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Classical shadows (CS) offer a resource-
efficient means to estimate quantum ob-
servables, circumventing the need for ex-
haustive state tomography. Here, we clar-
ify and explore the connection between
CS techniques and least squares (LS) and
regularized least squares (RLS) methods
commonly used in machine learning and
data analysis. By formal identification of
LS and RLS “shadows” completely analo-
gous to those in CS—namely, point estima-
tors calculated from the empirical frequen-
cies of single measurements—we show that
both RLS and CS can be viewed as regular-
izers for the underdetermined regime, re-
placing the pseudoinverse with invertible
alternatives. Through numerical simula-
tions, we evaluate RLS and CS from three
distinct angles: the tradeoff in bias and
variance, mismatch between the expected
and actual measurement distributions, and
the interplay between the number of mea-
surements and number of shots per mea-
surement.

Compared to CS, RLS attains lower vari-
ance at the expense of bias, is robust to
distribution mismatch, and is more sen-
sitive to the number of shots for a fixed
number of state copies—differences that
can be understood from the distinct ap-
proaches taken to regularization. Concep-
tually, our integration of LS, RLS, and CS
under a unifying “shadow” umbrella aids
in advancing the overall picture of CS tech-

Zhihui Zhu: zhu.3440Q@osu.edu
Joseph M. Lukens: joseph.lukens@asu.edu

Brian T. Kirby: brian.t.kirby4.civ@army.mil

niques, while practically our results high-
light the tradeoffs intrinsic to these mea-
surement approaches, illuminating the cir-
cumstances under which either RLS or CS
would be preferred, such as unverified ran-
domness for the former or unbiased esti-
mation for the latter.

1 Introduction

As experimentally accessible quantum systems
continue to increase in size and complexity, meth-
ods for characterizing these systems as efficiently
as possible have assumed primary importance.
One of the leading state characterization ap-
proaches is quantum state tomography, which
provides a complete density matrix describing a
system from which all observable properties can
be extracted via classical calculations [1]. How-
ever, the exponential scaling in the required num-
ber of measurements and the classical compu-
tational cost of determining the density matrix
most consistent with the given measurement re-
sults make state tomography an unrealistic ap-
proach for large systems.

The practical challenges associated with full
state tomography have spurred the development
of various methods for estimating properties and
observables of quantum systems without needing
to reconstruct the entire density matrix [2]. For
example, nonlinear functions of a density matrix,
such as various entanglement measures, can be
estimated directly without reconstruction but at
the cost of requiring multiple copies of a given
state and joint measurements between them [3—
5].  Further, techniques based on randomized
measurements (e.g., application of random uni-
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taries to states with fixed measurement bases)
have been developed to estimate observables from
single-copy systems without requiring state re-
construction. These methods include those that
do not incorporate the explicit set of random-
ized measurements selected into the estimation
procedure [6-14] as well as those, such as classi-
cal shadows (CS), that do utilize this information
and hence still require a shared frame of reference
[15-18].

The CS approach to estimating observables of
an unreconstructed density matrix is especially
attractive due to its experimental simplicity and
demonstrated predictive power [15]. The original
CS proposal leverages random single-shot mea-
surements to construct “shadows” of a quantum
state that then stand-in for a complete density
matrix reconstruction for the purpose of calcu-
lating observables. Even though the CS den-
sity matrix is not even constrained to be positive
semidefinite (PSD)—an ostensibly surprising fea-
ture critical to its unique scaling behavior [19]—it
has been shown to provide accurate estimates for
many quantities of interest in a quantum system.

Since its initial development, CS techniques
have been studied intensely in various scenar-
ios including—but not limited to—experimental
data [18, 20-23], compared to approaches such as
Bayesian mean estimation [19], extended to posi-
tive operator-valued measures (POVMs) [16, 17]
and multiple shots per measurement setting [24],
and derandomized to remove the necessity of ran-
domly chosen measurements [25].

From a physical point of view, the original CS
proposal is relatively straightforward [15]. The
randomness of the measurement procedure in-
duces a depolarizing channel with a simple in-
version consisting of subtraction of the identity.
Intuitively, since the projections are restricted to
a single shot, they naturally act as a noisy chan-
nel; they are a low-dimensional projection of a
higher-dimensional probability distribution, and
the randomness of these projections ensures the
noise is isotropic. Importantly from an opera-
tional perspective, the inverse of an appropriately
chosen random channel can be computed analyt-
ically, thereby obviating the need for a computa-
tionally intensive inverse calculation.

Here we consider the fundamental causes for
the estimation power of CS in light of stan-
dard least-squares (LS) and regularized least-

squares (RLS) formulations of the same prob-
lem. Through a formal derivation of the LS and
RLS solutions to a generic quantum measure-
ment scenario, we find that both rely on their
own “shadows”—i.e., linear transformations of
individual measurement results—which are aver-
aged to obtain the final estimate. As overviewed
in Fig. 1 and detailed in Secs. 2 and 3 below,
all three techniques (LS, RLS, and CS) follow
strikingly similar workflows, differing only in the
respective inversion operation in each’s shadow
formula. Under this viewpoint, these techniques
are seen to comprise a general family in which
RLS and CS stabilize the LS shadow in the un-
derdetermined regime by replacing the pseudoin-
verse with invertible and well-conditioned opera-
tors. Not only does our work reveal the unifying
framework that the idea of “shadows” provides
for traditional LS techniques; it also uncovers an
profitable interpretation of CS as a regularizer
for low-measurement quantum estimation in the
tradition of RLS. Collectively, our results con-
tribute to the fundamental understanding of CS
while simultaneously offering practical guidance
for quantum estimation.

This article is organized as follows. Section 2
introduces the general measurement problem in
terms of POVMs and derives the LS solution,
expressing the result as an average of LS shad-
ows. Simulations of a five-qubit system reveal
high variance and error from the double descent
phenomenon, which is mitigated by the RLS and
CS stabilization techniques introduced in Sec. 3.
Section 4 then compares the advantages and dis-
advantages of RLS and CS with respect to three
specific features: (i) the bias-variance tradeoff,
(ii) the impact of misspecified measurement dis-
tributions, and (iii) the scaling with reallocations
of the number of measurements and the number
of shots per measurement. Concluding thoughts
appear in Sec. 5.

