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Abstract

Quantifying the inheritance of regulatory networks among proteins during asym-
metric cell division remains a challenge due to the complexity of these systems and
the lack of robust mathematical definitions for inheritance. We propose a novel statis-
tical framework called ODEinherit to measure how much a mother cell’s regulatory
network explains its daughter’s trajectories, addressing this gap. Using time-lapse
microscopy, we tracked the expression dynamics of six proteins across 85 dividing
S. cerevisiae cells, observed over eight hours at 12-minute intervals. Our framework
employs a two-step approach. First, we estimate an ordinary differential equation
(ODE) system for each cell to characterize protein interactions, introducing novel ad-
justments for non-oscillatory time series and leveraging multi-cell data. Second, we
assess inheritance by clustering cells based on cycling markers and quantifying how
well a mother’s regulatory network predicts her daughter’s. Preliminary findings sug-
gest stage-dependent differences in inheritance rates, paving the way for applications
in cellular stress response and cell-fate prediction studies across generations.
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1 Introduction

Understanding how cells divide and pass on regulatory information is fundamental to bi-
ology, with implications for processes such as cancer progression, immune responses, and
tissue regeneration. Studying cell cycling, which is the process of how cells divide to yield
new cells, unravels the potential for understanding tumor progression and cancer therapies
(Otto and Sicinski, 2017; Ma and Gurkan-Cavusoglu, 2024). During cell cycling, the inher-
itance of molecular components can vary, especially in asymmetric divisions, where distinct
daughter cell phenotypes emerge (Higuchi-Sanabria et al., 2014; Herrero et al., 2020). The
saccharomyces cerevisiae (budding yeast) is a commonly used model organism to study cell
cycling due to its fast division rate. In budding yeast, mother cells can influence the fate
of their daughters. Notably, studies such as those by Argiiello-Miranda et al. (2018) have
shown that a daughter’s fate can be predicted based on its mother’s properties, even before
it is physically formed. These observations highlight the need to investigate how regulatory
networks shape cell fate across generations.

Despite these advances, quantifying the inheritance of protein regulatory networks from
the mother to the daughter cell remains a challenge due to the dynamic and complex nature
of these systems. Current approaches often fail to capture the network-level inheritance of
cellular regulatory machinery. To address this gap, we propose a novel statistical framework
that uses live-cell imaging data from yeast to rigorously measure the inheritance of protein
regulatory networks. By bridging mathematical modeling with biological insights, our
method seeks to determine whether cell fate is driven by the transmission of these networks,
providing a new perspective on the interplay between cellular dynamics and regulatory

inheritance.
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2 Background

We motivate our statistical method by first explaining a preliminary analysis of the dataset
we collected of budding yeast. This preliminary analysis attempts to investigate the amount
of inheritance between a mother and daughter cell, but as we will see, existing methods are
not quite apt for measuring this quantity. The lackluster results in the preliminary analysis
will motivate our new statistical method in the later sections.

To investigate cellular inheritance, we collect time-lapse microscopy imaging data which
will be the main dataset of interest through this entire paper. This data is generated by
tracking the expressions of 6 proteins simultaneously using fluorescent reporters in dividing
yeast cells. Each dataset of different combinations of six proteins contains 200+ cells over
eight hours with a twelve-minute sampling rate, where cells divide up to four times. The
proteins are markers of cell fate and cell cycle activities. There are 48 time points in 25
mother cells and their 60 daughter cells. The time series of mother cells are observed
throughout the course, while those of daughter cells are incomplete and only observed after
birth. See Appendix S1 and Ramakanth et al. (2024) for more details on how this data
was collected and processed. Using this dataset, we hope to investigate whether daughter
cells inherit certain protein dynamics from their mother cells. Because the yeast cells are
at different cellular states at the start of the experiment, we do not necessarily expect
that all mother-daughter relations are necessarily the same across all cell pairs. Therefore,
we seek to perform a preliminary analysis that can investigate the amount of inheritance

heterogeneity among the 60 mother-daughter pairs.

2.1 Preliminary analysis

In our preliminary analysis, we demonstrate that existing statistical frameworks, such as
Granger causality, are insufficient to model cellular inheritance. To start, we first pro-

vide qualitative evidence that there are differences in the amount of inheritance between
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Figure 1: A) and B): Time series of cell pairs with high (red) and low (green) degrees of
inheritance, qualitatively speaking, with mother and daughter cells shown in solid lines and dashed
lines, respectively. Each plot shows one (out of the six) protein as a time series. C): Test
statistics from preliminary Granger causality analysis, with true pairs in red and fake pairs in
blue, compared to the x?(2p) reference distribution in gray.

mother-daughter pairs in our data. Figures 1A and B present time series examples for
two mother-daughter pairs, with each figure representing a different protein variable. We
see that in both proteins, in the red pair, the daughter cell after birth visually follows the
cyclical expression patterns of the mother cell — this suggests there is a higher amount of
inheritance in this mother-daughter pair. In contrast, in the green pair, the daughter cell
after birth seems much more uncorrelated with the mother cell, both in terms of amplitude
and frequency in its cyclical expression pattern — this suggests there is a lower amount
of inheritance in this mother-daughter pair. These two example mother-daughter pairs,
among the 60 mother-daughter pairs in our dataset, indicate a possible variability among
how much the daughter cell inherits from its mother in terms of protein dynamics.

