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Robust Low-Rank Tensor Train Recovery

Zhen Qin

Abstract—Tensor train (TT) decomposition represents an
N-order tensor using O(IN) matrices (i.e., factors) of small
dimensions, achieved through products among these factors.
Due to its compact representation, TT decomposition has found
wide applications, including various tensor recovery problems in
signal processing and quantum information. In this paper, we
study the problem of reconstructing a TT format tensor from
measurements that are contaminated by outliers with arbitrary
values. Given the vulnerability of smooth formulations to corrup-
tions, we use an £¢; loss function to enhance robustness against
outliers. We first establish the ¢; /£>-restricted isometry property
(RIP) for Gaussian measurement operators, demonstrating that
the information in the TT format tensor can be preserved
using a number of measurements that grows linearly with N.
We also prove the sharpness property for the £; loss function
optimized over TT format tensors. Building on the £ /¢>-RIP
and sharpness property, we then propose two complementary
methods to recover the TT format tensor from the corrupted mea-
surements: the projected subgradient method (PSubGM), which
optimizes over the entire tensor, and the factorized Riemannian
subgradient method (FRSubGM), which optimizes directly over
the factors. Compared to PSubGM, the factorized approach
FRSubGM significantly reduces the memory cost at the expense
of a slightly slower convergence rate. Nevertheless, we show that
both methods, with diminishing step sizes, converge linearly to
the ground-truth tensor given an appropriate initialization, which
can be obtained by a truncated spectral method. To the best of
our knowledge, this is the first work to provide a theoretical
analysis of the robust TT recovery problem and to demonstrate
that TT-format tensors can be robustly recovered even when
a certain fraction of measurements are arbitrarily corrupted.
We conduct various numerical experiments to demonstrate the
effectiveness of the two methods in robust TT recovery.

Index Terms—Tensor-train decomposition, robust tensor re-
covery, £1/£2-RIP, sharpness, projected subgradient method,
factorized Riemannian subgradient method, linear convergence.

1. INTRODUCTION

ENSOR recovery has been widely investigated in many
Tareas, such as signal processing and machine learning
[1], [2], communication [3], quantum physics [4], [5], [6],
chemometrics [7], [8], genetic engineering [9], and so on. One
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fundamental task is to recover a tensor X'* € R4 X XN from
highly incomplete, sometimes even corrupted, observations y =

{yk}i=, given by

Y1 (Aq, X*) + 51

y=AX")+s=| ' | = :
Ym

: ER™, (1)
<-Ama X*> + Sm

where A(X*) : R%>>Xdn 5 R™ 5 a linear observation op-
erator that models the measurement process and s € R rep-
resents an outlier vector, wherein only a small fraction of its
entries (referred to as outliers) have arbitrary magnitudes but
their locations are unknown a prior, while the remaining en-
tries are zero. In practical scenarios, outliers are frequently
encountered in sensing or regression models [4], [5], [10], [11],
[12], [13], [14], [15], [16], stemming from various factors such
as sensor malfunctions and malicious attacks. For instance,
in quantum state tomography, imperfections during quantum
state preparation can randomly generate unwarranted outlier
quantum states, which subsequently lead to outliers during the
measurement operation [14], [17], [18].

Even in the absence of outliers, the recovery from (1) re-
mains ill-posed due to the curse of dimensionality, which arises
from the exponential storage complexity of X* with respect
to N. Therefore, it is often advantageous (and even neces-
sary) to employ certain tensor decomposition models to com-
pactly represent the full tensor. One commonly used model is
the tensor train (TT) decomposition [19], which expresses the

(s1,-..,8n)-th element of X'* as the following matrix product
form [19]
X* (81,00, 88) = XT(5,81,:) X5, 82,1) - XN (s, SNy 0,

2

where tensor factors X € Rri-1*dix"i 4 ¢ [N] with 79 =
rn = 1. The dimensions rank(X™*) = (ry,...,7y—1) of such a
decomposition are called the TT ranks' of X*. We say a TT
format tensor is low-rank if r; is much smaller compared to
min{II’_,d;, TIY.;  d;} for most indices i so that the total
number of parameters in the tensor factors {X7} is much
smaller than the number of entries in X*. We refer to any
tensor for which such a low-rank TT decomposition exists as a
low-TT-rank tensor. To simplify the notation, we may also use
[X7, ..., X%] as the compact form of X'*.

