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In astrophysical scenarios with large neutrino density, like supernovae and the early universe, the
presence of neutrino-neutrino interactions can give rise to collective flavor oscillations in the out-of-
equilibrium collective dynamics of a neutrino cloud. The role of quantum correlations in these phenomena
is not yet well understood, in large part due to complications in solving for the real-time evolution of the
strongly coupled many-body system. Future fault-tolerant quantum computers hold the promise to
overcome much of these limitations and provide direct access to the correlated neutrino dynamic. In this
work, we present the first simulation of a small system of interacting neutrinos using current generation
quantum devices. We introduce a strategy to overcome limitations in the natural connectivity of the qubits
and use it to track the evolution of entanglement in real-time. The results show the critical importance of
error-mitigation techniques to extract meaningful results for entanglement measures using noisy, near term,
quantum devices.
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I. INTRODUCTION

The flavor evolution of neutrinos in dense astrophysical
environments have, by now, a long history. It has been
pointed out by Pantelone, Raffelt, and Sigl [1,2] and others
that, through forward scattering, neutrinos can exchange
their flavors. Given an anisotropic initial distribution in
energy and/or angle as found in supernovae, neutron star
mergers, or the early universe, the neutrino energy flux
versus energy and flavor may be impacted by this nontrivial
quantum many-body evolution. This can in turn affect the
dynamics of these environments and other observable
signatures, including nucleosynthesis in the ejected
material (see [3,4] for recent reviews).
The Hamiltonian for neutrino flavor evolution in a

dense neutrino environment includes three terms: the
vacuum mixing that has been determined from solar and
accelerator neutrino experiments [5], the forward scattering
in matter leading to the well-known Mikheyev–Smirnov–
Wolfenstein (MSW) effect [6,7], and neutrino-neutrino
forward scattering.
In the neutrino flavor basis, the vacuum term includes

diagonal contributions describing the mass differences
between different neutrino flavors and an off-diagonal
term characterized by a mixing angle θv. The interaction
describing forward scattering in matter is diagonal in
the flavor basis. The neutrino-neutrino interaction can
exchange flavors of two neutrinos and has a forward
scattering amplitude that depends on the angle between

their momenta. For the two-flavor case considered here,
this interaction is proportional to the dot product  σi ·  σj of
the SU(2) matrices describing the different flavor ampli-
tudes of the two neutrinos

Vij ∝
�
1 −

 qi ·  qj
k  qikk  qjk

�
 σi ·  σj: ð1Þ

Here we denoted by  qk the momentum of the kth neutrino
and with  σk ¼ ðσxk; σyk; σzkÞ the vector of Pauli operators
acting on its amplitude. Generalization to the three-flavor
case is straightforward in principle; here we assume the μ
and τ flavors evolve similarly.
For this simplified two-flavor case, we seek to under-

stand the time and space evolution of the set of amplitudes
from a Schrödinger equation:

jΦðtÞi ¼ exp½−iHt�jΦ0i; ð2Þ

with H the total Hamiltonian including both the vacuum
and forward-scattering interaction contributions. For sim-
plicity here we consider jΦ0i to be a product state, but
generalizations to arbitrary states are straightforward.
Most often these quantum equations have been treated

on the mean-field level by replacing one of the spin
operators in Eq. (1) by its expectation value, yielding a
set of nonlinear coupled differential equations. This makes
the calculations tractable for several hundred energies and
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angles on modern computers (see e.g., [8]). More recently,
studies of neutrino propagation as a quantum many-body
problem have appeared, including for example [9–16].
These works highlight the importance of understanding the
role of quantum correlations, such as entanglement, in
order to quantify beyond mean-field effects in out-of-
equilibrium neutrino simulations. A direct solution of the
Schrödinger equation in Eq. (2), for a system of N
configurations in energy and angle, incurs a computational
cost that is exponential in N. This has limited early
explorations of the problem to systems with N ¼ Oð10Þ
neutrinos. An alternative to reach larger system sizes,
explored recently by one of us in Refs. [15,16], employs
a matrix product state representation for jΦðtÞi which
allows one to track the exact time evolution in situations
where entanglement never grows too much. For conditions
leading to strong entanglement instead, simulations on
digital/analog quantum computers have the potential to
tackle the full neutrino dynamics while still enjoying a
polynomial computational cost in system size N [17].
In this work we explore the time-dependent many-body

evolution of the neutrinos on a current-generation digital
quantum computer. In Sec. II we introduce in more detail
the SU(2) spin model used to describe collective neutrino
oscillations and describe an implementation of the time
evolution operator appearing in Eq. (2) suitable for an array
of qubits with linear connectivity. We present the results
obtained for a a small system with N ¼ 4 neutrino
amplitudes in Sec. III and provide a summary and con-
clusions in Sec. IV.