2 Background: POVM Measurements
and LS Estimation

2.1 POVM Measurements

Consider an n-qubit quantum state p € CP*P
with dimension D = 2. The probabilistic nature
of quantum measurements can be described using
POVMs [1]. A POVM is a set of PSD operators
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Figure 1: Shadow picture of quantum estimation.

POVMs {A;, As,..

M() =E [ ATA()]

. Ap} = A are measured via repeated

preparation of a ground truth quantum state p. The observed frequencies for each POVM produce a single shadow
state p,, = S (A6, (Pm)). the collection of which are averaged for the final estimate p. The only difference between
each technique lies in the specific shadow operation chosen: (i) least squares (LS) performs the (pseudo)inverse on the
POVMs directly; (ii) regularized least squares (RLS) ensures invertibility through the addition of a term proportional
to the identity; and (iii) classical shadows (CS) inverts according to a simulated channel M defined in expectation

over all possible measurement settings.

{A1,..., Ax}—abbreviated as {Ay}rcix] with
[K] := {1,...,K} or simply {Ax} when clear
from context—such that Y% ;| A, = I. Each
POVM element Ay is associated with a possible
measurement outcome, and the probability py of
detecting the k-th outcome when measuring the
density operator p is given by

P = tr (Avp). 1)

We can repeat the measurement process L times,
observe the k-th outcome f; number of times,
and take the average of the outcomes to generate
the empirical frequencies

5 — Ik

Px = I’
Collectively, the random variables fi, ..., fk are
characterized by a multinomial distribution with
parameters L and {py}. When L = 1, the mea-
surements {pp = fr} form a one-hot vector, or
a delta-like distribution, with all entries zero ex-
cept for one entry being one.

Orthogonal rank-1 POVMs.— A special case
common in practice focuses on rank-1 POVMs
of the form {A; = ukuL} with u;, € CP and
Zle uku,t = I, where { denotes the Hermitian
transpose. We note that in the physics literature
when w represents a quantum state it is often
represented as a ket |u); however, we adopt vec-
tor notation throughout for convenience. When

k€ [K]. (2)

.|_
U = [ul uK} e CP*K further forms an
orthonormal basis, in which case K = D, the
probability py can be written as

pr = tr (Agp) = ujpuy = e (UPUT) er, (3)

where the last equation implies that the measure-
ment is equivalent to first applying the unitary U
to the unknown state p — UpUT (the reason for
the Hermitian transpose in the definition U =
o
ments in the canonical (or computational) basis
e1,...,ep. Both steps can be implemented on
a universal quantum computer, though the com-
plexity of synthesizing U by quantum circuits is
matrix-dependent. As an aside, we note that
rank-1 orthonormal POVMs with L = 1 com-
prised the focus of the original CS proposal [15],
although CS extensions to both more generic
POVMs [17] and L > 1 are possible [24, 26].
POVM ensembles.—As in the case of the
above rank-1 POVM, an individual POVM might
not achieve informational completeness; there-
fore measuring with multiple POVMs can be
used to acquire a more holistic understanding of
the quantum state. For simplicity, consider M
POVMs, indexed by m € [M], where each POVM
{Amk}re[k) contains the same number of PSD
operators K and is probed with L shots, return-
ing the empirical frequencies p,, as described in

T .
uK] ) and then performing measure-
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Eq. (2), for m € [M] where the bold notation
indicates a vector: P, = [fm1- - fmk] /L =
[ﬁm,l o 'ﬁm,K]T-

To simplify the notation, we collect the proba-
bilities for each POVM {tr (A, xp)}, into a sin-
gle linear map A, : CP*P — R of the form

tr (Am,1p)
Am(p) = : : (4)
tr (AmJ(p)

If we vectorize p and A, into vec(p) and
vec(Ay,) such that tr (Agp) = (vec(A))T vec(p)
and define B = [vec(Aml) Vec(AmJ()} €

CP**K  then A,,(p) can be written as matrix-
vector product of form

An(p) = B vec(p). (5)

Stacking all the empirical frequencies {p,,} and
the linear operators {A,,} as a single linear map
A CP*D  RMK e can write

1 Ai(p)
p=|:1|, Alp = : . (6)
p M A (p)

It is important to note that no assumptions about
informational (tomographic) completeness have
been applied in the formalism so far. Specifically,
the linear map A is informationally complete iff
rank(A) = D?; i.e., we can form exactly D? lin-
early independent operators by linearly combin-
ing the set of POVMs [16]. In the regime of
interest to CS, rank(A) < D? typically holds,
although we note that it is possible to formally
define a single informationally complete POVM
so that rank(A) = D? even with M = 1—a con-
struction that has been shown valuable for both
theoretical analyses [16, 17] and experimental im-
plementation [22] of CS techniques. In this case,
any estimator error stems solely from the number
of shots L. In our analysis, we do not restrict to
informational completeness and in the numerical
simulations below consider rank-1 POVMs with
K = D outcomes. Nonetheless, the formalism
developed applies to any combination of M, K,
and L and thus can be explored for any POVMs
of potential interest.

