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Future climate change may bring local benefits or penalties to surface air pollution,
resulting from changing temperature, precipitation, and transport patterns, as well as
changes in climate-sensitive natural precursor emissions. Here, we estimate the climate
penalties and benefits at the end of this century with regard to surface ozone and fine
particulate matter (PM2.5; excluding dust and smoke) using a one-way offline coupling
between a general circulation model and a global 3-D chemical-transport model. We
archive meteorology for the present day (2005 to 2014) and end of this century (2090
to 2099) for seven future scenarios developed for Phase 6 of the Coupled Model
Intercomparison Project. The model isolates the impact of forecasted anthropogenic
precursor emission changes versus that of climate-only driven changes on surface ozone
and PM2.5 for scenarios ranging from extreme mitigation to extreme warming. We
then relate these changes to impacts on human mortality and crop production. We
find ozone penalties over nearly all land areas with increasing warming. We find net
benefits due to climate-driven changes in PM2.5 in the Northern Extratropics, but net
penalties in the Tropics and Southern Hemisphere, where most population growth is
forecast for the coming century.

climate change | air quality | global food security

Exposure to air pollution, primarily fine particulate matter under 2.5 μm in diameter
(PM2.5) and ground-level ozone (O3), is the leading cause of preventable death
worldwide; one in eight lives presently ends prematurely due to exposure to unhealthy
air (1, 2). Ground-level ozone also damages vegetation, and its impact on crops has
significant economic costs and threatens global food security (3–5). Air pollution results
from the chemical processing of unfavorable emissions during unfavorablemeteorological
conditions (6–8). It is generally assumed that as developing countries increase their
wealth in the coming century, they will begin to implement air pollution regulations
and control technologies to improve citizen health, and global anthropogenic emissions
will decline. This assumption is included in the shared socioeconomic pathway (SSP)
anthropogenic precursor emissions for ozone and PM2.5 (Figs. 1 and 2) developed for
the most recent international climate assessment studies for the end of the century
(2090 to 2099 CE) relative to the recent past (2005 to 2014 CE), which reflect this
assumption (9–11). However, anthropogenic-driven climate change over this period
will also change the meteorological conditions that influence air pollution, including
natural precursor emissions, which may counter any anthropogenic emission reductions.
When meteorological changes alone contribute to increased air pollution, it is commonly
referred to as a “climate penalty” (12). However, it is also possible for meteorological
changes alone to reduce air pollution, whichmay be considered a “climate benefit” (8, 13).

Three primary methods have been applied to estimate climate penalties and benefits.
The first looks for statistical relationships between meteorological parameters and
pollution levels in the recent past and then applies these relationships to future forecasted
meteorology changes (e.g., ref. 14).However, thismethod becomes increasingly uncertain
as one extrapolates further into the future, when the underlying statistical relationships
may have changed. The second uses chemistry-transport models (CTMs) driven by
present-day and future meteorology archived from free-running general circulation
models (GCMs) in various permutations with present-day and future emissions to
estimate the contribution of emission changes versus meteorology changes (e.g., ref. 12).
The third uses GCMs with online interactive tropospheric chemistry, also known as
chemistry-climate models (CCMs), in which simulations with future anthropogenic
precursor emissions but separate present-day or future climate forcings are compared
to estimate the climate impact (e.g., ref. 15). The benefit of a CTM is that it is
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Fig. 1. Global prescribed anthropogenic and forecasted natural ozone precursor emissions in each simulation. The present day is 2005 to 2014 CE mean
(gray). All other scenarios are 2090 to 2099 CE mean (colors). Black vertical bars show ±1� of the interannual variability for each decade. Methane (CH4) is
prescribed as a surface boundary condition. Diagonal hatching indicates the CO component of the nonmethane reduced carbon emissions (NMVOCs+CO).

straightforward to evaluate attribution, as its one-way coupling
does not allow chemistry-climate feedbacks that can complicate
the determination of cause and effect. Furthermore, CTMs
do not simultaneously resolve the equations of motion and,
therefore, can expend more computational resources to perform
more complex chemistry than CCMs and additional scenarios.
The downside to CTM studies is the severely limited availability
of future forecast meteorology, which must be archived with
high 4-dimensional frequency, and the simulated composition
by design does not feed back onto the meteorology and, thereby,
composition in the simulations.

