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Plant and soil microbial
composition legacies following
indaziflam herbicide treatment

Ember Sienna Bradbury!*, Hannah Holland-Moritz?, Amy Gill®!
and Caroline A. Havrilla®

!Department of Forestry and Rangeland Stewardship, Colorado State University, Fort Collins, CO,
United States, 2Department of Natural Resources and the Environment, University of New Hampshire,
Durham, NC, United States

Land stewards in dryland ecosystems across the western U.S. face challenges to
manage the exotic grass Bromus tectorum (cheatgrass), which is a poor forage, is
difficult to remove, and increases risk of catastrophic fire. Managers may consider
using indaziflam (Rejuvra™), a relatively new pre-emergent herbicide, which may
reduce cheatgrass cover within drylands. However, few studies have explored the
effects of indaziflam on non-target organisms. We tested how indaziflam application
impacted cover and biomass of native and exotics within the plant community
and composition and diversity of the soil microbiome by comparing untreated
and treated arid shrubland sites in Boulder County, Colorado, USA. We found
that indaziflam application decreased cheatgrass cover by as much as 80% and
increased native plant cover by the same amount. Indaziflam application also
was associated with increased soil nitrate (NO3"), decreased soil organic matter,
and had a significant effect on the composition of the soil microbiome. Microbial
community composition was significantly related to soil NOs™, soil organic matter,
soil pH, and native species and cheatgrass biomass. An indicator species analysis
suggested that indaziflam application shifted microbial communities. In untreated
sites, ammonia-oxidizing bacteria Nitrosomonadaceae and nitrogen-digesting
Opitutaceae and the fungi Articulospora proliferata were found. While in treated
sites, ammonia-oxidizing archaea which are associated with intact drylands,
Nitrososphaeraceae and toxin digesters and acidic-soil species Sphingomonas
and Acidimicrobiia were significantly associated. Overall, these results demonstrate
that indaziflam application can increase native plant recruitment, while also
affecting soil properties and the soil microbiome. The findings from this study can
be used to inform decision-making during dryland restoration planning process
as indaziflam use may have benefits and unknown long-term consequences for
the biogeochemistry and microbial ecology of the system.

KEYWORDS

indaziflam, cheatgrass, restoration ecology, soil microbial community, Intermountain
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Introduction

Cheatgrass now occupies over 54 million acres in the Intermountain West (the region of
the United States between the Rocky Mountains, Cascades, and Sierra Nevadas but not
including the Pacific Coast) after its introduction as a contaminant in grain during the 1900s
(Pierson and Mack, 19905 Sebastian et al., 2017). Cheatgrass is an early seeding grass which
outcompetes native plant species, resulting in loss of diversity, disruptions of historic grazing
regimes, and increased risk of catastrophic wildfire (Balch et al., 2013; Pilliod et al., 2017).
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These impacts have driven land managers to seek strategies for
reducing cheatgrass populations, but targeted grazing, prescribed
burning, and use of other herbicides have all had limited success
(Lehnhoff et al., 2019; Mack, 2010; Perryman et al., 2020).

Indaziflam (marketed as Rejuvra®/Esplanade® by Bayer
CropScience) is a relatively new herbicide that was approved in
2010 for use to control invasive annual grasses on rangeland and
open space. Indaziflam is a fluoroalkyl triazine-containing
herbicide that inhibits cellulose synthesis (Brabham et al., 2014).
Indaziflam application has shown reduction of cheatgrass (Clark
et al.,, 2023; Meyer-Morey et al., 2021; Sebastian et al., 2017).
However, weed control with indaziflam may also impact non-target
taxa (Meyer-Morey et al., 2021; Sebastian et al., 2020; Strilbytska
etal., 2022). Thus far, treatment with indaziflam has shown positive
(Clark et al., 2023; Seshadri et al., 2018) and negative (Clenet et al.,
2019; Fowers and Mealor, 2020; Meyer-Morey et al., 2021) effects
on native plant cover and diversity. While Seshadri et al. (2018)
found that indaziflam increased native forb diversity and floral
resources for pollinators, Meyer-Morey et al. (2021) saw reduction
in cover of target invasive annual mustards (Alyssum spp.) and also
decreased native forb diversity 2 years following treatment in a
sagebrush steppe ecosystem. Given these limited and conflicting
results, additional study about indaziflam effects on native plant
communities and non-target organisms following treatment
is needed.

Herbicides may also impact soil microbial communities and
nutrient cycling (Asad et al., 2017; Caggia et al., 2023; Sebastian et al.,
2020; Van Bruggen et al,, 2021), although few studies have investigated
indaziflam’s effect on these processes. Soil microbes mediate key
ecosystem functions (Fierer et al., 2021; Neilson et al., 2017; Wang and
Li, 2019), and herbicide treatments can have variable effects on them
(e.g., Van Bruggen et al.,, 2021). For example, the broad-spectrum
systemic herbicide glyphosate interferes with nitrogen metabolism in
some soil bacteria, while others can digest it (Helander et al., 2012;
Huang et al., 2017; Ruuskanen et al., 2023). In a study that examined
indaziflam impacts on soil properties, application shifted soil carbon
and nitrogen mineralization rates 11 days after treatment (Kocak et al.,
2021). However, to our knowledge, there have been no studies of how
indaziflam impacts soil microbial community composition in natural
grassland systems.

