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Abstract

For any γ < 1/3, we construct a nontrivial weak solution u to the two-dimensional,

incompressible Euler equations, which has compact support in time and satisfies u ∈
Cγ (Rt × T

2
x). In particular, the constructed solution does not conserve energy and,

thus, settles the flexible part of the Onsager conjecture in two dimensions. The proof

involves combining the Nash iteration technique with a new linear Newton iteration.

1 Introduction

Consider the incompressible Euler equations

{

∂tu + div(u ⊗ u) + ∇p = 0,

divu = 0,
(1.1)

defined on Rt ×T
2
x , where T

2 = R
2/Z2 is the two-dimensional torus; u : R×T

2 →
R

2 is the velocity field; and p : R × T
2 → R is the scalar pressure. In this pa-

per, a weak solution is a pair (u,p) which satisfies (1.1) in the sense of distribu-

tions.

In his work on turbulent flows [33], Onsager conjectured that weak solutions to the

Euler equations (1.1) with Hölder regularity greater than 1/3 must conserve kinetic

energy, while solutions with lower regularity need not do so. After partial results of

Eyink [26], the positive/rigid part of the conjecture was settled in the affirmative by

Constantin, E, and Titi ([16]; see also [11] for a sharp version of energy-conservation

for solutions with 1/3 regularity in L3-based Besov spaces). The first results to-

wards the negative/flexible side of the assertion were those of Scheffer ([34]) and

Shnirelman ([35]), in which very low-regularity weak solutions were constructed.

More recently, the problem was revisited by De Lellis and Székelyhidi, who, in
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their seminal works [19, 21], and [22], have constructed the first examples of non-

conservative solutions with Hölder regularity. Their key observation was that flexible

solutions of the Euler equations can be constructed by exploiting similar ideas to

those introduced by Nash in his C1 isometric embedding theorem ([30]). This trig-

gered a series of works ([1, 3–5, 13, 14, 18, 28]; see also the surveys [2, 20, 23, 24]

for more complete descriptions of the developments), which culminated with the res-

olution of the flexible part of Onsager’s conjecture by Isett, who, in [29], constructed

a non-trivial three-dimensional Euler flow with (almost) Onsager-critical regularity

and compact support in time (see also [6] for a simplification of those arguments, as

well as for the extension of the result to admissible solutions). Recently, Novack and

Vicol [32], building on their work [7] with Buckmaster and Masmoudi, have given a

new proof of the flexible part of the Onsager conjecture in 3d, in which they use spa-

tial intermittency to construct solutions with almost 1/3 of a derivative in L3-based

spaces.

We remark that none of the arguments which reach the Onsager-critical exponent

from the flexibility side ([6, 29, 32]) extend to two-dimensions, while the arguments

from the rigidity side ([11, 16]) are dimension independent. Indeed, in the two di-

mensional case, the best Hölder exponent known previously was at most 1/5. This

result is proved in [31][Theorem 1.2] where the author develops a convex integration

scheme for the 3D quasi-geostrophic equations and connects it with the 2D Euler

equations. In fact, the main theorem below also implies the Onsager conjecture for

the 3D quasi-geostrophic equations, as described in [31][§§1.1.3-1.1.4]. The purpose

of this paper is to prove the following theorem, closing the rigidity/flexibility gap also

in d = 2.

Theorem 1.1 (Main Theorem) For any 0 f γ < 1/3, there exist non-trivial weak so-

lutions (u,p) to (1.1), with compact support in time, and such that u ∈ Cγ (Rt ×T
2
x).

The proof of the main theorem 1.1 is based on the aforementioned Nash itera-

tion technique. More precisely, the approach is to inductively define a sequence of

smooth approximate solutions by adding, at each stage, highly oscillatory perturba-

tions which interact through the nonlinearity to erase the error from being a solution,

while, in turn, giving rise to much smaller errors. This sequence will, then, converge

to a weak solution of (1.1). In order to define the highly oscillatory perturbations,

one first decomposes the error into simpler errors, which, in the case of the Euler

equations, correspond to a finite set of directions (c.f. lemma D.1 below). Experience

with the Nash iteration technique has shown that, in order to construct solutions with

(almost) critical regularity, it is required that the perturbations corresponding to dif-

ferent directions do not interact, and, thus, the error-erasing is achieved only through

self-interaction.

This non-interaction property is achieved in both currently known proofs of the

3d Onsager conjecture ([29] and [32]) by using as building blocks the Mikado

flows introduced by Daneri and Székelyhidi in [18]. These flows are stationary,

pressure-less solutions to the Euler equations, which are supported near straight (pe-

riodized) lines. In dimensions d g 3, given any finite set of directions, one can en-

sure that the Mikados corresponding to any two distinct directions have disjoint sup-

ports.
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In d = 2, however, due to the elementary fact that any two non-parallel lines must

intersect, Mikado flows are not a viable option to achieve the non-interaction. On

the other hand, Cheskidov and Luo have recently introduced temporally oscillatory

and intermittent perturbations in the context of Euler and Navier-Stokes equations

([10]), and have shown that these can be used to achieve the non-intersection property

([9]). The idea is that one can erase the error at some set of times by a temporal

corrector (i.e. through the time derivative in (1.1)), while the spatially oscillatory

Nash perturbation is used to erase the rest of the error. This procedure achieves, then,

the non-interaction property by exploiting the extra dimension of time.

In the proof of theorem 1.1, we also use oscillations in time to overcome the in-

teraction problem. However, in order to reach the Onsager-critical regularity, we are

led to defining the perturbation not as a temporal corrector, but as the solution to the

Newtonian linearization of the Euler equations, where the forcing is augmented with

a temporally oscillatory phase. Indeed, the perturbations defined by Cheskidov and

Luo can then be seen as a first-order approximation of those we obtain by the device

described above. A more precise description of this Newtonian iteration and the way

it interacts with the Nash-type perturbation will be given in Sect. 2.3.

We note that theorem 1.1 furnishes a third proof of the Onsager theorem, which

does not use intermittency or Mikado flows, and, which, moreover, yields non-

conservative solutions in any dimension d g 2. Indeed, it is not difficult to see that

any solution to the two-dimensional Euler equations can be trivially extended to a

d-dimensional solution, with d > 2.

We remark that the non-conservative solutions constructed in theorem 1.1 cannot

arise as vanishing viscosity limits of Navier-Stokes solutions (under some natural

assumptions) as such limits would conserve the total kinetic energy, c.f. Theorem 2

of [12]. This is in line with the marked difference one finds between two- and three-

dimensional turbulence. One reason for this is the conservation of enstrophy, which

is characteristic of dimension d = 2. Another reason is that the main energy transfer

mechanism in two-dimensions is the backwards cascade transferring energy from the

small scale forcings to the large scale. This is different from the three-dimensional

setting where the primary mechanism is the direct or forwards cascade which trans-

fers energy from large scales to small scales where it is more readily dissipated. We

refer the reader to Sect. 3.1 of the PhD thesis of Drivas [25] for a detailed discus-

sion.

The paper is structured as follows: in Sect. 2, we state the main iterative proposi-

tion 2.1, use it to prove theorem 1.1, and, finally, describe the iteration at the level of

heuristics. Sections 3 and 4 constitute the proof of proposition 2.1, the former con-

sisting of the implementation of the Newton steps, while the latter containing the con-

struction of the Nash perturbation and the estimation of the various resulting errors.

In the appendix, we collect well-known results concerning Hölder spaces, mollifica-

tion, transport equations, singular integral operators, tools of convex integration, and

the linearized Euler equations.
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2 Themain iterative proposition

The proof of theorem 1.1 will be achieved by the iterative construction of smooth

solutions (uq ,pq ,Rq) to the Euler-Reynolds system

{

∂tuq + div(uq ⊗ uq) + ∇pq = divRq ,

divuq = 0,
(2.1)

where the Reynolds stress Rq is a symmetric 2-tensor field. Here and throughout

q ∈ N will denote the stage of the iteration. The goal is to construct this sequence so

that (uq ,pq) converges in the required Hölder space, while Rq converges to zero. In

the limit, we will have, thus, recovered a weak solution to the Euler equations.

We refer the reader to appendix A for the notational conventions of the various

norms that will appear throughout the paper.

2.1 Parameters, inductive assumptions, main proposition

We begin by defining frequency parameters which will quantify the approximate

Fourier support of uq ,

λq = 2π�abq 	,

as well as amplitude parameters

δq = λ−2β
q .

The constant a > 1 will be chosen to be large, b > 1 will be close to 1, while 0 <

β < 1/3 will determine the Hölder regularity of the constructed solution.

Let L ∈ N \ {0}, M > 0 and 0 < α < 1 be parameters whose precise values are

chosen in proposition 2.1 below. We assume the following inductive estimates:

‖uq‖0 f M(1 − δ
1/2
q ), (2.2)

‖uq‖N f Mδ
1/2
q λN

q , ∀N ∈ {1,2, . . . ,L}, (2.3)

‖pq‖N f M2δqλN
q , ∀N ∈ {1,2, . . . ,L}, (2.4)

‖Rq‖N f δq+1λ
N−2α
q , ∀N ∈ {0,1, . . . ,L}, (2.5)

‖DtRq‖N f δq+1δ
1/2
q λN+1−2α

q , ∀N ∈ {0,1, . . . ,L − 1}, (2.6)

where here and throughout the paper Dt denotes the material derivative correspond-

ing to the velocity field uq :

Dt = ∂t + uq · ∇.
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Moreover, we assume the following on the temporal support of the stress:

suppt Rq ⊂ [−2+ (δ
1/2
q λq)−1,−1− (δ

1/2
q λq)−1]∪ [1+ (δ

1/2
q λq)−1,2− (δ

1/2
q λq)−1],

(2.7)

with the understanding that the constant a in the definition of λq is sufficiently large

so that

(δ
1/2
0 λ0)

−1 <
1

4
.

We are now ready to state the main iterative proposition.

Proposition 2.1 Let L g 4, 0 < β < 1/3 and

1 < b <
1 + 3β

6β
.

There exist M0 > 0 depending only on β and L, and a coefficient 0 < α0 < 1 de-

pending on β and b, such that for any M > M0 and 0 < α < α0, there exists a0 > 1

depending on β , b, α, M0, M and L, such that for any a > a0 the following holds:

given a smooth solution (uq ,pq ,Rq) of (2.1) satisfying (2.2) - (2.6), as well as the

condition (2.7), there exists a smooth solution (uq+1,pq+1,Rq+1) of (2.1) satisfying

(2.2) - (2.6) and condition (2.7) with q replaced by q + 1 throughout. Moreover, it

holds that

‖uq+1 − uq‖0 + 1

λq+1
‖uq+1 − uq‖1 f 2Mδ

1/2
q+1, (2.8)

and

suppt (uq+1 − uq) ⊂ (−2,−1) ∪ (1,2). (2.9)

Next, we show that proposition 2.1 implies the main theorem 1.1 and then discuss

its proof at the heuristic level. Subsequently, the rest of the paper will be devoted to

the proof of the iterative proposition 2.1.

2.2 Proof of themain theorem 1.1

Let L = 4, and β < 1/3 such that γ < β , where γ is the Hölder coefficient in the

statement of the theorem. Fix b so that it satisfies

1 < b <
1 + 3β

6β
,

and let M0 and α0 be the constants given by proposition 2.1. We fix also M >

max{M0,1} and α < min{α0,1/4}. Then, let a0 be given by proposition 2.1 in terms

of these fixed parameters. We do not also fix a > a0 until the end of the proof.
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We now aim to construct the base case for the inductive proposition 2.1. Let

f : R → [0,1] be a smooth function supported in [−7/4,7/4], such that f = 1 on

[−5/4,5/4]. Consider

u0(x, t) = f (t)δ
1/2
0 cos(λ0x1)e2 , p0(x, t) = 0,

R0(x, t) = f ′(t)
δ

1/2
0

λ0

(

0 sin(λ0x1)

sin(λ0x1) 0

)

,

where (x1, x2) denote the standard coordinates on T
2 and (e1, e2) are the associated

unit vectors. It can be checked directly that the tuple (u0,p0,R0) solves the Euler-

Reynolds system (2.1).

We have

‖u0‖0 f Mδ
1/2
0 f M(1 − δ

1/2
0 ),

provided a is chosen sufficiently large so that δ
1/2
0 < 1/2. The estimate (2.2) is, thus,

satisfied. Moreover, for any N g 1,

‖u0‖N f Mδ
1/2
0 λN

0 ,

and, so, (2.3) also holds. Also, for any N g 0,

‖R0‖N f 2 sup
t

|f ′(t)|
δ

1/2
0

λ0
λN

0 .

Since it holds that (2b − 1)β < 1/3, we can ensure that

2 sup
t

|f ′(t)| < δ1δ
−1/2
0 λ

1/2
0 ,

by choosing a sufficiently large. Then,

‖R0‖N f δ1λ
−1/2
0 λN

0 ,

and it follows that (2.5) holds, since we have chosen α < 1/4. For the estimate con-

cerning the material derivative, we calculate

∂tR0 + u0 · ∇R0 = f ′′(t)
δ

1/2
0

λ0

(

0 sin(λ0x1)

sin(λ0x1) 0

)

.

In order to ensure that (2.6) is satisfied, it suffices to choose a large enough so that

2 sup
t

|f ′′(t)| < δ1δ
−1/2
0 λ

1/2
0 (δ

1/2
0 λ0) = δ1λ

3/2
0 .

Finally, we note that suppt R0 ⊂ [−7/4,7/4] \ (−5/4,5/4), and, thus, the condition

(2.7) is satisfied provided

(δ
1/2
0 λ0)

−1 <
1

4
,

which, once again, can be guaranteed by the choice of a.
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We now finally fix a so that all of the wanted inequalities are satisfied, and con-

clude that the tuple (u0,p0,R0) satisfies all the requirements to be the base case for

the inductive proposition 2.1. Let, then, {(uq ,pq ,Rq)} be the sequence of solutions

to the Euler-Reynolds system (2.1) given by the proposition. Equation (2.8) implies

that

‖uq+1 − uq‖γ � ‖uq+1 − uq‖1−γ

0 ‖uq+1 − uq‖γ

1 � δ
1/2
q+1λ

γ

q+1 � λ
γ−β

q+1 .

Therefore, {uq} is a Cauchy sequence in CtC
γ
x and, thus, it converges in this space to

a velocity field u. Moreover,

‖Rq‖γ � ‖Rq‖1−γ

0 ‖Rq‖γ

1 � δq+1λ
γ
q � λ

γ−2β

q+1 ,

and, thus, Rq converges to zero in CtC
γ
x . Since pq satisfies

	pq = div div(−uq ⊗ uq + Rq),

it follows that pq −
ffl

pq converges also to some p in CtC
γ
x , and, thus, ∇pq → ∇p as

distributions. We conclude, then, that (u,p) is a weak solution to the Euler equations

with u ∈ CtC
γ
x , which, in view of (2.9), moreover satisfies suppt u ⊂ [−2,2] and

u(x, t) = δ
1/2
0 cos(λ0x1)e2,

whenever t ∈ [−1,1].
The claimed regularity in time follows either by the result of [27], or by the short

argument given in the proof of the main theorem of [6]. Theorem 1.1 is, therefore,

proven.

Remark 2.2 The constructed velocity field u is of size δ
1/2
0 (say, in L2 or C0), which

becomes vanishingly small as β → 1/3. We remark that we can obtain “large” solu-

tions by simply using the scaling of the Euler equations

u(x, t) → 
u(x,
t) , p(x, t) → 
2p(x,
t)

for any 
 � 1. The cost of the procedure is that it concentrates the temporal support.

On the other hand, by a trivial modification of the construction, one can obtain so-

lutions which are non-trivial in the interval [−T ,T ], for arbitrary T > 0, instead of

[−1,1] as achieved above.

2.3 Heuristic outline of the iteration stage

We now present the main ideas of the proof of proposition 2.1 at the level of heuris-

tics. Before we begin, however, let us caution the reader that the values given below

for the various parameters (τq , μq+1, 
, etc.), as well as the definitions of the per-

turbations and the generated errors will not exactly match those which we will use in

the proof. The reasons for these discrepancies are essentially of technical nature. The

plan is the following: we first recall the temporal localization and the simple-tensor
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decomposition of the Reynolds stress (these are now standard in the context of Nash

iterations for the Euler equations); then, we describe the temporally oscillatory pro-

files and the construction of the Newton perturbations; finally, we present the Nash

perturbation and highlight the flow error, which is present due to the addition of the

Newton perturbations and is a sharp error specific to this scheme.

2.3.1 Temporal localization and stress decomposition

By taking a partition of unity in time, we can assume that Rq has temporal support

in an interval of length τq = (δ
1/2
q λq)−1, centered at some time t0. Note that this

localization procedure preserves the inductive estimate

‖DtRq‖0 � δq+1δ
1/2
q λq = δq+1τ

−1
q .

We denote by � the backwards flow of uq , with origin at t0, which is characterized

by

{

∂t� + uq · ∇� = 0,

�
∣
∣
t=t0

= x.

In the proof, we will in fact use the flow of a spatially mollified version of uq , which

we denote by ūq . This allows us control on arbitrarily many derivatives of ūq in terms

of the mollification parameter, at the cost of having to control various other errors.

We ignore this technicality in this discussion.

The geometric decomposition lemma (see lemma D.1 in the appendix) can be

employed to define: a finite set of directions 
 ⊂ Z
2, which is fixed independently of

the parameters of the construction; and, for each ξ ∈ 
, amplitude functions aξ such

that

∑

ξ∈


a2
ξ (∇�)−1ξ ⊗ ξ(∇�)−T

︸ ︷︷ ︸

Aξ

= δq+1

(

Id− Rq

δq+1

)

. (2.10)

In fact, in the proof, Rq will be replaced by a mollified version of itself, for the same

reasons as those given above. The idea of this decomposition will become apparent

once we describe the (approximate) cancellation with the low modes of the quadratic

self-interaction of the Nash perturbation.

2.3.2 Temporally oscillatory profiles and the Newton steps

Consider a set of 1-periodic functions of time {gξ }ξ∈
, which have pair-wise disjoint

temporal supports and unit L2(0,1) norms. These profiles are used to quantify the

temporal oscillations, as well as to achieve disjoint temporal supports for the Nash

perturbations corresponding to different directions ξ, η ∈ 
. We define

fξ = 1 − g2
ξ ,
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and the primitives

f
[1]
ξ (t) =

ˆ t

0

fξ (s)ds.

Note that since the functions fξ have zero mean on their period, the primitives f
[1]
ξ

are also periodic with the same period and are uniformly bounded on R. Let also

μq+1 � τ−1
q be the temporal frequency parameter, which we do not fix for the mo-

ment. We can, then, define the first Newton perturbation w
(t)
q+1,1 to be the solution to

the Newtonian linearization of the Euler equations around uq , where the forcing is

augmented by the oscillatory phases fξ (μq+1·):
⎧

⎪
⎪
⎪
⎪
«

⎪
⎪
⎪
⎪
¬

∂tw
(t)
q+1,1 + uq · ∇w

(t)
q+1,1 + w

(t)
q+1,1 · ∇uq + ∇p

(t)
q+1,1

=
∑

ξ∈
 fξ (μq+1t)PdivAξ ,

divw
(t)
q+1,1 = 0,

w
(t)
q+1,1

∣
∣
t=t0

= 1
μq+1

∑

ξ∈
 f
[1]
ξ (μq+1t0)PdivAξ

∣
∣
t=t0

.

(2.11)

In the above, P is the Leray projection operator. We have, then, the following cancel-

lation:

∂tw
(t)
q+1,1 + uq · ∇w

(t)
q+1,1 + w

(t)
q+1,1 · ∇uq + ∇p

(t)
q+1,1 + divRq

=
∑

ξ∈


PdivAξ + divRq

−
∑

ξ∈


g2
ξPdivAξ

= −div
∑

ξ∈


g2
ξAξ + ∇q, (2.12)

for some scalar function q .

Moreover, we remark that the first equation in (2.11) can be seen as a transport

equation which is perturbed by the lower-order operator w
(t)
q+1,1 · ∇uq +∇p

(t)
q+1,1. As

such, one can expect that

w
(t)
q+1,1(X, t) ≈ 1

μq+1

∑

ξ∈


f
[1]
ξ (μq+1t0)PdivAξ

∣
∣
t=t0

+
ˆ t

t0

∑

ξ∈


fξ (μq+1s)PdivAξ (X(·, s), s)ds

= 1

μq+1

∑

ξ∈


f
[1]
ξ (μq+1t)PdivAξ (X, t)

−
∑

ξ∈


ˆ t

t0

f
[1]
ξ (μq+1s)

DtPdivAξ

μq+1
(X(·, s), s)ds,
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where X denotes the Lagrangian flow of uq starting at t = t0. We do not give a

precise meaning to the symbol ≈ used above, but one can expect that the two sides

of the equation satisfy the same estimates. Since the cost of the material derivative

applied to PdivAξ is expected to be τ−1
q � μq+1, we conclude that the last term is

negligible, and, thus,

w
(t)
q+1,1 ≈ 1

μq+1

∑

ξ∈


f
[1]
ξ PdivAξ . (2.13)

The expression on the right-hand-side is a variant of the perturbations introduced by

Cheskidov and Luo ([9, 10]). It is in this sense that the Cheskidov-Luo perturbation

can be seen as a first-order approximation of the (first) Newton perturbation used in

this paper.

We can infer that w
(t)
q+1,1 satisfies the estimate

‖w(t)
q+1,1‖0 �

δq+1λq

μq+1
.

The associated error, which will be part of the new stress Rq+1 is, then, the nonlinear

part of the Euler operator:

‖RNewton
q+1 ‖0 = ‖w(t)

q+1,1 ⊗ w
(t)
q+1,1‖0 �

(
δq+1λq

μq+1

)2

. (2.14)

We have, therefore, achieved the construction of a perturbation which satisfies the

same estimates as that of Cheskidov and Luo, but for which all of the terms involved

in the application of the linearized Euler operator contribute to the cancellation of

Rq , not only the time derivative ∂tw
(t)
q+1,1. The cost of the procedure, however, con-

sists in the fact that, unlike the right-hand-side of (2.13), w
(t)
q+1,1 itself cannot be

globally extended in time: specifically, it is required that we glue together the tempo-

rally localized perturbations defined in (2.11). For this purpose, we let χ̃ be a smooth

cut-off function such that χ̃ = 1 on ∪ξ suppAξ , while |∂t χ̃ | � τ−1
q . The full pertur-

bation will, then, be the superposition of perturbations χ̃w
(t)
q+1,1 corresponding to the

temporal localizations of Rq . Therefore, an error related to this gluing procedure is

incurred:

R
glue
q = div−1 ∂t χ̃w

(t)
q+1,1.

