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Abstract

A cognitive compass enabling spatial navigation requires neural representation of heading direction
(HD), yet the neural circuit architecture enabling this representation remains unclear. While var-
ious network models have been proposed to explain HD systems, these models rely on simplified
circuit architectures that are incompatible with empirical observations from connectomes. Here we
construct a novel network model for the fruit fly HD system that satisfies both connectome-derived
architectural constraints and the functional requirement of continuous heading representation. We
characterize an ensemble of continuous attractor networks where compass neurons providing lo-
cal mutual excitation are coupled to inhibitory neurons. We discover a new mechanism where
continuous heading representation emerges from combining symmetric and anti-symmetric activity
patterns. Our analysis reveals three distinct realizations of these networks that all match observed
compass neuron activity but di↵er in their predictions for inhibitory neuron activation patterns.
Further, we found that deviations from these realizations can be compensated by cell-type-specific
rescaling of synaptic weights, which could be potentially achieved through neuromodulation. This
framework can be extended to incorporate the complete fly central complex connectome and could
reveal principles of neural circuits representing other continuous quantities, such as spatial location,
across insects and vertebrates.

I. Introduction

Animals navigating through their environment
must maintain an accurate sense of direction, re-
quiring their brains to represent heading direction
(HD) through neural activity patterns [1, 2]. How-
ever, the precise neural circuit mechanisms en-
abling this representation remain unclear. Sev-
eral theoretical models based on ring attractor net-
works [3–6], a type of continuous attractor net-
work, have been proposed to explain HD systems
[7–16], stimulating the search for identifying such
networks and dynamics in the brain. Core fea-
ture of ring attractors is a localized pattern, a bell-
shaped bump of activity within a ring-like neural
structure, which is stably-maintained through re-
current excitations between similarly tuned neu-
rons and distal inhibitions, and can be readily
moved to di↵erent locations around the ring. Such
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a bump of activity is thus suitable for encoding cir-
cular variables, and it has been used to characterize
mammalian HD networks whose neurons exhibit
reliable orientation tuning and whose population
activity is limited to a ring-like manifold [17] and
updated by self-motion [1, 18]. Lack of knowledge
and data about the connectivity patterns within
these networks, however, prohibit the understand-
ing of the relationship between their structure and
function. Most of the HD models, therefore, as-
sume idealized architectures with large number of
neurons [19, 20] and perfect circular symmetry to
qualitatively describe the HD dynamics, that how-
ever, do not fully capture the biological complexity
and multi-population interactions revealed by con-
nectomic data. A recently proposed such model
was also able to achieve continuous angular rep-
resentations with only a small number of neurons
[21].

To bridge this gap between theory and biology,
we set out to study the HD of the insect brain
where there is connectivity and cell type identity
data with engineering access for functional imag-
ing and manipulability of specific neural popula-
tions, and theory that can interface both of these
facets. Recent work in the fruit fly, Drosophila
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melanogaster, has uncovered its HD network in
the central complex (CX) of the brain, that ex-
hibits ring attractor-like dynamics and is capa-
ble of angular velocity integration [22–25]. Key
compass neurons in this system are the excitatory
EPG neurons located in a toroidal structure of the
CX, the ellipsoid body [22, 26] (Figs. 1a and 1b).
Their population is comprised of less than 50 com-
pass neurons, organized in 8 computational units
anatomically arranged in a circle (Fig. 1a) [26].
This seemingly simple system nevertheless man-
ages to solve a di�cult task – experiments show
that these compass neurons can encode heading
angles with a precision much higher than the res-
olution limit of 45�, [21], suggested by their 8-unit
architecture. This suggests an existence of a novel
encoding strategy that emerges from the interac-
tion between excitatory compass neurons and in-
hibitory populations.

The recent availability of detailed connectomic
data [27–30] from the fly central complex inspired
us to find biologically-compatible network mod-
els that satisfy both architectural constraints and
functional requirements, see [31] for a recent study
applying connectomic constraint to fly visual sys-
tem. We therefore developed a framework to iden-
tify the theoretical conditions that comprise a ring
attractor in general, which can then be applied in
concert with any connectomic data to identify the
neural mechanisms that enable continuous orien-
tation encoding in the fly brain. To this end, we
studied the interactions between the EPG neurons
and its hypothesized inhibitory population of �7
neurons in the protocerebral bridge [32], shown to
also encode and propagate the HD bump of activ-
ity [26, 33, 34]. We discovered two distinct classes
of models that can generally arise from interactions
between multiple populations of neurons. Net-
works with all active inhibitory neurons simplify to
a fully-symmetric e↵ective configuration, whereas
regimes with inactive inhibitory neurons generate
asymmetric feedback to the EPG neurons and give
rise to a mirror-symmetric e↵ective system, that
nevertheless can support continuous heading rep-
resentation. In the following sections we summa-
rize our approach for linking the theoretical ring
attractor ensemble framework with the fly connec-
tome.

II. Towards constructing a continuous ring
attractor consistent with connectomic

data

The angular location inferred from the vector aver-
aged activity (Fig. 1c) tracks the heading direction
of a moving fly to within a few degrees. To model
the biology of the heading direction system we
will consider a threshold-linear recurrent network

with eight compass neurons or computational units
(Fig. 1d) that each correspond to activity pat-
terns observed in distinct neuronal compartments
(Figs. 1e and 1f, also see Methods). In light of the
experimental observation that approximately half
of the neurons are typically active (Fig. 1b), here
we will focus on configurations with only four ac-
tive neurons (Fig. 1e), although most of our analy-
sis can be generalized to other configurations. The
choice of a threshold-linear input-output function
ensures that once the input drives to the neurons
are negative, they can remain inactive and gener-
ate activity patterns (Fig. 1f) that closely resemble
what is observed. Finally, since the bump-like ac-
tivity can be sustained for a few seconds even in
the dark, we imposed that the steady-state activity
profiles be self-sustainable.

Our first goal will be to find the ensemble
of all two-population networks that can self-
sustain a continuum of steady state activity pro-
files smoothly spanning the entire 360 degrees of
angular locations. Taking inspiration from the
approximate 8-fold circtular symmetry observed
in the connectomic data involving the excitatory
compass neurons and the secondary population of
inhibitory neurons (Fig. 1g), we will consider ef-
fective networks involving just the compass neu-
rons that can be mapped from a two population
network with exact 8-fold circular symmetry. For
instance, a class of e↵ective networks we will con-
sider will obey 8-fold circular symmetry as well as
left-right symmetry leading to only 4 independent
e↵ective weights as depicted by four di↵erent col-
ors in Fig. 1i. The synapse strengths between the
computational units in Fig. 1i should be thought
of as representing e↵ective connectivity which not
only include all the individual synapses between
neurons in the two compartments of compass neu-
rons, but also indirect connections via neurons in
the inhibitory population (Fig. 1h). For a given
active set of neurons, requiring a continuum of
steady-state solutions with di↵ering average angu-
lar locations will impose two relationships among
the weight parameters. Further imposing that the
configurations be stable, have a single peak and
that the inactive neurons receive (net) negative in-
put drives for consistency will constrain the net-
works through inequalities. However, as we shall
see, this will still leave us with a two dimensional
space of continuous self-sustaining ring attractor
networks, Appendix B provides the mathematical
details.

Somewhat surprisingly we will find out that due
to the nonlinearity in the input-output function it
also becomes possible to map synapse counts which
obey 8-fold circular symmetry to e↵ective networks
whose weights are neither symmetric nor circularly
symmetric, but only preserve a residual symmetry.
However, we will be able to apply the methods we
just discussed to identify continuous ring attractor
networks with these residual symmetries as well,
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FIG. 1: Constructing e↵ective ring attractors from connectomic data. (a) EPG neurons from
the hemibrain dataset in the ellipsoid body (EB). Neuron processes are color-coded according to the EB
wedges that they arborize. (b) Example calcium activity imaging data of the EPG neuron population
in the EB. (c) 5 example activity profiles (solid lines) whose mean values (dashed lines) are distributed
uniformly across the interval between the 4th and 5th wedges. (d) and (e) Schematics of the neural units’
identities and activities, respectively, according to the color codes in (a) and (b). (f) Example activity
profiles with mean values matching the ones in (c), sampled from a continuum of solutions generated by
a ring attractor model. (g) Connectivity matrix between the EPG and �7 neurons from the hemibrain
dataset. Individual estimated wedges are separated by thin gray lines. (h) Schematic of a coarse-grained
two-population model of a readout population (EPG, color-coded as in (d)) and a secondary population
(black). (i) Schematic of an e↵ective single-population ring attractor model derived by aggregating the

two-population model (h) and parameterized to satisfy the continuum encoding conditions.

the details are contained in Appendix C.

Our next goal will be to investigate whether one
can find connectome-constrained ring attractors
that are consistent with the observed fly connec-
tome. Since the EPG-�7 network has been previ-
ously implicated in the encoding of heading direc-
tion, here we will specifically consider the EPG-�7
connectome (Fig. 1h) coarse-grained and circularly
symmetrized (Fig. 1g) to align it with our model-
ing assumptions. To convert the synapse counts to
synaptic weights we will assume that the former is
multiplied with four di↵erent scaling parameters,
depending upon the pre and post-synaptic part-
ners, EPG ! EPG, EPG ! �7, �7 ! EPG,

and �7 ! �7. We thus have a four dimensional
parameter space of realizable networks consistent
with the connectome. Next, we will derive the ef-
fective networks that one obtains from the EPG-
�7 network by summing over all relevant paths
(including via �7 neurons) between the EPG com-
partments. We can now ascertain whether we can
find a realizable e↵ective network that is also a con-
tinuous ring attractor (Fig. 1i). In other words, are
there scaling parameters such that the weights of
the e↵ective network that we obtain from the con-
nectome, obey all the equality and inequalities we
theoretically derived.
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III. Ensembles of continuous self-sustaining
ring attractors

Our goal in this section is to provide the under-
lying biological principles and theoretical insights
that led us to the ensemble of self-sustaining ring
attractors that can uniquely encode the contin-
uum of 3600 angles, and can be obtained from
two-population networks preserving 8-fold circu-
lar symmetry. The first step in determining our
ensemble is to reduce the two population model
into an e↵ective single population model of com-
pass neurons as outlined above and detailed in Ap-
pendix D. What is novel about this procedure is
that one not only obtains e↵ective networks which
are fully symmetric, i.e. , preserves 8-fold circu-
lar symmetry and left-right symmetry, but also
mirror-symmetric networks which only preserve
part of these symmetries. This occurs when some
of the inhibitory neurons are inactive as is possible
in a threshold-linear network. In this case, for ev-
ery path from one compass neuron to another com-
pass neuron, the reverse path may not be available
because some of the inhibitory neurons in the path
may have become inactive. This makes the e↵ec-
tive weights asymmetric and thereby reduces the
symmetries of the network. We emphasize that
the nonlinear input-output transfer function is a
key aspect of our model that ensures half of the
compass neurons can remain inactive in any given
bump profile. Fig. 2a, depicts a network with 8
compass neurons, {yi, i = 1, . . . , 8}, where the
neurons, y3, y4, y5, y6, are active. It illustrates how
the e↵ective connection between y4 and y5 sums
over di↵erent pathways that can either lead to sym-
metric or mirror-symmetric networks.

In Appendix E, we also show that without any
loss of generality we can assume that the self cou-
plings are absent in the e↵ective network that
makes the analysis technically simpler. Accord-
ingly, as shown in Figs. 2b and 2c, there are
three and six independent weight-parameters that
parametrizes all e↵ective synaptic weights between
the four active neurons in the symmetric and
mirror-symmetric networks, respectively.

Now, the requirement that the compass neurons
can self-sustain a bump of activity through their
recurrent connections essentially means that the
steady state activities must be able to equal the
total input drives the neurons receive from all the
other neurons in a self consistent manner. Mathe-
matically this means that if W̄ represents the e↵ec-
tive weight-matrix for the active neurons (Figs. 2b
and 2c), then W̄ must be degenerate, i.e. , have
an eigenvector (to be identified with the neuronal
activity profile) with eigenvalue one. Given the
symmetries of our model we can claim (Appendix
F) that if there is only one such linearly indepen-
dent eigenvector, then the activity profile must be
symmetric; one can, of course, scale the ampli-
tude of the activity (Fig. 2d), but such a scenario

would lead to only eight discrete average angu-
lar locations, not a continuum (Fig. 2e). What
if an asymmetric eigenvector with eigenvalue one
did exist? For the symmetric model, it is easy
to see why this would imply the existence of an-
other eigenvector which is a mirror copy of the first
leading to a doubly degenerate weight matrix, W̄
(Fig. 2f). In this case though, one would have a
two dimensional eigenspace of steady state solu-
tions, not only whose amplitudes can vary, but
also the average angular locations across a con-
tinuum, precisely what we required (Fig. 2g). In
Appendix C we show that similar arguments follow
for the mirror-symmetric weight matrix.

There is a di↵erent way to interpret the dou-
ble degeneracy condition. In a linear theory one
can check that a single eigenvector with eigenvalue
one could either be symmetric or anti-symmetric,
see Appendix F, but the latter is not a valid ac-
tivity profile in a threshold-linear network because
activities cannot be negative. The doubly degen-
erate case, however, can be interpreted as hav-
ing a symmetric (~ys) and an anti-symmetric (~ya)
eigenvector with eigenvalues one, the requirements
restricting the weights to reside on the scarlet
and violet hypersurfaces respectively, in the weight
space as depicted for the symmetric model in
Fig. 2h. The doubly degenerate ensemble thus lives
along their intersection indicated by the brown
and grey curves. As illustrated in Fig. 2i, the
anti-symmetric eigenvector can add to the com-
ponents of a symmetric eigenvector on one side
while cancel on the other side producing an asym-
metric profile. The amount of asymmetry will de-
pend on the relative strengths along the two eigen-
vectors and determine the average angular loca-
tion, while their overall strength controls the am-
plitude of the neuronal activity, see Fig. 2j. It
turns out that for the symmetric model, the con-
tinuum of angles for a given active set precisely
spans 45 degrees as needed to uniquely encode the
entire angular range by virtue of the 8-fold sym-
metry. However, for the mirror-symmetric model
this range could be smaller or larger than 45 de-
grees. The unique encoding requirement imposes
an additional condition on the weight parameters.
Thus while the symmetric model is characterized
by a one-parameter (three weight-parameters mi-
nus two eigenvalue conditions) family of ring at-
tractors, the mirror symmetric model is three di-
mensional (six weight-parameters minus two eigen-
value and one uniqueness condition).

