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Abstract

For any y < 1/3, we construct a nontrivial weak solution u to the two-dimensional,
incompressible Euler equations, which has compact support in time and satisfies u €
CY (Ry x ’H‘%). In particular, the constructed solution does not conserve energy and,
thus, settles the flexible part of the Onsager conjecture in two dimensions. The proof
involves combining the Nash iteration technique with a new linear Newton iteration.

1 Introduction
Consider the incompressible Euler equations

oru+diviu®@u)+Vp=0,
. (1.1)
divu =0,
defined on R; x ’]I‘%, where T? = R? / 72 is the two-dimensional torus; u : R x T2 —
R? is the velocity field; and p : R x T?> — R is the scalar pressure. In this pa-
per, a weak solution is a pair (u, p) which satisfies (1.1) in the sense of distribu-
tions.

In his work on turbulent flows [33], Onsager conjectured that weak solutions to the
Euler equations (1.1) with Holder regularity greater than 1/3 must conserve kinetic
energy, while solutions with lower regularity need not do so. After partial results of
Eyink [26], the positive/rigid part of the conjecture was settled in the affirmative by
Constantin, E, and Titi ([16]; see also [11] for a sharp version of energy-conservation
for solutions with 1/3 regularity in L3-based Besov spaces). The first results to-
wards the negative/flexible side of the assertion were those of Scheffer ([34]) and
Shnirelman ([35]), in which very low-regularity weak solutions were constructed.
More recently, the problem was revisited by De Lellis and Székelyhidi, who, in
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their seminal works [19, 21], and [22], have constructed the first examples of non-
conservative solutions with Holder regularity. Their key observation was that flexible
solutions of the Euler equations can be constructed by exploiting similar ideas to
those introduced by Nash in his C ! isometric embedding theorem ([30]). This trig-
gered a series of works ([1, 3-5, 13, 14, 18, 28]; see also the surveys [2, 20, 23, 24]
for more complete descriptions of the developments), which culminated with the res-
olution of the flexible part of Onsager’s conjecture by Isett, who, in [29], constructed
a non-trivial three-dimensional Euler flow with (almost) Onsager-critical regularity
and compact support in time (see also [6] for a simplification of those arguments, as
well as for the extension of the result to admissible solutions). Recently, Novack and
Vicol [32], building on their work [7] with Buckmaster and Masmoudi, have given a
new proof of the flexible part of the Onsager conjecture in 3d, in which they use spa-
tial intermittency to construct solutions with almost 1/3 of a derivative in L3-based
spaces.

We remark that none of the arguments which reach the Onsager-critical exponent
from the flexibility side ([6, 29, 32]) extend to two-dimensions, while the arguments
from the rigidity side ([11, 16]) are dimension independent. Indeed, in the two di-
mensional case, the best Holder exponent known previously was at most 1/5. This
result is proved in [31][Theorem 1.2] where the author develops a convex integration
scheme for the 3D quasi-geostrophic equations and connects it with the 2D Euler
equations. In fact, the main theorem below also implies the Onsager conjecture for
the 3D quasi-geostrophic equations, as described in [31][§§1.1.3-1.1.4]. The purpose
of this paper is to prove the following theorem, closing the rigidity/flexibility gap also
ind=2.

Theorem 1.1 (Main Theorem) For any 0 <y < 1/3, there exist non-trivial weak so-
lutions (u, p) to (1.1), with compact support in time, and such that u € C¥ (R, x T)ZC).

The proof of the main theorem 1.1 is based on the aforementioned Nash itera-
tion technique. More precisely, the approach is to inductively define a sequence of
smooth approximate solutions by adding, at each stage, highly oscillatory perturba-
tions which interact through the nonlinearity to erase the error from being a solution,
while, in turn, giving rise to much smaller errors. This sequence will, then, converge
to a weak solution of (1.1). In order to define the highly oscillatory perturbations,
one first decomposes the error into simpler errors, which, in the case of the Euler
equations, correspond to a finite set of directions (c.f. lemma D.1 below). Experience
with the Nash iteration technique has shown that, in order to construct solutions with
(almost) critical regularity, it is required that the perturbations corresponding to dif-
ferent directions do not interact, and, thus, the error-erasing is achieved only through
self-interaction.

This non-interaction property is achieved in both currently known proofs of the
3d Onsager conjecture ([29] and [32]) by using as building blocks the Mikado
flows introduced by Daneri and Székelyhidi in [18]. These flows are stationary,
pressure-less solutions to the Euler equations, which are supported near straight (pe-
riodized) lines. In dimensions d > 3, given any finite set of directions, one can en-
sure that the Mikados corresponding to any two distinct directions have disjoint sup-
ports.
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The Onsager conjecture in 2D: a Newton-Nash iteration 693

In d = 2, however, due to the elementary fact that any two non-parallel lines must
intersect, Mikado flows are not a viable option to achieve the non-interaction. On
the other hand, Cheskidov and Luo have recently introduced temporally oscillatory
and intermittent perturbations in the context of Euler and Navier-Stokes equations
([10]), and have shown that these can be used to achieve the non-intersection property
([9]). The idea is that one can erase the error at some set of times by a temporal
corrector (i.e. through the time derivative in (1.1)), while the spatially oscillatory
Nash perturbation is used to erase the rest of the error. This procedure achieves, then,
the non-interaction property by exploiting the extra dimension of time.

In the proof of theorem 1.1, we also use oscillations in time to overcome the in-
teraction problem. However, in order to reach the Onsager-critical regularity, we are
led to defining the perturbation not as a temporal corrector, but as the solution to the
Newtonian linearization of the Euler equations, where the forcing is augmented with
a temporally oscillatory phase. Indeed, the perturbations defined by Cheskidov and
Luo can then be seen as a first-order approximation of those we obtain by the device
described above. A more precise description of this Newtonian iteration and the way
it interacts with the Nash-type perturbation will be given in Sect. 2.3.

We note that theorem 1.1 furnishes a third proof of the Onsager theorem, which
does not use intermittency or Mikado flows, and, which, moreover, yields non-
conservative solutions in any dimension d > 2. Indeed, it is not difficult to see that
any solution to the two-dimensional Euler equations can be trivially extended to a
d-dimensional solution, with d > 2.

We remark that the non-conservative solutions constructed in theorem 1.1 cannot
arise as vanishing viscosity limits of Navier-Stokes solutions (under some natural
assumptions) as such limits would conserve the total kinetic energy, c.f. Theorem 2
of [12]. This is in line with the marked difference one finds between two- and three-
dimensional turbulence. One reason for this is the conservation of enstrophy, which
is characteristic of dimension d = 2. Another reason is that the main energy transfer
mechanism in two-dimensions is the backwards cascade transferring energy from the
small scale forcings to the large scale. This is different from the three-dimensional
setting where the primary mechanism is the direct or forwards cascade which trans-
fers energy from large scales to small scales where it is more readily dissipated. We
refer the reader to Sect. 3.1 of the PhD thesis of Drivas [25] for a detailed discus-
sion.

The paper is structured as follows: in Sect. 2, we state the main iterative proposi-
tion 2.1, use it to prove theorem 1.1, and, finally, describe the iteration at the level of
heuristics. Sections 3 and 4 constitute the proof of proposition 2.1, the former con-
sisting of the implementation of the Newton steps, while the latter containing the con-
struction of the Nash perturbation and the estimation of the various resulting errors.
In the appendix, we collect well-known results concerning Holder spaces, mollifica-
tion, transport equations, singular integral operators, tools of convex integration, and
the linearized Euler equations.
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2 The main iterative proposition

The proof of theorem 1.1 will be achieved by the iterative construction of smooth
solutions (uy, py, Ry) to the Euler-Reynolds system

Orug +div(ug ® ug) + Vpy, =divR,, @0
divu, =0, '

where the Reynolds stress R, is a symmetric 2-tensor field. Here and throughout
q € N will denote the stage of the iteration. The goal is to construct this sequence so
that (u4, py) converges in the required Holder space, while R, converges to zero. In
the limit, we will have, thus, recovered a weak solution to the Euler equations.

We refer the reader to appendix A for the notational conventions of the various
norms that will appear throughout the paper.

2.1 Parameters, inductive assumptions, main proposition

We begin by defining frequency parameters which will quantify the approximate
Fourier support of u,,

Ay =271 [a""T,
as well as amplitude parameters
-2
8g=2,"F.

The constant a > 1 will be chosen to be large, b > 1 will be close to 1, while 0 <
B < 1/3 will determine the Holder regularity of the constructed solution.

Let L e N\ {0}, M >0 and 0 < @ < 1 be parameters whose precise values are
chosen in proposition 2.1 below. We assume the following inductive estimates:

lugllo < M(1—8,"?), 2.2)
luglly < M8y*AY, VN e(1,2,.... L}, 2.3)
Ipglly < M?8,0Y . YN e{1,2,.... L}, (2.4)
IRglln < 8q114) 72, YN €{0.1,.... L}, (2.5)

1D Ryl < 8q4184 ° AN *172% yN €{0,1,.... L — 1}, (2.6)

where here and throughout the paper D; denotes the material derivative correspond-
ing to the velocity field u,:

D,:Bl+uq~v.
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The Onsager conjecture in 2D: a Newton-Nash iteration 695

Moreover, we assume the following on the temporal support of the stress:
1/2, = /2, \— /2, \— 12, \—
supp, Ry C [—2+ (842 29) ™" 1= (8 2) UL + 8,2 " 2= (820 711,
2.7
with the understanding that the constant a in the definition of A, is sufficiently large
so that

O

B—

We are now ready to state the main iterative proposition.

Proposition 2.1 Let L >4,0< B <1/3 and

1438

l1<b<

There exist My > 0 depending only on B and L, and a coefficient 0 < ag < 1 de-
pending on B and b, such that for any M > My and 0 < o < «g, there exists ag > 1
depending on B, b, a, My, M and L, such that for any a > aq the following holds:
given a smooth solution (ug, py, Ry) of (2.1) satisfying (2.2) - (2.6), as well as the
condition (2.7), there exists a smooth solution (ugy1, pg+1, Rg+1) of (2.1) satisfying
(2.2) - (2.6) and condition (2.7) with q replaced by q + 1 throughout. Moreover, it
holds that

1 1/2
g1 = sgllo + 7 lltg-1 =gl < 2Ms,) 2.8)

and
SUpp, (ttg 41 — ttg) C (=2, =) U (1,2). 2.9)

Next, we show that proposition 2.1 implies the main theorem 1.1 and then discuss
its proof at the heuristic level. Subsequently, the rest of the paper will be devoted to
the proof of the iterative proposition 2.1.

2.2 Proof of the main theorem 1.1

Let L =4, and B < 1/3 such that y < B, where y is the Holder coefficient in the
statement of the theorem. Fix b so that it satisfies

1438
68
and let My and o be the constants given by proposition 2.1. We fix also M >

max{Mo, 1} and o < min{e, 1/4}. Then, let ag be given by proposition 2.1 in terms
of these fixed parameters. We do not also fix a > ag until the end of the proof.

1<b<
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696 V. Giri, R.-O. Radu

We now aim to construct the base case for the inductive proposition 2.1. Let
f :R — [0, 1] be a smooth function supported in [—7/4,7/4], such that f =1 on
[—5/4,5/4]. Consider

uo(x, 1) = f(1)8y/* cos(roxi)er, polx,1) =0,

/ 55/2 0 sin(Aox1)
Ro(x,t)=f (t)TO (sin(koxl) 0 >’

where (x1, xp) denote the standard coordinates on T2 and (e, ey) are the associated
unit vectors. It can be checked directly that the tuple (uq, po, Rg) solves the Euler-
Reynolds system (2.1).

We have

1/2 2
luollo < M8y < M(1—5)/*),

provided a is chosen sufficiently large so that (Sé/ 221 /2. The estimate (2.2) is, thus,
satisfied. Moreover, for any N > 1,
1/2
luolly < M8y"22y),

and, so, (2.3) also holds. Also, for any N > 0,
sl2
IRolly < 2sup | f' ()] =4y
t AO
Since it holds that (2b — 1) < 1/3, we can ensure that
—1/2,1/2
25up f'(1)] < 18, g,
by choosing a sufficiently large. Then,
-1/2
IRolly < 812 *2)),

and it follows that (2.5) holds, since we have chosen « < 1/4. For the estimate con-
cerning the material derivative, we calculate

1/2 i

s 0 sin(Apx1)
20 -

3 Ro+uo-VRo= f"(1) Xo (Sin(koxl) 0 |

In order to ensure that (2.6) is satisfied, it suffices to choose a large enough so that

—1/2,1/2 ,,1/2 3/2
2sup | 7)) < 818, Py 2 (852 h0) = 81297
t

Finally, we note that supp, Ry C [—7/4,7/4]1\ (—=5/4,5/4), and, thus, the condition
(2.7) is satisfied provided

12, =1 1
512 -
( 0 0 < 4

which, once again, can be guaranteed by the choice of a.
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The Onsager conjecture in 2D: a Newton-Nash iteration 697

We now finally fix a so that all of the wanted inequalities are satisfied, and con-
clude that the tuple (uo, po, Ro) satisfies all the requirements to be the base case for
the inductive proposition 2.1. Let, then, {(u4, py, Ry)} be the sequence of solutions
to the Euler-Reynolds system (2.1) given by the proposition. Equation (2.8) implies
that

1— 1/2 _
litgs1 —uglly S g —ugly  Nuger —ugl <8,/500  SarP.
Therefore, {u,} is a Cauchy sequence in C, CY and, thus, it converges in this space to
a velocity field u. Moreover,

1— -2
IR lly S IR llg " IR} < 8412y <2237,

and, thus, R, converges to zero in C; CY . Since Dy satisfies
Apy =divdiv(—uy Q@ ug + Ry),

it follows that p; — f pq converges also to some p in C; CY, and, thus, Vp,— Vpas
distributions. We conclude, then, that (u, p) is a weak solution to the Euler equations
with u € C,C }C/ , which, in view of (2.9), moreover satisfies supp, u C [—2, 2] and
u(x,t)= (Sé/z cos(Aoxy)er,
whenever r € [—1, 1].
The claimed regularity in time follows either by the result of [27], or by the short

argument given in the proof of the main theorem of [6]. Theorem 1.1 is, therefore,
proven.

Remark 2.2 The constructed velocity field u is of size 8(1)/ 2 (say, in L? or C?), which
becomes vanishingly small as § — 1/3. We remark that we can obtain “large” solu-
tions by simply using the scaling of the Euler equations

u(x,t) > lux,I't), p(x,t)—)sz(x,Ft)

for any I > 1. The cost of the procedure is that it concentrates the temporal support.
On the other hand, by a trivial modification of the construction, one can obtain so-
lutions which are non-trivial in the interval [T, T'], for arbitrary T > 0, instead of
[—1, 1] as achieved above.

2.3 Heuristic outline of the iteration stage

We now present the main ideas of the proof of proposition 2.1 at the level of heuris-
tics. Before we begin, however, let us caution the reader that the values given below
for the various parameters (74, (q+1, I', etc.), as well as the definitions of the per-
turbations and the generated errors will not exactly match those which we will use in
the proof. The reasons for these discrepancies are essentially of technical nature. The
plan is the following: we first recall the temporal localization and the simple-tensor
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698 V. Giri, R.-O. Radu

decomposition of the Reynolds stress (these are now standard in the context of Nash
iterations for the Euler equations); then, we describe the temporally oscillatory pro-
files and the construction of the Newton perturbations; finally, we present the Nash
perturbation and highlight the flow error, which is present due to the addition of the
Newton perturbations and is a sharp error specific to this scheme.

2.3.1 Temporal localization and stress decomposition

By taking a partition of unity in time, we can assume that R, has temporal support

in an interval of length 7, = (8;/ qu)_l, centered at some time fy. Note that this
localization procedure preserves the inductive estimate

1/2 _
1D Ry llo < 84184 *hg = 8g17; "

We denote by & the backwards flow of ug, with origin at #9, which is characterized
by

P +u, Ve =0,
@ | t=ty =X

In the proof, we will in fact use the flow of a spatially mollified version of u,, which
we denote by iu,. This allows us control on arbitrarily many derivatives of i, in terms
of the mollification parameter, at the cost of having to control various other errors.
We ignore this technicality in this discussion.

The geometric decomposition lemma (see lemma D.1 in the appendix) can be
employed to define: a finite set of directions A C Z2, which is fixed independently of
the parameters of the construction; and, for each & € A, amplitude functions ag such
that

D @GV lE@EVD) T =641 <Id—ﬁ>. (2.10)

fen 8q+1

Ag

In fact, in the proof, R, will be replaced by a mollified version of itself, for the same
reasons as those given above. The idea of this decomposition will become apparent
once we describe the (approximate) cancellation with the low modes of the quadratic
self-interaction of the Nash perturbation.

2.3.2 Temporally oscillatory profiles and the Newton steps

Consider a set of 1-periodic functions of time {g¢ }¢e A, Which have pair-wise disjoint
temporal supports and unit L2(0, 1) norms. These profiles are used to quantify the
temporal oscillations, as well as to achieve disjoint temporal supports for the Nash
perturbations corresponding to different directions &, n € A. We define

fe=1-g.
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The Onsager conjecture in 2D: a Newton-Nash iteration 699

and the primitives

t
Mgy = / fe(s)ds.
0

Note that since the functions f¢ have zero mean on their period, the primitives fsm
are also periodic with the same period and are uniformly bounded on R. Let also
Mg+1 > T4 ! be the temporal frequency parameter, which we do not fix for the mo-

ment. We can, then, define the first Newton perturbation w((jj_l | to be the solution to

the Newtonian linearization of the Euler equations around u,, where the forcing is
augmented by the oscillatory phases f: (ttg41°):

() ) ) )
Gwgiyy Tug - Vwyiy+wey - Vig+Vp

q+1,1
=2 ten fe(ugr1)Pdiv Ag, 2.11)
dlvw;}rl =0, ’

)

_ 1 [1] :
Wortilice = 7 Leen fo (/Lq+1t0)Pd1VAg‘l=tO.

