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A B S T R A C T   

Low Molecular Weight Heparins (LMWHs) are well-established for use in the prevention and treatment of 
thrombotic diseases, and as a substitute for unfractionated heparin (UFH) due to their predictable pharmaco
kinetics and subcutaneous bioavailability. LMWHs are produced by various depolymerization methods from 
UFH, resulting in heterogeneous compounds with similar biochemical and pharmacological properties. However, 
the delicate supply chain of UFH and potential contamination from animal sources require new manufacturing 
approaches for LMWHs. Various LMWH preparation methods are emerging, such as chemical synthesis, enzy
matic or chemical depolymerization and chemoenzymatic synthesis. To establish the sameness of active in
gredients in both innovator and generic LMWH products, the Food and Drug Administration has implemented a 
stringent scientific method of equivalence based on physicochemical properties, heparin source material and 
depolymerization techniques, disaccharide composition and oligosaccharide mapping, biological and biochem
ical properties, and in vivo pharmacodynamic profiles. In this review, we discuss currently available LMWHs, 
potential manufacturing methods, and recent progress for manufacturing quality control of these LMWHs.   

1. Introduction 

Heparin (HP) is complex, linear, and highly sulfated glycosamino
glycans (GAGs) found in cell granules, or in the extracellular matrix 
(Sasisekharan & Venkataraman, 2000). Heparin was first discovered in 
1916 and has been used as a clinical anticoagulant product since the 
1930s (Hogwood, Mulloy, Lever, Gray, & Page, 2023; McLean, 1916). 
Heparin is derived from a variety of animal species and tissues, and its 
structure varies with respect to its molecular weight distribution and 
sulfation pattern. Currently, porcine intestinal mucosa is the primary 
source of unfractionated heparin (UFH) used as an anticoagulant in 
clinical settings in the United States and Europe (Bangham & Wood
ward, 1970; Baytas & Linhardt, 2020). Heparin has a structure charac
terized by repeating disaccharide building blocks comprised of a uronic 

acid residue, either β-D-glucuronic acid (GlcA) or more commonly α-L- 
iduronic acid (IdoA) (1 → 4) glycosidically-linked to N-acetyl or N- 
sulfated α-D-glucosamine (GlcNAc, GlcNS). O-Sulfation typically takes 
place at the C2 position of IdoA, and the C3 and C6 positions of α-D- 
glucosamine (GlcN) (Casu, 1990; Casu, Naggi, & Torri, 2015; Zhao et al., 
2020). Additionally, heparin contains distinctive pentasaccharide se
quences (GlcNS/Ac6S(1 → 4)GlcA(1 → 4)GlcNS3S6S(1 → 4)IdoA2S(1 
→ 4)GlcNS6S) present within its polymer chain (Gallus & Coghlan, 
2002; Zhang, Zhang, Tan, Pan, & Zhang, 2019). 

The biosynthesis of heparin commences with the formation of the 
tetrasaccharide linker at the reducing end of the heparin chain (GlcA- 
Gal-Gal-Xyl) where it is covalently O-linked to the serine residues of a 
core protein within the endoplasmic reticulum (Turbbull & Gallagher, 
1991; Weiss et al., 2020). The polysaccharide backbone composed of 
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alternating GlcA and GlcNAc residues undergoes extension from the 
linkage region, driven by the polymerases exostosin glycosyltransferase 
(EXT). Subsequent modifications occur through de-N-acetylation and N- 
sulfation of many GlcNAc residues catalyzed by N-deacetylase/N-sul
fotransferase (NDST). Additionally, C5-epimerase catalyzes the epime
rization of many GlcA residues into IdoA, followed by 2-O-sulfation of 
IdoA, 6-O-sulfation of GlcNS and occasionally by 3-O-sulfation of 
GlcNS/GlcNS6S through the action of 2-O-, 6-O-, and 3-O-sulfo
transferases in the Golgi (Fu, Suflita, & Linhardt, 2016; Mulloy, Hog
wood, Gray, Lever, & Page, 2016). There are also minor residues, 
including GlcN and GlcA2S that have been identified in heparin (Douaisi 
et al., 2024). 

Heparin is an important anticoagulant drug widely used in the 
clinical treatment of thrombosis and related conditions. Its anticoagu
lant activity is mediated by binding to the serine protease inhibitor 
antithrombin III (AT), indirectly interacting with factor Xa and factor IIa 
(Beurskens et al., 2020; Björk & Lindahl, 1982). The active pharma
ceutical ingredient (API) of heparin is a polydisperse and heterogeneous 
polysaccharide with an average molecular weight of 16 kDa. The 
interaction between AT and heparin is mediated by a specific penta
saccharide sequence with a central 3-O-sulfo group, known as the AT 
binding site (Li, Johnson, Esmon, & Huntington, 2004; Onishi, Ange, 
Dordick, & Linhardt, 2016). In addition to its anticoagulant activity, 
heparin shows great potential as a biomolecule for treating inflamma
tion, injury, tumors, and has antiviral activity (Banik, Yang, Kang, Lim, 
& Park, 2021; Cui, Sun, Wang, Zhang, & Wang, 2019; Kwon et al., 
2020). Wang and colleagues reviewed the non-anticoagulant activity of 
heparin and its further development as an important drug (Wang et al., 
2022). 

Low molecular weight heparins (LMWHs), first introduced as hepa
rin substitutes in the 1980s, were prepared using controlled enzymatic 
or chemical depolymerization of unfractionated heparin to produce 
chains with molecular weight of approximately 3–8 kDa (Salzman, 
1986; Weitz, 1997). The different depolymerization methods utilized to 
prepare LMWHs contribute to variations in their pharmacokinetic 
properties and anticoagulant profiles Table 1 (Lopez, 1991; Iqbal & 
Sadaf, 2023; Merli & Groce, 2010). Enoxaparin is the most frequently 
used LMWH among all commercially available LMWHs. It is obtained by 
alkaline depolymerization treatment of heparin under specific condi
tions using sodium hydroxide (Saxena, Chaudhary, Chaudhary, & 
Aggarwal, 2022; Uzan, 1998). Controlled deaminative cleavage with 
nitrous acid followed by sodium borohydride is employed for depoly
merizing heparin to obtain dalteparin and nadroparin (Cook et al., 2011; 
Pinna, Simula, & Zinellu, 2012). Tinzaparin is produced from the 
depolymerization of UFH by a highly purified heparin lyase of bacterial 

origin., Heparin lyase breaks the chains between the anomeric carbon of 
an N-sulfate-glucosamine and the glucuronic acid, resulting in an un
saturated uronic acid at its non-reducing end (Amerali & Politou, 2022) 
(Fig. 1). 

The main difference between UFH and LMWH lies in their relative 
inhibitory effects on factor Xa and thrombin (factor IIa). While UFH 
displays equivalent inhibitory activity against both factors: anti-factor 
Xa/anti-factor IIa ratios of approximately 1, LMWHs have higher ac
tivity against factor Xa, but reduced activity against factor IIa: anti- 
factor Xa/anti-factor IIa ratios of approximately 4 (Hao, Sun, Wang, 
Zhang, & Wang, 2019). The impact of molecular weight distribution on 
the anticoagulant activity of heparin was recognized several decades ago 
(Barrowcliffe, Mulloy, Johnson, & Thomas, 1989; Yur’eva et al., 2021). 
Compared to UFH, LMWHs are subcutaneously bioavailable, have a 
longer half-life, more predictable anticoagulant response, and show a 
decreased risk of heparin-induced thrombocytopenia (HIT), a life- 
threatening adverse effect associated with heparin (Merli & Groce, 
2010; Spadarella et al., 2020) (Table 2). 