Although the networks we have found can sup-
port a continuum of steady states, unless these ac-
tivity profiles are stable, we will not have a vi-
able ring-attractor. Now, W has four eigenvalues,
two of which are one by construction. Perturba-
tive stability (i.e. stable under small fluctuations
around steady states) thus requires the two other
eigenvalues to be less than one, leading to decay-
ing dynamical modes, see Appendices B and C.
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FIG. 2: Constructing an e↵ective ring attractor model with a continuum-encoding property.
(a) The two-population model (i) can be aggregated into two distinct e↵ective ring attractor networks:
(ii) fully-symmetric network, by assuming all neurons in the second population (inner circle) are active,
or (iii) mirror-symmetric network, arising from asymmetric indirect connections when there are inactive
neurons in the second population (inner circle) in steady state. In (iii) the dotted path is absent leading to
the asymmetric weights. (b) and (c) E↵ective matrices for the 4 active neurons of the primary population
for the fully- and mirror-symmetric models, respectively. (d) Example symmetric profile for the single-
degeneracy case. Darker/lighter scarlet profiles depict the flexibility in amplitude increase/decrease. (e)
8 total profiles and their respective mean values at discrete uniformly-distributed locations (top) for the
single-degeneracy case. (f) Example profile (brown) (as in (d)) for the double-degeneracy case, which
enables asymmetric mirrored pairs of basis profiles (black). (g) Continuum of profiles and their mean
values (top) span the whole neuron space. (h) Intersection points (brown) between the weight subspaces
satisfying the symmetric conditions (scarlet) and the antisymmetric conditions (violet) yield valid ring
attractors. (i) Symmetric (scarlet) and antisymmetric (violet) profiles (eigenvectors, inset) define the
basis vectors for the activity profiles (j). Di↵erent values of µ 2 [�1, 1] define di↵erent steady state

profiles (or vectors, inset) in the specific angular interval (between neurons 4 and 5 in the figure).
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FIG. 3: Spatial parameter ra ties the shapes of the weight and activity profiles. (a) and (b)
Dependence of the shape of the neuron activity profiles on ra 2 [0, 1] for the fully-symmetric case (a) and
ra 2 [0, 2] range for the mirror-symmetric case (a) which allows ra > 1 unlike the symmetric model. (c)
and (d) Dependence of the weights on the ra parameter values for the fully- and mirror-symmetric cases,
respectively. Sample weight profiles are shown for the fully-symmetric case (c, bottom) for three segments
of ra defined by the sign-changing points of w2 (ra =

p
2� 1) and w3 (ra =

p
3� 1). Values for w4 were

randomly sampled between -1 and its upper bound dependent on ra (blue region). Weight profile shapes
for the mirror-symmetric case (d) are dependent on two additional parameters �w1 ⌘ w1 � w1,sym(ra)

and �w3 ⌘ w3 � w3,sym(ra).

This condition imposes inequalities on the weight
space and, for instance, eliminates the grey branch
in Fig. 2h. We also explore non-perturbative sta-
bility through a combination of analytical and nu-
merical techniques where we allow the network to
start with a random active set and activity profile
of neurons and check that there are no unstable or
growing modes, see Methods.

For both symmetric and mirror-symmetric net-
works, the steady state activity profiles are char-
acterized by two free parameters, the amplitude
denoted by � > 0, and the shape parameter, µ 2

[�1, 1], that linearly encodes the average angular
location spanning 450. For a given �, µ, the activ-
ity profiles that one generates in these models, in-
terestingly only depend on one more key parameter
combination involving the synaptic weights, ra ⌘

ya4/ya3 = ya5/ya6, the ratio between the activities
in the anti-symmetric eigenstate. This quantity is
completely determined in terms of the weights and
therefore fixed for a given ring-attractor, see Ap-
pendices B and C. It also is simply related to
the ratio of the neuronal activities in the symmet-
ric profile: rs ⌘ ys4/ys3 = ys5/ys6 = ra + 2, and
therefore controls the overall shape of the activity
profiles. For a given angle, as one increases ra, the
profiles have sharper peaks as depicted in Figs. 3a
and 3b. While in the symmetric model (Fig. 3a)
this parameter is restricted to be in the range,
ra 2 (0, 1), the mirror symmetric profiles can have
sharper peaks with ra exceeding one (Fig. 3b), and
therefore, in principle, o↵ers a possibility of dis-
tinguishing the two di↵erent ring-attractor models
using experimental activity measurements.

6

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.11.01.621596doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.01.621596
http://creativecommons.org/licenses/by/4.0/


So far we have discussed the equality constraints
on the recurrent weights between the active com-
pass neurons coming from requiring a continuum
of stable steady state profiles. However, self-
consistency of the active set imposes several in-
equalities that involve e↵ective feedforward weights
from the active compass neurons to the inactive
ones where the e↵ective weights, as before, in-
clude indirect paths via the inhibitory population.
Specifically, we must ensure that the total drives
that the active neurons provide to all the inactive
neurons are negative for all the steady state ac-
tivity profiles. Due to the left-right symmetry of
the models, one need only consider the drives to
y7 and y8 (or equivalently y1 and y2). Since the
space of steady states is two dimensional, for each
inactive neuron we end up with two inequalities,
and therefore four inequalities altogether. For the
symmetric model, it turns out that two of these are
automatically satisfied leading to two remaining
inequalities. Fig. 3c depicts how these inequalities
restrict w4 as we vary ra. Since the equality con-
straints discussed previously can be solved to yield
unique functions, wi,sym(ra), i = 1, . . . , 3, Fig. 3c
comprehensively characterizes the two parameter
ensemble of symmetric continuous ring attractors,
details are included in Appendix B. In particu-
lar we notice that w1 has to always be excitatory,
1/2  w1 < 1, while at least one of w2 or w3

has to be inhibitory. Thus our model captures the
intuitive requirement of local excitation and distal
inhibition, but clearly the inhibition has significant
flexibility. We plot some sample weight profiles in
Fig. 3c (bottom, see Methods for details on how
we generated them) that are categorized into three
groups: w2 > 0, w3 < 0 (left), w2, w3 < 0 (middle),
and w2 < 0, w3 > 0 (right). w4 remains more flex-
ible.

The mirror-symmetric model is much more flex-
ible because the feedforward weights onto y7 and
y8 are completely independent and they are also
not related to the recurrent couplings. Thus we
have an eleven dimensional space of ring attrac-
tors (three specifying the recurrent couplings, and
four feedforward weights for each of the inactive
neurons, y7, y8) that have to satisfy four inequali-
ties stemming from the self-consistency arguments,
essentially making the feedforward weights uncon-
strained at a single parameter level. Fig. 3d at-
tempts to capture the various parameters charac-
terizing the mirror symmetric ensemble, see Ap-
pendix C for more details. In Appendix G we
also provide a partial characterization of externally
driven fully symmetric ring attractor networks that
require only a singly-degenerate e↵ective weight
matrix similar to what was considered in [21] and
also point out the di�culty they may have in de-
coding the angular location from the bump profile
when the external drive varies.

IV. Ring attractors consistent with EPG-�7
connectome

In the previous sections we have articulated how
to obtain the ensemble of all two population
threshold-linear networks that can produce con-
tinuous, stable and unique angular encoding. In
this section we will test whether the fruit fly
connectomics data involving the EPG-�7 system
(Fig. 4a) can realize such a network. The EPG
neurons are approximately divided into 8 compart-
ments with 4 or 5 neurons in each and their recur-
rent connectivity obeys an approximate 8-fold cir-
cular symmetry: If Cij represents the total number
of synapses from neurons in the ith compartment
to neurons in the jth compartment, then

Cij ⇡ Ci+1,j+1 , (IV.1)

where from here onwards (i + 8) will be iden-
tified with i. The �7 neurons can also be di-
vided into 8 compartments (see Methods for de-
tails) which preserve similar connectivity patterns,
so that Eq. (IV.1) is valid whether i, j represents an
EPG index or a �7 index. In many ways it is the
presence of the 8-fold circular symmetry that moti-
vates the segmentation of the EPGs and �7’s into
8 compartments. However, this symmetry is ap-
proximate, and thus to be consistent with our the-
oretical framework we symmetrized synapse counts
(Fig. 4b) so that, Cij = Ci+1,j+1, and their values
are the average over the 8 instances of a given type
of pre- and post-synaptic pair, see Methods.

While the synapse counts are expected to be
proportional to the synaptic strengths, the pro-
portionality constant can vary depending upon the
pre- and post-synaptic neuron type. Accordingly,
we choose four di↵erent scale factors, �ab, a, b 2

{E, I}, to proportionately relate synapse counts
and weights,

Wij = �abCij , (IV.2)

where a, b labels the post and pre synaptic neu-
ronal type, and E, I indicates the excitatory EPGs
and inhibitory �7s respectively (Fig. 4c). Thus
from the connectomic data we obtain a four dimen-
sional space of realizable EPG-�7 networks. How-
ever, since the reduction to the e↵ective network
always involves E ! I and I ! E connections
in conjunction, only the product e�2

⌘ ��EI�IE ,
appears in the e↵ective network. Thus the con-
nectome leads us to a three dimensional subspace
of realizable e↵ective networks. Simple dimen-
sional arguments involving the recurrent weight
space involving the active compass neurons can
now tell us whether it is reasonable to expect to
find connectome-constrained continuous ring at-
tractors.

We first note that the intersection of an A and B
dimensional linear subspace in an N dimensional
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FIG. 4: Constructing ring attractors from the EPG-�7 connectomic data. (a) EPG (from
the EB) and �7 neurons link between each other in the protocerebral bridge (PB), depicted using the
hemibrain dataset. (b) Coarse-grained synaptic count matrix between the EPG and �7 neurons. Each
block submatrix is parameterized with a single �-parameter that scales the values within that submatrix,
to generate the matrix in (c). Red - excitatory, blue - inhibitory weights. (d) Top: Two-population
network (left; outer layer - EPG, inner layer - �7 population) with A� = 8 active �7 neurons aggregates
to an e↵ective fully-symmetric network of active EPG neurons (right). Bottom: Corresponding scaled
and e↵ective matrices. Value of �II = 0 was used. (e) Intersection points (pink line) between the
theoretical conditions of the continuum-encoding space (black) and connectome-constrained space (color-
coded volume) yield candidate weight profile solutions of ring attractors. Further constraints on the
activity profiles narrow down the solution space of valid ring attractors (red). (f) and (g) Same as in (d),
but for the cases with A� = 6 and A� = 4 active �7 neurons - mirror-symmetric e↵ective networks.
(h) �-parameter view of the solution space (analogous to (e)), additionally showing regions with invalid
ring attractors, color-coded according to the di↵erent inequality constraints they do not satisfy. (i)
Schematic of the setup for two-photon calcium imaging of the EPG neuron population in the EB for
tethered immobile flies in darkness. Top: Mean �F/F values of the calcium signal was computed in
8 regions of interest (ROIs) around the EB for each time point. (j) Top: Unwrapped activity profiles
for di↵erent time points, during which the EPG bump position was relatively stationary. Middle and
bottom: Corresponding fits with the fully-symmetric model and their di↵erences to the data, respectively.
(k) Example model fits for a single EPG activity profile (solid lines) and the respective predictions for
the activity of the �7 population (dashed) for the three di↵erent models (d,f,g). (l) Summary statistics
(mean±s.e.m.) of the fitting data with the three aforementioned models for multiple flies. The SSE per

profile is normalized to the bump amplitude.
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space is, (A + B � N) dimensional. While the
subspaces we encounter are not linear, this ba-
sic intuition mostly carries forward. Let us first
consider the symmetric model that requires all
�7 neurons to remain active (Fig. 4d). The en-
semble of symmetric continuous attractors span
a one dimensional subspace (A=1), while the re-
alizable networks span a three dimensional vol-
ume (B=3) in the three dimensional weight-space
(N=3) of active neurons. Thus we can expect
to find connectome-constrained ring attractors in
the form of a finite one-dimensional curve in the
weight-space (Fig. 4e). However, these solutions
also has to satisfy various inequalities that has
been previously discussed. Additionally, one has to
ensure that the drives to the �7 neurons are con-
sistent with their assumed activity-state (all active
for the symmetric networks). So, for the symmet-
ric model we need to ensure that all the �7 drives
are positive. It turns out that for the EPG-�7
connectome, these inequalities severely constrain
the solutions so that the recurrent connectivity
among the�7’s, �II

⇡ 0, and we e↵ectively end up
with a single symmetric connectome-constrained
ring attractor network (Fig. 4e). Now the ensemble
of ring attractors in the mirror symmetric model
(Figs. 4f and 4g) curves out a three dimensional
subspace (A=3). Thus we expect a zero dimen-
sional intersection with the three dimensional sub-
space (B=3) of realizable networks in the six di-
mensional weight space (N=6). Indeed we were
able to find unique connectome constrained ring
attractors assuming either six �7s (Fig. 4f), or
four �7s (Fig. 4g) are active, Appendix D con-
tains more details. No consistent solutions com-
patible with all the inequalities are possible when
only two �7s are active.