This error is reminiscent of the gluing error introduced by Isett in [29], and, indeed,

the techniques developed to deal with that error also apply in this context (specifically,

in the proof we will use arguments similar to those employed in [6]). From (2.13),

we have

div−1 w
(t)
q+1,1 ≈ 1

μq+1

∑

ξ∈


f
[1]
ξ div−1

PdivAξ ,
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and we note that the operator div−1
Pdiv is of zero order. Therefore, we expect the

estimate

‖Rglue
q ‖0 �

1

μq+1
|∂t χ̃ |‖Aξ‖0 �

δq+1τ
−1
q

μq+1
.

Moreover,

‖Dtw
(t)
q+1,1‖0,supp ∂t χ̃ � ‖w(t)

q+1,1 · ∇uq + ∇p
(t)
q+1‖0 +

∥
∥
∥
∥

∑

ξ

fξPdivAξ

∥
∥
∥
∥

0,supp ∂t χ̃

︸ ︷︷ ︸

=0

� ‖w(t)
q+1,1‖0τ

−1
q ,

where the second term above vanishes since supp∂t χ̃ ∩ suppAξ = ∅. In other words,

a material derivative of the perturbation costs τ−1
q on supp ∂t χ̃k . When the material

derivative falls on ∂t χ̃ , a loss of τ−1
q is, likewise, incurred. Therefore, we expect

‖DtR
glue
q ‖0 �

δq+1τ
−1
q

μq+1
τ−1
q .

These estimates for R
glue
q will not be good enough to place it into Rq+1. However,

compared to Rq , R
glue
q has improved estimates by a factor of τ−1

q /μq+1. If, then,

τ−1
q

μq+1
=
(

λq

λq+1

)ε

,

for some 0 < ε � 1, the procedure can be repeated by replacing Rq with R
glue
q

throughout the construction and by taking a new family of profiles {gξ,1}, which

have supports disjoint from each other and from the supports of the previously used

profiles. This will cancel the gluing error R
glue
q up to a remainder as in (2.12), and

will, in turn, give rise to a new gluing error, R
glue, 2
q , that satisfies estimates which are

further improved. This process can be continued inductively until, after finitely many

iterations, the remaining gluing error is sufficiently small to be placed into Rq+1.

These are the iterative Newton steps which we describe rigorously in Sect. 3. After


 ≈ ε−1 steps, the final gluing error will satisfy

‖Rglue, 

q ‖0 � δq+1

(
τ−1
q

μq+1

)


� δq+1
λq

λq+1
,

which is, indeed, (more than) small enough to be compatible with C
1/3−
x regularity.

Since, as we will see upon fixing μq+1, ε will only depend on β , the number of

required Newton steps is finite and fixed throughout the stages of the iteration.



702 V. Giri, R.-O. Radu

2.3.3 The Nash step and the flow error

We have, thus, constructed a new smooth solution to the Euler-Reynolds system (2.1)

with velocity field

uq,
 = uq + w
(t)
q+1 = uq +



∑

n=1

w
(t)
q+1,n.

Moreover, the error Rq has been cancelled out with the exception of a remainder

Rrem
q = −

∑

ξ∈


g2
ξAξ .

Actually, as already noted, each Newton step will have left behind its own remainder

error, but the one above is that which satisfies the worst estimates, and, so, we choose

to ignore the other terms in this heuristic discussion.

Let �̃ be the backwards flow of uq,
 with origin at t = t0. We can define, then, the

(principal part of) the Nash perturbation by

w
(p)
q+1 =

∑

ξ∈


gξ āξ (∇�̃)−1
Wξ (λq+1�̃),

where āξ are related to �̃ in similar fashion as aξ are related to �, and Wξ are fixed

shear flows in the directions ξ ∈ 
 (see Sect. 4.2 for the precise choice used in the

proof), which satisfy

 

Wξ ⊗Wξ = ξ ⊗ ξ.

In reality, the discrepancy between āξ and aξ will also be due to a mollification along

the flow of the decomposed stresses (see Sect. 4.1), but we ignore this technicality

here. We use the flow �̃ instead of � in the definition above in order to make sure

that there is no significant interaction between the Newton perturbation w
(t)
q+1 and

w
(p)
q+1. Also, as is the case in all Nash iteration schemes starting with [21, 22], the

full Nash perturbation will include a divergence-corrector term, which is designed

to ensure the validity of the incompressibility condition. In view of the fact that

(∇�̃)−1
Wξ (λq+1�̃) is divergence-free, this will be a much smaller correction, and

so we ignore it in the heuristic discussion.

The main idea of the Nash perturbation is the following (approximate) quadratic

cancellation:

Rrem
q + w

(p)
q+1 ⊗ w

(p)
q+1

= −
∑

ξ

g2
ξAξ +

∑

ξ

g2
ξ ā

2
ξ (∇�̃)−1

Wξ ⊗Wξ (λq+1�̃)(∇�̃)−T

= −
∑

ξ

g2
ξAξ +

∑

ξ

g2
ξ ā2

ξ (∇�̃)−1ξ ⊗ ξ(∇�̃)−T

︸ ︷︷ ︸

Āξ
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+
∑

ξ

g2
ξ ā

2
ξ (∇�̃)−1(P�=0Wξ ⊗Wξ )(λq+1�̃)(∇�̃)−T

=
∑

ξ

g2
ξ (Āξ − Aξ )

︸ ︷︷ ︸

Rflow
q+1

+
∑

ξ

g2
ξ ā

2
ξ (∇�̃)−1(P�=0Wξ ⊗Wξ )(λq+1�̃)(∇�̃)−T ,

where P�=0 denotes the projection onto non-zero Fourier modes, while Rflow
q+1 is the

flow error, which is due to the disagreement between � and �̃. In the above, we

have used the fact that gξ have pair-wise disjoint supports in the vanishing of the

off-diagonal terms of w
(p)
q+1 ⊗ w

(p)
q+1. Therefore, the low frequency self-interactions

of the Nash perturbations cancel the remainder Rrem
q modulo the flow error Rflow

q+1.

The errors generated by the Nash perturbation are, then, those obtained from the

application of the linearized Euler operator around uq,
 , and the high frequency in-

teraction above. It can be seen that the transport error

R
transport
q+1 = div−1

(

(∂t + uq,
 · ∇)w
(p)
q+1

)

will include a term which is characteristic to the use of temporal oscillations:

∥
∥
∥
∥

∑

ξ

∂tgξ āξ div−1
(

(∇�̃)−1
Wξ (λq+1�̃)

)
∥
∥
∥
∥

0

�
μq+1δ

1/2
q+1

λq+1
, (2.15)

where in the estimate above we use the heuristics that āξ ≈ aξ ≈ R
1/2
q and that an

inverse-divergence applied to a λq+1-oscillatory function gains a factor of λ−1
q+1.

By optimizing between (2.15) and the Newton error (2.14), we are led to fixing

μq+1 = δ
1/2
q+1λ

2/3
q λ

1/3
q+1.

Note, then, that

τ−1
q

μq+1
=
(

λq

λq+1

)1/3−β

,

and, thus, the Newton iteration can be carried out with ε = 1/3 − β > 0 and 
 ≈
(1/3 − β)−1. Moreover, the two errors are estimated as

‖RNewton
q+1 ‖0 + ‖Rtransport

q+1 ‖0 � δq+1

(
λq

λq+1

)2/3

.

In view of the condition ‖Rq+1‖0 f δq+2, which is necessary for the inductive prop-

agation of the estimates of proposition 2.1, this implies

δq+1

(
λq

λq+1

)2/3

f δq+2 =⇒ β f 1

3b
,

which is compatible with C
1/3−
x regularity.
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With the exception of the flow error, all of the other terms appear in other Nash

iteration schemes, and their compatibility with C
1/3−
x regularity is well-known. It

remains, then, to present the heuristic estimation for Rflow
q+1. Since the discrepancy

between Aξ and Āξ is essentially due to the incongruity between � and �̃, we can

expect a bound of the form

‖Rflow
q+1‖0 � δq+1‖∇� − ∇�̃‖0.

In view of the fact that

‖w(t)
q+1‖0 � δ

1/2
q+1

(
λq

λq+1

)1/3

,

we can regard uq,
 as a slightly perturbed version uq , so we can expect also a stability

result related to the generated flows �̃ and �. Indeed, it holds that

{

∂t (� − �̃) + uq · ∇(� − �̃) = w
(t)
q+1 · ∇�̃,

(� − �̃)
∣
∣
t=t0

= 0.

Standard estimates for transport equations imply that on time-scales of size τq ,

‖∇� − ∇�̃‖0 � τqδ
1/2
q+1

(
λq

λq+1

)1/3

λq ,

which yields the following estimate for the flow error:

‖Rflow
q+1‖0 � δq+1

(
δq+1

δq

)1/2( λq

λq+1

)1/3

= δq+1

(
λq

λq+1

)1/3+β

.

Then, arguing as before, we obtain

δq+1

(
λq

λq+1

)1/3+β

f δq+2 =⇒ β f 1

3(2b − 1)
,

which is, once again, just barely compatible with C
1/3−
x regularity. We conclude this

section with a remark: it turns out that the flow error is always larger than the Newton

error. As such, one can alternatively define μq+1 by balancing the transport error with

the flow error, and not with the Newton error as described above. Such a definition

will not bring about any significant changes, as all of the estimates will differ by

factors of (λq/λq+1)
1/3−β . On the other hand, it can be argued that the Newton error

is conceptually the fundamental object, and not the flow error. Indeed, RNewton
q+1 is

the nonlinear correction to a linear approximation scheme, while Rflow
q+1 is simply due

to the particular stress decomposition implemented in the Nash iteration. For this

reasons, we opt for defining μq+1 as above.

Remark 2.3 In [6], the authors modify the iteration used in [29] and show that any

given smooth energy profile e : [0,1] → R>0 can be achieved by three-dimensional
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flexible Euler flows: i.e. the solution can be designed to satisfy
´

T3 |u(x, t)|2 dx =
e(t). It is an interesting question whether the scheme in the present paper admits

such a modification. In order to point out the difficulties, let us first briefly recall the

ideas used in [6]. The energy increment due to the addition of the Nash perturbation

is given (approximately) by

δeq+1(t) ≈ 2

ˆ

T3
w

(p)
q+1 · uq +

ˆ

T3
|w(p)

q+1|
2.

The Nash perturbation has the form

w
(p)
q+1 = η(x, t)

∑

ξ∈


aξ (∇�)−1
Wξ (λq+1�),

where η is a “squiggling stripes” cut-off function (see [6] for details), aξ are low

frequency amplitudes, and Wξ are Mikado (pipe) flows. Stationary phase arguments

show that the high-frequency terms in the integrals above are lower-order, and, thus,

one has

δeq+1(t) ≈
ˆ

T3
trace

(

η2(x, t)
∑

ξ∈


a2
ξ (∇�)−1〈Wξ ⊗Wξ 〉(∇�)−T

)

,

where 〈Wξ ⊗ Wξ 〉 = ξ ⊗ ξ denotes the mean. One can, therefore, control the en-

ergy increment by controlling the trace in a decomposition similar to (2.10). In other

words, the traceless part of the decomposition is used to eliminate the errors from

being a solution, while the trace is employed to achieve an energy increment. There

are two main points: first, Nash perturbations corresponding to each direction have to

be present at each time-slice; and second, there is a point-wise in space cancellation

of the traceless part, which hinges on the fact that there is no support separation in

the expression above.

In contrast, the energy increment that could be achieved with the construction of

the present paper is given by

δeq+1(t) ≈
ˆ

T2
trace

(
∑

ξ∈


g2
ξ (μq+1t)a

2
ξ (∇�)−1ξ ⊗ ξ(∇�)−T

)

.

As such, modifications are needed to satisfy either of the two main points described

above. Indeed, regarding the first point, Nash perturbations are only present on the

supports of the oscillatory profiles gξ , and not at every time-slice. It seems likely that

this can be rectified by replacing the purely time-dependent gξ (μq+1t) with “squig-

gling stripes” variants gξ (x,μq+1t). The second point seems to raise more serious

issues: the fundamental reason for which the scheme of the present paper works is

that the supports corresponding to the different directions are disjoint – this obstructs

the point-wise cancellation of the traceless part (note that the cut-off η(x, t) is the

same for all directions ξ ∈ 
). It seems that substantial additions are needed to over-

come this obstruction.

The considerations above show that constructing solutions satisfying this notion

of flexibility raises important technical issues, and, as such, lies beyond the scope of

this paper.
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3 The Newton steps

3.1 Preliminary: spatial mollification

As in all Nash iteration schemes for the Euler equations starting with [21] and [22],

we begin the construction by mollifying the velocity field and the Reynolds stress.

The aim of this procedure is to yield control of the higher order spatial derivatives

of the solution to the Euler-Reynolds system and, thus, bypass the loss of derivative

problem.

Let ζ be a symmetric spatial mollifier (note, in particular, that ζ has vanishing first

moments), and fix the spatial mollification scale

�q = (λqλq+1)
−1/2.

We denote

ūq = uq ∗ ζ�q ,

Rq,0 = Rq ∗ ζ�q .

and record the relevant estimates in the following lemma. Here and throughout the

paper we use the notation

D̄t = ∂t + ūq · ∇

for the material derivative corresponding to ūq .

Lemma 3.1 Assume uq and Rq satisfy (2.2)-(2.6). Then, the following estimates hold:

‖ūq‖N � δ
1/2
q λN

q , ∀N ∈ {1,2, . . . ,L}, (3.1)

‖Rq,0‖N � δq+1λ
N−2α
q , ∀N ∈ {0,1, . . . ,L}, (3.2)

‖D̄tRq,0‖N � δq+1δ
1/2
q λN+1−2α

q , ∀N ∈ {0,1, . . . ,L − 1} (3.3)

‖ūq‖N+L � δ
1/2
q λL

q �−N
q , ∀N g 0, (3.4)

‖Rq,0‖N+L � δq+1λ
L−2α
q �−N

q , ∀N g 0, (3.5)

‖D̄tRq,0‖N+L−1 � δq+1δ
1/2
q λL−2α

q �−N
q ,∀N g 0, (3.6)

where the implicit constants depend on M and N .1

1Here, and throughout, by dependence on N , we mean dependence on the norm being estimated. Strictly

speaking, the constant in the estimate of ‖ · ‖N+L will depend on N + L.
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Proof In light of the inductive assumptions, standard mollification estimates imme-

diately imply all but inequalities (3.3) and (3.6). Note that

‖(∂t + ūq ·∇)Rq,0‖N � ‖[(∂t +uq ·∇)Rq ]∗ζ�q ‖N +‖ūq ·∇Rq,0 −(uq ·∇Rq)∗ζ�q ‖N .

The first term clearly obeys the wanted estimates by the inductive assumptions. For

the second, the Constantin-E-Titi commutator estimate of proposition A.3 implies,

for N f L − 2,

‖ūq · ∇Rq,0 − [uq · ∇Rq ] ∗ ζ�q ‖N � �2
q

(

‖uq‖1‖∇Rq‖N+1 + ‖uq‖N+1‖∇Rq‖1

)

� δq+1δ
1/2
q λN+3−2α

q �2
q

� δq+1δ
1/2
q λN+1−2α

q ,

while for N g L − 1,

‖ūq · ∇Rq,0 − [uq · ∇Rq ] ∗ ζ�q ‖N � �L−N
q

(

‖uq‖1‖∇Rq‖L−1 + ‖uq‖L−1‖∇Rq‖1

)

� δq+1δ
1/2
q λL+1−2α

q �L−N
q

� δq+1δ
1/2
q λL−2α

q �L−1−N
q ,

and the conclusion follows. �

3.2 Transport estimates

We collect now standard estimates on the Lagrangian and backwards flows of ūq . For

t ∈ R, the backwards flow �t : T2 ×R → T
2 starting at t is defined by

{

∂s�t (x, s) + ūq(x, s) · ∇�t (x, s) = 0

�t

∣
∣
s=t

(x) = x,
(3.7)

and the Lagrangian flow Xt is defined by

{
d
ds

Xt (α, s) = ūq(Xt (α, s), s)

Xt (α, t) = α.
(3.8)

Lemma 3.2 Let t ∈ R and τ f ‖ūq‖−1
1 . Let �t be defined by (3.7), and let Xt denote

the corresponding Lagrangian flow (3.8). Then, for any |s − t | < τ ,

‖(∇�t )
−1(·, s)‖N + ‖∇�t (·, s)‖N � λN

q , ∀N ∈ {0,1, . . . ,L − 1}, (3.9)

‖D̄t (∇�t )
−1(·, s)‖N + ‖D̄t∇�t (·, s)‖N � δ

1/2
q λN+1

q , ∀N ∈ {0,1, . . . ,L − 1},
(3.10)

‖DXt (·, s)‖N � λN
q , ∀N ∈ {0,1, . . . ,L − 1}, (3.11)
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‖(∇�t )
−1(·, s)‖N+L−1 + ‖∇�t (·, s)‖N+L−1 � λL−1

q �−N
q , ∀N g 0, (3.12)

‖D̄t (∇�t )
−1(·, s)‖N+L−1 +‖D̄t∇�t (·, s)‖N+L−1 � δ

1/2
q λL

q �−N
q , ∀N g 0, (3.13)

‖DXt (·, s)‖N+L−1 � λL−1
q �−N

q , ∀N g 0, (3.14)

where the implicit constants depend on M and N .

Proof Estimates on ∇�t . The spatial derivative estimates on ∇�t follow directly

from proposition B.1 and lemma 3.1. For the material derivatives, we note that

D̄t∇�t = −∇ūq∇�t , which implies

‖D̄t∇�t‖N � ‖ūq‖N+1‖∇�t‖0 + ‖ūq‖1‖∇�t‖N ,

and the result follows from lemma 3.1 and the spatial derivative estimates of ∇�t .

Estimates on DXt . By proposition A.1, and the definition of Xt , we have

∥
∥
∥
∥

d

dt
DNXt

∥
∥
∥
∥

0

� ‖Dūq‖0‖DXt‖N−1 + ‖ūq‖N‖DXt‖N
0 .

The case N = 1 now follows by Grönwall’s inequality, which implies, for N > 1,

∥
∥
∥
∥

d

dt
DXt

∥
∥
∥
∥

N−1

� ‖Dūq‖0‖DXt‖N−1 + ‖ūq‖N .

Applying Grönwall again, we obtain (3.11) and (3.14) from the results of lemma 3.1.

Estimates on (∇�t )
−1. Finally, we note that

(∇�t )
−1(x, s) = DXt (�t (x, s), s).

Therefore,

‖(∇�t )
−1‖0 � 1,

and, for N g 1, proposition A.1 implies

‖DN (∇�t )
−1‖0 � ‖DXt‖1‖∇�t‖N−1 + ‖DXt‖N‖∇�t‖N

0 ,

from which (3.9) and (3.12) follow.

Finally,

D̄t (∇�t )
−1(x, s) =

( d

ds
DXt

)

(�t (x, s), s)

= Dūq(x, s)DXt (�t (x, s), s)

= Dūq(x, s)(∇�t )
−1(x, s).

Therefore, (3.10) and (3.13) follow from (3.9) and (3.12) together with lemma 3.1.

�
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3.3 Partition of unity, cut-offs, temporally oscillatory profiles

We now define the various time-dependent functions which will be used in the con-

struction of the iterative Newton perturbations. For this purpose, we introduce the

temporal parameter

τq = 1

δ
1/2
q λqλα

q+1

.

We remark here that τq is chosen so as to satisfy

‖ūq‖1+ατq �

(
λq

λq+1

)α

� 1.

Moreover, since

‖ūq‖1τq f Cλ−α
q+1,

with C > 0 depending only on M , lemma 3.2 holds with τ replaced with τq provided

a0 is chosen sufficiently large in terms of M and α so that

Cλ−α
q+1 f 1.

Let tk = kτq , for k ∈ Z. We define a partition of unity in time by using cut-off

functions {χk}k∈Z satisfying:

• The squared cut-offs form a partition of unity:

∑

k∈Z
χ2

k (t) = 1;

• suppχk ⊂ (tk − 2
3
τq , tk + 2

3
τq). In particular,

suppχk−1 ∩ suppχk+1 = ∅,∀k ∈ Z;

• For any N g 0 and k ∈ Z,

|∂N
t χk|� τ−N

q ,

where the implicit constant depends only on N .

These will be used to decompose the iteratively-obtained errors into temporally local-

ized pieces which will act as forcing for the solutions to the Newtonian linearization

of the Euler equations around the background flow ūq . Since estimates for the lin-

earized Euler equations degenerate in time, we will glue together these temporally

localized perturbations by another set of cut-off functions {χ̃k}k∈Z, which satisfy:

• supp χ̃k ⊂ (tk − τq , tk + τq) and χ̃k = 1 on (tk − 2
3
τq , tk + 2

3
τq). Note in particular

that

χkχ̃k = χk, ∀k ∈ Z.
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• For any N g 0 and k ∈ Z,

|∂N
t χ̃k|� τ−N

q ,

where the implicit constant depends only on N .

Finally, we define the time-periodic functions which will serve as building blocks

for the temporally oscillatory profiles. The required number of profiles with pair-

wise disjoint support is determined by the number of implemented Newton steps.

Specifically, we choose


 =
⌈

1

1/3 − β

⌉

, (3.15)

and note that it depends only on β and is, thus, independent of the iteration stage.

Lemma 3.3 Let 
 ⊂ Z
2 be the set given by lemma D.1, and 
 ∈ N. For any

ξ ∈ 
, there exist 2
 smooth 1-periodic functions gξ,e,n, gξ,o,n : R → R with n ∈
{1,2, . . . ,
} such that

ˆ 1

0

g2
ξ,p,n = 1, ∀ξ ∈ 
, p ∈ {e, o}, and n ∈ {1,2, . . . ,
};

and

suppgξ,p,n ∩ suppgη,q,m = ∅,

whenever (ξ,p,n) �= (η, q,m) ∈ 
 × {e, o} × {1,2, . . . ,
}.

