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Land stewards in dryland ecosystems across the western U.S. face challenges to 
manage the exotic grass Bromus tectorum (cheatgrass), which is a poor forage, is 
difficult to remove, and increases risk of catastrophic fire. Managers may consider 
using indaziflam (Rejuvra™), a relatively new pre-emergent herbicide, which may 
reduce cheatgrass cover within drylands. However, few studies have explored the 
effects of indaziflam on non-target organisms. We tested how indaziflam application 
impacted cover and biomass of native and exotics within the plant community 
and composition and diversity of the soil microbiome by comparing untreated 
and treated arid shrubland sites in Boulder County, Colorado, USA. We found 
that indaziflam application decreased cheatgrass cover by as much as 80% and 
increased native plant cover by the same amount. Indaziflam application also 
was associated with increased soil nitrate (NO3

−), decreased soil organic matter, 
and had a significant effect on the composition of the soil microbiome. Microbial 
community composition was significantly related to soil NO3

−, soil organic matter, 
soil pH, and native species and cheatgrass biomass. An indicator species analysis 
suggested that indaziflam application shifted microbial communities. In untreated 
sites, ammonia-oxidizing bacteria Nitrosomonadaceae and nitrogen-digesting 
Opitutaceae and the fungi Articulospora proliferata were found. While in treated 
sites, ammonia-oxidizing archaea which are associated with intact drylands, 
Nitrososphaeraceae and toxin digesters and acidic-soil species Sphingomonas 
and Acidimicrobiia were significantly associated. Overall, these results demonstrate 
that indaziflam application can increase native plant recruitment, while also 
affecting soil properties and the soil microbiome. The findings from this study can 
be used to inform decision-making during dryland restoration planning process 
as indaziflam use may have benefits and unknown long-term consequences for 
the biogeochemistry and microbial ecology of the system.
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Introduction

Cheatgrass now occupies over 54 million acres in the Intermountain West (the region of 
the United  States between the Rocky Mountains, Cascades, and Sierra Nevada’s but not 
including the Pacific Coast) after its introduction as a contaminant in grain during the 1900s 
(Pierson and Mack, 1990; Sebastian et al., 2017). Cheatgrass is an early seeding grass which 
outcompetes native plant species, resulting in loss of diversity, disruptions of historic grazing 
regimes, and increased risk of catastrophic wildfire (Balch et al., 2013; Pilliod et al., 2017). 
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These impacts have driven land managers to seek strategies for 
reducing cheatgrass populations, but targeted grazing, prescribed 
burning, and use of other herbicides have all had limited success 
(Lehnhoff et al., 2019; Mack, 2010; Perryman et al., 2020).

Indaziflam (marketed as Rejuvra®/Esplanade® by Bayer 
CropScience) is a relatively new herbicide that was approved in 
2010 for use to control invasive annual grasses on rangeland and 
open space. Indaziflam is a fluoroalkyl triazine-containing 
herbicide that inhibits cellulose synthesis (Brabham et al., 2014). 
Indaziflam application has shown reduction of cheatgrass (Clark 
et  al., 2023; Meyer-Morey et  al., 2021; Sebastian et  al., 2017). 
However, weed control with indaziflam may also impact non-target 
taxa (Meyer-Morey et al., 2021; Sebastian et al., 2020; Strilbytska 
et al., 2022). Thus far, treatment with indaziflam has shown positive 
(Clark et al., 2023; Seshadri et al., 2018) and negative (Clenet et al., 
2019; Fowers and Mealor, 2020; Meyer-Morey et al., 2021) effects 
on native plant cover and diversity. While Seshadri et al. (2018) 
found that indaziflam increased native forb diversity and floral 
resources for pollinators, Meyer-Morey et al. (2021) saw reduction 
in cover of target invasive annual mustards (Alyssum spp.) and also 
decreased native forb diversity 2 years following treatment in a 
sagebrush steppe ecosystem. Given these limited and conflicting 
results, additional study about indaziflam effects on native plant 
communities and non-target organisms following treatment 
is needed.

Herbicides may also impact soil microbial communities and 
nutrient cycling (Asad et al., 2017; Caggìa et al., 2023; Sebastian et al., 
2020; Van Bruggen et al., 2021), although few studies have investigated 
indaziflam’s effect on these processes. Soil microbes mediate key 
ecosystem functions (Fierer et al., 2021; Neilson et al., 2017; Wang and 
Li, 2019), and herbicide treatments can have variable effects on them 
(e.g., Van Bruggen et al., 2021). For example, the broad-spectrum 
systemic herbicide glyphosate interferes with nitrogen metabolism in 
some soil bacteria, while others can digest it (Helander et al., 2012; 
Huang et al., 2017; Ruuskanen et al., 2023). In a study that examined 
indaziflam impacts on soil properties, application shifted soil carbon 
and nitrogen mineralization rates 11 days after treatment (Koçak et al., 
2021). However, to our knowledge, there have been no studies of how 
indaziflam impacts soil microbial community composition in natural 
grassland systems.