One can take a di↵erent approach to understand
how the theoretical ensemble of ring attractors can
be combined with connectomic information to pro-
duce connectome-constrained models. This ap-
proach is computationally easier to implement and
to scale up to complex networks with more neu-
ronal populations. Rather than working in the
weight space, here one works in the �-space, whose
dimensionality grows more slowly with complexity
as compared to weight-space. We first note that
starting from the synapse count matrix and ap-
plying the methods described above yields all the
e↵ective weights as functions of three parameters:
wi = wi(�EE , �II , e�). All the equality and inequal-
ity constraints that were derived in terms of the
various e↵ective weight parameters then can be re-
cast as equalities and inequalities in the � -space.
In Fig. 4h, we show the equality constraints as the
scarlet (symmetric eigenvector condition) and vi-
olet (anti-symmetric eigenvector condition) curves
in �-space where we have set �II = 0. The colored
regions are excluded by various inequalities, but we
are left with allowed white regions where the scar-
let and violet curves are seen to have an intersec-
tion. This then corresponds to the connnectome-

constrained ring attractor network. By varying
0 < e� . 7 ⇥ 10�4, we obtain a small continuous
family of viable ring attractors (short red curve).
Since the mirror-symmetric model has to satisfy
three equations, with three flexible � parameters
we only get unique solutions once the inequalities
are imposed.

Figs. 4d, 4f and 4g depict the three connectome-
constrained EPG-�7 weight matrices that emerges
as self-sustaining stable continuous ring attractor
networks where A� = 8, 6, and 4, �7 neurons
are active, respectively, We note the striking di↵er-
ence between the symmetric and mirror-symmetric
models: the former allows only tiny recurrent
couplings between the �7 neurons, �II/�EE

⇠

O(10�2), and e� ⇠ �EE , whereas in both the
mirror-symmetric models, e� ⇠ �EE

⇠ �II .
Somewhat surprisingly, all these di↵erent weight-
matrices give rise to similar activity profiles for the
EPG’s that are also consistent with the observed
neuronal patterns (Figs. 4i to 4l). The di↵erence
between experimentally observed activities and the
model fits that were obtained by varying the am-
plitude, �, and the shape parameter, µ, were very
similar for all the three networks and for all the
four flies that we imaged (Fig. 4l). These di↵er-
ences were small as can be seen from the compar-
ison of the steady state experimental activity pro-
files and theoretical fits from the symmetric net-
work (Fig. 4j). Not surprisingly, the three di↵er-
ent connectome-constrained ring attractors lead to
discernibly di↵erent �7 activity profiles (Fig. 4k)
that can, in principle, be used to test and discrim-
inate between them.

V. Connectome properties that lead to a
viable ring attractor

We have seen that there exists a two dimen-
sional subspace of symmetric networks, and an
eleven dimensional subspace of mirror-symmetric
networks that are continuous ring attractors. Nev-
ertheless the subspace of ring attractors occupy a
subspace of zero-measure among the space of all
(mirror)symmetric networks because the synaptic
weights have to be fine tuned to satisfy specific re-
lationships. On the positive side though, the scale
factors that relate the synapse counts to synaptic
weights o↵er flexibility. So how di�cult is it for a
connectome to be able to realize ring attractor dy-
namics? To test this we generatedO(1000) connec-
tomes by randomly varying synapse count matrices
(see Methods) while respecting the 8-fold circular
symmetry. About 15% of the time it was possible
to adjust the scale factors to realize a symmetric
ring attractor network starting with these connec-
tomes. This intriguing result suggests to us that
while the fly connectome had to be approximately
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FIG. 5: Conditions for generating valid continuous ring attractors. (a-c) Randomly sampled
synaptic weight profiles that resulted in valid continuous ring attractors. Example profiles (⇠15% of
the successfully sampled from the 2000 initially sampled profiles) are shown in black for the excitatory
cEE synapse-counts (a), the corresponding cEIE inhibitory feedback synapse counts (c), and the resulting
e↵ective weights (b). The cEE and cEIE profiles were normalized to match the connectomic profiles (red)
at indices 1-3 on average. Profiles from the second group of weight profiles (Fig. 3c, w2 < 0, w3 < 0) are
only shown. (d) Ring attractors persist upon increasing perturbations around the connectome-derived
parameter set. Each parameter value was uniformly randomly sampled in the ±(% var.) range around
its connectome-derived value. The mean success rate of 1000 samples per % var. value was calculated.

in the right regions (and it is) within the space of
synapse connectivity for our proposed mechanism
to work, the ensemble of synapse count matrices
that can lead to a viable ring attractor is actu-
ally not a zero-measure subspace! We also noticed
that while the synapse counts between the compass
neurons (Fig. 5a) mirrored the pattern of the e↵ec-
tive weights (Fig. 5b), the inhibition necessary for
supporting the activity bump could be much more
flexible (Fig. 5c). However, interestingly the con-
nectomic inhibitory weights exhibit a very specific
trend the reason for which is unclear to us.

While evolution could have led the fruit fly con-
nectome to arrive at a network state that can sup-
port continuous angular encoding, such an encod-
ing strategy must be robust against small fluctua-
tions in changes to individual synapse counts and
synapse strengths. To explore possible ways to
accomplish this issue we decided to vary synapse
counts around the fly connectome. Somewhat sur-
prisingly, even when the synapse counts varied by
about 90%, it was possible to adjust the scale fac-
tors to, almost always, yield a viable ring attractor.
Fig. 5d shows how even a relatively large variation
of the connectome often supported a ring attractor
network. We hypothesize that there may exist a
homeostatic mechanism which can compensate for
small changes in individual syanpse strengths by

appropriately adjusting the scale factors via global
feedback mechanism that track stability of the ac-
tivity profiles.

VI. Discussion

In this paper we have presented a mechanism to
obtain a threshold-linear ring-attractor network
that can self-sustain stable neuronal activities en-
coding angular locations continuously in the pro-
cess. Moreover, our framework is able to obtain
the entire ensemble of such continuous ring at-
tractors given the specific number of neurons (ac-
tive and inactive) involved. Although the synaptic
weights have to satisfy certain relationships to re-
alize the continuum of steady state patterns, we
show how the flexibility in how synapse counts
scale to synapse weights may allow us to find ring
attractors amidst our ensemble that are consistent
with known connectome. Specifically, we found
three connectome-constrained ring attractors in-
volving the EPG and �7 neurons in fruitfly head-
ing direction system, each with their own distinc-
tive �7 activity patterns.
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As the compass EPG neurons in fruit flies are ex-
citatory, inhibitory pathways involving other neu-
ronal populations becomes a key ingredient of the
ring attractor network. While here we have fo-
cused our attention on the inhibitory �7 neurons,
our framework can consider alternatives such as
ER6 ring neurons that provide the same broad in-
hibitory signal to all the EPG neurons in contrast
with the �7 neurons that target EPG neurons op-
posite to the activity bump. Preliminary analysis
suggests that it is possible to realize a connectome-
constrained ring attractor network with EPGs and
ER6s. Our formalism can also incorporate more
than one columnar cell types: every additional cell
type adds new scale factors associated with new
pre-and post-synaptic pairs, allowing an expansion
of realizable networks. Therefore we will find more
ring attractor networks that are consistent with the
connectome but these will come with their distinc-
tive activity predictions for all the neuronal popu-
lations involved.

Another key biological requirement is for ring
attractor networks to be able to integrate velocity
inputs. While a connectome based mechanistic im-
plementation of the same is out of the scope of the
present paper, in Appendix H we present an illus-
tration of how appropriate velocity signals to the
compass neurons can smoothly change the shape
of the activity profile involving a given set of active
neurons, so that the angular location can integrate
the velocity information.

While the exquisite connectomic knowledge mo-
tivated us to consider the fruit fly heading di-
rection system, we believe our framework can be
generalized to describe other model animals. For
instance the central complex is remarkably con-
served among insects, [35] and [36] provides a de-
tailed comparison of the fruit fly heading direction
system with that of cockroach and locusts respec-
tively. We note that the key requirement for our
continuous enconding mechanism to work is the
double degeneracy of the e↵ective weight matrix,
the number of active and inactive neurons (neu-
ronal compartments) and the precise synaptic con-
nectivity, that can all di↵er from one insect species
to another, only changes the details of the imple-
mentation. Unlike insects, in larger animals such
as rodents, the heading direction system contains
several hundreds of cells that do not exhibit any
obvious anatomical alignment of symmetry. Nev-
ertheless, could our network provide an e↵ective
coarse-grained description of the network dynam-
ics?

A critical component of ring attractor networks,
including ours, is that the synaptic weights have to
satisfy specific relationships. While one can imag-
ine years of evolution leading to such a fine tuned
network state, it is imperative to have a mecha-
nism in place to address spontaneous changes to
connectivity. Intriguingly, our analysis shows that

small changes in synapse counts may be compen-
sated by small changes in scale factor that don’t
act at the individual synapse level but only at the
network level. Thus, one can conjecture, a homeo-
static mechanism where a detection of increase or
decrease in the average neuronal activity triggers
compensatory changes in the scale factors that can
be mediated via neuromodulators or other global
signaling pathways.

Symmetries are also popular considerations for
constructing ring attractor networks but we be-
lieve this is not a fundamental requirement. We
conjecture that as long as we ensure the e↵ective
active weight matrix is doubly degenerate, we will
have two encoding coordinates that may be able to
represent amplitude and angular location, see also
[37] for considerations related to asymmetric ring
attractors. There may be additional requirements
related to smooth transitions between the active
sets as was the case in our mirror-symmetric exam-
ple. Indeed, our mirror-symmetric network which
violates circular symmetry and left-right symme-
try, is able to encode angles continuously and sta-
bly. We also point out that [38, 39] has shown
how to generate networks that can reproduce a
prescribed set of steady state patterns, and these
networks need not have any symmetries. This may
allow us to generate new asymmetric ring attractor
networks by enforcing that they reproduce the ac-
tivity patterns we have derived. To summarize, we
believe the mechanism we have proposed may pro-
vide a general and robust way to encode a contin-
uous variable and provides promising new research
directions.

VII. Methods

Experimental procedure

Fly preparation

Imaging experiments were performed on 6-8 days
old female UAS-jGCaMP7f;SS00096-GAL4 flies,
reared at 23°C in 60% relative humidity with a
16:8 light:dark cycle on standard cornmeal fly
food. To express the genetically encoded cal-
cium indicator jGCaMP7f [40] in EPG neurons
specifically, jGCaMP7f flies (20XUAS-IVS-Syn21-
jGCaMP7f-p10 in VK00005; RRID:BDSC 79031)
were crossed with the stable split EPG GAL4
driver line SS00096 [41]. The flies were pre-
pared for imaging as previously described [22, 42].
Briefly, flies were anesthetized at 4�C, their pro-
boscis was fixed with wax to reduce brain move-
ments, their thorax was UV-glued to a tether pin
for stability and manipulation, and they had their
legs removed and the stumps and dorsal abdomen
glued to reduce spontaneous motor activity. The
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fly’s head was positioned with a micromanipulator
in a holder with a recording chamber and UV-glued
to it to immobilize the head for dissection and
brain imaging. To gain optical access to the brain,
a section of cuticle between the ocelli and anten-
nae was removed, along with the underlying fat tis-
sue and air sacs. Throughout the experiment, the
head in the imaging holder was submerged in saline
containing (in micromolar): NaCl (103), KCl (3),
TES (5), trehalose (8), glucose (10), NaHCO3 (26),
NaH2PO4 (1), CaCl2 (2.5) and MgCl2 (4), with a
pH of 7.3 and an osmolarity of 280mOsm.

Two-photon calcium imaging

For each fly we collected imaging data during trials
in darkness. Calcium imaging was performed with
a custom-built two-photon microscope controlled
with ScanImage (version 2022, Vidrio Technolo-
gies) [43]. Excitation of jGCaMP7f was generated
with an infrared laser (920nm; Chameleon Ultra II,
Coherent) with approximately 15mW of power, as
measured after the objective (×60 Olympus LUM-
PlanFL/IR, 0.9 numerical aperture). Fast Z-stacks
(eight planes with 8µm spacing and three fly-back
frames) were collected at 10Hz by raster scanning
(128 ⇥ 128 pixels, ⇠75 ⇥ 75µm2) using an 8kHz
resonant-galvo system and piezo-controlled Z posi-
tioning. Focal planes were selected to cover the full
extent of EPG processes in the EB. Emitted light
was directed (primary dichroic: 735, secondary
dichroic: 594), filtered (filter A: 680 SP, filter B:
514/44) and detected with a GaAsP photomulti-
plier tube (H10770PB-40, Hamamatsu).

Data analysis and model fitting

The recorded XYZ stacks of EPG activity in the
EB were first averaged over the Z dimension, and
then drift-corrected over time for alignment. The
aligned XYZ stacks were then averaged over time
to get a mean EPG activity profile in 3D. To ac-
count for the 3D orientation of the EB within the
brain, relative to the objective angle, a 3D mask of
the EB was constructed from the masks in each in-
dividual slice separating the EB signal pixels from
background. PCA was then performed on the 3D
signal intensity points within the EB mask to find
the optimal plane on which the EB signal should be
projected. An ellipse was fitted through the pro-
jected data, to account for the XY rotation of the
EB, and automatically segmented into 8 wedges,
similarly as in Fig. 4i, top. Average fluorescence
signal F i(t) was calculated for every wedge i = 1, 8
and time point t = 1, T , and the baseline fluo-
rescence signal F i

0 per wedge was calculated as
the 10th percentile from the F i(t) values. Finally,
the �F/F0 = (F � F0)/F0 values were calculated
for every wedge and time point, giving an 8 ⇥ T ,
�F/F0 data matrix.