In the above, P is the Leray projection operator. We have, then, the following cancel-
lation:

) ® .
8lwq+1 1 FugVw iyt weiy o Vg + qu+1 , +divR,
= PdivA; +div R,
EeA

= giPdiv A
EeA

=—div) _ gfA: +Vq. (2.12)
EeA

for some scalar function q.

Moreover, we remark that the first equation in (2.11) can be seen as a transport
equation which is perturbed by the lower-order operator w g+11 -Vuy, +V p p +1 |- As
such, one can expect that

(T) (X 1)~

1 .
Wyi1,1 > fg[ ](“4+1t0)PdIVA5|z:to

0+l fox

t
+/ > felug19)Pdiv Ag (X (-, 5), 5)ds
fo

EeA

= Zfs g 1OPdiv Ag (X, 1)

SEA
PdivA
_Z/ (Ml{-i- ) E(X(',S),S)ds,
fen 10 MHg+1
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700 V. Giri, R.-O. Radu

where X denotes the Lagrangian flow of u, starting at ¢ = 79. We do not give a
precise meaning to the symbol ~ used above, but one can expect that the two sides
of the equation satisfy the same estimates. Since the cost of the material derivative
applied to Pdiv A¢ is expected to be 7,° l« tg+1, we conclude that the last term is
negligible, and, thus,

1 e
wl) |~ > rpdiv A (2.13)
Hg+1 Een

The expression on the right-hand-side is a variant of the perturbations introduced by
Cheskidov and Luo ([9, 10]). It is in this sense that the Cheskidov-Luo perturbation
can be seen as a first-order approximation of the (first) Newton perturbation used in
this paper.

O]

g+1.1 satisfies the estimate

We can infer that w

0, lo g 2

lwyii
. Hg+1

The associated error, which will be part of the new stress R, is, then, the nonlinear
part of the Euler operator:

Sg+1A 2
||Rqu\Tton||0 - ”w((;J)r],l ® wgil,l lo < <%) . (2.14)
q+

We have, therefore, achieved the construction of a perturbation which satisfies the
same estimates as that of Cheskidov and Luo, but for which all of the terms involved

in the application of the linearized Euler operator contribute to the cancellation of
®)
qg+1,1"

sists in the fact that, unlike the right-hand-side of (2.13), wfﬁrl’] itself cannot be
globally extended in time: specifically, it is required that we glue together the tempo-
rally localized perturbations defined in (2.11). For this purpose, we let x be a smooth
cut-off function such that ¥ =1 on Ug supp Ag, while |9, x| < T, 1. The full pertur-

bation will, then, be the superposition of perturbations x w((;}rl .1 corresponding to the

temporal localizations of R,. Therefore, an error related to this gluing procedure is
incurred:

R, not only the time derivative d;w The cost of the procedure, however, con-

1 1=

Rg 4 = giv~! thw;t}rl’l.

This error is reminiscent of the gluing error introduced by Isett in [29], and, indeed,

the techniques developed to deal with that error also apply in this context (specifically,

in the proof we will use arguments similar to those employed in [6]). From (2.13),
we have

1
div="wl), |~ > iV divPdiv A,
Hg+1 Een
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The Onsager conjecture in 2D: a Newton-Nash iteration 701

and we note that the operator div- 1 Pdiv is of zero order. Therefore, we expect the
estimate

- ‘Sq+1":71
19, %11 Agllo S ——L—.
Hg+1 Hg+1

lue
1RG0 <

Moreover,

”thl(]tj_l,] ”O,supp&,i N ”w((;j_lJ ~Vug + vp;lj_l llo+ H Z fePdiv Ag
£ 0,supp dr X

=0

(O] -1
S ||wq+171 ”()Tq s

where the second term above vanishes since supp d; x N supp Ag = . In other words,
a material derivative of the perturbation costs 7, ! on supp d; x. When the material

derivative falls on 9, x, a loss of T, 1 is, likewise, incurred. Therefore, we expect
81t}

q+1 _
AT -1

glue
I1D:Rg " llo <
Hg+1

These estimates for R}‘;’lue will not be good enough to place it into R, 1. However,

compared to R, Rf;’lue has improved estimates by a factor of 7.~ ly Mg+ If, then,

.L.q—l 3 < )‘q )E

Hg+1 A1)
for some 0 < € <« 1, the procedure can be repeated by replacing R, with Rf;’lue
throughout the construction and by taking a new family of profiles {gg¢ 1}, which

have supports disjoint from each other and from the supports of the previously used
profiles. This will cancel the gluing error Rglue up to a remainder as in (2.12), and

will, in turn, give rise to a new gluing error, Rglue’ 2, that satisfies estimates which are
further improved. This process can be continued inductively until, after finitely many
iterations, the remaining gluing error is sufficiently small to be placed into Ry .

These are the iterative Newton steps which we describe rigorously in Sect. 3. After
I' ~ e~ ! steps, the final gluing error will satisfy

1 \T
glue, T Y < Aq
I Rg lo S dg+1 S 8g+1 ,
Hg+1 Ag+1

which is, indeed, (more than) small enough to be compatible with C )](/ 3= regularity.
Since, as we will see upon fixing f441, € will only depend on B, the number of
required Newton steps is finite and fixed throughout the stages of the iteration.
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702 V. Giri, R.-O. Radu

2.3.3 The Nash step and the flow error

We have, thus, constructed a new smooth solution to the Euler-Reynolds system (2.1)
with velocity field

_ ® ()
Ugr =ug+ W, =g + qu+1,n'
Moreover, the error R, has been cancelled out with the exception of a remainder

EeA

Actually, as already noted, each Newton step will have left behind its own remainder
error, but the one above is that which satisfies the worst estimates, and, so, we choose
to ignore the other terms in this heuristic discussion.

Let ® be the backwards flow of ug, r with origin at t = 9. We can define, then, the
(principal part of) the Nash perturbation by

wil =" gede (VO) T We (g1 D),
EeA

where @ are related to ® in similar fashion as ag are related to ®, and W are fixed
shear flows in the directions £ € A (see Sect. 4.2 for the precise choice used in the
proof), which satisfy

fWE QW =§®¢E.

In reality, the discrepancy between ag and ag will also be due to a mollification along
the flow of the decomposed stresses (see Sect. 4.1), but we ignore this technicality
here. We use the flow ® instead of ® in the definition above in order to make sure
that there is no significant interaction between the Newton perturbation wgil and

w;’jr)l. Also, as is the case in all Nash iteration schemes starting with [21, 22], the

full Nash perturbation will include a divergence-corrector term, which is designed
to ensure the validity of the incompressibility condition. In view of the fact that
(V&D)*IWZ; (Ag+1 d) is divergence-free, this will be a much smaller correction, and
so we ignore it in the heuristic discussion.

The main idea of the Nash perturbation is the following (approximate) quadratic
cancellation:

(02) (p)
Rrem + w 1 ® wq+1

==Y giAc+ Y g2ai(VO)'We @ We (A1 &) (VD) T

4 £
=—) giAr+ ) grai (Vo) e @&(ve) T
& £ ~

Ag
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The Onsager conjecture in 2D: a Newton-Nash iteration 703

+ ) 8eai (Vo) (ProWe @ We) (g 11 D) (V)T

5
=Y gi(Ar — Ap)+ > gtaz(V®) ' ProWe @ We) (hg 11 D) (VD) T,
& &

flow
Rq+1

where P denotes the projection onto non-zero Fourier modes, while Rgi“{ is the

flow error, which is due to the disagreement between ® and ®. In the above, we

have used the fact that g¢ have pair-wise disjoint supports in the vanishing of the

;’_’:1 ® w((]’jr)l. Therefore, the low frequency self-interactions

of the Nash perturbations cancel the remainder R;™™ modulo the flow error Rﬁi"{.

The errors generated by the Nash perturbation are, then, those obtained from the
application of the linearized Euler operator around u, r, and the high frequency in-
teraction above. It can be seen that the transport error

off-diagonal terms of w

e (ORI )

will include a term which is characteristic to the use of temporal oscillations:

1o y182
+
< 47 gt (2.15)

~

0 Ag+1

H Z dgeas div=' (V) '"We(hgi1 ®))
£

where in the estimate above we use the heuristics that ag ~ ag ~ R;/ * and that an
inverse-divergence applied to a A, 1-oscillatory function gains a factor of Ay Jil.

By optimizing between (2.15) and the Newton error (2.14), we are led to fixing

1/2

_ 2/3,1/3
Iq+1 =08,/ "2

q+1°

-1 1/3—
‘[q _ ( )\’q ) /3-8
Hq+1 Ag+1

and, thus, the Newton iteration can be carried out with e =1/3 — >0 and I'
(1/3 — B)~ L. Moreover, the two errors are estimated as

Note, then, that

2/3
Newt transport q
IR o+ 1R, llo S 8g+1{ —— ) -
Ag+1

In view of the condition || R;+1llo < 8442, which is necessary for the inductive prop-
agation of the estimates of proposition 2.1, this implies

A 2/3 1
) —1 <82 = B=<
q+1 gt = 9¢q =3p

which is compatible with C i/ 3= regularity.
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With the exception of the flow error, all of the other terms appear in other Nash
iteration schemes, and their compatibility with C ;/ 3= regularity is well-known. It

remains, then, to present the heuristic estimation for Rgi"‘l’. Since the discrepancy

between Ag and Ag is essentially due to the incongruity between ® and ®, we can
expect a bound of the form

IR} Mo S 8g4+11V® — VO [lo.

In view of the fact that

1/3
) 12 [ *q

lw, o <8 ( ) ,
q+1 q+1 )\‘q+1

we canregard u, r as a slightly perturbed version u,, so we can expect also a stability
result related to the generated flows ® and ®. Indeed, it holds that

(D —®)+u, - V(®—d) = w;’il Vo,
(d— <i>)|t=l0 =0.

Standard estimates for transport equations imply that on time-scales of size 7,

1/3
= 12 *q
VO —VPlo < 748, (A—) Ags
g+l

which yields the following estimate for the flow error:

1/2 1/3 1/3+
nﬂ%m<a+(%ﬂ)/(ii)/=3H<1L)/ﬂ.
q+ ~ “q Sq )\’q+1 q )\'q-i-l

Then, arguing as before, we obtain

A

g 1/34+8 1
) —r ) = < —
q+l<)‘q+l> S0t = P35,

which is, once again, just barely compatible with C )1{/ 3= regularity. We conclude this
section with a remark: it turns out that the flow error is always larger than the Newton
error. As such, one can alternatively define 1441 by balancing the transport error with
the flow error, and not with the Newton error as described above. Such a definition
will not bring about any significant changes, as all of the estimates will differ by
factors of (A, /Ag+1)"/>7#. On the other hand, it can be argued that the Newton error
is conceptually the fundamental object, and not the flow error. Indeed, Rglj"l‘"on is

the nonlinear correction to a linear approximation scheme, while Rgi"{ is simply due

to the particular stress decomposition implemented in the Nash iteration. For this
reasons, we opt for defining 11441 as above.

Remark 2.3 In [6], the authors modify the iteration used in [29] and show that any
given smooth energy profile e : [0, 1] — R~ can be achieved by three-dimensional
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flexible Euler flows: i.e. the solution can be designed to satisfy fT3 lu(x,0)|>dx =
e(t). It is an interesting question whether the scheme in the present paper admits
such a modification. In order to point out the difficulties, let us first briefly recall the
ideas used in [6]. The energy increment due to the addition of the Nash perturbation
is given (approximately) by

564+1(’)%2/T 5(1121 Ug /'w;ﬁ:l

The Nash perturbation has the form

w =000 Y as (VO We (g 419,
EeA

where 7 is a “squiggling stripes” cut-off function (see [6] for details), as are low
frequency amplitudes, and W are Mikado (pipe) flows. Stationary phase arguments
show that the high-frequency terms in the integrals above are lower-order, and, thus,
one has

Seqi1(t) ~ /T3 trace(nz(x, Ny ai (Vo) (W ® Wg>(vq>)—T>,

EeA

where (W: ® W¢) =& ® & denotes the mean. One can, therefore, control the en-
ergy increment by controlling the trace in a decomposition similar to (2.10). In other
words, the traceless part of the decomposition is used to eliminate the errors from
being a solution, while the trace is employed to achieve an energy increment. There
are two main points: first, Nash perturbations corresponding to each direction have to
be present at each time-slice; and second, there is a point-wise in space cancellation
of the traceless part, which hinges on the fact that there is no support separation in
the expression above.

In contrast, the energy increment that could be achieved with the construction of
the present paper is given by

degi1(t) ~ / trace(Zggqut)aE(W» lE@E(VD)” T)

EeA

As such, modifications are needed to satisfy either of the two main points described
above. Indeed, regarding the first point, Nash perturbations are only present on the
supports of the oscillatory profiles gz, and not at every time-slice. It seems likely that
this can be rectified by replacing the purely time-dependent gg¢ (1 +1t) with “squig-
gling stripes” variants g¢ (x, itg+17). The second point seems to raise more serious
issues: the fundamental reason for which the scheme of the present paper works is
that the supports corresponding to the different directions are disjoint — this obstructs
the point-wise cancellation of the traceless part (note that the cut-off n(x,t) is the
same for all directions & € A). It seems that substantial additions are needed to over-
come this obstruction.

The considerations above show that constructing solutions satisfying this notion
of flexibility raises important technical issues, and, as such, lies beyond the scope of
this paper.
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3 The Newton steps
3.1 Preliminary: spatial mollification

As in all Nash iteration schemes for the Euler equations starting with [21] and [22],
we begin the construction by mollifying the velocity field and the Reynolds stress.
The aim of this procedure is to yield control of the higher order spatial derivatives
of the solution to the Euler-Reynolds system and, thus, bypass the loss of derivative
problem.

Let ¢ be a symmetric spatial mollifier (note, in particular, that ¢ has vanishing first
moments), and fix the spatial mollification scale

—-1/2
by = (hghgr1) V2
We denote
Ug =g * 80,
Ry0=Ry * Lo,

and record the relevant estimates in the following lemma. Here and throughout the
paper we use the notation

Dt = 3, + I/_lq . V
for the material derivative corresponding to it .

Lemma 3.1 Assume uy and R, satisfy (2.2)-(2.6). Then, the following estimates hold:

lagly < 82N, VN ef1,2,.... L}, 3.1)

IRg.0llx $8q414) 2% VN €{0.1,.... L}, (3.2)

1D, Rgollv < 8q18y/ AN 12 WN €{0,1,...., L — 1) (3.3)
- 1/2 _

lig v <8 ake;N, vN >0, (3.4)

IRg0llv+r S 8q1nh 2N, ¥N >0, (3.5)

1D Ry.0llv+2-1 < 8418¢ 2 AL7240 N N >0, (3.6)

where the implicit constants depend on M and N .|

Here, and throughout, by dependence on N, we mean dependence on the norm being estimated. Strictly
speaking, the constant in the estimate of || - || y47, will depend on N + L.
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Proof In light of the inductive assumptions, standard mollification estimates imme-
diately imply all but inequalities (3.3) and (3.6). Note that

109 +1g - VIRg0lln S 10 +ug - VIR 1% Se, I+ llitg - VRg 0= (ug-VRg) x&e, lIN-

The first term clearly obeys the wanted estimates by the inductive assumptions. For
the second, the Constantin-E-Titi commutator estimate of proposition A.3 implies,
for N <L -2,

litg - VRg.0 = it - VR 15 Loy In S € (g 111V Ry vt + g lIn1 1V R 1)

1/20 N+3—2a 2
< Bgq18y AN FI2g2

§3q+18;/2)\[11v+172a’
while for N > L — 1,
litg - VRg0 = [ug - VR % ey lIn S €™ (lug I VR L1 + lug 11V Ry 1)
< 5q+18;/2)\5+1_2a£§_1\]
< 8gq18y AL gl=1=N,

and the conclusion follows. O
3.2 Transport estimates

We collect now standard estimates on the Lagrangian and backwards flows of u,. For
t € R, the backwards flow ®; : T? x R — T? starting at ¢ is defined by

05Dy (x,8) +ug(x,s) VP, (x,5) =0 G.7)
cI)I|Szt(x) =X,
and the Lagrangian flow X, is defined by
LX((a,s)=itg(Xs (e, 5), 5) 3.8
Xi(a,t) =q.