The first exploration of climate penalties and benefits on air
pollution was an analysis of future climate change on surface
ozone (12). Ozone abundances were found to increase in many
polluted regions but decrease across much of the rest of the world.
Subsequent regional and global studies have been generally
consistent with this picture, although more recent studies
predict smaller penalties than the earlier studies did (13, and
ref. therein). In contrast, an analysis of five free-running CCMs
performed for Phase 6 of the Climate Model Intercomparison
Project (CMIP6) generally found ozone climate benefits globally
in a single future emission scenario. However, changes were
generally insignificant over populated regions relative to the
internal variability of the free-running CCMs (15). Whereas
there have been numerous studies to date linking PM2.5

pollution with meteorological variability (e.g., ref. 14), there
have been far fewer explicit studies of PM2.5 climate penalties or
benefits compared to ozone. Those that have generally found a
much more heterogeneous response relative to ozone, reflecting
the much shorter lifetime of PM2.5 (e.g., ref. 16).
This study utilizes a recently developed CTM framework (17,

and seeMaterials and Methods) to provide a global perspective of
climate change penalties and benefits on both surface ozone and
PM2.5 for multiple future climate scenarios ranging from extreme
mitigation to extreme warming across the coming century. In
addition, we extend the penalties and benefits beyond changes in
concentration to forecasted changes in humanmortality and crop
production.We first describe the changes in surface air pollutants
and the underlying causes in the model. We then examine the
impacts on human mortality and crop losses, respectively. We
end with a conclusions section.

Forecasted Changes to Air Pollution. Fig. 3 shows the forecasted
changes in six-month seasonal maximum daily 8-h average ozone
(OSMDA8) and annual-mean PM2.5 (excluding fine mineral
dust and sea-salt particles; see discussion below) at the end of
the century (2090 to 2099 CE) relative to the recent past (2005

to 2014 CE) for seven future SSP scenarios. We show both
the total forecasted changes and the contribution of climate
change alone (Materials and Methods). The nomenclature for
describing the SSP scenarios is “x-y.z,” where x represents a
socioeconomic scenario that assumes an amount of international
cooperation from 1 (most) to 5 (least), and y.z represents
the targeted end-of-century radiative forcing limit with respect
to the preindustrial from 1.9 W m−2 (extreme mitigation
including carbon capture) to 8.5 W m−2 (extreme warming;
9–11). The SSP4-3.4 scenario meets the Paris Agreement goal
of limiting global mean warming to 2.0 ◦C above preindustrial
levels, whereas only the SSP1-1.9 scenario meets the loftier goal
of limiting warming to 1.5 ◦C. Our simulations indicate that
changes in future anthropogenic precursor emissions primarily
dictate the forecasted future pollution levels. However, climate
change alone is forecast to cause climate penalties to surface
ozone over most land locations as well as to PM2.5 in the Tropics
and Southern Hemisphere at the end of the century, but climate
benefits to PM2.5 over theNorthern Extratropics. Themagnitude
of these penalties and benefits increases with increasing warming.

Fig. 2. Global prescribed anthropogenic and forecasted natural PM2.5
precursor (rows one and two) and direct (row three) emissions in each of the
simulations. NMVOC emissions shown in Fig. 1 are also PM2.5 precursors.
The present day is 2005 to 2014 CE mean (gray). All other scenarios are 2090
to 2099 CE mean (colors). Black vertical bars show ±1� of the interannual
variability for each decade.
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Fig. 3. Climate change by the end of the century will cause climate penalties to surface ozone over most land areas, as well as to nondust or non-sea-salt
PM2.5, in the Tropics and Southern Hemisphere, but climate benefits to nondust or non-sea-salt PM2.5 over land over the Northern Extratropics. The panels
show simulated future changes in 2090 to 2090 CE air quality metrics (see main text for definitions) with respect to 2005 to 2014 CE for decadal mean ozone
season maximum daily 8-h average (OSMDA8) in ppbv (Left two columns) and decadal mean PM2.5 in μg m−3 (Right two columns). Rows from Top to Bottom
show seven SSP scenarios with increasing levels of future warming. For each metric, we show the total forecasted change (columns one and three) and the
change attributed to changing meteorology alone (columns two and four). Stippling indicates local changes that are statistically insignificant with respect to
interannual variability (i.e., P > 0.05).

We next explain the causes of these concentration changes in the
model.
Ozone in the troposphere is produced by the oxidation of CO,

methane (CH4), and nonmethane volatile organic compounds
(NMVOCs) in the presence of reactive nitrogen oxides (NOx)
and sunlight. It is destroyed by sunlight in the presence of
water vapor or, in heavily polluted areas, by reaction with NOx .
Earlier studies have found generally linear relationships between
tropospheric ozone abundances and total emissions of NOx or
methane (e.g., ref. 18). Fig. 1 shows the global annual emissions
of ozone precursors, and SI Appendix, Figs. S1 and S2 show
the spatial distribution of these changes. In our simulations,
the total change in future surface ozone largely follows the
anthropogenic emission trends. This is especially apparent in
the SSP3-7.0 scenario, with its extreme increase in methane and
NOx emissions with respect to the other scenarios (including