To quantify this phenomenon rigorously, one might consider using Granger causality.
Granger causality is commonly used to evaluate how much one time series is predictive of
another (Shojaie and Fox, 2022), making it a natural choice for assessing inheritance in
our setting. However, as demonstrated in the following preliminary analysis, this strategy

is insufficient to quantify how much regulation is passed from a mother to its daughters.
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For a pair of univariate time series x; and 1, the series x; is said to be Granger causal of
y; if the inclusion of x; adds explanatory power to the autoregression of y;. Specifically,
it performs an F-test in the following model on the hypothesis Hy : by = --- = b, = 0,

namely, the joint significance of the lag effects in the mother series,

Y = Qo+ a1Ys—1 + -+ aQpli—q + 0171 + -+ DT + €,

where the lag ¢ is specified in advance.

Now, we show that this Granger causality analysis is inadequate for measuring inheri-
tance, as it yields close similarity measures for true mother-daughter pairs and unrelated
pairs. For each mother-daughter pair, we perform the Granger causality test on their time
series using a maximum lag of 2. A p-value is obtained for each variable, denoted by pval, for
7 =1,...,p where p = 6. We aggregate the p-values across the p proteins for each mother-
daughter pair by Fisher’s method, calculating the test statistic X2 = —2 Z?:l log(pval,),
which follows a x?(2p) distribution under the null hypothesis that the mother series is
not predictive of the daughter series for any variable. A larger value of this test statis-
tic indicates that the mother cell’s protein expression is predictive of the daughter cell’s
protein expression, which could suggest a statistically significant amount of inheritance in
this mother-daughter pair. As a comparison, we also pair each daughter cell with three
non-mother cells from the mother generation and compute the same test statistic for these
“fake pairs” as a null distribution. Since the mother cells are treated as independent bio-
logical replicates, we expect the test statistic to be larger (indicating more inheritance) in
true mother-daughter pairs and smaller (indicating less inheritance) in fake pairs. In other
words, if protein regulatory networks are indeed inherited by daughter cells, we hypothesize
that the degree of inheritance would be higher in true pairs than in fake pairs.

Figure 1C presents the histograms of the test statistic for true pairs and fake pairs, with

the reference x?(2p) distribution shown in gray. We observe considerable overlap between
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the distributions for true pairs and fake pairs, both of which show significance under the
null hypothesis. This phenomenon suggests that any two cells exhibit a high degree of
inheritance, irrespective of an actual mother-daughter relationship. Based on additional
analyses beyond the scope of this paper, we assess that the problematic quality is more
foundational than simply recalibrating the Granger causality’s null distribution. This result
provides strong indication that the Granger causality test is inadequate for distinguishing
true inheritance between genuine mother-daughter pairs and unrelated pairs.

While multivariate and non-parametric extensions of Granger causality could fix cer-
tain statistical shortcomings, we note one substantive shortcoming that is fundamental to
any Granger causality framework. Granger causality assumes a stationary lag where the
mother can predict the daughter’s protein expression. This statistical premise is poten-
tially unrealistic, since after the daughter cell separates from the mother, there is little
biological explanation on why the mother and daughter cells’ protein expression will re-
main in-sync. Instead, we hypothesize that the daughter inherits the requlatory machinery
from the mother. This means the daughter cell can inherit post-translational modifications
and other intermediary proteins from its mother, all of which influence how the proteins
interact in the daughter cell (Infant et al., 2021; Hamey and Wilkins, 2023). This means
even if the mother cell’s expression is not predictive of the daughter’s expression with a
stationary lag, the protein-protein interactions across time in both cells could be nearly
identical. We hypothesize that this latter framework is a more accurate depiction of the
underlying biology. Therefore, we seek to take a different statistical approach — can we
first model a mother cell’s regulatory network and then assess how much its regulatory

network explains the variability in the daughter cell’s time series?
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2.2 Modeling as an ordinary differential equation system

Protein-protein interaction networks offer a framework for understanding how proteins dy-
namically interact and influence cellular processes. Each node represents a protein, while
edges indicate interactions such as activation, inhibition, or stabilization. In yeast, such
networks can differ between cells due to factors like post-translational modifications, which
alter protein function by chemical additions such as phosphorylation or ubiquitination (In-
fant et al., 2021; Hamey and Wilkins, 2023). Furthermore, cellular asymmetry during
division can result in daughter cells inheriting distinct initial protein abundances (Higuchi-
Sanabria et al., 2014; Herrero et al., 2020). This variation, coupled with dynamic regulatory
feedback, implies that while regulatory dynamics may be similar, observed protein levels
across time could seem uncorrelated between mother and daughter cells. Statistically cap-
turing these subtleties can help uncover fundamental principles of cellular regulation and
inheritance.

