating the STA response
functions, as shown in the first expression in Eq. (14); and ii)
calculating the current-current matrix element as illustrated
in the second expression in Eq. (14) within the STA, that
is neglecting three- and four-nucleon terms. In the table, the
former are denoted with ‘S"’ (blue squares in Fig. 6) and the

Longitudinal
04  _#=—____ -
A =
0.51
—— SGFMC 1b
—— SOFMC 1h42b
0.0 T T o s«1b
Transverse ® S<1b+2b
2 o S™ib
m S™1b+2b
]
14 B = B Q-—--
——‘—E- —————
0 S T T T T T
0 100 200 300 400 500 600
q [MeV/c]

FIG. 6. '>C longitudinal and transverse STA sum rules, SiL"/‘T
(blue squares) and SEC/T (black circles), compared with the GFMC
results SPTMC from Ref. [39] (green lines). See text for explanations.

latter with ‘S¢°” (black circles in Fig. 6). Values in parentheses
are obtained from one-body currents alone. We compare our
results with those obtained from GFMC evaluations, denoted
in the table with ‘SSFMC" (green lines in Fig. 6). Both sum
rules, namely the Sfxm (squares) and S5 (circles), are in agree-
ment with the GFMC sum rules at a few percent level, with S5
providing a closer match to the GFMC results. The S™ sum
rules underestimate the GFMC results. In fact, the response
densities are calculated up to finite values of center-of-mass
and relative energies, therefore the integrated sum rules miss
strength coming from contributions found beyond these finite
energy ranges. In Fig. 6, with empty markers we indicate sum
rules obtained with one-body operators, while those inclusive
of two-nucleon currents are represented by full markers. Simi-
larly, GFMC results based on the one-body operator are given
by the dashed line, and those based on one- and two-body
operators are indicated by solid lines.

V. RESULTS

In this section, we summarize our calculations. Specifi-
cally, we report the results obtained within the STA for 1)
response densities; ii) response functions; and iii) inclusive
double differential cross sections of electron scattering from
12C. Where available, we compare with GFMC theoretical
calculations from Ref. [11], and experimental data from the
studies of Refs. [40,41].

TABLE L. '2C longitudinal and transverse STA sum rules, SiL"/tT and Sy, compared with the GFMC results SE/F}V[C from Ref. [39]. Results
based on one-body currents are given in parentheses. See text for explanations.

q MeV/c] sp S5¢ SgFMC s N SGFMC

300 (0.87)0.84 (1.02)1.00 (0.98)0.94 (0.77)1.23 (0.84)1.32 (0.74)1.37
450 (0.93)0.90 (0.97)0.94 (0.94)0.91 (1.00)1.38 (1.02)1.41 (0.93)1.50
570 (0.88)0.86 (0.89)0.87 (0.91)0.91 (1.04)1.37 (1.05)1.38 (1.00)1.51
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FIG. 7. Longitudinal (top) and transverse (bottom) response densities of '>C, for different values of q, as functions of the center of mass

energy E. . and relative energy e of the struck nucleon-nucleon pair.

A. Response densities

Response densities for '2C are evaluated for five values
of momentum transfer (|q| = 300, 450, 570, 650, and
800MeV/c). In Fig. 7, we show the results obtained for
Iq] = 300, 450, and 570MeV/c. The surface plots are
functions of the nucleon pair’s relative, e, and center of
mass, E. . , energies, evaluated on equally spaced grids with
10 MeV spacing. Specifically, we use values up to e ~ E¢ . ~
500 MeV, which are sufficient to capture the main peak of the
responses in the transfer momentum range we are considering
here. This choice is dictated by the computational cost of
the calculations and leads to missing strengths at the tails as
the value of momentum transfer increases and the density’s
peak moves towards the edges of the region covered by the
relative and center of mass energies. At the moment, however,
extending the energy range of the pair beyond ~500 MeV
is computationally prohibitive. To remedy this problem, the
two-body tail of the response densities was extrapolated
beyond e = 500 MeV. The same procedure, when applied
to truncated response densities for “He calculated up to
e = 500 MeV, successfully reproduced the response densities
calculated over the energy range e, E = [0, 900] MeV.

From Fig. 7, we see that the position of the peak is realized
for values of e ~ E. . ~ |q|? /4 m, a condition resulting from
simple kinematic considerations. All the densities are pur-
posely plotted in the range [0, 200] MeV, for both the relative
and center of mass energies, to highlight the tail induced by

two-body physics for increased values of relative energies, a
finding that is in line with previous studies on two-body mo-
mentum distributions [33,42], and STA calculations in A = 3
and 4 systems [12,13]. Note that, the elastic contribution has
been removed from the longitudinal responses displayed in
the figure.