The central goal of this study was to explore the effects of 
indaziflam on soil microbial and native plant communities to improve 
management planning and practice. The major research objectives of 
this project were to:

	 1.	 Observationally evaluate the effects of indaziflam on non-target 
soil microorganisms and native plants by comparing 
community composition in areas that have been treated with 
indaziflam herbicide with untreated controls.

	 2.	 Assess whether indaziflam effects on soil microbes and native 
plants vary across
a.	 Ecological gradients (e.g., soil texture, ecological site type, 

and pre-treatment exotic grass cover)
b.	 Time since application.

	 3.	 Explore relationships among exotic plant, native plant, and soil 
community composition in treatment versus control plots to 
infer potential mechanisms whereby indaziflam could affect 
the soil microbial communities.

Incomplete understanding of the effects of indaziflam on 
non-target organisms in natural systems currently limits the capacity 
of land stewards to weigh the potential benefits and risks of indaziflam. 
The findings from this study can support land manager decision-
making by increasing understanding of indaziflam effects on native 
plant and soil microbial communities relative to controls.

Methods

Site description

We collected soil samples and data describing soil physical 
characteristics and plant communities from seven sites within arid 
foothill shrubland 7,000 ft. above sea level in Boulder County Parks 
and Open Space (BCPOS) in Boulder, Colorado USA in June 2022 
(Caudle et al., 2013; Soil Survey Staff, 2024). Soil and vegetation data 
were collected at seven sites spanning a 5-year gradient of time since 
indaziflam treatment (2017–2022). Each site contained two paired 
plots [50×50-m plots one treated with indaziflam (T) and one 
untreated (U)] for a total of 16 plots. Paired plots were selected to have 
similar potential vegetation (ESD), soil texture, and slope (Table 1) to 
each plot. All sites had an average annual temperature of 7.9°C and an 
average annual precipitation of 516 mm (PRISM Climate Group, 
Oregon State University, 2014).

Plant community monitoring

To explore how plant communities responded to herbicide 
treatment, we collected plant cover and biomass data for native and 

TABLE 1  Site characteristics and herbicide application information for each site.

Site ID Site name Year treated Average Soil pH Soil texture

RABB22 Rabbit Mountain 2022 6.6 Very stony sandy loam and clay loam

DORO21 Dorothy Ellen 2021 7.08 Very stony sandy loam

DORO20 Dorothy Ellen 2020 7.13 Very stony sandy loam

TREVA22 Trevarton 2022 7.16 Gravelly sandy loam

TREVA19 Trevarton 2019 6.35 Gravelly sandy loam

TREVA18 Trevarton 2018 5.75 Gravelly sandy loam

TREVA17 Trevarton 2017 6.46 Gravelly sandy loam

Soil texture information from USDA Web Soil Survey tool (Soil Survey Staff, 2024).
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exotic plant communities from indaziflam-treated and untreated plots. 
Vegetation data were collected from three, 1×1-m subplots within each 
plot using a quadrat (Figure 1, Supplementary Figure S1). Subplots were 
first photographed, and a general description of the plant community 
and site type was recorded. Within each subplot, we collected plant data 
on (1) species-level native plant cover (% cover) using a cover estimator 
and visual estimate and biomass (ounces) for grasses, forbs, shrubs, and 
bare ground, (2) exotic plant cover and biomass, (3) native plant 
diversity (e.g., species richness and Shannon diversity) through 
identification of each species present by a trained botanist and using the 
USDA, NCRS (2022) database citation,1 and (4) ground level thatch 
biomass, depth, and cover for native plants and cheatgrass (mm 
measured at thickest point with a ruler). Data were collected from all 
plots in June 2022. Some of the sites shared the same control plots, so 
vegetation monitoring was conducted only once for the shared sites.

Soil physical sampling and analyses

Three soil samples (500 g) were collected to a depth of 10 cm from 
each subplot within each plot using a sterilized trowel 
(Supplementary Figure S1). Soil samples collected from each subplot 
(n = 3 each) were then pooled and homogenized. All samples were 
air-dried and stored in paper bags at room temperature prior to analysis. 
Samples were then sent to the Colorado State University Soil and Plant 
Testing Lab2 where organic matter content, electrical conductivity, pH, 
and nitrate (NO3

−) were measured. Organic matter was measured using 
the loss on ignition method (Mehlich, 1984; Ball, 1964). Bulk density 
was measured with a mass per volume calculation using intact oven-
dried 200 mL subsampled cores (Håkansson, 1990; Håkansson and 
Lipiec, 2000). Electrical conductivity and pH were measured using a 1:1 
soil to water suspension (Sparks, 1996). Finally, nitrate was measured 
using a 2 M KCl extraction (Matsumura and Witjaksono, 1999).

1  http://plants.usda.gov

2  https://agsci.colostate.edu/soiltestinglab/

Soil microbial sampling

Soil samples for microbial analysis were collected from the same 
subplots (Supplementary Figure S1). For these samples, 10 g of soil 
was collected from three points within each subplot to a depth of 
10 cm using a metal trowel that was rinsed in ethanol between plot 
sampling events (Penton et al., 2016). All samples were collected in 
sterile Whirl-Paks™ after sifting roots and debris out and 
homogenized on site, placed on dry ice during transport, and then 
stored in a − 40°C freezer until further analysis. Before conducting 
microbial analysis, soils were sieved through a 3.35 mm sieve.