Lemma3.2 Lett e Rand v < |uy ||1_1. Let ®; be defined by (3.7), and let X; denote
the corresponding Lagrangian flow (3.8). Then, for any |s —t| < 7,

IVO) T C9)lln + IV ) I S Ay

g YN€{0,1,....L -1}, (3.9)

1D (VO )y + 1D VP 9) iy S 822N vN €01, L -1},
(3.10)

IDX:C,)llv <AN, VN e{0,1,...,L—1}, (3.11)

~ g’
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IOV o) vzt + IV )lver—1 Shg™ €Y YN =0, (3.12)
2

1D (V@)™ (o) Ins L1 + 1DV, )lnr-1 S 86 AL, N, YN =0, (3.13)
IDX: (o 9)Inr—1 She~eN, YN =0, (3.14)

where the implicit constants depend on M and N.
Proof Estimates on V®,. The spatial derivative estimates on V&, follow directly
from proposition B.1 and lemma 3.1. For the material derivatives, we note that

D V&, = —Vi,V@,, which implies
1DV eIy S llitglln+1 11V Dello + g 111V Dellwv,

and the result follows from lemma 3.1 and the spatial derivative estimates of V®;.
Estimates on DX,. By proposition A.1, and the definition of X;, we have

d
H —DNx,
dt

S IDiglloll DX lln—1 + llitglln 1 DXl -
0
The case N = 1 now follows by Gronwall’s inequality, which implies, for N > 1,

E aox|

S IDiglloll DXlln—1 + lliglin-

Applying Gronwall again, we obtain (3.11) and (3.14) from the results of lemma 3.1.
Estimates on (V®,;)~L. Finally, we note that

(V&) (x,5) = DX (®;(x, ), 5).
Therefore,
I(ve) o S 1.
and, for N > 1, proposition A.l implies
IDY (Vo) o SUDX: 1 IV lln—1 + I DX NIV

from which (3.9) and (3.12) follow.
Finally,

_ d

Di(VO) (x,5) = ( DX:)(CD (x,5),5)
= Duy(x,5)DX;(P;(x,5),s)
= Diiy(x, $)(VD) (x, 5).

Therefore, (3.10) and (3.13) follow from (3.9) and (3.12) together with lemma 3.1.
O
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3.3 Partition of unity, cut-offs, temporally oscillatory profiles

We now define the various time-dependent functions which will be used in the con-
struction of the iterative Newton perturbations. For this purpose, we introduce the
temporal parameter
1
9= "5

8q " Agh

We remark here that 7, is chosen so as to satisfy
)\' o
- q
||uq||1+och 5 <—) 5 1.
Ag+1

Moreover, since

-~ —a
liglhizg < CA.%,.

with C > 0 depending only on M, lemma 3.2 holds with t replaced with t, provided
ap is chosen sufficiently large in terms of M and « so that

Chf =L

Let t = kzy, for k € Z. We define a partition of unity in time by using cut-off
functions {xx}xez satisfying:

e The squared cut-offs form a partition of unity:

PP AGESE

keZ
e supp xx C (tx — %rq, e+ %rq). In particular,
Supp xk—1 N supp xk+1 = <, Vk € Z;
e Forany N >0and k € Z,
10 xal S 7, 7,
where the implicit constant depends only on N.

These will be used to decompose the iteratively-obtained errors into temporally local-
ized pieces which will act as forcing for the solutions to the Newtonian linearization
of the Euler equations around the background flow i,. Since estimates for the lin-
earized Euler equations degenerate in time, we will glue together these temporally
localized perturbations by another set of cut-off functions {¥x}xez, which satisfy:

o supp xx C (fx — T4,k +74) and xx =1 on (f — %‘L'q, t + %‘Cq). Note in particular
that

Xk Xk = Xk, Yk €Z.
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710 V. Giri, R.-O. Radu

e Forany N >0and k € Z,
10N il S,
where the implicit constant depends only on N.

Finally, we define the time-periodic functions which will serve as building blocks
for the temporally oscillatory profiles. The required number of profiles with pair-
wise disjoint support is determined by the number of implemented Newton steps.
Specifically, we choose

1
F:[l/S—ﬁ—" (3.15)

and note that it depends only on § and is, thus, independent of the iteration stage.

Lemma 3.3 Let A C Z* be the set given by lemma D.1, and T € N. For any
& € A, there exist 2I' smooth 1-periodic functions gg ¢ n, 8¢,0.n : R — R with n €
{1,2,...,T} such that

1
/ 8 n=1. VEe€A peleolandne(l,2,... T}
0
and

Supp g¢, p,n N SUPP &y,q.m = <,

whenever (§, p,n) # (n,q,m) € A x {e,o} x {1,2,...,T}.

Proof Let A =|A|l", where |A| denotes the cardinality of A. Choose g € C2°((—e,
€)), with 0 < 2¢ < (4A)~!, and satisfying

/g2:1_
R

ge(t) =g(r —k/(4A)),

Then, the functions defined by

for k e {—A, ..., A}, have disjoint supports which are all included in the set (—1/2,
1/2). The lemma is proven once we choose any injective assignment from the set of
tuples

&,p,n) e A x{e,o0} x{1,2,...,T}

to the set of 1-periodic extensions of the functions g. U
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3.4 The Euler-Reynolds system after n Newton steps

Letn € {0, 1,...,T —1}. The system we will have obtained after n perturbations will
have the form

g n +div(ug n @ ug ) +Vpgn=divRy , +divS, , +div Pyi1,,, (3.16)
divig,, =0, '

where

e u, , is the velocity which will be defined starting from u4 o = u, by adding n
perturbations;

® pg.n is the pressure, which will be inductively defined starting from p; 0 = py;

e Forn >1, R, ; is the gluing error of the n'™ perturbation, while R o is the already
defined mollified stress;

® S, is the error which will be erased by the non-interacting highly-oscillatory
Nash perturbations. It will be inductively defined starting from S, o = 0;

® Pyy1,, is the error which is small enough to be placed into R, ;. It will, likewise,
be inductively defined starting from P,y1,0= R; — Ry.0.

We remark that for n =0, (3.16) is just the Euler-Reynolds system (2.1).

3.5 Construction of the Newton perturbations

In this section, we construct the Newton perturbation wl(;j_l’ 41 for the system (3.16),

which will in turn determine all of the other quantities of the system at step n + 1.
We begin by decomposing the stress R, using the geometric lemma D.1 adapted

to the coordinates imposed by the coarse grain flow of i, . For this purpose, let ® be

the backwards flow characterized by

{B,®k+ﬁq-v¢k=0

<Dk| X,

=t

and define, forn € {0,1,..., ' — 1}, ke Zand & € A,

R

1/2 s

A o = 5q§rl’nx,(yg(vq>kvq>,{ - vq>k8 ;’1" vol), (3.17)
qrl,n

where ¢ are given by lemma D.1, and the amplitude parameters 441, are defined
by

o \"(1/3-P)
) . (3.18)

q
8q+l,n = 8q+] <—
Ag+1

We now briefly argue that ag  , is well-defined. Proposition 3.4 below will guarantee
that

”Rq,n ||0 = 8q+1,nkfza,
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s0, using lemma 3.2, we see that

Ryn

T —
IV @ VO llo <A,

q+1,n

on supp xx. Note also that proposition B.1 immediately implies

I1d =V @llo S A,

~ q ’
and, thus,

Ry n

q+1,n

| 1d -V, V! +vq>k8 VoL S

Therefore, for any o > 0, we can choose ap sufficiently large so that

Ryn

g+1,n

Vo Vol —vao, V! e By (1d),

and, thus, ag i , is indeed well-defined.
Let us also denote
Lgp = {k €Z|kt, eJ\/}q (supp, Rq,n)},

where N;(A) stands for the neighbourhood of size t of the set A. Then, for any
t € supp; Ry », it holds that

Y xiw=1

k€Zgn

It follows, then, in view of lemma D.1, that

div| Y > at, (Vo) TE@E(VO) T | =div| Y xiSgriald—Rg,
KEZyn EEA k€Zgn

=—divR,,. (3.19)

We define now the parameter which quantifies the frequency of temporal oscilla-
tions by
_o1/2,2/3.1/3 .4
Ha+1 = 8, 100G hg i

and note that indeed (g4+1 > 7, I

Aol 1/3-8
/Lq_;_l‘rq:(i—;_) AT b (3.20)

To simplify notation, we denote

Agn =07, (VO EREVDY .
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We let wy 41 to be the solution to the Newtonian linearization of the Euler equa-
tions with temporally oscillatory forcing. The well-posedness theory for smooth so-
lutions of these equations is probably classical. Nevertheless, we give a self-contained
account in appendix E. With P standing for the Leray projection operator onto
divergence-free vector fields, we define wy ,41 as the unique, mean-zero, divergence-
free solution to

atwk,n+1 + L_iq . Vwk,n+l + Wk, 41 V’/_iq + Vpk,n+1
= ten feknt1 (g1 Pdiv Ag g n(x, 1),

3.21
div wg 541 =0, ( )
Wt 1|y ) = 75 Yeen fif it (a1 10P AV Ag on (v, 1),
where the function f¢ x »+1: R — R is defined by
Sehnt1 =1= 82t ui1s
and
8tent+1 ifkiseven,
= 3.22
Bkt igg,(,,,m if k is odd. (3:22)

The function fé[ 1,3 41 denotes the primitive of fg k p+1:

t
1
fs[,zg,m(f):/ Jeknv1(s)ds.
0

Note that, in view of the fact that g¢ ¢ ,+1 and g¢ o,,+1 have unit L? norm, fs[,lk],n 41 is
indeed a well-defined 1-periodic function. Moreover, we emphasize that the functions
8¢ kn+1> fe knt1 and fé_.[’l,g’n 41 are independent of ¢, and that the total number of such
functions is finite and depends only on I" and the cardinality of A.

We can now define the (n + 1) Newton perturbation by the superposition of
temporal localizations of the velocity fields wg p41:

Wi D= D K Owinpr (x,1).
k€Zyg n

It will also be useful to define:

p((]tj—l,n-i—l('x’t): Z Xk(t)pk,n-‘rl(x’l)'
k€Zy n

3.6 The errors after the (1 + 1)'" step and the inductive proposition

We now plug in the new velocity field ug 11 =g n + ng_lynH into equation (3.16)

and compute the new error terms Ry 11, Sg,n+1, and Py 1. With this aim, we
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O]

g+intl satisfies

note that w

) - () )
HWyit g1 Tlg - VWaiy g F Wiy gy Vilg + V1’q+1 n+l

= Z Z Xk(t)fé,k,n—i-l (H«q+1f)]P)diV Af,k,n

keZy n EEA

+ ) KkWhnt1.
k€Zg.n

Since supp Ag k.n C SUPPde k.n C Supp xx x T2, it holds that xxAg x.n = Ag g.n for
all k € Z. Therefore, using equation (3.19) and the definition of fg x ,41, we obtain

D7D X @) feknta (hgrOP AV Ag 4

keZ%néeA
= > D PdivAekn— > > 82t PdivAL L,
k€Zyn &€ k€Zyn &€
=-PdivRyn— Y > 8 rnp1PdivAs L.

keZgnE€EN

It follows, then, that the system (3.16) after the (n + )th step is satisfied with

n+l
(0
Ug.ntl =Uq.n + wq+] 1 =g+ Z Wa+1m: (3.23)

Pqn+1 = Pgn + 1’;21,,,“ A\ |:diV Rgn + Z Z g;,k,n-‘rl div Aé,k,n]
ke€Zgn§€A

n

) () Lo 2
= (Wohinsr Z Wottm) — Elwq+1,n+1|

m=1
— <wffll,n+1v g —itg), (3.24)
Rynt1=R Y O Xxwint1, (3.25)
k€Zg n
Sq,n+l = Sq,n - Z Zggz‘k,n+1AS,k,n» (326)
k€Zyn b€

Pytint1 = Py + wq+l n+l®wq+l n+1

() () O]
+ Z q+l n+1®wq+l m + wq+1 m®wq+1 n+1)
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+(uq — ﬁq)éwt(;?rl,nﬂ + wt(;j-l,n+1®(uq —lg). (3.27)

In expression (3.24), (, ) denotes the standard inner product on RZ, while in 3.27), &
denotes the trace-less part of the tensor product. The operator R above is the inverse-
divergence operator described in appendix D. We note that the new stress Ry 41 as
defined in (3.25) is well-defined as each wy 41 has zero mean. We are now ready to
state the main inductive proposition concerning the Newton perturbations.

Proposition 3.4 Assume Ry , satisfies

IRyl <8gr1ar) ™% YN €{0,1,....L -1}, (3.28)
IDiRynlly <8g41m7, 20 7% YN €{0,1,....L -1}, (3.29)
IRgnllN+2-1 S 8g1nhg ™ 90N, YN >0 (3.30)
1D Ry nlln+r—1 S 817y 2g 70N, YN =0, (3.31)

where the implicit constants depend on n, I", M, o and N. Suppose, moreover, that

supp, Ry.n C =24 (852 0) " = 2n7,, =1 — (8,°2) ™' +2n7,]  (332)

UL+ (852 h) ™" = 2n7,,2 — (8 2g) ™" + 207, ],
Then, Ry 1 also satisfies (3.28)-(3.32) with n replaced by n + 1.

The claim concerning the temporal support is immediate from the definitions of
Xk and Zg ,, which imply

supp; Ry n+1 C N2rq (supp, Rq,n)-

We remark also that since 7, < (8;/ qu)_l, lemma 3.1 shows that the assumptions

of proposition 3.4 are satisfied at n = 0. Indeed, we have that forall N < L — 1,

N-2
IRg0llv < Crég+1hg %,

A —1, N-2
DRy 0llN < CLdgr17, Ay 7,

where C > 0 is a constant depending only on L. Then, for any o > 0, we choose ag
sufficiently large so that

CL)\q_a <l1.

In the rest of this section, we prove proposition 3.4 and obtain the estimates for
the perturbation w;?rl’n 1 Which will be used in the next section.
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3.7 Proof of the inductive proposition
Let ¥« n+1 denote the mean-zero stream-function of the vector field wg_,+1. Then,

Ryn1 =RV" " 0 fatkns. (3.33)
k€Zg n

Since RV+ is of Calderén-Zygmund type ,> proposition 3.4 will follow once we
obtain estimates for the stream functions. Moreover, such estimates will, of course,

also offer control over the perturbation w® . With this aim, we note that ¥ ;41

qg+1,n+1
satisfies
W Wknt1 +ilg - Vinrr — 287V - div(yg g1 VEidg)
=Y cen fekn (g1 ATV - div Ag gy (3.34)
1 _ .
1/fk,n+1 |t=tk =_L de/\ fg.-[’k],n(ﬂqu]l‘k)A Iyl . div Agvk’”|t=tk’

T Mg+
where

_ —al 9l
Vti, = N 9.
“q <—82uq 8114%

Equation (3.34) can be obtained by applying the operator A~ VL. to (3.21).
We begin the analysis by obtaining estimates for ag i .

Lemma 3.5 Under the assumptions of proposition 3.4, the following hold:

lag knlly < 8,10 00 YN €01, L—1) (3.35)
1Diag knlln S 8.0, "2 YN e(o. 1. L—1) (3.36)
lag kallnr1 S 8,5 257N, YN =0 (3.37)
IDsag knllvrr—1 S 8,5 2 e N, VN =0, (3.38)

with implicit constants depending on n, I'y M, «, and N.

Proof Note that since suppag x,, C Supp xi x T?, the estimates of lemma 3.2 apply.
Thus, since on supp Xk,

Ryn

q+1,n

<1

~

0

qu>kvq>,{ — Vs Vo]

2The operator RV is a sum of operators of the form A—la,»a i, which can be written as a linear com-
bination between the identity and a Calderén-Zygmund operator. Throughout the paper, we will refer to
such operators as being of Calderén-Zygmund type. Note that the results of appendix C apply.
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The Onsager conjecture in 2D: a Newton-Nash iteration 717

we use proposition A.1 to obtain that, on supp ag .,

1/2 Ry,
lag il S8/ IVOVO! — Voo, — 1" vl |y
T 8q+1,n
12 Ry, Ry,
<8, (1Y@l + IV I =2 o + IV @llol =2 1)
’ 8q+l,n 8q+1,n

for any N > 0. Then, (3.35) and (3.37) follow from lemma 3.2 and the assumptions

of proposition 3.4.
On the other hand,

- 12 Ry,
1Dic konlln S 835101006 1y (VORV R = Vi =LV
q+1,n

Ryn

1/2
+ 5q/+1’n IDys (VO VO] — Vo Vol )y

g+1,n

_ R
X || Dy (VO VO, — V& —L2Vd]) o
8q+l,n

Ryn

q+1,n

+ 812 ||Dy§(VCI>kVCDkT—Vd>k8 vo!)llo

g+l,n

B} R
x | Dy (VO VO] — V& —L2VD] )|y
6q+1,n

The terms which do not involve the material derivatives are handled as before, by
appealing to proposition A.1. For the remaining ones, we note that

_ R,
|| Dy (V 5 Lol ln
q+1,n

R, _
L2 In DV @ lo

_ R - R
S ‘1’1” Iy + 11D 5 "’1" lolV@xlly + 15 :
g+1,n g+1,n q+1,n

R _ R,
L2 ol D VOl + [ —L"

loll DV ®rlloll VP llw,
3q+1,n 8q+1,n

+ |l

and
”Dt(v(kad)/Z)”N SID VLN + 1D Vo]l VPl -

Then, (3.36) and (3.38) follow by lemmas 3.1 and 3.2, together with the assumptions
of proposition 3.4. |

From the lemma above, we obtain estimates for Ag x ;.
Corollary 3.6 Under the assumptions of proposition 3.4, the following hold:
1Ag knlly S 8gr1nr). YN €{0,1,... L —1}, (3.39)
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718 V. Giri, R.-O. Radu

1D Ae knlln S 8g41a7y 'AY . YN €{0,1,..., L —1}, (3.40)
1Ae knllv+r—1 S 8griart €N, YN =0, (3.41)
1D Ag knlinsr—1 S Sgrinrlh e e N, WN >0, (3.42)

with implicit constants depending onn, I', M, o, and N .