Compared to the other two commonly used tensor
decompositions—canonical polyadic (CP) [20] and Tucker [21]

! Any tensor can be decomposed in the TT format (2) with sufficiently large
TT ranks [19, Theorem 2.1]. Indeed, there always exists a TT decomposition

with r; < min{H;:ldj, ij:z#ldj} for any ¢ > 1.
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decompositions—TT decomposition strikes a balance between
the advantages of both approaches?. The number of parameters
of TT decomposition is O(Ndr?) with d =max;d; and
T = max; 7;, not growing exponentially with the tensor order
as the CP decomposition. Furthermore, similar to the Tucker
decomposition, the TT decomposition can be approximately
computed using an SVD-based algorithm, called the tensor
train SVD (TT-SVD), with a guaranteed accuracy [19]. See [24]
for a detailed description. Consequently, TT decomposition has
been widely applied to tensor recovery across various fields,
including quantum tomography [5], neuroimaging [13], facial
model refinement [25], and the distinction of its attributes
[26], longitudinal relational data analysis [27], and forecasting
tasks [28].

A. Our Goals and Main Results

In this paper, we study the robust recovery problem in (1),
where the underlying tensor X'* has low TT ranks. We refer to
this as the robust TT recovery problem. To handle outliers in
the measurements, we employ a robust /1 loss function together
with the TT format and solve the following problem:

1
i =— X) — . 3
i S =A@ -yl @)
rank(X) = (rq, ..., TN—1)

Compared to the conventional least-squares (¢5) loss, the ¢,
loss function® is more robust against outliers and has been
widely adopted in robust signal recovery problems [14], [16],
[34], [35], [36], [37], [38], [39]. However, the combination of
the ¢ loss function and TT decomposition makes the problem
(3) highly nonsmooth and nonconvex. Our goal is to study its
optimality conditions and develop optimization algorithms with
guaranteed performance.

Note that measurements should satisfy certain properties to
enable robust recovery from corrupted measurements. Our first
contribution is to study the stable embedding of low-TT-rank
tensors by establishing the following {1 /{s-restricted isometry
property ({1 /lo-RIP*) without outliers for A , which has been
introduced previously in the context of low-rank matrix/Tucker
tensor recovery [16], [36], [41], [42], [43] and covariance esti-
mation [44]. This mixed-norm approximate isometry evaluates
the signal strength before and after projection using different
metrics: the input is measured in terms of the Frobenius norm,
and the output is measured in terms of the /; norm. Specifically,

’In general, finding the optimal CP decomposition for high-order tensors
can be computationally difficulty [22], [23], while the Tucker decomposition
becomes inapplicable for high-order tensors due to the number of parameters
scaling exponentially with the tensor order.

3Various smoothed version of ¢1, including Huber, Welsch, hybrid ordinary-
lp, hybrid ordinary-Welsch, and hybrid ordinary-Cauchy [29], [30], [31],
have been proposed to suppress outliers. Additionally, the truncated-quadratic
function [32], [33] has been employed to clip large values. However, these
functions introduce additional hyperparameters that may require careful tuning
in practice. In this work, we primarily focus on the #; norm and prove the
convergence of subgradient methods. However, we believe that our analysis
can also be extended to other functions, which we leave for future research.

401 /6o -RIP differs from the £5/f2-RIP [5], [40], which examines the
relationship between ||.A(X)[|3 and || X||%.
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we say A satisfies rank-7 {1 /{5-RIP if there exits a constant

07 € (0, /2/m) such that

(V2/m = b7) \X||F<*HA )M < (V2/m+6:) [ X

“4)
holds for all low-TT-rank tensors  with  ranks
(riy...,rnN-1),7 <T. We show that Gaussian measurement

operators A, where Aj,..., A, have independent and
identically distributed (i.i.d.) standard Gaussian entries,
satisfies ¢1/¢o-RIP (4) with high probability as long as
m > Q(Ndr?log N/62) with d =max; d;. This implies that
robust TT recovery is possible using a number of measurements
that only scale (approximately) linearly with regard to N. With
the ¢4 /¢5-RIP property, we show that the robust loss function
in (3) satisfies the sharpness property [16], [36], [43], [45],
[46], [47]: for any low-TT-rank tensors X with TT ranks
r; <T, it holds that