The central goal of this study was to explore the effects of
indaziflam on soil microbial and native plant communities to improve
management planning and practice. The major research objectives of
this project were to:

10.3389/fmicb.2024.1450633

1. Observationally evaluate the effects of indaziflam on non-target
soil microorganisms and native plants by comparing
community composition in areas that have been treated with
indaziflam herbicide with untreated controls.

. Assess whether indaziflam effects on soil microbes and native
plants vary across
a. Ecological gradients (e.g., soil texture, ecological site type,

and pre-treatment exotic grass cover)
b. Time since application.

. Explore relationships among exotic plant, native plant, and soil
community composition in treatment versus control plots to
infer potential mechanisms whereby indaziflam could affect
the soil microbial communities.

Incomplete understanding of the effects of indaziflam on
non-target organisms in natural systems currently limits the capacity
of land stewards to weigh the potential benefits and risks of indaziflam.
The findings from this study can support land manager decision-
making by increasing understanding of indaziflam effects on native
plant and soil microbial communities relative to controls.

Methods
Site description

We collected soil samples and data describing soil physical
characteristics and plant communities from seven sites within arid
foothill shrubland 7,000 ft. above sea level in Boulder County Parks
and Open Space (BCPOS) in Boulder, Colorado USA in June 2022
(Caudle et al., 2013; Soil Survey Staff, 2024). Soil and vegetation data
were collected at seven sites spanning a 5-year gradient of time since
indaziflam treatment (2017-2022). Each site contained two paired
plots [50x50-m plots one treated with indaziflam (T) and one
untreated (U)] for a total of 16 plots. Paired plots were selected to have
similar potential vegetation (ESD), soil texture, and slope (Table 1) to
each plot. All sites had an average annual temperature of 7.9°C and an
average annual precipitation of 516 mm (PRISM Climate Group,
Oregon State University, 2014).

Plant community monitoring

To explore how plant communities responded to herbicide
treatment, we collected plant cover and biomass data for native and

TABLE 1 Site characteristics and herbicide application information for each site.

Site ID Site name Year treated Average Soil pH Soil texture
RABB22 Rabbit Mountain 2022 6.6 Very stony sandy loam and clay loam
DORO21 Dorothy Ellen 2021 7.08 Very stony sandy loam
DORO20 Dorothy Ellen 2020 7.13 Very stony sandy loam
TREVA22 Trevarton 2022 7.16 Gravelly sandy loam
TREVA19 Trevarton 2019 6.35 Gravelly sandy loam
TREVA18 Trevarton 2018 5.75 Gravelly sandy loam
TREVA17 Trevarton 2017 6.46 Gravelly sandy loam
Soil texture information from USDA Web Soil Survey tool (Soil Survey Staff, 2024).
Frontiers in Microbiology 02 frontiersin.org
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FIGURE 1

Example photographs of untreated (left) and treated (right) plots taken within the Trevarton site. Untreated plots were generally noticeably covered in
cheatgrass (yellow arrow pointing to an example), while treated plots usually had fallen cheatgrass, but mostly native grasses and forbs growing within

the plot.

exotic plant communities from indaziflam-treated and untreated plots.
Vegetation data were collected from three, 1x1-m subplots within each
plot using a quadrat (Figure 1, Supplementary Figure S1). Subplots were
first photographed, and a general description of the plant community
and site type was recorded. Within each subplot, we collected plant data
on (1) species-level native plant cover (% cover) using a cover estimator
and visual estimate and biomass (ounces) for grasses, forbs, shrubs, and
bare ground, (2) exotic plant cover and biomass, (3) native plant
diversity (e.g., species richness and Shannon diversity) through
identification of each species present by a trained botanist and using the
USDA, NCRS (2022) database citation,' and (4) ground level thatch
biomass, depth, and cover for native plants and cheatgrass (mm
measured at thickest point with a ruler). Data were collected from all
plots in June 2022. Some of the sites shared the same control plots, so
vegetation monitoring was conducted only once for the shared sites.

Soil physical sampling and analyses

Three soil samples (500 g) were collected to a depth of 10 cm from

each subplot within each plot using a sterilized trowel
(Supplementary Figure S1). Soil samples collected from each subplot
(n =3 each) were then pooled and homogenized. All samples were
air-dried and stored in paper bags at room temperature prior to analysis.
Samples were then sent to the Colorado State University Soil and Plant
Testing Lab” where organic matter content, electrical conductivity, pH,
and nitrate (NO,") were measured. Organic matter was measured using
the loss on ignition method (Mehlich, 1984; Ball, 1964). Bulk density
was measured with a mass per volume calculation using intact oven-
dried 200 mL subsampled cores (Hékansson, 1990; Hakansson and
Lipiec, 2000). Electrical conductivity and pH were measured using a 1:1
soil to water suspension (Sparks, 1996). Finally, nitrate was measured

using a 2 M KCl extraction (Matsumura and Witjaksono, 1999).