Currently, both UFH and LMWHs demonstrate numerous adverse 
effects and a predictable supply chain crisis. All heparin approved for 
medical use in the United States and Europe originates from porcine 
intestinal mucosa, with the majority originating from Chinese pigs (Al- 
Hakim, 2021). This dependence on a single species and a single major 
country of origin weakens the robustness of the heparin supply world
wide, particularly in light of recent swine plague outbreaks (Vilanova, 
Tovar, & Mourão, 2019). Alternative animal sources, such as bovine and 
ovine intestinal mucosa have been developed as new products of UFH 
and LMWH (Oliveira et al., 2022; Tovar et al., 2013). However, these 
animal source materials can contain infectious agents causing viral or 
prion diseases, including bovine spongiform encephalopathy and 
scrapie (Andrews et al., 2020). Modern capabilities in synthetic chem
istry and biology indicate that these methods could offer an alternative 
source of LMWHs. Recently, various patents for low molecular weight 
heparin either degraded by chemically or enzymatically method lose 
market exclusivity worldwide, leading to generic or biosimilar products 
that capture market share from less expensive drug products (Brouwers, 
Roeters van Lennep, & Beinema, 2019; Iqbal & Sadaf, 2023). The 
approval of the first generic version of enoxaparin by the Food and Drug 
Administration in 2010 represents a significant development in US 
regulatory science and policy (Lee et al., 2013; Minghetti, Cilurzo, 
Franzé, Musazzi, & Itri, 2013). 

The development and regulation of LMWH and its generic version is 
covered by several detailed reviews (Iqbal & Sadaf, 2023; Lee et al., 
2013; Lever, Mulloy, & Page, 2012). This review provides a compre
hensive review of the approach used to latest advances in LMWHs 

Table 1 
Commercially available LMWHs.  

LMWH Trade name Characteristics Method of preparation Mean Mw 
(KD) 

Anti-Xa/IIa 
ratio 

Ref 

Ardeparin Normiflo 2-N-acetyl-6-O-sulfo-D-glucosamine, 
Labile glycosidic bonds 

Peroxidative depolymerization  6.0 1.9 Troy et al., 1997 

Dalteparin Fragmin 2,5-anhydro-D-mannose at reducing 
terminus 

Nitrous acid depolymerization  6.0 1.9–3.2 Lindahl et al., 1979; Pineo & 
Hull, 2004 

Enoxaparin Clexane/ 
Lovenox 

4,5 unsaturated uronic acid at non- 
reducing terminus 

Benzylation and alkaline 
depolymerization  

4.2 3.3–5.3 Uzan, 1998; Mascellani et al., 
2007; Fareed et al., 2003 

Nadroparin Fraxiparine 2,5-anhydro-D-mannose at reducing 
terminus 

Nitrous acid depolymerization  4.5 2.5–4.0 Davis & Faulds, 1997 

Reviparin Clivarin 2,5-anhydro-D-mannose at reducing 
terminus 

Nitrous acid depolymerization, 
chromatographic purification  

4.0 3.6–6.1 Wellington, McClellan, & Jarvis, 
2001 

Tinzaparin Innohep/ 
Logiparin 

4,5 unsaturated uronic acid at non- 
reducing terminus 

Heparin lyase digestion  4.5 1.5 Mousa, 2002; Amerali & Politou, 
2022 

Certoparin Sandoparin 2,5-anhydro-D-mannose at reducing 
terminus 

Deaminative cleavage with isoamyl 
nitrite  

5.4 1.5–2.5 Barnett, 1982; Donadini, Ageno, 
Guasti, & Squizzato, 2013 

Parnaparin Fluxum 2-N, 6-O-disulfo-D-glucosamine at 
reducing terminus 

Oxidative depolymerization with Cu2+

and hydrogen peroxide  
5.0 1.5–3.0 Frampton & Faulds, 1994 

Bemiparin Beparine 2-O-sulfo-4-enepyranosuronic acid at 
non-reducing terminus 

Alkaline degradation  3.6 8.1–9.7 Sánchez-Ferrer, 2010  
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quality assurance and manufacture. The quality control of structural 
characteristics and bioactivity assay were evaluated. Next, we focused 
on the various modes of LMWH preparation, including synthesis and 
degradation methods, such as chemical, chemoenzymatic, bio
engineered syntheses, and chemical degradation, enzymatic degrada
tion, and physical degradation. 

2. Quality control and compositional analysis 

LMWHs are unique drugs with heterogeneous and complicated car
bohydrate chains, making their manufacture and characterization 
challenging. Due to their special origin and physicochemical properties, 
assessing the quality and consistency of efficacy of their generic versions 
poses many challenges. Unlike small molecule drugs with relatively 
simple chemical structures, LMWHs are a complex mixture of oligo
saccharide chains, the structure of which cannot be unambiguously 
confirmed by conventional means of structural confirmation alone, and 
the clinical indices are usually insensitive to the differences between 
products. Therefore, specific methods and indicators need to be estab
lished to characterize the consistency or similarity of their APIs. It is 
necessary to establish a comprehensive and systematic in vitro and in vivo 
evaluation methodology to assess the consistency of the characteristics 
of generic drugs to ensure that these products do not pose safety risks, 
with the most significant risk being immunogenicity. 

Currently, the US Food and Drug Administration and the European 

Medicines Agency (EMA) have issued a series of guidelines and litera
ture to guide the research, development and evaluation of generic 
LMWH formulation. The Food and Drug Administration defines equiv
alence criteria for enoxaparin that include physiochemical properties, 
heparin starting material, mode of depolymerization, disaccharide 
composition, fragment mapping and sequence of oligosaccharide spe
cies, biological and biochemical assays, and in vivo pharmacodynamics 
profile (Table 3). Generic LMWHs differ in anticoagulant activity, mo
lecular weights and specific oligosaccharide sequences. For example, a 
series of analytical approaches including heparin lyase digestion, AT 
affinity chromatography, gel permeation chromatography, anion ex
change chromatography, mass spectrometry and NMR spectroscopy 
have been used to assess potential differences between the original 
enoxaparin and generic enoxaparin (Mourier, Herman, Sizun, & Viskov, 
2016) (Table 4). 

Fig. 1. Chemical structures of heparin and different LMWHs.  

Table 2 
Current limitations and clinical challenges of UFH and LMWHs.  

Characteristics UFH LMWH 

Cost Lower Higher 
Half-life Shorter (~1 h) Longer (~3–6 h) 
Mode of administration Intravenous Subcutaneous 
Anticoagulant response Less predictable More predictable 
Side effects High High 
Reversibility Rapidly reversible by PS Partially reversible by PS 
Risk of HIT Higher Lower  

Table 3 
USP criteria for enoxaparin.  

Category Criteria 

Anticoagulant potency 
FXa: NLT 90, NMT 125; FIIa: NLT 20, NMT 35, ratio of 
FXa to FIIa is between 3.3 and 5.3 

Mw distribution 

Average Mw 4500 Da, range between 3800 and 5000 
Da, 16 % Mw less than 2000 Da, range between 12 and 
20 %, 74 % Mw between 2000 and 8000 Da, range 
between 68.0 and 82.0 %, no more than 18 % Mw 
higher than 8000 Da 

Disaccharide building 
blocks 

Degree of sulfation is no less than 1.8 per disaccharide 
unit 

Oligosaccharide profile 
4-enopyranose uronate at NRE, 20 % contain a 1,6- 
anhydro derivative on the RE, range between 15 and 
25 % 

Bacterial endotoxins No more than 0.01 USP endotoxin unit per IU of FXa 

Nitrogen content 1.8–2.5 % 
Heavy metals No more than 0.0030 % 
Sodium content 11.3–13.5 % 
Molar ratio of sulfate to 

carboxylate NLT 1.8 

Benzyl alcohol NMT 0.1 %  
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Due to the unique structural aspects of LMWH products, properly 
designed clinical trials can be used to demonstrate that generic products 
are safe and effective, although clinical metrics are not sufficiently 
sensitive to distinguish chemical and activities differences among these 
drugs. For this reason, the Food and Drug Administration proposes that 
the consistency of the generic product and the reference product should 
be evaluated in five ways: 1. The physical and chemical properties 
should be the same; 2. The heparin raw material should be in compli
ance with the USP, and the quality standard of the heparin sodium API 
and the depolymerization pattern of the generic raw material should be 
consistent with that of the reference product; 3. The disaccharide 
composition, oligosaccharide fragment distribution and oligosaccharide 
sequence are consistent; 4. The in vitro biological and biochemical ac
tivities of the generic product and the reference product are consistent; 
5. The human pharmacodynamic equivalence between the generic 
product and the reference product, mainly anti-Xa and anti-IIa activity, 
are consistent. In 2016, the Food and Drug Administration introduced 
immunogenicity-related considerations for LMWH. The most common 
adverse reaction to heparin is bleeding, the most serious of which is 
caused by heparin-induced thrombocytopenia (HIT) (Arepally, 2017). 
HIT is mediated by platelet factor 4 (PF4)-heparin complex antibody 
inducers, and impurities in LMWH may act as immune agonists or pro
mote immunogenicity by altering the interaction of LMWH with PF4 
(Sachais et al., 2012). 