II. SPIN MODEL FOR NEUTRINO OSCILLATIONS

For the simplified two-flavor case studied here, the state
of the system can be described as an amplitude for a
neutrino of each energy Ei (equal to the magnitude of
momentum k  qik) and direction of momentum (denoted by
q̂i), with α↑ and α↓ describing the amplitude of being in the
electron flavor or in a heavy (μ or τ) flavor respectively.
These two amplitudes can be encoded in an SU(2) spinor
basis. In this basis, the Hamiltonian can be written in terms
of Pauli operators as the sum of a one-body term, describ-
ing both vacuum oscillations and forward scattering in
matter,

H1 ¼
1

2

X
i

½ð−Δi cos 2θv þ AÞσzi þ Δi sin 2θvσxi �; ð3Þ

and a two-body term, coming from the neutrino-neutrino
forward-scattering potential Vij from Eq. (1), which takes
the following form [12]

H2 ¼
X
i<j

η½1 − q̂i · q̂j�  σi ·  σj: ð4Þ

In the one-body term, θv represents the vacuum mixing
angle, while the strength is given by Δi ¼ δm2=ð2EiÞ

with δm2 the mass squared difference for neutrinos of
different flavor. The matter potential enters as the diagonal
contribution in the one-body term through the constant
A ¼ ffiffiffi

2
p

GFne, with GF the Fermi coupling constant and ne
the electron density.
As described in the introduction, the two-body term is a

sum over spin-spin interactions with a coupling depending
upon the relative angle between them. The overall strength
depends on the neutrino density as

η ¼ GFffiffiffi
2

p
V
¼ GFnνffiffiffi

2
p

N
; ð5Þ

with N the number of neutrino momenta considered, given
by the neutrino density nν times the quantization volume V.
The Hamiltonian is similar to a Heisenberg model, but the
two-body term is all-to-all rather than nearest neighbor. Its
coupling strength η ∝ 1=N assures that the energy of the
system is extensive. This allows us to obtain a well-defined
many-body solution, in the limit of large numbers of
neutrino momenta by extrapolating in system size N.
Currently available quantum devices are able to perform

only a relatively limited number of operations while
maintaining a high fidelity [18], this in turn poses limits
on the maximum time that could be reached in the
simulation of neutrino dynamics. Given this practical
constraint, it is then useful to consider a test case where
the one- and two-body interaction terms are similar in
magnitude and the evolution can occur rapidly. An example
is the environment of order ≈100 km from the surface of a
proto-neutron star in a core collapse supernovae. Here the
background matter density has decreased to a point where
its contribution to the Hamiltonian is similar in magnitude
to the neutrino-neutrino forward scattering. The relative
angles of neutrino propagation are fairly small as neutrinos
are emitted from a typical proto-neutron star radius of
order 10 km. In the neutrino bulb model [8] one further
assumes the evolution in a supernovae depends only on
the energy and the angle from the normal. Averaging over
the azimuthal angles results in an average coupling
h1 − q̂i · q̂ji ¼ 1 − cosðθiÞ cosðθjÞ. Often a further simpli-
fication, usually called single-angle approximation, is made
where an average coupling is taken between all pairs of
neutrinos, resulting in a two-body term simply related to the
square of the total spin S of the many-body state.
For our test case, we take a monochromatic neutrino

beam with energy Eν ¼ δm2=ð4ηÞ and measure energies in
units of the two-body coupling η. In order to avoid the
symmetries introduced by the single angle approximation,
we employ an anisotropic distribution of momentum
directions using a simple grid of angles with

θpq ¼ arccosð0.9Þ jp − qj
N − 1

: ð6Þ
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This is similar to the standard bulb model as the relative
couplings 1 − cosðθpqÞ are small.
The final Hamiltonian for the simple model we imple-

ment here can be written compactly, in units of η, as

H ¼
XN
k¼1

 b ·  σk þ
XN
p<q

Jpq  σp ·  σq; ð7Þ

with the external field  b ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 0.9252

p
; 0;−0.925Þ

obtained by choosing the mixing angle θv ¼ 0.195 and
pair coupling matrix Jpq ¼ ð1 − cosðθpqÞÞ. Note that in
this model we set the matter potential A in the one-body
contribution to the Hamiltonian Eq. (3) to zero.

A. Real time evolution

The major challenge in implementing the time evolution
in Eq. (2) in a quantum simulation is to find an accurate
approximation to the evolution operator UðtÞ ¼ exp½−iHt�
that can also be decomposed efficiently into local unitary
operations [17]. A simple and popular approach is to use a
first-order Trotter-Suzuki decomposition [19] of the propa-
gator leading to the approximation

U1ðtÞ ¼
YN
j¼1

e−it  b·  σj
YN
p<q

e−itJpq  σp·  σq ; ð8Þ

which is correct up to an additive error ϵ ¼ Oðt2Þ. Past
experience with the Euclidean version of this evolution
operator in quantum Monte Carlo suggests that a better
approximation to the full propagator UðtÞ can be obtained
by using the exact propagators for pairs (see e.g., [20,21]).
In order to construct this alternative approximation, we first
rewrite the Hamiltonian in Eq. (7) manifestly as a sum of
ðN
2
Þ two-body Hamiltonians acting on each pair of qubits