Proof First note that by the same arguments as those given in the proof of lemma 3.5,
1/2

g1 replaced by 84 011

agkn satisfies the same estimates as ag i, but with §
throughout. Then,

lAe kol S 102 NPT I + llad ol (VR ™ I T @0~ o,
and
1D A knlln S 1D aINICT @O IG + 1Dif 1 loll (VR IV ICT 2 o
14 1 IV 1D (V20 Holl (VP ™o
14 . loll D (VPO I I (VP o
g a0 D (V) " ol (V@R -
The conclusion follows by lemma 3.2. O

The following can be considered the main technical lemma concerning the Newton
perturbations.

Lemma 3.7 Under the assumptions of proposition 3.4, the following hold on supp xy:

8q+1,nkflvf;a
||wk,n+1||N+a§T, VN €{0,1,...,L—1}, (3.43)
q+
1Dk n 1 INta S Sg1.0hy €5, YN €{0,1,..., L —1}, (3.44)
S Y )\Lflszfa
Wkt N Lt S 44 , VN >0, (3.45)
Mg+1
1DV 1IN L 110 S Sg1art ™' N7, YN > 0. (3.46)
Moreover, on supp 0; X,
_ Sqrinrl e
1Dkt INee S ———1—, VN €{0,1,...,L— 1}, (3.47)
Mg+1Tq
_ 8q+1’nA‘L—1E—N—a
I Dk nt 1 IN+L—14a S 4 49 VN >0, (3.48)
Hq+17q

with implicit constants depending onn, I'y M, «, and N.
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The Onsager conjecture in 2D: a Newton-Nash iteration 719

Proof We begin by noting that, due to (3.34), the stream-function v, satisfies
Yin1 =¥ +E+E, (3.49)

where Y solves

{m; =207V iV Vi)
w|t:tk =0,

E is the solution to

— 1 — _ .
{{)’“ = — 5 Yeen fifaltgr1) D ATIVE - div Ag g
8| 0,

=ty -

and

- 1 1 B )
== Z fg[,k],n(liqﬂ VATV div Az kn-
Mg+1 fen

In view of the uniqueness of solutions to transport equations, this decomposition is
verified once we apply the material derivative to (3.49).
Estimates for ¥ when N = 0. Since A~! V1 div is of Calderén-Zygmund type, we

have

o - )
1DV lla S Wkant1V " tiglla S Wkt llellitg 14

from which it follows, by proposition B.1, that on supp xx,
I Dlle ST / Vi nt1C $) llads.
Tk

Estimates for & when N = 0. By similar arguments, we have

IDiElla <

sup || D; Ag gonlle + sup [|[itg - V, ATV divlAg gon e
& 3

q+1 q+1

1 _
S sup (| Dr Ag k,nlle +
&

g ll1+esup | Ag k.nlla
Hg+1 £

Hg+1

< 8q+1,n)‘3

~Y
Hg+17q

where for the second inequality we used the commutator estimate of proposition C.2,
while the last one follows by interpolation from the conclusions of corollary 3.6. By
proposition B.1, we conclude that, on supp x,

1€l <

8q+1,n)\g-
q+1
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720 V. Giri, R.-O. Radu

Estimates for E when N = 0. Finally, for E, we note that

8q+1,n)\3

sup | Ag knlle S
Hg+1 & Hg+1

1Ella S

Going back in (3.49), we obtain

q-Hn q

Ik ns1CDlle S _1/ 1Yk n1Co$)llads,

from which Gronwall’s inequality implies that, on supp Xk,

1) A
q+1l,n’g
Ik ntille S ——
Hg+1

Estimates for 1} when N > 1. Let 6 be a multi-index with |0| = N. Then,
1D:3% ¥ llo S 10 Dyl + lllitg - V., 310 o
On the one hand,
18° Dy lle S 110% (Wieon1 Vi) lla
S itg ol 1IN 1o + gl v14alVkns1 e,
while on the other,
Iitg - V. W lla < Nitg v IV D11 + Nitg 110 [l e
S liiglhsallV I vre + llitg N+ 1401V o,

where the last inequality is obtained by interpolation and Young’s inequality for prod-
ucts. It follows, then, by proposition B.1, that

8q+1n q Tq

¥ G OlIN+a S ”uq”N+l+a+”uq”1+a/ lVkn1C8)INtads

Hg+1
g v / 19 G )l v+ ads.
13

Then, by Gronwall’s inequality, we conclude:

Sg+1,nh

19 ¢ DN+ S Iluq||N+1+a+f /Ilwknﬂ( $) | Ntads.

/‘«q-i—l
Estimates for & when N > 1. Let 6 be a multi-index as above. Then,

ID;3°Ellq SN D:Ellnta + ity -V, 3°1E e

1 _ _ _ .
< sup (| Dy Ag knllN+o + llitg - Vo A7V divIAg kol va)
Mg+1 &
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The Onsager conjecture in 2D: a Newton-Nash iteration 721

+ lig -V, 3°1E|lq

<

~

Hg+1

sup (Il D Ag knl|N+o + gl 1+all Ag kon | N4
3

+ ||’2q||N+l+ot||A§,k,n”a)
HligIv+1+all Elle + g l14+a | ENl N+

where we have used proposition C.2 and the same argument as before for the term
involving the commutator [u, - V, 8?]. Then, arguing by proposition B.1 and Grén-

wall’s inequality as we did for v, we obtain

8q+1,n)\gfq

<

IElN+a S ) llitg lIN+14a-

sup (Tq [ DZAS,k,n | Ve + ”Aé,k,n ||N+a) +
H

q+1 q+1

Estimates for & when N > 1. Finally, we note:

1
I1EIN+ta S sup | Ag k.nll N+a-
Mg+1 &

Then, we have
1k n+1C DN+

<

~

T sup (Tq”[)tAi;‘,k,n IN+a + 1 Ag knllN+o + 8q+l,n)¥gfq”’2q ||N+l+oz)
g+l &

t
-1
+1, / V41 G ) N4ads,
13

from which we obtain, by Gronwall’s inequality,
Vi, n+11I N+

<

~

T Sl;p (Tq”DlAé,k,n”N+ot + 1 Ag knll Nta +5q+l,nkgfq”ﬁq”N+1+a)~
q+

This, in view of lemma 3.1 and corollary 3.6, implies (3.43) and (3.45).
To obtain the claimed estimates for the material derivative of ¥ ,41, we note that,

from (3.34),

IDe Wi 41 G Dl Nt

J__
Sk V UglIN+a +8up [[Ag kn G D N+
&
S kst lIvcelig e + 1%k nst lallig I vs14a +sup [ Ag kn (G Ol Vo
3

Then, (3.44) and (3.46) follow from corollary 3.6, together with (3.43) and (3.45),

while (3.47) and (3.48) follow likewise once we note that A¢ x , = 0 on supp 9 X.
O
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722 V. Giri, R.-O. Radu

We are now ready to prove the main result of this section.

Proof of proposition 3.4 Recalling the form of R, ,41 from (3.33), that RV is of
Calder6n-Zygmund type, and that the set {} is locally finite, we obtain

-1
||Rq,n+1 Iv S ||Rq.n+1 IN+a S Tg  SUp 1Yk n+1llN+a-
k€Zg n

Then by (3.43) of lemma 3.7, for N € {0, 1, ..., L — 1}, there exists a constant which
is independent of a > agp and g such that

—1

T
q N yp—
”Rq,n—H ”N <C 5q+l,n)¥q Eqa
Hg+1

13—

<C$ 1 " Agt1g) " EAT2ON

= q+1.n Aot ( q+1 q) g+17q
q

< (CAY D8+ 1125 %0y

where we have used (3.20) in the second inequality and (3.18) in the third. For any
a > 0, ap can be chosen sufficiently large so that

—a
Ca <1,

and so (3.28) follows. Likewise, (3.30) follows from lemma 3.7.
Moreover,

DRy nt1lI N+
< sup (I1Dy B faVkn+ D) IN+a + g - Vo RYE18 Rk ¥entt Nt )
k€Zg n
-2

1A
S sup (Tq 1Yrn+1lIN+e + Ty | De Vi1l Nter, supp 9 Xk
k€Zg n

J 1=
+ 7, g e | Wsn 1 IN+a + 75 g N+ 1 101 )

where, once again, we have used proposition C.2. Then, for N € {0, 1, ..., L — 1} and
some constant C which is independent of a > a¢ and ¢, lemmas 3.1 and 3.7 imply

1/3-8
q > ()\'q+leq)_a)\'_2a)‘-N

N -1
Dt Rg n+1lln < qu 8g+1.n g+1%q
Ag+1

and the conclusion follows for ag sufficiently large depending on L, o, M and I
(thus, on B) by the same arguments as above. g

3.8 Estimates for the total Newton perturbation and the perturbed flow

We now turn to obtaining estimates for the total Newton perturbation

r
@ _ Z ()
Wyi1 =D Woliin:
n=1
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Since proposition 3.4 holds and, as already noted, its assumptions are indeed satisfied
by Ry,0, the conclusions of lemma 3.7 also hold for all n € {0, 1,...,I" — 1}. The
following is, then, a direct consequence.

Lemma 3.8 The following estimates hold:

S 1)LN+1€_0[
lw v § = YN (0,1, L =2}, (3.50)
Hg+1
1D ln S 81 A) THeg®, YN 0.1, L =2}, (3.51)
(Sq_H)»L_lZ_N_a
lwdy Ivsr-2 § ———L— VN >0, (3.52)
Mg+1
1Dw ) lInsr—2 S 8gearb eV, YN >0, (3.53)

with implicit constants depending on I, M, o and N. Moreover, it holds that

supp, w('} | € [—2+ 8¢/ *2) ™' =207y, =1 — (8,2 ' +2I'gy] (3.54)

UL+ (8% xg) " = 2Tz, 2 — (8, %0) " + 2T, 1.

Proof 1t suffices to argue for wé’}rl’n 41 and note that 8441, < 8441 for all n. For

(3.50) and (3.52), we simply have that, for all N > 0,

(1)
g1t IN S sup Vit 1IN +14as

k€Zg.n

[lw

and we apply lemma 3.7.
For the remaining estimates we write

thz(;j—l,n+l = Z (8t)2kvl1l/k,n+1 +)~(kVLDtlﬁk,n+l - XkVLﬁqvwk,n-H)a
k€Zgn

from which it follows that

N @) -1 A
IDiwy iy ppiliv S sup (Tq 1k nt1llN+14a + 1Dk nt1 N+ 140
k€Zy.n

Fllitg I+ 1Wkn 140 + lig I 1Ykt I N4+14)-

The largest term on the right hand side is || D; ¥k » 11|y +1+«- Appealing to the esti-
mates of lemmas 3.1 and 3.7 concludes the proof of (3.51) and (3.53).

The claimed property on the temporal support is clear by the definition of w
and proposition 3.4.

()
g+1
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724 V. Giri, R.-O. Radu

In the construction of the Nash perturbation, which will be detailed in the next
section, we will make use of the backwards flow ®, starting at # € R of

iig.r = iig + W), (3.55)

which is characterized by the equation

3y Py (x,5) +itgr(x,s) - VO, (x,5) =0, (3.56)
@, (x,1) =x, ‘
as well as of the Lagraingian flow
LXi (0, 8) =ilg.r (X (@, 5),9), 357
Xi(a,t) =0.

We note that for N € {1,2,..., L —2},

12 13
”w(z) v <812 v Oa+12gls " 81/2AN<8q+1> / ( Aq >/'
K pgr18g> "~ 8 Ag+1

This shows that u,  is a small perturbation of u,. This observation, together with
similar considerations for N > L — 1, immediately implies the following corollary.

Corollary 3.9 The following estimates hold.
lig.rlly S 874N, YN e{l,2,....L -2}, (3.58)

- 1/2,L—2 )—
liig.rllnsr—2 <85 A2V, vN >0, (3.59)
where the implicit constants depend on I', M, o, and N .

We will also use the notation E,’r for the material derivative corresponding to
u r.
q,

Dir=3d +iigr-V.

Then, arguing precisely as in lemma 3.2, we conclude that the following corollary
holds true.

Corollary 3.10 Lett e R and t < ||ﬁq,r||1_1. Let ®, be defined by (3.56), and let X,
denote the corresponding Lagrangian flow (3.57). Then, for any |s — t| < T,

(VO o)l + IV o)y SAY, YN efo,1,..., L -3}, (3.60)

~ rq

1D, r (V)T C.9) Iy + 1 Drr VO (. 9) Iy S 822N+, N e{0.1,.... L -3},
(3.61)

IDX:(C,)llv <AN, VN e{0,1,...,L -3}, (3.62)

~ g’
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HVO) T ) Inrr—3 + IV ) lIver—3 SAL 6N, VN =0, (3.63)

1D, r (V&) )lIv+r—3 + 1 Der V&, (L 9)lver—3 S 8/ °AL72¢,N, YN >0,
(3.64)
IDX,C)lIv+r—3 SHe 26N, VN =0 (3.65)

where the implicit constants depend only on ', M, o, and N.

Remark 3.11 Note that

tglldgrlh S,

and, thus, corollary 3.10 is satisfied with T = 7,. Moreover, with this choice of 7,
proposition B.1, in fact, establishes that

[Md=V®llo S A%,

In particular, since for any o > 0, and C > 0 independent of a > ag and ¢, ag can be
chosen sufficiently large such that

—a
Crjii =1,

we conclude that ||[V®||o can be bounded independently of the parameters of the
construction.

We end the discussion concerning the perturbed flow with an elementary stability
lemma which will play a role in the next section.

Lemma3.12 Lett € R and © < (|lig,rll1 + ||ﬁq||1)_l. Let ®, be backwards flow of
itg,T, defined by (3.56), and ®, the backwards flow of uy, defined in (3.7). Then, for
any |s—t|<tand N €{0,1,...,L —4},

. B . B Sq1r2e
IV®:(,8) = V@)l + TR ()™ = (Vi) iy ST,
q+
(3.66)
while for N > 0,
IV®:(,5) = VO (o ) Ngr—s + 1V ()™= (V) v -4
< phuil" gy N (3.67)

MHg+1 q q

with implicit constants depending on T', M, « and N.
Proof We note that ®, — @, satisfies

(@ +iig - V)(®; — D) (x,8) =w ]| - VB, (x, )
(@ — @), =0.
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Then, by proposition B.1,

10, = &,y S Tl - VO lln + 22 litg v lwil, - VI

Stlwd)yly + 2w ol Ve Iy + T2l Iy (w1
+ 1wy L ol Ve ).

The claimed estinjates, then, follow by lemmas 3.1 and 3.8, and corollary 3.10.
Since ®; and @, are measure preserving, it holds that

Vo)l =< d d? —32q>,1>

-9 ®? 9 P!

and similarly for (V®,)~!. Therefore, the remaining estimates follow from those
already obtained for V&, — VP,. Il

3.9 Summary

Let us now describe the situation after I steps of the Newton iteration. The perturbed
system is

dug,r +div(ugr ® ugr) + Vpgr =divS,r +div(R,r + Pyyir),  (3.68)

where:

e The perturbed velocity is defined by
r
UgT =Ug + w((;jr] =ug+ Z w;?rl’n; (3.69)
n=1

o By the inductive definition (3.24) of p, r, we have

r r—1
Par =it Y = A v (R 38 i Ak
n=1 n=0 S!k
" 2
|w +1| _
- q2 + (itg —uq, wz(]tj—1>; (3.70)

e The error S, r is “well-prepared” to be erased by the Nash perturbation:

r—1
Sq.or=— Z Z Z g?,k,nHAs,k,n (3.71)

n=0&cAkeZyy

== i1 ia(VOO)E®EVDY T
& k,n
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o The error R, r is made, by virtue of proposition 3.4, sufficiently small so that it
can be placed into Ry 1;
o The residual error P,y 1, in view of (3.27), is given by
Pyyir=R;—Rg0+ w{(;jrl@)w;?rl + (ug — ﬁq)éw;?rl + w;tJ)rl@(uq —ilg).
(3.72)

In the following section we aim to approximately erase the error S, 1 by the non-
linear self-interaction of highly-oscillatory Nash perturbations, as well as to show
that the tuple (py,r, Ry,r, Pyi1,r) satisfies already estimates compatible with the
(g + 1) stage. We remark that, in view of the temporal support properties of propo-
sition 3.4 and lemma 3.8, it holds that

supp; Sg,r U supp, Ry r Usupp; Pyt1,r

Cl-2+ 67" —2rgy. —1— 5%

r) ' H207,]

1/2,

UL+ (85" h) ™" —2T'1,, 2 — (8)* 1) " + 2Tz, 1.

4 The Nash step
4.1 Preliminary: mollification along the flow

Before we turn to the construction of the Nash perturbation, we first perform another
regularization procedure which aims to solve the loss of material derivative prob-
lem. Specifically, in order to be able to propagate the estimates (2.6) on the material
derivative of the new Reynolds stress, we will need estimates on the second material
derivative of the old error. This can be seen by considering the transport error, which
already involves one material derivative of the stress at the ¢ stage. For this purpose,
we use the mollification along the flow introduced in [28].