1 . 1
AKX = x7) = sl = —]sls

(L =2ps)v/2/m = &) [ X — X7, ®)

where p, € [0,0.5 — 0.5027/+/2/7] represents the fraction of
outliers in vy, i.e., ps = ||s||o/m. Since (3) optimizes only over
low-TT-rank tensors, (5) needs to hold only for these tensors;
as such, a similar condition for Tucker tensors is also referred
to as restricted sharpness in [16], [43]. The sharpness condition
(5) implies that X' is the unique global minimum, with the loss
function increasing as the variable X" deviates from X*.

Our second contribution is to propose two complemen-
tary iterative algorithms for solving (3). Building on insights
from [40], we first introduce a projected subgradient method
(PSubGM). This method optimizes the entire tensor in each
iteration and employs the TT-SVD to project the iterates back
to the TT format. Under the sharpness property, we establish
a robust regularity condition (RRC) for the objective function
(3). We show that the PSubGM algorithm, with appropriate
initialization and diminishing step sizes, achieves a linear con-
vergence rate. Remarkably, PSubGM can precisely recover the
ground-truth tensor X'* even in the presence of outliers.

A potential drawback of PSubGM when handling high-order
tensors is that it requires storing the full estimated tensor X’ and
performing TT-SVD at each iteration, which becomes impracti-
cal for large N, such as in quantum state tomography involving
hundreds of qubits [5]. To address this issue, instead of opti-
mizing directly over the tensor X', we employ the factorization
approach that optimizes over the factors {X;};>1 which can
significantly reduce the memory cost. Specifically, we consider
the following optimization problem:

1
. —[|A([X,..., X — ’
Xiemrrirzllridixnw '/nH ([ 1 N]) y”l
i€ [N]
ZX s ) Xi(si) =L, i€[N 1. (©)
s;=1

The additional constraints ij_l X (s, 00X 8,0) =1,
are introduced to reduce the scaling ambiguity of the factors
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TABLE I
COMPARISON OF IHT/FRGD FOR SOLVING TT RECOVERY WITH NOISELESS MEASUREMENTS AND PSUBGM/FRSUBGM FOR THE
CORRUPTED MEASUREMENTS. HERE ps DENOTES THE FRACTION OF OUTLIERS IN THE MEASUREMENTS. THE UPPER BOUND OF
INITIALIZATION 1S EXPRESSED IN TERMS OF || X' (%) — X*|| . THE CONVERGENCE RATES OF THT, PSUBGM AND FRGD, FRSUBGM ARE

RESPECTIVELY ANALYZED CONCERNING [|X'(Y) — X'*||2, AND Dist?({X Et)}, {X7}}) DEFINED IN (22). 6. € (0,1) 1S A CONSTANT IN

STANDARD /#2 /£2-RIP (SEE [5, THEOREM 2]), WHILE &7 € (0,

1) 1S A CONSTANT IN ¢ /£2-RIP. ¢ 1S A UNIVERSAL CONSTANT

[ Algorithm ][ Outlier | Initialization Requirement | Rate of Convergence [ RIP Condition |
e s (1401 - i) <1 b <
FRGD [49) || x O () - O( e ) S sayr < 15
PSubGM v i (1+e)(1— 3((1;(2\’};)7\:2;22#) S1 | Gy < e B0 %‘8//4(;/ S;SC) 2
FRSUGM ||/ O(Fairy) 1= (T | iy < (=22

[49]. The orthogonality constraints can be viewed as Stiefel
manifolds of Riemannian space, so we utilize a factorized Rie-
mannian subgradient method (FRSubGM) on the Stiefel man-
ifold to optimize (6). We show that the objective function (6)
also satisfies a Riemannian RRC, and prove that the FRSubGM
algorithm, with an appropriate initialization and a diminishing
step size, converges to the ground-truth tensor X'* at a linear
rate. Finally, we present a guaranteed truncated spectral initial-
ization as a valid starting point, ensuring linear convergence for
both the PSubGM and FRSubGM algorithms.