H ¼
XN
p<q

�  b · ð  σp þ  σqÞ
N − 1

þ Jpq  σk ·  σq

�
≔

XN
p<q

hpq: ð9Þ

We can then define an approximate propagatorU2 using the
exact pair propagator as follows

U2ðtÞ ¼
YN
p<q

e−ithpq ≔
YN
p<q

upq: ð10Þ

Note that the implementation of this operator is efficient
since each pair Hamiltonian acts nontrivially only on a
4 × 4 subset of the total Hilbert space and therefore, as
shown for instance in Refs. [22,23], can be implemented
exactly using at most 3 entangling operations. Note that the
error in this approximation still scales asOðt2Þ but nowwith
a possibly reduced prefactor. In Appendix A we present
a direct comparison between the two approximations.

Finally, the approximation order could also be improved
by symmetrizing over the ordering of operators or by
applying symmetry transformations (see e.g., [24]).
Owing to the long range of the interactions, a naive

implementation of this scheme will require either a device
with all-to-all connectivity (like trapped ion systems [25])
or an extensive use of the SWAP operation, represented in
matrix form as

SWAP ¼

0
BBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1
CCCA: ð11Þ

The effect of this operation is to exchange the state of two
qubits. One can then use this operation to bring a pair of
qubits that we want to interact close to each other by
applying a sequence of SWAP gates of order N. Since we
need to apply all possible pair interactions, we will show
that it is actually possible to carry out a complete step,
under the unitary in Eq. (10), without incurring any
overhead due to the application of the SWAP operations.
The scheme is inspired by the more general fermionic swap
network construction presented in Ref. [26].
We illustrate this idea using the diagram shown in Fig. 1

for a simple case with N ¼ 4 neutrinos. Starting from the
initial state on the left, we first apply the unitaries upq from
Eq. (10) to the odd bonds: for the N ¼ 4 case, these are the
bonds between the (1,2) and (3,4) pairs of qubits. Before
moving to the next pairs, we also apply a SWAP operation
to the same pairs we just acted upon. The resulting unitary
operation is denoted as a double line joining qubits in Fig. 1
and the net effect is that at the next step the qubits that have

FIG. 1. Pictorial representation of the swap network used in our
simulation in the case of N ¼ 4 neutrinos.
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interacted get interchanged. Given the discussion following
Eq. (10) above, this modified two-qubit unitary still
requires at most 3 entangling operations. At the end of a
sequence of N such combined operations we will have
implemented the full unitary in Eq. (10) while, at the same,
we inverted the ordering of qubits, as shown in Fig. 1. This
approach requires exactly the minimum number ðN

2
Þ of

nearest-neighbor pair operations, while the shifted ordering
can be controlled completely, and efficiently, by classical
means. Note that if we were to repeat at this point the same
swap network in reverse order, the full unitary will
correspond to a second order step for time 2t and the final
ordering of qubits will be restored to it’s original one. This
is the strategy used in Refs. [15,16] to study the neutrino
Hamiltonian with matrix product states. In this first
implementation on quantum hardware, we focus instead
on a single, linear-order, time step.
Note that since we are only using nearest neighbor two-

qubit gates, the total number of entangling gates required
for a full time evolution step is bounded from above by 3ðN

2
Þ

while the maximum number of single qubit operations is
bounded by 15ðN

2
Þ. As we will see in the results presented

below, the presence of a large number of arbitrary single
qubit rotations seems to be the limiting factor in imple-
menting this scheme on the quantum device we used in this
first exploration.

III. RESULTS WITH FOUR NEUTRINOS

In order to study the build up of correlations and
entanglement generated by the time-evolution under the
Hamiltonian in Eq. (7), we first initialize a system of N ¼ 4
qubits in the following product state

jΦ0i ¼ jei ⊗ jei ⊗ jxi ⊗ jxi ¼ j↑↑↓↓i: ð12Þ

We then preform one step of time evolution for time t
by applying the N layers of nearest-neighbor gates as
described in the previous section. This corresponds to a
single Trotter-Suzuki step for different values of the time
step. The four SU(2) spins representing the neutrinos
are mapped to qubits (2,1,3,4) on the IBMQ Vigo quantum
processor [27], whose connectivity is schematically
depicted in Fig. 2. The resulting qubits are linearly
connected, allowing us to carry out natively the complete
simulation scheme depicted in Fig. 1 above.
The first observable we compute is the flavor polariza-

tion of individual neutrinos as a function of time. Since the
spin Hamiltonian in Eq. (7) is invariant under the simulta-
neous exchanges 1 ↔ 4 and 2 ↔ 3, while the flavor
content of the initial state jΦ0i gets reversed by it, we
show directly the probability PinvðtÞ to find a neutrino
in the opposite flavor to the starting one it had at t ¼ 0.
In the limit of no error, PinvðtÞ should then by the same for
the pair of neutrinos (1,4) and (2,3). The errors in the
approximation of the propagator in Eq. (10) do not exactly