Mathematical modeling of these regulatory dynamics as a network in cell cycles has been
a long-standing area of research. Graphical models, while effective for certain applications,
are not well-suited for capturing the time-dependent regulatory dynamics in our time-
series data. In contrast, Ordinary Differential Equation (ODE) systems excel at modeling
feedback circuits within the oscillatory regulations that drive cell cycles (Pomerening et al.,
2003; Tyson and Novék, 2015). They have been proven to be an effective framework for
describing protein interaction networks (Sible and Tyson, 2007). In previous work, ODE
models have been extensively applied to study the budding yeast cell cycle, effectively
characterizing the dynamics between various cell cycle activities (Pomerening et al., 2003;
Chen et al., 2004; Radde and Kaderali, 2009; Boczko et al., 2010). In one of our recent
studies, we employed ODE systems to model the regulatory network governing the entry
into meiosis, demonstrating their utility in addressing the specific biological problems we

investigate (Kociemba et al., 2024). However, estimating the parameters of an ODE system
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based on data is hard, and instead, much work studying yeast cells relies on manually
selecting the parameters or performing a grid search (Tyson and Novék, 2015; Jashnsaz

et al., 2021). In contrast, we focus on estimating these parameters from data in this paper.

2.3 Existing ODE estimation methods

From the statistical perspective, significant effort has been devoted to estimating ODE
systems and studying the theoretical properties of the resulting estimators. The general

goal is to estimate a system of ODEs in the form:

dx(t) 0| (a(t))
ol =] | =Feo (1)
el || Fy(a(t)

where ¢ denotes the time index reparameterized to an interval 7 = [0, 1], and the unknown
functionals F' = {Fy, ..., F,} are the estimands. These functionals describe the regulatory
dynamics among the variables and may either have an unknown form or be parameterized
in a known form. In other words, this system models how the trajectories of all p variables
collectively influence the instantaneous rate of change of each variable. Typically, for a
single sample (i.e., cell), the unknown variable trajectories x(t) = (x1(t),...,z,(t)) € RP

are observed on n discrete time points {¢y, ..., t,} with measurement errors:

yi=x(t;) +e, fori=1,...,n,

where y; = (yi1,...,¥ip) € RP denotes the observed trajectories, and ¢; = (&1, ...,€;p) €
R? denotes the independent measurement errors with zero mean. Let x(0) € RP be the
unknown initial conditions of this system.

Earlier studies primarily focused on estimating the functionals F}’s, assuming a known
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regulatory structure, namely, which variables regulate which other variables. Various strate-
gies have been developed to address the challenges of handling derivatives in the estimation
process and ensure robust theoretical guarantees (Ramsay et al., 2007; Cao and Zhao, 2008;
Liang and Wu, 2008; Brunel, 2008; Qi and Zhao, 2010; Xue et al., 2010; Gugushvili and
Klaassen, 2012; Hall and Ma, 2014; Dattner and Klaassen, 2015). However, our study ex-
tends beyond estimating the exact regulatory dynamics. We aim to uncover the regulatory
relationships among variables, emphasizing the reconstruction of a biologically interpretable
network. This requires incorporating sparsity into the estimation, which adds complexity
as we simultaneously model dynamics and infer a sparse regulatory structure. Recent ad-
vancements have introduced Lasso-type penalties in the objective function to encourage
sparsity in the estimated functionals and have established the selection consistency (Wu
et al., 2014; Zhang et al., 2015; Chen et al., 2017; Dai and Li, 2022), making them partic-
ularly relevant to our work. In this paper, we build upon the most sophisticated method
called Kernel ODE (KODE, Dai and Li (2022)). The authors demonstrated its utility on
yeast data in their paper, and the method is both flexible to capture nuanced regulatory
dynamics due to its usage of the Reproducing Kernel Hilbert Space (RKHS). We review

these details in the next section.

3 Methods

In this section, we describe the formal details of ODEinherit, our proposed method to
measure how much a daughter cell inherits the mother cell’s protein regulatory network,
which we will denote as 7™ —P) ODEinherit’s overall strategy involves first estimating the
directed regulatory network for both mother and daughter cells by fitting an ODE system
to the protein variables. Next, the inheritance measure is then defined as a percentage re-
flecting how well the mother network can explain the daughter trajectories. We summarize

this workflow in Figure 2. The workflow is employed cell-wise to calculate an inheritance
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Figure 2: Workflow of measuring inheritance between a mother-daughter pair.

measure for each cell. For simplicity, we omit the cell index in the notations and denote

the observed trajectories of a given cell as y;; fori =1,...,nand j =1,...,p.