2.2 LS Estimation

Without any prior information about p, we can
estimate it from the measurements p by the LS

estimator

p=ag min[p— AP, (7
plecDXD

by writing A(p’) as matrix-vector product as in
Eq. (5). While one can explicitly enforce p’ to
be Hermitian and trace one, we will show in
Lemma 1 that solutions to Eq. (7) automatically
adhere to these properties. Additionally, the so-
lution p satisfies the following normal equation

AT A(p) = Al(p), (8)
where
M M K
AT(ﬁ) = Z Ajn(ﬁm) = Z Z Am,k m,ks
m=1 m=1 k=1 9)
M K (
AT-A(ﬁ) = Z Z tr (Am,kﬁ) Am,k
m=1 k=1

When the ensemble of M POVMs is informa-
tionally complete, A A is invertible and the solu-
tion is unique, given by p = (AT.A) ' (.AT(ﬁ))
On the contrary, when the M POVMs are not
informationally complete, the operator AfA is
rank-deficient and the above problem has an in-
finite number of solutions. Among all possibili-
ties, a common choice is to select the one that
has the smallest norm or energy, also known as
minimum-norm estimator, which can be obtained
by applying the pseudoinverse (AfA)*:

p=(A14)" (4 p)

A\ (4t (5
() (o)

I
NE

3
[

= LS () (W),

m=1

LS shadow

where the significance of defining an LS “shadow”
operator is elaborated on below. When the
POVMs are informationally complete, (AfA)*
becomes (AfA)~!. Thus, Eq. (10) holds for both
informationally complete and incomplete cases.

Lemma 1. The LS estimator p is always Her-
mitian. Moreover, if p lies in the range space of
A, then the LS estimator p also has trace 1.

Proof. Using the two equivalent forms for the

pseudoinverse AT = (_AT_A)+ AT = At ( A AT>+
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[27], we can rewrite the LS estimator as p =
+

AT ((AAT) (ﬁ)) Since p is a real vector

and AA' is a linear map of RMK — RMK

+
(AAT) (p) is also a real vector. As p lies in

the range space of A that can be written as

%:1 fo:l kA with real oy, and Her-
mitian A, ;, p is always Hermitian.

Now if p lies in the range space of A, then the
LS estimator p satisfies A(p) = p, which further
implies that 17 A(p) = 1Tp. Since 1" p = M and
1TA(p) = S0 Kt (Apyp) = Mtx(p),
we have tr(p) = 1. O

When the operators Aj,..., Ay k are lin-
early independent, p lies in the range space of A.
On the other hand, even when p does not lie in
the range space of A—which could happen when
MK > D? and in which case the second half of
Lemma 1 does not apply—we have observed in
numerical experiments that the LS estimator p
either has trace 1 or is very close to 1 in practice.

LS shadow.—In anticipation of the CS for-
malism introduced in Sec. 3.2, we may define
= S (AL (Bm)) = (AT AL (D) the
LS shadow of p associated with measurement m.
Unlike CS shadows, these LS shadows can be bi-
ased estimators of the state p as their average
p biases towards the minimum norm [28]. Yet
like CS, the final state estimate p is simply the
average of the available individual shadows.

Intuitively, one would expect the performance
of the LS estimator to improve with more POVM
measurements M. We can quantify the agree-
ment of the total estimator p = ﬁzn]\fﬂ Pm
with the ground truth p through the Frobenius
error ||p — p||F, and the value of any observ-
able A = tr(Ap) through the mean squared error
(MSE) E[(A — \)%], where A = tr(Ap).

Computing the error of all estimators with re-
spect to ground truth quantities provides an ob-
jective standard by which we can compare all es-
timation methods in this study. In this vein, it is
important to note that the three approaches un-
der consideration (LS, RLS, and CS) correspond
to different estimation techniques under a com-
mon physical model; i.e., all approaches seek to
estimate the same unknown quantum state p and
assume the same mapping from state to proba-
bilities [Eq. (1)]. In other words, the problem
of interest concerns estimation techniques and

not model selection, so model identification tools
such as the Akaike information criterion [29]—
considered in a variety of quantum state estima-
tion contexts [30-33]—do not apply.

On another note, Ref. [15] employed an addi-
tional statistical technique, “median of means,”
to reduce the impact of outliers by partition-
ing the shadows into several groups and tak-
ing the median as the estimate. Incidentally,
in recent experimental tests of CS, no signifi-
cant difference was observed in the performance
of the two approaches (mean versus median of
means) [18]. Roughly speaking, the median-
of-means approach is not designed to reduce
the variance of the estimator, but rather obtain
a better concentration bound than the sample
mean alone [15]. Thus, as this paper focuses on
the variance (i.e., MSE) instead of the concen-
tration bound for performance quantification, the
sample mean represents the most suitable estima-
tor for our purposes. All that said, we do expect
similar phenomena to hold for all comparisons
below with the median of means.

For our simulated experiments, we invoke the
setup of the original CS proposal [15] with (K =
D)-outcome, rank-1 POVMs {A,,1,..., Ay p}
defined according to A, = umkuT where

m,k’
eachU,, = [um,l C Uy, Dr is a randomly chosen
D x D unitary matrix. Each POVM measures the
state only once (i.e., L = 1) so that p,, becomes
a one-hot vector, in which case Al (p,,) can be
rewritten as

Al (B mekum wul = (UL Pm) (U, Bm).

k=1
(11)
Motivated by our previous study [19], we con-
sider n = 5 qubits, Haar-random unitaries, and a
fixed ground truth state p = 6068 We focus on
three rank-1 observables, A; = ¢Z-q.')T 1=0,1,2,
where

d) eO?d)l 12 \/—_1 Z 6]7¢2

(12)

These possess ground truth values A\g = 1, A} =
1/2, and A9 = 0 regardless of dimension D, pro-
viding an informative range for exploration.

LS and “double descent” phenomena.—We
simulate experiments over 50 independent tri-
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Figure 2: lllustration of the performance of the LS shadow for estimatinl% the state p and the linear observables
. —1 .
Ai = tr Aip with A; = ¢!, where ¢ = eg, 1 = %eo + ﬁ >.i1 €j,d2 = er: (a) the sum of positive

eigenvalues and negative eigenvalues of p, and ||p — p||r, (b-d) A; (estimator for A;) from 50 independent trials, and
the corresponding MSE (\; — \;)? averaged over the 50 trials.

als, in each of which we compute the LS esti-
mator for ten collections of measurements M €
{22 23 ... 211}, Notably, Fig. 2 shows that the
estimation errors for both the state p and the
linear observables \; do not monotonically de-
crease with the number of POVMs M. In par-
ticular, for p and Ay, when M increases, the
estimation error first increases in the underde-
termined regime (M < D), peaks at the inter-
polation regime when M =~ D, and then de-
creases when entering the overdetermined regime
(M > D). Here, the three regimes are defined
according to the relationship between the total
number of outcomes M D and the size of the
state D?, corresponding to the number of equa-
tions and parameters in the LS problem [Eq. (7)].
The curves of the estimation error for A\g and A\;
first decrease, then increase, likewise peaking in
the interpolating regime (M = D), and finally
decrease with M. This resembles the “double
descent” phenomenon observed in deep neural
networks: performance first improves, then gets
worse, and then improves again with increasing
model or data size [34-38]. This phenomenon has
been formally studied for linear regression prob-
lems under certain statistical models [39-43], and
has recently been observed in neural networks for
quantum state tomography [44] and polarimetry
of vector beams [45].