the most extreme warming scenario). However, we forecast
general climate penalties over land and benefits over the oceans.
The benefits over the ocean reflect the exponential increase of
water vapor abundances with linear increases in air temperature
following the Clausius–Clapeyron relationship in regions far
from precursor emissions. This is consistent with the sign of
the marine ozone benefit found in the analysis of the CMIP6
CCMs (15). However, we see a more subdued change than
CMIP6, likely reflecting the inclusion of tropospheric reactive
halogen chemistry in our CTM that is not included in the
CCMs, which reduces the relative changes in ozone over the
oceans that would otherwise result from changes in terrestrial
NOx and reduced carbon emissions. (e.g., refs. 19 and 20).
These benefits also extend to a few land areas, such as the Gulf
Coast of the southeastern United States, the Amazon rainforest,
Alaska, and Siberia.However,most land regions experience ozone
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penalties reflecting increases in natural ozone precursor emissions
that outcompete the increased loss rate. The global natural NOx

emissions are forecast to increase monotonically with increasing
warming; however, we note thatwhether lightningwill increase or
decrease in the future remains highly uncertain (e.g., refs. 21–23).
The increase in NMVOC emissions from terrestrial plants is
not monotonic but generally increases with increased warming.
These natural emission precursors and temperature-driven faster
reaction rates collectively drive the surface ozone climate penalties
over land. Our results are generally consistent with earlier ozone
penalty studies studying comparable scenarios over the populated
regions of eastern North America (15, 24–27), Europe (15, 26),
and the North China Plain (15, 26), although our statistically
significant penalties are more widespread. Over India, previous
work has disagreed on the sign of the climate-driven change, but
we agree with more recent estimates (15, 26).

PM2.5 is composed of multiple components that are highly
variable in space and time. Inorganic sulfate-nitrate-ammonium
(SNA) particles primarily result from the oxidation of anthro-
pogenic sulfur dioxide (SO2) or biogenic marine dimethylsulfide
(DMS) emissions, primarily within cloud droplets, with the
total condensed-phase mass and speciation highly sensitive to
ammonia (NH3) emissions from livestock and anthropogenic
and natural NOx emissions. Primary black carbon (BC; soot) and
organic carbon (OC) are directly emitted by the burning of fossil
and biofuels. Secondary organic aerosol (SOA) particles result
from the oxidation of gas-phase NMVOCs emitted from the
biosphere, producing lower-volatility species that then condense
into droplets. Last, wind releases fine mineral dust and sea salt
particles into the atmosphere from the land and ocean surfaces.
All these PM2.5 types then persist in the atmosphere until removal
by dry or wet deposition to the surface.

Fig. 2 shows the global annual PM2.5 direct and precursor
emissions, and SI Appendix, Figs. S3 and S4 show the spatial
distribution of these changes. In most scenarios, anthropogenic
SO2, BC, and OC emissions decrease in the future. However,
NH3 is generally assumed to increase given its tight linkage to
agriculture and the need to feed a growing global population.
Of the natural precursor emissions, only marine DMS and
terrestrial plant NMVOCs respond to climate change in our
model, and we find relatively minor increases in DMS emissions
with increasing temperature. In contrast, our simulated fine
mineral dust emissions have considerable interannual and spatial
variability in all of our simulations, making no statistically
different changes (Lower Right panel of Fig. 2) but dominating
total changes. Meanwhile, our forecasted changes in sea-salt
emissions are relatively small. Given the significant uncertainties
and difficulties in simulatingmineral dust emissions (e.g., ref. 28),
and the availability of a global observational constraint for
nondust and non-sea-salt PM2.5 abundances (29), we interpret
here only the changes in PM2.5 due to nondust and non-sea-
salt particles. Furthermore, the CMIP6 experimental design we
replicate here includes all wildfires and crop burning in the
prescribed anthropogenic scenarios (10). As our CTM lacks a
dynamic fire module, it is not possible for us to isolate the role of
climate change alone on smoke PM2.5 here. However, we note
that whether or not PM2.5 represents a climate penalty or benefit
to mortality will likely ultimately reflect climate-driven changes
in fine mineral dust and smoke (e.g., refs. 30–32).

As with ozone, the total forecasted changes in PM2.5 largely
reflect changes in their direct or precursor anthropogenic emis-
sions. However, net climate benefits to nondust and non-sea-salt
PM2.5 in the Northern Extratropics result from the forecasted
increase in precipitation with increasing temperature over the

heavily industrialized regions of eastern North America, North-
ern Europe, and East Asia. These are regions where inorganic
SNA particles primarily dominate the PM2.5 composition, and
the increase in precipitation decreases the PM2.5 lifetime and,
thereby, abundances. Increased terrestrial NMVOC emissions
also play a role by increasing the conversion of anthropogenic
NOx to shorter-lived organic nitrates, thereby reducing total
nitrate abundance. In contrast, the Tropics and Southern Hemi-
sphere (including theUnited States Gulf Coast) generally forecast
climate penalties resulting from increased emissions of SOA pre-
cursors from the terrestrial biosphere and faster oxidation rates.

