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Quantum Monte Carlo calculations of electron scattering from 12C in the short-time approximation

L. Andreoli ,1,2,3,4,* G. B. King ,3,† S. Pastore ,3,4,‡ M. Piarulli ,3,4,§ J. Carlson,5,‖ S. Gandolfi ,5,¶ and R. B. Wiringa 6,#

1Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
2Theory Center, Jefferson Laboratory, Newport News, Virginia 23610, USA

3Department of Physics, Washington University in Saint Louis, Saint Louis, Missouri 63130, USA
4McDonnell Center for the Space Sciences at Washington University in St. Louis, Missouri 63130, USA

5Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
6Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 23 August 2024; accepted 26 November 2024; published 30 December 2024)

The short-time approximation is a method introduced to evaluate electroweak nuclear response for systems

with A � 12, extending the reach of first-principle many-body quantum Monte Carlo calculations. Using

realistic two- and three-body nuclear interactions and consistent one- and two-body electromagnetic currents,

we calculate longitudinal and transverse response densities and response functions of 12C. We compare the

resulting cross sections with experimental data for electron-nucleus scattering, finding good agreement.
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I. INTRODUCTION

The coming online of next-generation neutrino-oscillation

experiments [1–4], including the Deep Underground Neutrino

Experiment (DUNE), has brought a new wave of interest

in first-principle calculations of nuclear responses. DUNE is

designed to function within a broad range of neutrino en-

ergies, up to 10 GeV, where different reaction mechanisms

are at play, including the quasielastic, resonance production,

and deep inelastic scattering regimes [5,6]. A solid under-

standing of all these processes is required for a reliable

interpretation of the experimental data. Specifically, accurate

calculations of neutrino-nucleus cross sections are needed to

reconstruct the energy of the incoming neutrinos entering

the neutrino oscillation probabilities, and thus reliably extract

neutrino oscillation parameters. Though computationally ex-

pensive, ab initio nuclear methods—including the quantum

Monte Carlo (QMC) methods adopted in the present work—

retain the complexity of many-nucleon dynamics through

the use of realistic many-nucleon interactions, as well as

one- and two-body electroweak currents. The latter describe,

respectively, the interaction of nucleons and pairs of corre-

lated nucleons with external probes, such as electrons and

neutrinos.

In this work, we focus on electron-nucleus scattering in

the quasielastic regime. In this regime, many-body dynam-
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ics, that is nucleonic correlations and electroweak currents,

have been shown to be important to explain the available

experimental data. For example, ab initio calculations in light

nuclei correctly reproduce the observed enhancement of the

electromagnetic transverse nuclear response with respect to

the longitudinal one [7–14], a phenomenon that originates

from the combined effect of two-nucleon correlations and

the interference between one- and two-body electromagnetic

currents [11,12,15].

Electron scattering shares common nuclear effects with

neutrino-nucleus interactions, including multi-nucleon ef-

fects, and it comes with a wealth of experimental data without

the need for leptonic energy reconstruction. In fact, in these

experiments, the electrons can be collimated to produce

monoenergetic beams. For these reasons, electron-nucleus

scattering data are extensively used to validate and test many-

body nuclear models [16–18]. The synergy between electron

and neutrino scattering processes has been recognized by re-

cently established collaborations [19,20], aimed at fostering

collaborative efforts within the electron and neutrino physics

communities.

The QMC effort has been extensively directed to calcu-

lations of inclusive electroweak response functions in the

quasielastic regime. Most notably, the Green’s function Monte

Carlo (GFMC) method has been utilized to calculate 4He and
12C response functions induced by electrons and neutrinos,

leading to an excellent agreement with the available experi-

mental data [11,21,22]. Due to its increasing computational

cost with the number of nucleons, the GFMC method is cur-

rently limited to the study of nuclei with A � 12. Additionally,

it is not suitable to describe kinematic regions characterized

by large values of energy and momentum transfer, which

would require the implementation of relativistic corrections at

the vertex, where the correlated clusters of nucleons interact

with the external probe.
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An alternative approach that addresses these shortcomings

relies on the spectral function of the nucleus [23–25]. This

method is based on the factorization of the final hadronic

states and has the advantage of being applicable to larger

nuclear systems. Additionally, it can accommodate relativistic

kinematics, meson-production, and other inelastic processes

[24,25].

The short-time approximation (STA) was introduced in

the context of QMC calculations to evaluate nuclear inclu-

sive response functions and densities induced by electrons

and neutrinos [12]. This approach is based on a factorization

scheme that consistently retains two-nucleon dynamics, both

correlations and consistent electroweak currents. At present,

the STA algorithm has been implemented within the varia-

tional Monte Carlo (VMC) method [26] for calculations of

electron scattering from the alpha particle [12], 3H and 3He

[13]. STA calculations were found to be in excellent agree-

ment with both the experimental data and the results from the

GFMC method, a method that is computationally exact for

these light systems.