3.1 ODE estimation and a review of Kernel ODE

We first introduce how we obtain a directed regulatory network of each cell by estimating
the ODE system (1) from the observed time series (i.e., trajectories). We model our
data using the commonly used additive model, where we assume that variables regulate a

particular protein j via additive effects,

Fi(x(t) =bj+ Y OFu(xi(t)), j=1,....p, (2)

k=1

where b; € R is the intercept, 0;, € R and F};, characterize the coefficient and dependency
of variable j on each variable k, respectively. If 8, # 0, we consider variable k to be a
regulator of variable j and assign a directed edge from variable k to j to construct the
regulatory network.

We review the estimation framework of Dai and Li (2022) (KODE) here, as our method

will build upon this framework for inheritance analysis. For each variable j, KODE assumes

10
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that the derivative function Fj resides in a RKHS H = {1} & > 7_, Hj. Here, Hy is
the RKHS generated by a given Mercer kernel K} corresponding to variable k such that
Fji, € Hi. In KODE, F} is estimated using a two-step collocation strategy, which is known
to be computationally effective for ODE estimation. The first step obtains smoothing

estimates of the trajectories by

20 —agmin { 230y - 0P 4 Als O i=Lop O

Zj eF i=1

where F is a given space of smooth functions. Denote the smoothing estimates as z(t) =
(Z1(t),...,%,(t)) € RP. The second step estimates each functional F; € H, the coefficients
0, = (0j1,...,0;) € RP, and the initial condition #;, = X;(0) € R by solving the following

penalized optimization problem,

n

. 1 t; N 2 p .
i >~ Ly — 00 - / FE0)dt) +m( 3 10Full), G=1,.p. (4)
705Y5:4°5 0 k=1

i=1

An iterative optimization algorithm is used for estimation, where sparsity in 9/; is induced
by a Lasso regularization. Let 1/7\’] and gjo be the optimal solution from (4), then the

trajectories are recovered by

50 = 0o+ [ B j=1...p (5)

The integration is evaluated using a first-order approximation over a fine grid on 7. The
estimated regulatory network is constructed using the estimates {@\], j=1,...,p}. We
use M; = {k : gjk # 0} C {1,...,p} to denote the selected regulators of variable j
for j = 1,...,p, then the estimated network is given by {M,; : 7 = 1,...,p}. We review

additional details of KODE, such as data-driven strategies to tune parameters, in Appendix

S2.

11
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3.2 Measuring the goodness-of-fit of a network

We now introduce a statistic that measures the goodness-of-fit of this network based on
how well it recovers the observed trajectories. This statistic will be critical to how we
define inheritance in the following sections. For each variable j, we apply the KODE
estimation algorithm to refit ﬁj based on the smoothing estimates z(t) by removing the
Lasso regularization on 5] and restricting é’\] € M;. Let Z(t) = (21(¢),...,7,(t)) be the
recovered trajectories from (5). We obtain the following variable-specific R? statistic,

RJQ» = max

{ 1 MSS; res

_ ,0}, forj=1,....p,
MSS; cor orJ b

where MSS; s = %2?21 {yij — /.’,E\j(ti)}z and MSS; ior = %2?21 {yij — %}2 are the mean
sums of squares of the residuals and of the observations, respectively, and y; = % > Yij
Intuitively, RJZ- measures the proportion of variance in the observations of variable j that is
explained by the recovered trajectory z;(¢). In cases where a negative R? value arises, the
mean of the observations provides a better fit than our estimation, and we set R? =0. To

obtain an overall statistic for a cell, we use
1 p
2 2
B=_2 R, (6)
P

namely, the average of R? across all variables.

Unlike prior studies that often focus on the asymptotics of the error in estimating tra-
jectories such as [ [|Z(t) —z(t)||3dt (Dai and Li, 2022), we introduce a single-cell goodness-
of-fit measure for R?. This is because in many previous studies, there was no necessity to
compute R? at the individual-cell level (i.e., refitting a cell’s trajectory using its own net-
work results in R? = 1 if the true Fj resides in the correct model space). In contrast, we
define our goodness-of-fit metric (6) to serve two crucial purposes: (1) guiding the network

pruning process by evaluating the explanatory power of pruned networks and (2) assess-
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ing how well the mother cell’s regulatory network explains the daughter cell’s trajectories,

which is central to our investigation of regulatory inheritance.