We calculated the population vector average

(PVA) at each time point t to estimate the EPG
bump amplitude and orientation, as the circular
mean of the 8-dimensional �F/F0 vector at t and
the corresponding wedge angles (CircStat toolbox
[44]). Time points where there is a lack of bump
strength, as measured by the likelihood of unifor-
mity of the circular data (p-value60.5 of Rayleigh’s
test; CircStat), were excluded from the analysis. A
moving average with 11 frames of the PVA angle
was used to estimate the instantaneous bump ve-
locity. Time points where the bump velocity was
greater than 20�/s were excluded from the analysis
to filter out the non-stationary states.

To estimate the model fit of each of the three
models (with A� = 8, A� = 6 and A� = 4) on the
EPG activity data, we used their estimated values
for the spatial parameter ra. For each time point
we then estimated the � amplitude and µ position
of the bump using Eq. B.29 (Appendix), as well as
an additional o↵set parameter to accommodate the
baseline. Non-linear least squares (lsqnonlin, Mat-
lab) was performed over the�F/F0 data circularly
shifted for each of the 8 possible consecutive activ-
ity sets of EPG wedges, and the best fit was chosen
for that time point and the active EPG set stored.
Predictions for the �7 activities were subsequently
generated using Eq D.74 (Appendix).

Constructing connectome-derived ring
attractors

To estimate the average synaptic strength in the
connectivity between and within the computa-
tional units of EPG and �7 cell types from
the hemibrain dataset [26, 27], similarly as in
[33], we estimate the average synaptic strength at
the level of wedges in the EB (between EPGs)
and glomeruli in the PB (EPG-�7 and between
�7). Each �7 was assigned to a glomeruli
(wedge) based on the maximal cumulative out-
put synaptic counts to EPG neurons grouped by
wedges. Due to the circular and mirror sym-
metry, for 8 computational units (wedges) the
resulting vectors are 5-dimensional. For exam-
ple, for EPG-EPG connectivity we obtain cEE =
(cEE

0, cEE
1, cEE

2, cEE
3, cEE

4), where cEE
0 is

the average strength within a unit (self-loops),
cEE

1 is synaptic strength between neighboring
units, while cEE

4 is the synaptic strength between
units on opposite sides of the EB.

For the fully symmetric case we typically set
�II = 0 (except for Fig. 4d), as its range was very
narrow ([�7.15 ⇥ 10�4, 0]). A given connectome
data (from the hemibrain data or from the sampled
connectomes), typically of the form

�
CEE CEI

CIE CII

�
, is

constructed from the corresponding 5-dimensional
synaptic weight vectors cEE , cEI , cIE and cII .
An e↵ective inhibitory feedback matrix can also
be computed as CEIE = CEI (I � �IICII)�1 CIE ,
with its weight vector cEIE in the first column.
From the excitatory cEE and inhibitory feedback
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cEIE synaptic weight vectors a 3⇥ 2 e↵ective con-

nectome matrix is constructed: Ĉ =
� cEE

1 cEIE
1

cEE
2 cEIE

2

cEE
3 cEIE

3

�
.

A linear combination of these two vectors should
yield the e↵ective weights w = (w1, w2, w3), thus
a two-dimensional mapping parameter vector �̂ =
(�̂EE , �̂EI �̂IE) from the e↵ective connectome ma-
trix to the e↵ective weights: Ĉ �̂ = w(ra) would
yield the connectome-derived ring attractor, with
the e↵ective weights satisfying the analytically de-
rived conditions (cited in Table 1, Appendix), ex-
pressed as a function of ra. Here �̂EI �̂IE is a
lumped parameter. This translates into finding
the value ra in the range [0, 1] that minimizes
||(Ĉ Ĉ†

�I)w(ra)||2, which was computed numeri-
cally with precision of 10�10. The correct � values
were then calculated using � = (�EE , �EI�IE) =
�̂./(1+ (cEE

0, cEIE
0)T �̂), accounting for the nor-

malization step due to the subtraction of the w0

self-loop weights. The lumped �EI�IE parame-
ter was further distributed to �EI = ��IE =
�
p
|�EI�IE |, to account for the correct signs. The

final weights were then tested to check if they sat-
isfy the inequalities cited in Table 2 (Appendix;
whether the presumed active and inactive EPGs
have the correct signs and whether w4 is below its
upper bound), and � values were tested for �EE >
0, �EI < 0 and (1 + (cEE

0, cEIE
0)T �map) > 0.

Furthermore, for the cases where �II < 0 (Fig. 4d)
the correct signs of the active and inactive �7 neu-
rons were also checked in steady state for µ = 1 and
� = 1 (Eq. B.29, Appendix).

In the mirror-symmetric case, there are e↵ec-
tively three � parameters that would map the
connectome data to the e↵ective weights. There
are also three equations that the e↵ective weights
should satisfy for generating a ring attractor (Ta-
ble 1, Appendix), thus solving a system of nonlin-
ear equations would yield the fixed-point solutions.
For this, we used Matlab’s fsolve solver with the
trust-region-dogleg algorithm initiated from 1000
di↵erent � values, a combinatorial set of 10 val-
ues per single � parameter, sampled uniformly
from �EE

2 [0, 0.025], �EI�IE
2 [�0.002, 0] and

�II
2 [�0.02, 0], respectively. For each candidate

� vector the e↵ective matrix was computed as

W̄EE
ij ⌘

�EECEE
ij + �EI�IECEIE

ij

1� �EECEE
ii � �EI�IECEIE

ii

,

(VII.3)

for all i 6= j, and the diagonal terms were set to
zero, W̄EE

ij = 0, see Appendix D for details. From
the e↵ective matrix the 6 e↵ective weights are ex-

tracted and left-hand sides of the equations cited in
Table 1 (Appendix) calculated. Through iterative
procedure the sum of squares of the left-hand side
values is minimized by fsolve to calculate the fixed
point. Similarly with the fully-symmetric case, the
corresponding additional inequalities are checked
to filter out invalid solutions.

For both, the fully-symmetric and the mirror-
symmetric ring attractors the marginal stability of
the system was verified numerically by perturbing
the continuum states with additive noise of 10%
and 50% from the maximal state component and
checking whether the system converges back to the
continuum states using the ode23 solver in Matlab.
This happened 100% of the time for the three com-
puted connectome-derived ring attractors.

Generating randomly sampled connectomes

To generate a random connectome sample, each
value of the cEE , cEI , cIE and cII vectors was
randomly sampled and then compiled into a ma-
trix form. The resulting system was then tested
whether it fulfills the stability and continuum con-
ditions of the fully-symmetric model, as well as if
the assumed active states of EPG and �7 neu-
rons was correct. Value of �II = 0 was used. For
Figs. 5a to 5c the random samples were uniform
on a 0-40 range. As the � parameters allow arbi-
trary scaling, the resulting profiles were normal-
ized to match the hemibrain connectome model
values. For Fig. 5d samples for each parameter cx
and % variation value were drawn uniformly from
the cx ± (%var.) range. 2000 and 1000 number
of samples per condition were drawn for the two
cases, respectively.
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Appendix notations related to Activity

Activity of compass neurons: yi, where i = 1, . . . ,N

Activity of inhibitory neurons: zi, where i = 1, . . . ,N

Activity of all, Ay, active compass neu-
rons:

~y, an Ay  N dimensional vector

Activity of all, Az, active inhibitory neu-
rons:

~z, an Az  N dimensional vector

Mirror partners: i and i?, are mirror partners if i + i? =
N + 1, e.g., {3, 4, 5, 6} = {3, 4, 4?, 3?}

Encoded angle by the ith neuron: ✓i =
⇡
N

�
i� N+1

2

�
, i = 1, . . . ,N

Symmetric and antisymmetric eigenvec-
tors, respectively, spanning the active
compass neurons, {y3, y4, y5, y6}:

~ys =

0

BBBBBB@

 s

�s

�s

 s

1

CCCCCCA
, and ~ya =

0

BBBBBB@

 a

�a

��a

� a

1

CCCCCCA

(Anti-)symmetric eigenvector with eigen-
value one, and general eigenvectors

~✏s,~✏a, and ~✏⌫ , ⌫ = 1, . . . , 4, respectively.

Ratios characterizing symmetric and anti-
symmetric eigenvectors.

rs =
�s

 s
and ra =

�a

 a
respectively.

Amplitude of activity profile: � = hyii
4(1+rs)

=
PN

i=1 yi
4(1+rs)

Shape of activity profile: µ = 8h✓ii
⇡ = 8

PN
i=1 ✓iyi
⇡

Steady state profiles: ~y = �(~ys + µ~ya) = �

0

BBBBBB@

1� µ

rs � µra

rs + µra

1 + µ

1

CCCCCCA

Two dimensional (anti-)symmetric vec-
tors:

~y 2D
s =

0

@  s

�s

1

A , and ~y 2D
a =

0

@  a

�a

1

A .

3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.11.01.621596doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.01.621596
http://creativecommons.org/licenses/by/4.0/


Appendix notations related to Weights

8 dimensional weight matrix, 4 dimensional e↵ective
weight matrix, and 4 dimensional e↵ective matrix
without self-couplings

W , fW and W̄ respectively.

Weight matrix elements: Wij, where i, j = 1, . . . ,N

Symmetric weight matrix without self-couplings:

W̄ =

0

BBBBBB@

0 w1 w2 w3

w1 0 w1 w2

w2 w1 0 w1

w3 w2 w1 0

1

CCCCCCA
.

Mirror-symmetric weight matrix without self-
couplings:

W̄ =

0

BBBBBB@

0 w0
1 w0

2 w3

w00
1 0 w1 w00

2

w00
2 w1 0 w00

1

w3 w0
2 w0

1 0

1

CCCCCCA
.

Weight submatrices involving di↵erent (excitatory or
inhibitory) pre/post-synaptic pairs:

WEE, WEI , W IE and W II .

Synapse-count submatrices involving di↵erent (exci-
tatory or inhibitory) pre/post-synaptic pairs:

CEE, CEI , CIE and CII .

Scale-factors for di↵erent pre/post-synaptic pairs: �EE, �EI , �IE, �II .

Scale-factor combination characterizing excitatory-
inhibitory-excitatory loop:

e� =
p

��EI�IE.

Weight submatrices from active to active/inactive
neurons:

W••, W�•, respectively.

E↵ective Weight matrices from active EPGs to
(in)active EPGs and (in)active �7s:

fWEE
•• ,fWEE

�• ,fW IE
•• , and fW IE

�• .

8 ⇥ 4 dimensional e↵ective Weight matrices without
self-couplings from active EPGs to all EPGs and all
�7s:

W̄EE and fW IE.

E↵ective weights from active EPGs to other neurons: {u3 = u?6, u4 = u?5, u5, u6}

Eigenvalues for (anti) symmetric and eigenvectors: �s, �a.
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B Continuous symmetric ring attractor networks

In this appendix, we will consider symmetric recurrent networks and work out when
and how they can behave as continuous ring attractors. Specifically, we will focus
on a threshold-linear network with N neurons with all-to-all cross couplings but no
self-coupling.

B.1 The network & symmetry considerations

Let us consider a recurrent threshold-linear neuronal network of an even number of
N neurons (or computational units) whose firing rates or activities are denoted by yi,
with i = 1, . . . ,N . We are going to choose the convention that yi encodes the angle

✓i =
⇡

N

✓
i� N + 1

2

◆
. (B.1)

This convention ensures that the encoded angles are distributed evenly around zero.
Thus, for N = 8, the eight neurons encode the angles, ±⇡/8,±3⇡/8,±5⇡/8,±7⇡/8.
If the neurons attain a steady state, We will use a rate network model,

ẏi = �yi + �

 NX

j=1

Wijyj + si

!
, (B.2)

to describe the evolution of the firing rate or neuronal activity where Wij are the
synaptic weights1, si are drives that in principle could vary from neuron to neuron,
and �(x) = max(0, x) is the threshold-linear transfer function that transforms the
inputs from the presynaptic neurons into the given neuron’s input drive. We are
primarily going to consider steady state activity profiles which must now satisfy

yi = �

 NX

j=1

Wijyj + si

!
, (B.3)

In this appendix, we will consider self-sustaining networks that can support bump-like
excitation in the absence of any external stimuli or positive bias. In Appendix G we
consider the case with non-zero positive bias. Furthermore, we will impose discrete
rotational symmetry, Wi+1,j+1 = Wij, and assume symmetric weights, Wij = Wji.
In the subsequent appendix, we will consider more general matrices with reduced
symmetry properties. Finally, to keep the algebra simple we will assume the self
couplings to be zero, Wii = 0. In Appendix E, we will show how a network with non-
zero self-couplings can be mapped to a network without them, so this assumption
does not constitute a loss of generality.

1We will later identify these weights to be e↵ective weights that include indirect paths between
the neurons via other neurons not included in this e↵ective network.
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In the main paper we argued that in order to have a ring attractor that self-
supports (doesn’t require an external drive) a continuum of steady-state profiles, the
Ay ⇥ Ay dimenstional W̄ submatrix involving the active neurons, must be doubly
degenerate2. To understand the reason, let us focus on the active neurons, which we
will label by indices, ī, j̄, Since the drive to the active neurons must be positive, � ! 1,
and the activity of the active neurons must satisfy linear steady-state equations,

X

j̄ 6=ī

Wīj̄yj̄ = yī, or W̄~y = ~y . (B.4)

In other words, the Ay-dimensional steady-state solution vector involving the active
neurons, ~y, is an eigenvector of W̄ with eigenvalue one. For simplicity, we will as-
sume that both N and Ay are even numbers and for notational convenience we will,
henceforth, consider two indices, i, i?, mirror partners if

i+ i? = N + 1 . (B.5)

According to this definition, the the weights obey the symmetry

W̄i?j? = W̄ij . (B.6)

Now suppose that there exists only one such linearly independent eigenvector.
Then, in Appendix F we prove that due to the symmetry (B.6), ~y must be either
symmetric, yi? = yi, or anti-symmetric, yi? = �yi. Since the anti-symmetric pattern
implies negative responses that are not allowed in a threshold-linear network, we are
only left with a symmetric eigenvector. However, any symmetric profile will have an
average angular value,

h✓i ⌘
NX

i=1

✓iyi , (B.7)

that corresponds to the central angle.The only flexibility the steady state profiles
therefore have is in being able to change the bump amplitude, but this doesn’t change
the encoded angle. Accordingly, for every active set, and there are N of them, we can
only encode a single angle. If N is large, this discrete encoding strategy may be able
to provide adequate angular resolution, but it is insu�cient to explain the accuracy
of fruit fly’s heading direction system with only eight computational units.

