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Abstract

Chow rings of flag varieties have bases of Schubert cycles o,, indexed by permutations. A major problem of
algebraic combinatorics is to give a positive combinatorial formula for the structure constants of this basis.
The celebrated Littlewood—Richardson rules solve this problem for special products oy, - o, where u and v are
p-Grassmannian permutations.

Building on work of Wyser, we introduce backstable clans to prove such a rule for the problem of computing the
product o, - 0, when u is p-inverse Grassmannian and v is g-inverse Grassmannian. By establishing several new
families of linear relations among structure constants, we further extend this result to obtain a positive combinatorial
rule for oy, - oy in the case that u is covered in weak Bruhat order by a p-inverse Grassmannian permutation and v
is a g-inverse Grassmannian permutation.
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2 O. Pechenik and A. Weigandt

1. Introduction

The flag variety Flags,, is the parameter space of complete nestings
VicV,c---CcV,=C"

of vector subspaces of C", where dim V; = i. The Chow ring A(Flags,,) of the flag variety has a basis
of Schubert cycles o, indexed by permutations u € S,. One of the major open problems of algebraic
combinatorics is to give a positive combinatorial formula for the structure coeflicients defined by

— w
oy oy = E CyTw-

w

Such rules are currently known only for special classes of permutations. For example, the Littlewood—
Richardson rules compute the coefficients in the cases where u, v, w are all p-Grassmannian for some
common p; here, we say u is p-Grassmannian if u(i) < u(i + 1) whenever i # p. For other spe-
cial cases with known combinatorial rules; see, for example, [Mon59, Sot96, PS09, KP11, Wys13,
MPP14, BKPT16, KZ17, Hua23, KZ23]. Much work has been done on extending the combinatorics
of Littlewood—Richardson coefficients both to richer algebraic theories and to further families of anal-
ogous moduli spaces (see, e.g., [Buc02, KT03, TY09, Bucl5, BS16, PY17]). For discussion of the
significance of positive combinatorial formulas for these and related numbers, see [Knu23].

Building on work of B. Wyser [Wys13], we present an inverse Grassmannian analogue of the
Littlewood—Richardson rule. Specifically, we solve the problem of giving a positive combinatorial
formula for multiplying the Schubert cycles o,-1 and -1, where u is p-Grassmannian and v is g-
Grassmannian. Wyser’s work solved many instances of these problems but required several additional
technical hypotheses. We handle the remaining cases by embedding them into settings where these
additional hypotheses hold. Wyser’s approach was to realize o,-1 - 0,-1 as the class of a Richardson
variety in Flags,, and to show that under his hypotheses this variety is the closure of an orbit for the action
of a 2-block Levi subgroup of GL,,(C); he then derives his formula from work of M. Brion [Bri01]
describing the classes of such orbit closures (K-orbits). Our extension of Wyser’s work, in contrast,
involves purely combinatorial tools.

In sharp contrast to the Littlewood—Richardson case, these inverse Grassmannian products turn out to
be multiplicity-free, that is c;v_ 1y € {0, 1} for all w. Multiplicity-freeness has powerful geometric and
combinatorial consequences (e.g., [Bri03, Knu09, HPPW20, PS24]); for instance, our results imply that
the K-theory classes of the corresponding Richardson varieties are determined by their Chow classes.

We now describe our first theorem in more detail. Say a permutation u is p-inverse Grassmannian
if u~! is p-Grassmannian and say u is inverse Grassmannian if it is p-inverse Grassmannian for some
p. Our combinatorial rule extends the rule of Wyser [Wys13, Theorem 3.10] based on combinatorial
objects called clans, which were introduced by [MO90, Yam97] in the context of K-orbits. Wyser’s
work provides a positive combinatorial formula for ¢, when

o uandv € S, are, respectively, p-inverse Grassmannian and g-inverse Grassmannian,

o p+q=nand

ou< w(()") v (where w((]") € S, is the permutation of greatest Coxeter length and the comparison is with
respect to the strong Bruhat order);

see Theorem 3.1 for a precise statement of Wyser’s theorem. To eliminate these technical conditions, we
introduce the notion of backstable clans by analogy with the backstable Schubert calculus of [LLS21].
We believe that backstable clans will additionally be amenable to the study of backstabilized K-orbits
in infinite flag varieties; however, we do not pursue that application here.

For inverse Grassmannian permutations u, v, we associate a backstable clan vy, ,. (When Wyser’s
technical conditions hold, this backstable clan becomes the ordinary clan that he studies.) We also define
a (backstable) rainbow clan Q,, , associated to any pair of integers p, ¢. Finally, we need an action of
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the 0-Hecke algebra on backstable clans, denoted by ‘-’; we write T,, for the element of the 0-Hecke
algebra corresponding to the permutation w. All of these notions are defined precisely in Section 2. With
these definitions, we have the following first main theorem, which we derive from Wyser’s formula via
stabilization arguments.

Theorem 1.1. Let u,v € S, be permutations, where u is p-inverse Grassmannian and v is g-inverse
Grassmannian. Then the product o, - o, € A(Flags,,) is a multiplicity-free sum of Schubert cycles.

Precisely,
Oy oy = Z Coy v Tws
weS,
where
w _ 1, ifandonlyif E(w) = E(u) + £(v) and Ty, - Yu,v = Qp 45
Cu,v - 0 .
, otherwise.
For illustrations of the use of Theorem 1.1, see Examples 3.4 and 3.5.

Our second main theorem uses analogous combinatorics to provide a positive combinatorial formula
for a related class of products. Let s; € S, denote the permutation that transposes i and i + 1. Say
that a permutation is subjacent if it is of the form s,w for some p-inverse Grassmannian permutation
w # id. Building on Theorem 1.1, we establish the following positive combinatorial rule for multiplying
an inverse Grassmannian Schubert cycle by a subjacent Schubert cycle. Remarkably, such products are
also multiplicity-free.

Theorem 1.2. Letu,v € S, be permutations, where u # id is p-inverse Grassmannian and v is g-inverse
Grassmannian. Then the product o, - o, € A(Flags,) is a multiplicity-free sum of Schubert cycles.
Specifically,

_ § w
Ospu "0y = Cspu,yITws
weS,

where
Spu,v =

w L ifandonlyif t(w) = t(u) +€(v) = 1 and Ty, - yu,v € ¥p.4;
0, otherwise,

where ¥, , denotes a set of almost rainbow clans defined precisely in Section 2.

For an illustration of the use of Theorem 1.2, see Example 5.4. Note that the product of two subjacent
Schubert cycles is not generally multiplicity-free (see Example 5.5), so the multiplicity-freeness of
Theorems 1.1 and 1.2 does not generalize.

Our main tools for deriving Theorem 1.2 from Theorem 1.1 are new families of linear relations
among Schubert structure coefficients that we establish in Propositions 4.2 and 4.10. We suspect that
these linear relations have further consequences, which we briefly explore in Section 4.