Soil DNA extraction, PCR, and gene 
amplicon sequencing

See Appendix 1 for a full microbial analysis methodology. First, DNA 
was extracted from 0.25 g of soil using the Qiagen DNeasy PowerSoil Pro 
Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. 
Blank samples were used as negative controls. Next, we used primers 
(515F/806R 16S and ITS1-F/ITS2 ITS) to amplify the V4 region of the 16S 
rRNA gene for bacteria and archaea, and the ITS gene region for fungi 
(Bellemain et al., 2010; Iwen et al., 2002; Parada et al., 2016; Walters et al., 
2016). Each sample was assigned a 12-bp barcode, homogenized, and 
then randomly assigned a location on a 96-well plate. The reactions were 
run in duplicate and then combined. SequalPrep Normalization Kit was 
used to normalize. DNA extraction was done in the Dryland Ecology and 
Management Lab at Colorado State University, while PCR and sequencing 
were done at the CIRES Microbial Community Sequencing Laboratory 
at the University of Colorado Boulder. Samples were then sequenced with 
the Illumina MiSeq platform. For 16S, a 300-cycle kit and, for ITS, a 
500-cycle kit were used, paired-end (PE) for both. After sequencing, 
idemp (idemp3) was used to demultiplex the samples according to their 
specific barcodes. We used cutadapt (Martin, 2011) for cleaning. We then 

3  https://github.com/yhwu/idemp

FIGURE 1

Example photographs of untreated (left) and treated (right) plots taken within the Trevarton site. Untreated plots were generally noticeably covered in 
cheatgrass (yellow arrow pointing to an example), while treated plots usually had fallen cheatgrass, but mostly native grasses and forbs growing within 
the plot.
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used the dada2 package in R (Callahan et al., 2016) to characterize the 
microbial communities in each sample. After using the filertaAndTrim() 
function (settings: 16S truncLen = c(150,150), ITS truncLen = c(200,220), 
maxEE = (2,2), truncQ = 2, rm.phix = T) (see Supplementary Figure S3 
for quality read plots), learning error rates, and merging pairs, we used a 
Bayesian taxonomic identifier (Wang et al., 2007) as implemented in the 
dada2 package to assign a taxonomy based on UNITE (Oct. 2021 release 
for ITS) and Silva (v 138.1 for 16S).

Statistical analyses

Soil microbiome data were filtered and rarified prior to statistical 
analysis. Amplicon sequence variants (ASVs) that were highly 
abundant in negative control samples were filtered out after verifying 
that these ASVs were not highly abundant in the sample data.

All statistical analyses were performed in R version 4.2.2 (R Core 
Team, 2023). We  used generalized linear mixed effects models 
(GLMMs) with the lme4 package (Bates et al., 2014). Separate models 
were built for the following response variables: cheatgrass cover (%), 
cheatgrass biomass (ounces per m2), cheatgrass thatch depth (cm), total 
native herbaceous plant cover (%), total native forb cover (%), total 
native shrub cover (%), native species richness, and soil mineral nutrient 
levels of interest (i.e., organic matter, NO3

− (ppm), pH, and others). In 
each model, indaziflam treatment (i.e., treated vs. control) was included 
as fixed effects, and Site_ID was included as a random effect. The 
significance of individual terms (p < 0.05) included in final models was 
estimated using a Wald Type II Χ2 test (‘ANOVA’ function, car package; 
Fox and Weisberg, 2011). For significant variables, we used planned 
contrasts to explore differences in group means among levels using the 
‘emmeans’ function (package emmeans; Lenth, 2017).

Permutational analysis of variance (PERMANOVA) tests were 
then conducted using the vegan, pairwiseAdonis, and smartsnp 
packages (Arbizu, 2020; Herrando‐Pérez et al., 2021; Oksanen, 2020; 
Polanco-Martínez et al., 2020). In these models, treatment (treated 
with indaziflam or not treated) was the predictor variable, and Bray–
Curtis dissimilarity matrices of vegetation and soil variables were the 
response variables. PERMANOVAs were nested by site. We  first 
calculated the Shannon index and species richness using the diversity() 
and specnumber() functions of the vegan package (Oksanen, 2020).

We then used ANOVA (analysis of variance) tests to compare the 
Shannon indices and species richness (Fox and Weisberg, 2011). To 
parse apart if soil and ecological variables had a related effect on 
microbial diversity and community composition, we also conducted 
a multiple regression on distance matrices (MDRM) test (Goslee and 
Urban, 2007). Finally, we performed an indicator species analysis to 
determine taxa indicative of treated and untreated conditions. For this 
analysis, we used the multipatt() function of the indicspecies package 
(De Cáceres et al., 2010).