2.1. Animal sources 

Porcine intestinal mucosa is the primary source for heparin, while 
bovine and ovine intestinal mucosa are alternative sources. There are 
drawbacks to using porcine intestinal mucosa as the exclusive source for 
heparin. With the increased demand for heparins and LMWHs, there is 
an emerging need for alternative sources to porcine intestinal heparin. 
Bovine intestinal heparin was considered potentially at risk and was 
withdrawn by manufacturers in the 1990s due to the bovine spongiform 
encephalopathy epidemic. New techniques have been developed to 
improve the safety of bovine intestinal heparin (Andrews et al., 2020; 
Szajek et al., 2015). As opposed to bovine intestinal heparin, ovine in
testinal heparin has a comparable pharmacological profile to porcine 
intestinal heparin (Hoppensteadt et al., 2015; Olson et al., 2023). 

Table 4 
Analytical methods used for quality control of LMWH.  

Category Methods Characters Ref 

Mw distribution Support vector 
machine 
computational 
technique 

Mw determination 
with standards 

Arnold et al., 
2017 

SEC-MALS/RI Mw determination 
in the absence of 
standards 

Beirne, Truchan, 
& Rao, 2011;  
Ouyang et al., 
2017 

Disaccharide 
analysis 

SAX-UV Disaccharide 
analysis with high 
resolution, stability 
and quantitative 
accuracy 

Sadowski, 
Gadzala- 
Kopciuch, & 
Kowalkowski, 
2017 

Multiple heart cut 
(MHC) two- 
dimensional LC- 
MS/MS 

Compatible with 
MS 

Chen et al., 
2021; Chen 
et al., 2022 

Ion-pair reverse- 
phase MS (IPRP- 
MS) 

High resolution, 
efficient, 
convenient, 
reduction in column 
efficiency and ion- 
pair reagent may 
impact MS 

Galeotti & Volpi, 
2013; Yang 
et al., 2011;  
Zhang, Xie, Liu, 
Liu, & Linhardt, 
2009 

Pre-column 
derivatization 

High sensitivity 
using AMQC 

Wang et al., 
2021 

HILIC-LC-MRM- 
MS 

Good compatibility 
with MS 

Sun et al., 2016 

CE-MS High resolution and 
sensitivity, unique 
interface to linked 
ESI-MS 

Lin et al., 2017;  
Ouyang et al., 
2019; Sun et al., 
2016 

Terminal groups 
and minor 
modifications 

LC-UV, LC-MS Linkage region 
oxidation, 2,3- 
epoxide and 
galacturonic acid 
GalA 

Mourier & 
Viskov, 2004;  
Ozug et al., 
2012; Gardini 
et al., 2021 

LC-MS Quantitative 
analysis of the 
linkage region 
tetrasaccharides 

Chen et al., 2017 

NMR combined 
with PCA, FDA, 
PLS-DA, LDA 

Distinguish 
between different 
bands of LMWHs 

Guerrini et al., 
2015; Jiang, Li, 
Ma, Shi, & Wu, 
2022;  
Monakhova, 
Diehl, & Fareed, 
2018 

Quantitative 
HSQC 

Percentage of 
monosaccharide 
and disaccharides 

Mauri et al., 
2017 

[1H, 15N] NMR 
and 2D NMR 

2,5- 
anhydromannitol 
residue, amine 
groups of GlcN and 
GlcN3S 

Langeslay et al., 
2013; Beecher, 
Manighalam, 
Nwachuku, & 
Larive, 2016;  
Beecher & 
Larive, 2015 

Oligosaccharide 
mapping 

Top-down & 
bottom-up with 
GlycReSoft and 
GlycCompSoft 
software 

Composition of 
oligosaccharides 
with different 
degrees of 
polymerization 

Li, Zhang, Zaia, 
& Linhardt, 
2012; Maxwell 
et al., 2012; Li 
et al., 2014;  
Sadowski, 
Gadzała- 
Kopciuch, & 
Buszewski, 
2020; Wang 
et al., 2016 

Online cation 
suppressor SEC- 
MS 

Reduce the number 
of false positive 

Zaia et al., 2016  

Table 4 (continued ) 

Category Methods Characters Ref 

SEC-MS with 
Glycommaping 
software 

Improve the 
performance of SEC 
separation 

Yan et al., 2022 

HepFarser Decipher the major 
components of 
LMWHs 

Wang et al., 
2021 

MsPHep LMWH databases 
using a theoretical 
database-based 
strategy 

Xie, Bu, LaCava, 
& Chi, 2023 

Antithrombin 
binding region 

Exhaustive 
treatment with 
heparin lyase II 

3-O-sulfated 
tetrasaccharide 
composition 

Li et al., 2014;  
Chen et al., 2017 

[1H, 15N] HSQC 
NMR 

Characterize the 3- 
O-sulfated 
tetrasaccharides 

Beecher et al., 
2016 

Risk of HIT SPR Binding kinetics Pattnaik, 2005;  
Zhang, Datta, 
Dordick, & 
Linhardt, 2020 

Electron 
microscopy 

Complex size Nevzorova et al., 
2019 

Zeta potential Complex charge Bertini et al., 
2017 

Size-exclusion 
chromatography 
and MS 

Structure 
mechanism of PF4- 
LMWH interaction 

Wu et al., 2019;  
Shi et al., 2023  
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Dalteparin-like LMWHs were obtained from bovine lung and ovine in
testinal heparin. The effectiveness of these LMWHs as a substitute for 
porcine intestinal mucosa has been assessed (Xie et al., 2018). The 
heparin contamination crisis happened when crude porcine intestinal 
heparin was adulterated with oversulfated chondroitin sulfate (Liu, 
Zhang, & Linhardt, 2009). In addition, outbreaks of African swine fever 
have led to the death of millions of pigs, which severely threatened the 
global heparin supply chain. Therefore, reconsideration of the use of 
bovine and ovine intestinal heparins and depolymerized enoxaparin are 
being discussed at regulatory and pharmaceutical levels and at various 
stages of development (Sharma, Civelli, & Petersen, 2022). The key tests 
for LMWH quality assurance are the characterization of the parent 
heparin API. Recently, bovine and ovine intestinal heparins were 
compared to porcine intestinal heparin (Kouta et al., 2019; Kouta et al., 
2021; Zhang, Shi, Li, Shi, & Chi, 2023). Douaisi and coworkers have 
recently prepared enoxaparin from chemoenzymatically synthesized 
heparin (Douaisi et al., 2024). Baytas et al. reported a β-elimination 
preparation of LMWH obtained from a remodeled heparin of bovine 
intestinal origin, which was treated with 3-OST (Baytas et al., 2021). 
LMWHs prepared from bovine intestinal and lung heparin, and ovine 
intestinal heparin, were also compared to branded enoxaparin using 
pharmacopeial potency, top-down, bottom-up, and compositional 
analysis. The results showed a comparable oligosaccharide distribution 
to commercially available enoxaparin (Chen et al., 2019; Hoppensteadt 
et al., 2015; Jeske et al., 2018; Liu et al., 2017). 