Proof Let A = |
|
, where |
| denotes the cardinality of 
. Choose g ∈ C∞
c ((−ε,

ε)), with 0 < 2ε < (4A)−1, and satisfying

ˆ

R

g2 = 1.

Then, the functions defined by

gk(t) = g
(

t − k/(4A)
)

,

for k ∈ {−A, . . . ,A}, have disjoint supports which are all included in the set (−1/2,

1/2). The lemma is proven once we choose any injective assignment from the set of

tuples

(ξ,p,n) ∈ 
 × {e, o} × {1,2, . . . ,
}

to the set of 1-periodic extensions of the functions gk . �



The Onsager conjecture in 2D: a Newton-Nash iteration 711

3.4 The Euler-Reynolds system after n Newton steps

Let n ∈ {0,1, . . . ,
 −1}. The system we will have obtained after n perturbations will

have the form
{

∂tuq,n + div(uq,n ⊗ uq,n) + ∇pq,n = divRq,n + divSq,n + divPq+1,n,

divuq,n = 0,
(3.16)

where

• uq,n is the velocity which will be defined starting from uq,0 = uq by adding n

perturbations;

• pq,n is the pressure, which will be inductively defined starting from pq,0 = pq ;

• For n g 1, Rq,n is the gluing error of the nth perturbation, while Rq,0 is the already

defined mollified stress;

• Sq,n is the error which will be erased by the non-interacting highly-oscillatory

Nash perturbations. It will be inductively defined starting from Sq,0 = 0;

• Pq+1,n is the error which is small enough to be placed into Rq+1. It will, likewise,

be inductively defined starting from Pq+1,0 = Rq − Rq,0.

We remark that for n = 0, (3.16) is just the Euler-Reynolds system (2.1).

3.5 Construction of the Newton perturbations

In this section, we construct the Newton perturbation w
(t)
q+1,n+1 for the system (3.16),

which will in turn determine all of the other quantities of the system at step n + 1.

We begin by decomposing the stress Rq,n using the geometric lemma D.1 adapted

to the coordinates imposed by the coarse grain flow of ūq . For this purpose, let �k be

the backwards flow characterized by

{

∂t�k + ūq · ∇�k = 0

�k

∣
∣
t=tk

= x,

and define, for n ∈ {0,1, . . . ,
 − 1}, k ∈ Z and ξ ∈ 
,

aξ,k,n = δ
1/2
q+1,nχkγξ

(

∇�k∇�T
k − ∇�k

Rq,n

δq+1,n

∇�T
k

)

, (3.17)

where γξ are given by lemma D.1, and the amplitude parameters δq+1,n are defined

by

δq+1,n = δq+1

(
λq

λq+1

)n(1/3−β)

. (3.18)

We now briefly argue that aξ,k,n is well-defined. Proposition 3.4 below will guarantee

that

‖Rq,n‖0 f δq+1,nλ
−α
q ,
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so, using lemma 3.2, we see that

‖∇�k

Rq,n

δq+1,n

∇�T
k ‖0 � λ−α

q

on suppχk . Note also that proposition B.1 immediately implies

‖ Id−∇�k‖0 � λ−α
q ,

and, thus,

‖ Id−∇�k∇�T
k + ∇�k

Rq,n

δq+1,n

∇�T
k ‖ � λ−α

q .

Therefore, for any α > 0, we can choose a0 sufficiently large so that

∇�k∇�T
k − ∇�k

Rq,n

δq+1,n

∇�T
k ∈ B1/2(Id),

and, thus, aξ,k,n is indeed well-defined.

Let us also denote

Zq,n :=
{

k ∈ Z | kτq ∈ Nτq (suppt Rq,n)
}

,

where Nτ (A) stands for the neighbourhood of size τ of the set A. Then, for any

t ∈ suppt Rq,n, it holds that

∑

k∈Zq,n

χ2
k (t) = 1.

It follows, then, in view of lemma D.1, that

div

⎡

£

∑

k∈Zq,n

∑

ξ∈


a2
ξ,k,n(∇�k)

−1ξ ⊗ ξ(∇�k)
−T

¤

⎦= div

⎛

¿

∑

k∈Zq,n

χ2
k δq+1,n Id−Rq,n

À

⎠

= −divRq,n. (3.19)

We define now the parameter which quantifies the frequency of temporal oscilla-

tions by

μq+1 = δ
1/2
q+1λ

2/3
q λ

1/3
q+1λ

4α
q+1,

and note that indeed μq+1 > τ−1
q :

μq+1τq =
(

λq+1

λq

)1/3−β

λ3α
q+1 > 1. (3.20)

To simplify notation, we denote

Aξ,k,n = a2
ξ,k,n(∇�k)

−1ξ ⊗ ξ(∇�k)
−T .
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We let wk,n+1 to be the solution to the Newtonian linearization of the Euler equa-

tions with temporally oscillatory forcing. The well-posedness theory for smooth so-

lutions of these equations is probably classical. Nevertheless, we give a self-contained

account in appendix E. With P standing for the Leray projection operator onto

divergence-free vector fields, we define wk,n+1 as the unique, mean-zero, divergence-

free solution to

⎧

⎪
⎪
⎪
⎪
«

⎪
⎪
⎪
⎪
¬

∂twk,n+1 + ūq · ∇wk,n+1 + wk,n+1 · ∇ūq + ∇pk,n+1

=
∑

ξ∈
 fξ,k,n+1(μq+1t)PdivAξ,k,n(x, t),

divwk,n+1 = 0,

wk,n+1

∣
∣
t=tk

(x) = 1
μq+1

∑

ξ∈
 f
[1]
ξ,k,n+1(μq+1tk)PdivAξ,k,n(x, tk),

(3.21)

where the function fξ,k,n+1 :R → R is defined by

fξ,k,n+1 := 1 − g2
ξ,k,n+1,

and

gξ,k,n+1 =
{

gξ,e,n+1 if k is even,

gξ,o,n+1 if k is odd.
(3.22)

The function f
[1]
ξ,k,n+1 denotes the primitive of fξ,k,n+1:

f
[1]
ξ,k,n+1(t) =

ˆ t

0

fξ,k,n+1(s)ds.

Note that, in view of the fact that gξ,e,n+1 and gξ,o,n+1 have unit L2 norm, f
[1]
ξ,k,n+1 is

indeed a well-defined 1-periodic function. Moreover, we emphasize that the functions

gξ,k,n+1, fξ,k,n+1 and f
[1]
ξ,k,n+1 are independent of q , and that the total number of such

functions is finite and depends only on 
 and the cardinality of 
.

We can now define the (n + 1)th Newton perturbation by the superposition of

temporal localizations of the velocity fields wk,n+1:

w
(t)
q+1,n+1(x, t) =

∑

k∈Zq,n

χ̃k(t)wk,n+1(x, t) .

It will also be useful to define:

p
(t)
q+1,n+1(x, t) =

∑

k∈Zq,n

χ̃k(t)pk,n+1(x, t) .

3.6 The errors after the (n + 1)th step and the inductive proposition

We now plug in the new velocity field uq,n+1 = uq,n +w
(t)
q+1,n+1 into equation (3.16)

and compute the new error terms Rq,n+1, Sq,n+1, and Pq+1,n+1. With this aim, we



714 V. Giri, R.-O. Radu

note that w
(t)
q+1,n+1 satisfies

∂tw
(t)
q+1,n+1 + ūq · ∇w

(t)
q+1,n+1 + w

(t)
q+1,n+1 · ∇ūq + ∇p

(t)
q+1,n+1

=
∑

k∈Zq,n

∑

ξ∈


χ̃k(t)fξ,k,n+1(μq+1t)PdivAξ,k,n

+
∑

k∈Zq,n

∂t χ̃kwk,n+1.

Since suppAξ,k,n ⊂ suppaξ,k,n ⊂ suppχk × T
2, it holds that χ̃kAξ,k,n = Aξ,k,n for

all k ∈ Z. Therefore, using equation (3.19) and the definition of fξ,k,n+1, we obtain

∑

k∈Zq,n

∑

ξ∈


χ̃k(t)fξ,k,n+1(μq+1t)PdivAξ,k,n

=
∑

k∈Zq,n

∑

ξ∈


PdivAξ,k,n −
∑

k∈Zq,n

∑

ξ∈


g2
ξ,k,n+1PdivAξ,k,n

= −PdivRq,n −
∑

k∈Zq,n

∑

ξ∈


g2
ξ,k,n+1PdivAξ,k,n.

It follows, then, that the system (3.16) after the (n + 1)th step is satisfied with

uq,n+1 = uq,n + w
(t)
q+1,n+1 = uq +

n+1
∑

m=1

w
(t)
q+1,m, (3.23)

pq,n+1 = pq,n + p
(t)
q+1,n+1 − 	−1 div

[

divRq,n +
∑

k∈Zq,n

∑

ξ∈


g2
ξ,k,n+1 divAξ,k,n

]

− 〈w(t)
q+1,n+1,

n
∑

m=1

w
(t)
q+1,m〉 − 1

2
|w(t)

q+1,n+1|
2

− 〈w(t)
q+1,n+1, uq − ūq〉, (3.24)

Rq,n+1 = R
∑

k∈Zq,n

∂t χ̃kwk,n+1, (3.25)

Sq,n+1 = Sq,n −
∑

k∈Zq,n

∑

ξ∈


g2
ξ,k,n+1Aξ,k,n, (3.26)

Pq+1,n+1 = Pq+1,n + w
(t)
q+1,n+1⊗̊w

(t)
q+1,n+1

+
n
∑

m=1

(

w
(t)
q+1,n+1⊗̊w

(t)
q+1,m + w

(t)
q+1,m⊗̊w

(t)
q+1,n+1

)
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+(uq − ūq)⊗̊w
(t)
q+1,n+1 + w

(t)
q+1,n+1⊗̊(uq − ūq). (3.27)

In expression (3.24), 〈 , 〉 denotes the standard inner product on R
2, while in (3.27), ⊗̊

denotes the trace-less part of the tensor product. The operator R above is the inverse-

divergence operator described in appendix D. We note that the new stress Rq,n+1 as

defined in (3.25) is well-defined as each wk,n+1 has zero mean. We are now ready to

state the main inductive proposition concerning the Newton perturbations.

Proposition 3.4 Assume Rq,n satisfies

‖Rq,n‖N f δq+1,nλ
N−α
q , ∀N ∈ {0,1, . . . ,L − 1}, (3.28)

‖D̄tRq,n‖N f δq+1,nτ
−1
q λN−α

q , ∀N ∈ {0,1, . . . ,L − 1}, (3.29)

‖Rq,n‖N+L−1 � δq+1,nλ
L−1−α
q �−N

q , ∀N g 0 (3.30)

‖D̄tRq,n‖N+L−1 � δq+1,nτ
−1
q λL−1−α

q �−N
q , ∀N g 0, (3.31)

where the implicit constants depend on n, 
, M , α and N . Suppose, moreover, that

suppt Rq,n ⊂ [−2 + (δ
1/2
q λq)−1 − 2nτq ,−1 − (δ

1/2
q λq)−1 + 2nτq ] (3.32)

∪[1 + (δ
1/2
q λq)−1 − 2nτq ,2 − (δ

1/2
q λq)−1 + 2nτq ],

Then, Rq,n+1 also satisfies (3.28)-(3.32) with n replaced by n + 1.

The claim concerning the temporal support is immediate from the definitions of

χ̃k and Zq,n, which imply

suppt Rq,n+1 ⊂ N2τq (suppt Rq,n).

We remark also that since τq < (δ
1/2
q λq)−1, lemma 3.1 shows that the assumptions

of proposition 3.4 are satisfied at n = 0. Indeed, we have that for all N f L − 1,

‖Rq,0‖N f CLδq+1λ
N−2α
q ,

‖D̄tRq,0‖N f CLδq+1τ
−1
q λN−2α

q ,

where CL > 0 is a constant depending only on L. Then, for any α > 0, we choose a0

sufficiently large so that

CLλ−α
q f 1.

In the rest of this section, we prove proposition 3.4 and obtain the estimates for

the perturbation w
(t)
q+1,n+1 which will be used in the next section.
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3.7 Proof of the inductive proposition

Let ψk,n+1 denote the mean-zero stream-function of the vector field wk,n+1. Then,

Rq,n+1 = R∇⊥ ∑

k∈Zq,n

∂t χ̃kψk,n+1. (3.33)

Since R∇⊥ is of Calderón-Zygmund type ,2 proposition 3.4 will follow once we

obtain estimates for the stream functions. Moreover, such estimates will, of course,

also offer control over the perturbation w
(t)
q+1,n+1. With this aim, we note that ψk,n+1

satisfies

⎧

⎪
«

⎪
¬

∂tψk,n+1 + ūq · ∇ψk,n+1 − 2	−1∇⊥ · div(ψk,n+1∇⊥ūq)

=
∑

ξ∈
 fξ,k,n(μq+1t)	
−1∇⊥ · divAξ,k,n

ψk,n+1

∣
∣
t=tk

= 1
μq+1

∑

ξ∈
 f
[1]
ξ,k,n(μq+1tk)	

−1∇⊥ · divAξ,k,n

∣
∣
t=tk

,

(3.34)

where

∇⊥ūq =
(−∂2ū

1
q ∂1ū

1
q

−∂2ū
2
q ∂1ū

2
q

)

.

Equation (3.34) can be obtained by applying the operator 	−1∇⊥· to (3.21).

We begin the analysis by obtaining estimates for aξ,k,n.

Lemma 3.5 Under the assumptions of proposition 3.4, the following hold:

‖aξ,k,n‖N � δ
1/2
q+1,nλ

N
q , ∀N ∈ {0,1, . . . ,L − 1} (3.35)

‖D̄taξ,k,n‖N � δ
1/2
q+1,nτ

−1
q λN

q , ∀N ∈ {0,1, . . . ,L − 1} (3.36)

‖aξ,k,n‖N+L−1 � δ
1/2
q+1,nλ

L−1
q �−N

q , ∀N g 0 (3.37)

‖D̄taξ,k,n‖N+L−1 � δ
1/2
q+1,nλ

L−1
q τ−1

q �−N
q , ∀N g 0, (3.38)

with implicit constants depending on n, 
, M , α, and N .

Proof Note that since suppaξ,k,n ⊂ suppχk × T
2, the estimates of lemma 3.2 apply.

Thus, since on suppχk ,

∥
∥
∥
∥
∇�k∇�T

k − ∇�k

Rq,n

δq+1,n

∇�T
k

∥
∥
∥
∥

0

� 1,

2The operator R∇⊥ is a sum of operators of the form 	−1∂i∂j , which can be written as a linear com-

bination between the identity and a Calderón-Zygmund operator. Throughout the paper, we will refer to

such operators as being of Calderón-Zygmund type. Note that the results of appendix C apply.
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we use proposition A.1 to obtain that, on suppaξ,k,n,

‖aξ,k,n‖N � δ
1/2
q+1,n‖∇�k∇�T

k − ∇�k

Rq,n

δq+1,n

∇�T
k ‖N

� δ
1/2
q+1,n

(

‖∇�k‖N + ‖∇�k‖N‖ Rq,n

δq+1,n

‖0 + ‖∇�k‖0‖
Rq,n

δq+1,n

‖N

)

,

for any N > 0. Then, (3.35) and (3.37) follow from lemma 3.2 and the assumptions

of proposition 3.4.

On the other hand,

‖D̄taξ,k,n‖N � δ
1/2
q+1,n|∂tχk|‖γξ

(

∇�k∇�T
k − ∇�k

Rq,n

δq+1,n

∇�T
k

)

‖N

+ δ
1/2
q+1,n‖Dγξ

(

∇�k∇�T
k − ∇�k

Rq,n

δq+1,n

∇�T
k

)

‖N

× ‖D̄t

(

∇�k∇�T
k − ∇�k

Rq,n

δq+1,n

∇�T
k

)

‖0

+ δ
1/2
q+1,n‖Dγξ

(

∇�k∇�T
k − ∇�k

Rq,n

δq+1,n

∇�T
k

)

‖0

× ‖D̄t

(

∇�k∇�T
k − ∇�k

Rq,n

δq+1,n

∇�T
k

)

‖N .

The terms which do not involve the material derivatives are handled as before, by

appealing to proposition A.1. For the remaining ones, we note that

‖D̄t

(

∇�k

Rq,n

δq+1,n

∇�T
k

)

‖N

� ‖D̄t

Rq,n

δq+1,n

‖N + ‖D̄t

Rq,n

δq+1,n

‖0‖∇�k‖N + ‖ Rq,n

δq+1,n

‖N‖D̄t∇�k‖0

+ ‖ Rq,n

δq+1,n

‖0‖D̄t∇�k‖N + ‖ Rq,n

δq+1,n

‖0‖D̄t∇�k‖0‖∇�k‖N ,

and

‖D̄t

(

∇�k∇�T
k

)

‖N � ‖D̄t∇�k‖N + ‖D̄t∇�k‖0‖∇�k‖N .

Then, (3.36) and (3.38) follow by lemmas 3.1 and 3.2, together with the assumptions

of proposition 3.4. �

From the lemma above, we obtain estimates for Aξ,k,n.

Corollary 3.6 Under the assumptions of proposition 3.4, the following hold:

‖Aξ,k,n‖N � δq+1,nλ
N
q , ∀N ∈ {0,1, . . . ,L − 1}, (3.39)
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‖D̄tAξ,k,n‖N � δq+1,nτ
−1
q λN

q , ∀N ∈ {0,1, . . . ,L − 1}, (3.40)

‖Aξ,k,n‖N+L−1 � δq+1,nλ
L−1
q �−N

q , ∀N g 0, (3.41)

‖D̄tAξ,k,n‖N+L−1 � δq+1,nλ
L−1
q τ−1

q �−N
q , ∀N g 0, (3.42)

with implicit constants depending on n, 
, M , α, and N .

Proof First note that by the same arguments as those given in the proof of lemma 3.5,

a2
ξ,k,n satisfies the same estimates as aξ,k,n but with δ

1/2
q,n+1 replaced by δq,n+1

throughout. Then,

‖Aξ,k,n‖N � ‖a2
ξ,k,n‖N‖(∇�k)

−1‖2
0 + ‖a2

ξ,k,n‖0‖(∇�k)
−1‖N‖(∇�k)

−1‖0,

and

‖D̄tAξ,k,n‖N � ‖D̄ta
2
ξ,k,n‖N‖(∇�k)

−1‖2
0 + ‖D̄ta

2
ξ,k,n‖0‖(∇�k)

−1‖N‖(∇�k)
−1‖0

+‖a2
ξ,k,n‖N‖D̄t (∇�k)

−1‖0‖(∇�k)
−1‖0

+‖a2
ξ,k,n‖0‖D̄t (∇�k)

−1‖N‖(∇�k)
−1‖0

+‖a2
ξ,k,n‖0‖D̄t (∇�k)

−1‖0‖(∇�k)
−1‖N .

The conclusion follows by lemma 3.2. �

The following can be considered the main technical lemma concerning the Newton

perturbations.

Lemma 3.7 Under the assumptions of proposition 3.4, the following hold on supp χ̃k :

‖ψk,n+1‖N+α �
δq+1,nλ

N
q �−α

q

μq+1
, ∀N ∈ {0,1, . . . ,L − 1}, (3.43)

‖D̄tψk,n+1‖N+α � δq+1,nλ
N
q �−α

q , ∀N ∈ {0,1, . . . ,L − 1}, (3.44)

‖ψk,n+1‖N+L−1+α �
δq+1,nλ

L−1
q �−N−α

q

μq+1
, ∀N g 0, (3.45)

‖D̄tψk,n+1‖N+L−1+α � δq+1,nλ
L−1
q �−N−α

q , ∀N g 0. (3.46)

Moreover, on supp∂t χ̃k ,

‖D̄tψk,n+1‖N+α �
δq+1,nλ

N
q �−α

q

μq+1τq

, ∀N ∈ {0,1, . . . ,L − 1}, (3.47)

‖D̄tψk,n+1‖N+L−1+α �
δq+1,nλ

L−1
q �−N−α

q

μq+1τq

, ∀N g 0, (3.48)

with implicit constants depending on n, 
, M , α, and N .
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Proof We begin by noting that, due to (3.34), the stream-function ψk,n+1 satisfies

ψk,n+1 = ψ̃ + �̃ + �, (3.49)

where ψ̃ solves

{

D̄t ψ̃ = 2	−1∇⊥ · div(ψk,n+1∇⊥ūq)

ψ̃
∣
∣
t=tk

= 0,

�̃ is the solution to

{

D̄t �̃ = − 1
μq+1

∑

ξ∈
 f
[1]
ξ,k,n(μq+1·)D̄t	

−1∇⊥ · divAξ,k,n

�̃
∣
∣
t=tk

= 0,

and

� = 1

μq+1

∑

ξ∈


f
[1]
ξ,k,n(μq+1·)	−1∇⊥ · divAξ,k,n.

In view of the uniqueness of solutions to transport equations, this decomposition is

verified once we apply the material derivative to (3.49).

Estimates for ψ̃ when N = 0. Since 	−1∇⊥ div is of Calderón-Zygmund type, we

have

‖D̄t ψ̃‖α � ‖ψk,n+1∇⊥ūq‖α � ‖ψk,n+1‖α‖ūq‖1+α,

from which it follows, by proposition B.1, that on supp χ̃k ,

‖ψ̃(·, t)‖α � τ−1
q

ˆ t

tk

‖ψk,n+1(·, s)‖αds.

Estimates for �̃ when N = 0. By similar arguments, we have

‖D̄t �̃‖α �
1

μq+1
sup
ξ

‖D̄tAξ,k,n‖α + 1

μq+1
sup
ξ

‖[ūq · ∇,	−1∇⊥ div]Aξ,k,n‖α

�
1

μq+1
sup
ξ

‖D̄tAξ,k,n‖α + 1

μq+1
‖ūq‖1+α sup

ξ

‖Aξ,k,n‖α

�
δq+1,nλ

α
q

μq+1τq

where for the second inequality we used the commutator estimate of proposition C.2,

while the last one follows by interpolation from the conclusions of corollary 3.6. By

proposition B.1, we conclude that, on supp χ̃k ,

‖�̃‖α �
1

μq+1
δq+1,nλ

α
q .
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Estimates for � when N = 0. Finally, for �, we note that

‖�‖α �
1

μq+1
sup
ξ

‖Aξ,k,n‖α �
δq+1,nλ

α
q

μq+1
.