The STA presents several advantages: Because of the

adopted factorization scheme, it can be extended to i)

phenomenologically describe exclusive processes, such as

meson-production and nucleon knockout; and ii) incorporate

relativistic kinematics at the vertex. Further, this algorithm

can be applied to QMC methods, e.g., the auxiliary field

diffusion Monte Carlo (AFDMC) method [[26,27], and refer-

ences therein], suitable to treat nuclei of experimental interest

with mass number A > 12. These accurate microscopic cal-

culations of lepton-nucleus cross sections serve as improved

inputs to the neutrino event generators used for the neutrino

energy reconstruction procedures. As a proof of concept, the

responses generated with the STA for electrons scattering

from the α particle have been used within the GENIE event

generator [28] and fully tested against the world quasielastic

electromagnetic data [29], thus paving the way for analogous

developments for neutrino-nucleus cross sections.

In this work, we tackle, for the first time, systems with A =

12—that is, 12C—implementing the STA within the VMC

method, and present results for nuclear response densities,

response functions and cross sections. The structure of this

paper is as follows. In Sec. II, we provide the nuclear Hamilto-

nian and the electromagnetic currents used in our calculation,

and describe the VMC method used to generate the ground

state of 12C. In Sec. III, we introduce the formalism of the

STA, used to evaluate response densities. The interpolation

scheme developed to generate response functions on an arbi-

trarily fine grid of momentum transfer is presented in Sec. IV.

We summarize our results in Sec. V, and present our conclu-

sions in Sec. VI.

II. NUCLEAR MANY-BODY HAMILTONIAN AND

ELECTROMAGNETIC CURRENTS

QMC methods, many-body interactions, and elec-

troweak currents have been extensively reviewed in

Refs. [9,14,26,30,31]. Here, we briefly sketch the VMC

method, highlight the salient features of many-body

interactions and currents relevant to this study, and refer the

interested reader to the aforementioned review articles for de-

tails. In this work, we use the many-body nuclear Hamiltonian

H =
∑

i

Ti +
∑

i< j

vi j +
∑

i< j<k

Vi jk, (1)

where Ti is the single-nucleon nonrelativistic kinetic

energy, and vi j and Vi jk denote two- and three-nucleon

interaction operators, respectively. Specifically, we used the

phenomenological Argonne v18 (AV18) two-nucleon potential

[32] supplemented by the Urbana-X [33] three-nucleon

interaction. The AV18 consists of one-pion-exchange (OPE)

contributions, and phenomenological short-to-intermediate

range terms. It is fitted to the Nijmegen np and pp scattering

database [34], along with the deuteron binding energy,

achieving a χ2/datum ∼ 1. While the AV18 interaction

is fitted to scattering data in the laboratory energy range

[0, 350] MeV, it reproduces nucleon-nucleon phase shifts

beyond the fitting range (up to ∼1 GeV). The Urbana X

interaction represents an intermediate approach between the

Urbana IX (UIX) and Illinois-7 (IL7) potentials discussed

in Sec. II B of Ref. [26]. Specifically, Urbana X retains the

long-range two-pion P-wave term and short-range central

repulsion from the UIX potential supplemented with a

two-pion S-wave term. These three terms have the same

strength as IL7. However, Urbana X does not include the

three-pion-ring term or the isospin-dependent short-range

repulsive terms that are present in the IL7 model [33]. VMC

wave functions optimized with UX are commonly used as the

starting wave functions for GFMC calculations with IL7.

The nuclear variational wave function, |�V 〉, is generated

by minimizing the energy expectation value with respect to

a number of variational parameters. The wave function cor-

rectly reflects the long- and short-range physics induced by

the two- and three-nucleon potentials through two- and three-

body correlation operators, Ui j and Ũ T NI
i jk , respectively, and it

reads

|�V 〉 = S

A
∏

i< j



1 + Ui j +

A
∑

k �=i, j

Ũ T NI
i jk



|�J〉, (2)

where the Jastrow wave function �J is fully antisymmetric

and has the correct quantum numbers for the ground state. The

overall antisymmetry of the wave function is preserved via the

symmetrization operator S acting on the two- and three-body

correlation operators.

In order to study and predict nuclear electromagnetic cross

sections, we make use of electroweak current operators that

describe the interaction of nuclei with electroweak fields. In

particular, the electromagnetic charge, ρ, and current, j, are

decomposed into one- and two-body operators as

ρ =
∑

i

ρi(q) +
∑

i< j

ρi j (q),

(3)
j =

∑

i

ji(q) +
∑

i< j

ji j (q),

where q is the momentum transferred to the nucleus and the

index i denotes a nucleon. The single nucleon charge and

current operators (ρi, ji) are obtained from a nonrelativistic

reduction of the nucleon electroweak covariant currents [7],
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and are written in terms of the nucleonic form factors required

to correctly reproduce fall-off at increasing values of three-

momentum transfer.

The two-body operators (ρi j , ji j) used in this work

have been most recently summarized in Refs. [35,36], and

consist, primarily, of contributions of one-pion-exchange

(OPE) range. More specifically, the two-body electromag-

netic current operator, ji j , consists of model-independent

and model-dependent terms, the former being constructed

by requiring that they satisfy the current conservation rela-

tion within the AV18. In this sense, two-body currents are

consistent with the nucleon-nucleon interaction, in that their

behavior at both short and long ranges is consistent with

that of the two-nucleon correlations. The model-dependent

terms cannot be constrained via current conservation. The

dominant contribution to the model-dependent component is

associated with the excitation of intermediate (virtual) �-

isobars; in this type of contribution, the external probe excites

the nucleon to a � that decays emitting a pion which is

reabsorbed by another nucleon [36,37]. The two-body charge

operator, ρi j (q), consists of one-pion range terms, which pro-

vide contributions with a size comparable to that of a (small)

relativistic correction. Incidentally, the observed large excess

of the electromagnetic transverse strength is primarily due

to the interplay between one- and two-nucleon currents with

two-nucleon correlations of one-pion range [12], a dynamical

feature we need to preserve when developing approximate

algorithms for larger nuclear systems.