2.2. Anticoagulant potency 

The therapeutic effects of LMWHs are mainly due to their in
teractions with plasma proteins including factor Xa and thrombin. The 
anticoagulant mechanism of enoxaparin is attributed to its ability to 
bind to AT and formation of ternary complexes with coagulation factors, 
principally Xa and IIa. The anticoagulant activity is measured by clot- 
based methods such as activated clotting time (ACT), thrombin time 
(TT), activated partial thromboplastin time (aPTT), anti-factor Xa and 
anti-factor IIa assay, protamine sulfate (PS) neutralization studies, and 
thrombin generation assay (TGA). In the USP monograph, enoxaparin 
has a potency of no less than (NLT) 90 and no more than (NMT) 125 anti- 
factor Xa international units (IU)/mg, and NLT 20.0 and NMT 35.0 anti- 
factor IIa IU/mg, calculated on a dried basis. In addition, the ratio of 
anti-factor Xa activity to anti-factor IIa activity is between 3.3 and 5.3. 
Therefore, it is important to compare the potency of each LMWH with its 
Reference Listed Drug (RLD). The LMWH and anticoagulant potency of 
ovine and bovine intestinal heparin-derived LMWHs were systemati
cally evaluated and showed comparable profiles to branded enoxaparin 
(Brouwers, Roeters van Lennep, & Beinema, 2019; Jeske et al., 2018; 
Mourier et al., 2016). 

2.3. Molecular weight distribution 

Chain size is one of the factors affecting the biological activity of 
LMWH, and an accurate method to determine MW distribution and 
average molecular weight is essential for quality control. In the USP 
monograph, molecular weight distribution and weight average molec
ular weight are determined by size exclusion LC equipped with a dif
ferential refractive index (RI) detector in accordance with the 
monograph criteria. Two 7.8 mm × 300 mm columns in series and 0.5 M 
lithium nitrate mobile phase solution are used. The acceptance criteria 
for enoxaparin are Mw between 3800 and 5000 Da, the percentage of 
molecular weight lower than 2000 Da (M2000) is between 12.0 % and 
20.0 %, molecular weights in the range 2000–8000 Da (M2000–8000) is 
between 68.0 % and 82.0 %, and molecular weights greater than 8000 
Da (M8000) is no more than 18.0 %. However, the accuracy of this 
method is ultimately dependent on calibration with high purity stan
dards. In addition, the use of RI detection as specified in the monograph 
limits the analysis. Therefore, chemoenzymatically synthesized pure 

oligosaccharides with varied and determined molecular weights are 
options used as standards in combination with the Support Vector Ma
chine (SVM) computational technique (Arnold et al., 2017). Further
more, methods not requiring calibrants have been developed for the 
determination of molecular weight distributions. Size exclusion chro
matography (SEC) relying on multiple angle laser scattering (MALS)/RI 
detectors has been developed for accurate analysis of HP and LMWH in 
the absence of standards (Beirne et al., 2011; Ouyang et al., 2017). 

2.4. Disaccharide analysis 

Repeated disaccharide units are characteristic structures of GAGs. 
LMWHs have different positions and numbers of sulfate groups in the 
repeating disaccharide units, and the proportion of these disaccharides 
with different positions and numbers of sulfate groups may vary 
depending on the animal source, preparation process, manufacturer and 
even batch. Therefore, the analysis of disaccharide composition after 
thorough enzymatic digestion is an essential element of quality control. 
The non-reducing end of the sugar chain of disaccharides or oligosac
charides released by heparin lyase degradation has an unsaturated 
uronic acid residue with a Δ4, 5-position double bond, which conjugates 
with the carboxyl, and exhibits a characteristic absorption at 232 nm. 
Deaminative cleavage using nitrous acid (HONO) is an alternative 
degradation method for disaccharides or oligosaccharide, which retains 
uronic acid epimerization and further determined by LC-MS (Gill, Wang, 
Shi, & Zaia, 2012; Kariya, Herrmann, Suzuki, Isomura, & Ishihara, 1998; 
Zhang et al., 2020). Qualitative and quantitative analysis can be ach
ieved by combining different isolation mechanisms and appropriate 
detection methods, providing an important characterization of the basic 
composition for quality control. 

Strong anion exchange (SAX) is a chromatographic method for the 
separation of disaccharides based on ionic strength using a high con
centration of non-volatile salts as the mobile phase. SAX is characterized 
by high resolution, stability and quantitative accuracy in combination 
with a UV detector (Sadowski et al., 2017). However, it is not possible to 
use online coupled mass spectrometry due to the use of non-volatile salts 
as the mobile phase. A multiple heart cut (MHC) two-dimensional LC- 
MS/MS was developed to overcome this incompatibility. SAX-UV was 
used as first dimensional chromatography for the effective separation of 
LMWH products, and then designated chromatographic peaks were 
automatically entered into the second dimension of SEC for on-line 
desalting, followed by MS qualitative analysis (Chen et al., 2021; Chen 
et al., 2022). This method exploited the stability, accuracy and resolu
tion of traditional SAX and enabled on-line qualitative analysis by MS. 

Ion-pair reverse-phase MS (IPRP-MS) is an alternative method for 
disaccharide analysis due to its extremely hydrophilic nature, which is 
difficult to retain in conventional reversed-phase chromatographic col
umns. The addition of the ion-pairing reagents to the mobile phase re
sults in the formation of neutral molecules with a certain lipophilicity, 
which increases the retention of the disaccharide in the chromatography 
and improves the separation. Commonly used ion-pairing reagents 
include tributylamine (TBA) and ammonium acetate, butylamine (BTA) 
and ammonium acetate, and pentylamine (PTA) and hexa
fluoroisopropanol (HFIP) (Galeotti & Volpi, 2013; Yang et al., 2011; 
Zhang et al., 2009). IPRP provides a high degree of chromatographic 
resolution and good MS compatibility, making it an efficient and 
convenient method for disaccharide analysis. However, the addition of 
ion-pairing reagents causes them to readily and irreversibly combine 
with the column packing material, leading to a reduction in column 
efficiency over time and a shortening of column lifetime. In addition, the 
ion-pairing reagent may impact MS performance. 

Pre-column derivatization can alter chromatographic behavior and 
the introduction of a luminescent moiety diversifies the detection means 
and further improves detection sensitivity. Heparin disaccharides can be 
completely separated on RP, HILIC and capillary electrophoresis (CE) 
after derivatization with 2-aminoacridone (AMAC). Moreover, Wang 
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et al. used 6-amino-N-(2-diethylamino) ethyl-quinoline-(2- 
carboxamide) (AMQC) derivatization to quantify heparin disaccharide 
in MRM mode, with sensitivity increased by 20–320-fold compared to 
AMAC (Wang, Dhurandhare, et al., 2021). This high sensitivity and 
specificity make these methods ideal for the quantitative analysis of 
biological samples, such as cells, tissues, and body fluids. 

HILIC, also known as “aqueous normal-phase chromatography”, is a 
hybrid chromatography combining normal-phase and ion-exchange 
separation mechanisms, is suitable for the separation of highly polar 
compounds. HILIC has poor resolution, high and unstable UV back
ground, but good compatibility with MS, and its combination with MS 
greatly improves the applicability of the method. Sun, et al. used HILIC 
for separation in combination with multiple reaction monitoring (MRM) 
for qualitative and quantitative analysis of thoroughly digested LMWH 
(Sun, Sheng, et al., 2016). 