Roughly speaking, in the interpolating regime
M =~ D, (ATA)* is unstable (with very large sin-

gular values) and the LS estimator p becomes
highly nonphysical, i.e., it has large negative
eigenvalues, resulting in large errors with re-
spect to the ground truth [Fig. 2(a)]. This ap-
pears in Fig. 2(b-d) on the estimators \; as well,
which become unstable around the interpolating
regime, varying widely between trials. A formal
analysis of this phenomenon is beyond the scope
of the present investigation and is reserved for fu-
ture work. Nonetheless, its presence in the con-
text of the LS shadow estimator forms an impor-
tant springboard for the techniques described in
the following section. Both RLS and CS estima-
tion procedures mitigate the issue of double de-
scent by replacing the pseudoinverse (AfA)* in
the LS shadow calculation S(-) with a stabilized
alternative: the similarities—and differences—
between the RLS and CS solutions in turn re-
veal an interesting picture of CS estimation as
a complementary and computationally efficient
“regularizer” for the LS shadow.

3 Stabilizing the LS Estimator

3.1 RLS Estimation

In the underdetermined regime where the num-
ber of tested outcomes M D is smaller than the
size of the state D?, regularization has been
widely adopted for constraining the resulting so-
lution. In the literature of quantum state tomog-
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raphy, regularization or constraint has been ex-
ploited for stable, low-measurement reconstruc-
tion under the assumption of specific structural
features—such as low-rank states [46-51] and
matrix product states and operators [52-60].
Without assuming any particular state struc-
ture,a common regularization in statistics and
machine learning is /o regularization, resulting in
the so-called RLS or ridge-regression estimator.
This has also been widely used in quantum state
tomography [61, 62]. The ¢5 regularization often
leads to a dense solution; in the context of quan-
tum states, it tends to push toward mixed states
(lower purity). Specifically, for a given pu > 0,

p = arg mm{Hp Alp Hg"‘ﬂHp HF}

/ (CD><

(ATA +pul) Tt AN (D)

L Z ( ATA+;LI)>_1AIn(ﬁm).

RLS shadow

(13)

With the introduced ¢y regularization, Af A+ ulI
is invertible and its condition number decreases
as u increases, achieving the purpose of stabi-
lization. Following the discussion of LS shadows,
we may call the induced p,, := S (Ajn(ﬁm)) =

-1
L (ATA+ MI)) Al (Pm) the “RLS shadow.”
Similar to LS shadows, these RLS shadows are
biased estimators of the ground truth p.

Choosing a suitable regularization parameter
i requires balancing stabilization of the operator
AT A+ puI and fitting the measurements, for which
techniques like cross-validation or grid search can
be used. Recent work [63] shows that an op-
timal regularization (which may vary with M)
that minimizes Frobenius error ||p— p||r can mit-
igate the double descent phenomenon for linear
regression under certain statistical assumptions.
While such a formal strategy seems impractical
here since the state p is unknown a prior:, numer-
ical experiments demonstrate that a small p can
indeed make RLS estimators stable. As shown in
Fig. 3, p = 0.1 leads to monotonically decreasing
MSEs for A\g and \;. While the MSE for Ao still
peaks in the interpolating regime (M =~ D), it is
already small (comparable to those for A\g and A1)
and significantly smaller than the one achieved by
LS. We could achieve monotonically decreasing

estimation error for both Ay and p through even
larger values of i (e.g., the = 1 case in Fig. 3).
However, this will substantially bias the estima-
tor p to zero, leading to worse estimation for
Ao and A1. In order to balance the performance
across different observables, throughout all sub-
sequent experiments, we simply take u = 0.1 for
RLS.

3.2 CS Estimation

CS estimation utilizes a different approach to sta-
bilize the pseudoinverse (47 A"A)". Assume each
POVM {A,, k}re[k] is independently and ran-
domly generated from an ensemble of POVMs
A according to a certain probability distribution
P(A). We may approximate ﬁAT.A by its expec-

tation
1
_ gt
Mip) =2 |31 ALA(p)|
K (14)
= Efag~pn) | Y tr(Arp) Ak]
k=1

where {Aj} represents a random POVM gener-
ated from the ensemble of POVMs A according
to the probability distribution P(A). Here M
is called the quantum channel. If A is tomo-
graphically complete, then E[AfA] is full rank
and invertible. The shadow in CS introduced in
Ref. [15] can then be defined by replacing ﬁATA
in Eq. (10) with its expectation E[AfA(p)], i.e

ZM (AL Bn),  (15)

CS shadow

so that we obtain the “CS shadow” p,, =
S (AL (Bm)) = M~ (A} (Br)), for which the
original CS proposal is named. (We acknowl-
edge the inherent repetitiveness of the term
“CS shadow” —“classical shadows shadow” —but
adopt it for consistency with LS shadow and RLS
shadows.)

As M defined in Eq. (14) is a linear operator,
its inverse M1 is also linear. These CS shadows
are independent and unbiased estimators of p
Specifically, noting that the randomness of each
shadow comes from two sources—the randomly
selected POVM A,,, and the random experimen-
tal outcome p,,—we can take the expectation to
obtain
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Figure 3: Illustration of the performance of the RLS shadow with different regularization parameter u for estimating

the state p and the three linear observables as in Fig. 2.