follow this symmetry, with deviations in the range 3–7%.
We show the results for Pinv obtained with the approximate
evolution operator U2ðtÞ as solid black lines in Fig. 3, for
the pair (1,4), and in Fig. 4 for the pair (2,3). The ideal, and
symmetric, result is shown instead as a purple dashed line.
We see that the approximation error is very small up to
relatively large time ηt ≈ 6. As we discuss more in detail in
Appendix A, this is in large part an effect of using the pair
propagator U2ðtÞ instead of the naive first order formula
in Eq. (8).
The results shown in Fig. 3 and Fig. 4 were obtained

using either the real quantum device (right panels denoted
QPU) or a local virtual machine simulation employing the
noise model implemented in Qiskit [28] (left panels
denoted by VM) initialized with calibration data from
the device. In both plots we report the results (denoted by
[bare]) obtained directly from the simulation and including
only statistical errors coming from a finite sample size (here
and in the rest of the paper we use 8192 repetition, or
“shots,” for every data point), as well as results obtained

FIG. 2. Layout of the IBM Quantum Canary Processor Vigo
[27]. Shown are the five qubits, labeled from 0 to 4, and their
connectivity denoted as solid black lines.
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Vigo [27] quantum device.
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after performing error mitigation (denoted by [mit]).
This corresponds to a final post-processing step that
attempts to reduce the influence of the two main sources
of errors: the read-out errors associated with the imperfect
measurement apparatus and the gate error associated with
the application of entangling gates. The latter error is dealt
with using a zero noise extrapolation strategy (see [29,30]
and Appendix B for additional details).
As seen also in previous similar calculations (see for

instance [31,32]), the VM results obtained using the
simulated noise are much closer to the ideal result than
those obtained with the real device. This is also reflected in
the fact that the error mitigation protocol is not as
successful with the real QPU data as it is with the simulated
VM data. This behavior is possibly linked to the substantial
noise caused by the presence of a large number of single
qubit operations (up to 90 rotations for time evolution þ2
for state preparation) together with the relatively large
CNOT count of 18. In fact, the performance of error
mitigation for the results with the largest state preparation
circuits presented in [32] is superior to the one obtained
here, despite the use of the same device, the same error
mitigation strategy and a comparable number of entangling
gates (15 CNOT in that case) while the number of rotations
was only 14. This suggests coherent errors constitute a
considerable fraction of the overall error seen in the
results above.
In order to highlight the difficulties encountered when

performing noise extrapolation for this data, we plot in
Fig. 5 the results obtained from both the QPU (black
circles) and the VM (red squares) for the inversion
probability of the first neutrino at the initial time t ¼ 0
together with a linear extrapolation using the first two
points for the QPU (green line) and the first three points for
the VM (blue line). The exact result is of course Pinvð0Þ ¼
0 and we see that neither strategy is able to predict the
correct value. The horizontal dashed line is the value

expected when the system is in the maximally mixed state,
corresponding to full depolarization. As shown in the data,
for the real QPU results, only the first level of noise
extrapolation contains useful information and a more gentle
noise amplification strategy, like the one proposed in
Ref. [33], could provide a substantial advantage over the
strategy adopted here.

A. Dynamics of entanglement

In order to track the evolution of entanglement in the
system we perform complete state tomography for each of
the 6 possible qubit pairs in our system by estimating, for
each pair ðk; qÞ, the 16 expectation values

Mk;q
α;βðtÞ ¼ hΦðtÞjPα

k ⊗ Pβ
qjΦðtÞi; ð13Þ

with Pk ¼ f1; X; Y; Zg the basis for Uð2Þ and jΦðtÞi the
state obtained from jΦ0i by applying the time-evolution
operator as in Eq. (2). In principle, we might reconstruct the
density matrix for the pair of qubits ðk; qÞ directly from
these expectation values as

ρDkqðtÞ ¼
X4
α¼1

X4
β¼1

Mk;q
α;βðtÞPα

k ⊗ Pβ
q: ð14Þ

In practice however, we can only estimate the matrix
elements Mk;q

α;βðtÞ to some finite additive precision, and
the approximation in Eq. (14) is not guaranteed to be a
physical density matrix (positive definite and with trace
equal to 1). In this work we use the common approach (see
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eg. [34]) of performing a maximum-likelihood (ML)
optimization, while enforcing the reconstructed density
matrix ρML

kq ðtÞ to be physical. We note in passing that it is
possible to devise operator basis that are more robust than
the choice used in Eq. (13) (see e.g., [35]) but we did not
explore this further in our work.
In order to propagate the effect of statistical errors into

the final estimator for ρML
kq ðtÞ, we use a resampling strategy

similar to what was introduced in [32] but using a Bayesian
approach to determine the empirical posterior distribution.
We provide a detailed description of the adopted protocol in
Appendix B 1.