CE has the unique advantages of high resolution and high sensitivity 
for highly charged substances such as heparin disaccharides. Conven
tional CE is often used with UV or fluorescence detectors due to non- 
volatile salts such as phosphate buffer. Zhang et al. used the CE-UV 
method to analyze disaccharides in LMWHs with different AT III bind
ing activity fractions (Zhang, Li, Zhang, & Kang, 2017). The interface of 
CE-MS is the key to establishing a successful method. With the devel
opment of CE and MS coupling technology, CE-MS has been used to 
qualitatively and quantitatively analyze heparin disaccharides with 
different degrees of sulfation (Ouyang et al., 2019; Sun, Lin, et al., 
2016). Lin, et al. reported a volatile methanolic ammonium acetate 
electrolyte and sheath fluid linked to negative ion ESI-MS (Lin et al., 
2017). 

2.5. Terminal groups and minor modifications of LMWHs 

Different cleavage methods create LMWHs containing distinctive 
terminal groups, which could be markers of manufacturing process. 
Therefore, it is required to be monitored by LC-UV, LC-MS and NMR 
methods for quality control. Enoxaparin is the most commonly used 
LMWH have unsaturated 4-enopyranosuronate residues at the non- 
reducing ends (NRE) and about 20 % of the materials contain a 1,6- 
anhydro derivative at the reducing end of the chain, the range being 
between 15 % and 25 % which is recorded in the United States Phar
macopoeia (USP) (United States Pharmacopeia, 2023). In other in
stances of LMWH, dalteparin and nadroparin cleaved by nitrous acid 
resulted in 6-O-sulfo-2,5-anhydro-D-mannitol at the reducing ends. In 
case of tinzaparin depolymerized by heparin lyase have an unsaturated 
uronic acid residue at its NRE. Although these unusual structures are in 
very low abundance, they are important indicators for the process 
conditions. 

Minor modifications during different process procedures are also 
important quality attributes for LMWHs and need further investigation. 
For instance, linkage region oxidation, 2,3-epoxide and galacturonic 
acid GalA can be generated within the internal enoxaparin sequences 
(Gardini et al., 2021; Mourier & Viskov, 2004; Ozug et al., 2012; Rej & 
Perlin, 1990). The quantitative analysis of the linkage region tetra
saccharides in enoxaparin was also provided (Chen, Lin, et al., 2017). 
Ring contraction in dalteparin internal aminosugar residues was ob
tained using 2D NMR and LC-MS analysis (Alekseeva et al., 2014; Bisio 
et al., 2017). Extensive efforts, such as combined 2D NMR and LC-MS 
analysis have been devoted to the development of analytical tech
niques in terminal groups and minor modifications of LMWHs. 

2.6. Oligosaccharide mapping 

The oligosaccharides in LMWHs differ in degree of polymerization, 
glycosyl composition, and number of sulfate groups or positions at each 
degree of polymerization. The precise structure remains unknown. It is 
not possible to characterize every molecular species in LMWH prepa
rations. Therefore, oligosaccharide mapping is an important supporting 

data for structure confirmation, conformational relationship, and qual
ity control. However, due to the structural characteristics and micro- 
uniformity of the relative molecular mass distribution, the difficulty of 
analyzing these substances is much higher than that of disaccharides. 
Single chromatographic analysis is often unable to meet the re
quirements of oligosaccharide analysis. Liquid chromatography-mass 
spectrometry has become the main tools for LMWHs, and the 
commonly used chromatographic methods include IPRP, HILIC, SEC, 
and CE. 

Top-down & bottom-up approaches have been developed for the 
quality control of enoxaparin and generic LMWH. The method uses a 
virtual data library generated by theoretical fractions generated by 
GlycoReSoft, consisting of enoxaparin to complete the retrieval and 
attribution of MS data. The compositions of oligosaccharides with 
different degrees of polymerization of enoxaparin from different man
ufacturers were compared (Li et al., 2012; Li, Yang, et al., 2014; Sado
wski et al., 2020). The tremendous improvement in chromatographic 
resolution of LMWH by ultra-high-resolution SEC, online MS has also 
made great progress in the characterization of these oligosaccharides. 
However, the multiple adducts of volatile ammonium salts in the mobile 
phase and electrospray ionization have led to a large number of false 
positives. An online cation suppressor has been introduced to remove 
the cations, and an isotope MS database for heparin analogues was 
established to reduce the number of false positives (Zaia et al., 2016). 
Glycommaping software has also been introduced through chromato
graphic fitting and MS assignment correction, which greatly improves 
the performance of SEC separation. (Yan et al., 2022). 

2.7. Bioinformatics-assisted parsing of mass spectrometry data 

While mass spectrometry has played an important role in the analysis 
of polysaccharide composition, the large amount of data generated by 
MS makes assignment very tedious and challenging. In particular, 
LMWHs are composed of polydisperse and structurally heterogeneous 
oligosaccharides, which further complicates the analysis. The different 
oligosaccharides with close molecular weights may exceed the resolu
tion limit of the instrument and the isotopic peaks may overlap. The 
strategies for computational algorithms and software-assisted MS 
annotation can be divided into three categories: structural library-based 
(Lohmann & von der Lieth, 2004), spectral library-based (Xue, Laine, & 
Matta, 2015) and de novo approaches (Hu et al., 2014). GlycReSoft is one 
of the most popular and successful tools that automates glycan recog
nition based on isotope peaks and charge (Maxwell et al., 2012). It has 
been applied successfully to the top-down analysis of LMWHs. In addi
tion, the GlycCompSoft algorithm has been reported to support top- 
down analysis, significantly improving the speed and reliability of 
data interpretation (Wang et al., 2016). HS-SEQ and GAG-ID are two 
other algorithms for de novo sequencing of GAGs (Chiu, Huang, Orlando, 
& Sharp, 2015; Duan & Amster, 2018). In addition, HepParser has been 
developed to decipher the major components of LMWHs with signifi
cantly improved accuracy through perk merging strategy (Wang, Wang, 
et al., 2021). Furthermore, Glycomapping relies on an innovative 
chromatography fitting and a MS correction strategy to analyze and 
compare the enoxaparin produced by different manufacturers and ani
mal sources (Yan et al., 2022). However, both of these algorithms or 
software do not provide a database, and thus, users need to generate on 
their own a hypothetical structural library. MsPHep provides various 
LMWH databases using a theoretical database-based strategy, which is a 
useful tool for rapid LMWH analysis and comparison (Xie et al., 2023). 

2.8. NMR spectroscopy 

NMR spectroscopy has been used extensively to characterize heparin 
and its derivatives. The successful detection of the potential adulterant, 
oversulfated chondroitin sulfate (OSCS), and other impurities in heparin 
and LMWHs led to the introduction and validation of proton NMR 
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(Guerrini et al., 2008). The U.S. Pharmacopoeia (USP) uses 1H NMR and 
13C NMR to identify dalteparin and enoxaparin by the presence or 
absence of characteristic peak signals at defined chemical shifts. The 
advantage of NMR is that the sample does not require any further 
modification or chromatographic fractionation prior to the measure
ment. In addition, NMR provides a high-resolution qualitative and 
quantitative fingerprint that allows structural features to be assigned 
and compared. Generic and commercial branded LMWHs have been 
easily differentiated by coupling NMR and chemometric analysis 
(Guerrini et al., 2015; Jiang et al., 2022). Furthermore, LMWHs from 
different animal sources were investigated by NMR combined with 
multivariate analysis including principal component analysis (PCA), 
factor discriminant analysis (FDA), partial least squares-discriminant 
analysis (PLS-DA) and linear discriminant analysis (LDA) (Monakhova 
et al., 2018). Quantitative HSQC was applied to calculate the percentage 
of monosaccharide and disaccharides by normalizing the same mono
saccharide and carbon-proton pair type of reference and target samples 
(Mauri et al., 2017). Therefore, 2D NMR is suitable for pharmaceutical 
quality control of LMWHs. 