In order to have a continuous encoding of angles we need an eigenvector that is
neither symmetric nor anti-symmetric, so that its mirror pair, defined by

y?i ⌘ yi? , (B.8)

is also another linearly independent eigenvector due to the symmetry properties of
W̄ . The two eigenvectors together then will span a two-dimensional eigenspace of
steady-state solutions. As we will see explicitly, di↵erent linear combinations of these
eigenvectors can now indeed encode a continuum of average angular location.

2Strictly speaking W̄ � I is doubly degenrate.
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B.2 Eigenvalue constraints on the weights

In Appendix F, we will show that the two dimensional eigenspace can also be de-
scribed as a vector space spanned by a symmetric and anti-symmetric eigenvector.
Thus to obtain all the steady state activity profiles, we will find the symmetric and
antisymmetric eigenvectors separately, and obtain the constraints they impose on the
weight-space along the way.

Henceforth, in this section we will specialize to the case, N = 8 and Ay = 4,
which is relevant for the fruit fly ring attractor, although many of our techniques
can be generalized to other network sizes and active set sizes. In our special case,
the symmetric activity eigenvector can be represented as a four dimensional column
vector,

~ys =

0

BBBBBB@

 s

�s

�s

 s

1

CCCCCCA
, (B.9)

where for later convenience we will consider i = 3, 4, 5, 6 to be the active neurons.
The sub-matrix, W̄ , relevant for the active set that respects all the symmetries must
be of the form,

W̄ =

0

BBBBBB@

0 w1 w2 w3

w1 0 w1 w2

w2 w1 0 w1

w3 w2 w1 0

1

CCCCCCA
, (B.10)

containing three weight parameters, w1, w2m and w3. Substituting the symmetric
eigenvector ansatz (B.9) into the eigenvalue equation, W̄~ys = �s~ys, we obtain a
reduced eigenvalue equation (see Appendix F),

0

@ w3 w1 + w2

w1 + w2 w1

1

A

0

@  s

�s

1

A = �s

0

@  s

�s

1

A , (B.11)

because two of the four original equations are redundant. Imposing the characteristic
equation, Det(W̄ � �I) = 0, be satisfied for eigenvalue, � = 1, we obtain a constraint
equation on the weights:

(1� w3)(1� w1) = (w1 + w2)
2 . (B.12)

To get a stable continuous attractor, one of the eigenvalues must be one and the other
less than one. This implies that their sum3 must be less than two, or

w1 + w3 < 2 . (B.13)

3The sum of eigenvalues equals the trace of a matrix.
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Thus in conjunction with (B.13), (B.12) ensures that we have stable symmetric
steady-state solutions.

Now, one could also obtain the eigenvalues straightforwardly as

�s± =
1

2

h
(w3 + w1)±

p
(w3 � w1)2 + 4(w1 + w2)2

i
. (B.14)

and imposing �s+ = 1, we can also obtain the required stable symmetric eigenvector.
Technically though, this equation is more di�cult to implement as compared to (B.13)
and (B.12).

Let us next find the anti-symmetric steady-state solution. The procedure is very
similar to the symmetric case, except we have to work with the anti-symmetric ansatz,

~ya =

0

BBBBBB@

 a

�a

��a

� a

1

CCCCCCA
. (B.15)

The eigenvalue equation now reduces to (Appendix F),
0

@ �w3 w1 � w2

w1 � w2 �w1

1

A

0

@  a

�a

1

A = �a

0

@  a

�a

1

A . (B.16)

The two eigenvalues are

�a± =
1

2

h
�(w3 + w1)±

p
(w3 � w1)2 + 4(w1 � w2)2

i
, (B.17)

and to get a stable continuous attractor, we need �a+ = 1 and �a+ + �a� < 2. The
first condition implies that the weights must satisfy

(1 + w3)(1 + w1) = (w1 � w2)
2 . (B.18)

The second condition implies the inequality

w1 + w3 > �2 . (B.19)

We note that the two inequalities, Eqns.(B.13) and (B.19) readily combines into

|w1 + w3| < 2 . (B.20)

Finally, we must put the symmetric and anti-symmetric eigenvector conditions
together. Eliminating w3 from Eqs. (B.12, B.18), after some algebra we obtain a
relation between w1 and w2:

(1 + w2)(2w
2
1 + w2 � 1) = 0 . (B.21)
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Thus either w2 = �1, which as we shall see in the next subsection, leads to inconsistent
activity profiles, or

w2 = 1� 2w2
1 . (B.22)

For the former solution branch, substituting w2 = �1 in Eqs. (B.12 and B.18), we
get

(1 + w1)(w1 � w3) = 0 , and (1� w1)(w1 � w3) = 0 . (B.23)

The only consistent solution therefore implies w1 = w3.

For the other solution branch, substituting w2 in either Eqs. (B.12 or B.18), one
can obtain w3 in terms of w1:

w3 = w1(4w
2
1 � 3) . (B.24)

We thus have a one-parameter family of symmetric connectivity matrices that give rise
to continuous ring attractors. In this latter case, substituting w3 in the inequalities
(B.20) one can succinctly express the bounds w1 must satisfy as

|4w3
1 � 2w1| < 2 ) |w1||2w2

1 � 1| < 1 . (B.25)

One can check that the above inequality is satisfied if and only if

|w1| < 1 . (B.26)

For the branch w2 = �1, and w1 = w3, it is easy to see that we, in fact, end with the
same inequality, (B.26).

B.3 Constraints from requiring single-bump activity profiles

By substituting �s = 1 and �a = 1 in the equations (B.11) and (B.16) respectively, we
can explicitly obtain the corresponding symmetric and anti-symmetric eigenvectors.
For instance, from second row of the eigenvalue equation, (B.11), We get,

(w1 + w2) s + w1�s = �s ) rs ⌘
�s

 s
=

w1 + w2

1� w1
, (B.27)

where we note that w1 6= 1 according to (B.26). Very similar manipulations involving
the antisymmetric eigenvalue equation, (B.16), yields

ra ⌘
�a

 a
=

w1 � w2

1 + w1
, (B.28)

Now, the two-dimensional space of steady-state solutions span the linear combinations
of eigenvectors with eigenvalue one. Thus, by redefining  s = � and  a = µ�, one
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can use � and µ to parametrize the two-dimensional space of steady-state attractor
profiles as

~y = �

2

6666664

0

BBBBBB@

1

rs

rs

1

1

CCCCCCA
+ µ

0

BBBBBB@

�1

�ra

ra

1

1

CCCCCCA

3

7777775
= �(~✏s + µ~✏a) , (B.29)

where ~✏s,~✏a are symmetric and antisymmetric eigenvectors of (W �I) with eigenvalue
zero. Immediately we observe that to ensure non-negativity of all the responses,

� > 0 , and � 1  µ  1 . (B.30)

We must also satisfy rs > 0. Further, if we want to have a profile that has a single
peak, we must have ra > 0, otherwise one develops alternating peaks and troughs. In
particular, we now notice that for the solution branch with w2 = �1, rs = �1 making
the activity profile unphysical. This is the reason we did not consider this solution
branch any further.

Continuing with the viable solutions given by (B.22) and (B.24), we find that the
expressions for rs and ra simplify considerably:

rs ⌘= 2w1 + 1 , and ra ⌘
�a

 a
= 2w1 � 1 , (B.31)

and therefore,
rs � ra = 2 ) rs � ra . (B.32)

Thus one really just has to satisfy

ra � 0 ) w1 �
1

2
. (B.33)

To summarize, combining (B.26) and (B.33) we find that w1 must be constrained to
lie within the range

1

2
 w1 < 1 , (B.34)

while w2 and w3 are given by (B.22) and (B.24).

It is instructive to compute h✓i as a natural choice for decoding the angular coor-
dinate, as one changes the steady state profiles. Using our conventions, for the active
set, i = 3, 4, 5, 6, encoding angles {�3⇡

8 ,�
⇡
8 ,

⇡
8 ,

3⇡
8 }, respectively, we have

h✓i =
P
✓iyiP
yi

=
⇡

8


�3(1� µ)� (rs � µra) + (rs + µra) + 3(1 + µ)

(1� µ) + (rs � µra) + (rs + µra) + (1 + µ)

�

= µ
⇣⇡
8

⌘✓3 + ra
1 + rs

◆
= µ

⇣⇡
8

⌘
, (B.35)
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where yi values were substituted from (B.29), and in the last step we used the relation
between the ratios (B.32). Thus, as µ varies in the interval, [�1, 1], h✓i covers an angle
of ⇡/4, as required to encode the entire angular range of 2⇡ with 8 consecutive active
sets.

B.4 Constraints from the non-positivity of inactive neurons

Finally, let us look at the constraints that one obtains while ensuring that the total
input drive that the inactive neurons receive is negative, consistent with the ansatz
for the steady state profiles. We do need to check that the consistency holds for all
the steady state profiles parametrized by µ and �. Due to the symmetric properties
we only need to consider drives, di, onto the neurons, i = 7, 8. The inactivity of y7
implies

d7 = w1y6 + w2y5 + w3y4 + w4y3  0 . (B.36)

Substituting the activity profile (B.29), one can rewrite the above inequality as

(1 + µ)


w1 + w2

✓
rs + ra

2

◆
+ w3

✓
rs � ra

2

◆�

+ (1� µ)


w4 + w2

✓
rs � ra

2

◆
+ w3

✓
rs + ra

2

◆�
 0 . (B.37)

We see that the factors multiplying (1±µ) must both be negative, otherwise at either
µ = 1 or �1, the inequality will be violated. So,

w1+w2

✓
rs + ra

2

◆
+w3

✓
rs � ra

2

◆
 0 , and w4+w2

✓
rs � ra

2

◆
+w3

✓
rs + ra

2

◆
 0 .

(B.38)
Further, since (1 ± µ) are always positive, the above condition guarantees that the
inequality will be satisfied for all values of µ. The inequalities simplify once one uses
the expressions for rs, ra:

C1 ⌘ w1 + 2w1w2 + w3  0 , and C2 ⌘ w4 + w2 + 2w1w3  0 . (B.39)

It is easy to check using (B.22, B.24) that the left hand side of the first inequality is
identically zero and therefore the inequality doesn’t lead to any new constraints. The
second inequality can be re-expressed as a bound on w4 in terms of w1:

w4  �(8w4
1 � 8w2

1 + 1) . (B.40)

One can perform calculations that are very similar to above to derive constraints
from inactivity of y8:

d8 = w2y6 + w3y5 + w4y4 + w3y3  0 , (B.41)
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leads to the inequality

(1 + µ)


w2 + w3

✓
rs + ra

2

◆
+ w4

✓
rs � ra

2

◆�

+ (1� µ)


w3 + w3

✓
rs � ra

2

◆
+ w4

✓
rs + ra

2

◆�
 0 .

This inequality is satisfied i↵,

w2+w3

✓
rs + ra

2

◆
+w4

✓
rs � ra

2

◆
 0 , and w3+w3

✓
rs � ra

2

◆
+w4

✓
rs + ra

2

◆
 0 ,

(B.42)
which can be simplified to yield

w2 + 2w1w3 + w4  0 , and C3 ⌘ w3 + w1w4  0 . (B.43)

The first inequality is the same as was obtained earlier, while the second is a new
constraint that gives rise to another bound for w4:

w4  �(4w2
1 � 3) . (B.44)

To summarize, the ensemble of self-sustaining continuous ring attractors obeying
the symmetries assumed is characterized by two parameters, w1, and w4, where the
latter must satisfy the bounds (B.40, B.44), w1 must lie in the range (B.34) and w2, w3

are given by (B.22, B.24). It is interesting to note that one could parametrize the
weights in terms of an anlge, � according to

w1 = cos� , w2 = � cos 2� , w3 = cos 3� , w4 < min(� cos 4�, 1� 2 cos 2�) , (B.45)

where, 0 < � < ⇡/3.

C Continuous mirror-symmetric ring attractor net-

works

In this section we will generalize the analysis above to e↵ective weight matrices
with reduced symmetry properties that arise naturally from the connectomic features
present in fruit flies.