1. Entanglement entropies

As we mentioned in the introduction, one of the main
differences between a mean field description and the full
many-body description of the dynamics of the neutrino
cloud is the absence of quantum correlations, or entangle-
ment, in the former. Past work on the subject [13,14] looked
at the single spin entanglement entropy defined as

SkðtÞ ¼ −Tr½ρkðtÞ log2 ðρkðtÞÞ�; ð15Þ

with ρkðtÞ the reduced density matrix of the kth spin. A
value of the entropy SkðtÞ different from zero indicates the
presence of entanglement between the kth neutrino and the
rest of the system.
In our setup, we compute the one-body reduced density

matrix from the maximum-likelihood estimator of the pair
density matrix defined above, explicitly

SML
k;q ðtÞ ¼ −Tr½ρML

k;q ðtÞ log2 ðρML
k;q ðtÞÞ�; ð16Þ

where the reduced density matrices are computed from

ρML
k;q ðtÞ ¼ Trq½ρML

kq ðtÞ�; ð17Þ

and Trq denotes the trace over the states of the qth qubit.
We combine the 3 values obtained in this way for each
neutrinos as follows: the estimator for the single-spin
entanglement entropy is obtained from the average

Savgk ðtÞ ¼ 1

3

X
q

SML
k;q ðtÞ; ð18Þ

summing over pairs containing the kth spin, while as an
error estimate we use the average of the 3 errors.
As for the case of the inversion probability PinvðtÞ

studied in the previous section, the substantial noise present
in the QPU data prevents us from using the full set of results
at the 4 effective noise levels. In order to overcome this
difficulty, we have performed zero noise extrapolations
using only results for effective noise levels r ¼ ϵ=ϵ0 ¼
ð1; 3Þ and performed a Richardson extrapolation (in this

case equivalent to a simple linear fit as done in Ref. [30]), a
two point exponential extrapolation [29], and an exponen-
tial extrapolation with shifted data. The latter technique
consists in shifting the data for the entropy by −1 (its
maximum value) so that the result, in the limit of large
noise, tends to 0 instead of log2ð2Þ ¼ 1. We then shift back
the result obtained after extrapolation. The exponential
extrapolation method is well suited for situations where
expectation values decay to zero as a function of the
noise strength ϵ, while maintaining a consistent sign, and
this shift allows us to make the data conform to this ideal
situation (see Appendix B for more details on the method).
The impact on the efficacy of the errormitigation is dramatic
as can be seen in the results presented in Fig. 6 for the
entropy of the second neutrino (the entropies for the other
neutrinos follow a similar pattern; see Appendix C for all
four results). The results with the standard exponential
extrapolation are presented as the turquoise plus symbols,
they are almost the same as those obtained using Richardson
extrapolation (blue circles) and show a significant system-
atic error. On the contrary, the results obtained with the
shifted exponential extrapolation (green diamonds) are
much more close to the expected results with our pair
propagator (solid black curve). We expect more general
multiexponential extrapolation schemes, like those pro-
posed in Refs. [36,37], to enjoy a similar efficiency boost
in the large noise limit achieved with deep circuits.
Using the reconstructed pair density matrix ρML

kq ðtÞ, we
can clearly also evaluate directly the entanglement entropy
of the pair
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SML
kq ðtÞ ¼ −Tr½ρML

kq ðtÞ log2 ðρML
kq ðtÞÞ�: ð19Þ

In Fig. 7 we show the result of this calculation for the pair
(1,2), which started as electron flavor at t ¼ 0, and the pair
(2,4) which started instead as heavy flavor states.

2. Concurrence

In order to better understand these quantum correlations,
we also compute the concurrence [38] for all the pair states.
This measure of entanglement is defined for a 2 qubit
density matrix as

CðρÞ ¼ max f0; λ0 − λ1 − λ2 − λ3g; ð20Þ

where λi are the square roots of the eigenvalues, in
decreasing order, of the non-Hermitian matrix

M ¼ ρðY ⊗ YÞρ�ðY ⊗ YÞ; ð21Þ

with the star symbol indicating complex conjugation. The
usefulness of this measure is its relation with the entangle-
ment of formation [38,39], which is the minimum number
of maximally-entangled pairs needed to represent ρ with an
ensemble of pure states [39].
The definition of concurrence in Eq. (20) does not lend

itself as easily to be adapted in an error extrapolation
procedure as the one we used to obtain the mitigated results
in the previous sections. This is due to the presence of the
max function in the definition of the concurrence: when the