Impact on Mortality.Ozone has long been known to contribute
to mortality through chronic respiratory diseases (CRD). Here,
we use a log–linear relationship between exposure and CRD
mortality for all ages as described by Malashock et al. (33).
PM2.5 has also long been known to contribute to mortality
via cardiopulmonary diseases and, in the previous decade, was
definitively linked to lung cancer (LC). Here, we consider the
impact of PM2.5 on mortality using two separate exposure
models used in the most recent Global Burden of Disease (GBD)
report, the Meta-Regression Bayesian, Regularized, Trimmed
(MR-BRT) model and the Global Exposure Mortality Model
(GEMM) (1, 34, and see Materials and Methods). Both PM2.5

exposure models incorporate quinquennial age-dependent expo-
sure relationships for ischemic heart disease (IHD) and strokes,
with age-independent relationships for chronic obstructive pul-
monary disease (COPD), LC, type-II diabetes mellitus (DM),
and lower respiratory illnesses (LRI).

SI Appendix, Table S1 summarizes our mortality calculations.
For the recent past (2005 to 2014 CE), we calculate total
mortality attributable to ambient air pollution to be 3.3 (95%CI
2.0 to 5.0) million (M) preventable deaths per year when using
the MR-BRT PM2.5 exposure model and 5.0 (3.0 to 7.4) M
avoidable deaths per year when using theGEMMPM2.5 exposure
model (including dust and fine sea-salt particles), statistically
consistent with the 2019 (GBD 2019) study estimate of 3.6 (2.8
to 4.4) for the same period (35). These estimates are comparable
to or slightly higher than most earlier studies of the same period
(2), but lower than the original GEMM analysis of 8.9 (7.5 to
10) for the year 2015 (34). The fraction of air pollution mortality
attributable to fine mineral dust or sea-salt particles was 6% in
the MR-BRT model and 4% in the GEMM. Global mortality
attributable to ozone pollution was 350 (180 to 540) thousand
(k) preventable deaths per year, consistent with those calculated
for the same period for the GBD (35) as well as those determined
for 2000 to 2019 CE by Malashock et al. (33). Global mortality
attributable to PM2.5 following the MR-BRT exposure model
was 3.0 (1.8 to 4.4) M deaths per year, with 33% due to IHD,
32% due to stroke, 16% due to COPD, 7% due to LRI, 8%
due to LC, and 4% due to DM. Mortality associated with PM2.5

following theGEMMexposuremodel is 4.7 (2.8 to 6.8)Mdeaths
per year, with 29% due to IHD, 27% due to stroke, 18% due to
COPD, 13% due to LRI, 8% due to LC, and 5% due to DM.
First, we consider the impacts on mortality associated with

only the forecasted climate-driven changes in air pollutants.
Fig. 4 shows the climate penalties and benefits of ozone and
PM2.5 (excluding dust and sea salt) for the end of the century
for the Northern Extratropics versus the Tropics and Southern
Hemisphere (see SI Appendix, Fig. S5 for definition) if the
population distribution and baseline mortality rates remained
unchanged from the recent past. The climate penalty of
ozone on mortality is 20 ± 1.5 k additional deaths per year
per ◦C of further warming in the Northern Extratropics, and
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Fig. 4. Future climate penalties and benefits on surface air pollution depend on location. The panels present the change in annual mortality over the 2090 to
2099 CE period in thousands of avoidable deaths attributable to climate-driven changes to air pollution shown per degree Celsius of additional warming relative
to 2005 to 2014 CE. These scenarios assume present-day emissions of pollution sources as well as present-day population and baseline mortality rates. The
Left panel shows surface ozone and the Right two panels show PM2.5 for two exposure-response models. The triangles and purple colors reflect the Northern
Extratropics, and the circles and green colors reflect the Tropics and Southern Hemisphere. The shading represents the mean ± 1� in uncertainty arising from
year-to-year variability and in the exposure-response models (Materials and Methods). The values Inset give the mean ± 1� of the slope of a linear regression of
the different scenarios.

1.4± 0.1 k yr−1 ◦C−1 in the Tropics and SouthernHemisphere.
Our forecasted climate-driven changes in global annual mortality
due to ozone for the SSP3-7.0 scenario fall within the range
of estimates from a recent study using three CMIP6 CCMs,
although we note some differences in the exact periods, diseases,
populations, and exposure-response functions considered (36).