K
E{Am,k}NP(A)ui)\m {M_l (.A;rn(ﬁm))] = M_l E{Am,k}NP(A)vi?\m l(z ﬁm,kAm,k>] =P (16)
k=1

where E{Am,k}wP(A),Em [Zle ﬁmkAm,k} =
M(p) can be obtained by noting the condi-
tional expectation Efzm PmkAmik | {Ami}] =
tr(Ap, kp)Ay according to the Born rule [see
Egs. (1) and (2)].

At this point it is useful to pause and compare
the three estimation approaches introduced and
analyzed so far: LS, RLS, and CS. As articulated
in Fig. 1 and Egs. (10, 13, 15), each approach
produces an estimate that can be viewed as an
average over discrete shadows p,, = S (A}Ln (ﬁm))
each corresponding to one of the M POVMs mea-
sured. Whereas LS computes each shadow by di-
rect inversion of the total collection of measure-
ments, both RLS and CS modify this procedure,
through regularization and quantum channel in-
version, respectively. This observation already
offers interesting insights into CS features.

In our opinion, one of the initially most sur-
prising aspects of CS lies in the way it treats
the measurement operators post-experiment. Al-
though the POVMs A,, are selected at random
during the measurement process in the canon-
ical CS example, they are known to the user
a posteriori through the complete collection A.
Yet this knowledge is intentionally ignored in the
CS shadow operation S(-); the inversion is in-
stead performed on the a priori quantum channel
with completely random measurements—an es-
sentially “fictitious” quantum channel from the
perspective of the completed experiment. In
the light of RLS, however, this channel selection

M(p)

acquires a more intuitive explanation in terms
like RLS, CS allows for well-
conditioned inversion under any set of measure-
ments, opening the opportunity to improve sta-
bility in the estimation procedure and qualita-
tively accounting for the rigorous information-
theoretic bounds it attains [15].

CS with rank-1 POVMs.— The quantum chan-
nel M in Eq. (14) depends on the POVM en-
semble and the corresponding sampling distri-

of stabilization:

bution. Consider rank-1 POVMs of the form
{A1,..., Ay} with A = uku;rg, where each
U= [ul e uglyr is randomly chosen from an

ensemble of D x D unitary matrices U. Var-
ious unitary ensembles have been explored in
prior studies, including the local and global Clif-
ford ensembles [15], fermionic Gaussian unitaries
[64], chaotic Hamiltonian evolutions [65], locally
scrambled unitary ensembles [65], and Pauli-
invariant unitary ensembles [66], for which ex-
plicit formulas for the quantum channel M and
its inverse M ™1 exist. For instance, if U is the
full unitary group and each unitary matrix U
is sampled independently according to the Haar
measure on U, the quantum channel M and its
inverse M can be computed as

D
M(p) =Eu |) (uLpuk) ukuL]
k=1 (17)
1 tr(p) ¢

B IS LR I
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Table 1: Comparison of RLS and CS estimators.

distribution | computational . .
. bias variance
independent cost
LS v high high high
RLS v high high low
CS X low low (zero) high
M Yp) = (D+1)p—tr(p)L (18) Feature — 2: handling  of  distribution
mismatch.—The quantum channel M in

Plugging this explicit formula and the expression
of Al,(Py) in Eq. (11) into Eq. (13), we can fur-
ther simplify the CS shadow [15]:

Pm = (D + 1)U} pm) (U, m)’
— tr((U}),pm) (U}, Pm) T
= (D + 1)U}, ) (U}, pm)" — L,

(19)

Since (U}, pm)(U},pm)t is rank-1 with its only
non-zero eigenvalue equal to 1, each classical
shadow satisfies tr(p,,) = 1, through the sum-
mation of one positive eigenvalue equal to D and
D — 1 negative eigenvalues equal to —1.

4 Comparing RLS and CS Stabiliza-
tion Techniques

4.1 Overview

As introduced and discussed in the previous sec-
tion, both RLS and CS invoke “fictitious” quan-
tum channels to stabilize the inverse operation in
computing each shadow p,,. Nevertheless, they
do so in significantly different ways, leading to
distinct advantages and disadvantages in specific
use cases. To examine these aspects further, we
test and compare RLS and CS methods in the es-
timation of quantum observables from three per-
spectives, each of which leverages targeted nu-
merical simulations to reveal the important be-
haviors of interest. We summarize the three fea-
tures below and in Table 1, and the relevant nu-
merical simulations follow in the subsequent sub-
sections.

Feature 1: bias and variance tradeoff. —CS and
RLS approaches trade off bias and variance in
opposite ways. CS estimates are always unbiased
but can exhibit relatively large variance with a
limited number of measurements. On the other
hand, RLS estimation controls variance through
{5 regularization, but also introduces bias.

CS relies on information about how the POVMs
are randomly generated. Such information is not
necessary in RLS. In other words, RLS is more
flexible as it only requires the POVMs actually
used, regardless of whether they are generated
randomly or deterministically. On the other
hand, by averaging over all possible POVMs,
the quantum channel in CS often has a simple
explicit formulation that is independent of the
specific POVMs measured, as shown in Egs. (17,
18). In contrast, RLS must compute the inverse
(ATA + pI)~! for each POVM realization.
Thus, RLS and CS trade off flexibility in the
distribution with computational efficiency.