Let X; denote the Lagrangian flow of g r starting at ¢, which we have already
introduced in (3.57), and fix a standard temporal mollifier o as well as the material
mollification scale

—1/2, ~1/3, =2/3
th _8 ‘I )‘q—&-l
Note that
1/2 _ 2
8 / )\‘ <Z <8(1{|‘1 q+1>

and, in fact, for all @ > 0 sufficiently small, it also holds that
—1
Tyl <l g < Mgr1 <Tq-

We define

_ g ~
Rq,n(x,t)=/ Rq,n(X,(x,t+s),t+s)Qg[’q(s)ds. “.1)

—¢ q
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We now state the main estimates on Rq, »- These were proven for example in [28],
or [5]. We repeat the proof here for the sake of completeness.

Lemma4.1 Assume the R,  satisfy (3.28)-(3.31). Then, the following estimates hold:

IRgnllv S 8q1nhd) %, YN €{0,1,..., L —2}, (4.2)
IDi.rRynlly St 8g1mhl) ™%, YN €{0,1,....L -2}, 4.3)
ID7 rRynlin Sty 'q11ahl ™, YN €{0.1,....L -2} (4.4)
IRy mlINtL—2 S 8qr1ahy 740N, YN =0 (4.5)

1D r Rynllnsr—2 St 8q1ahl 2740, N, VN > 0. (4.6)
ID7 r Ry mlinsr—2 Sty g1kl 27N, YN > 0. 4.7)

with implicit constants depending on I', M, o and N.

Proof To prove (4.2) and (4.5), we note that since ¢; 4 < ||itg,r |l 1_1 for all sufficiently
large choices of ap, the estimates of corollary 3.10 apply. Then, by proposition A.1,

IRgnllN SIRgn o Xelin SURgaINIDX Y + 1Ry nlli I DX In—1,

and, thus, (4.2) and (4.5) follow from proposition 3.4 and corollary 3.10.
The idea of definition (4.1) is that the following hold:

_ _ lg _ ~
DI,FRq,n(xs 1) = / DI,FRq,n(Xl(X, t+s),t+ S)Qﬁtyq (S)dS,
g

and

— — ZMI - ~
D} Ryn(x. 1) =—t;, / Dr,r Ryn(Xi(x,1 +5), 1+ )y, (5)ds.
t

_qu

We have

1D1.r Rynlln S IDiRg alln + 1wl), - VR alln

SID Ryl + 1wl ol Rynllv1 + 1w Ly vl Ryl
Then, using that
Sgr1rgl ¢
q atq 5
Hg+1

we obtain:

IDer Rynlly S 75 8g1ah) ™, VN €{0,1,..., L —2}
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N -1 L—-2—a)—N

where we have used proposition 3.4 and lemma 3.8. Therefore, (4.3) and (4.6) follow
by appealing to proposition A.1 to write

IDr.r Rynln S Dy Ry nllnIDX: Y + 1Dy, Rgn DX lIv—1.
Similarly, (4.4) and (4.7) follow from
ID7 rRynlln < g (1Dr.r Ry NI DX, 1Y + 1D r Ryl DX llv—1). O
4.2 Construction of the Nash perturbation

In order to quantify the oscillatory behaviour of the Nash perturbation, we use as
building blocks shear flows in the directions & given by lemma D.1. For each & € A,
we define W : T3 — R? by

We (x) = %(elf*x e, 438)

where ']I‘%n =1R?/(277Z)?. Let us also denote the corresponding stream-function by
i

We (x) = —(e"él'x — e*"gl‘x).

V2

The relevant properties of these vector fields are gathered in the following simple
lemma.

Lemma 4.2 The vector fields W : T%n — R? defined by (4.8) satisfy

div(We ® Wg) =0,
div W =0.

and

][ W§®W5=E®§.
T3,

In the following, ®; will stand for the backwards flow of itg,r, having origin at
T =1:

& Pp +iigr - VO =0,
|

rmy =X

With

.. . R .

— 1/2 s

Gz o =5qﬁrl’nx,(yg(vq>kvq>,{ — Vi zl" var), (4.9
q n
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we define the principal part of the Nash perturbation by

r—1

w =3 3N e ki1 (g 1Dk (VE) T We g1 ®). (4.10)
n=0keZgyn €A

where g¢ k n41 1s defined in (3.22). As argued before, since

-~ R
IV —L=
5q+1,n

Vo[ lo S a,

and

11d =V dsllo S 2, %,

for any o > 0, we can choose ay sufficiently large so that ag i , is indeed well-defined.
Note also that while

. - 1 -
(V)™ We (g 41P1) = A—Hvi(\vg (hg+1D0))
q

is divergence-free, w;i) | need not be. To rectify this, we define the “corrector” part

of the Nash perturbation as

,(,Cll = Z DD gkt Vg g We Ogr1Dp). (4.11)

n=0keZqn €A

The total Nash perturbation w;ﬂi 1= w;i) |+ w;‘l | is, then, manifestly divergence-

free:
wi| =—VL<Z > Zggknﬂagknws(xqﬂék)) (4.12)
n=0keZy €A

Let us also denote the total perturbation by

O] (s)
Wy+1 = Wy 14 + Wot1-

We remark here that the terms in the sum above have pair-wise disjoint temporal
supports. Indeed, since supp, ag x,» C supp; xk, we have that

SUpp; dg k,n N SUPP; dy, jm 90 = |k — j| <1,

but, then, either k and j have distinct parities, in which case supp; gz n+1 N
Supp; &y, j,m+1 =¥, or k = j, in which case

SUpp; &¢ k.n+1 N SUPD, gt km+1 D = (§,n) = (n, m),

by lemma 3.3.
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4.3 The Euler-Reynolds system after the (¢ + 1)t stage
We let the velocity field u 1 of proposition 2.1 be

Ug41 =UgT + w;ﬁ)r] =uy+ u)[(;il + wfis_i] =ug + wy41, 4.13)
which leads to the Euler-Reynolds system

Ougy1 +div(ugyr1 @ ugq1) +Vpgr1 =div Ry,

with
Pg+1 = Pq.r + {ilg — g, wl), (4.14)
and
Ry+1=Ryy1,L + Ry+1,0 + Rg+1.R, (4.15)
where

® Ryy1,1 is the linear error and it is defined by
Rys1.L =R(Drrw’), +w') | - Vi r);
q+1,L t,I g+1 g+1 q,T')s
® R,41,0 is the oscillation error and it is defined by

Ryt1.0 =Rdiv(Syr +w) @ wl));

® Ry1 g is the residual error and it is defined by

Ryv1.r =Ryr + Pyy1r + w;ﬂ)rlé(uq —ig) + (ug — ﬁq)éw((;)rl.
We note that R,41 0 and R,y are indeed well-defined, since the operator R is
applied to vector fields which are either a divergence or a curl.
Remark 4.3 We have already noted that wf;jrl,
supports contained in the set

Ry, Pyy1,r and S, r have temporal

[—2+ (8)/*h) " — 2Tty —1 — (8)*1y) " +2T'7, ]

UL+ (85" h) ™" —2T'1,, 2 — (84 *4g) " +2I'7, 1.

It is clear from the definition (4.12) that the same holds for w((;)r |» and, thus, also for
wg+1 and R, 1. But, for any o > 0, ag can be chosen sufficiently large in terms of
o, b and B so that

1/2 - 1/2, =1, — 12, \—

(5q/+1xq+1) L 2r 8% 0y) s < g "2

It follows, then, that the condition (2.9) on the temporal support of the total perturba-
tion and the inductive propagation of (2.7) to level g + 1 hold true.
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4.4 Estimates for the Nash perturbation

We start by collecting the required estimates on the amplitudes of the Nash perturba-
tion. These results follow by precisely the same arguments as those given in the proof
of lemma 3.5, taking this time into account the bounds of corollary 3.10 and lemma
4.1.

Lemma 4.4 The functions ag i , defined in (4.9) satisfy the following estimates:

lagaally S35 AN, YN €f0.1,.... L ~3) (4.16)
1Dr.rainlly <8070 7 AN VN €{0.1,.... L —3) (4.17)
g ko llnsr-3 S 8,05 AE36 N ¥ =0 (4.18)

I Dy, rag gnllN+L—3 S S;fl,nxj‘%q—lz;fv, VN >0, (4.19)

where the implicit constants depend on I'y M, « and N.

We are now ready to estimate the perturbation w<21 and, thus, fix the constant M

and verify the inductive propagation of (2.2) and (2.3), as well as the validity of (2.8).

Lemma 4.5 There exists a constant My > 0, depending only on 8 and L, such that

: Mo c1/2
lwglylly < 578,500 YN €(0. 1., L), (4.20)
and, consequently,
1/2
lwgilly < Mos, /5N, YN ef0.1,... L}, @21

Proof Since {g¢ k.n+10e k,n}e k,n have disjoint temporal supports, it follows from
(4.12) that

1 _ -
[w;SJ)rl]N =< sup |ge kn+11las k,n Ve (g1 Pr)IN+1
Ag+1 £ k.n

sup |g¢ kn+11([We (g1 D) In-+11lag k.0 llo
Ag+1 £ kon

+ [1We (g1 PO ll0llas k.l v+1)s

where, in the context of this proof, Cy is a constant depending only on N which
might change from line to line.
Also, by proposition A.1,

[We g1 PO IN41 < Cn (I1DWe g1 ) IV IV RN+ [We g1 )11 IVl Y)

< CN Oy + Cogartg™),
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where C is the constant depending on I, M, «, and N which is implicit in corollary
3.10 (recall also remark 3.11). But if aq is sufficiently large in terms of I (thus, on
B), M, a, b and L, we have

Ct;Nagq < Ag’jll, VN e{0,1,...,L}.

It is also clear by definition that || k. [lo < caqlfl,

geometric functions yg of proposition D.1. Moreover,

where C depends only on the

4 - 1/2 ,—N—
19 Gg 1 P llo e senllv1 S 8,565 "

and so, we can choose, as before, ap large enough in order to finally ensure that

[w(s)

1/2
Wi =ces/Aal, SUp Igekal. YN €(0.1...... L)
,K.n

where C is a constant depending only on L. It is clear from the definition of gg x ,
in lemma 3.3 that sup |g¢ «.»| depends only on I' and, thus, only on S. We define,
then,

Mo =2Cr, sup |g¢ k.nl,
& k,n

and conclude the proof of (4.20).
Finally, from lemma 3.8, we have that

173
) Sg+1rq )oN—a — 172 [ *q N
Jw®, Iy < 24 =N < 5 ( A
atl Hg+1 4 g+ Ag+1

Then, by choosing a sufficiently large, we can ensure that

Mo 12
wghlly < 528G, YN € (0.1, L)

The conclusion follows. O

Corollary 4.6 The following hold:

1/2

lug+illo =M1 —38,.5), (4.22)
1/2

||uq+1||N5M5q/+lxg’+l, VN e{l,2,...,L) (4.23)
! <2Ms5'/? 424
||“q+1_“q||0+r||uq+1 —ugll < g4l (4.24)

q+1

Proof Equation (4.24) follows immediately from lemma 4.5. Moreover,
12 | (172 1/2
litgs1llo < llgllo + lugsr —ugllo < M — 85 +8,/2) < M1 — 6,2,

where the last inequality holds whenever qay is sufficiently large.
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734 V. Giri, R.-O. Radu

Finally, from lemma 4.5, we have

172

g1l < Mg2Y + Mos, /2 2Y

q+17g+1

and, therefore, ag can be chosen large enough depending on M, My, b and B to ensure
that

1/2 1/2
Mgy < (M = Mo)8, 2 g1,
from which the remaining conclusion (4.23) follows. [l

4.5 Estimates for the linearerror R; 1 1.
We write

Ryy1.L =RWSL, - Viigr) +R(Dyrwil ),

Nash error Transport error

and we estimate the two terms separately. Let us begin, however, by collecting some
preliminary estimates on material derivatives.

Lemma 4.7 The vector field u, r defined in (3.55) and the functions ag i, defined
in (4.9) satisfy the following estimates:

IDs.rVitg rlly S 8,002 YN €{0.1,.... L —4}, (4.25)
I1D: v Vit rlintr—a S8gr5 726N, YN >0. (4.26)

LT A YN efo. 1. L4y, (4.27)

|D? ragknlly S8
1D g konllnsr—a S8, b4 e e b N N >0, (4.28)
where the implicit constants depend on 'y M, @ and N.
Proof We begin by writing
Dy rVitg,r = D, Viig + D,Vuw) | +wll) | - VViig r.
For the first term we note that
DVii, = VDyity, — (Viig)*.
By mollifying the Euler-Reynolds system (2.1), we obtain
Dyitg 4+ div (g ® ug) * Lo, — itg ®@1ig) + V(pg * &) = div Ry 0,

and, therefore,

I1D:Viglln S I Ditiglingt + llitg v+ llg Nl
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S g @ug) * 5, — g @ugling2 + pg * Se, N2

+ IR 0llv+2 + lliglIn+1llig 1.

For the first term, we use the Constantin-E-Titi commutator estimate of proposition
A.3 together with the inductive assumptions on u, to conclude that

||(uq®uq)*gq—ﬁq®ﬁq||N+2gsqx;V+2, VN e{0,1,...,L —4},
1ty @ ug) * Ce, — ity ®iiglIntr—2 S €5 N 8ghh S8ah72 N, wN = 0.

In view of the inductive assumptions, the same bounds also hold for the second and
fourth terms. The third satisfies better estimates, as already stated in lemma 3.1. We
conclude, then, that D,Vﬁq satisfies the bounds claimed in (4.25) and (4.26). Also,
we have by similar considerations that

1D VW) Iy S IDew( )y Ivn + lliag vl + g I lwi v
Using now lemma 3.8 and taking into account that 441 > 8;/ 2)»,,, we obtain
1D VW) liv 84412 207%, YN €{0,1,.... L -4,
||D,Vw{(;il IN+L—4 S 8qr1rb 2N~ YN > 0.
Since « can be chosen small enough so that
Sq+18,% < 3q,

we conclude that also D,Vw( 2

Finally,

.1 satisfies estimates compatible with (4.25) and (4.26).

Iqu+1 VVigriiv S IquHIINIqu ril2 + ||wq+1||o||uq riln+2,

which implies, in view of lemma 3.8 and corollary 3.9,

8472
VViigrlln $8g41——L0,A) %2 YN €{0,1,..., L — 4},
Mg+1

”wq+1

1/2

q94,L-2)—N—«a
kq Kq , VN >0,

||wq+1 VVig rllL-a+n S8g+1
Mq+]

which, once again, is compatible with (4.25) and (4.26) provided « is chosen suffi-
ciently small. Therefore, (4.25) and (4.26) are proven.
We now turn to proving (4.27) and (4.28). First of all, we have

D7 péig o = 8,21 407 10ve (VO VD] —V¢’k3 Rar go7)
q+1.n

T
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736 V. Giri, R.-O. Radu

R - R
+28,/7 0 Dye (VO V] — VI 1"

V&) Dy 1 (VPk
q+1.n 8q+1,n

T

1/2

- ~ ~ -~ R ~ _
+5qﬁrl,nXkD,,r[Dyg(vq>kv<1>[ — Vs ‘1’1" V@[)]D,y(V@k
q+1.n

T3

12 . - Ryn _ipy - < Sqitnld—Ry, _ -
+8,/2 kDY (VOV D] — VI~ VO] ) DF (Vb L ———L v B
: 8g+1,n ' 8g+1n

Ty

We estimate each of the four terms above by appealing to the results of corollary
3.10 and lemma 4.1. Arguing as in the proof of lemma 3.5, we have

- - -~ R -
||yg(V<I>kV<DZ—VCDk6 q’l" Vo[ )llv SAY. YN e{0,1,...,L —4},
q+1Ln

Ry

lye (VO VD] — V&)ka VO )Intr-a SAE4N, YN >0,

q+1,n

Ryn

IDr rye (VOLVE! — véka Vo) ly AVl YN e{0,1,..., L —4)

q+1,n ~oa

_ - - -~ R = 4 1 ,—
101y (VORV O] = VO == VO ) [vira Shy 7, €™, YN 20,
q+1,n

and likewise when Dy replaces y¢ in the above (as is the case in the expressions for
T, T3, and T4). We can, then, infer that

1/2 _
ITilly + I T2l + T3l S 6,075, 7 2AY . YN €{0.1,.... L —4)

1/2 _ 4 ,—
ITilN L+ T2l + I T3l S 8,50, 264N, YN >0,

and it remains to obtain the estimates for 7. For this purpose, we note that

Sg+1.n1d—Ry

107 (Vo=
q+1.,n

Vo!)|n

2 v ~ xSt ld—Ry
SIDF RV ®lln + ||Dﬁrv¢k||o}|%

q+1,n

v

N2 3 7. = 3 = Rq,n
+ 107 V@il V®illn + |1 Dr.r VOl | Dirgn lo
g+1,n

_ - _ R
+ 11010V illo]| Dr 3 e r
q+1,n

_ . R,
+ 1Dy, V&llo | Dr,r Sytim ||0|

|Vl n
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~ R _ R ~
15 5+ | B 5 el

2ld=R,,

SR SR S od 2y Satl
+ 1 D:,r VOINIIDr, 0 V®pillo + |1 Dr,r VOi Il |~

‘Sq+1,n

We already have at our disposal estimates for all of the quantities above with the
exception of DEF V ®,. To estimate this, we write

Dy r V&, = Vi, rVdy,
and, so, taking one more material derivative yields
D} V& = —D, rViigr V& — Viig r D; r V4.
Then,
1D7 rV®klly S 11Dr,r Vitg,r v + | Drr Vg, r ol VOxllv

+HIVitg,rllv I Dr,r V@l + Vg, loll Dr,r V&,

which, together with (4.25), (4.26), corollary 3.9, and corollary 3.10, implies
1D VOlly S 8ghihy St°A), YN €{0.1,....L—4),
ID7 pV®ilinyr—a SSgrghb—e N <ol N, WN > 0.