3.3 Measuring the protein regulatory inheritance between mother

and daughter cells

We are now ready to describe how we quantify the daughter cell’s inheritance of the mother’s
protein regulatory network. Our proposed metric uses the R? statistic to evaluate how much
the mother cell’s regulatory network explains the daughter cell’s trajectories. Consider one
mother-daughter pair, where we denote the mother and daughter cell’s estimated regulatory
networks as M and D, respectively. We refit the daughter trajectories using the pruned
mother network and daughter network and obtain their R? values, R?™=P) and R*P—D),
These represent the proportions of variance in daughter trajectories that are explained by

the mother and daughter, respectively. We take a ratio to obtain a percentage of inheritance

in this mother-daughter relationship,

(MD) RQ(M—)D)
_ . .
T —mln{m, 1} (7)

Here, R*P~P) reflects the intrinsic explainability of the daughter trajectories, while R2M—=D)

reflects how well the mother’s network explains the daughter trajectories. The quantity
7M=D) ¢ 10, 1], which we call the inheritance metric, is the primary output of ODEinherit,
where 0 and 1 represent the daughter cell inherits none or all of the mother cell’s protein
regulatory network, respectively.

The rationale for this metric stems from our hypothesis that the regulatory dynamics,
represented by the Fj’s, are not preserved in their exact form as they transition from
the mother to the daughter cell. Instead, these functionals undergo modifications in the

daughter cell as it progresses through its cycle, limiting the feasibility of directly predicting
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the daughter’s trajectories based on the mother’s. Instead, we focus on the qualitative
properties of the system, specifically, the regulatory network structure. By constraining
the model space to the mother’s regulator sets, we quantify the extent to which these sets
can explain the daughter’s trajectories, thereby capturing the inheritance of regulations

without assuming stationarity in the dynamics.

3.4 Pruning the network

In this section, we describe a key quality that we empirically observed to adversely impact
our inheritance metric and our procedure to remove this quality. Specifically, observe our
inheritance metric 7™ =P) defined in (7). If M were a fully dense network (i.e., every pro-
tein regulates all proteins), then 7™ ~P) = 1 regardless of the daughter cell’s trajectories.
This means that our inheritance metric is not meaningful for dense networks. However,
our empirical results suggest that KODE tends to select variables as regulators in the net-
work when they are actually not (false positives) rather than overlook the actual regulators
(false negatives). This leads to an overly dense estimated network, which hinders us from
discerning the primary regulations between the variables. As we will show later in the sim-
ulations, having excessively dense networks will dramatically hinder our ability to measure
the inheritance of regulatory networks. Hence, we describe in this section our strategy to
refine the network in such a way that sparsifies each network without sacrificing the model
fit.

Our strategy is to use the regulator sets selected by KODE as potential candidates
and refine the network through an iterative pruning procedure. Our method leverages the
R? statistic to quantify the importance of each regulator in terms of trajectory recovery
and eliminates those with minor contributions. Specifically, for a given variable j, the
pruning procedure evaluates each of its selected regulators by assessing the change in R?-

after its removal. A regulator is pruned if its removal does not reduce Rjz beyond a pre-
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specified threshold (by default, 5%). Detailed steps are provided in Appendix S2. This
approach significantly reduces the false positive rate at the cost of a slight increase in
the false negative rate, resulting in sparser, more interpretable networks while ensuring no
important regulators are omitted.

While sparser networks can also be obtained by increasing the Lasso regularization in
KODE, the selection consistency depends on sufficiently strong regulatory effects in true
edges and negligible effects in non-edges (Dai and Li, 2022; Chen et al., 2017). These
assumptions can be challenging to satisfy under model misspecification or in the RKHS
space, where the functional estimands take more complex forms. Simply thresholding the
number of selected edges in Lasso is suboptimal, as it requires prior knowledge of the net-
work and provides little insight into the significance of selected regulators. Our approach
provides an explicit quantification of each of the six protein regulatory contributions while
remaining computationally feasible. Empirically, this strategy demonstrates superior per-
formance. However, in high-dimensional settings beyond the scope of this paper, imposing

larger Lasso regularization likely remains a practical and effective choice.

4 Simulation study

In this section, we describe a suite of simulations to assess the reliability of our network
estimation, even in misspecified settings, and to demonstrate that ODEinherit can meaning-
fully estimate the protein regulatory inheritance between simulated mother and daughter

cells. We provide the overview in this section and defer additional details to Appendix S3.

4.1 Network estimation

We first evaluate the empirical performance of the network estimation strategy for both
additive and non-additive ODE systems, where the assumed additive form (2) is violated

in the latter case. It is important to verify this before we examine the performance of the
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Figure 3: ROC curves of the network estimation in the additive (A) and non-additive system
(B) under various noise levels, before (left) and after (right) our pruning procedure. The noise
level is defined as the ratio of the noise variance, ajz, to the variance of the true trajectory x;(t).
The black dashed line represents the performance of a random classifier (baseline AUC = 0.5).

proposed inheritance measure under these ODE systems.