Although proton and carbon NMR are routinely applied for the 
quality assurance of pharmaceutical LMWHs, 15N NMR has showed its 
own advantage for LMWH characterization (Langeslay, Beni, & Larive, 
2011). Measurement of the [1H, 15N] HSQC spectra of enoxaparin 
determined the chemical exchange characteristics of the sulfamate 
protons, and [1H, 15N] HSQC-TOCSY spectrum was used to assign spe
cific NH correlations through TOCSY cross peaks to sugar ring protons 
with chemical shifts characteristic of specific GlcNS microenvironments 
(Beecher et al., 2016; Langeslay et al., 2013). This method could 
distinguish enoxaparin from tinzaparin, which had a more diverse 
mixture of oligosaccharides, and dalteparin, which suffered from the 
loss of sulfamate groups in the formation of 2,5-anhydromannitol res
idue. Furthermore, 15N NMR was proved to have the ability to detect the 
amine groups of GlcN and GlcN3S in aqueous solution, could be used for 
further study of the amine groups in LMWHs (Beecher & Larive, 2015; 
Pomin, 2016). 

2.9. Antithrombin binding region 

Heparin-AT binding is one of the most well studied interactions, 
which depends on a specific type of pentasaccharide sequence contains a 
3-O-sulfo group in the central GlcN residue (Shi et al., 2022). LMWHs are 
derived through controlled cleavage of UFH, results in differences in 
anti-Xa and anti-IIa activity ratio. The structure features of different 
LMWHs regard to the distribution of chain length and sulfation patterns 
were investigated. LMWHs were fractionated into high affinity and no 
affinity pools with their ability to bind antithrombin and the fractions 
were characterized (Bisio et al., 2009; Chen et al., 2018). An alternative 
approach to determine 3-O-sulfation conditions is through 3-O-sulfated 
tetrasaccharides composition generated by exhaustive treatment with 
heparin lyase II (Chen, Ange, et al., 2017; Li et al., 2014). In addition, 
[1H, 15N] HSQC NMR has been reported to characterize the 3-O-sulfated 
tetrasaccharides (Beecher et al., 2016). 

2.10. Risk of HIT 

HIT is an adverse immunological disorder caused by antibodies to 
platelet factor 4 (PF4)-HP/LMWH complexes (Martel, Lee, & Wells, 
2005). The analysis of HIT potential for LMWH and its generic products 
is important for quality control prior to clinical application. The 
methods addressing biomolecular interaction of HP/LMWH and PF4 
include: (1) binding kinetics determined by surface plasmon resonance 
(SPR) (Pattnaik, 2005; Zhang, Datta, et al., 2020); (2) complex size 
determined by electron microscopy (Nevzorova et al., 2019); (3) com
plex charge determined by zeta potential method (Bertini et al., 2017); 
and (4) binding complex determined by size-exclusion chromatography 
or mass spectrometry (Shi et al., 2023; Wu et al., 2019). Even with a 

demonstration of active ingredient sameness for generic LMWH prod
ucts, the HIT risk may still vary, since impurities may affect, such as 
DNA, protein and leachables from the container closure. 

3. Preparation of LMWH by degradation 

Enoxaparin, dalteparin, and tinzaparin have been manufactured by 
depolymerizing UFH using chemical or enzymatic methods. After expi
ration of the first LMWH patent, dalteparin by Lindahl et al. (Lindahl 
et al., 1979) in 2000, generic LMWHs have been developed with further 
innovation and new patents. To overcome the single-source nationality 
and regionality on the current supply chains. Apart from the LMWHs 
available on the market, numerous researchers have tested various 
techniques like chemical, physical, and enzymatic degradation to pro
duce LMWHs. New version LWMHs derived from whether from other 
animal sources or chemoenzymatic synthesis or total synthesized LMWH 
are requested. Table 5 provides an overview of the principles, advan
tages, and disadvantages of different breakdown methods for producing 
LMWHs. 

3.1. Chemical degradation 

The chemical degradation mechanisms of UFH include three ap
proaches: (1) hydrogen peroxide, (2) β-elimination, and (3) nitrite 
degradation (Fig. 2). All routes rely on breaking the glycosidic bond of 
heparin to derive LMWH. The hydrogen peroxide method oxidizes 
heparin under specific conditions to cleave the glycosidic bond. The 
benefit of this method is the acquisition of free radicals from several 
methods. However, contamination is a concern during processing. 
LMWHs, Ardeparin and Parnaparin are commercially manufactured 
using this method. Photochemical depolymerization catalyzed by tita
nium dioxide (TiO2) can produce reactive oxygen species capable of 
randomly oxidizing sugar residues. However, issues on scaling up to 250 
mL discouraged its commercial application (Higashi et al., 2012). 
Moreover, a precise H2O2/ascorbic acid process coupled with ultra
sound was employed to produce free radicals for depolymerization, 
resulting in exceptionally pure products (Shen et al., 2019). The 
β-elimination method degrades the UFH through esterification followed 
by alkaline depolymerization. Enoxaparin sodium, the most significant 
type of LMWH, is obtained by β-elimination. This method provides the 
advantage of producing a more uniform LMWH by controlling the re
action conditions. However, the process has its drawbacks such as being 
cumbersome, requiring high technical expertise and cost, and having 
slightly inferior stability performance. Zhao et al. utilized a controlled 
β-elimination method followed by gel chromatography separation to 
produce a LMWH with significantly low polydispersity and narrow 
molecular weight distribution (Zhao et al., 2016). Finally, the nitrous 
acid degradation method involves adding a depolymerizing agent to 
heparin under acidic conditions, which breaks down the glycosidic bond 
over time (Lormeau, Petitou, & Choay, 1991). The reaction can be 
terminated by adjusting the pH to neutral. This is currently commonly 
used process for preparing LMWH at large scale, as it can effectively 
decrease the molecular weight through the use of different reaction 
conditions. Dalteparin and nadroparin are commercially available 
LMWHs produced through nitrous acid degradation followed by boro
hydride reduction (Davis & Faulds, 1997; Pineo & Hull, 2004). 

3.2. Enzymatic degradation 

Controlled enzymatic degradation of heparin is an important method 
for producing LMWH. Tinzaparin, is a representative form of LMWH 
manufactured by controlled enzymatic degradation of heparin (Amerali 
& Politou, 2022) (Fig. 2). Presently, LMWH is produced enzymatically 
using heparin lyase I/II/III or a combination of these enzymes. Previous 
studies have shown that heparin lyase I acts on the highly sulfated 
domain, →4)-α-D-GlcNS6S-(1 → 4)-α-L-IdoA2S-1(1→. In contrast, 
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heparin lyase II acts on lower sulfation heparin sulfate chains, →4)-α-D- 
GlcNAc/GlcNS/GlcNS6S-(1 → 4)-α-L-IdoA/β-D-GlcA-1(1→. Further
more, heparin lyase II has a wider range of specificities, working on both 
HP and HS (Desai, Wang, & Linhardt, 1993; Lohse & Linhardt, 1992; 
Shaya et al., 2010). The challenge of controlling enzymatic conditions 
and producing large amounts of heparin lyase have limited its industrial 
implementation. The result of digesting heparin with heparin lyase III is 
a new low molecular weight heparin form due to the enzyme’s action on 
unsulfated domains, which avoids cleavage of the linkages within the 
binding site for antithrombin III (Xiao et al., 2011). In addition, a pho
toswitchable heparin lyase III was developed for precise control over the 
preparation of LMWH (Gu et al., 2018). An enzymatic ultrafiltration 
reactor was developed to remove the high content of undesired di
saccharides and tetrasaccharides during heparin lyase II treatment, and 
a novel LMWH was obtained (Fu et al., 2014). Xu and coworkers used 
chitin-affinity immobilized heparin lyase I platform to produce LMWHs 
(Xu, Zhang, Duan, & Chen, 2017). The combinations of heparin lyase I/ 
II/III was used for synergistic degradation to obtain LMWHs (Wu, Zhang, 
Mei, Li, & Xing, 2014). 