To further analyze the impact of two-body physics on the
calculated response densities, in Fig. 8, we show a contour
plot of the two-nucleon currents’ contribution (interference

200 0.8
0.6
< 150 _
& S
= 0492
€ Sk
W 100 .
0.2
200" 100 150 200 250 300 °O°

e [MeV]

FIG. 8. Two-body contributions (interference plus pure two-
body) to the total transverse response density, DZ/D®%, at |q| =
570 MeV/c. See text for details.
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plus pure two-body terms) relative to the total transverse re-
sponse density, i.e., D¥ /D' as a function of the relative and
center of mass energies at || = 570 MeV. The two-nucleon
currents’ effect is moderate at low values of relative energy,
while it increases at higher values, providing, on average, a
thirty percent correction. For the longitudinal response, an
analogous contour plot indicates that the two-nucleon cur-
rents’ contribution is less than 5% of the total response, as
expected given the negligible relativistic correction induced
by two-nucleon charge operators.

Response densities provide additional information on the
two-nucleon final state immediately after the interaction with
the external probe occurred. For example, we can analyze the
STA density in terms of pp and nn pairs’ contributions at two-
body kinematics of experimental interest. The contributions
from different particle identities have been explored in various
electron scattering experiments [43—45] in the back-to-back
kinematics, where the struck pairs have initial center of mass
momentum equal to zero, implying Eey & |Pcm |2/ (4m) =
|q|>/(4m). As an example, we analyze the response density
at momentum transfer |q| = 570 MeV (illustrated in Fig. 9),
where the back-to-back configuration is realized at values of
the center of mass energy E., ~ 87MeV. The longitudinal
(upper panel) and transverse (lower panel) response densities
at this fixed value of center of mass energy are displayed
in Fig. 9 as a function of the relative energy. Additionally,
we show the contributions due to pp (dashed red line), nn
(dashed-dotted blue line) pairs, total (solid black line), one-
body (solid green line), and interference (solid orange line)
results. In the longitudinal case, the response is almost entirely
due to one-body charge operators. The nn contribution is neg-
ligible with respect to the pp one, since it is proportional to the
neutron charge operator squared. The pp term is enhanced by
a factor of ~1.3 with respect to the pp contribution found in
“He within the same kinematic configuration [12]. This result
can be understood in terms of pair counting, i.e., the number
of pp pairs over the total number of pairs is 1/6 in *He versus
15/66 in '2C, which leads to the observed enhancement. The
transverse density is shown in the bottom panel of Fig. 9.
Here, the pp and nn contributions are primarily due to one-
body current operators and are proportional to proton and
neutron magnetic form factors squared, respectively, which
explains the observed enhancement of the pp contribution ver-
sus the nn one. Two-body contributions, primarily driven by
np pairs, become predominant as the relative energy increases.

B. Response functions

Longitudinal and traverse response functions, obtained
from the densities discussed above, are shown in Fig. 10
for values of momenta |q| = 300, 380, and 570 MeV. This
choice of momenta allows us to compare with both the ex-
act GFMC results of Ref. [11] and the experimental data
of Refs. [40,41]. Note that, while the response functions at
|q| = 300 and 570 MeV /c are obtained from an integration
of the calculated densities over the relative and center of
mass energies, the response function at |q| = 380 MeV/c is
obtained implementing the interpolation scheme described
in Sec. IV. In the figure, we display the error bands that

q = 570 MeV/c
~N — 1b+2b - all pair:
L 4000/ — o atpar
[} interference - all pairs
= == pp pairs
: 3000‘ —' nn pairs
>
[]
= 2000
~
[e0]
I 1000
&
g ol
)
3 _1000 : : :
0 100 200 300 400
e [MeV]
g =570 MeV/c
™~ —— 1b+2b - all pairs
% 4000+ e lb-‘-all pairsp
interference - all pairs
= 3000 . bl
— =+ nn pairs
>
[0]
= 20001
~
[e0]
1000
&
LLT OA_/j}’ —
)
&
—1000 . " T
0 100 200 300 400

FIG. 9. Longitudinal (top) and transverse (bottom) response den-
sities at |q| = 570 MeV/c and E. ,, = 87 MeV. Contributions from
pp and nn pairs are shown in red dashed lines and blue dashed-dotted
lines, respectively, and total responses in solid black lines. Total
one-body and interference contributions are shown in solid green and
orange lines, respectively.

account for the statistical errors inherent to the stochastic
calculations. Overall, in the analyzed kinematics, we find a
good agreement with both the GFMC results and the exper-
imental data. We highlight the impact of two-body currents
in Fig. 11, where we show the longitudinal and transverse re-
sponse functions at |q| = 570 MeV /c. In particular, we show
the one-body contributions (dashed lines), and total responses
(solid lines), which include the contributions of the one- and
two-body interference and the pure two-body terms. In the
figure, the longitudinal and transverse responses are indicated
by blue and red lines, respectively. Two-body currents provide
a ~20% contribution to the total transverse response function.
The two-body corrections to the longitudinal response func-
tion are less than 3%.