This paper is organized as follows. In Section 2, we recall necessary background on permutations and
Schubert polynomials, and we initiate a theory of backstable clans. In Section 3, we derive Theorem 1.1
from a theorem of Wyser, together with the new notion of backstable clans and a well-known stabilization
technique. In Section 4, we establish new linear relations among Schubert structure coefficients, together
with K-theoretic analogues and various corollaries. In particular, the families of linear relations from
Propositions 4.2 and 4.10 will be key in our proof of Theorem 1.2. Section 5 contains the proof of
Theorem 1.2 and related remarks.
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2. Preliminaries
2.1. Permutations

We write [n] for the set {1,2,...,n}.

Let Sz denote the group of permutations of Z that fix all but finitely many elements. For i € Z, the
simple transposition s; € Sz is the involution that switches i and i + 1. Note that Sz is generated by
{s;}iez. The (Coxeter) length {(w) of w € Sz is the length of a minimal expression for w as a product
of simple transpositions.

We write S, for the subgroup generated by {s;};~0 and write S, for the subgroup generated by
{si}o<i<n. For a permutation w € S,,, we often write w in one-line notation as w(1)w(2)...w(n). If
we write w in one-line notation, then ws; is obtained by swapping the entries in positions i and i + 1;
s;w is obtained by swapping the letters i and i + 1. The long element w(()") € Spisn(n—1)...1. The
inclusion map ¢ : S;, = Sp41 sends wto w(D)w(2) ---w(n)(n+1).

Left weak order on permutations is defined by u <y w if w = vu for some permutation v with
€(u) + €(v) = €(w). Similarly, in this case, we write v <g w and call this the right weak order. Let
t;,j € Sz denote the involution swapping i and j. Bruhat order is the transitive closure of the covering
relations wt; ; < w for £(wt; ;) = £(w) — 1. We write Bruhat order comparisons as u < w, without
subscripts. The weak orders are weak in the sense that the corresponding relations are subsets of the
Bruhat order relation.

For a permutation w € Sz, say that i is a (right) descent of w if w(i) > w(i + 1), equivalently if
ws; < w. Say that i is a left descent of w € Sz if w™'(i) > w™(i + 1), equivalently if s;w < w. The
Lehmer code of a permutation w € Sz is the function c¢(w) : Z — Zs¢ such that ¢(w) (i) equals the
number of j > i such that w(j) < w(i); as a shorthand, we often write c;(w) = c(w)(i).

A permutation w € Sz is k-Grassmannian if k is its unique descent or if it has no descent. Note that
the identity permutation is k-Grassmannian for all k. We say w is Grassmannian if it is k-Grassmannian
for some k. We say that w is k-inverse Grassmannian (resp. inverse Grassmannian) if w™' is
k-Grassmannian (resp. Grassmannian).

The 0-Hecke algebra Hz has generators T; for i € Z satisfying

T} =T,

T,T; =T;T; (ifli—j| > 1),and 2.1

TTinT; = Tin TiTiv .

For every w € Sz of length k, there is a corresponding element T,, € H7 obtained by taking any reduced
decomposition w = s;, - - - 5, and setting T, = T;, - - - T;, . The elements T,,, for w € Sz are a linear basis
of Hz.

2.2. Schubert polynomials

Schubert polynomials are defined recursively as follows. For w(()") € Sy, set the Schubert polynomial

Gw(n> = x’l’_lxg_2 - ‘xg. For w such that ws; < w, set
0

6ws,— = N;G,,,
where N; is the (Newton) divided difference operator that acts on f € Z[xy,...,x,] by
— 5 -
Ni(f) = u
Xi — Xi+1

Here, s; acts on a polynomial by swapping variables x; and x;41.
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1 2 3 4 5 6 7 -2 -1 0 1 2 3 4

Figure 1. The rainbow clans Qs > (left) and Qo 1 (right).
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Figure 3. Some representative almost rainbow clans.

We have G,, = &,(,), so we may treat Schubert polynomials as indexed by the elements of S,.
The set of Schubert polynomials {S,, },, es, is a linear basis of the free Z-module Z[x,x2,x3,...]. In
particular, there are structure coefficients defined by

G- G, = Zd;ﬁvew.

For u,v,w € S,, these structure coefficients agree with the Schubert structure coefficients defined in
Section 1, that is, cb‘j” y = d,;f - Hence, we can study the structure coefficients c{f’ , by using Schubert
polynomials in place of Schubert cycles. References for basic facts about Schubert polynomials include
[Mac91, ManO1].

2.3. Backstable clans

A backstable clan is a partial matching of the integers such that there exist i, j € Z such that i — & is
paired with j + k for all k£ > 0, together with an assignment of labels from {+, —} to the unmatched
integers. We say that such a backstable clan vy is supported on [i, j] and call y an [i, j]-clan. (Note that
if y is supported on [i, j], then vy is also supported on [i — a, j + a] for any @ > 0.) When we draw
diagrams to illustrate an [Z, j]-clan y, we often restrict to the interval [i, j] since all information about
v can be extracted from this finite region. For examples of backstable clans, see Figures 1, 2 and 3.

In the previous literature, ‘clans’ are restricted to the interval [1, n]; we identify these objects with
[1, n]-clans. Clans were introduced in [MO90, Yam97] in the context of K-orbits. For more recent work
using clans in a related K-orbit context, see, for example, [WY 14, WW 15]. We believe that backstable
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clans will additionally be amenable to the study of backstabilized K-orbits, analogous to the backstable
Schubert calculus of [LL.S21]; however, we do not pursue that application here. In this paper, backstable
clans are a tool for explicating the Schubert calculus of Flags,,.

For a backstable clan vy, let £(y) denote the number of + labels minus the number of — labels. If y
is supported on [i, j] and £(y) = £, we say that y is a (p, g)-clan, where p = %(l’ +j+¢-1)and
q= %(i +j—¢-1).Notethat { = p—qgandi+j— 1= p+gq; moreover, a backstable clan y supported
on [i,j]with(y)=p—-qgandi+j—1=p+gqgisa(p,q)-clan.

For a backstable clan vy, we write y (i) = j if i is matched with j in . Write + to denote an unspecified
element of {+, —}. We write y(i) = + if i is unmatched in y and labeled with + € {+,-}. If i € Z is
matched, we say that i is initial if y(i) > i and final if y(i) < i. A backstable clan vy is noncrossing if
we never have a < b < ¢ < d € Zwithy(a) =cand y(b) =d.

For each pair of integers p, g € Z, the rainbow clan Q,, , is the (p, g)-clan such that

+, ifi e [¢g+1,p];
Qpq(i)=1- ifie[p+1,4l;
p+qg+1—i, otherwise.

See Figure | for some examples. Note that the rainbow clan is always noncrossing and never has both
+ and — appearing.