1 http://plants.usda.gov
2 https://agsci.colostate.edu/soiltestinglab/
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Soil microbial sampling

Soil samples for microbial analysis were collected from the same
subplots (Supplementary Figure S1). For these samples, 10 g of soil
was collected from three points within each subplot to a depth of
10 cm using a metal trowel that was rinsed in ethanol between plot
sampling events (Penton et al., 2016). All samples were collected in
sterile Whirl-Paks™ after sifting roots and debris out and
homogenized on site, placed on dry ice during transport, and then
stored in a — 40°C freezer until further analysis. Before conducting
microbial analysis, soils were sieved through a 3.35 mm sieve.

Soil DNA extraction, PCR, and gene
amplicon sequencing

See Appendix 1 for a full microbial analysis methodology. First, DNA
was extracted from 0.25 g of soil using the Qiagen DNeasy PowerSoil Pro
Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions.
Blank samples were used as negative controls. Next, we used primers
(515F/806R 16S and ITS1-F/ITS2ITS) to amplify the V4 region of the 16S
rRNA gene for bacteria and archaea, and the ITS gene region for fungi
(Bellemain et al., 2010; Iwen et al., 2002; Parada et al., 2016; Walters et al.,
2016). Each sample was assigned a 12-bp barcode, homogenized, and
then randomly assigned a location on a 96-well plate. The reactions were
run in duplicate and then combined. SequalPrep Normalization Kit was
used to normalize. DNA extraction was done in the Dryland Ecology and
Management Lab at Colorado State University, while PCR and sequencing
were done at the CIRES Microbial Community Sequencing Laboratory
at the University of Colorado Boulder. Samples were then sequenced with
the Hllumina MiSeq platform. For 16S, a 300-cycle kit and, for ITS, a
500-cycle kit were used, paired-end (PE) for both. After sequencing,
idemp (idemp?) was used to demultiplex the samples according to their
specific barcodes. We used cutadapt (Martin, 2011) for cleaning. We then

3 https://github.com/yhwu/idemp
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used the dada2 package in R (Callahan et al., 2016) to characterize the
microbial communities in each sample. After using the filertaAnd Trim()
function (settings: 16S truncLen = ¢(150,150), ITS truncLen = ¢(200,220),
maxEE = (2,2), truncQ = 2, rm.phix = T) (see Supplementary Figure S3
for quality read plots), learning error rates, and merging pairs, we used a
Bayesian taxonomic identifier (Wang et al., 2007) as implemented in the
dada2 package to assign a taxonomy based on UNITE (Oct. 2021 release
for ITS) and Silva (v 138.1 for 16S).

Statistical analyses

Soil microbiome data were filtered and rarified prior to statistical
analysis. Amplicon sequence variants (ASVs) that were highly
abundant in negative control samples were filtered out after verifying
that these ASV's were not highly abundant in the sample data.

All statistical analyses were performed in R version 4.2.2 (R Core
Team, 2023). We used generalized linear mixed effects models
(GLMMs) with the Ime4 package (Bates et al., 2014). Separate models
were built for the following response variables: cheatgrass cover (%),
cheatgrass biomass (ounces per m?), cheatgrass thatch depth (cm), total
native herbaceous plant cover (%), total native forb cover (%), total
native shrub cover (%), native species richness, and soil mineral nutrient
levels of interest (i.e., organic matter, NO,~ (ppm), pH, and others). In
each model, indaziflam treatment (i.e., treated vs. control) was included
as fixed effects, and Site_ID was included as a random effect. The
significance of individual terms (p < 0.05) included in final models was
estimated using a Wald Type IT X2 test (ANOVA function, car package;
Fox and Weisberg, 2011). For significant variables, we used planned
contrasts to explore differences in group means among levels using the
‘emmeans’ function (package emmeans; Lenth, 2017).

Permutational analysis of variance (PERMANOVA) tests were
then conducted using the vegan, pairwiseAdonis, and smartsnp
packages (Arbizu, 2020; Herrando-Pérez et al., 2021; Oksanen, 2020;
Polanco-Martinez et al., 2020). In these models, treatment (treated
with indaziflam or not treated) was the predictor variable, and Bray-
Curtis dissimilarity matrices of vegetation and soil variables were the
response variables. PERMANOVAs were nested by site. We first
calculated the Shannon index and species richness using the diversity()
and specnumber() functions of the vegan package (Oksanen, 2020).

We then used ANOVA (analysis of variance) tests to compare the
Shannon indices and species richness (Fox and Weisberg, 2011). To
parse apart if soil and ecological variables had a related effect on
microbial diversity and community composition, we also conducted
a multiple regression on distance matrices (MDRM) test (Goslee and
Urban, 2007). Finally, we performed an indicator species analysis to
determine taxa indicative of treated and untreated conditions. For this
analysis, we used the multipatt() function of the indicspecies package
(De Caceres et al., 2010).