Heparin lyase cleavage produces unsaturated uronate residues at the 
reducing ends of the cut chains. Therefore, recombinant Δ4,5 unsatu
rated glycuronidase has been employed as it removes the unsaturated 
uronate residues present at the non-reducing ends of these lyase- 
depolymerized products (Su et al., 2015). A newly reported hepar
anase from the invasive pathogenic bacterium Burkholderia pseudomallei 
(HepBp) is an endo-acting glycoside hydrolase capable of degrading HS 
(Bohlmann et al., 2015). The specificity and action pattern of HepBp 
indicates that the enzyme (a hydrolase) cleaves the linkage between 
GlcA and GlcNAc, GlcNAc6S, or GlcNS in a low sulfated domain, sug
gesting that this enzyme may not be directly useful for the preparation of 
LMWHs (Yu et al., 2019). The advantage of this enzyme is that its 
cleavage site differs from that of heparin lyases. Furthermore, the exo
lytic heparinases which sequentially releasing unsaturated di
saccharides from reducing ends could be a potential enzyme for 
preparation of LMWHs (Zhang et al., 2021). 

Table 5 
Degradation approaches of generic LMWHs.  

Types Methods Mechanism Advantage Disadvantage Ref 

Chemical 
methods 

Titanium dioxide (TiO2)- 
catalyzed photochemical 
depolymerization 

Produce reactive oxygen species 
that are capable of randomly 
oxidizing the sugar residues 

Require no harsh or toxic 
reagents, free of chemical 
artifacts 

Limited scales Higashi et al., 2012 

H2O2/ascorbic acid and 
ultrasonic power system 

Produce free radicals for 
depolymerization 

Efficient and 
environmentally friendly 

Biological activities in vivo was not 
determined 

Shen et al., 2019 

Alkaline β-elimination 
followed by gel 
chromatography 

a controlled β-elimination method Producing a uniform LMWH 
by controlling the reaction 
conditions 

cumbersome, requiring high 
technical expertise and cost, and 
having slightly inferior stability 
performance 

Zhao, Sang, & Cui, 
2016 

Physical 
methods 

Dielectric-barrier discharge 
(DBD) 

Generate active free radicals Quick, energy-efficient, low 
cost and environment- 
friendly 

Sulfate group break off Yang et al., 2018 

Ultrasonic wave Hydrogen peroxide-catalyzed 
radical hydrolysis produced by 
ultrasonic waves 

No harsh or toxic reagents, 
free of chemical artifacts 

Lower anti-Xa and anti-IIa activity Achour et al., 2013 

Combined ultrasonic wave 
and Fenton system 

Generate active free radicals to 
deconstruct heparin 

Efficient, improved 
activities 

Side reactions that reduce final 
product efficiency and yields 

Zhi et al., 2019 

Radiation-induced 
destruction with controlled 
irradiation conditions 

Ionization that breaks the main 
chain 

Original structure had not 
been significant modified 

Involves a slight decrease of 
undersulfated sequences 

Jeske et al., 1995;  
Bisio et al., 2001;  
Tuaeva et al., 2018 

Enzymatic 
methods 

Heparin lyase III Enzyme action on unsulfated 
domains 

Comparable anticoagulant 
activity 

Costly Xiao et al., 2011 

Photoswitchable heparin 
lyase III 

Precise control of enzymes Recyclable enzyme, 
precisely control of 
degradation 

Unmatched anti-II activity 
compared to enoxaparin 

Gu, Wu, Liu, Pan, & 
Chen, 2018 

Chitin-affinity immobilized 
platform 

Immobilized enzymes cleaved the 
chains 

Immobilized enzyme with 
high tolerance to heat and 
pH 

Limited scale Xu et al., 2017 

HepBp Enzyme action on unsulfated 
domains 

Specified reducing end 
cleaved by enzymes 

Limited scale and further 
investigation needed 

Bohlmann et al., 
2015; Yu et al., 2019  

Fig. 2. Degradation mechanisms and the generated products.  
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3.3. Physical degradation 

The degradation of polysaccharides can be achieved through various 
physical methods, such as microwave, heating, ultrasonic treatment, 
and radiation exposure (Fig. 2). Microwave and ultrasonic treatment can 
generate free radicals to aid in the heparin degradation process. 
Radiation-induced degradation relies on ionization to break the poly
saccharide chain, resulting in reduction of heparin’s molecular weight. 
This type of degradation occurs irregularly with a random distribution of 
main chain breaks. Each break in the main chain generates smaller non- 
uniform macromolecules, causing a reduction in the average molecular 
weight and altering the molecular weight distribution. Irradiation with 
γrays was applied for the depolymerization of UFH to obtain LMWHs, 
which exhibited very similar molecular weight profiles and comparable 
inhibitory activities (Bisio et al., 2001; Jeske et al., 1995). Tuaeva and 
colleagues (Tuaeva et al., 2018) applied radiation-induced destruction 
with controlled irradiation conditions to prepare LMWHs. This method 
led to the cleavage of the pyranose rings and the formation of com
pounds with carbonyls and carboxylic acids of heparin. Ultrasonic- 
assisted radical depolymerization of heparin leads to LMWHs that 
have comparable average molecular weight and anticoagulant proper
ties to some commercial ones, but with lower degree of sulfation 
(Achour et al., 2013). Dielectric-barrier discharge (DBD) has been used 
to generate reactive free radicals and enable heparin depolymerization 
in aqueous solution (Yang et al., 2018). Additionally, a combined ul
trasonic wave and Fenton system was utilized to deconstruct heparin 
into LMWHs. These LMWHs exhibit high anticoagulant activity, with 
HexN (GlcN and its derivatives) predominantly present at the end group 
and HexA (IdoA, GlcA and its derivatives) being broken down by hy
droxyl radicals (Zhi et al., 2019). 

4. Preparation of LMWH mimetics/heparin oligosaccharides by 
synthesis 

Up to date, commercially available LMWHs in clinical use are 
exclusively prepared from natural heparin, except for fondaparinux, 
while the synthesized LMWH are still in its infant stage. Synthesis of 
LMWH mimetics can yield molecular species with a determinate struc
ture. This ability is beneficial in examining the molecular underpinnings 
of interactions with proteins, ensuring quality control, and attaining 
regulatory compliance in the pharmaceutical industry. Moreover, it 
enables straightforward recognition of intellectual property. Chemical 
synthesis, bioengineering synthesis, and chemoenzymatic synthesis are 
three key methods for synthesizing LMWH mimetics. 

4.1. Chemical synthesis 

It remains difficult to synthesize long-chain oligosaccharide and 
polysaccharides using chemical approaches. Indeed, several challenges 
exist, such as low yields, multiple synthetic steps, protection and 
deprotection steps, and high costs. Chemical synthesis of a fondaparinux 
pentasaccharide, a chemically-defined ultra-LMWH structure, has been 
performed successfully; however, chemically synthesized LMWH prod
ucts with defined structures are very expensive. Until now the 
completely chemically synthesized heparin oligosaccharide in current 
clinical use is fondaparinux (Keam & Goa, 2002). The first chemical 
synthesis of fondaparinux requires more than 50 steps with an overall 
yield of 0.1 % (Petitou et al., 1989). Recent efforts have been made to 
develop more efficient synthetic routes using traditional modular syn
thetic, one-pot, programmable methodologies (Chang et al., 2014; Dey, 
Lo, & Wong, 2019; Dey, Lo, & Wong, 2020; Jin et al., 2019; Li, Ye, et al., 
2014). Heparan sulfate (HS) oligosaccharide synthesis including build
ing block synthesis, oligosaccharides construction and chemical sulfa
tion methods have been developed. Recently, a fluorous tagging strategy 
was used for synthesizing a universal tetrasaccharide building block for 
HS library, which will facilitate a detailed understanding of HS-protein 

interactions (Wang et al., 2023). The longest heparin-related oligosac
charide was chemically synthesized up to 40-mer using [4]n iterations 
strategy (Hansen, Miller, Cliff, Jayson, & Gardiner, 2015). The 
continued developments of synthetic strategies to HS synthesis, 
including automated glycan assembly and traditional solid phase syn
thesis will be needed to enable comprehensive HS libraries (Budhadev 
et al., 2019; Guedes et al., 2015). In addition, there are many excellent 
reviews addressing chemical approaches and methodology for synthesis 
of heparin oligosaccharides and the reader is directed to these literatures 
for a comprehensive survey of this field (Dulaney & Huang, 2021; 
Mende et al., 2016; Pongener, O’Shea, Wootton, Watkinson, & Miller, 
2021). 