Results

Cheatgrass versus native plant species 
responses to indaziflam treatment

The results from generalized linear mixed models comparing 
herbicide treated vs. control plots showed striking differences in plant 

community composition (Figure  2). Overall, plots treated with 
indaziflam herbicide had substantially lower cheatgrass cover 
(Figures 2A–C) and higher native plant cover (Figures 2E–H) relative to 
untreated controls. These differences also varied in magnitude in paired 
plots observed 0–5 years following herbicide treatment (Figure 2). For 
cheatgrass cover, treated plots on average had ~75% lower cheatgrass 
percent cover, with an average of 0 % cheatgrass cover, relative to 
untreated controls (which at a significance level of p < 0.001 had a mean 
of 51–83% cover; Figure  2A). Cheatgrass thatch cover was also 
significantly lower in treatment plots overall (p < 0.001) and decreased 
slightly with increasing time since treatment (p = 0.086; Figure 2C). Total 
percent cover of other non-native weeds was also lower in treatment 
plots, reduced on average by 37% cover (p < 0.001; Figure 2D).

Treated plots on average had ~6-fold greater total native 
herbaceous plant cover relative to untreated controls (p < 0.001; 
treated average cover = >100%, control average cover = 20%; 
Figure  2E), with over 4-fold greater native forb cover (p < 0.001; 
Figure 2F) and 11-fold greater cover of native grasses in treated plots 
(p < 0.001; Figure 2G). Total herbaceous plant biomass (lb./ac) was 
higher (p < 0.001; Figure 2H) in treated plots. Native species richness 
was also substantially higher in indaziflam-treated plots (~10 versus 
~4 native species per plot, respectively; p < 0.001; Figure  2I). 
Together, these results show steep declines in cheatgrass and weed 
cover in indaziflam-treated plots and increases in native plant cover 
and biomass in years following indaziflam application. All data from 
this project can be found at doi: 10.5061/dryad.7m0cfxq4r and in the 
NCBI database under the BioProject ID PRJNA1171444.

Responses of soil physical characteristics 
to indaziflam treatment

Soil physical characteristics also differed between indaziflam 
treatment versus control plots. For soil properties, soil organic 
matter (SOM) was lower in indaziflam-treated plots (p = 0.033; 
Figure 3A) (p = 0.013; Figure 3A). While there were no significant 
differences in SOM in Year 0–1, in Years 2–5 SOM was 
significantly lower in treated plots. In contrast, soil nitrate (NO3

−) 
was higher in indaziflam-treated plots (p < 0.001; Figure  3B). 
Although the magnitude of NO3

− ppm difference between treated 
and untreated plots was not consistent in time since treatment 
(p < 0.001; Figure  3B), soil NO3

− was significantly higher in 
treatment plots spanning all years since treatment except for in 
Year 5 (2022) where it was equivalent between treated and 
untreated plots. Finally, soil pH also differed across plots, although 
differences were variable across time since treatment (p = 0.010; 
Figure 3C). Soil pH was highly variable across years (Figure 3C). 
Soil physical characteristics and plant community data are 
indicated in the file “FINAL_BCPOSVeg.csv.”

Microbial database results

16S data from this project resulted in 9,042 ASVs across all 
samples and treatments. Treated samples had 4,567 ASVs, and 
untreated samples had 4,589 ASVs in total (see file “FINAL16S_
ASVs_ID.csv”). The most abundant phylum included the genus was 
Nitrososphaeraceae that represents ammonia-oxidizing archaea 
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such as Candidatus Nitrosocosmicus, which are common in most 
soils (Sauder et al., 2017; Tourna et al., 2011). The second most 
abundant group were a part of the general Bacillales order, members 
of the Firmicutes phylum, which are also highly abundant and 
common soil microorganisms (Setlow and Doona, 2023).

ITS data resulted in 3,128 ASVs across all samples and treatments. 
Treated samples had 1,539 ASVs, and untreated samples had 1,450 

ASVs in total (see file “FINALITS_ASVs_ID.csv”). The most abundant 
ASV was Solicoccozymaeria, a common soil fungus (Rui et al., 2022). 
Mortierella, another common soil fungus implicated in decay and 
organic matter cycling, was also abundant (Ozimek and Hanaka, 
2021). Other information about community composition can 
be found in the Supplementary materials (file “Bradbury_BCPOS_
SupplementaryMaterials.docx”).

FIGURE 2

(A) percentage of the plot covered by cheatgrass, (B) biomass of cheatgrass collected in plot, (C) percentage of the plot covered by thatch (living and 
dead plant material) from cheatgrass, (D) percentage of the plot covered by weeds other than cheatgrass, (E) percentage of the plot covered by all 
native herbaceous material, (F) percentage of the plot covered by native forbs (subset of native herbaceous cover), (G) percentage of the plot covered 
by native grasses (subset of native herbaceous cover), (H) biomass of native biomass collected in plot, (I) count of native species in plot.
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Microbial community composition variance

PERMANOVA testing nested by site demonstrated that plots 
treated with indaziflam significantly differed in microbial community 
composition from untreated plots for both bacteria/archaea (16S; 
p = 0.008; Table  2; Figure  4) and fungi (ITS; p = 0.001; Table  2; 
Figure 4).

Differences in Shannon diversity of bacterial/archaeal 
communities were also tested with ANOVAs and did not show a 
significant difference between treated and untreated sites in both 16S 

and ITS (Supplementary Table S1, p = 0.845). However, 16S had a 
much higher diversity overall than ITS.