Results

Cheatgrass versus native plant species
responses to indaziflam treatment

The results from generalized linear mixed models comparing
herbicide treated vs. control plots showed striking differences in plant
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community composition (Figure 2). Overall, plots treated with
indaziflam herbicide had substantially lower cheatgrass cover
(Figures 2A-C) and higher native plant cover (Figures 2E-H) relative to
untreated controls. These differences also varied in magnitude in paired
plots observed 0-5 years following herbicide treatment (Figure 2). For
cheatgrass cover, treated plots on average had ~75% lower cheatgrass
percent cover, with an average of 0 % cheatgrass cover, relative to
untreated controls (which at a significance level of p < 0.001 had a mean
of 51-83% cover; Figure 2A). Cheatgrass thatch cover was also
significantly lower in treatment plots overall (p < 0.001) and decreased
slightly with increasing time since treatment (p = 0.086; Figure 2C). Total
percent cover of other non-native weeds was also lower in treatment
plots, reduced on average by 37% cover (p < 0.001; Figure 2D).

Treated plots on average had ~6-fold greater total native
herbaceous plant cover relative to untreated controls (p < 0.001;
treated average cover = >100%, control average cover = 20%;
Figure 2E), with over 4-fold greater native forb cover (p < 0.001;
Figure 2F) and 11-fold greater cover of native grasses in treated plots
(p < 0.001; Figure 2G). Total herbaceous plant biomass (Ib./ac) was
higher (p < 0.001; Figure 2H) in treated plots. Native species richness
was also substantially higher in indaziflam-treated plots (~10 versus
~4 native species per plot, respectively; p <0.001; Figure 2I).
Together, these results show steep declines in cheatgrass and weed
cover in indaziflam-treated plots and increases in native plant cover
and biomass in years following indaziflam application. All data from
this project can be found at doi: 10.5061/dryad.7m0Ocfxq4r and in the
NCBI database under the BioProject ID PRJNA1171444.

Responses of soil physical characteristics
to indaziflam treatment

Soil physical characteristics also differed between indaziflam
treatment versus control plots. For soil properties, soil organic
matter (SOM) was lower in indaziflam-treated plots (p = 0.033;
Figure 3A) (p = 0.013; Figure 3A). While there were no significant
differences in SOM in Year 0-1, in Years 2-5 SOM was
significantly lower in treated plots. In contrast, soil nitrate (NO;")
was higher in indaziflam-treated plots (p < 0.001; Figure 3B).
Although the magnitude of NO;™ ppm difference between treated
and untreated plots was not consistent in time since treatment
(p <0.001; Figure 3B), soil NO;~ was significantly higher in
treatment plots spanning all years since treatment except for in
Year 5 (2022) where it was equivalent between treated and
untreated plots. Finally, soil pH also differed across plots, although
differences were variable across time since treatment (p = 0.010;
Figure 3C). Soil pH was highly variable across years (Figure 3C).
Soil physical characteristics and plant community data are
indicated in the file “FINAL_BCPOSVeg.csv.”

Microbial database results

16S data from this project resulted in 9,042 ASVs across all
samples and treatments. Treated samples had 4,567 ASVs, and
untreated samples had 4,589 ASVs in total (see file “FINAL16S
ASVs_ID.csv”). The most abundant phylum included the genus was

Nitrososphaeraceae that represents ammonia-oxidizing archaea

frontiersin.org
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FIGURE 2

(A) percentage of the plot covered by cheatgrass, (B) biomass of cheatgrass collected in plot, (C) percentage of the plot covered by thatch (living and
dead plant material) from cheatgrass, (D) percentage of the plot covered by weeds other than cheatgrass, (E) percentage of the plot covered by all
native herbaceous material, (F) percentage of the plot covered by native forbs (subset of native herbaceous cover), (G) percentage of the plot covered
by native grasses (subset of native herbaceous cover), (H) biomass of native biomass collected in plot, (I) count of native species in plot.

such as Candidatus Nitrosocosmicus, which are common in most
soils (Sauder et al., 2017; Tourna et al., 2011). The second most
abundant group were a part of the general Bacillales order, members
of the Firmicutes phylum, which are also highly abundant and
common soil microorganisms (Setlow and Doona, 2023).

ITS data resulted in 3,128 ASVs across all samples and treatments.
Treated samples had 1,539 ASVs, and untreated samples had 1,450
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ASVs in total (see file “FINALITS_ASVs_ID.csv”). The most abundant
ASV was Solicoccozymaeria, a common soil fungus (Rui et al., 2022).
Mortierella, another common soil fungus implicated in decay and
organic matter cycling, was also abundant (Ozimek and Hanaka,
2021). Other information about community composition can
be found in the Supplementary materials (file “Bradbury_BCPOS_
SupplementaryMaterials.docx”

frontiersin.org
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FIGURE 3

the soil samples from plot.
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TABLE 2 p-value and significance level of each soil and biomass variable in the MDRM test for 16S and ITS data showing that pH, organic matter, nitrate,
and native forb biomass are significantly related to 16S and organic matter to ITS composition.