Going back in (3.49), we obtain

‖ψk,n+1(·, t)‖α �
δq+1,nλ

α
q

μq+1
+ τ−1

q

ˆ t

tk

‖ψk,n+1(·, s)‖αds,

from which Grönwall’s inequality implies that, on supp χ̃k ,

‖ψk,n+1‖α �
δq+1,nλ

α
q

μq+1
.

Estimates for ψ̃ when N g 1. Let θ be a multi-index with |θ | = N . Then,

‖D̄t∂
θ ψ̃‖α � ‖∂θ D̄t ψ̃‖α + ‖[ūq · ∇, ∂θ ]ψ̃‖α

On the one hand,

‖∂θ D̄t ψ̃‖α � ‖∂θ (ψk,n+1∇⊥ūq)‖α

� ‖ūq‖1+α‖ψk,n+1‖N+α + ‖ūq‖N+1+α‖ψk,n+1‖α,

while on the other,

‖[ūq · ∇, ∂θ ]ψ̃‖α � ‖ūq‖N+α‖ψ̃‖1+α + ‖ūq‖1+α‖ψ̃‖N+α

� ‖ūq‖1+α‖ψ̃‖N+α + ‖ūq‖N+1+α‖ψ̃‖α,

where the last inequality is obtained by interpolation and Young’s inequality for prod-

ucts. It follows, then, by proposition B.1, that

‖ψ̃(·, t)‖N+α �
δq+1,nλ

α
q τq

μq+1
‖ūq‖N+1+α + ‖ūq‖1+α

ˆ t

tk

‖ψk,n+1(·, s)‖N+αds

+ ‖ūq‖1+α

ˆ t

tk

‖ψ̃(·, s)‖N+αds.

Then, by Grönwall’s inequality, we conclude:

‖ψ̃(·, t)‖N+α �
δq+1,nλ

α
q τq

μq+1
‖ūq‖N+1+α + τ−1

q

ˆ t

tk

‖ψk,n+1(·, s)‖N+αds.

Estimates for �̃ when N g 1. Let θ be a multi-index as above. Then,

‖D̄t∂
θ �̃‖α � ‖D̄t �̃‖N+α + ‖[ūq · ∇, ∂θ ]�̃‖α

�
1

μq+1
sup
ξ

(

‖D̄tAξ,k,n‖N+α + ‖[ūq · ∇,	−1∇⊥ div]Aξ,k,n‖N+α

)
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+ ‖[ūq · ∇, ∂θ ]�̃‖α

�
1

μq+1
sup
ξ

(

‖D̄tAξ,k,n‖N+α + ‖ūq‖1+α‖Aξ,k,n‖N+α

+ ‖ūq‖N+1+α‖Aξ,k,n‖α

)

+‖ūq‖N+1+α‖�̃‖α + ‖ūq‖1+α‖�̃‖N+α,

where we have used proposition C.2 and the same argument as before for the term

involving the commutator [ūq · ∇, ∂θ ]. Then, arguing by proposition B.1 and Grön-

wall’s inequality as we did for ψ̃ , we obtain

‖�̃‖N+α �
1

μq+1
sup
ξ

(

τq‖D̄tAξ,k,n‖N+α +‖Aξ,k,n‖N+α

)

+
δq+1,nλ

α
q τq

μq+1
‖ūq‖N+1+α.

Estimates for � when N g 1. Finally, we note:

‖�‖N+α �
1

μq+1
sup
ξ

‖Aξ,k,n‖N+α.

Then, we have

‖ψk,n+1(·, t)‖N+α

�
1

μq+1
sup
ξ

(

τq‖D̄tAξ,k,n‖N+α + ‖Aξ,k,n‖N+α + δq+1,nλ
α
q τq‖ūq‖N+1+α

)

+ τ−1
q

ˆ t

tk

‖ψk,n+1(·, s)‖N+αds,

from which we obtain, by Grönwall’s inequality,

‖ψk,n+1‖N+α

�
1

μq+1
sup
ξ

(

τq‖D̄tAξ,k,n‖N+α + ‖Aξ,k,n‖N+α + δq+1,nλ
α
q τq‖ūq‖N+1+α

)

.

This, in view of lemma 3.1 and corollary 3.6, implies (3.43) and (3.45).

To obtain the claimed estimates for the material derivative of ψk,n+1, we note that,

from (3.34),

‖D̄tψk,n+1(·, t)‖N+α

� ‖ψk,n+1∇⊥ūq‖N+α + sup
ξ

‖Aξ,k,n(·, t)‖N+α

� ‖ψk,n+1‖N+α‖ūq‖1+α + ‖ψk,n+1‖α‖ūq‖N+1+α + sup
ξ

‖Aξ,k,n(·, t)‖N+α.

Then, (3.44) and (3.46) follow from corollary 3.6, together with (3.43) and (3.45),

while (3.47) and (3.48) follow likewise once we note that Aξ,k,n = 0 on supp ∂t χ̃k .

�
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We are now ready to prove the main result of this section.

Proof of proposition 3.4 Recalling the form of Rq,n+1 from (3.33), that R∇⊥ is of

Calderón-Zygmund type, and that the set {χ̃k} is locally finite, we obtain

‖Rq,n+1‖N � ‖Rq,n+1‖N+α � τ−1
q sup

k∈Zq,n

‖ψk,n+1‖N+α.

Then by (3.43) of lemma 3.7, for N ∈ {0,1, . . . ,L− 1}, there exists a constant which

is independent of a > a0 and q such that

‖Rq,n+1‖N f C
τ−1
q

μq+1
δq+1,nλ

N
q �−α

q

f Cδq+1,n

(
λq

λq+1

)1/3−β

(λq+1�q)−αλ−2α
q+1λ

N
q

f (Cλ−α
q+1)δq+1,n+1λ

−α
q λN

q ,

where we have used (3.20) in the second inequality and (3.18) in the third. For any

α > 0, a0 can be chosen sufficiently large so that

Cλ−α
q+1 f 1,

and so (3.28) follows. Likewise, (3.30) follows from lemma 3.7.

Moreover,

‖D̄tRq,n+1‖N+α

� sup
k∈Zq,n

(

‖D̄t (∂t χ̃kψk,n+1)‖N+α + ‖[ūq · ∇,R∇⊥]∂t χ̃kψk,n+1‖N+α

)

� sup
k∈Zq,n

(

τ−2
q ‖ψk,n+1‖N+α + τ−1

q ‖D̄tψk,n+1‖N+α, supp ∂t χ̃k

+ τ−1
q ‖ūq‖1+α‖ψk,n+1‖N+α + τ−1

q ‖ūq‖N+1+α‖ψk,n+1‖α

)

,

where, once again, we have used proposition C.2. Then, for N ∈ {0,1, . . . ,L−1} and

some constant C which is independent of a > a0 and q , lemmas 3.1 and 3.7 imply

‖D̄tRq,n+1‖N f Cτ−1
q δq+1,n

(
λq

λq+1

)1/3−β

(λq+1�q)−αλ−2α
q+1λ

N
q ,

and the conclusion follows for a0 sufficiently large depending on L, α, M and 


(thus, on β) by the same arguments as above. �

3.8 Estimates for the total Newton perturbation and the perturbed flow

We now turn to obtaining estimates for the total Newton perturbation

w
(t)
q+1 =



∑

n=1

w
(t)
q+1,n.
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Since proposition 3.4 holds and, as already noted, its assumptions are indeed satisfied

by Rq,0, the conclusions of lemma 3.7 also hold for all n ∈ {0,1, . . . ,
 − 1}. The

following is, then, a direct consequence.

Lemma 3.8 The following estimates hold:

‖w(t)
q+1‖N �

δq+1λ
N+1
q �−α

q

μq+1
, ∀N ∈ {0,1, . . . ,L − 2}, (3.50)

‖D̄tw
(t)
q+1‖N � δq+1λ

N+1
q �−α

q , ∀N ∈ {0,1, . . . ,L − 2}, (3.51)

‖w(t)
q+1‖N+L−2 �

δq+1λ
L−1
q �−N−α

q

μq+1
, ∀N g 0, (3.52)

‖D̄tw
(t)
q+1‖N+L−2 � δq+1λ

L−1
q �−N−α

q , ∀N g 0, (3.53)

with implicit constants depending on 
, M , α and N . Moreover, it holds that

suppt w
(t)
q+1 ⊂ [−2 + (δ

1/2
q λq)−1 − 2
τq ,−1 − (δ

1/2
q λq)−1 + 2
τq ] (3.54)

∪[1 + (δ
1/2
q λq)−1 − 2
τq ,2 − (δ

1/2
q λq)−1 + 2
τq ].

Proof It suffices to argue for w
(t)
q+1,n+1 and note that δq+1,n f δq+1 for all n. For

(3.50) and (3.52), we simply have that, for all N g 0,

‖w(t)
q+1,n+1‖N � sup

k∈Zq,n

‖ψk,n+1‖N+1+α,

and we apply lemma 3.7.

For the remaining estimates we write

D̄tw
(t)
q+1,n+1 =

∑

k∈Zq,n

(

∂t χ̃k∇⊥ψk,n+1 + χ̃k∇⊥D̄tψk,n+1 − χ̃k∇⊥ūq∇ψk,n+1

)

,

from which it follows that

‖D̄tw
(t)
q+1,n+1‖N � sup

k∈Zq,n

(

τ−1
q ‖ψk,n+1‖N+1+α + ‖D̄tψk,n+1‖N+1+α

+‖ūq‖N+1‖ψk,n‖1+α + ‖ūq‖1‖ψk,n+1‖N+1+α

)

.

The largest term on the right hand side is ‖D̄tψk,n+1‖N+1+α . Appealing to the esti-

mates of lemmas 3.1 and 3.7 concludes the proof of (3.51) and (3.53).

The claimed property on the temporal support is clear by the definition of w
(t)
q+1

and proposition 3.4. �
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In the construction of the Nash perturbation, which will be detailed in the next

section, we will make use of the backwards flow �̃t starting at t ∈R of

ūq,
 = ūq + w
(t)
q+1, (3.55)

which is characterized by the equation

{

∂s�̃t (x, s) + ūq,
(x, s) · ∇�̃t (x, s) = 0,

�̃t (x, t) = x,
(3.56)

as well as of the Lagraingian flow

{
d
ds

X̃t (α, s) = ūq,
(Xt (α, s), s),

Xt (α, t) = α.
(3.57)

We note that for N ∈ {1,2, . . . ,L − 2},

‖w(t)
q+1‖N � δ

1/2
q λN

q

δq+1λq�−α
q

μq+1δ
1/2
q

� δ
1/2
q λN

q

(
δq+1

δq

)1/2( λq

λq+1

)1/3

.

This shows that ūq,
 is a small perturbation of ūq . This observation, together with

similar considerations for N g L − 1, immediately implies the following corollary.

Corollary 3.9 The following estimates hold:

‖ūq,
‖N � δ
1/2
q λN

q , ∀N ∈ {1,2, . . . ,L − 2}, (3.58)

‖ūq,
‖N+L−2 � δ
1/2
q λL−2

q �−N
q , ∀N g 0, (3.59)

where the implicit constants depend on 
, M , α, and N .

We will also use the notation D̄t,
 for the material derivative corresponding to

ūq,
 :

D̄t,
 = ∂t + ūq,
 · ∇.

Then, arguing precisely as in lemma 3.2, we conclude that the following corollary

holds true.

Corollary 3.10 Let t ∈ R and τ f ‖ūq,
‖−1
1 . Let �̃t be defined by (3.56), and let X̃t

denote the corresponding Lagrangian flow (3.57). Then, for any |s − t | < τ ,

‖(∇�̃t )
−1(·, s)‖N + ‖∇�̃t (·, s)‖N � λN

q , ∀N ∈ {0,1, . . . ,L − 3}, (3.60)

‖D̄t,
(∇�̃t )
−1(·, s)‖N + ‖D̄t,
∇�̃t (·, s)‖N � δ

1/2
q λN+1

q , ∀N ∈ {0,1, . . . ,L − 3},
(3.61)

‖DX̃t (·, s)‖N � λN
q , ∀N ∈ {0,1, . . . ,L − 3}, (3.62)
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‖(∇�̃t )
−1(·, s)‖N+L−3 + ‖∇�̃t (·, s)‖N+L−3 � λL−3

q �−N
q , ∀N g 0, (3.63)

‖D̄t,
(∇�̃t )
−1(·, s)‖N+L−3 + ‖D̄t,
∇�̃t (·, s)‖N+L−3 � δ

1/2
q λL−2

q �−N
q , ∀N g 0,

(3.64)

‖DX̃t (·, s)‖N+L−3 � λL−3
q �−N

q , ∀N g 0 (3.65)

where the implicit constants depend only on 
, M , α, and N .

Remark 3.11 Note that

τq‖ūq,
‖1 � λ−α
q+1,

and, thus, corollary 3.10 is satisfied with τ = τq . Moreover, with this choice of τ ,

proposition B.1, in fact, establishes that

‖ Id−∇�̃‖0 � λ−α
q+1,

In particular, since for any α > 0, and C > 0 independent of a > a0 and q , a0 can be

chosen sufficiently large such that

Cλ−α
q+1 f 1,

we conclude that ‖∇�̃‖0 can be bounded independently of the parameters of the

construction.

We end the discussion concerning the perturbed flow with an elementary stability

lemma which will play a role in the next section.

Lemma 3.12 Let t ∈ R and τ f (‖ūq,
‖1 + ‖ūq‖1)
−1. Let �̃t be backwards flow of

ūq,
 , defined by (3.56), and �t the backwards flow of ūq , defined in (3.7). Then, for

any |s − t | < τ and N ∈ {0,1, . . . ,L − 4},

‖∇�t (·, s) − ∇�̃t (·, s)‖N + ‖(∇�t (·, s))−1 − (∇�̃t (·, s))−1‖N � τ
δq+1λ

2
q�−α

q

μq+1
λN

q ,

(3.66)

while for N g 0,

‖∇�t (·, s) − ∇�̃t (·, s)‖N+L−4 + ‖(∇�t (·, s))−1 − (∇�̃t (·, s))−1‖N+L−4

� τ
δq+1λ

2
q�−α

q

μq+1
λL−4

q �−N
q , (3.67)

with implicit constants depending on 
, M , α and N .

Proof We note that �t − �̃t satisfies

{

(∂t + ūq · ∇)(�t − �̃t )(x, s) = w
(t)
q+1 · ∇�̃t (x, s)

(�t − �̃t )
∣
∣
s=t

= 0.
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Then, by proposition B.1,

‖�t − �̃t‖N � τ‖w(t)
q+1 · ∇�̃t‖N + τ 2‖ūq‖N‖w(t)

q+1 · ∇�̃t‖1

� τ‖w(t)
q+1‖N + τ‖w(t)

q+1‖0‖∇�̃t‖N + τ 2‖ūq‖N

(

‖w(t)
q+1‖1

+ ‖w(t)
q+1‖0‖∇�̃t‖1

)

.

The claimed estimates, then, follow by lemmas 3.1 and 3.8, and corollary 3.10.

Since �t and �̃t are measure preserving, it holds that

(∇�t )
−1 =

(

∂2�
2
t −∂2�

1
t

−∂1�
2
t ∂1�

1
t

)

,

and similarly for (∇�̃t )
−1. Therefore, the remaining estimates follow from those

already obtained for ∇�t − ∇�̃t . �

3.9 Summary

Let us now describe the situation after 
 steps of the Newton iteration. The perturbed

system is

∂tuq,
 + div(uq,
 ⊗ uq,
) + ∇pq,
 = divSq,
 + div
(

Rq,
 + Pq+1,


)

, (3.68)

where:

• The perturbed velocity is defined by

uq,
 = uq + w
(t)
q+1 = uq +



∑

n=1

w
(t)
q+1,n; (3.69)

• By the inductive definition (3.24) of pq,
 , we have

pq,
 = pq +


∑

n=1

p
(t)
q+1,n −


−1
∑

n=0

	−1 div div
(

Rq,n +
∑

ξ,k

g2
ξ,k,n+1Aξ,k,n

)

−
|w(t)

q+1|2

2
+ 〈ūq − uq ,w

(t)
q+1〉; (3.70)

• The error Sq,
 is “well-prepared” to be erased by the Nash perturbation:

Sq,
 = −

−1
∑

n=0

∑

ξ∈


∑

k∈Zq,n

g2
ξ,k,n+1Aξ,k,n (3.71)

= −
∑

ξ,k,n

g2
ξ,k,n+1a

2
ξ,k,n(∇�k)

−1ξ ⊗ ξ(∇�k)
−T ;
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• The error Rq,
 is made, by virtue of proposition 3.4, sufficiently small so that it

can be placed into Rq+1;

• The residual error Pq+1,
 , in view of (3.27), is given by

Pq+1,
 = Rq − Rq,0 + w
(t)
q+1⊗̊w

(t)
q+1 + (uq − ūq)⊗̊w

(t)
q+1 + w

(t)
q+1⊗̊(uq − ūq).

(3.72)

In the following section we aim to approximately erase the error Sq,
 by the non-

linear self-interaction of highly-oscillatory Nash perturbations, as well as to show

that the tuple (pq,
,Rq,
,Pq+1,
) satisfies already estimates compatible with the

(q + 1)th stage. We remark that, in view of the temporal support properties of propo-

sition 3.4 and lemma 3.8, it holds that

suppt Sq,
 ∪ suppt Rq,
 ∪ suppt Pq+1,


⊂ [−2 + (δ
1/2
q λq)−1 − 2
τq ,−1 − (δ

1/2
q λq)−1 + 2
τq ]

∪ [1 + (δ
1/2
q λq)−1 − 2
τq ,2 − (δ

1/2
q λq)−1 + 2
τq ].

4 The Nash step

4.1 Preliminary: mollification along the flow

Before we turn to the construction of the Nash perturbation, we first perform another

regularization procedure which aims to solve the loss of material derivative prob-

lem. Specifically, in order to be able to propagate the estimates (2.6) on the material

derivative of the new Reynolds stress, we will need estimates on the second material

derivative of the old error. This can be seen by considering the transport error, which

already involves one material derivative of the stress at the q th stage. For this purpose,

we use the mollification along the flow introduced in [28].

Let X̃t denote the Lagrangian flow of ūq,
 starting at t , which we have already

introduced in (3.57), and fix a standard temporal mollifier � as well as the material

mollification scale

�t,q = δ
−1/2
q λ

−1/3
q λ

−2/3
q+1 .

Note that

δ
1/2
q λq < �−1

t,q < δ
1/2
q+1λq+1,

and, in fact, for all α > 0 sufficiently small, it also holds that

τq+1 < �t,q < μ−1
q+1 < τq .

We define

R̄q,n(x, t) =
ˆ �t,q

−�t,q

Rq,n(X̃t (x, t + s), t + s)��t,q (s)ds. (4.1)
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We now state the main estimates on R̄q,n. These were proven for example in [28],

or [5]. We repeat the proof here for the sake of completeness.

Lemma4.1 Assume the Rq,n satisfy (3.28)-(3.31). Then, the following estimates hold:

‖R̄q,n‖N � δq+1,nλ
N−α
q , ∀N ∈ {0,1, . . . ,L − 2}, (4.2)

‖D̄t,
R̄q,n‖N � τ−1
q δq+1,nλ

N−α
q , ∀N ∈ {0,1, . . . ,L − 2}, (4.3)

‖D̄2
t,
R̄q,n‖N � �−1

t,qτ−1
q δq+1,nλ

N−α
q , ∀N ∈ {0,1, . . . ,L − 2} (4.4)

‖R̄q,n‖N+L−2 � δq+1,nλ
L−2−α
q �−N

q , ∀N g 0 (4.5)

‖D̄t,
R̄q,n‖N+L−2 � τ−1
q δq+1,nλ

L−2−α
q �−N

q , ∀N g 0. (4.6)

‖D̄2
t,
R̄q,n‖N+L−2 � �−1

t,qτ−1
q δq+1,nλ

L−2−α
q �−N

q , ∀N g 0. (4.7)

with implicit constants depending on 
, M , α and N .

Proof To prove (4.2) and (4.5), we note that since �t,q f ‖ūq,
‖−1
1 for all sufficiently

large choices of a0, the estimates of corollary 3.10 apply. Then, by proposition A.1,

‖R̄q,n‖N � ‖Rq,n ◦ X̃t‖N � ‖Rq,n‖N‖DX̃t‖N
0 + ‖Rq,n‖1‖DX̃t‖N−1,

and, thus, (4.2) and (4.5) follow from proposition 3.4 and corollary 3.10.

The idea of definition (4.1) is that the following hold:

D̄t,
R̄q,n(x, t) =
ˆ �t,q

−�t,q

D̄t,
Rq,n(X̃t (x, t + s), t + s)��t,q (s)ds,

and

D̄2
t,
R̄q,n(x, t) = −�−1

t,q

ˆ �t,q

−�t,q

D̄t,
Rq,n(X̃t (x, t + s), t + s)�′
�t,q

(s)ds.

We have

‖D̄t,
Rq,n‖N � ‖D̄tRq,n‖N + ‖w(t)
q+1 · ∇Rq,n‖N

� ‖D̄tRq,n‖N + ‖w(t)
q+1‖0‖Rq,n‖N+1 + ‖w(t)

q+1‖N‖Rq,n‖1.

Then, using that

δq+1λq�−α
q

μq+1
λq f τ−1

q ,

we obtain:

‖D̄t,
Rq,n‖N � τ−1
q δq+1,nλ

N−α
q , ∀N ∈ {0,1, . . . ,L − 2}
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‖D̄t,
Rq,n‖N+L−2 � τ−1
q δq+1,nλ

L−2−α
q �−N

q , ∀N g 0,

where we have used proposition 3.4 and lemma 3.8. Therefore, (4.3) and (4.6) follow

by appealing to proposition A.1 to write

‖D̄t,
R̄q,n‖N � ‖D̄t,
Rq,n‖N‖DX̃t‖N
0 + ‖D̄t,
Rq,n‖1‖DX̃t‖N−1.