For each generator 7; of the 0-Hecke algebra Hz, we define an action of 7; on (p, g)-clans. This
action is defined through various cases; however, all have the flavor of acting locally at the numbers i
and i + 1 and of transforming the (p, ¢)-clan to more closely resemble the rainbow clan Q, . Precisely,
for a clan vy, we have:

o if y(i) = = and i + 1 is initial, then
(Ti - y)@) =y + D, (T; - y)(y(i+ 1)) =i, and (T; - y) (i + 1) = &
o ifiis final and y(i + 1) = +, then

(Ti - y)(@) =+, (T; - y)(y(D)) =i+ 1, and (T; - y) (i + 1) = y(i);

o

if i and i + 1 are both initial with y(i) < y(i + 1), then

(T - @O =y +1), T -y)(y(+ 1) =i,(T; - y)(i+1) =y(), and (T; - y) (y())) =i+ 13

o ifiand i+ 1 are both final with y(i) < y(i + 1), then

(Ti-y)@) =y(+ D, (T -y)(y(@+ 1) =i, (T - )i+ 1) =y(@), and (T3 - y)(y (D)) =i+ 1;
o ifiis final and i + 1 is initial, then
(Ti - y)(@) =y + 1), (T; - y)(y(i+ 1)) =i, (T; - y)(i + 1) = (i), and (T; - y) (y(i)) =i+ 1;

o ify(i)=xandy(i+1) =7F,then (T;-y)(i) =i+ 1and (T; - y)(i+ 1) =1,

in all other cases, T; acts trivially. Since this action respects the braid relations of Equation (2.1) by
[Wys13, p. 839], we obtain an action of each 0-Hecke element 7. (Wyser only considers (p, g)-clans
supported on [1, p + g]; however, by translating [, j]-clans to be supported on [1, j —i + 1], the general
result is immediate.) Examples of the 0-Hecke action on backstable clans are shown in Figure 2.

We say that a (p, g)-clan y is an almost rainbow clan if T; -y = Q,, , for at least one i € Z. Examples
of almost rainbow clans are depicted in Figure 3. Write w,, for the almost rainbow (p, p)-clan with
wp(p) =—and wp(p + 1) = +. For example, ws is illustrated in the center of Figure 3.
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e N O

1 2 3 4 5
Figure 4. The clan vy, , for u = 12435 and v = 13425. Here, p =3, q =2, p =3.5, and § = 2.5.

Suppose that u € Sz is p-inverse Grassmannian and v € Sz is g-inverse Grassmannian. We define
a noncrossing backstable clan vy, , associated to the pair (u,v). Write p = p + % and g =g+ % Then
Yu,v is the unique noncrossing (p, g)-clan such that

if u(i) < p and v(i) < ¢, then i is initial,
ifu(i) > p and v(i) > g, then i is final;

ifu(i) < pand v(i) > g, then vy, , (i) = +; and
ifu(i) > pand v(i) < g, theny, , (i) = —.

.

See Figure 4 for an example of this construction.
Lemma 2.1. The backstable clan vy, is well defined.

Proof. By assumption, there exists N > 0 such that u(i) = i and v(i) =i fori > N and fori < —N.
Therefore, all i < —N are initial and all i > N are final. Since these sets are then both countably infinite,
there is a unique noncrossing way to pair them up. Thus, v, , is a backstable clan; it remains to show
that it is a (p, g)-clan.

Choose an interval [7, j] on which vy, , is supported. Suppose p > g. By expanding the interval
[Z, j] as necessary, assume thati < g and p < j.

On the interval [i, j], define

A ={z € [i,J] : zis initial},
B={ze€[i,j]:zisfinal},
C={zeli,jl :vun(z) = +}, and
D={zeli,j] :vun(z) =-}

and define
a=|A|l,b=|B|,¢c=|C|, and ¢ = |D|.

On the interval [i, j], both u and v take all of the values in [Z, j]. We see that the z € [i, j] with
u(z) € [i, p] are those z € A U C, while those z with u(z) € [p + 1, j] are those z € B U D. Therefore,
a+c=p-i+1land b+d = j— p. Similarly, the z € [, j] with v(z) € [i,g] are those z € AU D,
while those z with v(z) € [¢g + 1, j] are those z € BU C. Therefore,a+d =g—i+landb+c=j—gq.

By the definition of ‘supported’, the interval [i, j] contains equal numbers of initial and of final
elements, so a = b. Thus, {(y,.v) =c—-d =j—q—(j—p) =p —q, as desired for a (p, g)-clan.
Moreover, we have p —i+1—-(j —¢q) =0,sop+qg=i+j—1,and so y, , isa (p, g)-clan.

The case p < g is entirely analogous; we omit the details. O

In the case that p and g are positive, u,v € Sp.,, and u < w(()p+q)
established by Wyser [Wys13, p. 840].

For any positive integers p, g € Zs(, we define a set ¥}, ,, of almost rainbow (p, g)-clans. Let

v, Lemma 2.1 was previously

\P —

{{y : v is almost rainbow and T; - y = Q,, , for some i € Z.¢ withi # g}, if p#gq;
r.q =

{y : v is almost rainbow and T; - y = Q,, , for some i € Z>o withi # g} U{w,}, if p =¢q.

https://doi.org/10.1017/fms.2024.65 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.65

8 O. Pechenik and A. Weigandt

Note that in general ¥, , # ¥, ,. If we relax the conditions i € Z( to i € Z, then the enlarged
set of almost rainbow (p, g)-clans can be used to compute backstable Schubert structure coefficients
(introduced in [LLS21]).

3. Discussion and proof of Theorem 1.1

First, we recall [Wys13, Theorem 3.10], which establishes the case of Theorem 1.1 where u, v, w € Sp4y

and u < w(()p )y, We will use Wyser’s result to prove Theorem 1.1. Theorem 1.1 will then be a major

ingredient in our proof of Theorem 1.2 in Section 5.

Theorem 3.1 [Wys13, Theorem 3.10]. Let u,v,w € Sp,.q be permutations, where u is p-inverse

. . . . +
Grassmannian, v is g-inverse Grassmannian, and u < w(()p 2

¢,y = Lifand only if {(w) = (u) + {(v) and

v. Thenc), € {0, 1}. Moreover, we have

T,y - Yu,y = Qp,q-

For a permutation w € S,, let 1 X w € S, denote the permutation such that (1 x w)(1) = 1 and
(Ixw)(@) =w(i—1)+1fori > 1. Iterating this operation gives rise to the notion of backstabilization
of Schubert calculus; for further discussion, see [LLS21, Nen20]. We will, however, only need to apply
this operation once. The following fact is straightforward; moreover, it is a special case of Lemma 5.2,
which we prove later.

w Ixw

Lemma 3.2. For any u,v,w € Sy, we have Cuv = € 1xv"

Proof of Theorem 1.1. Fix an interval [i, j] on which 7, , is supported. If i > 1, then 7, , is also
supported on the interval [1, p + g]. Therefore, vy, , is a noncrossing [1, p + g]-clan, so by [Wys13,
Remark 3.9], we have u,v € §,,, and u < wémq)v. We are then done in this case by Theorem 3.1.

Suppose instead that i < 1. Then, let ¥ be the horizontal shift of y,, ,, to the right by 1 —i. That is, let
¥(@) =yup(z+i-1)
so that ¥ is supported on [1, j — i + 1]. Also, define i and ¥ by
i(z) =u(z+i—-1)and ¥(z) = v(z+i—1).
Then, i is p-inverse Grassmannian and 7 is §-inverse Grassmannian, where p = p+1—-iand § = g+1—i.