In the Northern Extratropics, the climate benefit of nondust
and non-sea-salt PM2.5 on mortality is 31 ± 4.8 k reduced
deaths per ◦C of additional warming in the MR-BRT relative
risk model, and 51 ± 8.6 k yr−1 ◦C−1 in the GEMM. In the
Tropics and the Southern Hemisphere, the climate penalty is 5.2
± 0.4 k yr−1 ◦C−1 and 9.3 ± 0.8 k yr−1 ◦C−1, respectively.
However, the population distribution at the end of the century
is forecast to be substantially different than in the recent past,
with most of this century’s population growth occurring in Sub-
Saharan Africa and with population decreases in East Asia. If we
apply the forecasted population distribution for 2095, scaled
to the 2010 total population, to both our present-day and
future exposure metrics, then the climate penalties for ozone
on mortality become more similar between the hemispheres.
However, the Northern Extratropical climate benefit of PM2.5 to
mortality increases by about 75% in either exposure model, and
the Tropics and Southern Hemisphere climate penalty of PM2.5

to mortality increases by about 300% (SI Appendix, Fig. S6).
Last, we note that uncertainty in the future localized climate
impact of PM2.5 over India (SI Appendix, Figs. S7 and S8)
contributes substantial noise on top of the overall trend (Fig. 4;
India is classified Northern Extratropics here), and we likely need
additional ensembles members to reduce the uncertainty in this
very populous and vulnerable region.

ImpactonGlobal FoodSecurity.Ozone is a biological irritant and
has long been known to damage vegetation and crops, resulting
in tens of millions of metric tons of crop production losses with
economic impacts in the tens of billions of dollars in the recent
past (e.g., refs. 4 and 37). We test three different empirically
derived exposure-crop yield models for five major cash crops
(Materials and Methods) and estimate global crop losses in the
recent past (2005 to 2014CE) of 4.4 to 20% forwinter wheat, 0.4

to 7.6% for spring wheat, 1.1 to 7.3% for soybeans, 0.7 to 4.3%
for rice, and 0.2 to 2.9% for maïze, resulting in economic losses
of $10 to 63 billion in 2010 United States Dollars (USD2010).
These are consistent with earlier estimates of losses in the recent
past, although uncertainties remain large (e.g., refs. 4 and 37).
Fig. 5 shows the change in crop production in million metric

tons (Mmt) per year as a function of additional warming in 2090
to 2099 CE relative to 2005 to 2014 CE due to climate change
alone. The total change (including anthropogenic emissions and
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2014 CE) associated with climate change alone as a function of additional
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for three different crop-exposure metrics (rows). The total is shown as the
black line, with the individual contributions to eachmajor cash crop shown as
shaded ribbons for soybeans (pink), winter wheat (light blue), spring wheat
(dark blue), maïze (orange), and rice (light green).
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climate change) largely follows the anthropogenic emissions,
especially methane (SI Appendix, Fig. S9). We find increased
food production due to ozone changes alone in the most extreme
mitigation scenarios but decreases in food production in the most
extreme warming scenarios, particularly due to ozone-sensitive
winter wheat. The inflection point year from decreased to
increased losses differs per metric, but all scenarios that meet the
Paris Agreement find net savings in crop production. However,
these savings are still offset by the climate-driven increase in
surface ozone over land. We calculate climate penalties of 22 ±

6.8 Mmt yr−1 ◦C−1, resulting in economic losses of $6.7 ± 2.0
billion USD2010 yr

−1 ◦C−1.

Conclusions.Climate change alone will lead to changes in surface
air pollution. Here, we applied a CTM driven by meteorology
archived from a climate model for the end of this century relative
to the recent past in order to isolate the impact of changing me-
teorology versus anthropogenic emissions on surface ozone and
PM2.5. Surface ozone generally increases over land with warming
temperatures because of increases in natural precursor emissions.
PM2.5 in the Northern Extratropics generally decreases due to
increased loss processes but increases in the Tropics and Southern
Hemisphere due to increased organic precursor emissions from
the terrestrial biosphere. Collectively, this leads to a net climate
benefit from all air pollution on mortality. However, the benefits
are localized to the most industrialized regions of the world, with
net penalties in regions of the world expected to contain the
most coming population growth. Globally, we find net climate
penalties everywhere on crop production.

Nevertheless, these results contain large uncertainties. For
mortality, the large uncertainty in the epidemiological exposure-
response relationships (2) dominates over internal variability of
the atmosphere (i.e., interannual variability in pollution expo-
sure); it is important that future epidemiological studies reduce
these uncertainties. The internal variability is not insignificant,
especially for the more subdued warming scenarios (Fig. 3), and
future studies should try to incorporate additional ensemble
members per decade and climate scenario to improve the
signal-to-noise of the climate impacts, with especial focus on
South Asia. And as we note, emissions of fine mineral dust and
smoke PM2.5, which we had to exclude from our analysis, remain
highly uncertain but will likely dominate future climate-driven
PM2.5 changes, so we recommend further analyses dedicated to
improving representation of these sources in CTMs. There are
also known imperfections with the exposure-based metrics used
in this study for crop yields, so it would be beneficial for CTMs
to implement online crop diagnostics using flux-based methods
(e.g., ref. 4).