4.1.1 Additive ODE system

We first demonstrate that our network estimation procedure is accurate for a simple linear
ODE system where the true model Fj(x(t)) is additive. This model is within the cor-
rect specification of the assumed generative model (2). Our simulated system consists of
two triplets of variables, with solution trajectories being combinations of sine and cosine

functions, defined over the interval 7 = [0, 1]. It is specified as follows: for k =1 or k = 2,

dx%f(t) = —2AW + AW gy (1) — AWz (1),
dxil—]:f(t) = AWy _y(t) — AWy (1),

for time ¢t € [0,1]. where A" and A® are chosen to make the triplets exhibit 3 and
10 periods on the interval [0, 1], respectively, minimizing the correlation between the two
triplets. We draw n = 200 data observations from the solution trajectories at the evenly-
spaced time grid {1/n,2/n,...,1} with identical and independent Gaussian measurement
errors ;=" N(0, 07).

Figure 3A demonstrates that our network estimation is accurate after pruning. Specif-
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Table 1: R? values for the original and pruned estimated networks in simulations of additive and
non-additive systems at various noise levels.

Noise level
System Type 0% T 3% [10%
. Original R% | 1.00 | 0.85 | 0.81
Additive Praned B2 | 1.00 | 0.87 | 0.83
Original B2 | 0.99 | 0.98 | 0.96
Pruned R?2 | 0.98 | 0.97 | 0.95

Non-additive

ically, we plot the ROC curves for the estimated networks before and after pruning, where
the noise variance o3 is set to 0% (i.e., no noise), 3%, and 10% of the sample variance
of the true trajectory values {z;(t;),i = 1,...,n}. For each noise level, we perform 100
simulation runs, calculating the false positive rate (FPR) and true positive rate (TPR) for
each run. The ROC curve and the area under the curve (AUC) are computed using these
(FPR, TPR) pairs. It is seen that, in the presence of noise, the estimated network with-
out pruning tends to be dense with a high FPR. The pruned network achieves a sparser
graph, reducing the FPR while maintaining a similar level of explanatory power for the

trajectories, as indicated by the high R? values in Table 1. We provide additional results

in Appendix S3.

4.1.2 Non-additive ODE system

We next demonstrate that we can still estimate meaningful networks from much more
complex trajectories, even if the generative model is not within assumed model space
(2). This simulation uses a non-additive ODE system, where the additivity assumption
is violated. Specifically, we consider the Lorenz system, a non-linear and aperiodic ODE

system with interaction terms. The generating ODE model includes two triplets from this
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system with different sets of parameters: for k =1 or k = 2,

M%_t?(t) = oWy (1) — oWy (1),

drs,_1(t

%Tl() _ p(k)x?)kf?(t) _ $3k72(t)x3k(t) — x3k71<t)7 (9)
d$2];(t) = Ta_o(t)Tar_1(t) — 5(k)x3k(t)’

for time ¢ € [0,100] before rescaling time to range from 0 to 1. We set the parameters
{oM =10, pM =28, 81 = %} and {o® =5, p? =45 5?2 = %} such that the trajectories
oscillate indefinitely. We draw n = 200 data observations at an evenly-spaced time grid
over the intervals [40,50] and [40,60] for the first and the second triplets, respectively.
This ensures that the frequencies are different for the triplets and are low enough for the
oscillations to be captured in the observations. The measurement errors are €;; N (0, sz),
where sz-’s reflect the noise levels as described in Section 4.1.1.

Despite analyzing misspecified data, our results nonetheless demonstrate that pruning
enhances the accuracy of our estimated networks. For simplicity in the analysis, an edge is
assigned in the regulatory network whenever one variable affects another, whether through
an additive effect or an interaction effect. For example, we assign an edge z3, — X31_1
even though g affects xz3,_; indirectly by interacting with xs;_o. Figure 3(B) shows
the ROC curves for the estimated networks, and the R? values are presented in Table 1.
We can see that, although the selection accuracy is generally compromised under model
misspecification, the pruning procedure still enhances overall accuracy while preserving a

similar level of explanatory power for the trajectories.

4.2 Inheritance measures

With a reliable network estimate, we now move to evaluate ODEinherit’s ability to reliably
measure the amount of protein regulatory inheritance. To do this, we need to extend our

simulation framework in order to generate mother-daughter pairs under each of the two
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A) Additive system (linear) B) Non-additve system (Lorenz)
mother network daughter network mother network daughter network
Q-—® @—@ @—© Q—©
@ o @ o ® o @ o
®—0 @0 o 0 @ @

Figure 4: True mother and daughter regulatory networks in the additive system (A) and the non-
additive system (B). Variables 2 and 5 are interchanged for the daughter, such that its network
has an equivalent complexity as that of the mother.

ODE systems in Section 4.1. Our new simulation framework involves two components: a
mother system and a pseudo-daughter system, which are used to generate the trajecto-
ries of the observed mother cell and an unobserved “pseudo-daughter” cell, respectively.
The observed daughter trajectories are then generated as a convex combination of these
two trajectories, where the combination weight controls the degree of inheritance between
the mother and daughter cells. Intuitively, the pseudo-daughter trajectories represent the
daughter’s intrinsic dynamics without inheritance, while the actual daughter trajectories
reflect partial inheritance from the mother.