Similarly, (4.4) and (4.7) follow from

‖D̄2
t,
R̄q,n‖N � �−1

t,q

(

‖D̄t,
Rq,n‖N‖DX̃t‖N
0 + ‖D̄t,
Rq,n‖1‖DX̃t‖N−1

)

. �

4.2 Construction of the Nash perturbation

In order to quantify the oscillatory behaviour of the Nash perturbation, we use as

building blocks shear flows in the directions ξ given by lemma D.1. For each ξ ∈ 
,

we define Wξ : T2
2π →R

2 by

Wξ (x) = 1√
2

(

eiξ⊥·x + e−iξ⊥·x)ξ, (4.8)

where T
2
2π = R

2/(2πZ)2. Let us also denote the corresponding stream-function by

�ξ (x) = i√
2

(

eiξ⊥·x − e−iξ⊥·x).

The relevant properties of these vector fields are gathered in the following simple

lemma.

Lemma 4.2 The vector fields Wξ : T2
2π → R

2 defined by (4.8) satisfy

{

div(Wξ ⊗Wξ ) = 0,

divWξ = 0.

and
 

T
2
2π

Wξ ⊗Wξ = ξ ⊗ ξ.

In the following, �̃k will stand for the backwards flow of ūq,
 , having origin at

t = tk :

{

∂t �̃k + ūq,
 · ∇�̃k = 0,

�
∣
∣
t=tk

= x.

With

āξ,k,n = δ
1/2
q+1,nχkγξ

(

∇�̃k∇�̃T
k − ∇�̃k

R̄q,n

δq+1,n

∇�̃T
k

)

, (4.9)
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we define the principal part of the Nash perturbation by

w
(p)
q+1 :=


−1
∑

n=0

∑

k∈Zq,n

∑

ξ∈


gξ,k,n+1(μq+1t)āξ,k,n(∇�̃k)
−1

Wξ (λq+1�̃k), (4.10)

where gξ,k,n+1 is defined in (3.22). As argued before, since

‖∇�̃k

R̄q,n

δq+1,n

∇�̃T
k ‖0 � λ−α

q ,

and

‖ Id−∇�̃k‖0 � λ−α
q ,

for any α > 0, we can choose a0 sufficiently large so that āξ,k,n is indeed well-defined.

Note also that while

(∇�̃k)
−1

Wξ (λq+1�̃k) = 1

λq+1
∇⊥(�ξ (λq+1�̃k)

)

is divergence-free, w
(p)
q+1 need not be. To rectify this, we define the “corrector” part

of the Nash perturbation as

w
(c)
q+1 := 1

λq+1


−1
∑

n=0

∑

k∈Zq,n

∑

ξ∈


gξ,k,n+1∇⊥āξ,k,n�ξ (λq+1�̃k). (4.11)

The total Nash perturbation w
(s)
q+1 := w

(p)
q+1 + w

(c)
q+1 is, then, manifestly divergence-

free:

w
(s)
q+1 = 1

λq+1
∇⊥

(
−1
∑

n=0

∑

k∈Zq,n

∑

ξ∈


gξ,k,n+1āξ,k,n�ξ (λq+1�̃k)

)

. (4.12)

Let us also denote the total perturbation by

wq+1 = w
(t)
q+1 + w

(s)
q+1.

We remark here that the terms in the sum above have pair-wise disjoint temporal

supports. Indeed, since suppt āξ,k,n ⊂ suppt χk , we have that

suppt āξ,k,n ∩ suppt āη,j,m �= ∅ =⇒ |k − j | f 1,

but, then, either k and j have distinct parities, in which case suppt gξ,k,n+1 ∩
suppt gη,j,m+1 = ∅, or k = j , in which case

suppt gξ,k,n+1 ∩ suppt gξ,k,m+1 �= ∅ =⇒ (ξ, n) = (η,m),

by lemma 3.3.



The Onsager conjecture in 2D: a Newton-Nash iteration 731

4.3 The Euler-Reynolds system after the (q + 1)th stage

We let the velocity field uq+1 of proposition 2.1 be

uq+1 = uq,
 + w
(s)
q+1 = uq + w

(t)
q+1 + w

(s)
q+1 = uq + wq+1, (4.13)

which leads to the Euler-Reynolds system

∂tuq+1 + div(uq+1 ⊗ uq+1) + ∇pq+1 = divRq+1,

with

pq+1 = pq,
 + 〈ūq − uq ,w
(s)
q+1〉, (4.14)

and

Rq+1 = Rq+1,L + Rq+1,O + Rq+1,R, (4.15)

where

• Rq+1,L is the linear error and it is defined by

Rq+1,L = R
(

D̄t,
w
(s)
q+1 + w

(s)
q+1 · ∇ūq,


)

;

• Rq+1,O is the oscillation error and it is defined by

Rq+1,O = Rdiv(Sq,
 + w
(s)
q+1 ⊗ w

(s)
q+1);

• Rq+1,R is the residual error and it is defined by

Rq+1,R = Rq,
 + Pq+1,
 + w
(s)
q+1⊗̊(uq − ūq) + (uq − ūq)⊗̊w

(s)
q+1.

We note that Rq+1,O and Rq+1,L are indeed well-defined, since the operator R is

applied to vector fields which are either a divergence or a curl.

Remark 4.3 We have already noted that w
(t)
q+1, Rq,
 , Pq+1,
 and Sq,
 have temporal

supports contained in the set

[−2 + (δ
1/2
q λq)−1 − 2
τq ,−1 − (δ

1/2
q λq)−1 + 2
τq ]

∪ [1 + (δ
1/2
q λq)−1 − 2
τq ,2 − (δ

1/2
q λq)−1 + 2
τq ].

It is clear from the definition (4.12) that the same holds for w
(s)
q+1, and, thus, also for

wq+1 and Rq+1. But, for any α > 0, a0 can be chosen sufficiently large in terms of

α, b and β so that

(δ
1/2
q+1λq+1)

−1 + 2
(δ
1/2
q λq)−1λ−α

q+1 < (δ
1/2
q λq)−1.

It follows, then, that the condition (2.9) on the temporal support of the total perturba-

tion and the inductive propagation of (2.7) to level q + 1 hold true.
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4.4 Estimates for the Nash perturbation

We start by collecting the required estimates on the amplitudes of the Nash perturba-

tion. These results follow by precisely the same arguments as those given in the proof

of lemma 3.5, taking this time into account the bounds of corollary 3.10 and lemma

4.1.

Lemma 4.4 The functions āξ,k,n defined in (4.9) satisfy the following estimates:

‖āξ,k,n‖N � δ
1/2
q+1,nλ

N
q , ∀N ∈ {0,1, . . . ,L − 3} (4.16)

‖D̄t,
 āξ,k,n‖N � δ
1/2
q+1,nτ

−1
q λN

q ∀N ∈ {0,1, . . . ,L − 3} (4.17)

‖āξ,k,n‖N+L−3 � δ
1/2
q+1,nλ

L−3
q �−N

q , ∀N g 0 (4.18)

‖D̄t,
 āξ,k,n‖N+L−3 � δ
1/2
q+1,nλ

L−3
q τ−1

q �−N
q , ∀N g 0, (4.19)

where the implicit constants depend on 
, M , α and N .

We are now ready to estimate the perturbation w
(s)
q+1 and, thus, fix the constant M0

and verify the inductive propagation of (2.2) and (2.3), as well as the validity of (2.8).

Lemma 4.5 There exists a constant M0 > 0, depending only on β and L, such that

‖w(s)
q+1‖N f M0

2
δ

1/2
q+1λ

N
q+1 ∀N ∈ {0,1, . . . ,L}, (4.20)

and, consequently,

‖wq+1‖N f M0δ
1/2
q+1λ

N
q+1 ∀N ∈ {0,1, . . . ,L}. (4.21)

Proof Since {gξ,k,n+1āξ,k,n}ξ,k,n have disjoint temporal supports, it follows from

(4.12) that

[w(s)
q+1]N f 1

λq+1
sup
ξ,k,n

|gξ,k,n+1|[āξ,k,n�ξ (λq+1�̃k)]N+1

f CN

λq+1
sup
ξ,k,n

|gξ,k,n+1|
(

[�ξ (λq+1�̃k)]N+1‖āξ,k,n‖0

+ ‖�ξ (λq+1�̃k)‖0‖āξ,k,n‖N+1

)

,

where, in the context of this proof, CN is a constant depending only on N which

might change from line to line.

Also, by proposition A.1,

[�ξ (λq+1�̃k)]N+1 f CN

(

‖D�ξ (λq+1·)‖N‖∇�̃‖N+1
0 + [�ξ (λq+1·)]1‖∇�̃k‖N )

f CN (λN+1
q+1 + C̃λq+1�

−N
q ),
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where C̃ is the constant depending on 
, M , α, and N which is implicit in corollary

3.10 (recall also remark 3.11). But if a0 is sufficiently large in terms of 
 (thus, on

β), M , α, b and L, we have

C̃�−N
q λq+1 f λN+1

q+1 , ∀N ∈ {0,1, . . . ,L}.

It is also clear by definition that ‖āξ,k,n‖0 f Cδ
1/2
q+1, where C depends only on the

geometric functions γξ of proposition D.1. Moreover,

‖�ξ (λq+1�̃k)‖0‖āξ,k,n‖N+1 � δ
1/2
q+1�

−N−1
q ,

and so, we can choose, as before, a0 large enough in order to finally ensure that

[w(s)
q+1]N f CLδ

1/2
q+1λ

N
q+1 sup

ξ,k,n

|gξ,k,n|, ∀N ∈ {0,1, . . . ,L},

where CL is a constant depending only on L. It is clear from the definition of gξ,k,n

in lemma 3.3 that sup |gξ,k,n| depends only on 
 and, thus, only on β . We define,

then,

M0 = 2CL sup
ξ,k,n

|gξ,k,n|,

and conclude the proof of (4.20).

Finally, from lemma 3.8, we have that

‖w(t)
q+1‖N �

δq+1λq

μq+1
�−N−α
q � δ

1/2
q+1

(
λq

λq+1

)1/3

λN
q+1.

Then, by choosing a0 sufficiently large, we can ensure that

‖w(t)
q+1‖N f M0

2
δ

1/2
q+1λ

N
q+1, ∀N ∈ {0,1, . . . ,L}.

The conclusion follows. �

Corollary 4.6 The following hold:

‖uq+1‖0 f M(1 − δ
1/2
q+1), (4.22)

‖uq+1‖N f Mδ
1/2
q+1λ

N
q+1, ∀N ∈ {1,2, . . . ,L} (4.23)

‖uq+1 − uq‖0 + 1

λq+1
‖uq+1 − uq‖1 f 2Mδ

1/2
q+1. (4.24)

Proof Equation (4.24) follows immediately from lemma 4.5. Moreover,

‖uq+1‖0 f ‖uq‖0 + ‖uq+1 − uq‖0 f M(1 − δ
1/2
q + δ

1/2
q+1) f M(1 − δ

1/2
q+1),

where the last inequality holds whenever a0 is sufficiently large.
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Finally, from lemma 4.5, we have

‖uq+1‖N f Mδ
1/2
q λN

q + M0δ
1/2
q+1λ

N
q+1,

and, therefore, a0 can be chosen large enough depending on M , M0, b and β to ensure

that

Mδ
1/2
q λq f (M − M0)δ

1/2
q+1λq+1,

from which the remaining conclusion (4.23) follows. �

4.5 Estimates for the linear errorRq+1,L

We write

Rq+1,L = R(w
(s)
q+1 · ∇ūq,
)

︸ ︷︷ ︸

Nash error

+R(D̄t,
w
(s)
q+1)

︸ ︷︷ ︸

Transport error

,

and we estimate the two terms separately. Let us begin, however, by collecting some

preliminary estimates on material derivatives.

Lemma 4.7 The vector field uq,
 defined in (3.55) and the functions āξ,k,n defined

in (4.9) satisfy the following estimates:

‖D̄t,
∇ūq,
‖N � δqλN+2
q , ∀N ∈ {0,1, . . . ,L − 4}, (4.25)

‖D̄t,
∇ūq,
‖N+L−4 � δqλL−2
q �−N

q , ∀N g 0. (4.26)

‖D̄2
t,
 āξ,k,n‖N � δ

1/2
q+1,nτ

−1
q �−1

t,qλN
q , ∀N ∈ {0,1, . . . ,L − 4}, (4.27)

‖D̄2
t,
 āξ,k,n‖N+L−4 � δ

1/2
q+1,nλ

L−4
q τ−1

q �−1
t,q�−N

q , ∀N g 0, (4.28)

where the implicit constants depend on 
, M , α and N .

Proof We begin by writing

D̄t,
∇ūq,
 = D̄t∇ūq + D̄t∇w
(t)
q+1 + w

(t)
q+1 · ∇∇ūq,
.

For the first term we note that

D̄t∇ūq = ∇D̄t ūq − (∇ūq)2.

By mollifying the Euler-Reynolds system (2.1), we obtain

D̄t ūq + div
(

(uq ⊗ uq) ∗ ζ�q − ūq ⊗ ūq

)

+ ∇(pq ∗ ζ�q ) = divRq,0,

and, therefore,

‖D̄t∇ūq‖N � ‖D̄t ūq‖N+1 + ‖ūq‖N+1‖ūq‖1
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� ‖(uq ⊗ uq) ∗ ζ�q − ūq ⊗ ūq‖N+2 + ‖pq ∗ ζ�q ‖N+2

+ ‖Rq,0‖N+2 + ‖ūq‖N+1‖ūq‖1.

For the first term, we use the Constantin-E-Titi commutator estimate of proposition

A.3 together with the inductive assumptions on uq to conclude that

‖(uq ⊗ uq) ∗ ζ�q − ūq ⊗ ūq‖N+2 � δqλN+2
q , ∀N ∈ {0,1, . . . ,L − 4},

‖(uq ⊗ uq) ∗ ζ�q − ūq ⊗ ūq‖N+L−2 � �2−N
q δqλL

q � δqλL−2
q �−N

q , ∀N g 0.

In view of the inductive assumptions, the same bounds also hold for the second and

fourth terms. The third satisfies better estimates, as already stated in lemma 3.1. We

conclude, then, that D̄t∇ūq satisfies the bounds claimed in (4.25) and (4.26). Also,

we have by similar considerations that

‖D̄t∇w
(t)
q+1‖N � ‖D̄tw

(t)
q+1‖N+1 + ‖ūq‖N+1‖w(t)

q+1‖1 + ‖ūq‖1‖w(t)
q+1‖N+1.

Using now lemma 3.8 and taking into account that μq+1 > δ
1/2
q λq , we obtain

‖D̄t∇w
(t)
q+1‖N � δq+1λ

N+2
q �−α

q , ∀N ∈ {0,1, . . . ,L − 4},

‖D̄t∇w
(t)
q+1‖N+L−4 � δq+1λ

L−2
q �−N−α

q , ∀N g 0.

Since α can be chosen small enough so that

δq+1�
−α
q < δq ,

we conclude that also D̄t∇w
(t)
q+1 satisfies estimates compatible with (4.25) and (4.26).

Finally,

‖w(t)
q+1 · ∇∇ūq,
‖N � ‖w(t)

q+1‖N‖ūq,
‖2 + ‖w(t)
q+1‖0‖ūq,
‖N+2,

which implies, in view of lemma 3.8 and corollary 3.9,

‖w(t)
q+1 · ∇∇ūq,
‖N � δq+1

δ
1/2
q λq

μq+1
�−α
q λN+2

q , ∀N ∈ {0,1, . . . ,L − 4},

‖w(t)
q+1 · ∇∇ūq,
‖L−4+N � δq+1

δ
1/2
q λq

μq+1
λL−2

q �−N−α
q , ∀N g 0,

which, once again, is compatible with (4.25) and (4.26) provided α is chosen suffi-

ciently small. Therefore, (4.25) and (4.26) are proven.
We now turn to proving (4.27) and (4.28). First of all, we have

D̄2
t,
 āξ,k,n = δ

1/2
q+1,n∂

2
t χkγξ

(

∇�̃k∇�̃T
k − ∇�̃k

R̄q,n

δq+1,n

∇�̃T
k

)

︸ ︷︷ ︸

T1
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+2δ
1/2
q+1,n∂tχkDγξ

(

∇�̃k∇�̃T
k − ∇�̃k

R̄q,n

δq+1,n

∇�̃T
k

)

D̄t,


(

∇�̃k

δq+1,n Id−R̄q,n

δq+1,n

∇�̃T
k

)

︸ ︷︷ ︸

T2

+ δ
1/2
q+1,nχkD̄t,


[

Dγξ

(

∇�̃k∇�̃T
k − ∇�̃k

R̄q,n

δq+1,n

∇�̃T
k

)
]

D̄t,


(

∇�̃k

δq+1,n Id−R̄q,n

δq+1,n

∇�̃T
k

)

︸ ︷︷ ︸

T3

+ δ
1/2
q+1,nχkDγξ

(

∇�̃k∇�̃T
k − ∇�̃k

R̄q,n

δq+1,n

∇�̃T
k

)

D̄2
t,


(

∇�̃k

δq+1,n Id−R̄q,n

δq+1,n

∇�̃T
k

)

︸ ︷︷ ︸

T4

.

We estimate each of the four terms above by appealing to the results of corollary

3.10 and lemma 4.1. Arguing as in the proof of lemma 3.5, we have

‖γξ

(

∇�̃k∇�̃T
k − ∇�̃k

R̄q,n

δq+1,n

∇�̃T
k

)

‖N � λN
q , ∀N ∈ {0,1, . . . ,L − 4},

‖γξ

(

∇�̃k∇�̃T
k − ∇�̃k

R̄q,n

δq+1,n

∇�̃T
k

)

‖N+L−4 � λL−4
q �−N

q , ∀N g 0,

‖D̄t,
γξ

(

∇�̃k∇�̃T
k − ∇�̃k

R̄q,n

δq+1,n

∇�̃T
k

)

‖N � λN
q τ−1

q , ∀N ∈ {0,1, . . . ,L − 4}

‖D̄t,
γξ

(

∇�̃k∇�̃T
k − ∇�̃k

R̄q,n

δq+1,n

∇�̃T
k

)

‖N+L−4 � λL−4
q τ−1

q �−N
q , ∀N g 0,

and likewise when Dγξ replaces γξ in the above (as is the case in the expressions for

T2, T3, and T4). We can, then, infer that

‖T1‖N + ‖T2‖N + ‖T3‖N � δ
1/2
q+1,nτ

−2
q λN

q , ∀N ∈ {0,1, . . . ,L − 4}

‖T1‖N+L−4 + ‖T2‖N+L−4 + ‖T3‖N+L−4 � δ
1/2
q+1,nτ

−2
q λL−4

q �−N
q , ∀N g 0,

and it remains to obtain the estimates for T4. For this purpose, we note that

‖D̄2
t,


(

∇�̃k

δq+1,n Id−R̄q,n

δq+1,n

∇�̃T
k

)

‖N

� ‖D̄2
t,
∇�̃k‖N + ‖D̄2

t,
∇�̃k‖0

∥
∥
δq+1,n Id−R̄q,n

δq+1,n

‖N

+ ‖D̄2
t,
∇�̃k‖0‖∇�̃k‖N + ‖D̄t,
∇�̃k‖N

∥
∥D̄t,


R̄q,n

δq+1,n

∥
∥

0

+ ‖D̄t,
∇�̃k‖0

∥
∥D̄t,


R̄q,n

δq+1,n

∥
∥

N

+ ‖D̄t,
∇�̃k‖0

∥
∥D̄t,


R̄q,n

δq+1,n

∥
∥

0
‖∇�̃k‖N
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+
∥
∥D̄2

t,


R̄q,n

δq+1,n

∥
∥

N
+
∥
∥D̄2

t,


R̄q,n

δq+1,n

∥
∥

0
‖∇�̃k‖N

+ ‖D̄t,
∇�̃k‖N‖D̄t,
∇�̃k‖0 + ‖D̄t,
∇�̃k‖2
0‖

δq+1,n Id−R̄q,n

δq+1,n

‖N .

We already have at our disposal estimates for all of the quantities above with the

exception of D̄2
t,
∇�̃k . To estimate this, we write

D̄t,
∇�̃k = −∇ūq,
∇�̃k,

and, so, taking one more material derivative yields

D̄2
t,
∇�̃k = −D̄t,
∇ūq,
∇�̃k − ∇ūq,
D̄t,
∇�̃k.

Then,

‖D̄2
t,
∇�̃k‖N � ‖D̄t,
∇ūq,
‖N + ‖D̄t,
∇ūq,
‖0‖∇�̃k‖N

+‖∇ūq,
‖N‖D̄t,
∇�̃k‖0 + ‖∇ūq,
‖0‖D̄t,
∇�̃k‖N ,

which, together with (4.25), (4.26), corollary 3.9, and corollary 3.10, implies

‖D̄2
t,
∇�̃k‖N � δqλ2

qλN
q � τ−2

q λN
q , ∀N ∈ {0,1, . . . ,L − 4},

‖D̄2
t,
∇�̃k‖N+L−4 � δqλ2

qλL−4
q �−N

q � τ−2
q λL−4

q �−N
q , ∀N g 0.

Using this, corollary 3.10 and lemma 4.1, we obtain

‖D̄2
t,


(

∇�̃k

δq+1,n Id−R̄q,n

δq+1,n

∇�̃T
k

)

‖N � τ−1
q �−1

t,qλN
q , ∀N ∈ {0,1, . . . ,L − 4},

‖D̄2
t,


(

∇�̃k

δq+1,n Id−R̄q,n

δq+1,n

∇�̃T
k

)

‖N+L−4 � τ−1
q �−1

t,qλL−4
q �−N

q , ∀N g 0,

where we note that the terms satisfying the worst bounds are those involving two

material derivatives of R̄q,n. The above can now be used to estimate T4 and, thus,

conclude the proof of the lemma. �

Lemma 4.8 The following estimates hold for the Nash error:

‖R(w
(s)
q+1 · ∇ūq,
)‖N �

δ
1/2
q δ

1/2
q+1λq

λ1−α
q+1

λN
q+1, ∀N g 0, (4.29)

‖D̄t,
R(w
(s)
q+1 · ∇ūq,
)‖N �

μq+1δ
1/2
q δ

1/2
q+1λq

λ1−α
q+1

λN
q+1, ∀N g 0, (4.30)

where the implicit constants depend on 
, M , α, and N .
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Proof We begin by writing

R(w
(s)
q+1 · ∇ūq,
) = − 1

λq+1
Rdiv

∑

ξ,k,n

gξ,k,n+1āξ,k,n�ξ (λq+1�̃k)∇⊥ūq,
.