Last, we note that the overall change in both pollutants is
dominated by the anthropogenic emission trajectory, whereas
the global climate response is primarily dominated by the
atmospheric CO2 abundance. Yet the most extreme warming
scenario is not the most extreme air pollution precursor emission
scenario in the SSPs. Therefore, we recommend studies aimed
at predicting future air quality take into consideration a wider
range of possible air pollution precursor trajectories and that
we include CTMs whenever possible in future climate change
assessment reports.

Materials and Methods

Simulations. We use version 2 of the Global Change and Air Pollution (GCAP2)
model framework, which is described in detail by Murray et al. (17). In brief,
simulations of the NASA Goddard Institute for Space StudiesModelE2.1 general
circulationmodel (38)performedforCMIP6were reruntoarchivemeteorological

input files necessary to drive version 13.4.1 of the GEOS-Chem global 3-D
CTM (with a correction applied to a bug in the code meant to guarantee
mass conservation during transport). These ModelE2.1 simulations relied on
atmospheric composition taken from earlier transient simulations that included
tropospheric chemistry and, therefore, captured thefirst-order chemistry-climate
feedback of the parent CCM on the meteorology. This includes the influence
of future ozone changes on stratospheric dynamics. Tropospheric chemistry
will therefore respond to changes in stratosphere-to-troposphere exchange, as
well as changes in overhead ozone columns, which will affect photolysis rates.
Anthropogenic emissions (which include biomass burning) are as defined by
the CMIP6 experiment for the recent past and seven future emission scenarios
(9,10).LightningNOx productioninthemodel respondspositively to increases in
convective cloud-top height, and the parent CCMand coupledGCM-CTM share a
consistent treatment of lightningflashgeneration andNOx distribution (17, 39).
NOx from soil microbial activity responds positively with surface temperature,
cloud fraction,andwindspeed,negativelywith radiationandsnow/ice cover, and
variably with soil wetness (40). Biogenic emissions of NMVOCs from terrestrial
plants respond positively to increases in diffuse shortwave radiation, surface
temperature, and soil wetness (41), and we do not consider the possible role of
CO2 inhibition (e.g., ref. 4) in these simulations. Biogenic emissions of marine
NMVOCs and DMS respond positively to sea-surface temperatures and surface
wind speeds (42). Natural emissions of SO2 from volcanoes and NH3 from wild
animals are assumed to be invariant in time.

We first perform a baseline simulation for 2005 to 2014 CE. For each of
the seven future climate scenarios, we then perform three simulations: one
in which anthropogenic emissions are prescribed from 2005 to 2014 CE, but
the meteorology is from 2090 to 2099 CE (“climate impact”), one in which
anthropogenic emissions are from2090 to 2099CE but themeteorology is from
2005 to 2014 CE (“emissions impact”), and one in which both the emissions
and meteorology are from 2090 to 2099 CE (“both impacts”). The “climate
impact” simulations include changes in natural emissions that are sensitive to
meteorology.As is common inglobal atmospheric chemistrymodels,methane is
prescribedasasurfaceboundaryconditioninGEOS-Chem.Weincludetheimpact
of future methane abundance as a chemical reactant in the “emissions impact”
simulation, while the “climate impact” simulation includes radiative-driven
impacts of methane abundances on meteorology (e.g., temperature, water
vapor abundance). All wildfires are prescribed in the anthropogenic emissions,
per the CMIP6 experimental design (10). We assess the linearity of the system
in SI Appendix, Figs. S10 and S11 and find the sum of the estimated emissions
and climate impacts alone to largely match the total changes.

Each simulation was initialized over 15 y at a degraded horizontal resolution
of 4◦ latitudeby5◦ longitude. Theneach simulationwasperformed for ten years
at the fullmodel resolutionof2◦ latitudeby2.5◦ longitudewith40vertical layers
extending from the surface to 0.1 hPa. Hourly surface ozone andmonthly mean
PM2.5 were archived and regridded using a first-order conservative remapping
algorithm (43) to 0.5◦ horizontal resolution for calculating the mortality and
crop impacts. PM2.5 at 35% relative humidity is a standard diagnostic output of
GEOS-Chem, with speciation available for inorganic sulfate-nitrate-ammonium,
black carbon,mineral dust, sea salt, andprimary and secondary organic particles
at and under 2.5 μm in diameter.