Using this, corollary 3.10 and lemma 4.1, we obtain

8q+1,n Id _Rq,n

17 (V= 1 Vol )y St A, yNefo 1. L -4,
q+1.n
_ - Syt ld—R, . - el L4
||D§F(v¢kuv¢,{)||N+L_4gzq Yokt N yN >0,

Sq+1,n

where we note that the terms satisfying the worst bounds are those involving two
material derivatives of R, ,. The above can now be used to estimate 74 and, thus,
conclude the proof of the lemma. O

Lemma 4.8 The following estimates hold for the Nash error:

1/2.1/2
_ q +17q
IR, Vig r)lly S ————2) . YN >0, (4.29)
q+1
1/2.1/2
_ ) _ l/«q+15q ) +1)‘q
1D r RS, - Vitg r)lly S ——— =10, ¥N >0, (4.30)
q+1

where the implicit constants depend on ', M, «, and N.
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Proof We begin by writing

! _ 1 . _ ~ _
R(wz(;-i)—l . qu,l“) = _)»—HRdW Z 8t k.n+10g k.n Ve ()Lq+1<Dk)VLuq,r.
a &.k.n

Since {gs k n+10¢.k,n} have disjoint supports, and Rdiv is a sum of operators of
Calder6n-Zygmund type, we obtain

IR, - Vitg )Nt S SUp [1dg k.0 ¥ (hg1®0) V- iig, | v -+a
Ag+1 £k,n

< sup (11dg, k.0 V-itg,r | v+ 1 We g1 i) llo
Ag+1 & kon

Flagxn V>t rllol Ve g +1P0) [ 3 4a)-
By proposition A.1, and corollary 3.10,
1We g1 v SAY g+ Agra b VSN,
whenever N > 1. Moreover, lemma 4.4 and corollary 3.9 imply

Pt . 1/2 o1/2
gt Vg r I va S 8y 8¢ P hg €N 2

Therefore,
1/2 12
U g1251/2, o Nta |, p-N- g+17a ., N
IIR(wq+1 Viig, F)||N+a§)w—+3 8,1k (Mg 1 g “< = N
q+1

To estimate the material derivative, we write

Dy, rRw) -Vig 1)

q+1

=— —RdiV Dy r Z 8¢ k18 k.n Ve (g 1190 Vil 1
Ag+1 oy

T

[ig,r -V, Rdiv] Z 8¢ kn+18s fn Ve Qg1 @) Vil 1

A
q+1 £k

T

The first term 77 can be estimated as

1 - _ _ -
1Tl N+a S sup (|IWe (g1 @) | N+l Dr, 1 (8 kon+1Gs kn VEig 1) [0
Ag+1 £ k.n

+ 1P (g1 PO N0l Dr,r (86 knt1s ko Vilg, ) | V)
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where we use the fact that Wg(Ag41 d~>k) is transported by the flow of i, . Using
corollary 3.9 and the results of lemmas 4.7 and 4.4, we compute

_ ) L
1Dy, (8 knt1az k.nVitgr) IV
- J__ g - J__
S 108 knvilllas knV=oitg rliv + 1 Drrag kn V=il rliv

+ ||@g k.0 Dr.r V&itg v

T St M Wil

S “‘1+18q+15 q+1%4

+(81/2A 1512 s 1/2A JZ;N

q—H

1/2 .1/2 _
5uq+15q/+15 Pt

where we use the fact that

81/2A < r <uq+1
Then,
172,12 172172
Hq+19g Ot Ny _N— Mg+184 8q+1 N
ITiIN+e S kil()‘qﬁa +67 S 1w q+1
q+ g+1

The second term 73 can be estimated using Proposition C.2, since R div is a sum of
Calderén-Zygmund operators. So, we have

1 _ _ ~ _
IT2llN-+a S 5— sup (litg.r 1+ | 8s k.t 1ds k0 We (g1 PV ilg P I Nt
q+1 & k,n

+ [litg,r | N+ 1+l 85 kon+ 18 k.0 W (hg1 PO Vil 1 1)
1/2.1/2

L 15125102 5 Nty N 7 885Nk
N L 8" 8, kg g {1 + L7 Ag) S T g+
q+1 q+1
where for the second inequality we use the fact that
litg,rlIn+1+a S 75 €N, YN =0.
The claimed bounds, then, follow. O
We now turn to proving the required bounds for the transport error.
Lemma 4.9 The following estimates hold for the transport error:
®) Sgihg”
= s
IR(Drrw DI S 5755 kg 410 YN =0, (4.31)

q+1
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_ _ TRV
I Dr.r R(Dyrwy) Dl S 5= —=niy, YN =0, (4.32)

q+1

where the implicit constants depend on I'y M, o, and N.

Proof Since i, r is divergence-free, it holds that

R(Dz,rw;ﬁ:l)— . —RV (Dt,r Zg&,k,n+lé§,k,n“l’§()\q+lq~)k)>
]
& k,n

T

1 . _ ~ _
— —Rdiv < > gekni1de Ve ()\q+1q)k)vluq,l“) :
Ag+1 oy

T

Note that the second term, — 7>, is precisely the Nash error estimated in the previous
lemma. For the first term, since RV~ is an operator of Calderén-Zygmund type, we
have

1 . _ _
1T N4 S sup (1We (Ag+1 PN+l Dr, 1 (8 k,n+1ae k) llo
Ag+1 £kon

+1We o190 ol Dr, 1 (86 kn13s k) I N+a ) -

In the above, we have used the fact that We (4441 ®;) is transported by the flow of
g r. We have also already described the bounds for Wg (Agy11 ®;) in the previous
lemma. Recalling that gz ¢, 18 (Lg+1)~ _periodic and that Mg+1 > Ty ! lemma 4.4
implies

= - 1/2 —N— 2/3,1/3+4a ,—
D1, (8 kon 1 ) IVt S 8y 11 11657 S Sqrnng a2 eV e

Then,
2/3 2/3
g1 A
q+147q N+a —N—a Sg+12q " N
ITlIN+e S —5a—0a g1 T4 DS 3380 Mg+t
g+l q+1
The inequality
1/2 ,2/3,1/3 1/2
5q+1)‘ Mgt > > 842

shows that 7> obeys better estimates (i.e. those of lemma 4.8) than those obtained for
T, above.
It now remains to estimate the material derivative of 7. We write

D rTi = A—RVLD,ZF Z 8¢ k18 kon Ve g1 Dp)
q+1
& k,n

T
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1 _ _ B -
+ o [uq,r . V,RVL] D, r Z 8e kn+1ag jk.n Ve (Ag+1Pk)
q+
& k,n

T2

We estimate 77 as

1 . _ )
1Tl N+e S — sup (I|We ()»q+1<1>k)||N+a||D,Z,r(gs,k,nJrlag,k,n)llo
Ag+1 £ kon

HWe Qg1 ol Drz,l“(gé,k,n-i-las,k,n) I N+a)-

As before, we note that lemmas 4.4 and 4.7 imply

-, .
”D[,l"(gé,k,n-i-laé,k,n)”N
2 - S - ~2 -
S 10786 k1 lllas knllv + 108 kn+11| Dr.rag kv + 11Df pag konllv
12 =N, 2 I P
S‘Sq.:,.]eq (Mq+1+ﬂq+lfq +fq Z,,q)
_1 12 ,-N
S gt 18,1457

where we use the fact that

—1 -1
T, < Mg+l <£,,q,

whenever « > 0 is sufficiently small. Then,

2/3 ,—1 —1 2/3
ITu < 8q+1)\q Zz,q ()\N_Hx +£_N_a) < Et,q(st]-H)‘LI N
WIN‘e S 7 5/3 40 g+1 q N~ 235 q+1-
g+1 q+1

We estimate 77 using Proposition C.2 as

1 _ _ _ -
Tolvte S sup (llig,r i+l Dr,r (8 kn+1az k,n) Ve (g1 P | N+
Ag+1 £ kon

+ llitg, T Il N+14e 1 Dr, (88 kon+1ds k) We (g1 Pi) )
-1 1/2 -1 2/3

Ty Mq+154+1 Ty Oq+1rg ™y
2/3—5a q+1°
q+1

N

N+« o —N
e O+, S

and the conclusion follows. O
4.6 Estimates for the oscillation error R; 1,0
Let us begin by rewriting the error as

Ry41.0 = Rdiv(S,r +wl @ wih)))

Principal oscillation error

@ Springer



742 V. Giri, R.-O. Radu

: (p) (c) (©) (p) (© (©)
+'Rdlv(wq+1 ® wq+1 + wq+1 ® wq+1 + wl[+1 ® wq+1) .

Divergence corrector error

The main idea of the Nash step is the cancellation between the error S, and the

()

low frequency part of the quadratic self-interaction of w pasy

cancellation, let us recall the notation

Before we present this

Agn =071, (VO 'EREVDY T,
and analogously denote
Agsn =74 ,(VO)'EREVD . (4.33)

Then, using the fact that {gs x n+10¢ k.n}e.k,n have pair-wise disjoint supports, we
compute:

(p) (p)
W1 B Wy

= Z gg,k,n+1‘3§2,k,n(v‘i>k)_l(wé ® We)(hg41P0) (VD) T
& k,n

=Y ki@ a (VO E@EVDY T
& k,n

+ Z gg%,k,n—&-lc_lg,k,n(vci)k)_l(P#OWE ® We)(hg41Pp) (VD)™
& k,n

= —9¢q,I’ + Z gék’;l_;_l(A_E,k,n - As,k,n)
& k,n

+ Z g;,k,n+1&§,k,n(V&>k)_1 (P2oWe @ We) (Ag1 @) (VO T,
Ek,n

where P denotes the Fourier projection onto mean-zero 2-tensors:
P yWe @ We = W: @ W, —][2 We @ We.
TZTI
Note, then, that we can write

ProWe @ We = Q:£ ®8,

where Q¢ is defined by
1 ., .
Qe (x) = 5(62’5” e A,
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We can, then, decompose the principal oscillation error as:

Rdiv(Sy.r +w @ wl)) =Rdiv ( > g (,\q+1ci>k)Ag,k,n>
& k,n

High-high-high oscillation error

Z 82 kns1 (A kn — As,m)) .

+ R div (
& k,n

Flow-mollification error

The flow-mollification error above arises for two reasons. On the one hand, it
encapsulates the error related to the mollification along the flow, which, in turn, can
be understood as the error resulting from the loss of material derivative. On the other
hand, it quantifies the deviation of the flow of the perturbed velocity field u, r =
g + w((;}rl from the flow of it.

Before we estimate each of the identified error terms, we collect the following
preliminary results.

Lemma4.10 The tensors Af,k,n defined in (4.33) satisfy the following estimates:

1Ae knlly S 8gr1mry). YN €{0,1,... L -3}, (4.34)
IDir Az knlly S 8g41aty 'AY. YN €{0,1,.... L =3}, (4.35)
1Agknllver—3 SSqriarh 26N, VN =0, (4.36)
1Dir Ag konllnver—3 S 8g41ahh 1 N, YN =0, (4.37)

where the implicit constants depend on ', M, « and N. Moreover, it holds that

1/2 ,1/3

n +179
| Ag kn — Ag knllo S Sq+1,n 8?/27 (4.38)
q "q+1

Proof All but the last estimate follow by repeating the proof of corollary 3.6, but this
time using lemma 4.4 and corollary 3.10. For the final estimate, we write

Apkon = Askn = @4, — a2 )V ERENVI)TT
+a2 1, (VO — (Vo s 0 sV T
+a2, (VO TERE((VEY T — (Vo T).
Then,

I1Ag kn — A knllo SNaZ g, — a2 g nllo+ llag 4, ol (V)™ = (V) lo.
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In order to estimate the first term, we use the mean value inequality to obtain

=2 2
14z k.0 — @ knllo

.8 Id—R - 8 Id—R
<8g41m V@,{M(v@,{f _ V@kM(VCDk)T
q+1,n q+1,n 0
SNV®k — VOrlloll8g+1.01d =Ry nllo + 1Ry — Ry.nllo
+ VO = VO 0l184+1.0 Td— Ry nlo-
By standard mollification estimates,
IRg.n = Rgnllo SIDr.r Rynllotig S 8q1.n7y Hig.
This fact, together with the estimates of lemmas 3.5, 3.12, 4.1, and 4.4, implies
_ Sgr1r2eze
“Aé,k,n - Aé,k,n ”0 5 5q+1,n <Tq — 17 + Tq th,q)
Hg+1
12 ,1/3 2/3
<$ M + i o
~ %q+1.n s1/2,173 2/3 M+l -
q q+1 g+l
The conclusion follows once we note that
2/3 12 ,1/3
)\q/ 8q+1)‘q
2273 < 172,173
q+1 q q+1
and, thus, for all « sufficiently small in terms of b and 8, we have
2/3 1/2 1 1/3
A 2L < Og 11t
2/3 Mq+1 = 1/2.1/3 °
)”q+1 8q )‘q+1 O

We now turn to obtaining estimates for each of the three identified errors, starting
with the high-high-high oscillation error.

Lemma4.11 The following estimates hold for the high-high-high oscillation error:

841k
5;’%2;)\5“, VN >0, (4.39)

N q+1

HRdiv ( Z gg,k7n+1§2§()\q+1CI)k)AS,k,n>
E.k,n

where the implicit constants depend on I'y M, o, b, and N.

D, rRdiv ( Z gg,k,n.;.lgé()\q-i-l&)k)AS,k,n> H s Mq+13q+1/\g+lkév+1, VN > 0.
£.k.n N
(4.40)
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Proof We first note that
Ae V(R (g1 D0)) = Ag 1G5 1, (€ - V) Qg1 PO(VI) T'E =0.
Consequently, it holds that
div (2 g1 PO At fn) = Qe Qg1 D) div Ag g,

and, thus,

HRdiv ( Z gék,nHQs (Ag+1 &)k)AS‘k,n>

£.k.n N+o

S gSIIip gégsk,nJrl ”R(QS ()‘q+1&)k) div A-Evk’") ||N+a'
K,n

Proposition D.3 implies that, for any N >1,

i T A
| R(Qe (g1 ®1) div A 1.0) |, S ”;%”1
g+1

N Az konll 4140 + 1A kn IVl 5.
N—«a
Mg+l

<

8q+1kq n 5q+1)LqE;N_a

~ oy l-a N—a
)”q+1 )‘q+1
-N
Sg1M 0
qg+14q q
ST <1+)‘q+1,\~,—>-
q+1 q+1

with implicit constant depending on o and N. Since

-N N2
—=(m5)
AN Ag+1

we can choose N sufficiently large depending only on b so that

-N
A 4 <.
q+l N - 1
q+1
Therefore,
. _ Sg+1A
. q+1%7q
| R(Qe (g1 D) div Ag kn) [, S G2
q+1
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746 V. Giri, R.-O. Radu

To obtain the estimates for the higher derivatives, consider N > 1 and let 6 be a
multi-index with || = N — 1, and i € {1,2}. Then, using the fact that 9;R is of
Calderén-Zygmund type, we estimate

10" R (e Orgr1 Pi) div Az ) [, S 192 (g1 @) div Ag kol V-1 40
S 192 (g1 PO IN-14a | Ag a1
+ 119 (g1 PO N0l Az eon | Nt
< Sgrihg (A‘(11V+—11+a +£q—N+l—a)
8g+14q

1—a
A’q-ﬁ-l

<

~

N
Mg+l

and (4.39) follows.
To obtain estimates on the material derivative, we write

DtﬁeriV ( Z g?,k,n+195 ()\q-i-l Cbk)zggﬁk,n)
Ek,n

=Rdiv Z Q& (hg4190) Drr (gg,k,,,HAs,k,n)
& k,n

T

+ [iig,r - V. RAVE Y 82 f i1 Qg1 PO A kon -
& k,n

)

For the first term, we have

ITiIN+a S ESI;P (lle(?»qH&)k)lle||Dt,r(g§,k,n+1f‘is,k,n)||0
K.n

+ 1192 g1 PO ol De.r (82 4 1 Ae ko) N -4ar)-

Using lemma 4.10 and arguing as before, we find

N+ -N- N
1T ||N+Ot EJ /’Lq+15q+l()\q+1a + Kq a) S ﬂq+16q+1)¥g+1)¥q+1 .

For the second term, we use proposition C.2, to obtain
- 2 = .7
121 ¥ 4o S sup (””q,F 1+ ”gg,k,n_HQS ()‘q—Q—chk)AS,k,n | N+e
&.k,n

Fllitgr I n+14all82 kst g1 P As kon o)

—1 N+a o —N -1 a N
S‘L'q 8‘1+1()“q+1 +Xq+1€q )S‘L’q 811+1)‘q+1)“q+1’

and the conclusion follows. O
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Next, we aim to obtain estimates for the flow-mollification error.

Lemma 4.12 The following estimates hold for the flow-mollification error:

1/2 5173

q+17"4
Rdiv ( Z 82 k1 (Aekn — Agk n)) H Sq+1 W)‘Zﬂ)‘qﬂ’ VN > 0.
E.k,n 8‘1 A‘q—&—l

(4.41)

N S Hgt18g 112G kg 1 YN 20

D,,eriV ( Z g;)k‘nﬁ,] (As,k,n - AS,k,n))
& k,n
(4.42)

where the implicit constants depend on I', M, o and N.