Feature  3: scaling  with
measurements.—The  measurement of M
POVMs with L shots each requires a total of
ML state preparations. Although we focus
primarily on the L = 1 case—in line with the
original CS formulation [15]—our derivations
are completely generic with respect to L. In
our third set of tests, we therefore examine the
performance of both RLS and CS for multishot
measurements (L > 1). Although a priori
unclear to us whether RLS and CS shadows
would show any differences in their respective
dependencies on L, numerical tests in Sec. 4.4
find that estimation errors in RLS are much more
sensitive to L—both for better and worse—than
their CS counterparts.

multishot

4.2 Feature 1: Bias-Variance Tradeoff

Considering the same ground truth state, ob-
servables, and measurements as analyzed by
LS shadows in Fig. 2, we apply RLS and CS
techniques for inference and show the results in
Fig. 4. The top of the first column plots the esti-
mates of the states in terms of their eigenvalues;
the middle shows the distance to the ground
truth defined as ||p—p||; and the bottom depicts
the log-likelihood defined as ﬁlog L(ppny) =
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Figure 4: lllustration of the performance of CS and RLS for estimating the state p and the linear observables

A = tr A;p with A; = ;).
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Figure 5: (a) lllustration of the performance of the RLS
and classical shadow for estimating 50 linear observables
A = tr(Ap), A = ¢¢', where ¢ is randomly and uni-
formly generated from the unit sphere. (b) the probabil-
ity distribution (i.e., probability density function (PDF))
P(\) = (D —1)(1 — X\)P=2 for such a random linear
observable A.

ﬁ St Yk Sk 10g(tr (A kPphy)), where
Pphy denotes the estimator projected onto phys-
ical states by the method of Ref. [67], performed
to remove negative probabilities that would
otherwise make the log-likelihood complex [68].
The last three columns [Fig. 4(b—d)] plot the
estimates for particular expectation value A; for
all 50 trials obtained by both RLS and CS; the
bottom row shows the MSE with respect to the
ground truth, averaged over all trials.

Figure 4(a) compares features of the estimators

themselves. While both RLS and CS yield nega-
tive eigenvalues, those from RLS are less extreme
than CS in the underdetermined regime (M < D)
before aligning closely for M > D (top). Such
behavior is similarly reflected in RLS’s much
lower error with respect to the ground truth for
M < D, followed by close agreement for M > D
(middle). Interestingly, however, as the bottom
plot shows, likelihood tests (typical in classical
inference) strongly favor CS over RLS; for any
number of measurements M, the likelihood eval-
uated at the CS estimator exceeds that of RLS,
despite the fact RLS is closer to the ground truth
in much of this regime (smaller error ||p — p||F).

This unexpected characteristic can be ex-
plained by the fact that CS shadows are con-
structed directly by projectors of the measured
outcomes [cf. Eq. (19)]. Hence, even for M <
D, the CS estimator automatically assigns high
probabilities to prior observations—which is pre-
cisely what the likelihood computes. Accord-
ingly, the wide deviation between expectations
from a likelihood test (bottom) and the actual
ground truth (middle) not only reveals an inter-
esting feature of CS shadows; it also emphasizes
the importance of testing these methods against
ground truth values to avoid misleading conclu-
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sions on their relative merits.

On the observable side, Fig. 4(b-d) reveals that
CS shadows possess large variance for low M, but
are unbiased and converge to ground truth val-
ues rapidly, with nearly identical rates for all ob-
servables. This enables the derivation of rigorous
information-theoretic bounds for any fixed and
finite number of linear observables [15]. In con-
trast, the ¢ regularization applied to RLS leads
to observable estimators that are biased towards
the origin but also have small variance. More-
over, compared to the LS shadow tests in Fig. 2,
the double-decent phenomenon and wide fluctu-
ations around M = D have been significantly at-
tenuated through regularization, especially strik-
ing for the A\g and A; tests. While the RLS es-
timation errors for p and Ay still increase as M
approaches the interpolating regime, they remain
small, and they are smaller than those achieved
by CS. As discussed at the end of Sec. 3.1, this
increasing phase could have been mitigated by a
large regularization parameter (e.g., u = 1), but
at the expense of higher errors for A\g and A;.

Aside: random observables.—For the numeri-
cal experiments in this paper, we have focused
on a fixed state p = eoeg and three rank-
1, trace-1 observables with ground truth values
(Ao, A1, A3) = (1,1/2,0). As discussed in detail
in Ref. [19], observables with ground truth values
A ~ O(1) reflect scenarios where the accuracy of
CS significantly surpasses alternative techniques
like maximum likelihood and Bayesian inference
for the same number of measurements. Nonethe-
less, from the perspective of random observables
or ground truth states, A =~ 1 is extremely rare
in large Hilbert spaces; in this regime, for exam-
ple, the Bayesian mean is far more accurate on
average than CS [19].

This distinction helps explain RLS’s lower
MSE compared to CS for M < D in Fig. 4(d).
Taking the same simulated trials but selecting 50
different projectors of the form A = ¢¢!, where
each ¢ is randomly generated from the unit hy-
persphere according to the Haar measure (equiv-
alent to looking at 50 random ground truth states
for a fixed observable [19]), we find the MSEs
plotted in Fig. 5(a). RLS provides more accurate
estimates than CS on average when M is small
and demonstrates similar performance as M be-
comes large. Notably, the MSEs look similar to
those for A2 in Fig. 4(d). This can be explained

by the probability density function (PDF) for the
random observable \ = tr(Ap) = ||¢Teo|3, given
by P(\) = (D—1)(1—-X\)P=2[69]. As depicted in
Fig. 5(b), the random variable A has a mean of
1/D = 1/32 and mode of 0. Thus, in the random
context Ay = 0 represents a much more typical
value than either A\g = 1 or A\ = 1/2, justifying
the strikingly similar behavior for A [Fig. 4(d)]
compared to Haar-random cases [Fig. 5(a)]. So
while we do consider observables like Ag which
reflect situations of interest in practice (e.g., ver-
ification of high-fidelity state preparation), it is
important to bear in mind the extreme improba-
bility of this situation for truly random states or
observables.

4.3 Feature 2: Distribution Mismatch

As described in Section 3.2, CS leverages the as-
sumption of random measurements and involves
the computation of the quantum channel for the
entire distribution, as in Eq. (14). However, in
practical experiments, the randommness is typi-
cally synthetic, and thus the measurement basis
may not be perfectly generated according to the
desired distribution. In this case, the distribu-
tion shift may pose robustness challenges for CS
as it crucially depends on the formulation of the
quantum channel. In contrast, the RLS approach
does not incorporate assumptions of randomness
at any point and may therefore prove more useful
in this case.