Since {gξ,k,n+1āξ,k,n} have disjoint supports, and Rdiv is a sum of operators of

Calderón-Zygmund type, we obtain

‖R(w
(s)
q+1 · ∇ūq,
)‖N+α �

1

λq+1
sup
ξ,k,n

‖āξ,k,n�(λq+1�̃k)∇⊥ūq,
‖N+α

�
1

λq+1
sup
ξ,k,n

(

‖āξ,k,n∇⊥ūq,
‖N+α‖�ξ (λq+1�̃k)‖0

+‖āξ,k,n∇⊥ūq,
‖0‖�ξ (λq+1�̃k)‖N+α

)

.

By proposition A.1, and corollary 3.10,

‖�ξ (λq+1�̃k)‖N � λN
q+1 + λq+1�

−N+1
q � λN

q+1,

whenever N g 1. Moreover, lemma 4.4 and corollary 3.9 imply

‖āξ,k,n∇⊥ūq,
‖N+α � δ
1/2
q+1δ

1/2
q λq�−N−α

q .

Therefore,

‖R(w
(s)
q+1 · ∇ūq,
)‖N+α �

1

λq+1
δ

1/2
q δ

1/2
q+1λq(λN+α

q+1 + �−N−α
q )�

δ
1/2
q δ

1/2
q+1λq

λ1−α
q+1

λN
q+1 .

To estimate the material derivative, we write

D̄t,
R(w
(s)
q+1 · ∇ūq,
)

= − 1

λq+1
Rdiv D̄t,


∑

ξ,k,n

gξ,k,n+1āξ,k,n�ξ (λq+1�̃k)∇⊥ūq,


︸ ︷︷ ︸

T1

− 1

λq+1

[

ūq,
 · ∇,Rdiv
] ∑

ξ,k,n

gξ,k,n+1āξ,k,n�ξ (λq+1�̃k)∇⊥ūq,


︸ ︷︷ ︸

T2

The first term T1 can be estimated as

‖T1‖N+α �
1

λq+1
sup
ξ,k,n

(

‖�ξ (λq+1�̃k)‖N+α‖D̄t,
(gξ,k,n+1āξ,k,n∇⊥ūq,
)‖0

+ ‖�ξ (λq+1�̃k)‖0‖D̄t,
(gξ,k,n+1āξ,k,n∇⊥ūq,
)‖N+α

)

,
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where we use the fact that �ξ (λq+1�̃k) is transported by the flow of ūq,
 . Using

corollary 3.9 and the results of lemmas 4.7 and 4.4, we compute

‖D̄t,


(

gξ,k,n+1āξ,k,n∇⊥ūq,


)

‖N

� |∂tgξ,k,n+1|‖āξ,k,n∇⊥ūq,
‖N + ‖D̄t,
 āξ,k,n∇⊥ūq,
‖N

+ ‖āξ,k,nD̄t,
∇⊥ūq,
‖N

� μq+1δ
1/2
q+1δ

1/2
q λq�−N

q + τ−1
q δ

1/2
q+1δ

1/2
q λq�−N

q

+ (δ
1/2
q λq)δ

1/2
q+1δ

1/2
q λq�−N

q

� μq+1δ
1/2
q+1δ

1/2
q λq�−N

q ,

where we use the fact that

δ
1/2
q λq < τ−1

q < μq+1.

Then,

‖T1‖N+α �
μq+1δ

1/2
q δ

1/2
q+1

λq+1
(λN+α

q+1 + �−N−α
q ) �

μq+1δ
1/2
q δ

1/2
q+1

λ1−α
q+1

λN
q+1.

The second term T2 can be estimated using Proposition C.2, since Rdiv is a sum of

Calderón-Zygmund operators. So, we have

‖T2‖N+α �
1

λq+1
sup
ξ,k,n

(

‖ūq,
‖1+α‖gξ,k,n+1āξ,k,n�ξ (λq+1�̃k)∇⊥ūq,
‖N+α

+ ‖ūq,
‖N+1+α‖gξ,k,n+1āξ,k,n�ξ (λq+1�̃k)∇⊥ūq,
‖α

)

�
1

λq+1
τ−1
q δ

1/2
q δ

1/2
q+1λq(λN+α

q+1 + �−N
q λα

q+1)�
τ−1
q δ

1/2
q δ

1/2
q+1λq

λ1−α
q+1

λN
q+1,

where for the second inequality we use the fact that

‖ūq,
‖N+1+α � τ−1
q �−N

q , ∀N g 0.

The claimed bounds, then, follow. �

We now turn to proving the required bounds for the transport error.

Lemma 4.9 The following estimates hold for the transport error:

‖R(D̄t,
w
(s)
q+1)‖N �

δq+1λ
2/3
q

λ
2/3−5α
q+1

λN
q+1, ∀N g 0, (4.31)
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‖D̄t,
R(D̄t,
w
(s)
q+1)‖N �

�−1
t,qδq+1λ

2/3
q

λ
2/3−5α
q+1

λN
q+1, ∀N g 0, (4.32)

where the implicit constants depend on 
, M , α, and N .

Proof Since ūq,
 is divergence-free, it holds that

R(D̄t,
w
(s)
q+1) = 1

λq+1
R∇⊥

(

D̄t,


∑

ξ,k,n

gξ,k,n+1āξ,k,n�ξ (λq+1�̃k)

)

︸ ︷︷ ︸

T1

− 1

λq+1
Rdiv

(
∑

ξ,k,n

gξ,k,n+1āξ,k,n�ξ (λq+1�̃k)∇⊥ūq,


)

︸ ︷︷ ︸

T2

.

Note that the second term, −T2, is precisely the Nash error estimated in the previous

lemma. For the first term, since R∇⊥ is an operator of Calderón-Zygmund type, we

have

‖T1‖N+α �
1

λq+1
sup
ξ,k,n

(

‖�ξ (λq+1�̃k)‖N+α‖D̄t,
(gξ,k,n+1āξ,k,n)‖0

+‖�ξ (λq+1�̃k)‖0‖D̄t,
(gξ,k,n+1āξ,k,n)‖N+α

)

.

In the above, we have used the fact that �ξ (λq+1�̃k) is transported by the flow of

ūq,
 . We have also already described the bounds for �ξ (λq+1�̃k) in the previous

lemma. Recalling that gξ,k,n is (μq+1)
−1-periodic and that μq+1 > τ−1

q , lemma 4.4

implies

‖D̄t,
(gξ,k,n+1āξ,k,n)‖N+α � δ
1/2
q+1μq+1�

−N−α
q � δq+1λ

2/3
q λ

1/3+4α
q+1 �−N−α

q .

Then,

‖T1‖N+α �
δq+1λ

2/3
q

λ
2/3−4α
q+1

(λN+α
q+1 + �−N−α

q ) �
δq+1λ

2/3
q

λ
2/3−5α
q+1

λN
q+1.

The inequality

δ
1/2
q+1λ

2/3
q λ

1/3
q+1 > δ

1/2
q λq

shows that T2 obeys better estimates (i.e. those of lemma 4.8) than those obtained for

T1 above.

It now remains to estimate the material derivative of T1. We write

D̄t,
T1 = 1

λq+1
R∇⊥D̄2

t,


∑

ξ,k,n

gξ,k,n+1āξ,k,n�ξ (λq+1�̃k)

︸ ︷︷ ︸

T11
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+ 1

λq+1

[

ūq,
 · ∇,R∇⊥
]

D̄t,


∑

ξ,k,n

gξ,k,n+1āξ,k,n�ξ (λq+1�̃k)

︸ ︷︷ ︸

T12

We estimate T11 as

‖T11‖N+α �
1

λq+1
sup
ξ,k,n

(

‖�ξ (λq+1�̃k)‖N+α‖D̄2
t,
(gξ,k,n+1āξ,k,n)‖0

+‖�ξ (λq+1�̃k)‖0‖D̄2
t,
(gξ,k,n+1āξ,k,n)‖N+α

)

.

As before, we note that lemmas 4.4 and 4.7 imply

‖D̄2
t,
(gξ,k,n+1āξ,k,n)‖N

� |∂2
t gξ,k,n+1|‖āξ,k,n‖N + |∂tgξ,k,n+1|‖D̄t,
 āξ,k,n‖N + ‖D̄2

t,
 āξ,k,n‖N

� δ
1/2
q+1�

−N
q (μ2

q+1 + μq+1τ
−1
q + τ−1

q �−1
t,q )

� �−1
t,qμq+1δ

1/2
q+1�

−N
q ,

where we use the fact that

τ−1
q < μq+1 < �−1

t,q ,

whenever α > 0 is sufficiently small. Then,

‖T11‖N+α �
δq+1λ

2/3
q �−1

t,q

λ
2/3−4α
q+1

(λN+α
q+1 + �−N−α

q ) �
�−1
t,qδq+1λ

2/3
q

λ
2/3−5α
q+1

λN
q+1.

We estimate T22 using Proposition C.2 as

‖T22‖N+α �
1

λq+1
sup
ξ,k,n

(

‖ūq,
‖1+α‖D̄t,
(gξ,k,n+1āξ,k,n)�ξ (λq+1�̃k)‖N+α

+ ‖ūq,
‖N+1+α‖D̄t,
(gξ,k,n+1āξ,k,n)�ξ (λq+1�̃k)‖α

)

�
τ−1
q μq+1δ

1/2
q+1

λq+1
(λN+α

q+1 + λα
q+1�

−N
q )�

τ−1
q δq+1λ

2/3
q

λ
2/3−5α
q+1

λN
q+1,

and the conclusion follows. �

4.6 Estimates for the oscillation errorRq+1,O

Let us begin by rewriting the error as

Rq+1,O = Rdiv(Sq,
 + w
(p)
q+1 ⊗ w

(p)
q+1)

︸ ︷︷ ︸

Principal oscillation error
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+Rdiv(w
(p)
q+1 ⊗ w

(c)
q+1 + w

(c)
q+1 ⊗ w

(p)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1)

︸ ︷︷ ︸

Divergence corrector error

.

The main idea of the Nash step is the cancellation between the error Sq,
 and the

low frequency part of the quadratic self-interaction of w
(p)
q+1. Before we present this

cancellation, let us recall the notation

Aξ,k,n = a2
ξ,k,n(∇�k)

−1ξ ⊗ ξ(∇�k)
−T ,

and analogously denote

Āξ,k,n = ā2
ξ,k,n(∇�̃k)

−1ξ ⊗ ξ(∇�̃k)
−T . (4.33)

Then, using the fact that {gξ,k,n+1āξ,k,n}ξ,k,n have pair-wise disjoint supports, we

compute:

w
(p)
q+1 ⊗ w

(p)
q+1

=
∑

ξ,k,n

g2
ξ,k,n+1ā

2
ξ,k,n(∇�̃k)

−1(Wξ ⊗Wξ )(λq+1�̃k)(∇�̃k)
−T

=
∑

ξ,k,n

g2
ξ,k,n+1ā

2
ξ,k,n(∇�̃k)

−1ξ ⊗ ξ(∇�̃k)
−T

+
∑

ξ,k,n

g2
ξ,k,n+1ā

2
ξ,k,n(∇�̃k)

−1(P�=0Wξ ⊗Wξ )(λq+1�̃k)(∇�̃k)
−T

= −Sq,
 +
∑

ξ,k,n

g2
ξ,k,n+1(Āξ,k,n − Aξ,k,n)

+
∑

ξ,k,n

g2
ξ,k,n+1ā

2
ξ,k,n(∇�̃k)

−1(P�=0Wξ ⊗Wξ )(λq+1�̃k)(∇�̃k)
−T ,

where P�=0 denotes the Fourier projection onto mean-zero 2-tensors:

P�=0Wξ ⊗Wξ = Wξ ⊗Wξ −
 

T
2
2π

Wξ ⊗Wξ .

Note, then, that we can write

P�=0Wξ ⊗Wξ = �ξ ξ ⊗ ξ,

where �ξ is defined by

�ξ (x) = 1

2
(e2iξ⊥·x + e−2iξ⊥·x).
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We can, then, decompose the principal oscillation error as:

Rdiv(Sq,
 + w
(p)
q+1 ⊗ w

(p)
q+1) = Rdiv

(
∑

ξ,k,n

g2
ξ,k,n+1�ξ (λq+1�̃k)Āξ,k,n

)

︸ ︷︷ ︸

High-high-high oscillation error

+Rdiv

(
∑

ξ,k,n

g2
ξ,k,n+1(Āξ,k,n − Aξ,k,n)

)

︸ ︷︷ ︸

Flow-mollification error

.

The flow-mollification error above arises for two reasons. On the one hand, it

encapsulates the error related to the mollification along the flow, which, in turn, can

be understood as the error resulting from the loss of material derivative. On the other

hand, it quantifies the deviation of the flow of the perturbed velocity field ūq,
 =
ūq + w

(t)
q+1 from the flow of ūq .

Before we estimate each of the identified error terms, we collect the following

preliminary results.

Lemma 4.10 The tensors Āξ,k,n defined in (4.33) satisfy the following estimates:

‖Āξ,k,n‖N � δq+1,nλ
N
q , ∀N ∈ {0,1, . . . ,L − 3}, (4.34)

‖D̄t,
Āξ,k,n‖N � δq+1,nτ
−1
q λN

q , ∀N ∈ {0,1, . . . ,L − 3}, (4.35)

‖Āξ,k,n‖N+L−3 � δq+1,nλ
L−3
q �−N

q , ∀N g 0, (4.36)

‖D̄t,
Āξ,k,n‖N+L−3 � δq+1,nλ
L−3
q τ−1

q �−N
q , ∀N g 0, (4.37)

where the implicit constants depend on 
, M , α and N . Moreover, it holds that

‖Āξ,k,n − Aξ,k,n‖0 � δq+1,n

δ
1/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

. (4.38)

Proof All but the last estimate follow by repeating the proof of corollary 3.6, but this

time using lemma 4.4 and corollary 3.10. For the final estimate, we write

Āξ,k,n − Aξ,k,n = (ā2
ξ,k,n − a2

ξ,k,n)(∇�̃k)
−1ξ ⊗ ξ(∇�̃k)

−T

+a2
ξ,k,n

(

(∇�̃k)
−1 − (∇�k)

−1
)

ξ ⊗ ξ(∇�̃k)
−T

+a2
ξ,k,n(∇�k)

−1ξ ⊗ ξ
(

(∇�̃k)
−T − (∇�k)

−T
)

.

Then,

‖Āξ,k,n − Aξ,k,n‖0 � ‖ā2
ξ,k,n − a2

ξ,k,n‖0 + ‖a2
ξ,k,n‖0‖(∇�̃k)

−1 − (∇�k)
−1‖0.
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In order to estimate the first term, we use the mean value inequality to obtain

‖ā2
ξ,k,n − a2

ξ,k,n‖0

� δq+1,n

∥
∥
∥
∥
∥
∇�̃k

δq+1,n Id−R̄q,n

δq+1,n

(∇�̃k)
T − ∇�k

δq+1,n Id−Rq,n

δq+1,n

(∇�k)
T

∥
∥
∥
∥
∥

0

� ‖∇�̃k − ∇�k‖0‖δq+1,n Id−R̄q,n‖0 + ‖Rq,n − R̄q,n‖0

+ ‖∇�̃k − ∇�k‖0‖δq+1,n Id−Rq,n‖0.

By standard mollification estimates,

‖Rq,n − R̄q,n‖0 � ‖D̄t,
Rq,n‖0�t,q � δq+1,nτ
−1
q �t,q .

This fact, together with the estimates of lemmas 3.5, 3.12, 4.1, and 4.4, implies

‖Āξ,k,n − Aξ,k,n‖0 � δq+1,n

(

τq

δq+1λ
2
q�−α

q

μq+1
+ τ−1

q �t,q

)

� δq+1,n

(
δ

1/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

+ λ
2/3
q

λ
2/3
q+1

λα
q+1

)

.

The conclusion follows once we note that

λ
2/3
q

λ
2/3
q+1

<
δ

1/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

,

and, thus, for all α sufficiently small in terms of b and β , we have

λ
2/3
q

λ
2/3
q+1

λα
q+1 f

δ
1/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

.
�

We now turn to obtaining estimates for each of the three identified errors, starting

with the high-high-high oscillation error.

Lemma 4.11 The following estimates hold for the high-high-high oscillation error:

∥
∥
∥
∥
Rdiv

(
∑

ξ,k,n

g2
ξ,k,n+1�ξ (λq+1�̃k)Āξ,k,n

)∥
∥
∥
∥

N

�
δq+1λq

λ1−2α
q+1

λN
q+1, ∀N g 0, (4.39)

∥
∥
∥
∥
D̄t,
Rdiv

(
∑

ξ,k,n

g2
ξ,k,n+1�ξ (λq+1�̃k)Āξ,k,n

)∥
∥
∥
∥

N

� μq+1δq+1λ
α
q+1λ

N
q+1, ∀N g 0.

(4.40)

where the implicit constants depend on 
, M , α, b, and N .
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Proof We first note that

Āξ,k,n∇
(

�ξ (λq+1�̃k)
)

= λq+1ā
2
ξ,k,n(ξ · ∇�ξ )(λq+1�̃k)(∇�̃k)

−1ξ = 0.

Consequently, it holds that

div
(

�ξ (λq+1�̃k)Āξ,k,n) = �ξ (λq+1�̃k)div Āξ,k,n,

and, thus,

∥
∥
∥
∥
Rdiv

(
∑

ξ,k,n

g2
ξ,k,n+1�ξ (λq+1�̃k)Āξ,k,n

)∥
∥
∥
∥

N+α

� sup
ξ,k,n

g2
ξ,k,n+1

∥
∥R

(

�ξ (λq+1�̃k)div Āξ,k,n

)∥
∥

N+α
.

Proposition D.3 implies that, for any Ñ g 1,

∥
∥R

(

�ξ (λq+1�̃k)div Āξ,k,n

)∥
∥

α
�

‖Āξ,k,n‖1

λ1−α
q+1

+
‖Āξ,k,n‖Ñ+1+α

+ ‖Āξ,k,n‖1‖∇�̃‖
Ñ+α

λÑ−α
q+1

�
δq+1λq

λ1−α
q+1

+
δq+1λq�−Ñ−α

q

λÑ−α
q+1

�
δq+1λq

λ1−2α
q+1

(

1 + λq+1

�−Ñ
q

λÑ
q+1

)

.

with implicit constant depending on α and Ñ . Since

�−Ñ
q

λÑ
q+1

f
(

λq

λq+1

)Ñ/2

,

we can choose Ñ sufficiently large depending only on b so that

λq+1

�−Ñ
q

λÑ
q+1

f 1.

Therefore,

∥
∥R

(

�ξ (λq+1�̃k)div Āξ,k,n

)∥
∥

α
�

δq+1λq

λ1−2α
q+1

.
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To obtain the estimates for the higher derivatives, consider N g 1 and let θ be a

multi-index with |θ | = N − 1, and i ∈ {1,2}. Then, using the fact that ∂iR is of

Calderón-Zygmund type, we estimate

∥
∥∂i∂

θR
(

�ξ (λq+1�̃k)div Āξ,k,n

)∥
∥

α
� ‖�ξ (λq+1�̃k)div Āξ,k,n‖N−1+α

� ‖�ξ (λq+1�̃k)‖N−1+α‖Āξ,k,n‖1

+ ‖�ξ (λq+1�̃k)‖0‖Āξ,k,n‖N+α

� δq+1λq(λN−1+α
q+1 + �−N+1−α

q )

�
δq+1λq

λ1−α
q+1

λN
q+1,

and (4.39) follows.

To obtain estimates on the material derivative, we write

D̄t,
Rdiv

(
∑

ξ,k,n

g2
ξ,k,n+1�ξ (λq+1�̃k)Āξ,k,n

)

= Rdiv
∑

ξ,k,n

�ξ (λq+1�̃k)D̄t,


(

g2
ξ,k,n+1Āξ,k,n

)

︸ ︷︷ ︸

T1

+ [ūq,
 · ∇,Rdiv]
∑

ξ,k,n

g2
ξ,k,n+1�ξ (λq+1�̃k)Āξ,k,n

︸ ︷︷ ︸

T2

.

For the first term, we have

‖T1‖N+α � sup
ξ,k,n

(

‖�ξ (λq+1�̃k)‖N+α‖D̄t,
(g2
ξ,k,n+1Āξ,k,n)‖0

+ ‖�ξ (λq+1�̃k)‖0‖D̄t,
(g2
ξ,k,n+1Āξ,k,n)‖N+α

)

.

Using lemma 4.10 and arguing as before, we find

‖T1‖N+α � μq+1δq+1(λ
N+α
q+1 + �−N−α

q ) � μq+1δq+1λ
α
q+1λ

N
q+1.

For the second term, we use proposition C.2, to obtain

‖T2‖N+α � sup
ξ,k,n

(

‖ūq,
‖1+α‖g2
ξ,k,n+1�ξ (λq+1�̃k)Āξ,k,n‖N+α

+‖ūq,
‖N+1+α‖g2
ξ,k,n+1�ξ (λq+1�̃k)Āξ,k,n‖α

)

� τ−1
q δq+1(λ

N+α
q+1 + λα

q+1�
−N
q ) � τ−1

q δq+1λ
α
q+1λ

N
q+1,

and the conclusion follows. �
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Next, we aim to obtain estimates for the flow-mollification error.

Lemma 4.12 The following estimates hold for the flow-mollification error:

∥
∥
∥
∥
Rdiv

(
∑

ξ,k,n

g2
ξ,k,n+1(Āξ,k,n − Aξ,k,n)

)∥
∥
∥
∥

N

� δq+1

δ
1/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

λα
q+1λ

N
q+1, ∀N g 0.