III. THE SHORT-TIME APPROXIMATION

We express the cross section for inclusive electron scat-

tering on a nucleus in terms of longitudinal and transverse

nuclear response functions of the form

Rα (q, ω) =
∑

Mi

∑

f

〈�i|O
†
α (q)|� f 〉〈� f |Oα (q)|�i〉

× δ(E f − Ei − ω), (4)

where ω and q are the energy and momentum carried by

the probe, RL is the longitudinal component (α = L) induced

by the electromagnetic charge operator, OL = ρ, and RT is

the transverse component (α = T ) induced by the electro-

magnetic (vector) current operator, OT = j. |�i〉 is the VMC

ground state of the system with energy Ei and spin Ji, and |� f 〉

is the final state with energy E f . An average of the projections

Mi of the initial state with spin Ji is understood.

Without loss of generality, the response can be equivalently

written as the matrix element of a current-current correlator by

replacing the sum over final states appearing in Eq. (4) with a

real-time propagator, as

Rα (q, ω) =

∫ ∞

−∞

dt

2π
ei(ω+Ei )t

×
∑

Mi

〈�i|O
†
α (q) e−iHt Oα (q)|�i〉. (5)

The STA uses a factorization scheme in which two-body

physics is retained in both currents and strong interaction.

Hence, in the equation above, H ≈ H12 = T1 + T2 + v12 only

includes up to two-nucleon interactions (in our case, the

AV18). The final states considered here are only those with

correlated nucleon pairs interacting with the external probe.

This leads to a reduced computational cost compared to cal-

culations where the full A-nucleon system is propagated, with

pairs and triplets participating in the scattering process. For

example, for 12C we found a reduced factor of ∼10 difference

in computing time with respect to exact GFMC calculations.

Correlating at most two nucleons at a time requires that

we retain terms linear in t when performing the short-time

expansion of the propagator. Including the full two-nucleon

propagator also includes ladder diagrams where pairs of nu-

cleons scatter multiple times. Higher order terms will involve

the propagation of three or more nucleons. This procedure

ensures the conservation of sum rules and energy-weighted

sum rules. At the next order, we are dropping terms quadratic

in t which have the form Ti v jk and vi j vkl , including per-

mutations of the indices. The terms we drop are at most of

the order of ∼O((〈TN〉 t )2), where 〈TN〉 is the average kinetic

energy per particle. In a simple, nonrelativistic Fermi gas

approximation, this is related to the Fermi energy EF of the

system 〈TN〉 = 3EF /5 ≈ 30 MeV. We can use this value to

roughly gauge the kinematics where the STA is valid. Note

that quasielastic physics peaks at an energy transfer

ωqe =
√

m2 + |q|2 − m →
|q|2

2 m
, (6)

where m is the nucleon mass, and we explicitly give the

nonrelativistic expression of ωqe for the purpose of this dis-

cussion. The associated timescale, tqe = ω−1
qe , constrains the

values of |q| where the STA is a valid description of these

processes, which is thus roughly EF /ωqe ≪ 1, or, equiva-

lently, |q| ≫ kF , with kF being the Fermi momentum. For

sufficiently low values of |q|, the region dominated by low-

energy nuclear phenomena—such as collective excitations

and low-lying discrete levels—overlaps with the quasielastic

peak. Because low-energy nuclear phenomena are not explic-

itly included in the STA, one should not expect the quasielastic

STA response to be valid when the two processes compete

and potentially interfere. Physically, the lower limit in |q|,

appearing when only two nucleons at a time are correlated,

arises from the absence of quantum interference effects and

Pauli blocking required to describe physics close to the nu-

clear Fermi surface, characterized by kF ≈ 270 MeV/c.

With the connection between short-time and propagating

only two active nucleons now established, we may consider

the form of the response function under such an approx-

imation. Restricting the current-current correlator to terms

containing at most two active nucleons in the final states, the

correlator appearing in Eq. (5) becomes

O† e−iHt O =
∑

i

O
†
i e−iHt Oi +

∑

i �= j

O
†
i e−iHt O j

+
∑

i �= j

(O†
i e−iHt Oi j + O

†
i je

−iHt Oi

+ O
†
i je

−iHt Oi j ), (7)

where the index α has been dropped for convenience and

terms including a sum over i �= j �= k are neglected. From the

equation above, it is apparent that, while three-nucleon effects
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are not accounted for in the final state (although they are

fully included in the ground state), interference terms between

one- and two-nucleon currents along with the AV18 two-

nucleon correlations are consistently retained within the STA.