4.2. Chemoenzymatic synthesis of LMWH mimetics 

Chemoenzymatic synthesis presents a promising strategy for the 
production of glycosaminoglycans (GAGs) from non-animal sources, 
specifically for LMWH mimetics (Wang, Liu, & Voglmeir, 2020). This 
approach typically imitates the biosynthetic pathway of HP and HS, 
including backbone elongation and saccharide modifications. Initially, 
disaccharide polymerization was controllably performed using hepar
osan synthases and UDP (uridine diphosphate)-GlcNTFA (N-tri
fluoroacetyl glucosamine) and UDP-GlcA to generate oligosaccharides. 
The oligosaccharides produced were subsequently modified using N- 
sulfotransferase (NST), C5 epimerase, 2-O-sulfotransferase (2OST), 6-O- 
sulfotransferase (6OST) and 3-O-sulfotransferase (3OST) in the presence 
of PAPS (3′-phosphoadenosine-5′-phosphosulfate) (Liu & Linhardt, 
2014, Zhang et al., 2017). 

Chemoenzymatic synthesis first reported by Liu and coworkers 
started with the acceptor GlcA-AnMan (anhydromannitol), yielding two 
well-defined anticoagulant ultra-low molecular weight heparins (Xu 
et al., 2011). Two glycosyltransferases—GlcN-acetylglucosaminyl 
transferase from E. coli K5 (KfiA) and heparosan synthase 2 from Pas
teurella multocida (PmHS2)—were involved in the polymerization steps. 
A series of homogeneous active lead compound oligosaccharides were 
successfully prepared using this enzymatic synthesis approach (Xu et al., 
2014; Xu, Pempe, & Liu, 2012). Homogeneous LMWH mimetics 
dodecasaccharides were chemoenzymatically synthesized from UDP 
monosaccharides using recombinant glycosyltransferase followed by 
C5-epimerase and various sulfotransferases. The resulting LMWH mi
metics has promising anticoagulant activity and is neutralizable by 
protamine (Xu, Chandarajoti, et al., 2017). Cai and colleagues reported a 
fluorous-assisted chemoenzymatic approach to successfully synthesize a 
series of partial N-sulfated, 6-O-sulfated heparan sulfate oligosaccha
rides (Cai et al., 2014). Different functional groups and bioactivity 
heparin oligosaccharide analogs were synthesized following a chemo
enzymatic scheme, for example, a nanomolar anti-FXa activity yet 
resistant to heparinase digestion HP oligosaccharides (Ham et al., 2023) 
and HS oligosaccharides composed of two or more epimerization and 
sulfation domains separated by unmodified domains of different length 
(Sun, Chopra, & Boons, 2022). 

Other chemoenzymatic synthetic methodologies require pre- 
polymerized heparosan (Fig. 3). This heparosan starting material is 
available as a capsular polysaccharide from bacteria, such as E. coli K5 
(Nehru, Tadi, Limaye, & Sivaprakasam, 2020). The molecular weight of 
the resulting heparosan was modified to produce low molecular weight 
heparosan (3 to 5 kDa) for the production of bioengineered LMWHs (Roy 
et al., 2021). In addition, a combined biocatalytic approach was devel
oped for the size-controlled synthesis of longer heparosan oligosaccha
rides (Deng et al., 2022). Kuberan and coworkers synthesized 
antithrombin III-binding pentasaccharide using engineer cloned en
zymes from nonsulfated polysaccharides treated with NDST and heparin 
lyase I (Kuberan, Lech, Beeler, Wu, & Rosenberg, 2003). A combination 
of heparin lyase III cleavage followed by chemoenzymatic modification 
resulted in oligosaccharides with comparable pharmacokinetic proper
ties to Arixtra (Zhang, Yang, Wang, Cheng, & Liu, 2022). Yu and 
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coworkers start with heparin lyase III or heparinase Bp (Hep Bp) cleaved 
oligo-N-sulfated heparosan (NSH) followed by O-sulfation to produce 
generic enoxaparin LMWHs (Yu et al., 2022a; Yu et al., 2022b). 
Furthermore, it has been reported that the chemoenzymatic synthesized 
heparin with structural and functional properties similar to USP heparin 
has the ability to be converted into a LMWH similar to enoxaparin 
(Douaisi et al., 2024). 

4.3. Bioengineered synthesis 

Metabolic engineering synthesis of LMWHs is a process that re- 
engineers the heparosan pathway and recruits all related enzymes, 
including NDST, C5-epi, 2, 6, and 3OSTs, in microorganisms (Fu et al., 
2016; Jin, Zhang, & Linhardt, 2021). Bioengineered heparin derived 
from cells expressing high levels of recombinant heparin biosynthetic 
enzymes is a potential way to produce a more controllable heteroge
neous product (Glass, 2018; Vaidyanathan, Williams, Dordick, Koffas, & 
Linhardt, 2017). In fact, the bioengineered synthesis methods mainly 
focus on synthesizing heparin, few reports has been directly targeted on 
LMWHs. It is reported that metabolically engineered CHO cells, which 
express enhanced levels of heparin biosynthetic enzymes under opti
mized bioprocessing conditions has been applied for producing heparin 
(Thacker et al., 2022). In addition, a microbial cell-free catalyst system 
has been established for the production of bioengineered heparin (Zhang 
et al., 2022). 

5. Conclusion 

Since the first approval of generic LMWH, FDA scientists established 
a scientific approach for demonstrating active ingredient sameness that 
takes into consideration the complexity of enoxaparin. Five criteria 
including (1) physical and chemical characteristics, (2) heparin material 
and chemical process, (3) arrangement of components, (4) anticoagulant 
activity, (5) drug’s effect in humans ensure that a generic enoxaparin 

will have the same effects. Though, the technique has developed very 
fast, there still minor or undefined minor modifications or unpurified 
contaminate needs to be solved from different biological sources. Future 
effort would be directed towards developing and improving techniques 
and approaches towards the chemical or chemoenzymatic synthesis of 
LMWHs, as well as bioengineered synthesis approaches, which could be 
able to address the single-source and shortage of HP/LMWHs. However, 
new contaminate would also be introduced during the process. There
fore, quality control and safety assessment are critically important. 

This review summarized the recent development for the quality 
control of new LMWH based on these criteria. The rapidly developing 
analytical techniques and LMWH-protein binding sites study will 
certainly improve the quality assurance during production. Further
more, their minor modifications should also be carefully checked during 
the process and approval of new developed LMWHs. Currently, the high 
demand but limited source of LMWH require new development to 
diversify the supply of these critical life-saving drugs. Newer versions of 
LMWHs should be competitive and less expensive than the original 
versions. Therefore, different LMWH preparation methods including 
degradation and synthesis are presented. For those LMWHs degraded 
from animal sources UFH, the sameness should be carefully determined. 
As for chemoenzymatic and chemical synthesized or degradation from 
biological heparin, special attention should be paid to the minor modi
fications or contaminate. 
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