(4.41)

∥
∥
∥
∥
D̄t,
Rdiv

(
∑

ξ,k,n

g2
ξ,k,n+1(Āξ,k,n − Aξ,k,n)

)∥
∥
∥
∥

N

� μq+1δq+1λ
α
q+1λ

N
q+1, ∀N g 0

(4.42)

where the implicit constants depend on 
, M , α and N .

Proof Since Rdiv is of Calderón-Zygmund type, we have

∥
∥
∥
∥
Rdiv

(
∑

ξ,k,n

g2
ξ,k,n+1(Āξ,k,n − Aξ,k,n)

)∥
∥
∥
∥

N

� sup
ξ,k,n

‖Āξ,k,n − Aξ,k,n‖N+α.

Note that

‖Āξ,k,n − Aξ,k,n‖1 f ‖Āξ,k,n‖1 + ‖Aξ,k,n‖1 � δq+1λq .

Interpolating this with the result of lemma 4.10, we find

‖Āξ,k,n − Aξ,k,n‖α � δq+1

(
δ

1/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

)1−α

λα
q � δq+1

δ
1/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

λα
q+1,

where for the last inequality we have used the fact that

(
δq

δq+1

)1/2

λ
2/3
q λ

1/3
q+1 f λq+1.

Moreover, using corollary 3.6 and lemma 4.10, we have that for all N g 0,

‖Āξ,k,n − Aξ,k,n‖N+1+α � δq+1λqλN+α
q+1 ,

where, as above, we have simply used the triangle inequality. The claimed estimates

follow once we notice that the parametric inequality above rearranges as

δq+1λq f δq+1

δ
1/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

λq+1.

For the material derivative estimates, we have

D̄t,
Rdiv

(
∑

ξ,k,n

g2
ξ,k,n+1(Āξ,k,n − Aξ,k,n)

)
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= Rdiv D̄t,


(
∑

ξ,k,n

g2
ξ,k,n+1(Āξ,k,n − Aξ,k,n)

)

︸ ︷︷ ︸

T1

+ [ūq,
 · ∇,Rdiv]
(
∑

ξ,k,n

g2
ξ,k,n+1(Āξ,k,n − Aξ,k,n)

)

︸ ︷︷ ︸

T2

.

As argued before, we obtain

‖T1‖N+α � μq+1δq+1λ
α
q+1λ

N
q+1,

and

‖T2‖N+α � τ−1
q δq+1λ

α
q+1λ

N
q+1,

where for the estimates involving the difference Āξ,k,n − Aξ,k,n, we simply use the

triangle inequality and the results of lemma 4.10 and corollary 3.6. �

Finally, we obtain the estimates for the divergence corrector error.

Lemma 4.13 The following estimates hold for the divergence corrector error:

∥
∥
∥Rdiv(w

(p)
q+1 ⊗ w

(c)
q+1 + w

(c)
q+1 ⊗ w

(p)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1)

∥
∥
∥

N

�
δq+1λq

λ1−α
q+1

λN
q+1, ∀N g 0, (4.43)

∥
∥
∥D̄t,
Rdiv(w

(p)
q+1 ⊗ w

(c)
q+1 + w

(c)
q+1 ⊗ w

(p)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1)

∥
∥
∥

N

� μq+1
δq+1λq

λ1−α
q+1

λN
q+1, ∀N g 0, (4.44)

where the implicit constants depend on 
, M , α, and N .

Proof Let us first collect estimates for w
(c)
q+1 and w

(p)
q+1. Directly from the definition

of w
(c)
q+1 in (4.11) we calculate

‖w(c)
q+1‖N �

1

λq+1
sup
ξ,k,n

|gξ,k,n+1|‖∇⊥āξ,k,n�ξ (λq+1�̃k)‖N

�
1

λq+1
sup
ξ,k,n

|gξ,k,n+1|
(

‖�ξ (λq+1�̃k)‖N‖∇⊥āξ,k,n‖0

+ ‖�ξ (λq+1�̃k)‖0‖∇⊥āξ,k,n‖N

)
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�
λq

λq+1
δ

1/2
q+1λ

N
q+1,

where for the last inequality we have used lemma 4.4 and argued as in the proof of

Lemma 4.5. Similarly,

‖w(p)
q+1‖N �

1

λq+1
sup
ξ,k,n

|gξ,k,n+1|‖āξ,k,n∇⊥(�ξ (λq+1�̃k))‖N

�
1

λq+1
sup
ξ,k,n

|gξ,k,n+1|
(

‖�ξ (λq+1�̃k)‖N+1‖āξ,k,n‖0

+ ‖�ξ (λq+1�̃k)‖1‖āξ,k,n‖N

)

� δ
1/2
q+1λ

N
q+1.

For the material derivative estimates, note first that

D̄t,
∇⊥āξ,k,n = ∇⊥D̄t,
 āξ,k,n − ∇⊥ūq,
∇āξ,k,n,

and, thus, using lemma 4.4 and corollary 3.9,

‖D̄t,
∇⊥āξ,k,n‖N � ‖D̄t,
 āξ,k,n‖N+1 + ‖ūq,
‖N+1‖āξ,k,n‖1 + ‖ūq,
‖1‖āξ,k,n‖N+1

� δ
1/2
q+1,nτ

−1
q λq�−N

q + δq+1,nδ
1/2
q λ2

q�−N
q � δ

1/2
q+1,nτ

−1
q λq�−N

q .

We have, then,

‖D̄t,
w
(c)
q+1‖N �

1

λq+1
sup
ξ,k,n

‖�ξ (λq+1�̃k)D̄t,
(gξ,k,n+1∇⊥āξ,k,n)‖N

�
1

λq+1
sup
ξ,k,n

|∂tgξ,k,n+1|
(

‖�ξ (λq+1�̃k)‖N‖∇⊥āξ,k,n‖0

+ ‖�ξ (λq+1�̃k)‖0‖∇⊥āξ,k,n‖N

)

+ 1

λq+1
sup
ξ,k,n

|gξ,k,n+1|
(

‖�ξ (λq+1�̃k)‖N‖D̄t,
∇⊥āξ,k,n‖0

+ ‖�ξ (λq+1�̃k)‖0‖D̄t,
∇⊥āξ,k,n‖N

)

�
μq+1

λq+1
δ

1/2
q+1λqλN

q+1 +
τ−1
q

λq+1
δ

1/2
q+1λqλN

q+1 �
μq+1δ

1/2
q+1λq

λq+1
λN

q+1,

and, similarly,

‖D̄t,
w
(p)
q+1‖N �

1

λq+1

∥
∥D̄t,


(

gξ,k,n+1āξ,k,n∇⊥(�ξ (λq+1�̃k))
)∥
∥

N

�
1

λq+1
sup
ξ,k,n

|∂tgξ,k,n+1|
(

‖�ξ (λq+1�̃k)‖N+1‖āξ,k,n‖0
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+ ‖�ξ (λq+1�̃k)‖1‖āξ,k,n‖N

)

+ 1

λq+1
sup
ξ,k,n

|gξ,k,n+1|
(

‖�ξ (λq+1�̃k)‖N+1‖D̄t,
 āξ,k,n‖0

+ ‖�ξ (λq+1�̃k)‖1‖D̄t,
 āξ,k,n‖N

)

+ 1

λq+1
sup
ξ,k,n

|gξ,k,n+1|
(

‖D̄t,
∇⊥(�ξ (λq+1�̃k))‖N‖āξ,k,n‖0

+ ‖D̄t,
∇⊥(�ξ (λq+1�̃k))‖0‖āξ,k,n‖N

)

�
1

λq+1
δ

1/2
q+1λ

N+1
q+1 (μq+1 + τ−1

q + δ
1/2
q λq) � μq+1δ

1/2
q+1λ

N
q+1,

where we have used that

‖D̄t,
∇⊥(�ξ (λq+1�̃k))‖N = ‖∇⊥ūq,
∇(�ξ (λq+1�̃k))‖N � δ
1/2
q λqλN+1

q+1 .

We can now denote

T1 = Rdiv(w
(p)
q+1 ⊗ w

(c)
q+1 + w

(c)
q+1 ⊗ w

(p)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1),

T2 = D̄t,
Rdiv(w
(p)
q+1 ⊗ w

(c)
q+1 + w

(c)
q+1 ⊗ w

(p)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1),

and estimate

‖T1‖N+α � ‖w(p)
q+1‖N+α‖w(c)

q+1‖0 + ‖w(p)
q+1‖0‖w(c)

q+1‖N+α + ‖w(c)
q+1‖N+α‖w(c)

q+1‖0

�
δq+1λq

λ1−α
q+1

λN
q+1.

For T2, we write

T2 = Rdiv D̄t,
(w
(p)
q+1 ⊗ w

(c)
q+1 + w

(c)
q+1 ⊗ w

(p)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1)

︸ ︷︷ ︸

T21

+[ūq,
 · ∇,Rdiv](w(p)
q+1 ⊗ w

(c)
q+1 + w

(c)
q+1 ⊗ w

(p)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1)

︸ ︷︷ ︸

T22

.

Then,

‖T21‖N+α � ‖D̄t,
w
(p)
q+1‖N+α‖w(c)

q+1‖0 + ‖D̄t,
w
(p)
q+1‖0‖w(c)

q+1‖N+α

+ ‖w(p)
q+1‖N+α‖D̄t,
w

(c)
q+1‖0

+ ‖w(p)
q+1‖0‖D̄t,
w

(c)
q+1‖N+α + ‖D̄t,
w

(c)
q+1‖N+α‖w(c)

q+1‖0

+ ‖D̄t,
w
(c)
q+1‖0‖w(c)

q+1‖N+α
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� μq+1
δq+1λq

λ1−α
q+1

λN
q+1,

and, by proposition C.2,

‖T22‖N+α � ‖ūq,
‖1+α‖w(p)
q+1 ⊗ w

(c)
q+1 + w

(c)
q+1 ⊗ w

(p)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1‖N+α

+‖ūq,
‖N+1+α‖w(p)
q+1 ⊗ w

(c)
q+1 + w

(c)
q+1 ⊗ w

(p)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1‖α

� τ−1
q

δq+1λq

λ1−α
q+1

λN
q+1,

and the conclusion follows. �

4.7 Estimates for the residual errorRq+1,R

Recalling the expression (3.72) for Pq+1,
 , we write

Rq+1,R = Rq,

︸︷︷︸

Gluing error

+w
(t)
q+1⊗̊w

(t)
q+1

︸ ︷︷ ︸

Newton error

+ wq+1⊗̊(uq − ūq) + (uq − ūq)⊗̊wq+1 + Rq − Rq,0
︸ ︷︷ ︸

Spatial mollification error

.

We once again embark on estimating the three identified errors separately.

Lemma 4.14 The following estimates hold for the gluing error:

‖Rq,
‖N �
δq+1λq

λq+1
λN

q+1, ∀N g 0, (4.45)

‖D̄t,
Rq,
‖N � τ−1
q

δq+1λq

λq+1
λN

q+1, ∀N g 0, (4.46)

where the implicit constants depend on 
, M , α, and N .

Proof The first estimate follows immediately from proposition 3.4, once we notice

that

δq+1,
 = δq+1

(
λq

λq+1

)
(1/3−β)

f δq+1
λq

λq+1
.

For the second one, we write

D̄t,
Rq,
 = D̄tRq,
 + w
(t)
q+1 · ∇Rq,
.

By proposition 3.4 and lemma 3.8, we have

‖w(t)
q+1 · ∇Rq,
‖N � ‖w(t)

q+1‖N‖Rq,
‖1 + ‖w(t)
q+1‖0‖Rq,
‖N+1
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�
δq+1λq�−α

q

μq+1

δq+1λ
2
q

λq+1
λN

q+1.

The wanted estimates follow once we notice that

δq+1λ
2
q�−α

q

μq+1
f δ

1/2
q+1λq

(
λq

λq+1

)1/3

f τ−1
q .

�

Lemma 4.15 The following estimates hold for the Newton error:

‖w(t)
q+1⊗̊w

(t)
q+1‖N �

δq+1λ
2/3
q

λ
2/3
q+1

λN
q+1, ∀N g 0, (4.47)

‖D̄t,
(w
(t)
q+1⊗̊w

(t)
q+1)‖N � μq+1

δq+1λ
2/3
q

λ
2/3
q+1

λN
q+1, ∀N g 0, (4.48)

where the implicit constants depend on 
, M , α, and N .

Proof For the first bound we compute using lemma 3.8 and the definition of μq+1:

‖w(t)
q+1⊗̊w

(t)
q+1‖N � ‖w(t)

q+1‖N‖w(t)
q+1‖0

�

(
δq+1λq�−α

q

μq+1

)2

λN
q+1 � δq+1

(
λq

λq+1

)2/3

λN
q+1,

as wanted. In fact, since L g 4, we have the better estimate

‖w(t)
q+1⊗̊w

(t)
q+1‖N+1 �

δq+1λ
2/3
q

λ
2/3
q+1

λqλN
q+1, ∀N g 0,

which we will use in the following calculations.

We have

‖D̄t,
(w
(t)
q+1⊗̊w

(t)
q+1)‖N � ‖D̄t (w

(t)
q+1⊗̊w

(t)
q+1)‖N + ‖w(t)

q+1 · ∇(w
(t)
q+1⊗̊w

(t)
q+1)‖N

� ‖D̄tw
(t)
q+1‖N‖w(t)

q+1‖0 + ‖D̄tw
(t)
q+1‖0‖w(t)

q+1‖N

+ ‖w(t)
q+1‖N‖w(t)

q+1⊗̊w
(t)
q+1‖1

+ ‖w(t)
q+1‖0‖w(t)

q+1⊗̊w
(t)
q+1‖N+1

� μq+1
δq+1λ

2/3
q

λ
2/3
q+1

λN
q+1 +

δq+1λq�−α
q

μq+1

δq+1λ
2/3
q

λ
2/3
q+1

λqλN
q+1

� μq+1
δq+1λ

2/3
q

λ
2/3
q+1

λN
q+1,
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where we have used that

δq+1λ
2
q�−α

q

μq+1
< τ−1

q < μq+1. �

We, finally, prove the required bounds for the spatial mollification error.

Lemma 4.16 The following estimates hold for the spatial mollification error:

∥
∥wq+1⊗̊(uq − ūq) + (uq − ūq)⊗̊wq+1

∥
∥

N
�

δ
1/2
q+1δ

1/2
q λq

λq+1
λN

q+1, ∀N ∈ {0,1, . . . ,L}
(4.49)

∥
∥D̄t,


(

wq+1⊗̊(uq − ūq) + (uq − ūq)⊗̊wq+1

)∥
∥

N

� δ
1/2
q+1λ

1/3
q λ

2/3
q+1

δ
1/2
q+1δ

1/2
q λq

λq+1
λN

q+1, (4.50)

∀N ∈ {0,1, . . . ,L − 1},

‖Rq − Rq,0‖N �
δq+1λq

λq+1
λN

q+1, ∀N ∈ {0,1, . . . ,L}, (4.51)

‖D̄t,
(Rq − Rq,0)‖N � δq+1δ
1/2
q λqλN

q+1, ∀N ∈ {0,1, . . . ,L − 1}, (4.52)

where the implicit constants depend on 
, M , α, and N .

Proof By proposition A.2, we have

‖uq − ūq‖0 � δ
1/2
q λ2

q�2
q � δ

1/2
q

λq

λq+1
.

Moreover, for N ∈ {1,2, . . . ,L}, the inductive assumptions on uq imply

‖uq − ūq‖N � δ
1/2
q

λq

λq+1
λN

q+1.

Then, using the estimates of lemma 4.5, we conclude

∥
∥wq+1⊗̊(uq − ūq) + (uq − ūq)⊗̊wq+1

∥
∥

N

� ‖wq+1‖N‖uq − ūq‖0 + ‖wq+1‖0‖uq − ūq‖N

�
δ

1/2
q+1δ

1/2
q λq

λq+1
λN

q+1,

and (4.49) is proven.

For (4.50), we have on the one hand

‖D̄t,
w
(s)
q+1‖N � μq+1δ

1/2
q+1λ

N
q+1,
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as seen in the proof of lemma 4.13, and

‖D̄t,
w
(t)
q+1‖N � μq+1

δ
1/2
q+1λ

1/3
q

λ
1/3
q+1

λN
q+1,

by arguments similar to the ones given in the proof of lemma 4.15. On the other hand,

D̄t,
(uq − ūq) = w
(t)
q+1 · ∇(uq − ūq) + D̄t (uq − ūq),

where

‖w(t)
q+1 · ∇(uq − ūq)‖N �

δ
1/2
q+1λ

1/3
q

λ
1/3
q+1

δ
1/2
q

λq

λq+1
λN+1

q+1 , ∀N ∈ {0,1...,L − 1},

and it remains to collect estimates for D̄t (uq − ūq). We write

D̄t (uq − ūq) = (∂tuq + uq · ∇uq) − (∂tuq + uq · ∇uq) ∗ ζ�q + (ūq − uq) · ∇uq

+ div((uq ⊗ uq) ∗ ζ�q − ūq ⊗ ūq).

Using the Euler-Reynolds system (2.1), we have

‖(∂tuq + uq · ∇uq) − (∂tuq + uq · ∇uq) ∗ ζ�q ‖N

� ‖∇pq − ∇pq ∗ ζ�q ‖N + ‖divRq − divRq,0‖N

By the inductive estimates and proposition A.2, we have

‖∇pq − ∇pq ∗ ζ�q ‖N �
δqλ2

q

λq+1
λN

q+1, ∀N ∈ {0,1, . . . ,L − 1},

and

‖divRq − divRq,0‖N �
δq+1λ

2
q

λq+1
λN

q+1, ∀N ∈ {0,1, . . . ,L − 1}.

Moreover,

‖(ūq − uq) · ∇uq‖N � ‖ūq − uq‖N‖uq‖1 + ‖ūq − uq‖0‖uq‖N+1

�
δqλ2

q

λq+1
λN

q+1, ∀N ∈ {0,1, . . . ,L − 1},

and, finally, by the Constantin-E-Titi commutator estimate of proposition A.3,

‖div((uq ⊗ uq) ∗ ζ�q − ūq ⊗ ūq)‖N � �3−(N+1)
q ‖uq‖2‖uq‖1

�
δqλ2

q

λq+1
λN

q+1, ∀N g 0.
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Upon noting that

δ
1/2
q λq < δ

1/2
q+1λ

1/3
q λ

2/3
q+1,

we conclude that

‖D̄t,
(uq − ūq)‖N � δ
1/2
q+1λ

1/3
q λ

2/3
q+1

δ
1/2
q λq

λq+1
λN

q+1, ∀N ∈ {0,1, . . . ,L − 1}.

Then, (4.50) follows since

μq+1 = δ
1/2
q+1λ

2/3
q λ

1/3
q+1λ

4α
q+1 f δ

1/2
q+1λ

1/3
q λ

2/3
q+1,

whenever α is chosen sufficiently small.

The inequalities (4.51) follow from proposition A.2 by the same reasoning we

have used above to estimate uq − ūq . Finally, for (4.52), we write

D̄t,
(Rq − Rq,0) = w
(t)
q+1 · ∇(Rq − Rq,0) + DtRq + (ūq − uq) · ∇Rq − D̄tRq,0,

and compute:

‖w(t)
q+1 · ∇(Rq − Rq,0)‖N �

δ
1/2
q+1λ

1/3
q

λ
1/3
q+1

δq+1λqλN
q+1

� δq+1δ
1/2
q λqλN

q+1, ∀N ∈ {0,1, . . . ,L − 1},

‖DtRq‖N + ‖D̄tRq,0‖N � δq+1δ
1/2
q λqλN

q+1, ∀N ∈ {0,1, . . . ,L − 1},

where we use lemma 3.1 and the inductive assumption; and

‖(ūq − uq) · ∇Rq‖N � δq+1λqδ
1/2
q

λq

λq+1
λN

q+1

� δq+1δ
1/2
q λqλN

q+1 ∀N ∈ {0,1, . . . ,L − 1}.

The final conclusion, then, follows. �

4.8 Estimates for the pressure

Recalling the definition (4.14) of pq+1 and the expression (3.70) for pq,
 , we write

pq+1 = pq +


∑

n=1

p
(t)
q+1,n −


−1
∑

n=0

	−1 div div
(

Rq,n +
∑

ξ,k

g2
ξ,k,n+1Aξ,k,n

)

−
|w(t)

q+1|2

2
+ 〈ūq − uq ,wq+1〉.
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Lemma 4.17 The following estimates hold for the new pressure:

‖pq+1‖N �
δ

1/2
q+1δ

1/2
q λ

1/3
q

λ
1/3
q+1

λN
q+1, ∀N ∈ {1,2, . . . ,L}, (4.53)

where the implicit constants depend on 
, M , α, and N .

Proof We have

‖pq+1‖N � ‖pq‖N +


∑

n=1

‖p(t)
q+1,n‖N +


−1
∑

n=0

‖	−1 div div
(

Rq,n

+
∑

ξ,k

g2
ξ,k,n+1Aξ,k,n

)

‖N

+ ‖|w(t)
q+1|

2‖N + ‖〈ūq − uq ,wq+1〉‖N

Estimates for pq . By the inductive assumptions, we have

‖pq‖N �
δqλq

λq+1
λN

q+1, ∀N ∈ {1,2, . . . ,L}.

Note, then, that

δqλq

λq+1
f

δ
1/2
q+1δ

1/2
q λ

1/3
q

λ
1/3
q+1

.

Estimates for p
(t)
q+1,n. Recall that p

(t)
q+1,n =

∑

k χ̃kpk,n, so it suffices to obtain

estimates for pk,n on supp χ̃k . We note, then, that (3.21) implies

pk,n = −2	−1
2
∑

i,j=1

∂iw
j
k,n∂j ū

i
q

= −2	−1 div(wk,n · ∇ūq) = 2	−1 div div(ψk,n∇⊥ūq).

Therefore, since 	−1 div div is an operator of Calderón-Zygmund type, we obtain,

for N g 0,

‖pk,n‖N+α � ‖ψk,n‖N+α‖∇ūq‖α + ‖ψk,n‖α‖∇ūq‖N+α

�
δq+1

μq+1
δ

1/2
q λqλN+2α

q+1 �
δ

1/2
q+1δ

1/2
q λ

1/3
q

λ
1/3
q+1

λN
q+1.