Note that, since p+¢q =i+ j— 1, we have j+§ = j —i+ 1. Further, observe that y; ; = ¥ by construction.

The clan y;  is a noncrossing clan supported on [1, p + ¢]. Therefore, by [Wys13, Remark 3.9], we
haVe ﬁ, Ve Sﬁ+£7 and i < W(()P‘*‘q)“;.

Now, define w by
w(z) =w(z+i-1).
Note that
(Tw - Yu)(@) = (T - yas)(z+i—1)

for all z. This implies that 7, - y,,,, = Qp 4 if and only if Ty - vz 5 = Q5 4.
By Lemma 3.2, we have that

=3
1]
o)

==

<t
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since i = 1" xu, ¥ = 1'" x v and w = 1!~/ x w. Thus, by Theorem 3.1, we have ¢y, € 10,1}
Also, note that £(it) = €(u), £(¥) = £(v), and £(W) = £(w). Thus, Theorem 3.1 additionally yields that
¢, = lifand only if T, - yu,, = Q, 4. This completes the proof of Theorem 1.1. ]

Remark 3.3. Note that the hypotheses of Theorem 3.1 are somewhat restrictive. For instance, The-
orem 3.1 is unable to compute any structure coeflicient of the form c‘2”31’23] since 231 is l-inverse
Grassmannian but 231 ¢ S;;;. Example 3.4 demonstrates how we can instead compute these structure
coeflicients using backstable clans and Theorem 1.1.

Similarly, Theorem 3.1 cannot compute any of the structure coeflicients ¢}, 5,, because 213 £
3) ’

w312 = 132. See Example 3.5 for a demonstration of computing these structure coefficients through
backstable clans and Theorem 1.1.

We now show how Theorem 1.1 uses backstable clans to compute the Schubert structure coeflicients
described in Remark 3.3.

Example 3.4. Let u = 231 € S3. The backstable clan vy, ,, looks like

10 1 2 3 4

N SN

1 0 1 2 3 4

4
\Tz)
T
-1 0 1 2 3 4 -1 0 1 2 3 4

There are two paths in this diagram from 7y, , to € using only 7; with i > 0; these paths are
labeled by the sequences (73,71, T3, T7) and (T3, T3, Ty, T;), which both correspond to the permutation
3412 = 53535152 = 52515352. Thus, by Theorem 1.1, we have that ¢;}* = 1, while ¢}y, = 0 for all

w # 3412.

Example 3.5. Let # = 213 and v = 312. Then the backstable clan y,, , looks like
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0 1 2 3 4

We consider all nontrivial actions of 0-Hecke generators 7; on 7, ,, until reaching the rainbow
clan Q1 5:

0 1 2 4
T
0 | 2 3 4

There is a unique path in this diagram from 7, ,, to Q> using only 7; with i > 0, namely that labeled

by the sequence (7}, 75, T3). Note that s3s25; = 4123. We conclude by Theorem 1.1 that ¢;'2* = 1,

while ¢}y, = 0 for all w # 4123.

4. Linear relations among Schubert structure coefficients

In this section, we establish new linear relations among Schubert structure coefficients. In the first
subsection, we derive linear relations among cohomological structure coefficients; we will use these
relations in Section 5 to prove Theorem 1.2. In the second subsection, we derive analogous linear
relations among K-theoretic structure coefficients; these relations will not be explored further in the
later sections of this paper. The third subsection studies stabilization phenomena to obtain additional
linear relations among cohomological structure coefficients; these relations will also be important to the
proof of Theorem 1.2 in Section 5. The fourth subsection considers relations obtained by iterating the
technique of the first subsection; these relations will not be studied further in this paper.

4.1. Cohomology
We will need the differential operator V : Z[x1,x2,...] — Z[x1,x2, .. .] defined by

0
V= —.
Z 6)6[
i=1
Our key tool will be the following, developed earlier in our joint work with Z. Hamaker and D. Speyer.

Proposition 4.1 [HPSW?20, Proposition 1.1]. For w € Sy, we have

V&= > kGyu

SEW<wW

From this proposition, we can establish our primary family of linear relations.
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Proposition 4.2. Let u,v,w € S,. Then

Z icgu’v+ Z jc,”fysjv = Z keyky . 4.1)

siu<u sjv<vy SEw>w

Proposition 4.2 enables one to discern properties of an unknown ¢,y from properties of other
Schubert structure coefficients. In particular, our relations yield some new vanishing and nonvanishing
conditions, as well as congruence conditions. We do not know how to relate our linear relations to the
the nonpositive recurrence of [Knu03].

Proof of Proposition 4.2. Write
6u . 6v = Z C{;,vep’
p
and apply the differential operator V to both sides to obtain
D, GGt D GGy =) > kel Gy 4.2)
siu<u Sjv<v P Skp<p

by Proposition 4.1 and the Leibniz formula. Now, extract the coefficient of &,, from both sides of

Equation (4.2) to obtain
2 it ) Jeisy = D kel

siu<u sjv<v SEW>W

as desired. m]

Proposition 4.2 has some surprising corollaries. The following result can be extracted straightfor-
wardly from Monk’s formula [Mon59], but we can alternatively derive it easily from Proposition 4.2.

Corollary 4.3. Let v € S, and let i € Z,. Then there is some k € Z,. such that c¢5*}, > 0.
Proof. Specialize Proposition 4.2 to the case u = s; and w = v. Then we get

. . w _ SV
i+ Z JCsisiv = Z kegsl

sjv<v SEV>V

Since the sum on the left is nonnegative and i > 0, we obtain
0< > ket
SEV>V
But then
0< > e,
SEV>V
so there is some k with sxv > v and ¢, > 0. By dimension counting, the second of these conditions
implies the first, so the corollary follows. O

Proposition 4.2 also implies many congruence relations among Schubert structure coefficients.

Corollary 4.4. Suppose all left descents of u and v are multiples of @ € Z,. Then, for any w € S, we
have

D7 kel =0 (mod a).

SkW>wW
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If moreover u = v, then

Z ket =0 (mod 2a).

SEW>W

Proof. Under the hypotheses of the corollary, every term of each sum on the left of Equation (4.1) is
a multiple of a. Hence, the sum on the right is as well. If also u = v, then the two sums on the left of
Equation (4.1) are equal to each other. O

What is remarkable about Corollary 4.4 is that although our sum is congruent to O modulo «, the
individual terms of the sum generally are not. For this reason, knowing some of the relevant Schubert
structure coefficients imposes strong conditions on the remaining ones. Before giving an example of the
application of Corollary 4.4, we need the following easy lemma.

Lemma 4.5. Suppose u,v,a € Sy, and let m > n. Then c;";' = 0.