In the remainder of this work, by ‘one-body’ contribution we

indicate the sum of the first two terms in Eq. (7), that cor-

respond to the one-body diagonal and one-body off-diagonal

contributions, respectively. With ‘two-body’ contributions we

indicate the sum of the terms appearing in the parenthesis.

These corrections are dominated by the one- and two-body

interference contributions (first two terms in the parenthesis),

supplemented by a small correction coming from the pure

two-body operators (last term in the parenthesis). After the

insertion of a complete set of two nucleon states [12], the

response in Eq. (5) can be evaluated as an integral of a re-

sponse density, Dα (e, Ec.m.), over the relative energy, e, and

center of mass energy, Ec.m., of the interacting pair (or, equiv-

alently, over relative and CM momenta, p′ and P′
c.m., of the

pair of struck nucleons). The response density gives access to

explicit information about two-nucleon dynamics in the final

states, and, upon its integration over the relative and center of

mass energies of the active pair of nucleons, one obtains the

corresponding response function, Rα (q, ω), as

Rα (q, ω) =

∫ ∞

0

de

∫ ∞

0

dEc.m. Dα (e, Ec.m.)

× δ(ω + Ei − e − Ec.m.). (8)

The response density given above has purely elastic contri-

butions coming from the ground state for which the associated

response is ∝ |〈�0|Oα (q)|�0〉|
2. The elastic contribution be-

comes more prominent as the momentum transfer decreases,

and it coincides with the fully elastic response in the limit

of |q| → 0. In this work, we subtract the elastic contribution

adopting the procedure introduced in Ref. [13]. Specifically,

we calculate the elastic response density Del
α as

Del
α (q, p′, P′)

= |〈�0|Oα (q) | �0〉|
2

×
∑

β

〈�0|�2(p′, P′
c.m., β )〉〈�2(p′, P′

c.m., β )|�0〉, (9)

where �2 schematically denotes intermediate states with two

active nucleons, and the sum runs over all two body quan-

tum numbers β. The expression above is obtained under the

assumption that, at low values of momentum transfer, the in-

ternal nuclear dynamics of the ground state dominates [13]. At

|q| = 300 MeV/c, where the elastic contribution is relevant,

we subtract the longitudinal contribution Del
L (e, Ec.m.) (Fig.

1) from the total longitudinal response density DL(e, Ec.m.)

(Fig. 2).

As discussed above, responses calculated for |q| �
300 MeV/c do not reproduce the correct threshold behavior.

This is enforced by redistributing the strength of the response

below a threshold ωth to higher values of ω. This is achieved

through the insertion of a Gaussian distribution controlled

by a width parameter ω, and imposing that the sum rule is

preserved. A detailed description of this procedure can be

FIG. 1. Elastic contribution to the total longitudinal response

density of 12C at |q| = 300 MeV/c, as a function of relative energy

and center of mass energy. See text for explanation.

found in Ref. [12]. In the present calculation, we use ωth =

25 MeV and ω = 15 MeV.

IV. CROSS SECTIONS AND INTERPOLATION SCHEME

The inclusive double differential cross section for electron-

nucleus scattering is written in terms of the nuclear response

functions as

d2σ

dEe′d�e

=

(

dσ

d�e

)

M

[ALRL(q, ω) + AT RT (q, ω)], (10)

where the leptonic kinematic factors read

AL =

(

q2

q2

)2

, AT = −
1

2

q2

q2
+ tan2 θe

2
, (11)

FIG. 2. Total longitudinal response density of 12C at |q| =

300 MeV/c, as a function of relative energy and center of mass

energy. See text for explanation.
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FIG. 3. Calculated (gray) and interpolated (red) integral func-

tions of 4He at values of |q| in the range [300, 700] MeV/c. Each

integral function is obtained by interpolating neighboring exact inte-

gral functions corresponding to values of |q| spaced by 100 MeV/c.

while the Mott cross section is defined as
(

dσ

d�e

)

M

=

[

α cos (θe/2)

2Ee′ sin2 (θe/2)

]2

. (12)

In the equations above, α is the fine structure constant and

q2 = ω2 − |q|2, while Ee′ is the final electron energy, and θe

is the electron scattering angle.

While the STA algorithm allows for a reduced computa-

tional cost, calculations of 12C’s nuclear response densities

within the STA are still demanding, which prevents from ob-

taining response functions calculated over a finely spaced grid

in momentum transfer. These are required to accurately com-

pute the cross sections. Several interpolation schemes [29,38]

have been adopted to generate response functions from the

calculated and sparse ones. For example, the approach of

Ref. [38] exploits the scaling behavior of the response func-

tions to generate response functions for arbitrary values of ω

and q.