C.1 Constrains on the weights from eigenvalue requirements

As we will discuss in appendix F, once the compass neurons whose activity encodes
angular locations can drive each other indirectly via other neuronal populations, the
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e↵ective connectivity between the compass neurons need not obey all the symme-
tries assumed in the previous appendix. For instance, even if the entire connectivity
structure preserves circular symmetry, the e↵ective connectivity between the compass
neurons need not preserve the symmetry due to the presence of the threshold nonlin-
earity. In appendix F, we will argue that for the fruit fly heading direction system a
reduced mirror-symmetric e↵ective weight matrix defined via,

Wi?j? = Wij , (C.46)

is what is appropriate to consider. For the active set we are considering (i = 3, 4, 5, 6)
the mirror symmetric weight matrix is parameterized by six weight parameters,
{w1, w0

1, w
00
1 , w

0
2, w

00
2 , w3}:

W̄ =

0

BBBBBB@

0 w0
1 w0

2 w3

w00
1 0 w1 w00

2

w00
2 w1 0 w00

1

w3 w0
2 w0

1 0

1

CCCCCCA
. (C.47)

The arguments of the previous section, Appendix B, on the eigenvalue require-
ments of the active weight submatrix, goes through for the mirror-symmetric configu-
ration as well, see appendix B, and thus W̄ must still have two degenerate eigenvectors
with eigenvalues of one. Moreover, we again need one of the eigenvectors to be sym-
metric and the other to be anti-symmetric. Substituting the symmetric eigenvector
(B.9) in the eigenvalue equation (B.4), we again can obtain a reduced eigenvalue
equation: 0

@ w3 w0
1 + w0

2

w00
1 + w00

2 w1

1

A

0

@  s

�s

1

A = �s

0

@  s

�s

1

A . (C.48)

The eigenvalues of a 2 by 2 matrix have closed form expressions:

�s± ⌘ T ±
p
T 2 �D , where (C.49)

D ⌘ Det(W̄ ) = w3w1 � (w0
1 + w0

2)(w
00
1 + w00

2)

T ⌘ 1

2
Tr(W̄ ) =

1

2
(w3 + w1) . (C.50)

In order to have a stable attractor then, we must have

�s+ =
1

2

h
w3 + w1 +

p
(w3 � w1)2 + 4(w0

1 + w0
2)(w

00
1 + w00

2)
i
= 1 (C.51)

Just like in the symmetric network, the above equation is equivalent to requiring,

(1� w3)(1� w1) = (w0
1 + w0

2)(w
00
1 + w00

2) . (C.52)

along with (B.13), w1 + w3 < 2.
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Let us next determine the degenerate antisymmetric eigenvector,

~ya =

0

BBBBBB@

 a

�a

��a

� a

1

CCCCCCA
. (C.53)

As with the symmetric case, the eigenvalue problem reduces to a two dimensional
problem: 0

@ �w3 w0
1 � w0

2

w00
1 � w00

2 �w1

1

A

0

@  a

�a

1

A = �a

0

@  a

�a

1

A . (C.54)

The eigenvalues now read

�a± =
1

2

h
�(w3 + w1)±

p
(w3 � w1)2 + 4(w0

1 � w0
2)(w

00
1 � w00

2)
i
, (C.55)

or equivalently, the weights must satisfy the relation,

(1 + w3)(1 + w1) = (w0
1 � w0

2)(w
00
1 � w00

2) , (C.56)

along with the inequality (B.19), w1 + w3 > �2.

To summarize, to have a stable continuous attractor we must satisfy

(1± w3)(1± w1) = (w0
1 ⌥ w0

2)(w
00
1 ⌥ w00

2) , (C.57)

and
|w1 + w3| < 2 . (C.58)

We point out that these equations indeed reproduce the symmetric model if we set,
w00

1 = w0
1 = w1 and w00

2 = w0
2.

C.2 Constraints from neuronal activity

Exactly as in the symmetric model, the existence of two degenerate eigenvectors
ensures that we have a two dimensional space of attractor profiles (B.29), The ratios
rs and ra can be calculated similar to the symmetric case as well:

rs ⌘
�s

 s
=

1� w3

w0
1 + w0

2

=
w00

1 + w00
2

1� w1
, and (C.59)

ra ⌘
�a

 a
=

1 + w3

w0
1 � w0

2

=
w00

1 � w00
2

1 + w1
. (C.60)
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We first note that to ensure positivity of all the responses4, we must satisfy

rs =
1� w3

w0
1 + w0

2

> 0 . (C.61)

If we further demand that µ = 1 should correspond to a symmetric configuration
involving i = 4, 5, 6 which can then smoothly transition to the next set of active set,
i = 4, 5, 6, 7, then we must have y4 = y6 at µ = 1

) rs � ra = 2 ) 1� w3

w0
1 + w0

2

� 1 + w3

w0
1 � w0

2

= 2 ) w
02
2 � w20

1 � w0
2 � w3w

0
1 = 0 . (C.62)

Finally, to be consistent with the observed bump profiles we will require that the
bump has a single maximum in the middle, which implies

ra =
1 + w3

w0
1 � w0

2

> 0 , (C.63)

which immediately ensures the previous inequality (C.61), by virtue of (C.62).

C.3 Solution Space

To summarize, we have seen that a mirror-symmetric weight matrix has six inde-
pendent weight paramaters characterizing the weight matrix involving the active set.
There are however three equations, (B.12, B.18, C.62) that these parameters must
satisfy to produce a smooth continuous ring attractor. Thus we expect a three dimen-
sional solution space of ring attractors. In this section we will provide a convenient
parametrization of the solution space that we frequently use for analysis and results.

The three parameters we will choose to parametrize the solutions are, w1, w3, and
ra. We note that the weights, w1, w3, are the only two weights that are symmetric,
while ra enables us to characterize the activity profiles in a uniform way that is valid
for both the symmetric and mirror-symmetric models. Using the definitions of ra and
rs = ra + 2, one can straightforwardly obtain w0

1, w
0
2 in terms of w3 and ra:

w0
1 =

1

2

✓
1� w3

rs
+

1 + w3

ra

◆
, and w0

2 =
1

2

✓
1� w3

rs
� 1 + w3

ra

◆
. (C.64)

The constraints from eigenvalue can then be use to express w00
1 , w

00
2 in terms of w1 and

ra:

w00
1 =

1

2
[(1� w1)rs + (1 + w1)ra] , and w00

2 =
1

2
[(1� w1)rs � (1 + w1)ra] . (C.65)

The ranges of the three parameters are then restricted as

|w1 + w3| < 2 , and ra > 0 . (C.66)

4By looking at the µ = 0 case, for instance.
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It is useful to point out a couple of key di↵erences between the mirror symmetric
and the symmetric case. Unlike the symmetric case, here w1 and w3 are free pa-
rameters, and thus the allowed range of w1 can vary depending upon the value of
w3:

�2� w3 < w1 < 2� w3 . (C.67)

Unlike the symmetric case, w1 and ra are also independent in the general mirror-
symmetric ring attractor. Thus while ra inherrited a maximum bound of one from
the bound of w1, this is no longer true, and ra, in principle, can have arbitrarily large
values, it only needs to be positive (C.63). Thus the profiles in the mirror-symmetric
attractor can deviate considerably from the symmetric case.

C.4 Constraints from inactive neurons

Finally, let us look at the constraints on the weights from the active to the inactive
neurons as the net drive to each of the inactive neurons must be negative for all activ-
ity patterns. Note, that the synapses to the neurons that are inactive are completely
independent of the recurrent weights between the active neurons. Thus if ~u denotes
the synapse vector onto any of the inactive neurons, we must have

~y · ~u  0 8 µ . (C.68)

Substituting the activity profile (B.29), then we get

u3(1� µ) + u4(rs � µra) + u5(rs + µra) + u6(1 + µ)  0 . (C.69)

As in the symmetric case, one can re-express the left hand side as a linear combination
of two terms involving prefactors (1±µ), so that the above inequality is satisfied 8 µ
provided the coe�cients corresponding to (1± µ) are negative:

2u3+ rs(u5+u4)+ ra(u4�u5) < 0 , and 2u6+ rs(u5+u4)� ra(u4�u5) < 0 . (C.70)

So, there are four independent weights that only have to satisfy two inequalities,
which can be further simplified to

2u3 + 2u5 + (rs + ra)u4 < 0 , and 2u6 + 2u4 + (rs + ra)u5 < 0 . (C.71)

Thus there is a lot of flexibility, and a given weight can take on arbitrary values as
long as other weights are accordingly adjusted.

While (C.71) provides an analytical inequality condition for a viable ring attractor
network, there is a simple numerical way to check that these inequalities are satisfied.
As we just argued, in order for (C.69) to be satisfied for all the profiles, all we have
to check is that these conditions are met for the two extreme configurations, µ = ±1.
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D From the fly connectome to a ring attractor

In this appendix we will consider a neural network that not only contains the compass
neurons, but also other neuronal populations that provide indirect pathways between
the compass neurons. Our reason for considering such a scenario is the well known
fact that while the EPG’s can directly provide local excitatory drives to each other,
the broader distal mutual inhibition has to come indirectly via other neuronal pop-
ulations. Here we will consider a single neuronal population that provides indirect
pathways between the EPG neurons. The appendix is organized as follows: First we
will discuss how one can map such a network to an e↵ective neuronal network model
involving recurrently connected compass neurons that also provide feedforward inputs
to the other neuronal populations. It relies on the ability to absorb all the indirect
pathways involving inhibitory neuronal populations into e↵ective weights between the
active compass neurons and from the active compass neurons to all other neurons.
Next, we will derive all the constraints that the e↵ective weights must satisfy in order
to have a consistent ring attractor network. Since the e↵ective weights are functions
of the original network weights, the various equalities and inequalities we will derive
in e↵ect constrains the original network. Next, using the measured synapse count
matrices involving the di↵erent relevant neuronal populations one can obtain a fam-
ily of realizable neuronal networks that are parametrized by a few scaling parameters
that converts synapse counts to weights. If there exists an intersection between the
theoretical ensemble of continuous ring attractors and the realizable networks from
the connectome, then would have discovered connectome-constrained continuous ring
attractor networks. In the process we will be able to specify how one should adjust
the scaling parameters to map the connectome constrained neuronal network into the
viable ring attractor networks.

D.1 E↵ective neuronal network that includes indirect neu-

ronal pathways

D.1.1 E↵ective EPG network

Recurrent weights between active neurons: Let us consider an additional set
of recurrent neurons, zi’s for e.g., that provide indirect inhibitory pathways between
the EPG neurons for supporting localized bump of activities. For simplicity we will
assume i = 1, . . . ,N . The evolution equations are then modeled as

⌧�1
y ẏ = �y + �(WEEy +WEIz) , and ⌧�1

z ż = �z + �(W IEy +W IIz) , (D.72)

where ⌧z, ⌧y are the neuronal time constants, and WEE,WEI ,W IE and W II are all
N⇥N weight matrices. Now supposeAz is the set of active z neurons when a given set
ofAy compass neurons are active. We are going to assume that this set doesn’t change
depending upon the profile parameters, µ, �, characterizing the neuronal activity
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profile. In this case, the steady state equations for the active neuronal set is given by

y = WEE
•• y +WEI

•• z , and z = W IE
•• y +W II

•• z , (D.73)

where WEE
•• ,WEI

•• ,W IE
•• and W II

•• are respectively Ay ⇥ Ay,Ay ⇥ Az,Az ⇥ Ay, and
Az ⇥Az dimensional submatrices of WEE,WEI ,W IE and W II respectively relevant
for the active neurons. Hence forth we will use •, �, to indicate the activity state, on
or o↵ respectively, of the pre/post synaptic neurons.

The second equation can be solved5 to yield z in terms of y:

z =
�
I�W II

••
��1

W IE
•• y . (D.74)

Substituting z in the first equation, we get

y = W̃EE
•• y , where W̃EE

•• ⌘ WEE
•• +WEI

••
�
I�W II

••
��1

W IE
•• . (D.75)

The e↵ective weight matrix, W̃EE
•• , not only captures the recurrent direct connections

between the EPG neurons (first term) but also indirect pathways between the EPG
neurons via z neurons6.

Feedforward weights from active to inactive EPG’s: While the requirement to
be a consistent continuous ring attractor is most stringent on the e↵ective recurrent
couplings between the active EPG neurons (see Appendices B and C ), one also
needs to check that the assumed neuronal states (active or inactive) of all other
neurons in the network that are consistent with the input drives that these neurons
receive. For e.g., for the network under study we need to check that the inactive
EPG’s, the active z’s, and the inactive z’s, receive negative, positive and negative
input drives respectively. Such consistency checks can be performed most easily
by deriving e↵ective feedforward couplings between the active EPG’s and the other
neuronal populations in question. Let us first derive the e↵ective couplings between
the active and inactive EPG’s.

The total drive, De’s that the inactive EPG neurons receive can be written as

Dy = WEE
�• y +WEI

�• z = [WEE
�• +WEI

�• (I�W II
•• )

�1W IE
•• ]y , (D.76)

where WEE
�• and WEI

�• are (N �Ay)⇥Ay and (N �Ay)⇥Az dimensional submatrices
of WEE and WEI that connect the active EPG and z neurons respectively to the
inactive EPG’s. In other words, the e↵ective feedforward o↵-diagonal (N �Ay)⇥Ay

dimensional matrix connecting the active to the inactive sector of EPG’s is given by

W̃EE
�• ⌘ WEE

�• +WEI
�• (I�W II

•• )
�1W IE

•• . (D.77)

We note in passing that we will useeto denote e↵ective matrices that includes the
indirect pathways.

5Assuming (I�W II
•• ) is nonsingular.

6Expanding
�
I�W II

••
��1

as a Taylor series explitly illustrates the contribution from di↵erent
paths involving the inhibitory populations
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D.1.2 E↵ective feedforward weights from EPG to other neuronal popu-

lations

Since the derivation of the e↵ective recurrent weights between the EPG neurons
required us to posit the states of other neuronal populations, we need to check that
the sign of the drives to these neurons are consistent with our assumptions. Here we
are going to continue to focus on a single z population, but our results can easily be
generalized to incorporate more than one neuronal population. The drives, Dz, that
the active z neurons receive are given by

Dz = W IE
•• y +W II

•• z = [W IE
•• +W II

•• (I�W II
•• )

�1W IE
•• ]y . (D.78)

Accordingly, the Az ⇥Ay dimensional e↵ective feedforward weight matrix connective
the active EPG’s with active z’s are given by

W̃ IE
•• ⌘ W IE

•• +W II
•• (I�W II

•• )
�1W IE

•• . (D.79)

In a very similar manner, one can also derive e↵ective weight matrix connecting the
active EPG’s to the inactive z neurons as,

W̃ IE
�• ⌘ W IE

�• +W II
�• (I�W II

•• )
�1W IE

•• , (D.80)

whereW IE
�• and W II

�• are (N�Az)⇥Ay and (N�Az)⇥Az dimensional submatrices of
W IE and W II that connect the active EPG and z neurons respectively to the inactive
z neurons.