We provide an overview of how we simulate mother-daughter pairs. Consider an ODE
model with two triplets, either (8) or (9). In the mother system, we set the triplets (1,2, 3)
and (4, 5,6) to adhere to the defined dynamics as before. However, in the pseudo-daughter
system, variables 2 and 5 are interchanged, resulting in the triplets (1,5,3) and (4,2,6)
following the same dynamics. The corresponding networks are shown in Figure 4. Notably,
both systems have the same level of complexity, with each variable regulated by the same
number of regulators across the two systems. The mother cell trajectories, denoted by
M) (t) € R, are generated from the mother system over n = 200 evenly-spaced time points
on the standardized interval [0, 1] at a noise level of 1%. The daughter cell is assumed to

be born at time ¢ = 0.3. The pseudo-daughter trajectories, denoted as z(P-Pseudo)(¢) ¢ RS,
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are generated on the interval [0.3, 1] with initial conditions z(”P*ud°)((.3) set to (M) (0.3)
at its time of birth. Let « denote the weight of mother trajectories, with larger values
indicating higher degrees of inheritance. The actual daughter trajectories z(”)(t) € R® are

then simulated as

2P (t) = az™(t) + (1 — a)zPPeud) () ¢ € [0.3,1],

with data drawn on the same observation time grid, limited to the interval [0.3, 1].

To assess if ODEinherit measures the inheritance metric accurately, we create a suite
of simulated mother-daughter pairs where we vary the amount of inheritance. To do this,
we generate R = 20 mother-daughter pairs for each a € {0,0.1,0.2,...,1}, as described
above for both the additive and non-additive systems. Here, @« = 0 and o = 1 denote
no or full inheritance, and we are interested to see if ODEinherit can measure meaningful
differences in inheritance between these two extremes. We employ the estimation strategy
in Section 3.3 and obtain the inheritance measure 7™ =P) for each cell. We note here that

(M=D) is not a

a does not directly represent the percentage of inheritance, and therefore 7
direct estimate of . Additionally, due to the nature of our ODE estimation approach, even
a random network can account for a nonzero portion of the variance in the trajectories.
In an extreme case when no regulation exists at all (i.e., an empty network), the fitted
functionals ﬁ] in (2) become constants, and the recovered trajectories are simply linear
trends. Hence, these trends might still explain some variance in the observed trajectories,

(M=D) inheritance measure even when no inheritance exists. To account

yielding a positive 7
for this phenomenon, we establish a baseline for how much a random mother network can
explain the daughter trajectories. We do this by generating 10 random mother networks of
equivalent complexity for each estimated mother network. These random networks are then

(M—D

used to refit the daughter trajectories and calculate the corresponding 7 ) inheritance

metric.
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Figure 5:  A) and B): Estimated inheritance metric 7(™=P) against the weight of mother
trajectories («) in the additive and non-additive systems, respectively. Larger o values indicate
higher degrees of inheritance. The green and blue curves show the measures calculated using
networks before and after pruning, respectively. The black curve shows a baseline for how much a
random mother network can explain the daughter trajectories by taking the input mother network
to be random yet with equivalent complexity as the pruned mother network. Points indicate the
median measures across simulations, and error bars represent the first and third quartiles.

Figure 5 shows that ODEinherit’s protein regulatory inheritance is strongly correlated
with the «a, the amount of inheritance dictated in our simulation, when compared to al-
ternative methods. This plot shows the inheritance metric 7(™=P) against « for each
system, using the original, pruned, and random networks. We make three remarks about
the results. First, the 7 =P) estimate generally increases as  grows, indicating higher
inheritance when the mother cell has more influence on the daughter cell. Notably, when
there is no inheritance (i.e., a = 0), the 7™ =) measures are indistinguishable from those
using random networks, validating ODEinherit’s ability to detect a lack of inheritance. Sec-

ond, even under model misspecification, the 7(—=P)

estimate maintains an increasing trend
with a but exhibits greater variability due to the reduced network estimation accuracy in
this setting. The baseline is larger in this setting because the Lorenz system has a denser
true network that inherently captures more variance. Third, without pruning, the 7(M—0)

measures are largely inflated due to the high FPR in network estimation. The false positive

edges inflate the R?M=D) values, which in turn leads to inflated 7™ —P) measures. The
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issue becomes particularly severe in complex ODE systems under model misspecification,
where 7M=P) measures are all close to 1 regardless of the actual inheritance level (a),
thereby obscuring meaningful inheritance quantification. Hence, the pruning procedure
in ODEinherit is critical and helps correct this inflation, improving the accuracy of the

inheritance metric 7(M=D),

5 Investigation of inheritance in yeast

We now return to the motivating data and analysis described in Section 2.1 and demonstrate

how ODEinherit enhances our understanding of cellular dynamics.