To further illustrate this point, we invoke the
same setup as in the previous experiments, but
now generating the unitary measurement matri-
ces from a mixture distribution (1 —n)P(Up) +
nP((Uz)®™), where Up and (Uy)®" denote global
and local (tensor products of qubit) Haar-
distributed unitary matrices, respectively. In
other words, for each state copy we perform ei-
ther a random global basis measurement with
probability 1—7» or a random local basis measure-
ment with probability n. While this toy example
is not expected to reflect distribution errors in
practical systems, it provides a clear showcase of
the key points. Suppose that an experimenter ex-
pects the chosen operations to be sampled from a
global Haar distribution, but with probability n
actually generates tensor products of local qubit
unitaries. In this case, the CS shadows will be
computed according to Eq. (19) under assump-
tions violated by the experiment.
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Figure 6: lllustration of the performance of the RLS and CS approaches for estimating the linear observables \; =
tr(A;p) in the presence of distribution shifts: the unitary matrices are generated from the distribution (1—7n)P(Up)+
nP((U3)®™), where Up and (U2)®™ denote the global and local Haar-distributed unitary matrices, respectively.

Figure 6 shows numerical results for the sys-
tem of interest for M = 256 measurements and
n € (0,0.5). The performance of CS degrades as
a result of the distribution shift, and it worsens
as 7 increases. In contrast, RLS depends solely
on the actual measurements performed and does
not rely on information about the sampling dis-
tribution, making its performance stable against
such distribution shifts.

4.4  Feature 3: Multishot Measurements

The derivations culminating in Eqgs. (13, 15) for
RLS and CS are not confined to single-shot mea-
surements (L = 1) but inherently include mul-
tishot (L > 1) scenarios as well.
text of multishot measurements, where empirical
frequencies are computed by averaging across all
outcomes [Eq. (2)], the shadows in Egs. (13, 15)
could always be viewed as single-shot results but
duplicated POVMs, by converting L and M to
effective values Log = 1 and Meg = M L. This
equivalence stems from the linear nature of shad-
ows concerning the empirical frequencies.

In the con-

What then distinguishes measuring the quan-
tum state using each POVM only once or mul-

tiple times? The primary differences are practi-
cal in origin, depending on the relative difficulty
of preparing state copies compared to reconfig-
uring the measurement. For example, in many
photonics experiments (particularly with sponta-
neous parametric downconversion [70, 71]), states
are prepared continuously and at random, so one
need only increase the integration time to push to
large L for a fixed measurement setting. On the
other hand, for systems composed of supercon-
ducting circuits where each state copy is actively
prepared, the difference in difficulty between in-
creasing L and increasing M is less dramatic,
since both state and measurement circuit are pre-
pared actively and deterministically.

For fixed number of state copies ML, we ex-
pect the single-shot regime L = 1 to provide the
closest agreement between LS and CS, for in that
case (maximum M) the experimental operator
AP A should approach its expected value E[AfA]
most rapidly. In general, for a fixed ML, in-
creasing M explores the Hilbert space more effi-
ciently at the expense of greater statistical noise
per setting, whereas increasing L reduces statis-
tical noise at the expense of measurement variety.

To explore this tradeoff for CS and RLS, we
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Figure 7: lllustration the performance of CS (top row) and RLS (bottom row) with multishot measurements for
estimating the three linear observables {Ag, A1, A2} as in Fig. 2, and 50 random linear observables A as in Fig. 5(a).

conduct numerical experiments using the same
setup as in Fig. 4 in the multishot regime. In
each experiment, we keep the total number of
copies of the state ML fixed and vary the num-
ber of shots L within the set {1,8,64,512} for
measuring each POVM, which in turn varies the
number of POVMs M. Fig. 7 illustrates the per-
formance of CS (top row) and RLS (bottom row)
in estimating the expectations of the three lin-
ear observables {Ag, A1, A2} as in Fig. 2, and 50
random linear observables as in Fig. 5(a). CS
consistently achieves its best performance with
single-shot measurements, and its error increases
with L. This observation aligns with our earlier
discussion: a greater number of random POVMs
brings ﬁAT.A closer to its expected value as de-
scribed in Eq. (14), and the maximum diversity
of POVMs is attained in a single-shot measure-
ment.

Interestingly, while the primary impact of L >
1 for CS estimation is to shift the total error up
for a given M L, the log-log slopes of all examples
remain approximately —1, indicating favorable
scaling MSE oc (M L)~! for all L regimes consid-
ered. On the other hand, L > 1 examples alter
the slopes of the RLS estimator errors as well as

their absolute values. For the /):0 and 3\1 cases,
the error increases rapidly with L accompanied
by an extremely shallow initial slope [Fig. 7(a,b)];
in contrast, the low-M L regime of MSE for Aa
and random linear observables \ is actually lower
for L > 1 compared to L = 1 [Fig. 7(c)]. Both of
these features are likely due to the bias present in
RLS shadows. With a smaller number of POVMs
(low M), the observables computed by RLS are
heavily biased to zero, which happens to deviate
strongly from the ground truth values Ag = 1 and
A1 = 1/2, yet is precisely the true expectation of
Ay (A2 = 0) and close to the expectation of most
random A [cf. Fig. 5(b)]. In contrast, because
the CS shadow is always unbiased regardless of
M and L, comparable behavior is seen for all ex-
amined observables.

To complement these numerical and qualita-
tive findings, we now mathematically derive MSE
formulas for the expectation of observable A
A = tr(Ap)] with estimator A = tr(Ap) =
LS M tr(Apm). We will focus on CS shadows
as they are unbiased estimators, which will sim-
plify the analysis, and exhibit consistent behavior
across different observables in Fig. 7. The fol-
lowing result establishes the variance (and hence
MSE as CS is unbiased) of CS for estimating .