16S MDRM results

Variable Coefficient Significance
pH —0.024 0.040 ok

OM 0.025 0.033 ok

NO3- 0.006 0.084 *
Cheatgrass Biomass —0.011 0.418

Native Grass Biomass 0.008 0.062

Native Forb Biomass —0.014 0.08 *

Native Shrub Biomass 0.009 0.638

ITS MDRM results

Variable Coefficient Significance
pH —0.002 0.708

OM 0.008 0.068 *

NO3- —0.002 0.202

Cheatgrass Biomass 0.009 0.259

Native Grass Biomass 0.004 0.151

Native Forb Biomass 0.006 0.198

Native Shrub Biomass 0.009 0.343

Significance amount marked by symbols. *p < 0.05. **p < 0.005, ***p< 0.001.

Microbial community composition variance

PERMANOVA testing nested by site demonstrated that plots
treated with indaziflam significantly differed in microbial community
composition from untreated plots for both bacteria/archaea (16S;
p=0.008; Table 2; Figure 4) and fungi (ITS; p =0.001; Table 2;
Figure 4).

Differences in Shannon diversity of bacterial/archaeal
communities were also tested with ANOVAs and did not show a

significant difference between treated and untreated sites in both 16S

Frontiers in Microbiology

and ITS (Supplementary Table S1, p = 0.845). However, 16S had a
much higher diversity overall than ITS.

Multiple regression on distance matrices
(MDRM)

The MDRM test indicated that soil pH (p=0.040), OM
(p=0.033), NO;~ (p =0.084), and native forb biomass (p = 0.080)
were all significantly related to the difference in bacterial and archaeal
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NMDS plots demonstrate the significant difference between treated and untreated sample microbial community composition. The plot on the top
shows results from 16S and the lower plot shows ITS results. NMDS differences are visualized by distance between points. Circles represent 95%

community composition between treated and untreated plots. Only
soil OM (p =0.068) was marginally significantly related to the
difference in fungal community composition (Table 2).

Indicator species analysis results
Analysis of indicator species demonstrated that there were many

ASVs significantly associated with indaziflam-treated and untreated
plots. For 16S, 26 ASV's were indicative of treated sites, while 24 ASV's

Frontiers in Microbiology

were indicative of untreated sites (see file “IndicSpecResults16S.csv”).
ITS results had 4 ASVss significantly associated with treated sites and 24
ASVsassociated with untreated sites (see file “IndicSpecResultsITS.csv”).

Discussion

Cheatgrass invasion in dryland ecosystems across the western
U.S. presents many challenges and considerations for land stewards.
Indaziflam (Rejuvra™) has recently been approved for use to control
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cheatgrass. Yet, to date, there have been few studies of the herbicide’s
effects on non-target organisms. Through plant surveys, soil physical
analysis, and soil microbiome 16S/ITS amplicon sequencing, we found
that treatment of cheatgrass with indaziflam had varied effects on different
ecosystem actors in an arid foothill shrubland in Boulder County, USA.

This study found that plant community composition, soil physical
characteristics, and soil microbiome shifted dramatically after indaziflam
application. Cheatgrass cover was reduced by up to 80% in plots that had
been sprayed just 1 year before monitoring, and native plants almost fully
recovered in these plots. Organic matter was lower in treated plots than
untreated plots, and soil nitrate (NO;~) was higher in treated plots than
untreated plots, while pH was variable between treatments. Soil
microbial communities were also impacted by indaziflam treatment,
with bacterial and fungal communities being significantly different in
composition between treated and untreated sites. Statistical analysis in
this study also demonstrated a relationship between microbiome
composition and soil organic matter, NO;~, pH, and native forb biomass.

These results show that indaziflam changes plant and soil
dynamics in ecosystems, but more work is necessary to fully
understand the mechanisms behind these shifts. This study showed
that soil microbial communities were different between treated and
untreated sites but did not parse out if the soil microbial communities
were responding to the application or if they responded to plant
community shifts. Based on the PERMANOVA statistical analysis that
demonstrated soil microbiome is linked with soil physical
characteristics and treatment, it is likely that both are true. However,
understanding the mechanism of the soil microbiome shift, and the
wider impacts of indaziflam through continuous monitoring, is
critical for future research.