Multiple regression on distance matrices 
(MDRM)

The MDRM test indicated that soil pH (p = 0.040), OM 
(p = 0.033), NO3

− (p = 0.084), and native forb biomass (p = 0.080) 
were all significantly related to the difference in bacterial and archaeal 

FIGURE 3

(A) concentration of soil organic matter (mg/kg) in soil samples from plot, (B) concentration of soil nitrate (ppm) in soil samples from the plot, (C) pH of 
the soil samples from plot.

TABLE 2  p-value and significance level of each soil and biomass variable in the MDRM test for 16S and ITS data showing that pH, organic matter, nitrate, 
and native forb biomass are significantly related to 16S and organic matter to ITS composition.

16S MDRM results

Variable Coefficient p Significance

pH −0.024 0.040 **

OM 0.025 0.033 **

NO3- 0.006 0.084 *

Cheatgrass Biomass −0.011 0.418

Native Grass Biomass 0.008 0.062

Native Forb Biomass −0.014 0.08 *

Native Shrub Biomass 0.009 0.638

ITS MDRM results

Variable Coefficient p Significance

pH −0.002 0.708

OM 0.008 0.068 *

NO3- −0.002 0.202

Cheatgrass Biomass 0.009 0.259

Native Grass Biomass 0.004 0.151

Native Forb Biomass 0.006 0.198

Native Shrub Biomass 0.009 0.343

Significance amount marked by symbols. *p < 0.05. **p < 0.005, ***p< 0.001.
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community composition between treated and untreated plots. Only 
soil OM (p = 0.068) was marginally significantly related to the 
difference in fungal community composition (Table 2).

Indicator species analysis results

Analysis of indicator species demonstrated that there were many 
ASVs significantly associated with indaziflam-treated and untreated 
plots. For 16S, 26 ASVs were indicative of treated sites, while 24 ASVs 

were indicative of untreated sites (see file “IndicSpecResults16S.csv”). 
ITS results had 4 ASVs significantly associated with treated sites and 24 
ASVs associated with untreated sites (see file “IndicSpecResultsITS.csv”).

Discussion

Cheatgrass invasion in dryland ecosystems across the western 
U.S. presents many challenges and considerations for land stewards. 
Indaziflam (Rejuvra™) has recently been approved for use to control 

FIGURE 4

NMDS plots demonstrate the significant difference between treated and untreated sample microbial community composition. The plot on the top 
shows results from 16S and the lower plot shows ITS results. NMDS differences are visualized by distance between points. Circles represent 95% 
confidence intervals.
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cheatgrass. Yet, to date, there have been few studies of the herbicide’s 
effects on non-target organisms. Through plant surveys, soil physical 
analysis, and soil microbiome 16S/ITS amplicon sequencing, we found 
that treatment of cheatgrass with indaziflam had varied effects on different 
ecosystem actors in an arid foothill shrubland in Boulder County, USA.

This study found that plant community composition, soil physical 
characteristics, and soil microbiome shifted dramatically after indaziflam 
application. Cheatgrass cover was reduced by up to 80% in plots that had 
been sprayed just 1 year before monitoring, and native plants almost fully 
recovered in these plots. Organic matter was lower in treated plots than 
untreated plots, and soil nitrate (NO3

−) was higher in treated plots than 
untreated plots, while pH was variable between treatments. Soil 
microbial communities were also impacted by indaziflam treatment, 
with bacterial and fungal communities being significantly different in 
composition between treated and untreated sites. Statistical analysis in 
this study also demonstrated a relationship between microbiome 
composition and soil organic matter, NO3

−, pH, and native forb biomass.
These results show that indaziflam changes plant and soil 

dynamics in ecosystems, but more work is necessary to fully 
understand the mechanisms behind these shifts. This study showed 
that soil microbial communities were different between treated and 
untreated sites but did not parse out if the soil microbial communities 
were responding to the application or if they responded to plant 
community shifts. Based on the PERMANOVA statistical analysis that 
demonstrated soil microbiome is linked with soil physical 
characteristics and treatment, it is likely that both are true. However, 
understanding the mechanism of the soil microbiome shift, and the 
wider impacts of indaziflam through continuous monitoring, is 
critical for future research.

Plant community composition and nutrient 
cycling shift in response to indaziflam 
treatment

Above ground, we  found that application of indaziflam on 
cheatgrass-dominated plots successfully reduced cheatgrass cover 
by 80% on average. Native grasses and forbs recruited in plots that 
had been treated as recently 1 year prior, and native herbaceous 
plants covered up to 100% of treated plots. This response aligns 
with previous literature that has found similar dramatic decreases 
in cheatgrass and increases in native plant cover after indaziflam 
application (Alba et al., 2024; Courkamp et al., 2022; Arathi and 
Hardin, 2021; Kainrath et  al., 2022; Meyer-Morey et  al., 2021; 
Sebastian et al., 2017; Seedorf et al., 2022). Kainrath et al. (2022) 
showed that direct reduction of cheatgrass, as opposed to 
modifying soil physical and microbial characteristics, was the most 
effective restoration strategy for invaded areas and that native 
plants quickly recruited after removal in sagebrush habitat 
(Kainrath et  al., 2022). Therefore, the dramatic reduction of 
cheatgrass after indaziflam application suggests that this tool could 
be useful for opening space for restoration to occur. Arathi and 
Hardin (2021) also found that native and pollinator-friendly plant 
species richness doubled a year after indaziflam application in 
another study conducted in Boulder, CO (Arathi and Hardin, 
2021). This study, taken with the results of our study, demonstrates 
that the goal of native plant recruitment after cheatgrass invasion 
may be met with indaziflam application.