Theorem 1. Consider a ground truth state p which is repeatedly prepared and measured with M
POVMs { Ak }reix],m € [M] generated independently and randomly from an ensemble A according
to probability distribution P(A). Each POVM is used to measure the state L times. Then the MSE of
the CS estimate of the expectation of the linear observable A is given by
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Ea, 1~PA) o [(tr(Aﬁ) - tr(Ap))ﬂ

LN [Z( (Arp) + L—l)(tr(Akp»Z)-(tr(A-M*(Ak)))?]

(20)
1-1/L _ _
+ M/ E{Ak}wP(A) [Z tr(Agp) - tr(App) - tr (A ML (Ak)) - tr (A M (Ak’))
k£k!
L (tr(Ap))?.
Proof of Theorem 1. Using the expression p = ﬁ > m Pm, We have
1o ?
B, i3~P@) pn <M > r(Apm) - tf(AP))
m=1
1 ~ 12 1 2
= 37 2 Ea,0~Pw) B [(tr(Apm)) } — 5 (tr(Ap) (21)

(i (a2t (S k>>>] - Ly,

where the first equality follows from the independence and unbiasedness of the shadows p,,, m € [M].

2
We now focus on the analysis of E{Am I P(A) P [(tr (A M1 (Eszl ﬁmvam’k))) } Since this
term will be the same for each m, for simplicity, we drop the subscript m and write it as
2
E [(tr (A ML (Zszl ﬁkAk))) ] , where {py} are the empirical frequencies that are obtained by

using the randomly generated POVM {Aj} to measure the quantum state L times. We note that
here the expectation is taken over two types of randomness: the randomly selected POVM {Aj} and
the random measurements {py}. Conditioned on {Ay}, {pr} obeys a multinominal distribution with
properties

|
= 372 2 Era, 0mre) 5
m

- _ 2
E (5} | {Ak}] =p}+ pr(L—p) _ pr+(L—1)p}

L o L ’

PN 1 1
E [prpr | {Ak}] = prpw — 7 Prpw = (1 - L) pepws V k#K. (23)

We now proceed by using these results and the fact that M~ is a linear operator:

K 2 K 2
Eianp {(tr (A M (Z ﬁkAk>)> =Eianp [(Z i - tr (A M (Ak))> ]
k=1 Pt
K
=Eans [Z it (o (A M (Ak)»Q]
k=1

+ E{Ak}’a [Z PrDkr - tr (A . Mfl (Ak)) - tr (A . Mil (Ak/)) (24)

kK

5y [ 3 2L o (3 a0)) ]

k=1

Z (1 — i) PEPE - tr (A M (Ak)> - tr (A M (Ak/))

k£k!

+ E{Ak} [

We complete the proof by plugging the above into Eq. (21). O
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When L = 1, Eq. (20) reduces to the formu-
lation in Ref. [15] (Lemma S1 therein) through
the property that M™! is self-adjoint and the
expression for rank-1 orthonormal POVMs
[Eq. (19)]. During the final preparation and
revision of this work, we became aware of two
works with derivations similar to ours: one for
rank-1 orthonormal POVMs with multishot
measurements [24] and another that focuses
on MSE for a single unitary and then studies
how the MSE varies with different choices of
unitary groups [72]. Our formulation in Eq. (20)
is distinct by holding for general POVMs.
Though Eq. (20) may appear complex, if we
disregard the last term, we can draw the follow-
ing two key observations. (i) Since tr(Agp) is
often very small, the dominant term becomes
S Ea, [T tr(Ar) - (i (A- M1 (A,))7].
This term decreases proportionally to 1/ML,
where M L represents the total number of mea-
surements. (ii) Conversely, if we keep M L fixed,
using a larger value of L generally results in a
larger MSE since the remaining terms increase
with L. This explains the observed decrease
in performance with increasing L as shown in
Figure 7.

5 Conclusion

In this paper, we have identified and formalized
deep connections between traditional LS-based
techniques for quantum state estimation and the
disruptive methodologies of CS. Through care-
ful derivation of the LS tomographic problem,
we have shown that the LS estimator can be
viewed as the average of distinct “shadows” p,,,
each corresponding to a specific measurement, in
complete analogy with CS. This extension of the
shadow picture to LS in turn reveals a novel view-
point for CS in connection with regularization;
just like traditional techniques such as RLS, CS
reduces the instabilities of LS in the underdeter-
mined regime through replacement of (;.47A)"
with a well-conditioned channel inverse.
Notwithstanding these intuitive similarities be-
tween RLS and CS shadows, our tests above re-
veal key differences. RLS shadows reduce vari-
ance at the cost of bias, are robust to errors in
the distribution of random measurements, and
are highly sensitive to the tradeoff in the num-
ber of POVMs M and number of shots L. In

contrast, CS shadows are unbiased at the ex-
pense of variance, produce high estimation er-
rors whenever the actual measurements diverge
from the expected distribution, and scale favor-
ably with a variety of M and L combinations.
Certainly, although not optimal in all categories
of interest, the fact that CS shadows are unbi-
ased for any number of measurements—even in
the highly underdetermined regime—is a remark-
able feature that distinguishes its version of reg-
ularization from alternatives such as RLS.

Irrespective of such observations, none of the
various tradeoffs can minimize the exceptional
computational efficiency possible with CS shad-
ows over both LS and RLS methods. When-
ever the quantum channel M can be analytically
inverted—as in the example in Egs. (17,18)—
CS requires numerical calculation of no matrix
inverses, unlike both LS [Eq. (10)] and RLS
[Eq. (13)]. Indeed, while examples of CS shad-
ows up to 120 qubits were shown in Ref. [15], the
record dimensionality for LS tomography (specif-
ically, LS projected onto physical states) is a com-
paratively meager 14 qubits [73], and it is difficult
to imagine significant increases beyond that num-
ber with existing computing technology. How-
ever, while CS shadows may face minimal com-
petition in ultralarge Hilbert spaces, our findings
connecting it to LS methods reveal a fascinat-
ing conceptual lineage with traditional method-
ologies, shedding further light into the secrets of
the exciting and transformative tomographic pro-
cedure that is CS.

Code Availability

The MATLAB code used to produce the results
in this study is available at https://github.
com/ZhihuiZhu/shadow_1s.
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