C. Cross sections

We use the interpolation scheme discussed in Sec. IV
to generate response functions on a 1 MeV/c spaced grid
of transferred momenta in the range [300, 800] MeV /c. The
cross sections obtained from them are compared with the
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STA
O . 1 2 5 STA - interpolated
¢ Jourdan
. ¢ Saclay

0 100 200 300 400

FIG. 10. Longitudinal (top panel) and transverse (bottom panel)
response functions for '2C for different values of |q|, obtained within
the STA (solid and dashed orange), GFMC (green) from Ref. [11],
and experimental responses obtained from [40,41].

experimental data from Refs. [40,46-48], collected in a
tabular form in Refs. [49,50]. We analyze experimental
results with values of incoming electron energy and elec-
tron scattering angle in the ranges E, ~ [0.3,2.5] GeV
and 6, ~ [11°,60°]. In Fig. 12, we discuss in more detail
three selected kinematics, namely (E,, 6,) = (0.62 GeV, 60°),
(1.5GeV, 13.54°), (1.108 GeV, 37.5°), and highlight some
basic features displayed by our calculations. In particular,
for each row, we show a comparison of the inclusive double
differential cross section (solid orange line) with the experi-
mental data (blue symbols) in the first panel; the second panel
shows the values of momentum and energy transfer, |q| and
w, corresponding to the given electron energy and scattering
angle, E, and 6,. These are highlighted by the solid gray line.
Additionally, the shaded region indicates the region covered
by the calculated response functions. In the last panel, we
report the values of the electron kinematic factors, A; and
Ar, entering the cross section—see Eq. (10). The vertical
dashed green line serves to guide the eyes and highlights the
position of the peak. We find very good agreement between
our calculations and the experimental data, in particular for
kinematics that require the evaluation of response functions

0.08- —— 1b+2b - transverse
—=- 1b - transverse
—— 1b+2b - longitudinal
o === 1b - longitudinal
I> 0.06+ t | Jourdan
[0} { 'Jourdan
=
N, 0-041
Q
5
o 0.021
0.00 ==

0 100 200 300 400 500
w [MeV]

FIG. 11. Longitudinal (red lines) and transverse (blue lines) re-
sponse functions at |q] = 570 MeV. Response functions accounting
for one-body (one- plus two-body) currents are indicated with dashed
(solid) lines.

in the range |q| ~ [300, 600] MeV/c. This is the case, for
example, for the kinematics shown in panels (a) and (b)
of Fig. 12, corresponding to (E,, 8,) = (0.62 GeV, 60°) and
(1.5GeV, 13.54°), respectively. The former requires response
functions in the range |q| ~ [550, 600] MeV /c with A, ~ Ap
at the peak, while the latter uses response functions in the
range |q| ~ [350, 450] MeV /c with A} ~ 2 Ay at the peak.

Panel (c) displays results at (E,, 6,) = (1.108 GeV, 37.5°).
At these kinematic, response functions with |q| = 600 MeV /¢
are required to calculate the cross sections. In particular, val-
ues of |q| ~ [650, 750] MeV/c contribute to the main peak
of the cross section, which is overpredicted by the theoretical
calculation. This discrepancy is indicative of the lack of a
proper relativistic treatment of the interaction of the external
probe with the correlated pairs of nucleons at the vertex, a
feature also observed in previous studies on A = 3 systems
[13].

We conclude this section by showing in Fig. 13 results
obtained for incoming electron energies in the range E, ~
[0.3, 2.5] GeV. Each panel in Fig. 13 shows the contribution
to the total cross section due to two-body physics, where
the one-body term (includes both diagonal and off-diagonal
components) is represented by the dashed orange line, while
the total cross section comprehensive of the two-body correc-
tion (includes both the one- and two-body interference term
along with the pure two-body component) is shown by the
solid orange line. At these kinematics, given the combina-
tion of longitudinal and transverse responses coming from
Eqg. (10), two-body effects provide an enhancement at the peak
between 5% and 15%, for the ranges of energies and angles
considered.

Overall the STA accurately explains experimental data in
the quasielastic peak region, while it fails at higher values of w
for which the inclusion of resonances and meson-production,
currently not accounted for in the theory, is required.