In this work, we develop an interpolation scheme that con-

serves the sum rules. Specifically, we calculate the normalized

cumulative integral of the response function, IL/T , at fixed

value of momentum transfer and as a function of ω,

IL/T (ω; qi ) =

∫ ω

0
RL/T (ω′; qi )dω′

∫ ∞

0
RL/T (ω′; qi )dω′

, (13)

and obtain a set of Iα (ω; qi ) for each of the response func-

tions calculated within the STA at values of momentum

transfer qi. These are displayed in Fig. 3 for 4He (solid

lines in the figure) for values of momentum transfer in the

range of |qi| = [300, 700] MeV/c with a 100 MeV/c spac-

ing. We then interpolate the Iα (ω; qi )’s to obtain I int
α (ω; q)

for any arbitrary value of q. Specifically, the interpolation is

carried out using two integral functions at the same value,

say Iα (ω; 300 MeV/c) = Iα (ω; 400 MeV/c) = 0.8 as shown

as an example in the figure, and the interpolated func-

tion, I int
α (ω; q) = 0.8, is evaluated for any q in the range

[300, 400] MeV/c. The interpolated integral functions are

shown in Fig. 3 with dashed red lines (note that, for 4He, we

generated integral functions and responses over a momentum

grid with 1 MeV/c spacing; in the figure, we only display

FIG. 4. Exact (gray) and interpolated (dashed red) longitudinal

(upper panel) and transverse (lower panel) response functions for
4He, calculated for values of |q| in the range of [300, 700] MeV/c,

with 50 MeV/c spacing. Each response is obtained by interpolating

neighboring exact responses, corresponding to values of |q| spaced

by 100 MeV/c. See text for details.

three interpolated functions). The corresponding interpolated

response function is recovered from I int
α (ω; q) by taking its

derivative.

For 4He, the computational cost is such that calculations

of nuclear responses on a fine grid of momentum transfer

are feasible and can be used to validate the interpolation

scheme described above. To this end, we use the STA to cal-

culate a set of longitudinal and transverse response functions

for momentum transfer in the range |q| = [300, 700] MeV/c,

with a 10 MeV/c spacing. We use the interpolation scheme

on a limited subset of ∼10 responses and check that those

resulting from the interpolation procedure are in agreement

with the exact ones. To further illustrate the procedure, Fig. 4

shows the comparison between interpolated (dashed red lines)

and exact (solid gray lines) responses. In particular, the ex-

act responses for two momenta, say |q1| = 300 MeV/c and

|q2| = 400 MeV/c as highlighted in the figure, are used to

calculate the interpolated response in the midpoint |qint| =

(|q2| − |q1|)/2 = 350 MeV/c, which is in perfect agreement

with the corresponding exact response.

The approach described above allows us to generate lon-

gitudinal and transverse response functions using a limited

number of calculated ones, while ensuring the unimodality

of the interpolated responses. Having tested the interpolation

scheme on 4He, we apply it to 12C. Due to the aforemen-

tioned computational cost, in the case of 12C we calculate

the response densities and functions for only five values of

momentum transfer, namely |q| = 300, 450, 570, 650, and
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FIG. 5. Exact (gray) and interpolated (dashed red) longitudinal

(upper panel) and transverse (lower panel) response functions for
12C, calculated for values of |q| in the range of [300, 800] MeV/c.

800 MeV/c. The associated responses are displayed in Fig. 5

(solid gray lines) along with those obtained from them through

the interpolation scheme (dashed red lines).

We conclude this section by providing the values of the

longitudinal and transverse sum rules, SL/T (q) in Table I.

These are defined as [12]

G2
α (Q2

qe) Sα (q) =

∫ ∞

ωel

dω Rα (q, ω) (14)

=
∑

Mi

〈�i|O
†
α (q) Oα (q)|�i〉. (15)

where the factor G2
α (Q2

qe) denotes the square of the appropriate

combination of nucleon electromagnetic form factors [7,39]

evaluated at Q2
el = q2 − ω2

el. In Table I, we report the values

of the sum rules obtained by i) integrating the STA response

functions, as shown in the first expression in Eq. (14); and ii)

calculating the current-current matrix element as illustrated

in the second expression in Eq. (14) within the STA, that

is neglecting three- and four-nucleon terms. In the table, the

former are denoted with ‘Sint
α ’ (blue squares in Fig. 6) and the

FIG. 6. 12C longitudinal and transverse STA sum rules, Sint
L/T

(blue squares) and Scc
L/T (black circles), compared with the GFMC

results SGFMC
L/T from Ref. [39] (green lines). See text for explanations.

latter with ‘Scc
α ’ (black circles in Fig. 6). Values in parentheses

are obtained from one-body currents alone. We compare our

results with those obtained from GFMC evaluations, denoted

in the table with ‘SGFMC
α ’ (green lines in Fig. 6). Both sum

rules, namely the Sint
α (squares) and Scc

α (circles), are in agree-

ment with the GFMC sum rules at a few percent level, with Scc
α

providing a closer match to the GFMC results. The Sint
α sum

rules underestimate the GFMC results. In fact, the response

densities are calculated up to finite values of center-of-mass

and relative energies, therefore the integrated sum rules miss

strength coming from contributions found beyond these finite

energy ranges. In Fig. 6, with empty markers we indicate sum

rules obtained with one-body operators, while those inclusive

of two-nucleon currents are represented by full markers. Simi-

larly, GFMC results based on the one-body operator are given

by the dashed line, and those based on one- and two-body

operators are indicated by solid lines.

V. RESULTS

In this section, we summarize our calculations. Specifi-

cally, we report the results obtained within the STA for i)

response densities; ii) response functions; and iii) inclusive

double differential cross sections of electron scattering from
12C. Where available, we compare with GFMC theoretical

calculations from Ref. [11], and experimental data from the

studies of Refs. [40,41].