5.1 Data details and preprocessing

We describe additional details about how we preprocessed the data before showcasing
the results of ODEinherit. Our dataset includes 85 cells observed over 48 time points,
consisting of 25 mother cells and 60 daughter cells. To filter out noise, we use a combination
of Functional Principal Component Analysis (FPCA) and local polynomial regression to
simultaneously smooth and interpolate the trajectories, achieving a fivefold resolution on
the observed time grid. This analysis focuses exclusively on mother cells and first-generation
daughter cells, as their longer time series provide more data for effective estimation. Due
to heterogeneity across the cells, different mother cells may pass down different degrees
of inheritance to their daughters. To address this, we again applied FPCA to all mother
cells and grouped them into two main clusters using K-means clustering on their first five
principal component scores. Figure 6A depicts the trajectories of a primary cell activity
marker for each cluster. It is seen that cells in Cluster 1 exhibit fewer oscillations with larger
amplitude, whereas cells in Cluster 2 undergo multiple cell cycles with greater consistency.
We investigate the inheritance in each cluster separately. Further details are provided in

Appendix S1.
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5.2 Network estimation and inheritance measures

We apply the workflow described in Section 3 to each mother-daughter pair to infer their
regulatory networks and calculate the corresponding inheritance measure. Since the true
generating model is unknown, we use the first-order Matérn kernel with the same imple-
mentation as in Section 4.1.2, as it provides a more flexible function space to capture the
complexity of the cell trajectories. We follow a similar strategy as in the preliminary analy-
sis to validate that our method produces sensible inheritance measures for mother-daughter
pairs. Specifically, each daughter cell is paired with 10 mother cells from the cluster that
does not include its true mother cell, and the inheritance metrics are calculated on the
“fake” pairs as a comparison.

Figure 6B shows histograms of the inheritance metrics for true and fake pairs in each
cluster. We perform a Wilcoxon rank-sum test to test whether the median inheritance for
true and fake pairs are identical, with the p-values displayed on the histograms. For highly
variable mother cells (Cluster 1), the inheritance metric for true pairs are relatively low and
close to those of fake pairs, suggesting weak inheritance. Conversely, for cells that undergo
regular cell cycles (Cluster 2), the inheritance metric for true pairs are relatively high and
clearly distinguishable at 0.05 level from those of fake pairs. These results indicate that
the inheritance metric provided by our method are reasonable and biologically meaningful.
We further demonstrate two examples of mother-daughter network pairs in Figure 6C, one
with high inheritance and one with low inheritance. The difference between the mother and
daughter networks is quantified using the Graph Edit Distance (GED), which is defined
as the number of different edges between the networks. We find a negative correlation
between GED and the inheritance measure (p = —0.42 for Cluster 1, p = —0.20 for Cluster
2). This relationship further supports the validity of our inheritance metrics, as smaller

differences in the network structure are typically associated with stronger inheritance.
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Figure 6: Inheritance metric in yeast cells. A): The interpolated mother cells’ trajectories of
a primary cell activity marker in each cluster, with the median plotted as a dashed line. B):
Inheritance metric for mother-daughter pairs in each cluster, with p-values from the Wilcoxon
rank-sum test. C): Two examples of mother-daughter network pairs, one with a high inheritance
metric and one with a low inheritance metric.

6 Conclusion

Understanding how regulatory information is transmitted across generations during cell di-
visions is a fundamental question in cell biology. Building on the hypothesis that a daugh-
ter cell inherits its regulatory machinery from its mother, we developed a novel statistical
framework to quantify the extent of this inheritance. Our approach involves estimating an
ODE system to model protein regulatory dynamics and measuring inheritance based on
how effectively the mother’s regulatory network predicts the daughter’s trajectories. To
ensure reliable results, our inheritance measure depends on a sparse regulatory network,
which is achieved through a heuristic pruning procedure. Simulations validated the ef-

fectiveness of our method. We employed the method to investigate budding yeast cells
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and revealed lineage-specific differences in inheritance rates, highlighting its potential to
uncover biologically meaningful insights.

In this work, we primarily focused on ancestor cells and their first-generation daughter
cells, as their longer observed trajectories provide more reliable data for modeling. Future
research could explore how heritability influences cell fates across multiple generations,
potentially uncovering long-term developmental trends in cell populations, as suggested
by studies like (Mura et al., 2019). However, as later generations often exhibit shorter
observed trajectories, additional statistical considerations will be needed to address these
challenges. Another promising direction is to extend our framework to study cellular re-
sponses to experimental stimuli, leveraging ODE methods that have been adapted for such
purposes (Dai and Li, 2022). This could potentially offer novel insights into how regula-
tory inheritance shifts under different stress conditions. These extensions underscore the
versatility of our framework and highlight the need for continued development of statistical

methodologies to harness the full potential of mother-daughter cell data.

Code availability

The code for ODEinherit is publicly available as R functions in https://github.com/
WenbinWu2001/0DEinherit. For estimating the network, this codebase contains a further
computationally optimized version of KODE, which was graciously provided by Lexin Li

(which was originally in Matlab).
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