D.2 Ring attractor constraints on e↵ective weights

To summarize, in the last section we provided a prescription to obtain e↵ective weight
matrices, W̃EE

•• , W̃EE
�• , W̃ IE

•• , and W̃ IE
�• , which represent recurrent connectivity between

active EPG neurons (y) and feedforward connectivity from the active EPGs to inactive
EPGs, active z’s and inactive z’s, respectively. We are now going to enumerate the
constraints these matrix elements must satisfy to have continuous attractor.

D.2.1 Constraints on e↵ective EPG network

We observe that the Ay⇥Ay and (N�Ay)⇥Ay dimensional e↵ective weight matrices,
WEE

•• and WEE
�• (D.75 and D.77) respectively can naturally be combined into an

N ⇥ Ay e↵ective matrix connecting inputs from active EPG’s with all the EPG’s.
As discussed in Appendix E, any recurrent network with self-couplings is equivalent
to a recurrent network without self-couplings as far as the steady state solutions are
concerned. According to (E.95) the equivalent weights, W̄EE

ij , for our e↵ective EPG
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network without self couplings is given by,

W̄EE
ij ⌘

W̃EE
ij

1� W̃EE
ii

, 8 i 6= j , i 2 N & j 2 Ay

=
WEE

ij +
P

k2Az ,l2Ay
WEI

ik

�
I�W II

��1

kl
W IE

lj

1�WEE
ii �

P
k2Az ,l2Ay

WEI
ik (I�W II)�1

kl W IE
li

. (D.81)

One can now read-o↵ the e↵ective independent weight-parameters, w, u’s, from their
definitions in the Appendices B and C and impose the conditions that they must
satisfy to realize a continuous ring attractor. These constraints are summarized in
Appendix D.

For the symmetric model the constraints are given by

(1± w̄3)(1± w̄1) = (w̄1 ⌥ w̄2)
2 , 1

2 < w̄1 < 1 ,

w̄2 + 2w̄1w̄3 + w̄4  0 , and w̄3 + w̄1w̄4  0 . (D.82)

where the “bar” indicates that we are referring to the e↵ective weights derived from
(D.81). For the mirror-symmetric model the relevant equations for the e↵ective re-
current weights read,

(1± w̄3)(1± w̄1) = (w̄0
1 ⌥ w̄0

2)(w̄
00
1 ⌥ w̄00

2) , r̄s � r̄a = 2

�2� w̄3 < w̄1 < 2� w̄3 , and r̄a > 0 , (D.83)

where we have defined

r̄s =
1� w̄3

w̄0
1 + w̄0

2

, and r̄a =
1 + w̄3

w̄0
1 � w̄0

2

. (D.84)

Unlike the symmetric model, in the mirror symmetric model the feedforward weights
from active to inactive EPG’s are not related to the above recurrent e↵ective weights.
For every inactive neuron, the e↵ective weights onto it must satisfy

2ū3 + 2ū4 + (r̄s + r̄a)ū5 < 0 , and 2ū6 + 2ū4 + (r̄s + r̄a)ū5 < 0 , (D.85)

where ū3, ū4, ū5, ū6 refers to the e↵ective weights from the active EPG neurons,
y3, y4, y5, y6 to the inactive EPG neuron given by (D.77).

D.2.2 Constraints on e↵ective feedforward weights from active EPG to

other neurons

The inequality constraints on weights from active to inactive EPG neurons were
derived by ensuring that the e↵ective feedforward drive the inactive neurons receive
from the active EPG neurons, is negative for all the activity profiles (�1  µ  1).
Since we have derived the e↵ective feedforward weights from the active EPG’s to the
z neurons, the constraints coming from our assumptions about the activity states
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(active or inactive) of z neurons can be derived following the same mathematical
path as the derivation for the inactive EPG neurons. Explicitly, in the context of the
more general mirror-symmetric model the e↵ective weights onto a given neuron must
satisfy (C.71):

2ū3 + 2ū5 + (r̄s + r̄a)ū4 < 0 , and 2ū6 + 2ū4 + (r̄s + r̄a)ū5 < 0, (D.86)

or, 2ū3 + 2ū5 + (r̄s + r̄a)ū4 > 0 , and 2ū6 + 2ū4 + (r̄s + r̄a)ū5 > 0, (D.87)

depending on whether the z was assumed to be inactive or active respectively. Here
ū3, ū4, ū1, ū6 refers to the e↵ective feedforward weights (D.79 and D.80) from the
active EPG neurons, y3, y4, y5, y6 to the z neuron, respectively.

D.3 Scaling parameters connecting synapse counts to

synapse weights

In the previous subsections we have obtained the constraints that the synaptic weights
must satisfy to become a continuous ring attractor. The connectome, however, does
not directly measure the various weights involved but rather only provides informa-
tion about the number of synapses between di↵erent neurons. We are going to assume
that for a given type of pre- and post-synaptic neuronal pair, there exists an inde-
pendent scaling parameter that converts the synapse counts into synaptic weights
proportionately. Since there are four di↵erent neuronal pairs, we have four di↵erent
scaling parameters:

WEE = �EECEE, WEI = �EICEI ,W IE = �IECIE, W II = �IICII , (D.88)

where C’s are synapse count matrices that will be inferred from data, and �’s are the
proportionality constants between the synapse count and synaptic weights.

We can now express all the e↵ective matrices as functions of the scaling factors.
Explicitly, the e↵ective weight matrices between the active EPG neurons are given
by

W̃EE
•• = �EECEE

•• + �EI�IECEI
••
�
1� �IICII

••
��1

CIE
•• ,

W̃EE
�• = �EECEE

�• + �EI�IECEI
�•
�
1� �IICII

••
��1

CIE
•• ,

W̃ IE
•• = �IECIE

•• + �II�IECII
••
�
1� �IICII

••
��1

CIE
•• ,

W̃ IE
�• = �IECIE

�• + �II�IECII
�•
�
1� �IICII

••
��1

CIE
•• , (D.89)

where the C•• and C�• matrices represent the synapse count submatrices involving
the active neurons, and active to inactive neurons.

We note that this matrix includes diagonal elements representing self-couplings.
According to (D.81) the equivalent weights without self couplings that couple the
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EPG neurons are given by

W̄EE
ij =

�EECEE
ij +

P
k2Az ,l2Ay

(�EI�IE)CEI
ik

�
1� �IICII

��1

kl
CIE

lj

1� �EECEE
ii �

P
k2Az ,l2Ay

(�EI�IE)CEI
ik (1� �IICII)�1

kl CIE
li

, (D.90)

8 i 2 N 6= j 2 Ay. In a similar manner one can define an e↵ective matrix that
combines weights from the active EPG to the active and inactive z’s, i.e. , the matrices
W̃ IE

�• and W̃ IE
•• into another N ⇥Ay matrix, W̃ IE:

W̃ IE
ij = �IECEE

ij +
X

k2Az ,l2Ay

�II�IECII
ik

�
1� �IICII

��1

kl
CIE

lj , 8 i 2 N 6= j 2 Ay .

(D.91)
We note that since only the signs of the drives matter, rescaling the matrix elements
to eliminate self couplings are unnecessary.

To summarize, all the e↵ective weights, w̄, ū’s become functions of three7 scaling
parameters:

�EE , �II , and �0 ⌘
p

��EI�IE , (D.92)

according to (D.90). As we have seen, to be a continuous ring attractor the e↵ective
synaptic weights must satisfy several equalities and inequalities. This in turn means
that the above three scale factors have to satisfy several equalities and inequalities to
map the connectome into a plausible ring attractor.

D.4 Finding scale factors that lead to ring attractors

To be a ring attractor the synaptic weights must satisfy several equalities and in-
equalities. Most of these constraints originate in the requirement of the e↵ective
active submatrix to be able to encode a continuous angular coordinate smoothly,
consistently and robustly. We will first schematically enumerate these constraints
in a tabular form referring to the appropriate equation derived earlier. Next, we
will discuss constraints on the e↵ective feedforward weights from the active to all
other neurons that comes from requiring the signs of the drives to these neurons be
consistent with the assumptions we made about their activity state.

Thus we start by enumerating all the constraints on e↵ective recurrent couplings
between active EPG’s.

7We point out that although in (D.91) �IE appears individually, it can be factored out and
therefore its value doesn’t a↵ect the inequality constraints.
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Constraint Symmetric Mirror-symmetric

Continuous encoding (B.12) & (B.18) (C.52) & (C.56)

Smooth transition None (C.62)

Stability (B.26) (C.58)

Profile requirements (B.33) (C.63)

Table 1: References to the equations that define the ring attractor conditions

The inequality constraints that limits the ranges of weights from the active EPG’s
to all the other neurons are tabulated as

Constraint Symmetric Mirror-symmetric

Inactive EPG states (B.43) (C.71)

Active z states (D.87) (D.87)

Inactive z states (D.86) (D.86)

Table 2: References to the inequalities that limit the parameter space of valid solutions

E Equivalence between ring attractors with or

without self couplings

In this appendix we will show how a steady state solution in a recurrent network can
be mapped to a steady-state solution in a recurrent network with no self-couplings,
and vice-versa. This will enable us to work with the slightly simpler networks of the
latter kind without loss of generality. To see this let us start with the steady state
equation:

yi = �

 NX

j=1

Wijyj + si

!
. (E.93)

If, i = 1, . . . ,Ay, denotes the active neurons, their activity must satisfy linear steady-
state equations,

yi =
NX

j=1

Wijyj + si ) yi =
X

j 6=i

W̄ijyj + s̄i , (E.94)

where we have defined new equivalent weights and drives as

W̄ij ⌘
Wij

1�Wii
, and s̄i ⌘

si
1�Wii

, (E.95)
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assuming Wii 6= 1 , 8 i. This means that finding steady state solutions in the original
network is equivalent to finding solutions in a di↵erent simplified network that have
no self-couplings.

To find solutions to the nonlinear equations (B.3) one also must satisfy the in-
equalities,

yi =
NX

j=1

Wijyj + si < 0 , (E.96)

for all yi that are inactive. As long as Wii 6= 1 though, the inequalities can be
straightforwardly written as

yi =
1

1�Wii

 NX

j 6=i

Wijyj + si

!
=

NX

j 6=i

W̄ijyj + s̄i < 0 . (E.97)

To summarize, finding a steady state solution in an arbitrary network can be reduced
to a problem of finding a solution in a network with no self-couplings and all other
weights and external drives rescaled according to (E.95).

Let us now characterize the ensemble of ring attractors in a network with self-
couplings from the knowledge of ring attractors in equivalent networks with no self-
couplings. Suppose, we have already found weight matrices without self couplings
and associated bump profiles that produces continuous attractors. In other words,
we have W̄ij({wa}), and associated yi(µ, �) that satisfies the eigenvalue equation.
From (E.95) then all networks with self-couplings, Wii, that correspond to weights
W̄ij({wa}) given by (E.95) in the equivalent network without self-couplings is a valid
ring attractor network as they would support the same continuous steady state solu-
tions. Specifically, the ensemble of weight matrices are given by

Wij({wa}, {Wii}) =

8
<

:
(1�Wii)W̄ij({wa}) if i 6= j

Wii if i = j
. (E.98)

We now have an extra parameters in Wii that characterizes the weight matrices. The
activity profiles remain unchanged.

F Symmetries of eigenvectors for (mirror) sym-

metric weight matrices

In this appendix we will prove a set of results related to the symmetry of the relevant
eigenvectors that will help us characterize the ensemble of continuous ring attractors
and the continuum of steady states it supports.
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F.1 Single Eigenvector

Consider an eigenvector of W with eigenvalue �,
X

j

Wijyj = �yj . (F.99)

We claim that if there is only one eigenvector with eigenvalue �, and W is a mirror
symmetric matrix, then the eigenvector must be symmetric or anti-symmetric.

We remind readers that a mirror symmetric matrix satisfies

Wi?j? = Wij . (F.100)

Let us now construct ~y’s mirror partner, ~y?, as

y?i = yi? . (F.101)

Then X

j

Wijy
?
j =

X

j

Wijyj? =
X

j

wi?j?yj? = �yi? = �y?i , (F.102)

where the four equalities follow respectively from (F.101), (F.100), (F.99) and (F.101).
In other words, y? is also an eigenvector with eigenvalue �. y and y? must therefore
be proportional to each other. Further they clearly have the same norm implying
either

~y ? = ~y or ~y ? = �~y , (F.103)

i.e. , symmetric or anti-symmetric respectively. Finally, we note that the pure anti-
symmetric eigenstate is ruled out because it contains negative activities.

F.2 Symmetry properties of double degenerate eigenspaces

Let us next consider a two dimensional eigenspace associated with an eigenvalue �.
If ~y is an eigenvector which is neither symmetric nor anti-symmetric, then one can
define two new eigenvectors,

~y± ⌘ ~y ± ~y? . (F.104)

By construction we now have an eigenbasis where one eigenvector, ~y+ is symmetric,
and the other is ~y� is antisymmetric. In other words, a doubly degenerate eigenspace
can be decomposed into a symmetric and an antisymmetric eigenspace.