Belowground, we found that soil NO3
− increased after application 

and that SOM significantly decreased. Although Weber et al. (2015) 
also found that nitrate was significantly higher in native perennial 
rangeland than in cheatgrass-dominated areas, many prior studies 
have found more NO3

− after invasion, due to cheatgrass root exudation 
and leaf senescence (e.g., Baughman et al., 2016; Weber et al., 2015). 
Therefore, our more novel result that nitrate increased in the soil after 
indaziflam application could be  due to either legacy effects of 
cheatgrass invasion or of increased nitrogen-synthesizing fungi that 
native plants partner within the rhizosphere. If nitrogen-synthesizing 
fungi are driving the increase in NO3

− after indaziflam application, 
this could point toward the restoration of relationships between native 
plants and microbes after cheatgrass removal.

The findings surrounding soil carbon have also been contradictory, 
and a recent review by Maxwell and Germino (2022) found that the 
carbon dynamics of sites across the Great Basin that have been 
invaded by cheatgrass vary from site to site and have high 
heterogeneity in the magnitude and direction of carbon change 
(Maxwell and Germino, 2022). Our study adds to the complex story 
of soil nutrient dynamics as cheatgrass invades and is removed, and 
native plants revegetate. Our result that soil organic matter decreased 
when cheatgrass was removed (Figure 3A) is likely because cheatgrass 
cover and thatch decreased so dramatically, and therefore, soil organic 
matter that had been previously added by the cheatgrass thatch, 
growth, and decomposition cycle was no longer present. Previous 
studies have shown that when plant cover decreases, soil organic 
carbon decreases, and as soil organic carbon comprises a large portion 
of SOM, our result that a decrease in cheatgrass cover may have led to 
a decrease in SOM agrees with this (Fekete et al., 2012; Koçak et al., 
2021; Wan et al., 2019). These soil physical property and plant changes 
were also related to soil microbial community composition and shifts.

Soil microbial community composition, but 
not diversity, differed significantly between 
treated and untreated sites

The results from soil community composition analyses (i.e., 
PERMANOVA and ANOVA Shannon diversity) demonstrate that 
indaziflam treatment significantly changed microbial community 
composition but not overall diversity. PERMANOVA testing showed 
a statistically significant difference in community composition 
between treated and untreated plots, indicating that microbes in the 
community are different in abundance and composition. Previous 
studies have shown that cheatgrass encroachment itself can shift soil 
microbial communities when compared to native states and that N2 
fixing and uratolytic bacteria increasing while denitrifiers decrease is 
particularly indicative of cheatgrass dominance (Reitstetter et  al., 
2022). The indicator species analysis in this study mirrored this shift, 
meaning that cheatgrass removal was likely a major driver of nitrogen 
microbial dynamics. Furthermore, chiral herbicides such as indaziflam 
have been shown to move soil microbiomes toward aromatic 
compound digestion and affect nitrogen dynamics, which the results 
of our indicator species analysis also support (Asad et al., 2017; Pertile 
et al., 2021).

The results of the MDRM analysis provide insight into the 
ecological dynamics surrounding the difference in treated and 
untreated bacterial communities. Differences in bacterial and 
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archaeal community composition were correlated with differences 
in soil organic matter, soil nitrate, soil pH, and native forb biomass, 
suggesting that associated ecosystem changes with indaziflam 
application are drivers of microbiome shift. This is a critical finding 
as it means that indaziflam application shifts ecosystem relationships, 
especially soil physical characteristics, which may have a cascading 
impact throughout the system. In contrast to bacterial communities, 
differences in soil fungal communities were only due to soil organic 
matter. The fact that soil fungal community composition was not 
significantly correlated with nitrate amount may mean that the 
observed nitrogen dynamics were related to native forb presence or 
that bacterial communities were doing the majority of fixation in the 
system. The decrease in organic matter that is potentially due to 
thatch cover reduction could be  a key indicator of microbial 
community shift for both bacteria and archaea as well as fungi. 
Considering thatch cover and compensation for organic matter may 
be  important for overall ecological restoration and management 
practices as this decrease having ripple effects on the microbial 
community could hinder restoration efforts. Furthermore, bacteria 
could be more sensitive to these shifts because of the number of 
variables that are associated with bacterial community change. 
Therefore, indaziflam’s effect on each of these variables may 
be  critical for land managers to consider for ecosystem health 
post-application.