Mortality Calculation. For mortality due to surface ozone, we use the ozone
season maximum daily 8-h average (OSMDA8) exposure metric, which is
calculated as the 10-y average annual maximum of the 6-mo running mean
of the monthly average daily maximum 8-h mixing ratio in ppbv (1 ppbv

≡ 1 nmol mol−1). For mortality due to PM2.5, the exposure metric is the
simple10-y climatologicalmeansurface concentration. Inboth cases,we remove
each metric’s local 2005 to 2014 CE climatological mean bias with respect to
observationalconstraints.ForOSMDA8,this is the2005to2014CEclimatological
mean reanalysis value of DeLang et al. (44), and for PM2.5, this is the 2005 to
2014 CE climatological mean value from version V4.GL.03 of the Hammer et al.
hybrid satellite-model product (29). In both cases, we assume the bias to be
invariant in time.Forallmortalitycalculations,weusethehistoricalHammeretal.
sea-salt and dust PM2.5 product in lieu of the simulated values (see main text
for explanation), and therefore our calculated mortality changes do not include
either of these PM2.5 species.
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Mortality attributed toa specific cause (ΔM) at agiven location is calculatedas

ΔM = yc · AF · P, [1]

where yc is the baseline subnational (United States, Brazil, and Indonesia) or
national (all other countries) age-specificmortality rate in2010 for causeofdeath
c from the 2019 GBD study (SI Appendix, Fig. S12; ref. 35), AF is the attribution
function that relates the changes in OSMDA8 or PM2.5 to changes in mortality,
andP is the local exposed relevant age-specific population for 2010 fromversion
4.11 of the Gridded Population of the World dataset (SI Appendix, Fig. S13; ref.
45). For the futurepopulationdistribution,weuse theage-specific2022Revision
of World Population Prospects for the year 2095 CE developed by the United
Nations (UN), accessed on 21 Feb 2023 from https://population.un.org/wpp/.
The attributable fraction is calculated as

AF = 1 −

(

1

RR

)

, [2]

where RR is the reported relative risk of mortality for a disease resulting from
pollutant exposure, as next described.

For ozone RR, we use an updated version of the GBD 2019 methodology,
as described by Malashock et al. (33). This assumes a log–linear relationship
between RR and concentration,

RR = exp
[

�
(

Xg − X0
)]

, [3]

where � = 1.06 per 10 ppbv ozone (95% CI 1.03 to 1.10) is the concentration–
response factor for CRD assessed by GBD 2019 for all ages, Xg is the simulated
bias-corrected local decadal OSMDA8 metric, and X0 = 32.4 ppbv is the
theoretical minimum risk exposure level (TMREL).

For PM2.5, we consider two different exposure models. The first is the Meta-
Regression Bayesian, Regularized, Trimmed (MR-BRT) relationship between
exposure and mortality developed for the GBD (1) and the second is the Global
ExposureMortality Model (GEMM; 34). Bothmodels include quinquennial age-
dependent exposure relationships for IHD and strokes at and over the age of
25, with age-independent relationships for COPD, LC, and type II DM (P ages
≥ 25) and LRI (P ages< 5 and≥ 25). We use the MR-BRT and GEMM splines
for RR as a function of disease and PM2.5 exposure provided by McDuffie et al.,
which include CIs that account for uncertainty in TMRELs (SI Appendix, Figs. S14
and S15; 46). In addition, we adjust theMR-BRT attributable deaths by the scale
factors reported by McDuffie et al. (SI Appendix, Fig. S16; 46) that take into
account coexposure to indoor pollution, as the MR-BRT RRs were developed
from a meta-analysis that included indoor exposure.

To calculate the change in mortality, we calculate total attributable mortality
in the recent past and each future climate simulation separately, and then take
the difference. In all calculations, we use the provided RR 95% CIs to estimate
upper and lower limits.

Crop Loss Calculation. We consider the impact of ozone pollution on five
staple cash crops for which concentration-based exposure metrics are available
(winter wheat, spring wheat, maïze, soybeans, and rice). We examine three
separate relationships defined as

AOT40 =

n
∑

i=1

([O3]i − 0.04) for [O3] ≥ 0.04 [4]

M12 =
1

n

n
∑

i=1

(

103[O3]i

)

[5]

W126 =

n
∑

i=1

(

[O3]i

1 + 4403e−126[O3]i

)

, [6]

where [O3]i is the hourly mean ozone mixing ratio in ppmv (1 ppmv ≡

1 μmol mol−1) at hour i, and n is the number of daylight hours (8:00 to
19:59 LT) during the three-month growing season prior to harvest. The M7
metric is defined the same as M12 but uses a shorter daylight window (9:00
to 15:59 LT). AOT40 and W126 have units of ppmv h, and M12 and M7 have
units of ppbv. Tai et al. (4) argued that the three concentration-based metrics
vary enough for individual crops that they likely cover the full uncertainty space;
improved flux-based and biophysical estimates (not presently implemented
within the CTM) likely fall within these uncertainty ranges.