In closing, we note that cross sections for electron scat-
tering from '2C have been calculated within the SF approach
in Ref. [51,52]. The approach of Ref. [51] can describe
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FIG. 12. Inclusive double-differential cross sections for electron scattering on '2C are shown in the left panels. The values of |q| and @
leading to the selected electron’s energy and scattering angle, E, and cos 6,, respectively, are displayed in the middle panels. The shaded gray
area indicates the kinematic region covered by the present calculations of response functions and densities. In the right panels, the solid (dashed)
gray line indicates the electron longitudinal (transverse) kinematic factor appearing in Eq. (10). The dashed green vertical lines highlight the
positions of the peaks. See text for details.
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FIG. 13. Inclusive double-differential cross sections for electron scattering on '2C, for various values of the incoming electron beam
energy and scattering angle. Experimental data for & = 11.95°, 13.54° is from [46], for 8 = 15° is from [47], for 6§ = 18° is from [48], and for

0 = 36°, 60° is from [40].

experimental results at lower incoming electron beam en-
ergies, while the STA cannot describe that region. Neither
approach accounts for inelastic processes. The SF approach
can account for some of the processes involving two-
particle-two-hole final states, while the STA consistently
retains two-nucleon dynamics, including correlations and
electroweak currents, as well as the interference terms be-
tween one- and two-body currents. This allows the STA
to reproduce the enhancement to the total cross section at
higher scattering angles, mainly coming from the transverse
response, which is caused by two-body effects. This is partic-
ularly evident when comparing the cross section in Fig. 13 for

(E,, 6.) = (0.56GeV, 60°) with Fig. 3 of the Supplemental
Material [52], where the calculation slightly underpredicts
the data. For a detailed comparison between the SF, STA
and GFMC approaches we refer the interested reader to the
analysis carried out in Ref. [13] for electron scattering from
the trinucleon systems.

VI. CONCLUSIONS

In this work, we performed VMC calculations within the
STA of inclusive electron scattering from '?C. Specifically,
we calculated '>C electromagnetic longitudinal and transverse
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response densities and functions for five values of momentum
transfer in the range |q| = 300-800 MeV/c. In the calcula-
tion, we accounted for two-body physics at the vertex, namely,
two-body correlations induced by the AV18 two-nucleon po-
tential, and consistent two-nucleon electromagnetic currents.
The VMC ground state is fully correlated via the AV18 two-
nucleon and Urbana-X three-nucleon potentials. We found a
very good agreement between the STA results, the experimen-
tal data, and the GFMC calculations of response functions
available at |q| = 300, 380, and 570 MeV /c.

We developed an interpolation scheme that conserves the
sum rules, and used it to generate response functions on a fine
grid of transferred momenta from the calculated and sparse
ones. This allowed us to calculate electron-'2C inclusive cross
sections for electron energies in the range E, ~ [0.3,2.5]
GeV. We found that the STA gives a very good description
of the quasielastic peak, provided that the transfer momen-
tum lies in the range |q| ~ [300, 600] MeV/c. For values of
Iq| = 600 MeV/c, a proper inclusion of relativistic effects,
entering both the kinematics at the vertex and the interaction
of the external probe with the correlated pairs of nucleons, is
required for an accurate description of the data. The factor-
ization scheme adopted in the STA for the final hadronic state
will allow us to overcome these limitations, as the energies
and momenta of the two nucleons participating in the scatter-
ing process are directly accessible. A work on the inclusion
of relativistic effects, using relativistic expressions for the
electromagnetic currents and of the kinematics of the two
nucleons involved in the scattering is underway [53]. Addi-
tionally, the STA formalism, explicitly considering two active
nucleons in the final state, is also amenable to the inclusion
of pion production channels. A similar implementation, albeit
developed within the spectral function formalism, has been
adopted, e.g., in Ref. [54].

These studies on electron-nucleus scattering are relevant
to the study of neutrino-nucleus scattering. They allow us
to test the nuclear model, and assess the relevance of many-
nucleon effects, including correlations and currents, that play
an important role also in scattering induced by neutrinos. The
group is currently pursuing STA calculations of electroweak
response densities. The latter provides important additional
information on two-nucleons final states. Nuclear electromag-
netic response functions obtained within the STA have been
implemented into the GENIE Monte Carlo event generator
[29], through a hadron tensor interface [55]. Future work will
directly implement the multidimensional information con-
tained in the nuclear response densities.

In this work, the STA has been implemented into the VMC
computational scheme, currently limited to the study of A =
12 systems. Calculations in heavier systems will be possible

using next-generation high-performance computing systems.
Additionally, the STA can be exported to the auxiliary field
diffusion Monte Carlo method [26,27] that can address large
nuclear systems up to A ~ 20. Work along these lines is in
progress.
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