Microbial indicator species differ between 
treated and untreated sites

Indicator species analysis demonstrated that the nitrogen 
metabolism, soil microbial characteristics, and community 
composition shifted after indaziflam application. Although the 
PERMANOVA and MDRM tests demonstrated the differences in 
microbial communities, the indicator species analysis showed key 
organisms that are significantly different between indaziflam-treated 
and untreated sites. In our indicator species analysis, ammonia-
oxidizing bacteria, Nitrosomonadaceae, were found to be associated 
with untreated sites, while ammonia-oxidizing archaea, 
Nitrososphaeraceae, were found to be  associated with indaziflam 
treatment. This could point to the soil microbiome becoming more 
similar to native community composition after cheatgrass is removed 
as Chen et al. (2021) found that ammonia-oxidizing bacteria were 
associated with disturbance and urbanization in the Southwestern 
U.S., while ammonia-oxidizing archaea were associated with 
undisturbed ecosystems. Other nitrogen dynamics of indaziflam 
application in the soil microbiome were indicated by the association 
of Opitutaceae and the fungi Articulospora proliferata, which engage 
in nitrate digestion and assimilation, in untreated sites, and of 
Chloroflexi TK10 in treated sites, which digests N2 to nitrate (Chin 
et al., 2001; Johnston et al., 2019; Pöritz et al., 2015). Microvirga which 
are an unconventional root-associated nitrogen-fixing root-associated 
bacteria (Maheshwari and Sankar, 2022) were associated with 
treatment. Cheatgrass utilizes high amounts of nitrogen but does not 
make associations with nitrogen-fixing bacteria on their roots 
(Reitstetter et al., 2022). Therefore, Microvirga’s presence indicates that 
native plants that have grown after cheatgrass removal by indaziflam 
are likely associating with microbes, especially bacteria, to fix nitrogen 
in the soil (Erlacher et  al., 2015). These differences in nitrogen 
metabolism of key taxa in the soil microbiome may give clues about 

nitrate dynamics of cheatgrass invasion as the nitrogen-fixing bacteria 
could be the drivers of our different result from past literature.

Other indicator species also shed light on the microbial 
community differences between treated and untreated sites. In 
treated sites, many significant indicator species specialize in different 
forms of chemical digestion. Sphingomonas, for instance, has been 
used in detoxification efforts because of its ability to digest 
organometals and support plant growth, while Acidobacteriales have 
been associated with acidic mining-contaminated soils (Kishimoto 
and Tano, 1987; Leys et  al., 2004). Indaziflam is an aromatic 
compound, meaning that these organisms could be metabolizing the 
chemical itself. Furthermore, indaziflam is a fluoroalkyl triazine-
containing compound. Previous study has tied Acidobacteriales to 
fluoroalkyl chemicals, and this order of bacteria’s presence could 
support the notion that some toxicity to the soil microbiome is 
occurring with cheatgrass application (Wang et al., 2023).

Finally, some ASVs associated with untreated and cheatgrass-
dominated sites are indicative of ecological pH stress. Two of the bacterial 
indicator species for untreated sites, namely, Blastocatellia and 
Acidimicrobiia, both from the phylum Acidobacteriota, have been found 
to thrive in acidic soil (Tables 3, 4; Hazarika and Thakur, 2020; Huber 
and Overmann, 2018). Our results from soil testing showed that 
untreated sites had more acidic soil than treated sites on average, and the 
indicator species analysis showed that microbes may be responding to 
this pH shift. A connection between soil pH and indaziflam treatment is 
also supported by the MDRM analysis, which showed pH as significantly 
associated with bacterial and archaeal community composition. 
Ecologically, acidic soil can often be a cause for concern if it inhibits 
symbiosis between microorganisms and native plants or it changes plant 
recruitment (Zama et al., 2022), but since our result showed that native 
forbs grew well after treatment and made association with nitrogen-
fixing bacteria, this may not be the case for our specific study system.

Fungi indicator species suggest improvements to soil health 
following indaziflam application. Untreated sites were associated with 
several fungi that are plant pathogens and associated with plant 
invasion in the desert southwest, such as Darksidea and Pyrenophora, 
while treated sites were associated with lichen-indicative fungus 
(Erlacher et al., 2015; Masi et al., 2022; Termorshuizen, 2007; Williams 
et  al., 2022). The fact that plant pathogens were associated with 
untreated sites may mean that indaziflam treatment lowers plant 
pathogen presence, although the mechanism by which this occurs is 
unclear. The indication of lichen-associated fungi after treatment may 
be  particularly important as lichen was visually observed to 
be growing on the soil more frequently in treated sites. Lichens have 
been shown to be important for soil stability, moisture, and overall 
health, and therefore, this association may demonstrate an increase in 
soil condition after treatment (Finger-Higgens et al., 2022).

Study limitations and future research 
opportunities

Although this study is among the first to evaluate critical non-target 
impacts of indaziflam, it has several limitations. First, this study 
sampled sites within a relatively small spatial extent, with limited 
replicates and spatial homogeneity. More repetition, ecosystem 
representation, and in-depth sampling are needed in the future. 
Furthermore, this study was retrospective in its temporal aspect, and a 
continuous monitoring effort is needed for changes over time to 
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TABLE 4  Indicator species analysis of key ITS ASV differences between treated and untreated plots.