Proof Since R div is of Calderén-Zygmund type, we have

HRle ( Z gs k, n+1(A§ k,n — A§ k n))

& k,n

S sup | Agkn — Ae konll Nt
N & k,n

Note that
IAg kn — As knlll < 1Aginll + 1 As knlli S 8g112q.

Interpolating this with the result of lemma 4.10, we find

q q
I Ag ko — At knlla S qH(W) )\‘q 55q+1Wla+],
4 "q+1 q "q+1

where for the last inequality we have used the fact that
S 172
9 )\2/3/\1/3 <Agtl.
8g+1

Moreover, using corollary 3.6 and lemma 4.10, we have that for all N >0,

1 N+
I Ag ki — AgknllN+14a S Sg+1hghy 1

where, as above, we have simply used the triangle inequality. The claimed estimates
follow once we notice that the parametric inequality above rearranges as

512 5173
q+1749
Sq+1rg < 5q+lw)»q+1-
q q+1

For the material derivative estimates, we have

Dt,eriV ( Z gg,k’n_;,_l(gé‘k,;z - Aé,k,n))
Ek,n
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=Rdiv Dt,F( Z ggz,k,nﬂ(/ig,k,n - Ag,k,n)>
E k,n

T

+ligr-V, Rdiv]( > Gtk (Aekn — Ag,k,n)> :
&, k,n

T
As argued before, we obtain
T N+e S /’Lq+18q+1)\g+1)\(11v+1»
and
12l N+a S g Sgihgihgss

where for the estimates involving the difference A_g,k,n — Ag k.n, we simply use the
triangle inequality and the results of lemma 4.10 and corollary 3.6. |

Finally, we obtain the estimates for the divergence corrector error.
Lemma 4.13 The following estimates hold for the divergence corrector error:
: () (©) (©) (») () ()
[Raivw) @ wll, + vl @ wl +wll @wll) HN

Sq+14q

N

S e Mg YN =0, (4.43)

q+1
> < (P) © © ) © ©
H D,,erlv(qurl Qw w1 W, /[y +w, | ® wq+l)HN

Sg+1A

S =7y g YN 20, (4.44)
q+1

where the implicit constants depend on 'y M, o, and N.

(c)

Proof Let us first collect estimates for w g+

and w;’_’: |- Directly from the definition

of w((;)r] in (4.11) we calculate

lw Iy <

e sup |ge k11 @z kon We (g1 @i v
& k,n

1
Ag+1

S5 sup |ge k11 (I1We Cgi1 @) IV 1 Vg ko llo
q+1 &,k,n

+ || We ()\q+1&>k)||0||VLElé,k,n||N)
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Ay o1)2
< q (S / )\’N
~ 1 1°
Ag+1 q+17q+

where for the last inequality we have used lemma 4.4 and argued as in the proof of
Lemma 4.5. Similarly,

P |y < — VL (W (g1 @
lw v S T 1gSlI:p lge knr1lllas k.n V= (We (Ag+1Pi)) N
g+l &,

1 ~ _
< oS I8¢ kot 1| (1 We g1 PO N1 11@e kn llo
q+1 & k,n

+ 1 We (1P 11 1dg k.0l )

12 . N
~ 5q+1)‘q+1

For the material derivative estimates, note first that
= 1= 1A = 1- —
D: rV=ag jn =V D;rag gy, — Vg rVag i,

and, thus, using lemma 4.4 and corollary 3.9,

_ L _ ) ) ) .
IDy,rV=as knlln SNIDrragknlinet + g rliveillascnllt + lig,rlillas knllv

12 1 1/2,2 /2 _—1 N
S8t gty 8g a8 00N S8 T Aty

We have, then,

1D rwi) v S sup [ We Crg+1%10) Dr.r (g6, kn1V g ) v

Ag+1 £kon

1 - L
N sup [0; 8 k.n+11(1We g1 PN IV =Gz ke n llo
Ag+1 &kn

+ W (g1 PO N0 1V ko v

+

—— sup I8¢ k1| (1 W (g1 PO NN I Dr.r VEag n llo
q+1 &, k,n

+ [1We (g1 PO ll0l| Dr,r VEae kol v)

Hg+1 71 /'Lq+131/21)\q
< Ha+ 81/2A AW _|_ g 81/2A WV DA gl N
~ )\q+l q+1 g+l | q+1 q+1 )"q+l q+1

and, similarly,

B} 1 . s
||Dt,1“w((1p+)1 v S o [ Dt,l“(gs,k,n+laé,k,nvl(‘l’§ (g+1Pk))) ”N
q

S sup 19 ge k11 (1We (g1 PO v l@s knllo
Ag+1 £ k.n
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750 V. Giri, R.-O. Radu

+ 1We g1 D) 1 1ag k.l )

+

S sup |ge k11 (I1We (g1 @) | v+111 Dr r g k. llo
q+1 & k,n

+ 1We (g1 PO N1 11 Dy, réig nll V)

sup |g§,k,n+1|(”Dt,FVJ—(‘I’$ g1 P I g knllo
Ag+1 £ k,n

+ 1Dy, e V(W (g1 @) N0 l1@s n [l )

+

L 12,84 —1, <12 12N
S )w—+8q+1)‘q+l (Hg+1+ 75 +85 Ag) S Mq+18, 1A g110
where we have used that

_ ~ _ ~ 1/2
1D:, 2V (We (g1 D)Ly = 1V i 0 V(We g1 D) v S 86/ 2g 20

We can now denote

(p) w© (©) (») () (©)
Rdlv(wqul Wy Tw,  @wy+w, 1 @ q+1)

w'© (©) ®w(17) (C) (C) )

T, = Dt erlv(w(p) Wy +w g+

and estimate

1Tl e S T2 vl o+ Tl lollw ) v + 1wl vl o

< Sq+1%q , N

~ o l-a Tt

q+1
For T,, we write
() (C) (C) () (C) (©
I =Rdiv Dt 1—‘(qurl q+1 q+1 ® wq+1 q+1 q+1)
I
(p) (C) (©) (p) (C) (©)

+[ug,r-V, Rdlv](qu Wo T Wy ®w il Fw L ® q+1)

Y]

Then,

N (p) (02] (c)
121 llnvve S 1 Derwh) e lwi) llo + 1Derw o lw!) Iy e

(02)] N <)
+wi) vl Derwi o

»
+ ”wajr] ||0||Dt qu+1 IN+o + ||Dt qu+] ||N+<x||wq+] llo

A (c) c
+ ||Dt,qu+1”0||wq+1”N+a
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Sg1M

g+17q . N

S Mg+t T Ag+1s
g+1

and, by proposition C.2,

12l 4o S g, r e llwi?y @ wiS), +wl), @ wl) +wl), @ wl),

( (p)
q

(©) (©) (©)

+llig,rliIN+1+ellw

< -1 8q+12q AN
~ - q+1°
g+1

and the conclusion follows.
4.7 Estimates for the residual error R, 1

Recalling the expression (3.72) for Py r, we write

(0
q+1

(0

Rq+1,R = Rq’]" +w ®wq+1
——
Gluing error Newton error

+ wy1®(ug — i) + (g — i) ®wy11+ Ry — Ry0.

Spatial mollification error

We once again embark on estimating the three identified errors separately.

Lemma 4.14 The following estimates hold for the gluing error:

— _18g+1A
D ,rRyrlin S VAT 4N VN >0,
Ag+1

where the implicit constants depend on ', M, a, and N.

p)
+1 QW iy T Wi Wy g + Wyt QW

||N+ot

(©) ”
g+1te

(4.45)

(4.46)

Proof The first estimate follows immediately from proposition 3.4, once we notice

that
Ag r'{1/3-p) Ag
Sg+1.1 =3q+1</\—) P
g+1 Ag+1

For the second one, we write
— = t
DirRyr=DiRyr+w) - VR,

By proposition 3.4 and lemma 3.8, we have

t t t
ity VRe eIy S Iwil v I Rg.rll + 1wl lloll Ry.r -+

@ Springer



752 V. Giri, R.-O. Radu

— 2
< 5q+1)»qﬁqa 54_;,_1)»61 N
q+1-

Mg+1 Ag+1
The wanted estimates follow once we notice that
2,)— 1/3
Sq+12g 44 1/2 Aq / -1
———— =8, M| <7, .
Hg+1 Ag+1

Lemma 4.15 The following estimates hold for the Newton error:

2/3
o dg+1rg
gl @wil v S =550, YN 20, (4.47)
)“q—&-l
O & (@) Sqrirg
1Dy r (w3 &w,5 DI S iy T/;A"“’ VN >0, (4.48)

q+1

where the implicit constants depend on ', M, a, and N.

Proof For the first bound we compute using lemma 3.8 and the definition of f141:

0 & (1)

(1) ()
g+1OWg 11

Iy < N v lw llo

—an 2 2/3

< ((Pat1taty WNo<s g\ PO

~ g+1 ~ 9%g+1 2 q+1°
Hg+1 q+1

as wanted. In fact, since L > 4, we have the better estimate

lw

2/3

Sg+11

0 &0 q+1%q

”w 1®wq+1”N+l 5 2/3 A )Lq-ﬁ-l’ VN >0,
q+1

which we will use in the following calculations.
We have

1Dy, (wy &wi) Dy S 1Dl &wi) iy + lwl - Vil &wl) )l

<UD inlwd) lo + 15wl lollw | lIn

q+1 qg+1 q+1 q+1
t t O t

+llwid v llwg ) @wl I
t t ] t

+ 1w lollw!) &wd) v

2/3 —
8q+1)‘-q/ N SQ'HALIEq 8q+1)‘- o

q N
~ Mg+l 573 g+1 o1 2203 )‘q)‘q+l
q+1 at q+1

2
Sq+14¢ AN
~ Mg+ 2/3 q+1°
q+1
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where we have used that
2 ,—
dorihgly” v
Hg+1 4 1 O
We, finally, prove the required bounds for the spatial mollification error.
Lemma 4.16 The following estimates hold for the spatial mollification error:
1/2 172
” ° _ N < q+174 q.N
Wy 18 (g — itg) + (g — ig)Owg 1|y S T kg YN (O L)
q+
(4.49)
| De.r (wq1® g —itg) + (ug — i) @wq11) |
172 172
8 8q A
1/2 ,1/3,2/3 %q+1°¢ "4 . N
N R PR ST (4.50)
q+1
VN €{0,1,...,L —1},
Sq+12q .
||Rq—Rq’0||N§—)»q+1, VN €{0,1,..., L}, 4.51)
Ag+1
= 1/2
1D;r(Ry — Ry 0N S Sq+18,/ AqAN VN e{0,1,...,L —1}, (4.52)

q+1°

where the implicit constants depend on I'y M, o, and N.
Proof By proposition A.2, we have

. 172,22 < 5172 Mg
Uy — U <8,/ Ns <68, ——.
” q q”ON q qTq ~“q )\'q-q—l

Moreover, for N € {1,2, ..., L}, the inductive assumptions on u, imply

_ 12 %4 . N

”"tq_Mq”Ng(S A 1°
q )\'q+1 q+

Then, using the estimates of lemma 4.5, we conclude

lwg 18y — i) + (g — 1) @wgy 11 HN

S lwgttlinllug — ugllo + llwg+1llollug — itglin

1/2 172
<5q+15q Moy

a9 LN
Agy1 1T

and (4.49) is proven.
For (4.50), we have on the one hand

— (s) 1/2 \ N
IlDt,qu+1 ”N 5 :uq+18q+1)“q+l 4
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as seen in the proof of lemma 4.13, and

1/21 1/3

5, g+174 N

IDerwyi i IN S g1 =5 Ag4-
q+1

by arguments similar to the ones given in the proof of lemma 4.15. On the other hand,
Dy r(ug —iig) = w ), - Viug —itg) + Di(ug — iig),

where
172 .1/3 N
lw® -V, —iig) |y S 251502 2 NE YN €0, 1., L — 1),

g+1 3 % q+1>
)‘q+l q+1

and it remains to collect estimates for D; (g —uy). We write
Dy(ug — itg) = Oiug + uq - Vug) — Qg +uq - Vug) * Lo, + (itg — ug) - Vug
+div((ug @ ug) * &, — g  ig).
Using the Euler-Reynolds system (2.1), we have
Qg +ug - Vug) — (Orug +ug - Vug) x &y, lIn
SIVpg —Vpg * e, v + [1div Ry —div Rg ollv

By the inductive estimates and proposition A.2, we have

2

(Sq)»q N
IVpg —Vpg*te,In S —A 0, YN€{0,1,...,L -1},
q A +1 q
q
and
1) 112
Idiv R, — div Ry olly < ‘i* lq,\fjﬂ, YN e{0,1,...,L—1}.
q+
Moreover,

(g —uqg) - Vuglin < llitg —uglinllugln + llig — ugllolluglin+1

)\‘2
5; ‘i,\jjﬂ, YN e{0,1,...,L—1},
+

and, finally, by the Constantin-E-Titi commutator estimate of proposition A.3,

1div((ug ® ug) * &, — iig @ ) Iv S €3N Jlug 12 llug 1

8gh2
< LN YN >0,
Ag+1
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Upon noting that

12 1/2 ,1/3,2/3
8y %0y < 8070402
we conclude that
- 12 173,273 8¢ )
1Dy (g — i)y <8223 %4 25N yNefo,1,...,L—1).
s q q ~ “g+179

q+1 Agt1 q+1°

Then, (4.50) follows since

_o1/2.2/3,1/3 4 172 ,1/3,2/3
M1 = 8, 1 hg h i hghn =80 Ae A

whenever « is chosen sufficiently small.
The inequalities (4.51) follow from proposition A.2 by the same reasoning we
have used above to estimate u, — u,. Finally, for (4.52), we write

Dir(Ry — Ry 0) = w;’il -V(Ry — Ry0) + DRy + (g —uy) - VR, — DRy 0,

and compute:

1/21 511/3

1 +

||w;}rl “V(Rg — Rg0)lIn S L 73 5q+1)»qkf,v+1
q+1

$8g18g P hgal L YN €01, L1},

= 1/2
1D Rylln + 1D Ry olly < 84184 222 1. YN €{0,1,.... L -1},

where we use lemma 3.1 and the inductive assumption; and

_ 1 A
1Gig = 10q) - VR lly < 8g41kg8y* =00
q+1

$8g118g Paghl YN €01, L -1},
The final conclusion, then, follows. O

4.8 Estimates for the pressure

Recalling the definition (4.14) of p, 11 and the expression (3.70) for p, r, we write

r r—1
DPg+1=DPg + ZP((;j.l,n - Z A~ divdiv (Rq,” + Zgg,k,n-&-lAEqks”)
n=1 n=0 Ek
) |2
q+1
2

|w

(ﬁq —Ug, wq+1>-
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Lemma 4.17 The following estimates hold for the new pressure:

1/2 ¢1/2,1/3
+1749 q
Ipgilln S ——p5——Ags1 YN €{1,2,..., L}, (4.53)
q+1

where the implicit constants depend on ', M, o, and N.

Proof We have

r r-1
Ipgsilly S 1pglly + D 1Py + D 1A divdiv (R,
n=1 n=0
+ Zgg,k,nJrlAE,k,n)”N
&k

2 -
+ 1wy Plly + I itg — g wg 1)y

Estimates for py. By the inductive assumptions, we have

8‘])\"] N
A’ 9
)"q—H q+1

Ipglin S VN e{l,2,...,L}.

Note, then, that

172 (1/2,1/3
(Sq)‘q <3q+18q )‘q

Ag+1 A

1/3
g+1
Estimates for p;tjrl - Recall that p;tJ)rl w = Dk XkPk.n» 80 it suffices to obtain
estimates for py , on supp xx. We note, then, that (3.21) implies

2
Prn=—207" 3" dw] ,8;a,
i,j=1
= —2Adiv(we, - Vitg) =2A7 divdiv(yy , Vi)

Therefore, since A~!divdiv is an operator of Calderén-Zygmund type, we obtain,
for N >0,

IPknlIN+a S IVknllN+allViglla + 1Yk llallVig | N+a

12 6172, 1/3

< 8q+1 sl/2y 3 N+2a < g+1°¢ "4 . N

N—M 0 qhg+1 S e q+1-
4 q+1

Estimates for A~" divdiv (Ry » + P gék’nHAg,kﬁ). We have, for all N > 1,

1A divdiv (Rg.n + ) 82 ki1 Aekn) INta S IRgnlIN+a + 1A konllNta
£k
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< 8q+12q AN
~ oy lma Tatl
q+1

where we have appealed to lemma 3.6 and proposition 3.4. Once again, we note that
for all & > O sufficiently small, it holds that

172 ¢1/2,1/3

Sgi1hg _ Sgn1%a g
a7 I
q+1 q+1

The estimates for |wc(;jrl |> and (g —ug, wyy1) are the same as those obtained in
lemmas 4.15 and 4.16, respectively. Both satisfy better estimates than those claimed

here. O

Corollary 4.18 The following hold.:
Ipgrilly < M*8g010) 1, VN €{1,2,..., L}. (4.54)

Proof Since B < 1/3, we have that

1/3

1/2 51/2)\51

q+174
1/3
)”q+1

8

—a

< 8q+l)\q+1 9

whenever « > 0 is sufficiently small. Then, the previous lemma implies that there
exists a constant C depending on L, M, «, and $ such that
Ipg+illy < Ch$ Sqr1r)y, YN €{1,2,... L},
The conclusion follows once we choose ag sufficiently large so that
- 2
Ch qul <M-. O
4.9 Conclusion

Corollaries 4.6 and 4.18 show, respectively, the inductive propagation of the estimates
concerning the velocity field and the pressure. It remains, then, to check the propaga-
tion of the estimates on the Reynolds stress. In the following, we denote the material
derivative corresponding to the vector field u,41 by

Dt,q-‘,—l = 81‘ + I/tq+1 - V.