We remove the local daily climatological daytime (6:00 to 17:59 LT) mean
bias of surface ozone from our simulations to generate the most accurate
baseline calculation and because the exposure-relative yield calculations are
nonlinear with respect to concentration. First, we aggregate hourly daytime
surface ozonemixing ratios from2005 to 2014CE for theUnited States, Canada,
Mexico, Europe, and the Global Atmospheric Watch program, as well as more
recent data available for China and India, totaling over 290million observations
(see SI Appendix, Table S2 for data sources). We then trained a random-forest
regressionmodel (e.g., ref. 47) using 10-fold cross-validation to predict the bias
for unobserved locations as a function of relevant simulated meteorological,
emission, geographic, and temporal factors, as well as population density
(see SI Appendix, Table S3 for parameters). We used a randomly selected
80% of the observations and their 2005 to 2014 CE simulated counterparts
for training and the remaining 20% for evaluation (RMSE = 2.9 ppbv;
SI Appendix, Fig. S17). We assumed the present-day climatological bias to
be invariant across the 21st century and removed the local daily mean
bias from all our simulations before calculating each metric for each future
scenario.

We assume the growing season for each crop to be the local mean day of
the year of each crop harvest from the Crop Calendar Dataset (SI Appendix,
Fig. S18; 48) and 89 d prior. We evaluate the ability of the bias-correctedmodel

Table 1. Crop relative yield (RY) with respect to a yield with no loss due to ozone as a function of exposuremetric x

Winter wheat Spring wheat Rice Soybeans Maïze Region

x RY a b a b a b a b a b applied Refs.

AOT40
1−a

x+1.08(40−b)−(20.22−0.01264b2)

1+0.207x−0.0001293b2x

1−a(22.98−1.08b+0.01264b2)
0.0161 26.5 0.0161 26.5 0.0071 19.4 0.0068 40 E. Asia* (5)

1− ax 0.012 China (51)

0.98− ax 0.039 0.019 S. Asia† (52)

0.98− ax 0.024 0.024 Europe‡ (53)
1.01− ax 0.014 0.014 N. America (53)
1− ax 0.0163 0.0163 0.00415 0.0113 0.00356 ROTW (54)

M7 e−( xa )
b

/e
−

(

25
a

)b

137 2.34 186 3.20 202 2.47 World (54)

M12 e−( xa )
b

/e
−

(

20
a

)b

107 1.58 124 2.83 World (54)
W126 1− ax 0.0074 China (51)

e−( xa )
b

51.2 1.747 51.2 1.747 109.75 1.2315 93.7 3.392 ROTW (55)

*China, Japan, and Korea; †Mainland Asia, excluding China, Japan, Korea, and Russia; ‡Includes Russia.
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to accurately estimate variability in the exposuremetrics calculated directly from

the observations and find excellent agreement with all R2 > 0.9 (SI Appendix,
Fig. S19).

Each crop’s relative yield (RY ) with respect to no ozone is determined via the
exposure-relative yield relationships with each respectivemetric as described in
Table1. The relative yield loss (RYL) is, therefore,1−RY , andcropproduction loss

(CPL) is, therefore, CP
RY
RYL, where CP is the local crop production data (including

losses) inmetric tonsper squarekilometer from theSpatial ProductionAllocation
Model for 2010 (SPAM2010; SI Appendix, Fig. S20; 49).We split the total wheat
production reportedby SPAM2010between its spring andwinter varietals using
thoseratios fromtheGrouponEarthObservationsGlobalAgriculturalMonitoring
Best Available Crop Specific (GEOGLAM-BACS) masks (50) since the M7 metric
shows higher sensitivity of winter wheat to ozone. Some tropical countries have
two or three harvest seasons for rice or maïze; in these cases, we attribute all
production to the primary growing season, as has been done in earlier studies
(e.g., ref. 4).

Cropproductionlossesarethenconvertedintoeconomiclossesusingnational
prices per crop for 2010 in United States Dollars (USD2010) from the UN Food
and Agriculture Organization Corporate Statistical Database (FAOSTAT; accessed
15 Sep 2022). Locations in countries that did not report to FAOSTAT in 2010 are
filled in using the value of their nearest neighbor (SI Appendix, Fig. S21).

Data, Materials, and Software Availability. Griddedmodel output and data
products necessary for performing the mortality and crop yield impacts have
been deposited to Zenodo (56). Access to the GCAP2 source code and data
input are as described in Murray et al. (17). All other data are included in the
manuscript and/or SI Appendix.
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