Plant community composition and nutrient
cycling shift in response to indaziflam
treatment

Above ground, we found that application of indaziflam on
cheatgrass-dominated plots successfully reduced cheatgrass cover
by 80% on average. Native grasses and forbs recruited in plots that
had been treated as recently 1 year prior, and native herbaceous
plants covered up to 100% of treated plots. This response aligns
with previous literature that has found similar dramatic decreases
in cheatgrass and increases in native plant cover after indaziflam
application (Alba et al., 2024; Courkamp et al., 2022; Arathi and
Hardin, 2021; Kainrath et al., 2022; Meyer-Morey et al., 2021;
Sebastian et al., 2017; Seedorf et al., 2022). Kainrath et al. (2022)
showed that direct reduction of cheatgrass, as opposed to
modifying soil physical and microbial characteristics, was the most
effective restoration strategy for invaded areas and that native
plants quickly recruited after removal in sagebrush habitat
(Kainrath et al., 2022). Therefore, the dramatic reduction of
cheatgrass after indaziflam application suggests that this tool could
be useful for opening space for restoration to occur. Arathi and
Hardin (2021) also found that native and pollinator-friendly plant
species richness doubled a year after indaziflam application in
another study conducted in Boulder, CO (Arathi and Hardin,
2021). This study, taken with the results of our study, demonstrates
that the goal of native plant recruitment after cheatgrass invasion
may be met with indaziflam application.
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Belowground, we found that soil NO;™ increased after application
and that SOM significantly decreased. Although Weber et al. (2015)
also found that nitrate was significantly higher in native perennial
rangeland than in cheatgrass-dominated areas, many prior studies
have found more NO;™ after invasion, due to cheatgrass root exudation
and leaf senescence (e.g., Baughman et al., 2016; Weber et al., 2015).
Therefore, our more novel result that nitrate increased in the soil after
indaziflam application could be due to either legacy effects of
cheatgrass invasion or of increased nitrogen-synthesizing fungi that
native plants partner within the rhizosphere. If nitrogen-synthesizing
fungi are driving the increase in NO;™ after indaziflam application,
this could point toward the restoration of relationships between native
plants and microbes after cheatgrass removal.

The findings surrounding soil carbon have also been contradictory,
and a recent review by Maxwell and Germino (2022) found that the
carbon dynamics of sites across the Great Basin that have been
invaded by cheatgrass vary from site to site and have high
heterogeneity in the magnitude and direction of carbon change
(Maxwell and Germino, 2022). Our study adds to the complex story
of soil nutrient dynamics as cheatgrass invades and is removed, and
native plants revegetate. Our result that soil organic matter decreased
when cheatgrass was removed (Figure 3A) is likely because cheatgrass
cover and thatch decreased so dramatically, and therefore, soil organic
matter that had been previously added by the cheatgrass thatch,
growth, and decomposition cycle was no longer present. Previous
studies have shown that when plant cover decreases, soil organic
carbon decreases, and as soil organic carbon comprises a large portion
of SOM, our result that a decrease in cheatgrass cover may have led to
a decrease in SOM agrees with this (Fekete et al., 2012; Kogak et al,,
2021; Wan et al., 2019). These soil physical property and plant changes
were also related to soil microbial community composition and shifts.

Soil microbial community composition, but
not diversity, differed significantly between
treated and untreated sites

The results from soil community composition analyses (i.e.,
PERMANOVA and ANOVA Shannon diversity) demonstrate that
indaziflam treatment significantly changed microbial community
composition but not overall diversity. PERMANOVA testing showed
a statistically significant difference in community composition
between treated and untreated plots, indicating that microbes in the
community are different in abundance and composition. Previous
studies have shown that cheatgrass encroachment itself can shift soil
microbial communities when compared to native states and that N,
fixing and uratolytic bacteria increasing while denitrifiers decrease is
particularly indicative of cheatgrass dominance (Reitstetter et al.,
2022). The indicator species analysis in this study mirrored this shift,
meaning that cheatgrass removal was likely a major driver of nitrogen
microbial dynamics. Furthermore, chiral herbicides such as indaziflam
have been shown to move soil microbiomes toward aromatic
compound digestion and affect nitrogen dynamics, which the results
of our indicator species analysis also support (Asad et al., 2017; Pertile
etal., 2021).

The results of the MDRM analysis provide insight into the
ecological dynamics surrounding the difference in treated and
untreated bacterial communities. Differences in bacterial and
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archaeal community composition were correlated with differences
in soil organic matter, soil nitrate, soil pH, and native forb biomass,
suggesting that associated ecosystem changes with indaziflam
application are drivers of microbiome shift. This is a critical finding
as it means that indaziflam application shifts ecosystem relationships,
especially soil physical characteristics, which may have a cascading
impact throughout the system. In contrast to bacterial communities,
differences in soil fungal communities were only due to soil organic
matter. The fact that soil fungal community composition was not
significantly correlated with nitrate amount may mean that the
observed nitrogen dynamics were related to native forb presence or
that bacterial communities were doing the majority of fixation in the
system. The decrease in organic matter that is potentially due to
thatch cover reduction could be a key indicator of microbial
community shift for both bacteria and archaea as well as fungi.
Considering thatch cover and compensation for organic matter may
be important for overall ecological restoration and management
practices as this decrease having ripple effects on the microbial
community could hinder restoration efforts. Furthermore, bacteria
could be more sensitive to these shifts because of the number of
variables that are associated with bacterial community change.
Therefore, indaziflam’s effect on each of these variables may
be critical for land managers to consider for ecosystem health
post-application.