TABLE I. 12C longitudinal and transverse STA sum rules, Sint
L/T and Scc

L/T, compared with the GFMC results SGFMC
L/T from Ref. [39]. Results

based on one-body currents are given in parentheses. See text for explanations.

q [MeV/c] Sint
L Scc

L SGFMC
L Sint

T Scc
T SGFMC

T

300 (0.87)0.84 (1.02)1.00 (0.98)0.94 (0.77)1.23 (0.84)1.32 (0.74)1.37

450 (0.93)0.90 (0.97)0.94 (0.94)0.91 (1.00)1.38 (1.02)1.41 (0.93)1.50

570 (0.88)0.86 (0.89)0.87 (0.91)0.91 (1.04)1.37 (1.05)1.38 (1.00)1.51
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FIG. 7. Longitudinal (top) and transverse (bottom) response densities of 12C, for different values of q, as functions of the center of mass

energy Ec.m. and relative energy e of the struck nucleon-nucleon pair.

A. Response densities

Response densities for 12C are evaluated for five values

of momentum transfer (|q| = 300, 450, 570, 650, and

800 MeV/c). In Fig. 7, we show the results obtained for

|q| = 300, 450, and 570 MeV/c. The surface plots are

functions of the nucleon pair’s relative, e, and center of

mass, Ec.m., energies, evaluated on equally spaced grids with

10 MeV spacing. Specifically, we use values up to e ∼ Ec.m. ∼

500 MeV, which are sufficient to capture the main peak of the

responses in the transfer momentum range we are considering

here. This choice is dictated by the computational cost of

the calculations and leads to missing strengths at the tails as

the value of momentum transfer increases and the density’s

peak moves towards the edges of the region covered by the

relative and center of mass energies. At the moment, however,

extending the energy range of the pair beyond ∼500 MeV

is computationally prohibitive. To remedy this problem, the

two-body tail of the response densities was extrapolated

beyond e = 500 MeV. The same procedure, when applied

to truncated response densities for 4He calculated up to

e = 500 MeV, successfully reproduced the response densities

calculated over the energy range e, E = [0, 900] MeV.

From Fig. 7, we see that the position of the peak is realized

for values of e ∼ Ec.m. ∼ |q|2/4 m, a condition resulting from

simple kinematic considerations. All the densities are pur-

posely plotted in the range [0, 200] MeV, for both the relative

and center of mass energies, to highlight the tail induced by

two-body physics for increased values of relative energies, a

finding that is in line with previous studies on two-body mo-

mentum distributions [33,42], and STA calculations in A = 3

and 4 systems [12,13]. Note that, the elastic contribution has

been removed from the longitudinal responses displayed in

the figure.

To further analyze the impact of two-body physics on the

calculated response densities, in Fig. 8, we show a contour

plot of the two-nucleon currents’ contribution (interference

FIG. 8. Two-body contributions (interference plus pure two-

body) to the total transverse response density, D2b
T /Dtotal

T , at |q| =

570 MeV/c. See text for details.
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plus pure two-body terms) relative to the total transverse re-

sponse density, i.e., D2b
T /Dtotal

T , as a function of the relative and

center of mass energies at |q| = 570 MeV. The two-nucleon

currents’ effect is moderate at low values of relative energy,

while it increases at higher values, providing, on average, a

thirty percent correction. For the longitudinal response, an

analogous contour plot indicates that the two-nucleon cur-

rents’ contribution is less than 5% of the total response, as

expected given the negligible relativistic correction induced

by two-nucleon charge operators.

Response densities provide additional information on the

two-nucleon final state immediately after the interaction with

the external probe occurred. For example, we can analyze the

STA density in terms of pp and nn pairs’ contributions at two-

body kinematics of experimental interest. The contributions

from different particle identities have been explored in various

electron scattering experiments [43–45] in the back-to-back

kinematics, where the struck pairs have initial center of mass

momentum equal to zero, implying Ecm ≈ |P′
c.m.|

2/(4 m) =

|q|2/(4 m). As an example, we analyze the response density

at momentum transfer |q| = 570 MeV (illustrated in Fig. 9),

where the back-to-back configuration is realized at values of

the center of mass energy Ec.m, ∼ 87 MeV. The longitudinal

(upper panel) and transverse (lower panel) response densities

at this fixed value of center of mass energy are displayed

in Fig. 9 as a function of the relative energy. Additionally,

we show the contributions due to pp (dashed red line), nn

(dashed-dotted blue line) pairs, total (solid black line), one-

body (solid green line), and interference (solid orange line)

results. In the longitudinal case, the response is almost entirely

due to one-body charge operators. The nn contribution is neg-

ligible with respect to the pp one, since it is proportional to the

neutron charge operator squared. The pp term is enhanced by

a factor of ∼1.3 with respect to the pp contribution found in
4He within the same kinematic configuration [12]. This result

can be understood in terms of pair counting, i.e., the number

of pp pairs over the total number of pairs is 1/6 in 4He versus

15/66 in 12C, which leads to the observed enhancement. The

transverse density is shown in the bottom panel of Fig. 9.