What if the entire double degenerate eigenspace is symmetric? In this case the
average encoded position is always at zero, and such a scenario cannot lead to con-
tinuous angular encoding, and therefore will not be considered in this paper. A
completely anti-symmetric eigenspace, on the other hand, is disallowed because neg-
ative activities are not allowed. Thus the symmetric and antisymmetric mixture is
the only viable eigenspace that can lead to continuous angular encoding.
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F.3 Decomposition in terms of symmetric and antisymmetric

vectors

In this section we show that the dynamic and the steady state equations naturally
decompose into two equations one for the symmetric and the other for the anti-
symmetric parts of the activity. First we note that one can decompose any activity
vector into a symmetric and an anti-symmetric piece:

~y = ~ys + ~ya =

0

BBBBBB@

 s

�s

�s

 s

1

CCCCCCA
+

0

BBBBBB@

 a

�a

��a

� a

1

CCCCCCA
. (F.105)

The entire space is spanned by two symmetric basis vectors, ~✏s1,~✏s2, and two anti-
symmetric basis vectors, ~✏a1,~✏a2. Moreover, the symmetric and the antisymmetric
spaces are orthogonal to each other, and one can find the symmetric and antisym-
metric projection of any arbitrary vector via

~ys = P̂s(~y) =
1

2
(~y + ~y?) , and ~ya = P̂a~y =

1

2
(~y � ~y?) , (F.106)

where P̂s and P̂a are the symmetric and anti-symmetric projection operators respec-
tively.

Let us now look at the time evolution equation

~̇y = �~y +W~y +~b , (F.107)

where ~b is a constant external drive. In the driven ring attractor network (Appendix
G) we will consider a symmetric ~b, while for velocity integration (Appendix H) an
antisymmetric ~b will become relevant. Using the projection operations we can now
get two equations, one for the symmetric and the other for the antisymmetric part:

~̇ys = �~ys + P̂s(W̄~y) +~bs ,

~̇ya = �~ya + P̂a(W̄~y) +~ba , (F.108)

We are now going to show that for a mirror symmetric matrix the evolution of sym-
metric and the antisymmetric components decouple. For the symmetric part, we
have

W̄~ys =

0

BBBBBB@

0 w0
1 w0

2 w3

w00
1 0 w1 w00

2

w00
2 w1 0 w00

1

w3 w0
2 w0

1 0

1

CCCCCCA

0

BBBBBB@

 s

�s

�s

 s

1

CCCCCCA
=

0

BBBBBB@

(w0
1 + w0

2)�s + w3 s

w1�s + (w00
1 + w00

2) s

w1�s + (w00
1 + w00

2) s

(w0
1 + w0

2)�s + w3 s

1

CCCCCCA
, (F.109)
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which is again a symmetric vector. In fact it become convenient to work with the 2
dimensional vector,

~y 2D
s =

0

@  s

�s

1

A , (F.110)

with evolution equation

~̇y 2D
s = �~y 2D

s + W̄s~y
2D
s +~bs , where W̄s =

0

@ w3 w0
1 + w0

2

w00
1 + w00

2 w1

1

A . (F.111)

Similarly for the antisymmetric part, we have

W̄~ya =

0

BBBBBB@
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1 0 w1 w00
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w00
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1
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1
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BBBBBB@
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�a

��a

� a
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CCCCCCA
=

0

BBBBBB@

(w0
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2)�a � w3 a
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w1�a � (w00
1 � w00
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�(w0
1 � w0
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1

CCCCCCA
, (F.112)

which is an symmetric vector. Again it is convenient to work with the 2 dimensional
vector,

~y 2D
a =

0

@  a

�a

1

A , (F.113)

with evolution equation

~̇y 2D
a = �~y 2D

a + W̄a~y
2D
a +~bs , where W̄a =

0

@ �w3 w0
1 � w0

2

w00
1 � w00

2 �w1

1

A . (F.114)

G Driven continuous attractors

G.1 General considerations for obtaining a continuum of

steady-state profiles

In this appendix we are going to consider ring attractors that can encode angles
continuously but needs an external drive to sustain the localized bump of activity.
Specific examples of these ring attractors in the context of linear networks have been
found recently, here we are going to provide the entire ensemble of threshold-linear
symmetric networks. The potential advantage with these models is that we only need
to impose a single degeneracy condition. However, as we will see, the external drive
also a↵ects the average angle that could make decoding the angle more di�cult.
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Since we now have an external drive we are going to consider dynamical equations
of the form

~̇y = �~y + �(W~y + ~s) , (G.115)

where ~s is assumed to be a constant drive, and we assume that W has a single
eigenvector with eigenvalue one to generate a continuum of steady-state profiles with
di↵erent average angles. As for the self-sustaining networks, we focus on the steady
state solutions that must now satisfy

~y = W̄~y + ~s , (G.116)

where ~y and ~s are now representing four dimensional vectors.corresponding to the
active neuronal directions. In analogy with solutions to linear di↵erential equations,
the general solution to the steady state equation can be expressed as a sum of a
homogeneous and particular solution,

~y = ~yh + ~yp , (G.117)

where the homogeneous solutions satisfy the eigenvalue equation,

W̄~yh = ~yh , (G.118)

and, as we shall see momentarily, can provide the continuum of steady state profiles
we require, while ~yp is any solution that satisfies (G.116).

Let us first look at a particular solution satisfying,

W̄ijyj + si = yi , (G.119)

where we are now going to assume that the external drive do not depend on the
neuron, so si = s , 8 i. Then, we find that its mirror, ~y ?, also solves the equation:

W̄ijy
?
j + si = W̄ijyj? + si = W̄i?j?yj? + si? = yi? = y?i , (G.120)

where in the first equality we just used the definition of a mirror, y?i = yi? , and in the
second inequality we used the symmetric property of the weight matrix, W̄ij = W̄i?j? ,
and si? = si = s. And, therefore one can find a symmetric configuration,

~ys ⌘
1

2
(~y + ~y ?) , (G.121)

that also satisfies (G.116) and can serve as the particular solution.

Let us next look at the homogeneous solutions. We have already shown (Appendix
F) that as long there is only a single eigenvalue of one, the eigenstate corresponding
to the homogeneous equation must be either symmetric or anti-symmetric. Now, if
both the homogeneous and particular solution is symmetric, a continuous attractor
with changing average location is not possible, the average is going to be always at the
center. Thus we need an anti-symmetric eigenstate, ~✏a that characterizes a continuum
of homogeneous solutions, ~yh = ⌘~✏a, so that the general solution can be written in
the form

~y = ~ys + ⌘~✏a , (G.122)

where we point out that ~ys depends on s linearly which will be important later on.
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G.2 Symmetric driven ring attractor networks relevant for

fruit fly

We are now going to focus on the special case with N = 8 neuronal/computational
units with steady state configurations involving A = 4 active neurons, as is pertinent
for the fly ring attractor network. For simplicity, here we will specialize to the sym-
metric case, although most of our results should generalize to the mirror-symmetric
networks as well. In Appendix B we already derived the condition for having an asym-
metric eigenvector for the symmetric model. To summarize the results, to satisfy the
eigenvalue condition the weights must satisfy,

(1 + w3)(1 + w1) = (w1 � w2)
2 . (G.123)

and stability is ensured as long as,

�w1 � w3 < 2 ) w1 + w3 > �2 . (G.124)

The anti-symmetric eigenvector is given by

~ya = ⌘~✏a = ⌘

0

BBBBBB@

1

ra

�ra

�1

1

CCCCCCA
, where ra =

1 + w1

w1 � w2
. (G.125)

Let us next try to find a symmetric particular solution. Substituting, the ansatz
for a symmetric solution,

~ys =

0

BBBBBB@

 s

�s

�s

 s

1

CCCCCCA
, (G.126)

we can rewrite (G.116) in matrix form:
0

@ 1� w1 �w1 � w2

�w1 � w2 1� w3

1

A

0

@  s

�s

1

A = s

0

@ 1

1

1

A . (G.127)

Since we have assumed that we have a singly degenerate W̄ , the above matrix must
be invertible and one obtains,
0

@  s

�s

1

A = s̄

0

@ 1� w3 w1 + w2

w1 + w2 1� w1

1

A

0

@ 1

1

1

A = s̄

0

@ 1 + w1 + w2 � w3

1 + w2

1

A (G.128)
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where
s̄ ⌘ s

(1� w1)(1� w3)� (w1 + w2)2
. (G.129)

Thus the entire bump profile can be re-expressed as

~y = �

0

BBBBBB@

1

rs

rs

1

1

CCCCCCA
+ ⌘

0

BBBBBB@

1

ra

�ra

�1

1

CCCCCCA
= �(s)[~✏s + µ(s)~✏a] , (G.130)

where

rs ⌘
1 + w2

1 + w1 + w2 � w3
, �(s) ⌘ s(1 + w1 + w2 � w3)

(1� w1)(1� w3)� (w1 + w2)2
, and µ(s) ⌘ ⌘

�(s)
.

(G.131)

G.3 External drive and decoding angular coordinate

By inspection of (G.130) and (B.29), it is clear that the steady state activity profiles
look very similar, but importantly the parameters describing the di↵erent activity
profiles, �, µ, for a given set of weights become functions of the external drive. As we
will now explain, this could lead to di�culty in decoding the heading direction as the
average angular location now depends on the external drive. To see this it is more
convenient to decompose the evolution equation in a symmetric and asymmetric piece
(see Appendix F):

~y = ~ys + ~ya =

0

BBBBBB@

 s

�s

�s

 s

1

CCCCCCA
+

0

BBBBBB@

 a

�a

��a

� a

1

CCCCCCA
=

0

@ y2Ds

y2Ds

1

A+

0

@ y2Da

�y2Da

1

A , (G.132)

and the evolution equation (F.107) now decomposes into two separate equations,

ẏ2Ds = �y2Ds + W̄sy
2D
s + s(t)1 , and ẏ2Da = �y2Da + W̄ay

2D
a , (G.133)

where we are now allowing the external drive to change, and we have defined,

W̄s ⌘

2

4 w3 w1 + w2

w1 + w2 w1

3

5 , W̄a ⌘

2

4 �w3 w1 � w2

w1 � w2 �w1

3

5 , and 1 ⌘

0

@ 1

1

1

A .

(G.134)
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The key point to note now is that the symmetric and the antisymmetric compo-
nents evolve independently. Thus if ~ya is at an initial steady state configuration, it
will continue to remain in this state, but with a changing s(t), the symmetric part
will start to change with time, ~ys = ~ys(t). This in particular will change the activ-
ity profile and the average angular location making decoding the heading angle from
average neuronal activity di�cult. To be specific, let us compute the average angle
according to (B.35). For our steady state profiles we have

h✓i = µ
⇣⇡
8

⌘✓3 + ra
1 + rs

◆
=


⇡⌘

8s(t)

�✓
3 + ra
1 + rs

◆
(1� w1)(1� w3)� (w1 + w2)2

1 + w1 + w2 � w3

�
.

(G.135)
Imagine now s(t) changing from some initial value to a di↵erent value. We know that
this will not have any a↵ect on the antisymmetric component of the activity vector
and hence ⌘ will remain unchanged, but h✓i will change with the changing shape of
the activity profile because s has changed. Obviously, if s is a fixed external drive
none of these decoding problem will arise. However, the average neuronal activity,

hyi = 1

4

4X

i

yi =
�(1 + rs)

2
=

s(1 + w1 + w2 � w3)(1 + rs)

2[(1� w1)(1� w3)� (w1 + w2)2]
, (G.136)

was seen to vary from one steady state to another in the experimental data. This
would imply that the external drive must be varying as well.

H Velocity Integration

In this appendix we are going to provide an example of a velocity drive that can
continually deform the shape of the activity profile so that the bump of activity can
faithfully and smoothly track the angular location. We are only going to focus on
activity changes for a given fixed set of active neurons in the context of the e↵ective
network. We can therefore consider the linear network dynamics,

~̇y = �~y + W̄~y + ~v , (H.137)

where ~v is assumed to be a constant velocity drive. Again, the solution can be
obtained as a sum of a particular solution (~yp) and solutions (~yh) to the homogeneous
equation,

~̇yh = �~yh + W̄~yh . (H.138)

The homogeneous equation is a linear di↵erential equation, and it is well known that
its solution can be decomposed into modes:

~yh(t) =
4X

⌫=1

b⌫e
�⌫t~✏⌫ , (H.139)
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where ~✏⌫ ’s are constant eigenvectors that satisfy,

(W̄ � I)~y⌫ = �⌫~✏⌫ . (H.140)

Now we know that for our models two eigenvalues of W̄ � I are zero, corresponding
to the steady state eigen vectors and the other two have negative eigenvalues from
stability considerations. Thus the general solution to the homogeneous equation can
be written as

~yh(t) = �0(~✏s + µ0~✏a) + b3e
�3t~✏3 + b4e

�4t~✏4 , (H.141)

where �3,�4 < 0 are the two remaining eigenvalues. We note that because these
eigenvalues are negative, they give rise to decaying modes that loose significance with
time and therefore will be ignored henceforth.

Let us now focus on finding a particular solution. For the purpose of illustration
we will consider a velocity drive that is along the “shape-shifting” direction:

~v = va~✏a . (H.142)

Then we claim that we can find a particular solution of the form

~yp = ba(t)~✏a . (H.143)

Since (W � I)~✏a = 0, substituting the particular solution in (H.137) we have

ḃa~✏a = va~✏a ) ḃa = va . (H.144)

A particular solution is then given by

~yp = vat~✏a . (H.145)

Thus one can express the entire solution as

~y(t) = �0[~✏s + µ(t)~✏a] , where µ(t) = µ0 +

✓
va
�0

◆
t . (H.146)

In other words, the rate of change of angular location, ! ⌘ dh✓i/dt is proportional to
the velocity drive, va,

! =
⇡va . (H.147)
�0

It is interesting to note that fruit flies i n t he d ark a re o nly able t o proportionately
track the heading direction. Perhaps, it requires an additional cue to adjust the
proportionality factor and track heading directions precisely.
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