Estimates for 	−1 div div
(

Rq,n +
∑

ξ,k g2
ξ,k,n+1Aξ,k,n

)

. We have, for all N g 1,

‖	−1 div div
(

Rq,n +
∑

ξ,k

g2
ξ,k,n+1Aξ,k,n

)

‖N+α � ‖Rq,n‖N+α + ‖Aξ,k,n‖N+α
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�
δq+1λq

λ1−α
q+1

λN
q+1,

where we have appealed to lemma 3.6 and proposition 3.4. Once again, we note that

for all α > 0 sufficiently small, it holds that

δq+1λq

λ1−α
q+1

f
δ

1/2
q+1δ

1/2
q λ

1/3
q

λ
1/3
q+1

.

The estimates for |w(t)
q+1|2 and 〈ūq − uq ,wq+1〉 are the same as those obtained in

lemmas 4.15 and 4.16, respectively. Both satisfy better estimates than those claimed

here. �

Corollary 4.18 The following hold:

‖pq+1‖N f M2δq+1λ
N
q+1, ∀N ∈ {1,2, . . . ,L}. (4.54)

Proof Since β < 1/3, we have that

δ
1/2
q+1δ

1/2
q λ

1/3
q

λ
1/3
q+1

< δq+1λ
−α
q+1,

whenever α > 0 is sufficiently small. Then, the previous lemma implies that there

exists a constant C depending on L, M , α, and β such that

‖pq+1‖N f Cλ−α
q+1δq+1λ

N
q+1, ∀N ∈ {1,2, . . . ,L}.

The conclusion follows once we choose a0 sufficiently large so that

Cλ−α
q+1 < M2. �

4.9 Conclusion

Corollaries 4.6 and 4.18 show, respectively, the inductive propagation of the estimates

concerning the velocity field and the pressure. It remains, then, to check the propaga-

tion of the estimates on the Reynolds stress. In the following, we denote the material

derivative corresponding to the vector field uq+1 by

Dt,q+1 = ∂t + uq+1 · ∇.

Corollary 4.19 The following estimates hold for the new Reynolds stress:

‖Rq+1‖N f δq+2λ
N−3α
q+1 , ∀N ∈ {0,1, . . . ,L}, (4.55)

‖Dt,q+1Rq+1‖N f δq+2δ
1/2
q+1λ

N+1−2α
q+1 , ∀N ∈ {0,1, . . . ,L − 1}. (4.56)
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Proof The estimates obtained in the previous sections imply

‖Rq+1‖N �

(
δ

1/2
q δ

1/2
q+1λq

λq+1
+ δq+1λ

2/3
q

λ
2/3
q+1

+ δq+1λq

λq+1
+

δ
3/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

)

λ5α
q+1λ

N
q+1.

One can check directly that

δq+1λq

λq+1
<

δ
1/2
q δ

1/2
q+1λq

λq+1
<

δq+1λ
2/3
q

λ
2/3
q+1

<
δ

3/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

,

which implies

‖Rq+1‖N �
δ

3/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

λ5α
q+1λ

N
q+1.

Note that since

1 < b <
1 + 3β

6β
,

we have

δ
3/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

< δq+2,

and, thus, by choosing α sufficiently small depending on β and b, we can ensure that

δ
3/2
q+1λ

1/3
q

δ
1/2
q λ

1/3
q+1

λ5α
q+1 f δq+2λ

−4α
q+1 .

Then, there exists a constant C depending on L, β , b, α and M such that

‖Rq+1‖N f Cλ−α
q+1δq+2λ

N−3α
q+1 , ∀N ∈ {0,1, . . . ,L}.

The estimates in (4.55) follow once we choose a0 sufficiently large so that

Cλ−α
q+1 < 1.

It remains to show the validity of the estimates on the material derivative corre-

sponding to uq+1. For this purpose, we write

‖Dt,q+1Rq+1‖N � ‖D̄t,
Rq+1‖N + ‖(uq − ūq) · ∇Rq+1‖N + ‖w(s)
q+1 · ∇Rq+1‖N .

Plugging in the expressions for τq , μq+1 and �t,q into the estimates obtained in the

previous sections, we obtain that, for all N ∈ {0,1, . . . ,L − 1},

‖D̄t,
Rq+1‖N �

(
δq+1δ

1/2
q λ

5/3
q

λ
2/3
q+1

+ δq+1δ
1/2
q λq + δ

3/2
q+1λ

2/3
q λ

1/3
q+1 +

δ
3/2
q+1λ

5/3
q

λ
2/3
q+1
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+
δq+1δ

1/2
q λ2

q

λq+1
+

δ
3/2
q+1λ

4/3
q

λ
1/3
q+1

+ δq+1δ
1/2
q λ

4/3
q

λ
1/3
q+1

)

λ5α
q+1λ

N
q+1.

One can check that

δq+1δ
1/2
q λ2

q

λq+1
<

δ
3/2
q+1λ

5/3
q

λ
2/3
q+1

<
δq+1δ

1/2
q λ

5/3
q

λ
2/3
q+1

<
δ

3/2
q+1λ

4/3
q

λ
1/3
q+1

<
δq+1δ

1/2
q λ

4/3
q

λ
1/3
q+1

< δq+1δ
1/2
q λq < δ

3/2
q+1λ

2/3
q λ

1/3
q+1,

and, thus,

‖D̄t,
Rq+1‖N � δ
3/2
q+1λ

2/3
q λ

1/3
q+1λ

5α
q+1λ

N
q+1.

Since,

b <
1 + 3β

6β
<

1

3β
,

we argue as before to conclude that

‖D̄t,
Rq+1‖N f δq+2δ
1/2
q+1λ

N+1−3α
q+1 , ∀N ∈ {0,1, . . . ,L − 1},

whenever α > 0 is sufficiently small. Recalling that

‖ūq − uq‖N � δ
1/2
q

λq

λq+1
λN

q+1, ∀N ∈ {0,1, . . . ,L},

we obtain

‖(ūq − uq) · ∇Rq+1‖N � ‖ūq − uq‖N‖Rq+1‖1 + ‖ūq − uq‖0‖Rq+1‖N+1

� δ
1/2
q

λq

λq+1
δq+2λ

N+1−3α
q+1 � δq+2δ

1/2
q+1λ

N+1−3α
q+1 ,

where for the last inequality we use the fact that

δ
1/2
q

λq

λq+1
f δ

1/2
q+1.

Finally, by lemma 4.5,

‖w(s)
q+1 · ∇Rq+1‖N � ‖w(s)

q+1‖N‖Rq+1‖1 + ‖w(s)
q+1‖0‖Rq+1‖N+1

� δq+2δ
1/2
q+1λ

N+1−3α
q+1 .

We conclude, then, that there exists a constant C depending on L, β , b, α and M so

that

‖Dt,q+1Rq+1‖N f Cλ−α
q+1δq+2δ

1/2
q+1λ

N+1−2α
q+1 , ∀N ∈ {0,1, . . . ,L − 1}.

The conclusion follows once we choose a0 sufficiently large. �
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Appendix A: Hölder spaces, compositions, mollification

Let N ∈ N and α ∈ [0,1). For functions f : T2 →R, we denote the C0 norm by

‖f ‖0 := sup
x∈T2

|f (x)|,

and the Hölder semi-norms by

[f ]N = sup
|θ |=N

‖Dθf ‖0,

[f ]N+α = sup
|θ |=N

sup
x �=y

|Dθf (x) − Dθf (y)|
|x − y|α ,

where in the above θ denotes a multi-index. We denote the Hölder norms by

‖f ‖N =
N
∑

j=0

[f ]j ,

‖f ‖N+α = ‖f ‖N + [f ]N+α.

We keep the notation above also in the case f is a vector field or a tensor field.

Moreover, if f is time-dependent, we denote by a slight abuse of notation,

‖f ‖N = sup
t

‖f (·, t)‖N ,

‖f ‖N+α = sup
t

‖f (·, t)‖N+α.

When we are interested in the spatial Hölder norms at a particular time-slice, we use

the notation on the right-hand side of the two equations above. Finally, with A ⊂ R,

we denote

‖f ‖N,A = sup
t∈A

‖f (·, t)‖N .

Let us recall the classical interpolation inequality

‖f ‖N+α f C‖f ‖λ
N1+α1

‖f ‖1−λ
N2+α2

,

where

N + α = λ(N1 + α1) + (1 − λ)(N2 + α2),

and C is a constant depending on N , N1, N2, α, α1 and α2. Recall also the following

standard estimate for products:

‖fg‖N+α f C(‖f ‖N+α‖g‖0 + ‖f ‖0‖g‖N+α).

Regarding compositions, we recollect the classical estimate below. The reader is

referred to [22] for a proof.
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Proposition A.1 Let � : � → R and u : Rn → � be two smooth functions, with � ⊂
R

N . Then, for any m ∈ N \ {0}, there exists a constant C = C(m,N,n) such that

[� ◦ u]m f C
(

[�]1‖Du‖m−1 + ‖D�‖m−1‖u‖m−1
0 ‖u‖m

)

,

[� ◦ u]m f C
(

[�]1‖Du‖m−1 + ‖D�‖m−1[u]m1
)

.

We also use the following results concerning mollification. A detailed proof is

given in lemma 2.1 of [17]

Proposition A.2 Let φ be a symmetric mollifier with
´

φ = 1. Then, for any f ∈
C∞(T2) and N g 0,

‖f − f ∗ φ�‖N � �2‖f ‖N+2,

where the implicit constant depends only on N .

Proposition A.3 Let φ be a standard mollifier. Then, for any f,g ∈ C∞(T2) and N g
M g 0,

‖(fg) ∗ φ� − (f ∗ φ�)(g ∗ φ�)‖N � �2−N+M
(

‖f ‖M+1‖g‖1 + ‖f ‖1‖g‖M+1

)

,

where the implicit constant depends only on N and M .

Proof The case M = 0 is proved in [17]. If M > 0, the previous case implies

‖(fg) ∗ φ� − (f ∗ φ�)(g ∗ φ�)‖N−M � �2−N+M‖f ‖1‖g‖1.

Let θ be a multi-index with |θ | f M . Then,

‖∂θ [(fg) ∗ φ� − (f ∗ φ�)(g ∗ φ�)]‖N−M

�
∑

αfθ

‖(∂αf ∂θ−αg) ∗ φ� − (∂αf ∗ φ�)(∂
θ−αg ∗ φ�)‖N−M

� �2−N+M
∑

αfθ

‖∂αf ‖1‖∂θ−αg‖1

� �2−N+M
(

‖f ‖M+1‖g‖1 + ‖f ‖1‖g‖M+1

)

,

where, for the last inequality, we use interpolation and Young’s inequality for prod-

ucts. The conclusion follows once we note that ‖(fg) ∗ φ� − (f ∗ φ�)(g ∗ φ�)‖N is

bounded by the sum of the terms on the left hand side of the previous relation. �

The proposition above is a version of the Constantin-E-Titi commutator estimate

([16]).
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Appendix B: Estimates for transport equations

We recall standard estimates for solutions to the transport equation

{

∂tf + u · ∇f = g,

f
∣
∣
t=t0

= f0.
(B.1)

The following proposition is stated in [6] and it follows by interpolation from the

corresponding result in [4].

Proposition B.1 Assume |t − t0|‖u‖1 f 1. Any solution f of (B.1) satisfies

‖f (·, t)‖0 f ‖f0‖0 +
ˆ t

t0

‖g(·, τ )‖0dτ,

‖f (·, t)‖α f 2
(

‖f0‖α +
ˆ t

t0

‖g(·, τ )‖αdτ
)

,

for α ∈ [0,1]. More generally, for any N g 1 and α ∈ [0,1),

[f (·, t)]N+α � [f0]N+α + |t − t0|[u]N+α[f0]1

+
ˆ t

t0

(

[g(·, τ )]N+α + (t − τ)[u]N+α[g(·, τ )]1

)

dτ,

where the implicit constant depends on N and α. Consequently, the backwards flow

� of u starting at time t0 satisfies

‖D�(·, t) − Id‖0 � |t − t0|[u]1,

[�(·, t)]N � |t − t0|[u]N , ∀N g 2.

Appendix C: Singular integral operators

In this paper, we consider the following class of Calderón-Zygmund operators: Let

K : R2 →R be a kernel which is homogeneous of degree −2, smooth away from the

origin, and has zero mean on circles centered at the origin. Consider the periodization

of K

KT2(z) = K(z) +
∑

n∈Z2\{0}
(K(z + n) − K(n)).

Define, then,

TKf (x) = p.v.

ˆ

T2
KT2(x − y)f (y)dy,

to be the T2-periodic Calderón-Zygmund operator acting on T
2-periodic functions f

of zero mean. The following is, then, a classical result ([8]).
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Proposition C.1 For α ∈ (0,1), the periodic Calderón-Zygmund operators are

bounded on the space of zero mean T
2-periodic Cα functions.

We also recall the following commutator estimate, which is a variant of lemma 1

in [15]. There, the result is stated on the whole space R
d and only for N = 0. The

adaptation to the case of the periodic torus and the extension to N > 0 were given in

proposition D.1. of [6]. We remark that, while the corresponding proposition in [6] is

stated on T
3, the arguments carry over to any dimension without modification.

Proposition C.2 Let α ∈ (0,1) and N g 0. Let TK be a Calderón-Zygmund operator

with kernel K . Let b ∈ CN+α(T2) be a vector field. Then, we have

‖[TK , b · ∇]f ‖N+α � ‖b‖1+α‖f ‖N+α + ‖b‖N+1+α‖f ‖α

for any f ∈ CN+α(T2), where the implicit constant depends on α, N , K .

Appendix D: Tools of convex integration

D.1 A geometric lemma

The following geometric lemma, which is essentially due to Nash ([30]) and which

was reformulated in the form below in [36], is used to decompose the Reynolds stress

into simple tensors.

Lemma D.1 Let B1/2(Id) denote the metric ball centered around the identity in the

space S2×2 of symmetric 2 × 2 matrices. There exist a finite set 
 ⊂ Z
2 and smooth

functions γξ : B1/2(Id) → R, for each ξ ∈ 
, such that

R =
∑

ξ∈


γ 2
ξ (R)ξ ⊗ ξ,

whenever R ∈ B1/2(Id).

D.2 An inverse divergence operator

We use the following inverse-divergence operator

(Ru)ij = 	−1(∂iu
j + ∂ju

i − divuδij ), (D.1)

which maps smooth, mean-zero vector fields u to smooth, symmetric and trace-free

2-tensors Ru. This operator was first defined in [14] and is the 2-dimensional coun-

terpart of the 3-dimensional inverse divergence operator introduced in [21, 22]. The

main properties of R are gathered in the following proposition, which is proven in

[14].

Proposition D.2 If u is a smooth, mean-zero vector field, then the 2-tensor field Ru

defined by (D.1) is symmetric and satisfies

divRu = u.
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D.3 A stationary phase lemma

We refer the reader to [18] for the proof of the following stationary phase lemma. We

remark, however, that, while the lemma is therein stated on T
3, an inspection of the

proof immediately reveals that the arguments are independent of the dimension of the

spatial domain.

Proposition D.3 Let α ∈ (0,1) and N g 1. Let a ∈ C∞(T2), � ∈ C∞(T2;R2) be

smooth functions and assume that

Ĉ−1 f |∇�| f Ĉ

holds on T
2. Then

∣
∣
∣
∣

ˆ

T2
a(x)eik·� dx

∣
∣
∣
∣
�

‖a‖N + ‖a‖0‖∇�‖N

|k|N , (D.2)

and for the operator R defined in (D.1), we have

∥
∥
∥R

(

a(x)eik·�
)∥
∥
∥

α
�

‖a‖0

|k|1−α
+ ‖a‖N+α + ‖a‖0‖∇�‖N+α

|k|N−α
(D.3)

where the implicit constants depend on Ĉ, α and N , but not on k.

Appendix E: Global well-posedness for the linearized Euler equations

Consider the Newtonian linearization of the Euler equations on the domain [−T ,T ]×
T

d , T > 0 and d g 2.

⎧

⎪
«

⎪
¬

∂tw + u · ∇w + w · ∇u + ∇p = F

divw = 0,

w
∣
∣
t=0

= w0,

(E.1)

where u : [−T ,T ] × T
d → R

d is a divergence-free vector field, the forcing F :
[−T ,T ] × T

d → R
d is taken, without loss of generality, to be divergence-free,

and the initial data w0 : Td → R
d is also assumed to be divergence-free. The un-

knowns are the vector-field w : [−T ,T ] × T
d → R

d and the scalar pressure p :
[−T ,T ] ×T

d → R.

The pressure is determined up to an additive constant by

−	p = div div(u ⊗ w + w ⊗ u) = 2 div(w · ∇u). (E.2)

Therefore, we can rewrite the system (E.1) as

{

∂tw + u · ∇w + (Id−2∇	−1 div)(w · ∇u) = F

w
∣
∣
t=0

= w0.
(E.3)
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The following proposition shows global well-posedness for the equations (E.1).

We will impose on a solution (w,p) that p has zero-mean, so that it is uniquely

determined by (E.2).

Proposition E.1 Let T > 0, N ∈ N \ {0}, 0 < α < 1, and assume u ∈ C([−T ,T ];
CN+1+α(Td)), F ∈ C([−T ,T ];CN+α(Td)) and w0 ∈ CN+α(Td) are divergence-

free vector fields. Then, there exists a unique solution (w,p) of (E.1) such that

w ∈ C([−T ,T ];CN+α(Td)) ∩ C1([−T ,T ];CN−1+α(Td))

and p ∈ C([−T ,T ];CN+α(Td)).

Proof Let us first note that it suffices to prove the well-posedness of (E.3) in the

required regularity class. The regularity of the pressure p will then follow from that

of w since 	−1 div div is an operator of Calderón-Zygmund type.

Local existence. Let m ∈ N \ {0} and let wm ∈ CtC
N+α
x ∩ C1

t CN−1+α
x be the in-

ductively defined solution of

{

∂twm + u · ∇wm + T (wm−1 · ∇u) = F

wm

∣
∣
t=0

= w0,

where T is the Calderón-Zygmund type operator T = Id−2∇	−1 div. The global

existence and uniqueness of wm follows from the classical Cauchy-Lipschitz theory

for ODE’s in view of the expression

wm(x, t) = w0(�(x, t)) −
ˆ t

0

T (wm−1 · ∇u)(X(�(x, t), s), s)ds

+
ˆ t

0

F(X(�(x, t), s), s)ds,

where X and � denote the Lagrangian and backwards flows of u, respectively. The

fact that wm ∈ CtC
N+α
x can also be seen from the expression above by induction on

m, while wm ∈ C1
t CN−1+α

x follows from

∂twm = −u · ∇wm − T (wm−1 · ∇u) + F.

We claim that the sequence {wm} is Cauchy in C([−τ, τ ];
CN+α(Td))∩C1([−τ, τ ];CN−1+α(Td)), provided τ > 0 is chosen sufficiently small

in terms of N , α, and ‖u‖N+1+α . To prove this, we consider vm = wm+1 − wm and

note that it solves
{

∂tvm + u · ∇vm + T (vm−1 · ∇u) = 0

vm

∣
∣
t=0

= 0.

Then, assuming τ‖u‖N+α < 1, proposition B.1 implies

‖vm‖α � τ‖T (vm−1 · ∇u)‖α � τ‖vm−1‖α,
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and, for all 1 f k f N ,

[vm]k+α � τ‖T (vm−1 · ∇u)‖k+α � τ‖vm−1‖k+α.

Thus, there exists a constant C > 0 depending on N , α and ‖u‖N+1+α so that

‖vm‖N+α f Cτ‖vm−1‖N+α.

By taking τ such that Cτ < 1/2, we obtain

‖vm‖N+α f 1

2m
‖v0‖N+α,

which immediately implies that {wm} is Cauchy in C([−τ, τ ];CN+α(Td)). To see

that it is also Cauchy in C1([−τ, τ ];CN−1+α(Td)), we note that, for m,m′ ∈N\ {0},

‖∂t (wm − wm′)‖N−1−α

f ‖u · ∇(wm − wm′)‖N−1−α + ‖T ((wm−1 − wm′−1) · ∇u)‖N−1+α

� ‖wm − wm′‖N+α + ‖wm−1 − wm′−1‖N−1+α.

Let, then,

w = lim
m→∞

wm ∈ C([−τ, τ ];CN+α(Td)) ∩ C1([−τ, τ ];CN−1+α(Td)).

It is clear that w is a solution to (E.3) on the time interval [−τ, τ ].
Uniqueness. Let w1 and w2 be two solutions to (E.3), and denote v = w2 − w1.

Then,

{

∂tv + u · ∇v + T (v · ∇u) = 0

v
∣
∣
t=0

= 0.

By proposition B.1, we have

‖v(·, t)‖α �

ˆ t

0

‖T (v · ∇u)(·, s)‖αds �

ˆ t

0

‖v(·, s)‖αds,

whenever |t |‖u‖1 f 1. Grönwall’s inequality implies that v = 0 on the time interval

(−‖u‖−1
1 ,‖u‖−1

1 ). Of course, then, uniqueness holds globally be covering [−T ,T ]
with intervals of length ‖u‖−1

1 .

Global existence. Denote tk = 1
2
kτ , k ∈ Z. Then, let w0 be the unique solution on

the time interval (−τ, τ ) with initial data w0
∣
∣
t=0

= w0; and let wk be defined as the

solution on (tk − τ, tk + τ) ∩ [−T ,T ] with initial condition

wk
∣
∣
t=tk

=
{

wk−1(tk), if k > 0,

wk+1(tk), if k < 0.

By uniqueness, we can define a global solution w(·, t) = wk(·, t) if t ∈ (tk −τ, tk +τ),

and, thus, conclude the proof. �
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Remark E.2 If u,F ∈ C∞([−T ,T ]×T
d), and w0 ∈ C∞(Td) then the unique solution

w given by the proposition is also in the regularity class C∞([−T ,T ]×T
d). The fact

that w ∈ CtC
∞
x is clear. To see the regularity in time, we write

∂tw = −u · ∇w − (Id−2∇	−1 div)(w · ∇u) + F,

and conclude that

w ∈ Ck
t C∞

x =⇒ ∂tw ∈ Ck
t C∞

x =⇒ w ∈ Ck+1
t C∞

x .
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