Microbial indicator species differ between
treated and untreated sites

Indicator species analysis demonstrated that the nitrogen

metabolism, soil microbial characteristics, and community
composition shifted after indaziflam application. Although the
PERMANOVA and MDRM tests demonstrated the differences in
microbial communities, the indicator species analysis showed key
organisms that are significantly different between indaziflam-treated
and untreated sites. In our indicator species analysis, ammonia-
oxidizing bacteria, Nitrosomonadaceae, were found to be associated
with
Nitrososphaeraceae, were found to be associated with indaziflam

untreated sites, while ammonia-oxidizing archaea,
treatment. This could point to the soil microbiome becoming more
similar to native community composition after cheatgrass is removed
as Chen et al. (2021) found that ammonia-oxidizing bacteria were
associated with disturbance and urbanization in the Southwestern
U.S., while ammonia-oxidizing archaea were associated with
undisturbed ecosystems. Other nitrogen dynamics of indaziflam
application in the soil microbiome were indicated by the association
of Opitutaceae and the fungi Articulospora proliferata, which engage
in nitrate digestion and assimilation, in untreated sites, and of
Chloroflexi TKI0 in treated sites, which digests N, to nitrate (Chin
etal, 2001; Johnston et al., 2019; Poritz et al., 2015). Microvirga which
are an unconventional root-associated nitrogen-fixing root-associated
bacteria (Maheshwari and Sankar, 2022) were associated with
treatment. Cheatgrass utilizes high amounts of nitrogen but does not
make associations with nitrogen-fixing bacteria on their roots
(Reitstetter et al., 2022). Therefore, Microvirga’s presence indicates that
native plants that have grown after cheatgrass removal by indaziflam
are likely associating with microbes, especially bacteria, to fix nitrogen
in the soil (Erlacher et al, 2015). These differences in nitrogen

metabolism of key taxa in the soil microbiome may give clues about
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nitrate dynamics of cheatgrass invasion as the nitrogen-fixing bacteria
could be the drivers of our different result from past literature.

Other indicator species also shed light on the microbial
community differences between treated and untreated sites. In
treated sites, many significant indicator species specialize in different
forms of chemical digestion. Sphingomonas, for instance, has been
used in detoxification efforts because of its ability to digest
organometals and support plant growth, while Acidobacteriales have
been associated with acidic mining-contaminated soils (Kishimoto
and Tano, 1987; Leys et al., 2004). Indaziflam is an aromatic
compound, meaning that these organisms could be metabolizing the
chemical itself. Furthermore, indaziflam is a fluoroalkyl triazine-
containing compound. Previous study has tied Acidobacteriales to
fluoroalkyl chemicals, and this order of bacteria’s presence could
support the notion that some toxicity to the soil microbiome is
occurring with cheatgrass application (Wang et al., 2023).

Finally, some ASVs associated with untreated and cheatgrass-
dominated sites are indicative of ecological pH stress. Two of the bacterial
indicator species for untreated sites, namely, Blastocatellia and
Acidimicrobiia, both from the phylum Acidobacteriota, have been found
to thrive in acidic soil (Tables 3, 4; Hazarika and Thakur, 2020; Huber
and Overmann, 2018). Our results from soil testing showed that
untreated sites had more acidic soil than treated sites on average, and the
indicator species analysis showed that microbes may be responding to
this pH shift. A connection between soil pH and indaziflam treatment is
also supported by the MDRM analysis, which showed pH as significantly
associated with bacterial and archaeal community composition.
Ecologically, acidic soil can often be a cause for concern if it inhibits
symbiosis between microorganisms and native plants or it changes plant
recruitment (Zama et al., 2022), but since our result showed that native
forbs grew well after treatment and made association with nitrogen-
fixing bacteria, this may not be the case for our specific study system.

Fungi indicator species suggest improvements to soil health
following indaziflam application. Untreated sites were associated with
several fungi that are plant pathogens and associated with plant
invasion in the desert southwest, such as Darksidea and Pyrenophora,
while treated sites were associated with lichen-indicative fungus
(Erlacher et al., 2015; Masi et al., 2022; Termorshuizen, 2007; Williams
et al.,, 2022). The fact that plant pathogens were associated with
untreated sites may mean that indaziflam treatment lowers plant
pathogen presence, although the mechanism by which this occurs is
unclear. The indication of lichen-associated fungi after treatment may
be particularly important as lichen was visually observed to
be growing on the soil more frequently in treated sites. Lichens have
been shown to be important for soil stability, moisture, and overall
health, and therefore, this association may demonstrate an increase in
soil condition after treatment (Finger-Higgens et al., 2022).

Study limitations and future research
opportunities

Although this study is among the first to evaluate critical non-target
impacts of indaziflam, it has several limitations. First, this study
sampled sites within a relatively small spatial extent, with limited
replicates and spatial homogeneity. More repetition, ecosystem
representation, and in-depth sampling are needed in the future.
Furthermore, this study was retrospective in its temporal aspect, and a
continuous monitoring effort is needed for changes over time to
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TABLE 3 Indicator species analysis of key 16S ASV differences between treated and untreated plots.