Proof. The Schubert polynomials S, S,,, S, all liein Z[x1, . . ., x,—1]. On the other hand, m is a (right)
descent of s,,a, so G;, 4 involves the variable x,,, s0 S, 4 ¢ Z[x1, ..., xn—1]. Hence, c;/' = 0. O

Example 4.6. Suppose u = 13254, and note that it only has left descents 2 and 4. Let w = 231645, and
suppose we have correctly computed already that ¢}, = 1.
Now, let a = syw = 132645. Corollary 4.4 gives that

Z kelkd =0 (mod 4). 4.3)

ska>a

But we can expand this sum as

ska _ sia s3a sqa Sea
Z ke,fy = 1eyly +3cy +4cy +6ciu,

ska>a

using Lemma 4.5 to see that the other potential terms vanish. Since we know the term with coefficient
1 contributes 1, the sum of the other terms must be congruent to 3 modulo 4. In particular, we learn for
free that ¢}, # 0. Even better, it is immediate without further computation that ¢}, is odd. In fact, it
turns out that Cy

Saa — 1
If we compute also that ¢;’; = 1, we learn then that ¢’ must be even. In fact, it turns out that

e =0.
4.2. K-theory

The structure sheaves of Schubert varieties X,, C Flags,, give classes [Ox,, ] in the Grothendieck ring
K O(Flagsn) of algebraic vector bundles over Flags,,. These classes form an additive basis and give rise
to K-theoretic Schubert structure coefficients K", defined by

[Ox,]-[0x,] Z K., [0x,.].

wve Ki', can be nonzero when

When £(w) = €(u) + £(v), we have K}y, = ¢/, but, unlike c;}
L(w) > €(u) +£(v).

Grothendieck polynomials ®,, represent Schubert structure sheaf classes analogously to how Schu-
bert polynomials represent Schubert cycles. We may also define Grothendieck polynomials recursively.
For w(()") € S,, we set (5W0(n) = 6W0(n) = x{‘_lxg‘_z . ~x2. For w such that ws; < w, set
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(ﬁws,- = Ni(ﬁvw

where N;(f) = N;i((1 = xi41) f). We have G,, = ®,(w), so we think of Grothendieck polynomials as
also being indexed by elements of S,.. The set of Grothendieck polynomials {®,, },, s, is another linear
basis of Z[x1, x2,x3, ... ]. The structure coefficients defined by

®, - 6, = ZL;{VcﬁW

agree with the K-theoretic Schubert structure coefficients K;V » provided u,v,w € §,.
Let 8 be an indeterminate. Define the 3-Grothendieck polynomial (ﬁv(vﬁ ) by

6P (x1,....x0) = (=B) MG\, (=Bxi, . . ., —Bxn).

The B-Grothendieck polynomials were introduced in [FK94] and represent classes in the connective
K-theory of Flags,, [Hud14]. We will find the S-Grothendieck polynomials slightly easier to work with
in our context. Let the structure coefficients for S-Grothendieck polynomials be K, (). We have
Ky, (=) =K),.

Let Des(w) denote the set of descents of the permutation w. The major index of w is

maj(w) = Z i
i€Des(w)

We also need the following differential operators related to V:
0 = 0
VP=vV+B— and E= ) xj—.
aﬁ ; 8xi
We can now recall [PSW24, Theorem A.1], as reformulated in [PSW24, Corollary A.2], an analogue of

Proposition 4.1 for Grothendieck polynomials and our key tool in this subsection.

Proposition 4.7 [PSW24, Theorem A.1]. For w € Sy, we have

VP& = Bmaj(w™) - LGP + Y k6L,

SEkW<w

and

(majow™) +V - E)G,, = Z kG, vy

SkW<w

Using essentially the same proof as for Proposition 4.2, but with [PSW24, Theorem A.1] in place of
[HPSW20, Proposition 1.1], we obtain the following analogue of Proposition 4.2, giving linear relations
among K-theoretic Schubert structure coefficients.

Proposition 4.8. Let u,v,w € S,. Then

BKY (B (maj(u‘l) +maj(v™") —maj(w™") — €(u) — £(v) + f(w))

+ VRS B+ D KB = Y KK (B).

siu<u sjv<v SEW>W
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Proof. Write

DKL PG =66,
and apply V7 to both sides, using the first part of Proposition 4.7. Then on the left we have

g ZK;’,V(/S)@,P) = > KL (pVEGY
p p

-ZK{ZV(ﬁ)( & (maj(p™) - e(p) + Y k(ﬁﬁf’}.),

SkP<p

while on the right we have
V6L -6 = v (6.6 + 6. (V6 )

= (ﬁ@ff” (maj(u™") - Cw) + i@ﬁfﬁ)@éﬁ)

siu<u

+62| 6 (mai(v) - e+ > j6E) .

Xj v<v
Now, we can extract the coeflicient of (5‘(5 ) from both of these obtain

DT KK (B) + Bmaj(wTh) — €WK, (B) = B(maj(v™") — LKL, (B)

SEkW>WwW

+ Bmaj(u™") = LK, (B + Y Ky, B+ Y K (B

siu<u sjv<v

The proposition follows by rearranging and collecting terms. O

Let ®,, (1) denote the specialization of the Grothendieck polynomial ®,, obtained by setting all
variables equal to 1. It is well known to experts that ®,, (1) = 1 (see [ST21] for an explicit proof and
[MSS24] for further discussion). We present a new short proof using the second part of Proposition 4.7.

Corollary 4.9. Givenw € S,, ®,,(1) = 1.

Proof. We proceed by induction on Coxeter length. In the base case, ;4 = 1 and there is nothing to
show. Now, fix w € S, with £(w) > 1, and assume the statement holds for all v € S, with £(v) < £(w).
First, note, for any f € Z[x1,x3,...], we have (V — E)(f)|x=1 = 0. Thus,

maj(w™ )G, (1)

Z k®g, (1) (by Proposition 4.7)

SEkW<w

Z k (by induction)

SEW<wW

= maj(w™!).
Since £(w) > 1, maj(w~!) # 0 which implies ®,, (1) = 1. m]
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4.3. Stabilization

Recall the stabilization operation from Section 3.
The following is an analogue of Proposition 4.2; we drop the coefficients on the linear relations at
the expense of adding one extra term.

Proposition 4.10. Let u,v,w € S,. Then

w w s1(Ixw) vkw
Z Couw T Z Cusiv = Crxuixy T Z . “4.4)

siu<u sjv<v SEW>W

Proof. Tt follows easily from the pipe dream formula for Schubert polynomials (e.g., [FK96, BB93,
KMO05]) that

Sixw (0,x1,%x2,...) =6, (x1,x2,...).

(Indeed, we will prove a stronger version of this statement as Lemma 5.1.) By Lemma 3.2, ¢}/, =

Ixw Cuv
Ixu,Ixv"*
Apply Proposition 4.2 to 1 X u, 1 x v and 1 X w. Then we get
. 1 _ Skl (Ixw)
(l + )cs,+1(l><u) Ixv + Z (-] + 1)61§:tv,sj'+1(1><v) - Z (k + 1)Cll>(<1,l,l><v .
si+1 (Ixu) <1xu sjs1 (Ixv)<Ixv Sk+1 (Ixw)>1xw
4.5)
Thus,
. . 1
DD+ Y GEDel =i 3 (ke Dty (4.6)
siu<u Sjv<v Sgw>w

Furthermore, from applying Proposition 4.2 to u, v and w, we have

Z iCoyy+ Z jcyysjv Z keyky 4.7)

siu<u sjv<v SEW>W

Therefore, subtracting Equation (4.7) from Equation (4.6) yields

w w _ ‘1(1><W) skw ]
Z Csiuv + Z Cusjv = i, ixv Z '

siu<u sjv<v SEW>W

Remark 4.11. The stabilization argument in the proof of Proposition 4.10 is essentially equivalent to
the use of the operator & developed in [Nen20].