Here, the pp and nn contributions are primarily due to one-

body current operators and are proportional to proton and

neutron magnetic form factors squared, respectively, which

explains the observed enhancement of the pp contribution ver-

sus the nn one. Two-body contributions, primarily driven by

np pairs, become predominant as the relative energy increases.

B. Response functions

Longitudinal and traverse response functions, obtained

from the densities discussed above, are shown in Fig. 10

for values of momenta |q| = 300, 380, and 570 MeV. This

choice of momenta allows us to compare with both the ex-

act GFMC results of Ref. [11] and the experimental data

of Refs. [40,41]. Note that, while the response functions at

|q| = 300 and 570 MeV/c are obtained from an integration

of the calculated densities over the relative and center of

mass energies, the response function at |q| = 380 MeV/c is

obtained implementing the interpolation scheme described

in Sec. IV. In the figure, we display the error bands that

FIG. 9. Longitudinal (top) and transverse (bottom) response den-

sities at |q| = 570 MeV/c and Ec.m. = 87 MeV. Contributions from

pp and nn pairs are shown in red dashed lines and blue dashed-dotted

lines, respectively, and total responses in solid black lines. Total

one-body and interference contributions are shown in solid green and

orange lines, respectively.

account for the statistical errors inherent to the stochastic

calculations. Overall, in the analyzed kinematics, we find a

good agreement with both the GFMC results and the exper-

imental data. We highlight the impact of two-body currents

in Fig. 11, where we show the longitudinal and transverse re-

sponse functions at |q| = 570 MeV/c. In particular, we show

the one-body contributions (dashed lines), and total responses

(solid lines), which include the contributions of the one- and

two-body interference and the pure two-body terms. In the

figure, the longitudinal and transverse responses are indicated

by blue and red lines, respectively. Two-body currents provide

a ∼20% contribution to the total transverse response function.

The two-body corrections to the longitudinal response func-

tion are less than 3%.

C. Cross sections

We use the interpolation scheme discussed in Sec. IV

to generate response functions on a 1 MeV/c spaced grid

of transferred momenta in the range [300, 800] MeV/c. The

cross sections obtained from them are compared with the
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FIG. 10. Longitudinal (top panel) and transverse (bottom panel)

response functions for 12C for different values of |q|, obtained within

the STA (solid and dashed orange), GFMC (green) from Ref. [11],

and experimental responses obtained from [40,41].

experimental data from Refs. [40,46–48], collected in a

tabular form in Refs. [49,50]. We analyze experimental

results with values of incoming electron energy and elec-

tron scattering angle in the ranges Ee ∼ [0.3, 2.5] GeV

and θe ∼ [11◦, 60◦]. In Fig. 12, we discuss in more detail

three selected kinematics, namely (Ee, θe) = (0.62 GeV, 60◦),

(1.5 GeV, 13.54◦), (1.108 GeV, 37.5◦), and highlight some

basic features displayed by our calculations. In particular,

for each row, we show a comparison of the inclusive double

differential cross section (solid orange line) with the experi-

mental data (blue symbols) in the first panel; the second panel

shows the values of momentum and energy transfer, |q| and

ω, corresponding to the given electron energy and scattering

angle, Ee and θe. These are highlighted by the solid gray line.

Additionally, the shaded region indicates the region covered

by the calculated response functions. In the last panel, we

report the values of the electron kinematic factors, AL and

AT , entering the cross section—see Eq. (10). The vertical

dashed green line serves to guide the eyes and highlights the

position of the peak. We find very good agreement between

our calculations and the experimental data, in particular for

kinematics that require the evaluation of response functions

FIG. 11. Longitudinal (red lines) and transverse (blue lines) re-

sponse functions at |q| = 570 MeV. Response functions accounting

for one-body (one- plus two-body) currents are indicated with dashed

(solid) lines.

in the range |q| ∼ [300, 600] MeV/c. This is the case, for

example, for the kinematics shown in panels (a) and (b)

of Fig. 12, corresponding to (Ee, θe) = (0.62 GeV, 60◦) and

(1.5 GeV, 13.54◦), respectively. The former requires response

functions in the range |q| ∼ [550, 600] MeV/c with AL ∼ AT

at the peak, while the latter uses response functions in the

range |q| ∼ [350, 450] MeV/c with AL ∼ 2 AT at the peak.

Panel (c) displays results at (Ee, θe) = (1.108 GeV, 37.5◦).

At these kinematic, response functions with |q| � 600 MeV/c

are required to calculate the cross sections. In particular, val-

ues of |q| ∼ [650, 750] MeV/c contribute to the main peak

of the cross section, which is overpredicted by the theoretical

calculation. This discrepancy is indicative of the lack of a

proper relativistic treatment of the interaction of the external

probe with the correlated pairs of nucleons at the vertex, a

feature also observed in previous studies on A = 3 systems

[13].

We conclude this section by showing in Fig. 13 results

obtained for incoming electron energies in the range Ee ∼

[0.3, 2.5] GeV. Each panel in Fig. 13 shows the contribution

to the total cross section due to two-body physics, where

the one-body term (includes both diagonal and off-diagonal

components) is represented by the dashed orange line, while

the total cross section comprehensive of the two-body correc-

tion (includes both the one- and two-body interference term

along with the pure two-body component) is shown by the

solid orange line. At these kinematics, given the combina-

tion of longitudinal and transverse responses coming from

Eq. (10), two-body effects provide an enhancement at the peak

between 5% and 15%, for the ranges of energies and angles

considered.