Corollary 4.19 The following estimates hold for the new Reynolds stress:

IRg+1llv < 844200 7%, ¥N €{0,1,..., L}, (4.55)
1/2 —
IDr g1 Ry 11y < 3q+25q/+lxgjl‘ 2 YN el{o1,...,L—1}. (4.56)
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Proof The estimates obtained in the previous sections imply

1/2:1/2 2/3 3/2,1/3
IR +1||N < (Sq 6q+1)‘q 5q+1)\q/ 5q+1)hq 5q+1 q )ASQIAN 1
q ~ 2/3 1/2,1/3 )" q+1"q+1"
Aot Aq41 Mol 80
One can check directly that
1/2:1/2 2/3 3/2,1/3
8q+11q - 8q 8,17 - Sqirg 81y
b= e T AT
which implies
3/2 ,1/3
q+174 5 N
IRg+1llv S 75175 Mo 2+t
q q+1
Note that since
1+3
1<b< + ﬂ,
6p
we have
3/2 ,1/3
8q+1)‘q s
172,173 < 9g+2;
q "q+1

and, thus, by choosing « sufficiently small depending on 8 and b, we can ensure that

532 51/3
q+174 Sa —da

AT 7 <

s1/2,1/3 A1 =0q+2h g1y
9 "q+1

Then, there exists a constant C depending on L, 8, b, « and M such that
IRy+1lln < cx;ﬁlaq+2x;"+—l3“, VN e{0,1,...,L}.
The estimates in (4.55) follow once we choose ag sufficiently large so that
C)»;‘j] <1.

It remains to show the validity of the estimates on the material derivative corre-
sponding to u, 1. For this purpose, we write

1D1 g1 R 41y S IDerRytilln + g = iig) - VRgytlly + 1w}y - VR 11l

Plugging in the expressions for 7, (y+1 and ¢; 4 into the estimates obtained in the

previous sections, we obtain that, forall N € {0, 1, ..., L — 1},
1/2,5/3 3/2,5/3
= 8q+184" A 172 3/2 .2/3,1/3 11
1D r Ryl < (—q A 818g hg + 8,0+
)‘q—H g+1
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1/2,2 3/2 ,4/3 1/2,4/3
84+184 Aq 8q+1)“1 5q+15q/ )“1/ ))ﬁa AN
N 1/3 1/3 q+1"g+1"
-+l )‘qul )‘q+1

One can check that

1/2 3/2 ,5/3 1/2,5/3 3/2 ,4/3 1/2.,4/3
R IR L A T Y v R AL S PRT Vv

<
A 2/3 2/3 1/3 1/3
+1 )”q-H )”q+1 )”q-ﬁ—l )”q+1
1/2 3/2,2/3,1/3
<68g+184 "Ag < 8q+1)\'q )“q+1’
and, thus,
- 3/2 ,2/3,1/3
1D:.rRg1llw < 8,20 0 ol .
Since,
1+38 1
< < —,
6 3p
we argue as before to conclude that
= 1/2 -
1Ds.rRg1lln < 84428,/ AN 7 wN €01, L -1},

whenever o > 0 is sufficiently small. Recalling that

_ 172 A
liig —uglln < 8y A—")\;VH, VN e{0,1,...,L},
q+1

we obtain
Gty —ug) - VRyt1lln S llitg —uglinllRg+1ll + llig — uglloll Rg+1lln+1

172 g N+1-3a 1/2 . N+1-3a
<0 ﬁ‘sqﬂ)‘qﬂ §8‘1+28q+1)‘q+] )

where for the last inequality we use the fact that
A
5,7 <
Ag+1
Finally, by lemma 4.5,

()

() ()
lwy iy - VRgs1llv SlMwy iy InITRg+1llt + lwg ol Rg41llv+1

q+1

1/2 y N+1-3a
58‘1+28q+1)‘q+1 :

We conclude, then, that there exists a constant C depending on L, 8, b, @ and M so
that
— 1/2 —
IDs g1 Ry1lly < quglaqﬂsqilxg’jll 2 yNelo1,...,L—1}.

The conclusion follows once we choose ag sufficiently large. U
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Appendix A: Holder spaces, compositions, mollification
Let N e Nand « € [0, 1). For functions f : T2 — R, we denote the C° norm by

lfllo:= sup | f(x)I,

xeT?

and the Holder semi-norms by

[f1v = sup [ID?fllo,
|0|=N

B |D? f(x) — DY f(y)]
[f1v+a = sup sup f :
[6]=N x#y lx — ¥l

where in the above 6 denotes a multi-index. We denote the Holder norms by
N
Iy =D _[f1).
j=0
I lINte = flIN + [fINta-

We keep the notation above also in the case f is a vector field or a tensor field.
Moreover, if f is time-dependent, we denote by a slight abuse of notation,

Ifllw = sup IfC DN,
IFIIN+a =Sltlp||f("t)||N+oz-

When we are interested in the spatial Holder norms at a particular time-slice, we use
the notation on the right-hand side of the two equations above. Finally, with A C R,
we denote

I flin,a=supllfC,Dln.
teA

Let us recall the classical interpolation inequality
A 1—2
I fIN+e = CHNR, o 1 gy s
where
N+a=r(N1+a1)+ 1 =2 (N2 +az),

and C is a constant depending on N, Ny, N2, o, o1 and «. Recall also the following
standard estimate for products:

If8lin+a = CULf Intallgllo+ 1 f TollglIN+a)-

Regarding compositions, we recollect the classical estimate below. The reader is
referred to [22] for a proof.
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Proposition A.1 Let ¥ : Q — R and u : R" — Q be two smooth functions, with Q C
RN. Then, for any m € N\ {0}, there exists a constant C = C(m, N, n) such that

(W ouly < CIWN I Dullm—r + 1D [l iy~ lullm).

[V ouly < C(I¥11 I Dutllm—1 + DY | m—1[ul]").

We also use the following results concerning mollification. A detailed proof is
given in lemma 2.1 of [17]

Proposition A.2 Let ¢ be a symmetric mollifier with [ ¢ = 1. Then, for any f €
C®(T?) and N > 0,

If = fxdelln SECNfllna,

where the implicit constant depends only on N.

Proposition A.3 Let ¢ be a standard mollifier. Then, for any f, g € C*®(T?) and N >
M >0,

1(f&) % pe — (f x ¢ (g x ) Iv S M (U f sl + 1 £ lglar1),

where the implicit constant depends only on N and M.

Proof The case M =0 is proved in [17]. If M > 0, the previous case implies

I(fg) * de — (f *de)(g*p)lIn—nr S VM £lnllglh-

Let 6 be a multi-index with || < M. Then,

10°1(fg) % de — (f * o) (g * ¢ IN-m
SY @ 39 g) sy — (3 f % p0) (3" g ) IN—m

a<f

SN0 fllal0° gl

a<6
SN Flallgh + 1A I lgla1),

where, for the last inequality, we use interpolation and Young’s inequality for prod-
ucts. The conclusion follows once we note that ||(fg) * ¢¢ — (f * ¢e)(g * Pe)lln 1S
bounded by the sum of the terms on the left hand side of the previous relation. |

The proposition above is a version of the Constantin-E-Titi commutator estimate

([16D).
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Appendix B: Estimates for transport equations

We recall standard estimates for solutions to the transport equation

{a,f+u-Vf=g, B

f|,=,O = Jfo.

The following proposition is stated in [6] and it follows by interpolation from the
corresponding result in [4].

Proposition B.1 Assume |t — tyl||lull1 < 1. Any solution f of (B.1) satisfies

t
T ||f0||o+/ 15 D) llodc,
fo

t
1f Gl < 2(1 folla +/ g, DlladT),
]

for a € [0, 1]. More generally, forany N > 1 and « € [0, 1),

LFC DNt STfolnta + 1t = tollulntal foli

t
+/ (leC DN+ + (¢ = Dluln+algC, Di)dz,
1

0

where the implicit constant depends on N and a. Consequently, the backwards flow
® of u starting at time ty satisfies

ID®(-, 1) —1dllo S 1t — tol[ulr,

[PC. DN St —1olluly, YN =2.

Appendix C: Singular integral operators

In this paper, we consider the following class of Calderén-Zygmund operators: Let
K :R? — R be a kernel which is homogeneous of degree —2, smooth away from the
origin, and has zero mean on circles centered at the origin. Consider the periodization
of K

Kn@=K@+ Y, (K@+n)—K®).
neZ?\{0}

Define, then,
Tk f(x) = p.v./Jr2 Kp(x —y) f(y)dy,

to be the T2-periodic Calderén-Zygmund operator acting on T2-periodic functions f
of zero mean. The following is, then, a classical result ([8]).
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Proposition C.1 For o € (0,1), the periodic Calderéon-Zygmund operators are
bounded on the space of zero mean T*-periodic C* functions.

We also recall the following commutator estimate, which is a variant of lemma 1
in [15]. There, the result is stated on the whole space R? and only for N = 0. The
adaptation to the case of the periodic torus and the extension to N > 0 were given in
proposition D.1. of [6]. We remark that, while the corresponding proposition in [6] is
stated on T3, the arguments carry over to any dimension without modification.

Proposition C.2 Let o € (0, 1) and N > 0. Let Tx be a Calderdon-Zygmund operator
with kernel K . Let b € CN1*(T?) be a vector field. Then, we have

Tk, b V1flinta S 10l4all flIN+e + 121N +14all flla

for any f € CNTY(T?), where the implicit constant depends on o, N, K .

Appendix D: Tools of convex integration
D.1 A geometriclemma

The following geometric lemma, which is essentially due to Nash ([30]) and which
was reformulated in the form below in [36], is used to decompose the Reynolds stress
into simple tensors.

Lemma D.1 Let By/2(1d) denote the metric ball centered around the identity in the
space S**? of symmetric 2 x 2 matrices. There exist a finite set A C Z* and smooth
Sfunctions yg : B12(Id) — R, for each & € A, such that

R=) v (RE®E,

EeA

whenever R € By,>(1d).
D.2 Aninverse divergence operator

We use the following inverse-divergence operator
Ru) = A @u! +dju’ — divus;j), (D.1)

which maps smooth, mean-zero vector fields u to smooth, symmetric and trace-free
2-tensors Ru. This operator was first defined in [14] and is the 2-dimensional coun-
terpart of the 3-dimensional inverse divergence operator introduced in [21, 22]. The

main properties of R are gathered in the following proposition, which is proven in
[14].

Proposition D.2 [f u is a smooth, mean-zero vector field, then the 2-tensor field Ru
defined by (D.1) is symmetric and satisfies

divRu =u.
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D.3 A stationary phase lemma

We refer the reader to [18] for the proof of the following stationary phase lemma. We
remark, however, that, while the lemma is therein stated on T?, an inspection of the
proof immediately reveals that the arguments are independent of the dimension of the
spatial domain.

Proposition D.3 Let « € (0,1) and N > 1. Let a € C®(T?), & € C®(T?; R?) be
smooth functions and assume that

C'<|ve|<C

holds on T2. Then

. Vo
/ a()e*® dx| < lally +llallollVeln ’ D.2)
T |k|N

and for the operator R defined in (D.1), we have

i Vo
HR (a(x)e’k‘d’) H _ llallo | llallnre+ lalloll VOln-+a 3
o

~ ke V=

where the implicit constants depend on C ,a and N, but not on k.

Appendix E: Global well-posedness for the linearized Euler equations

Consider the Newtonian linearization of the Euler equations on the domain [T, T'] x
T4, T >0andd > 2.

oow—+u-Vw+w-Vu+Vp=F
divw =0, (E.1)

w|t=0=w0,

where u : [-T,T] x T — R? is a divergence-free vector field, the forcing F :
[-T,T] x T — R? is taken, without loss of generality, to be divergence-free,
and the initial data wg : T — R? is also assumed to be divergence-free. The un-
knowns are the vector-field w : [-T, T] x T4 — R? and the scalar pressure p :
[T, T1x T? - R.

The pressure is determined up to an additive constant by

—Ap=divdivitu @ w + w Q u) = 2div(w - Vu). (E.2)
Therefore, we can rewrite the system (E.1) as

{8,w+u-Vw+ (Id —2VA~'div)(w - Vu) = F E3)

w|t:O:w0'
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The following proposition shows global well-posedness for the equations (E.1).
We will impose on a solution (w, p) that p has zero-mean, so that it is uniquely
determined by (E.2).

Proposition E.1 Let T > 0, N e N\ {0}, O <&@ < 1, and assume u € C([—-T,T];
CN+1+a (']Td)), FeC(-T,T; CN+a(Td)) and wq € CN+°‘(']I‘d) are divergence-
free vector fields. Then, there exists a unique solution (w, p) of (E.1) such that

weC([~T,TL; CN (T ncl (-1, T]; V=1 (1)
and p € C([—T, T1; CN*e(T?)).

Proof Let us first note that it suffices to prove the well-posedness of (E.3) in the
required regularity class. The regularity of the pressure p will then follow from that
of w since A~! divdiv is an operator of Calderén-Zygmund type.

Local existence. Let m € N\ {0} and let w,, € C,CNT* N C!CN=1+% be the in-
ductively defined solution of

{a,wm +u-Vwy, +T(wy—1-Vu)=F

wm}t:O = Wo,

where T is the Calderén-Zygmund type operator T = Id —2V A~ div. The global
existence and uniqueness of w,, follows from the classical Cauchy-Lipschitz theory
for ODE’s in view of the expression

t
wm(x,t)=wo(q>(x,t))—/ T(wm—1-Vu)(X(P(x,1),5),s)ds
0

t
+/ F(X(®(x, 1), 5), $)ds,
0

where X and & denote the Lagrangian and backwards flows of u, respectively. The
fact that w,, € C; Cfcv T¢ can also be seen from the expression above by induction on
m, while w,, € C}CN=1+* follows from

0wy, = —u-Vwy, — T (wy—1 - Vu) + F.

We claim that the sequence {w,} is Cauchy in C([—7,1];
cNtemayncl([—z, t]; V-1 (T9)), provided 7 > 0 is chosen sufficiently small
in terms of N, «, and ||u|| y+14«. To prove this, we consider v, = Wy +1 — wy, and
note that it solves

OV +u-Vuy, + T (vy—1-Vu) =0

U |z:0 =0.
Then, assuming 7 |lu||y+o < 1, proposition B.1 implies

lvm Il S | T (V-1 - Vi)l S T vm—1lla;

~ ~
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and, foralll1 <k <N,

[mlkta S_, | T (Un—1 - Vi)l kta S T vm—1llkta-

Thus, there exists a constant C > 0 depending on N, o and ||u|| y+14¢ SO that

lvmllvtre < CTllvm—1llN+a-

By taking 7 such that Ct < 1/2, we obtain

1
lomlin+e = S 0N+

which immediately implies that {w,,} is Cauchy in C([—t, t]; CVNT¥(T¢)). To see
that it is also Cauchy in c! ([—zt, ]; CcN-l+a (’]I‘d)), we note that, for m, m’ € N\ {0},
10: (Wi — W) I N-1-«
<lu-V(wm —wp)lIN-1-a + 1T ((Wn—1 — Wpy—1) - Vi) N 140
5 ”wm - wm’”N—Hx + ”wm—l — Wp'—1 ||N—1+Ot'

Let, then,

w= lim w, € C(~r,tl; CV (M) nC([~r, o, V1 (T?)).
m—0o0

It is clear that w is a solution to (E.3) on the time interval [—7, T].
Uniqueness. Let w1 and w, be two solutions to (E.3), and denote v = wy — wy.
Then,

{8tv+u-Vv+T(v-Vu)=0
v|t=0:0'

By proposition B.1, we have

t t
”v('vt)”l)ls-/o IIT(v~VM)(-,S)|IocdSS/0 v, ) llads,

whenever [f|||u]l; < 1. Gronwall’s inequality implies that v = 0 on the time interval
(—||u||1_1, ||u||1_1). Of course, then, uniqueness holds globally be covering [T, T']

with intervals of length ||u ||1_1.
Global existence. Denote tj, = %kr, k € Z. Then, let w° be the unique solution on

the time interval (—t, t) with initial data w0| —o = wo; and let w* be defined as the
solution on (#; — 7, ty + t) N [—T, T] with initial condition

w11, ifk >0,

k
w =
|’:fk wtl (1), ifk <O0.

By uniqueness, we can define a global solution w(, ¢) = wk(~, tyifte (ty—1,tx+71),
and, thus, conclude the proof. O
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RemarkE.2 Ifu, F € C®([—T, T]x T%), and wy € C*®(T?) then the unique solution
w given by the proposition is also in the regularity class C*°([—T, T] x T%). The fact
that w € C;C;? is clear. To see the regularity in time, we write

dw=—u-Vw—1d—2VA~ div)(w - Vu) + F,

and conclude that

weCkC® = JweClC® = weck!ic®.
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