In many cases, one can see that the extra term on the right side of Proposition 4.10 is in fact 0. In
these situations, Proposition 4.10 becomes identical to Proposition 4.2, but with the coefficients dropped,
yielding two linear relations among the same structure coefficients. In most cases, these relations are
linearly independent.

One can also do analogous analysis in K-theory; we omit the details since we will not use the
K-theoretic analogue in what follows.

4.4. Iterations of differential operators

Iterating the application of V allows us to obtain additional linear relations among Schubert structure
coefficients. These linear relations are somewhat more complicated to state, but the proof is analogous
to that of Proposition 4.2.

Let S,, (1) denote the specialization of the Schubert polynomial S,, obtained by setting all variables
equal to 1. For w with £(w) = k, areduced word for w is a sequence (ay, as, .. ., ay) of positive integers
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suchthat w = 54,84, - - 54, - Let R(w) denote the set of all reduced words for w. The Macdonald reduced

word identity [Mac91, Eq. (6.11)] is the following.
Proposition 4.12 [Mac91, Eq. (6.11)]. Let w € S, have {(w) = k. Then

k!GW(l) = Z ayjaz - --dag.

acR(w)

We can use the Macdonald reduced word identity to obtain more linear relations.

Proposition 4.13. Let u,v € Sy, and fix 1 < k < €(u) + £(v). Let w € S, with

f(w) =€(u)+£(v) — k.

Then,
k
> =)y D el G (1) -8y (1),
w>rw i=0 u<ru v<Lv
E(W)=C(w)+k C(a)=C(u)—i €(V)=C(v)—(k—i)

Proof. First, note that

VK (By) = Z Z ayaz---ay |- Sz

AL 7 acR(nr"")
£(#)=t(m)—k

by Proposition 4.1. By Proposition 4.12, we can replace the inner summation to obtain

V@)= DL kGe(1)-Gs
ALL7
C(R)=C(m)-k

Write

Dk =6,- 8,
P

Applying V¥ to both sides, we obtain

k
Vk Z Cg,veﬁ = Vk(eu ° Gv) = Z (f)vl(@u)vk—l(gv)
p i=0

Thus, Equation (4.9) yields

Z ck, Z kK1S;, 1 (1),

PSLP
t(p)=t(p)-k

i=0 a<ru EAY

()=t (u)-i (D)=t (v)—(k—i)

=Zk:kg > D G (D8 (D) Y el &,
i=0 q

a<pu v<Lv
L@@)=t(w) =i £(D)=L(v)—(k—i)
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Extract the coefficient of S,, from each side to obtain

koY c;ﬁvew_l(l)zkzzk“ > D kB (D8, (1),
i=0

w>rw a<pu V<
E(W)=C(w)+k ()=t (u)—i €(V)=(v)—(k—i)

The proposition follows by dividing out &!. O

Proposition 4.2 may alternatively be proved as a corollary to Proposition 4.13 by setting k = 1. On
the other extreme, we have the following corollary. Define

5w i) 1, ifi € Des(w);
w,i) =
0, ifi ¢ Des(w).

Corollary 4.14. Let u,v € Sy and fix i € Z~¢. Then,

Z ClrvCps; (1) = 6(v, )8, (1)S,5,(1) +6(u, 1) Sy, (1)S, (1). (4.10)
p:i€Des(p)
Proof. In Proposition 4.13, take w = s; and k = €(u) +£(v) — 1. The left side of Equation (4.8) becomes

the left side of Equation (4.10). Most of the terms on the right side of Equation (4.8) vanish by degree
considerations. This leaves only the terms on the right side of Equation (4.10). O

The following was observed as [KnuOl, Lemma 1.1], where the phenomenon was referred to as
dc-triviality. We obtain another easy proof of this fact.

Corollary 4.15 [KnuO1, Lemma 1.1]. Let u,v € S, and suppose i ¢ Des(u) U Des(v). Then, ¢} , =0
forall p € S, withi € Des(p).

Proof. In Corollary 4.14, both terms on the right side vanish under these hypotheses. The left side is a
sum of nonnegative integers, so all terms on the left side also vanish. Since each specialization S, (1)
is strictly positive, all the relevant c%; , equal zero. O

5. Discussion and proof of Theorem 1.2

For a permutation w € S, and positive integer ¢, we define 7. !(w) to be s..---s251(1 X w). For a
permutation w € S,, we define the truncation v(w) to be the permutation such that Tc_ll(w) (t(w)) =w.
Note that 7(w) is the unique element of S, such that

civ1(w), ifi>0;
0, otherwise.

ci(r(w)) = {

The following lemmas are closely related to ideas of [BS98, LRS06] and are known to experts; we
include (sketches of) proofs for completeness.

Lemma 5.1. For any w € S, we have
Sw (L, x1,x2, ..., Xp-1) = Sz (x1,X2, .. ., X,) + lower degree terms.

Proof. The Schubert polynomial S,, can be written as a generating function for diagrams P called pipe
dreams (cf. [BB93, KMO05]), where each + in row i of P contributes the variable x; to the weight of P.
Under the specialization of the lemma, the highest-degree terms of S, (1, x, x2, ..., X,—1) come from
pipe dreams with as few +’s as possible in the first row.
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The ladder moves of [BB93] describe a recursive algorithm to generate all pipe dreams for w. From
this algorithm, it is straightforward that the pipe dreams for w with a minimum number of +’s in the first
row are identical to the pipe dreams for 7(w) after deleting their first row and shifting up. O

Lemma 5.2. Let u,v,w € S, such that ¢y (w) = c1(u) + ¢1(v). Then we have

w o _ 7(w)
u,

Cuy = Cru),r(v)”

Proof. Write

Choose m sufficiently large so that a € §,, for all a such that cj; , # 0. We may specialize all of the
variables in this equation to obtain

6%(15x1’ e ’xm—l)ev(l»xl, e ’xm—l) = ch,vea(l’xls .. "xm—l)'

a

Now, by Lemma 5.1 applied to all of these Schubert polynomials, we find that

(Srw) + ) (Gr() +8) = ), ¢t (Sriay + ha), 5.1

a

where deg f < €(7(u)),degg < €(7(v)) and deg h, < €(7(a)) for each a. Now, observe that £(7(a)) =
€(t(u)) + £(7(v)) if and only if we have ¢ (a) = c1(u) + ¢ (v). Therefore, by extracting the top-degree
terms on both sides of Equation (5.1), we obtain

Gr(u)er(v) = Z C'Z,vef(b). (52)
c1(b)=ci(u)+ci(v)

On the other hand, by definition,

d
Srw)Sr(v) = Z CT(M),T(V)eab (5.3)
d
Now, observe thatif r(b) = 7(by) and c;(b1) = ¢ (b2), then necessarily b; = b,. Therefore, comparing
Equations (5.2) and (5.3) yields

T(w) w

Cruyr(v) = Cuv

as desired. O

Note that Lemma 3.2 is a special case of Lemma 5.2. With these lemmas in hand, we are now
prepared to finish the proof of Theorem 1.2.