16S indicator species analysis results

Phylum Class Significance Ecological Function

Found in acidic mine drainage, chemoorganotroph (Kishimoto and
Acidobacteriota Acidobacteriae Acidobacteriales NA NA 0.010 ke Tano, 1987)
Actinobacteriota Thermoleophilia Solirubrobacterales 67-14 NA 0.049 * Decomposition of organic matter (Foesel et al., 2016)
Chloroflexi TK10 NA NA NA 0.006 EE Nitrogen digestion (Speirs et al., 2019)
Crenarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae NA 0.007 o Archea, ammonia oxidation (Chen et al., 2021)
Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae Microvirga 0.006 ke Lichen symbiosis, nitrogen fixation (Erlacher et al., 2015)
Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 0.020 * Polycyclic aromatic hydrocarbon digestion (Leys et al., 2004)
Acidobacteriota Blastocatellia 45,254 NA NA 0.019 * Characteristic of acidic soil (Huber and Overmann, 2018)
Actinobacteriota Acidimicrobiia NA NA NA 0.009 w Indicative of acidic soil (Hazarika and Thakur, 2020)
Bacteroidota Bacteroidia Chitinophagales Chitinophagaceae NA 0.025 * Ureolysis production, chitin digestion (FHasan, 2000, Wieczorek et al., 2019)
Proteobacteria Gammaproteobacteria Burkholderiales SC-1-84 NA 0.001 ok Plant growth promotion (Yurgel et al., 2022)
Proteobacteria Gammaproteobacteria Burkholderiales Nitrosomonadaceae Ellin6067 0.031 * Bacteria, ammonia oxidation (Chen et al., 2021)
Verrucomicrobiota Verrucomicrobiae Opitutales Opitutaceae Opitutus 0.033 * Conversion of nitrate to nitrite (Chin et al., 2001)

Significance amount marked by symbols, *p < 0.05, **p < 0.005, ***p < 0.001.

TABLE 4 Indicator species analysis of key ITS ASV differences between treated and untreated plots.

ITS indicator species analysis results

Phylum Class Order Species Significance = Function

Basidiomycota Agaricomycetes Agaricales Entolomataceae Entoloma byssisedum 0.050 * Associated with wood decay, (He et al., 2019)

Ascomycota Lecanoromycetes NA NA NA NA 0.009 F Lichen indicative (Erlacher et al., 2015)

Basidiomycota Agaricomycetes Cantharellales Ceratobasidiaceae Rhizoctonia NA 0.050 * Plant pathogen, (Termorshuizen, 2007)

Ascomycota Dothideomycetes Pleosporales Lentitheciaceae Darksidea NA 0.039 * Associated with plant invasion in the desert southwest (Williams et al., 2022)
Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Phaeosphaeria NA 0.005 o Lignin degradation (Ferrari et al., 2021)

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Pyrenophora Sieglingiae 0.001 ik Plant pathogen (Masi et al., 2022)

Ascomycota Leotiomycetes Helotiales Helotiaceae Articulospora Proliferata 0.001 ik Nitrogen assimilation decomposition (Johnston et al., 2019)

Ascomycota Orbiliomycetes Orbiliales Orbiliaceae Orbilia NA 0.013 * Nematophagy, (Kavitha et al., 2020)

Significance amount marked by symbols, *p < 0.05, **p < 0.005, ***p < 0.001.
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be characterized. We suggest that future studies investigate impacts on
other non-target organisms, nitrogen mechanics after application, and
how the soil microbiome may be processing indaziflam.

Indaziflam application shifts soil
microbiome, physical characteristics, and
plant community composition:
implications for dryland management and
restoration

As cheatgrass dominance in the Intermountain West poses
increasing risks to human and ecological communities, informed
management decisions about restoration of cheatgrass-dominated
communities have become increasingly important. This study found
that indaziflam did successfully remove cheatgrass from an arid foothill
shrubland ecosystem and that native plant communities grew back
after this removal. However, this study also found that decreases in
organic matter and increases in soil nitrate may be related to indaziflam
treatment. These soil physical property changes have relationships with
the soil microbiome. The results suggest that the soil microbiome was
significantly altered by indaziflam application and that these changes
may be related to changes in soil organic matter, nitrate, pH, and native
forb biomass associated with indaziflam treatment, meaning that land
managers may consider assessing soil biogeochemistry before
application. Finally, indicator species analyses showed that nitrogen
dynamics may particularly change after indaziflam application. The
shift in microbial community may be beneficial, as indicated by the
presence of lichen-associated and pH-neutral microbes in treated sites,
but further research is needed to assess long-term impacts of the
observed microbial shift. These results are critical for land managers
trying to restore and steward lands that have been invaded with
cheatgrass, as assessing whether to use indaziflam to reduce cheatgrass
cover may have nuanced effects on the soil biogeochemistry and
microbial ecology of the ecosystem.
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