ITS indicator species analysis results

Phylum Class Order Family Genus Species p Significance Function

Basidiomycota Agaricomycetes Agaricales Entolomataceae Entoloma byssisedum 0.050 * Associated with wood decay, (He et al., 2019)

Ascomycota Lecanoromycetes NA NA NA NA 0.009 ** Lichen indicative (Erlacher et al., 2015)

Basidiomycota Agaricomycetes Cantharellales Ceratobasidiaceae Rhizoctonia NA 0.050 * Plant pathogen, (Termorshuizen, 2007)

Ascomycota Dothideomycetes Pleosporales Lentitheciaceae Darksidea NA 0.039 * Associated with plant invasion in the desert southwest (Williams et al., 2022)

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Phaeosphaeria NA 0.005 ** Lignin degradation (Ferrari et al., 2021)

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Pyrenophora Sieglingiae 0.001 *** Plant pathogen (Masi et al., 2022)

Ascomycota Leotiomycetes Helotiales Helotiaceae Articulospora Proliferata 0.001 *** Nitrogen assimilation decomposition (Johnston et al., 2019)

Ascomycota Orbiliomycetes Orbiliales Orbiliaceae Orbilia NA 0.013 * Nematophagy, (Kavitha et al., 2020)

Significance amount marked by symbols, *p < 0.05, **p < 0.005, ***p < 0.001.

TABLE 3  Indicator species analysis of key 16S ASV differences between treated and untreated plots.

16S indicator species analysis results

Phylum Class Order Family Genus p Significance Ecological Function

Acidobacteriota Acidobacteriae Acidobacteriales NA NA 0.010 **

Found in acidic mine drainage, chemoorganotroph (Kishimoto and 

Tano, 1987)

Actinobacteriota Thermoleophilia Solirubrobacterales 67–14 NA 0.049 * Decomposition of organic matter (Foesel et al., 2016)

Chloroflexi TK10 NA NA NA 0.006 ** Nitrogen digestion (Speirs et al., 2019)

Crenarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae NA 0.007 ** Archea, ammonia oxidation (Chen et al., 2021)

Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae Microvirga 0.006 ** Lichen symbiosis, nitrogen fixation (Erlacher et al., 2015)

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 0.020 * Polycyclic aromatic hydrocarbon digestion (Leys et al., 2004)

Acidobacteriota Blastocatellia 45,254 NA NA 0.019 * Characteristic of acidic soil (Huber and Overmann, 2018)

Actinobacteriota Acidimicrobiia NA NA NA 0.009 ** Indicative of acidic soil (Hazarika and Thakur, 2020)

Bacteroidota Bacteroidia Chitinophagales Chitinophagaceae NA 0.025 * Ureolysis production, chitin digestion (Hasan, 2000, Wieczorek et al., 2019)

Proteobacteria Gammaproteobacteria Burkholderiales SC-I-84 NA 0.001 *** Plant growth promotion (Yurgel et al., 2022)

Proteobacteria Gammaproteobacteria Burkholderiales Nitrosomonadaceae Ellin6067 0.031 * Bacteria, ammonia oxidation (Chen et al., 2021)

Verrucomicrobiota Verrucomicrobiae Opitutales Opitutaceae Opitutus 0.033 * Conversion of nitrate to nitrite (Chin et al., 2001)

Significance amount marked by symbols, *p < 0.05, **p < 0.005, ***p < 0.001.
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be characterized. We suggest that future studies investigate impacts on 
other non-target organisms, nitrogen mechanics after application, and 
how the soil microbiome may be processing indaziflam.

Indaziflam application shifts soil 
microbiome, physical characteristics, and 
plant community composition: 
implications for dryland management and 
restoration

As cheatgrass dominance in the Intermountain West poses 
increasing risks to human and ecological communities, informed 
management decisions about restoration of cheatgrass-dominated 
communities have become increasingly important. This study found 
that indaziflam did successfully remove cheatgrass from an arid foothill 
shrubland ecosystem and that native plant communities grew back 
after this removal. However, this study also found that decreases in 
organic matter and increases in soil nitrate may be related to indaziflam 
treatment. These soil physical property changes have relationships with 
the soil microbiome. The results suggest that the soil microbiome was 
significantly altered by indaziflam application and that these changes 
may be related to changes in soil organic matter, nitrate, pH, and native 
forb biomass associated with indaziflam treatment, meaning that land 
managers may consider assessing soil biogeochemistry before 
application. Finally, indicator species analyses showed that nitrogen 
dynamics may particularly change after indaziflam application. The 
shift in microbial community may be beneficial, as indicated by the 
presence of lichen-associated and pH-neutral microbes in treated sites, 
but further research is needed to assess long-term impacts of the 
observed microbial shift. These results are critical for land managers 
trying to restore and steward lands that have been invaded with 
cheatgrass, as assessing whether to use indaziflam to reduce cheatgrass 
cover may have nuanced effects on the soil biogeochemistry and 
microbial ecology of the ecosystem.
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