Proof of Theorem 1.2. Recall that u,v,w € S, are permutations, where u is p-inverse Grassmannian
and v is g-inverse Grassmannian. Note that this implies that p, g > 0. Let n = p + g. We consider a few
cases in turn.
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We can assume that £(w) = £(u) + £(v) — 1 because otherwise we certainly have S uy =0
(Case 1: p # g): We first consider a technical special case, which we will then be able to extend.

(Case 1.1: ¢'"") = 0): In this case, we have by Proposition 4.10 that

Ixu,1xv
w w _ Skw
Cspu,v +Cu,sqv - Z Culjv (54)
SEW>W
and from Proposition 4.2 that
w ka
pcs,,u v u SqV T Z kC . (5.5)
SkW>w

Thus, multiplying Equation (5.4) by g and subtracting from Equation (5.5), we find that

(P=@)etun= D, k=g, (5.6)

SkW>wW

(Case 1.1.1: Ty, -y, is not almost rainbow): By Theorem 1.1, ¢, = 0 for all k such that sgw > w.
Therefore, the right side of Equation (5.6) is 0. Since p # g, this 1mplles that ¢y, ,, = 0.

(Case 1.1.2: T, - vy, is almost rainbow): Write 6 = T, - ,,. We now break into cases according to
what sort of almost rainbow clan ¢ is. Observe that Q,, , has a nonzero number of signed unmatched
numbers. If p < ¢, these signs are all — and appear in positions p + 1, ..., g; if p > g, these signs are
all + and appear in positions g + 1,.. ., p.

(Case 1.1.2.1: Ty, - 6 = Q) 4): We observe that 75, must act on 6 by moving a sign inside an arc (as in
the T or Tg arrow of Figure 2). Therefore, we have T, - 6 = ¢ for all r # g. So, in this case, Equation
(5.6) simplifies to

(P - q)c?;u,v (q LI)CS(I =0.

Since p # g, we therefore have ¢y, ,, = 0.

(Case 1.1.2.2: T, - 6 = Q, 4): We observe that 7, must again act on 6 by moving a sign inside an arc,
as in the previous case. Therefore, we have T, - 6 = ¢ for all r # p. So, in this case, Equation (5.6)
simplifies to

Spw

(p q)cvpu v = (p Q)C

Since p # ¢, we therefore have c\ uw = c;” o =1, where the last equality is by Theorem 1.1.

(Case 1.1.2.3: Ty, -6 = Q,, 4, forsome r ¢ {p, q}): In this case, T, must act on § by uncrossing a pair of
adjacent arcs (as in the 7, arrow of Figure 2). Recall that n — r and n — r + 1 are the labels on the other
ends of the crossing arcs from r, 7 + 1.

(Case 1.1.2.3.1: n—r > 0): In this case, we also have Ty, -6 = Q,, ,. Observe thatr # n—r. Moreover,
we have T, - 6 =6 forall t ¢ {r,n — r}. By Theorem 1.1,

cry =1=cy

3,, rw
u,v .

Now, Equation (5.6) simplifies to

Spn—rW

P-cs,uy=—qcyy+(n—r—qcyy" =r-q+n-r-q)=n-2g=p-gq.

Thus, ¢? =1.

suv
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(Case1.1.2.3.2:n—r < 0):Defineii = 1" xu, ¥ = 1" *Ixyand w = 1”"*! xw. Then i is p-inverse
Grassmannian, where p = p+r —n+ 1. Also, let ¥ = y;; , and notice that ¥ is a horizontal shift of the
backstable clan y,, . Therefore, Ty; - ¥ is a horizontal shift of Ty, - y,,.,, = ¢. In particular, Ty, - ¥ is almost
rainbow with a pair of crossing arcs. Observe that 554 = 17+l % spu. By the previous Case 1.1.2.3.1,

=9

r-n+l
1 Xw _ 1 .

C =
lr—n+] ><spu, 1r—n+] XV

=C

©

BtV
Now, Lemma 3.2 gives that

c]r—n+]><w _ CW
1r—n+1><spu’1r—n+l><v s,,u,v’

w o .
so ¢y ., = 1, as desired.

(Case 1.2: CT]X(JX];V‘)} # 0): Defineii = 1 xu, vV =1xv,and w = 1 Xw. Then ii is p-inverse Grassmannian
and 7 is g-inverse Grassmannian, where p = p+ 1 and § = g + 1. Also, let ¥ = y; 3, and notice that ¥
is a horizontal shift of y,, .

By Proposition 4.10, we have

w w _SIW SEW
Cs,,u,v + Cu,sqv - Cﬁ,\'} + Z CI,t,v (57)
SkwW>w
and
W W _ o si(Ixw) ShW
oo T Citusgs = Crxaixs T Cas - (5.8)
ShW>W
By Lemma 3.2, we have
w _ W w _ W S|W SkW _ ShW
cspu,v - Cs,;ﬁ,\?’ cu,sqv - cﬁ,&;\?’ and cﬁ,ﬁ + Z cu,v - Z C,z,\j .
SEW>w ShW>W
R R . . s1(Ixw) _
Thus, subtracting Equation (5.7) from Equation (5.8) yields that Cluiiixs = 0.

Now, Ty, - ¥ is a horizontal shift of T, - y,,,,,. Observe that s3ii = 1 X s,u. Since Lemma 3.2 gives

that ¢y, = ¥ . and the latter coefficient falls under Case 1.1, we are done.
U, pu,

(Case 2: p = g): We establish this case by reduction to Case 1 via stabilization. Choose an interval
[Z, /] on which vy, , is supported.

(Case 2.1:i > 1): If i > 1, expand the interval [i, j] until i = 1.

Define 7 = 1 Xu, ¥ = 7,,' (v), and w = 7,,' (w). Then ii is j-inverse Grassmannian, where p = p + 1.
On the other hand, 7 is p-inverse Grassmannian.

By Lemma 5.2, we have

7 (W)

w — —_ w
Cix(spu).s = Cr(ix(spu))r(v) = €

Spu,v*
But also 1 x (spu) = s3ii, s0

e s = (5.9)

Since p # p, the coefficient cgvﬁa ; falls under Case 1. Note also that £(W) = {(spi) + £().
Let ¥ = y; 5. Notice that 7 is supported on [1, j + 1] and is obtained from vy, , by placing a + in
position 1 and shifting the rest of y,, , horizontally one space to the right. That is,
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S(2) = +, ifz=1,
= Yur(z—1) ifz>1.

See Example 5.3 for an illustration of this construction.

Letd =Ty - Yu.v, and let 5= Tisow 7. Notice that 5 is similarly obtained from ¢ by placing a + in
position 1 and shifting the rest of ¢ horizontally one space to the right.