error is sufficiently strong to make the difference in
eigenvalues

C̃ðρÞ ¼ λ0 − λ1 − λ2 − λ3 ð22Þ

negative, the concurrence in Eq. (20) ceases to carry
information about the error free result. For this reason,
we will regard C̃ as an “extended concurrence” which
varies smoothly for large error levels and perform the
truncation to positive values only after the zero noise
extrapolation. The results obtained from the simulation
on the Vigo QPU are shown in Fig. 8 for two pairs of
neutrinos: pair (1,2) starting as like spin at t ¼ 0 and pair
(2,4) which started as opposite flavors. The complete set of
results for all pairs can be found in Figs. 10–12 in
Appendix C.
The bare results are shown as black squares and we can

immediately notice why the definition of C̃ is so important
in our case: the only bare data point with a measurable
concurrence CðρÞ is at t ≈ 6.7η−1 for pair (2,4) (the right
panel in Fig. 8) while all the other results, including those
obtained with a larger noise level (red triangles), are
compatible with zero. In this situation, no mitigation of
CðρÞ would be possible.
By keeping the negative contributions, we see that the

bare results often contain a substantial signal, while those at
a higher error rate are already almost at the asymptotic
value C̃ ¼ −0.5 expected for a completely depolarized
system [40]. This allowed us to perform error extrapolation
using both the Richardson and shifted exponential ansatz.
Similarly to what we observed for the entanglement
entropies in the previous section, the shifted exponential
ansatz (with shift −0.5) produces consistently better results
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than Richardson extrapolation. This indicates that we are
more close to the asymptotic large error regime than the
small error limit used to motivate a polynomial expansion.
The resilience of the exponential extrapolations to large
errors, especially augmented by an appropriate shift, is seen
here to be critical in extracting physical information from
quantum simulations carried out near the coherence limit of
the device used for the implementation.

IV. CONCLUSIONS

In this work, we presented the first digital quantum
simulation of the flavor dynamics in collective neutrino
oscillations using current quantum technology. The results
reported her for the evolution of flavor and entanglement
properties of a system with N ¼ 4 neutrino amplitudes are
not directly indicative to the behavior at large N ≫ 1 but
nevertheless show that current quantum devices based on
superconducting qubits are starting to become a viable
option for studying out-of-equilibrium dynamics of inter-
acting many-body systems. The reduced fidelity in the
results obtained here, compared to the simulations reported
previously in Ref. [32] employing the same quantum
processor and a comparable number of entangling gates,
points to the importance of controlling unitary errors
associated with the imperfect implementation of arbitrary
single-qubit rotations (on average < 1% for the device
used in both works). In future work we plan to explore the
use of more advanced error mitigation strategies, such as
Pauli twirling [41] or symmetry protection [24], to achieve
a better overall fidelity. A complementary strategy to the
use of digital quantum devices as discussed in the present
work would be to adopt quantum platforms, like trapped
ion quantum devices [25], that are able to physically
implement all-to-all interactions similar to those needed
for the neutrino Hamiltonian in Eq. (7). This analog
simulation strategy can possibly be implemented in the
near term on systems with 50–100 neutrino amplitudes (see
e.g., Ref. [42]).
We showed the zero-noise error extrapolation using a

shifted Gaussian ansatz to be remarkably efficient in
predicting the expected error-free estimator of observables.
Given the large circuits employed in this work, past
experience with zero-noise extrapolations (see eg.
[31,32]) suggest the exponential ansatz to be appropriate
due to the large noise rates, and we find it to indeed
outperforms Richardson extrapolation in this regime. The
current results highlight the importance of using alternative
measures of entanglement to the entropy in order to extract
reliable information about quantum correlations in the
states generated on the quantum device. Using the pair
concurrence together with the entropy provides a robust
way to detect entanglement even in the presence of
substantial noise, like in the results shown here. We expect
these insights, and the mapping of the neutrino evolution
problem into a swap network, to prove very valuable in

future explorations of out-of-equilibrium neutrino dynam-
ics with near-term, noisy, quantum devices.
After the completion of the present work we have

become aware of Ref [43]. which also present results
obtained from simulating collective neutrino oscillations on
current generation quantum devices.
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APPENDIX A: PAIR PRODUCT PROPAGATOR

In this appendix, we provide additional details about the
pair approximation of the time-evolution operator U2ðtÞ
introduced in Eq. (10) of the main text. In particular, we
will present a direct comparison with the simpler approxi-
mation U1ðtÞ corresponding to the canonical first order
Trotter-Suzuki step.
As mentioned in the main text, the asymptotic scaling of

the approximation error ϵ is quadratic in the time step t for
both approximations [19]. The pair approximation is
expected, however, to perform better in practice for cases
where an accurate description of pair evolution is important
due, for instance, to strong cancellations between the one-
body and two-body contributions in the Hamiltonian. In the
neutrino case, these situations can occur with appropriate
initial conditions so that, for typical states in the evolution,
we have for most pairs

jhKpqi þ hVpqij ≪ jhKpqij þ jhVpqij; ðA1Þ

where we used the short-hand (cf. Eq. (9) in main text)