Overall the STA accurately explains experimental data in

the quasielastic peak region, while it fails at higher values of ω

for which the inclusion of resonances and meson-production,

currently not accounted for in the theory, is required.

In closing, we note that cross sections for electron scat-

tering from 12C have been calculated within the SF approach

in Ref. [51,52]. The approach of Ref. [51] can describe
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FIG. 12. Inclusive double-differential cross sections for electron scattering on 12C are shown in the left panels. The values of |q| and ω

leading to the selected electron’s energy and scattering angle, Ee and cos θe, respectively, are displayed in the middle panels. The shaded gray

area indicates the kinematic region covered by the present calculations of response functions and densities. In the right panels, the solid (dashed)

gray line indicates the electron longitudinal (transverse) kinematic factor appearing in Eq. (10). The dashed green vertical lines highlight the

positions of the peaks. See text for details.
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FIG. 13. Inclusive double-differential cross sections for electron scattering on 12C, for various values of the incoming electron beam

energy and scattering angle. Experimental data for θ = 11.95◦, 13.54◦ is from [46], for θ = 15◦ is from [47], for θ = 18◦ is from [48], and for

θ = 36◦, 60◦ is from [40].

experimental results at lower incoming electron beam en-

ergies, while the STA cannot describe that region. Neither

approach accounts for inelastic processes. The SF approach

can account for some of the processes involving two-

particle–two-hole final states, while the STA consistently

retains two-nucleon dynamics, including correlations and

electroweak currents, as well as the interference terms be-

tween one- and two-body currents. This allows the STA

to reproduce the enhancement to the total cross section at

higher scattering angles, mainly coming from the transverse

response, which is caused by two-body effects. This is partic-

ularly evident when comparing the cross section in Fig. 13 for

(Ee, θe) = (0.56 GeV, 60◦) with Fig. 3 of the Supplemental

Material [52], where the calculation slightly underpredicts

the data. For a detailed comparison between the SF, STA

and GFMC approaches we refer the interested reader to the

analysis carried out in Ref. [13] for electron scattering from

the trinucleon systems.

VI. CONCLUSIONS

In this work, we performed VMC calculations within the

STA of inclusive electron scattering from 12C. Specifically,

we calculated 12C electromagnetic longitudinal and transverse
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response densities and functions for five values of momentum

transfer in the range |q| = 300–800 MeV/c. In the calcula-

tion, we accounted for two-body physics at the vertex, namely,

two-body correlations induced by the AV18 two-nucleon po-

tential, and consistent two-nucleon electromagnetic currents.

The VMC ground state is fully correlated via the AV18 two-

nucleon and Urbana-X three-nucleon potentials. We found a

very good agreement between the STA results, the experimen-

tal data, and the GFMC calculations of response functions

available at |q| = 300, 380, and 570 MeV/c.

We developed an interpolation scheme that conserves the

sum rules, and used it to generate response functions on a fine

grid of transferred momenta from the calculated and sparse

ones. This allowed us to calculate electron-12C inclusive cross

sections for electron energies in the range Ee ∼ [0.3, 2.5]

GeV. We found that the STA gives a very good description

of the quasielastic peak, provided that the transfer momen-

tum lies in the range |q| ∼ [300, 600] MeV/c. For values of

|q| � 600 MeV/c, a proper inclusion of relativistic effects,

entering both the kinematics at the vertex and the interaction

of the external probe with the correlated pairs of nucleons, is

required for an accurate description of the data. The factor-

ization scheme adopted in the STA for the final hadronic state

will allow us to overcome these limitations, as the energies

and momenta of the two nucleons participating in the scatter-

ing process are directly accessible. A work on the inclusion

of relativistic effects, using relativistic expressions for the

electromagnetic currents and of the kinematics of the two

nucleons involved in the scattering is underway [53]. Addi-

tionally, the STA formalism, explicitly considering two active

nucleons in the final state, is also amenable to the inclusion

of pion production channels. A similar implementation, albeit

developed within the spectral function formalism, has been

adopted, e.g., in Ref. [54].

These studies on electron-nucleus scattering are relevant

to the study of neutrino-nucleus scattering. They allow us

to test the nuclear model, and assess the relevance of many-

nucleon effects, including correlations and currents, that play

an important role also in scattering induced by neutrinos. The

group is currently pursuing STA calculations of electroweak

response densities. The latter provides important additional

information on two-nucleons final states. Nuclear electromag-

netic response functions obtained within the STA have been

implemented into the GENIE Monte Carlo event generator

[29], through a hadron tensor interface [55]. Future work will

directly implement the multidimensional information con-

tained in the nuclear response densities.

In this work, the STA has been implemented into the VMC

computational scheme, currently limited to the study of A =

12 systems. Calculations in heavier systems will be possible

using next-generation high-performance computing systems.

Additionally, the STA can be exported to the auxiliary field

diffusion Monte Carlo method [26,27] that can address large

nuclear systems up to A ∼ 20. Work along these lines is in

progress.
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