Now, notice that W = s,5,-1 -+ - s1(1 X w), so

T - 7=TpTp1 T1Tixw -7 =TpTp1--+T1 - 6.

(Case 2.1.1: ¢ is not almost rainbow): Let /& be the least positive integer such that there is a permutation
6 with £(0) = hand Ty - 6 = Q,, ,,. Then, it is easy to see that any permutation o~ with 7, - 5= Qs p
must have £(o7) > h+ p. In particular, Ty - ¥ =TpTp—1Tp—2 -+ T - 6 is not almost rainbow. Therefore,

by Case 1, we have C;i;u 5 = 0. Therefore, Equation (5.9) gives that c?;,u,v =0, as desired.

(Case 2.1.2: ¢ is almost rainbow): We break into cases according to what type of almost rainbow clan ¢ is.

(Case 2.1.2.1: T,

s, © 0 =Qp p): In this case, T, must act on ¢ by joining a + and a — into an arc (as in
the T4 arrow of Figure 2). The action of T),_1T),_5 - - - T on § is then to move another + from position 1

past p — 1 initial nodes to land in position p.

(Case 2.1.2.1.1 6(p) = +): Here, Tp_1Tp—2---Ti - 6(p) = +and Tp_ 1 Ty - - Ty - §(p + 1) = +. Hence,
T,Tp1Tp—--- Ty - $ = TpiTpp---Ty - $ and, in particular, T,Tp,_1Tp—5--- T - & is not an almost
rainbow clan. Thus, by Case 1, we then have cgﬁ,ﬁ = 0. Therefore, Equation (5.9) gives that c;;u,v =0,
as desired.

(Case2.1.21.26(p) = -): Here, Tp_1Tp— -+~ T - 5(p) = +and TpiTpo---Ti- 5(p +1) = —. Hence,

T, acts on Tj_1Tpp—3 - -+ T} - & by joining these + and — into an arc. So T, T—1Tp—2 - - - T - § is an almost

rainbow clan in ¥ ,,. Thus, by Case 1, we then have c;faﬁ 5 = 1. Therefore, Equation (5.9) gives that
w

Cyu,y = 1, as desired.

(Case 2.1.2.2: T;, - 6 = Q, , for some r # p): In this case, Ty, must act on ¢ by uncrossing a pair of
adjacent arcs. Recall that n — r and n — r + 1 are the labels on the other ends of the crossing arcs from

r,r+1.

The action of T),T,,—1 - - - T1 on 4 is then to move the + from position 1 past p initial nodes to land in
position p + 1. Thus, Ty - ¥ = TpTp—1 - - - T1 - 0 is an almost rainbow clan in ¥ ,,. By Case 1, we then
have cg;ﬁ ;=1L Therefore, Equation (5.9) gives that C;‘:,u,v =1, as desired.

(Case 2.2:i < 1): Define ii = 1" xu, # = 1'" x v, and w = 1"/ x w. Then i and ¥ are p-inverse
Grassmannian, where p = p —i + 1.

Also, let ¥ = y;,5, and notice that ¥ is a horizontal shift of vy, ,. Therefore, Ty; - ¥ is a horizontal
shift of Ty, - y,,v = 0.

Observe that s5ii = 1= x spu. Since Lemma 3.2 gives that ¢y’ , , = ¢ _ _ and the latter coefficient
Spl, Spi,V

it
falls under Case 2.1, we are done. O

w

Example 5.3. We illustrate part of the construction from Case 2.1. Let u = 51236748 and
v = 12354678. Here, p = g = 4. The clan y,, ,, is

_ . N .

1 2 3 4 5 6 7 8

Define i = 1 X u and ¥ = TI;' (v). In this case, i = 162347859 and ¥ = 512364789. Note that i is
5-inverse Grassmannian, while ¥ is 4-inverse Grassmannian.
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Let ¥ = y; 3, which looks like

+
1 2 3 4 5 6 7 8

O

Notice that ¥ is obtained from 7, , by placing a + in position 1 and shifting the rest of v, ,, to the
right, as described in Case 2.1.

Example 5.4. Let u = 3142. Note that u is 2-inverse Grassmannian and that s,u = 2143. We use
Theorem 1.2 to compute the Schubert structure coefficients 021 43,3142 for all w € S,. We have that y,, ,,

looks like
2 N N

o 1 2 3 4 5

We consider all nontrivial actions of 0-Hecke generators 7; on vy, ., until reaching an almost rainbow
clan:

N N Y

0 1 2 3 4 5
0 1 2 3 4 5 0 1 2 3 4 5
To,T» 7,1y
T; T

52
Ey
?>

5 2 3 4 5 0 1 2 3 4 5

T Ty
T h

]

Ty
T T
To

o
S}
w
IS

o
N
w
()
w
FS
()
=1
N
w
IS
w

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
b
T
n To T3
= /ﬁ m =0
0 1 2 3 4 5 0 1 2 3 4 5

Here, we have drawn the arrows labeled only by 7; with i < 0 in purple to distinguish them from
those that contribute in Theorem 1.2.
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First, observe that there are only two almost rainbow clans that we can reach, specifically the
almost rainbow clans i and ¢ at the bottom of the diagram above. Note that y1,¥» € ¥, ». Using
only 7; with i > 0, there are exactly two paths from v, , to ;. These paths are labeled by the
sequences (11, T, T3, T», T4) and (T, T», T3, T4, T ), both corresponding to the permutation 51324, Thus,
by Theorem 1.2, we have computed that ¢3133% ,, = 1.

On the other hand, there are six paths from vy, , to the almost rainbow clan . These six paths
are labeled by the sequences my = (11,713,712, 14, T3), mp = (11,13, T4, T3, T3), m3 = (13,11, T2, T4, T3),
T4 = (T3, T1, T4, Tz, T3), Ts = (T3, Tz, Tl, T2, T3), and e = (T3, T4, Tl, T2, T3). The sequences my, mp, 13,
n4, and 76 all yield the permutation 41523. Thus, by Theorem 1.2, we have computed that ¢41323, = 1.

21433142 =
However, x5 yields the permutation 4231, so Theorem 1.2 also gives ¢3733 51, = 1. Since these are the
only paths from vy, , to almost rainbow clans in ¥; >, Theorem 1.2 finally computes that ¢ 0

for all w ¢ {51324,41523,4231}.

The fact that the products in Theorems 1.1 and 1.2 are multiplicity-free is remarkable. In contrast, for
example, the Littlewood—Richardson rule shows that every nonnegative integer appears as a coefficient
in some product of Grassmannian Schubert cycles. Indeed, the multiplicity-freeness of Theorems 1.1
and 1.2 does not extend to the product of subjacent Schubert cycles with each other, as illustrated by
the following example.

Example 5.5. Let u = 142536 and v = 451236. Note that # and v are both 3-inverse Grassmannian. We
have that s3u = 132546 and s3v = 351246 are subjacent. Furthermore, we have

w —
2143,3142 —

07132546 * 0351246 = 0361425 + 0451326 + 204612355

which is not multiplicity-free.
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