hKpqi ¼
 b

N − 1
· h  σk þ  σqihVpqi ¼ Jkqh  σk ·  σqi: ðA2Þ

Since the difference between the two approximation is
not expected to hold for a generic initial state, standard
error measures like the matrix norm of the difference with
the exact propagator
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k exp ð−itHÞ −U1=2ðtÞk ðA3Þ

are not expected to capture the effect. This is in fact found
in practice for our system. In panel (a) of Fig. 9 we show the
estimate from Eq. (A3) for the N ¼ 4 neutrino model
considered in this work. This error estimate indicates that
the U1 approximation has a smaller maximum error than
U2 up to long times. We can look at a more direct measure
of accuracy for our specific setup by considering instead the
state fidelity

fðtÞ ¼ jhΨ1=2ðtÞjΨðtÞij2 ðA4Þ

between the exact state jΨðtÞi at time t and one of its
approximations jΨ1=2ðtÞi obtained using either U1 or U2.
We show fðtÞ for both approximations in panel (b) of
Fig. 9. The result here suggest that instead the pair
approximation produces a state with a higher fidelity than
the simple linear propagator U1, especially at relatively
long time steps t ∈ ½4; 8�.
Finally, since we are mostly interested in flavor observ-

ables diagonal in the computational basis, we also show a
direct comparison of the inversion probability for two out
of the N ¼ 4 neutrinos using both approximations and the
exact propagator [panels (c) and (d)]. These results show
more clearly that the pair approximation allows us to
correctly describe the evolution of flavor for substantially
longer times than the canonical U1 approximation. The
results reported here do depend on the specific choice of
ordering of qubits in the time evolution layers shown in
Fig. 1. In both the present analysis and the simulation
results in the main text we used the best ordering which we
empirically found to be (1,3,2,4) as one would have
expected based on the initial state and the criterion
Eq. (A1) above.

A more rigorous discussion of the relative accuracy
between the canonical first order and the pair approxima-
tion, together with the effect of ordering choices, will be
explored in future work.

APPENDIX B: ERROR MITIGATION

In the following subsections we describe in more detail
the error mitigation techniques used in this work.

1. Propagation of statistical uncertainties

In this section we describe the procedure we have
adopted for propagating statistical errors in the results
reported in the main text. We found that careful treatment of
statistical errors was important for non linear functions of
the expectation values like entropy and concurrence of a
reconstructed density matrix.
In the following, we will symbolically denote as hOi,

expectation values of Pauli operators which can be mea-
sured directly on the device. These are, for instance, the
expectation values hXXi, hXYi, etc. needed to reconstruct a
two-qubit density matrix.
We use a Bayesian approach to perform inference from

the bare counts obtained from the device. The idea is best
described initially for the simple case of a single qubit
measurement. The probability of obtaining m measure-
ments of the state j1i out of a total of M trials can be
modelled as a binomial distribution

Pbðm;pÞ ¼
�
M
m

�
pmð1 − pÞM−m; ðB1Þ

with p the probability of a j1i measurement. In order to
infer the parameter p from a given sample mi of meas-
urement outcomes, we use Bayes theorem

PðpjmiÞ ¼
PðmijpÞPðpÞR
dqPðmijqÞPðqÞ

: ðB2Þ

For the single qubit measurement, we use the binomial
distribution as likelihood PðmijpÞ and, in order to obtain a
posterior PðpjmiÞ in closed form, we use the conjugate
prior of the binomial: the beta distribution

Pβðp; α; βÞ ¼
Γðαþ βÞ
ΓðαÞΓðβÞp

α−1ð1 − pÞβ−1: ðB3Þ

Here α, β > 0 are the parameters defining the distribution
and with α ¼ β ¼ 1 we obtain a uniform distribution. The
advantage of using the Beta distribution as a prior is that,
after a measurement mi of the system is available, the
parameters ðα0; β0Þ of the prior distribution get updated as

αi ¼ α0 þmi βi ¼ β0 þM −mi: ðB4Þ
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Intuitively we can interpret the parameters ðα0; β0Þ of the
prior as assigning an a priori number of measurements to
the measurement outcomes, which are then updated as
more measurements are performed. In this work we used a
simple uniform prior corresponding to the choice α0 ¼
β0 ¼ 1 for the prior parameters.
After the inference step described above, we calculate

the expectation value of a generic nonlinear function
hF½O�i by sampling new outcomes m0

k using the posterior
distribution. More in detail, we generate a new artificial
measurement m0

k after the measured mi by the following
procedure

(i) sample a value p0
k from the posterior Pðp0

kjmiÞ
(ii) sample a new measurement outcome m0

k from the
likelihood Pbðm0

k;p
0
kÞ

The new measurements m0
k obtained in this way are then

samples from the predictive posterior distribution.
Using an ensemble of size L obtained in this way, we

compute hF½O�i by taking an average of the results
obtained for each individual sample

hF½O�i ≈ 1

L

XL
k¼1

F½Ok�: ðB5Þ

The error bars reported in the main text are 68% confidence
intervals which we found in most cases where well
approximated by a Gaussian approximation.
This scheme is complete only for single qubit measure-

ments but a generalization to generic multiqubit observ-
ables can be obtained in a straightforward way. In the
situation where we are estimating expectation values over
N qubits, the probability of measuring a specific collection
of N bit strings mi in M repeated trials can be described
with a multinomial distribution with N probabilities. We
use this distribution as the likelihood Pðmij  pÞ in Bayes
theorem and, for similar reasons as above, we take its
conjugate prior distribution: the Dirichlet distribution (also
initialized as uniform as for the Beta above). The procedure
we follow is otherwise exactly equivalent to what we
described above.

2. Read-out mitigation

The qubit measurements on a real device are not perfect
and it is therefore important to understand the associated
systematic errors. We refer the reader to Appendix. H.1 of
Ref. [32] for a more detailed derivation of the exact
procedure we employ and the motivations behind it.
Here, we instead describe the main difference with the
scheme described there which comes from the use of the
Bayesian inference scheme described in the previous
subsection.
In the calculations presented here, we work under the

assumption that read-out errors are independent on each
qubit and perform a set of 2N calibration measurements ci

(requiring two separate executions) to extract the param-
eters ð  e0;  e1Þ of the noise model (see Eq. (H1) of Ref. [32]).
In order to consistently propagate the statistical uncertain-
ties associated from the finite sample statistic used to
estimate the noise parameters, we use an additional layer of
Bayesian sampling using a binomial prior for the two error
probabilities ðen0; en1Þ associated to each qubit n.
Using a single pair of error probability vectors

ϵi ¼ ð  e0;  e1Þi, obtained either by direct measurement or
by sampling from the posterior, we can generate a linear
transformation Ci that maps a set of (in general multiqubit)
measurements mi to a new set m̃i with reduced read-out
errors (see Ref. [32] for more details).
The complete procedure that we use to generate an

ensemble of measurements fm̃0
ig with read-out mitigation

starting from a single calibration measurement ci and Pauli
operator measurement mi is as follows

(i) sample a value p0
k from the posterior Pðp0

kjmiÞ
(ii) sample a new measurement outcome m0

k from the
likelihood Pbðm0

i;p
0
kÞ

(iii) for each qubit n ¼ f1;…; Ng
sample a pair ðe0n0 ; e0n1 Þ of error probabilities from the
posterior Pðen0; en1jciÞ

(iv) use the sampled error probabilities ð  e00;  e01Þ to gen-
erate the linear transformation C0

k
(v) apply the sampled correction matrix C0

l to m0
k to

obtain the read-out mitigated estimator m̃0
k

The resulting ensemble of measurements can be used
directly to estimate expectation values and confidence
intervals as described above. In this way, we avoid having
to explicitly construct the variance of the correction matrix
C0

l using maximum likelihood estimation and then propa-
gating the error perturbatively to arbitrary observables as
done in Ref. [32].

3. Zero-noise-extrapolation

For observables like the inversion probability, we adopt
the procedure developed in Ref. [32]. For entanglement
observables we adopt a two point shifted exponential
extrapolation that we briefly describe here. We denote
the entanglement observable as hF½O�iðLÞðrÞ where L is the
number of samples used and r denotes the noise level of
the circuit, proportional to the number of CNOT gates in
the circuit. We first note that in the case of very high noise
levels, denoted here with hF½O�iðr → ∞Þ the density
matrix corresponds to the maximally mixed state given
by 1=4. Therefore, the concurrence in this case is −1=2 and
the pair entanglement saturates to 2.
Using an estimate for the large noise expected value

hF½O�iðr → ∞Þ, we can then consider a simple exponential
extrapolation of the form

hF½O�iðLÞðrÞ − hF½O�iðr → ∞Þ ¼ AðLÞ
F e−αr; ðB6Þ
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with α and AðLÞ
F the parameters of the model which can be

obtain using results at two different noise levels r and r0.
The zero-noise extrapolated result in this model corre-
sponds to the limit r → 0 and is given simply by the

estimated AðLÞ
F . More explicitly this becomes

AðLÞ
F ¼ hF½O�iðLÞðrÞ

�hF½O�iðLÞðr0Þ
hF½O�iðLÞðrÞ

�r=ðr−r0Þ
; ðB7Þ

and the zero noise extrapolated observable is

hF½O�iðLÞð0Þ ¼ AðLÞ
F þ hF½O�iðr → ∞Þ: ðB8Þ

Finally, the estimated statistical error is obtained by
calculating the standard deviation of the L copies as above.

APPENDIX C: ADDITIONAL DATA FOR
CONCURRENCE AND ENTANGLEMENT

ENTROPY

Here we show the full set of results for both entangle-
ment entropy and concurrence for all the other pairs of
qubits not shown in the main text. We denote with a

magenta triangle, data points that fall below zero for the
entropy as in Fig. 8 of the main text.
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