While the proposed PSubGM and FRSubGM are inspired
by their smooth counterparts, iterative hard thresholding (IHT)
[40] and factorized Riemannian gradient descent (FRGD) [49],
which were developed to solve the smooth /5 loss function, the
analysis of subgradient methods is generally more challenging.
For instance, subgradient methods with a constant step size may
fail to converge to a critical point of a nonsmooth function,
even when the function is convex [50], [51], [52]. To ensure
convergence, a diminishing step size is required. Moreover,
obtaining a good starting point is more difficult due to the
presence of outliers. In Table I, we summarize the convergence
results for PSubGM and FRSubGM and compare them with
previous results on tensor recovery in the absence of outliers,
specifically the IHT [40], [48] and factorized Riemannian gradi-
ent descent (FRGD) [49] that solve problems similar to (3) and
the factorized problem (6), with the objective function being
changed to a smooth /5 loss function. We observe that PSubGM
and FRSubGM achieve a similar linear convergence rate as their
smooth counterparts, demonstrating that the outliers® can be
handled as easily as in the noiseless case by the nonconvex op-
timization approaches. The convergence rate of IHT/PSubGM
primarily hinges on the RIP constant, with a potential decay
(1 + ¢) (where c is a universal constant) owing to the expan-
siveness of the TT-SVD. Conversely, the convergence rate of
FRGD/FRSubGM relies not only on the RIP constant but also
on factors like N, 7, and X", which could impede the conver-
gence speed. Our work extends the literature [35], [36], [37],

SIn our paper, we focus on applications involving outliers, such as sparse
noise, impulse noise, structured noise, and heavy-tailed noise. However, our
methods remain applicable to scenarios with dense noise, where they achieve
performance comparable to methods based on £ loss.

[47], demonstrating that nonsmooth nonconvex optimization
can be solved as efficiently as its smooth counterpart.

B. Related Works

Theoretical analyses and algorithmic designs for robust low-
rank matrix recovery via nonsmooth optimization have been
extensively studied in [36], [39], [47], [53], [54]. A notable ad-
vantage of nonsmooth formulations is the enhanced robustness
to adversarial outliers, achieved through a simple algorithmic
design—the low-rank factors are updated in essentially the
same manner, irrespective of the presence of outliers. However,
existing theoretical frameworks for asymmetric matrix factor-
ization cannot be extended to robust high-order tensor recovery,
as the additional regularization terms introduced to balance the
factors may not generalize to multiple tensor factors.

For tensor recovery from a limited number of measurements,
most existing theoretical work and algorithmic designs have
predominantly focused on developing optimization algorithms
for either the noiseless case or the presence of Gaussian noise.
Typically, a smooth loss function, such as the residual sum
of squares ({5 loss), is employed. Variants of projected gradi-
ent descent (PGD) algorithms, including IHT [40], [55], [56]
and Riemannian gradient descent on the fixed-rank manifold
[57], [58], have been studied for operating on the entire tensor
with guaranteed convergence and performance. However, direct
optimization over the tensor X poses a challenge due to its
exponentially large memory requirements in terms of N. To
address this storage issue, factorization approaches [49], [59],
[60] have been developed to optimize the factors of a tensor
decomposition.

In contrast, tensor recovery from measurements corrupted by
outliers has been less studied. Recently, the work [16] intro-
duced a scaled gradient method for exact recovery of order-3
Tucker from corrupted measurements. This method is proven to
have a fast convergence rate that is independent of the condition
number of the ground-truth tensor. However, the convergence
analysis, as well as the £; /¢5-RIP and sharpness properties in
[16], are only established for order-3 Tucker tensors. It remains
unclear whether the algorithm scales with respect to parameters
such as the tensor order N, dimension d, and Tucker rank.
To the best of our knowledge, there is a lack of analysis and
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algorithmic design with guaranteed convergence for robust TT
recovery.

C. Notation

We use calligraphic letters (e.g., )) to denote tensors, bold
capital letters (e.g., Y) to denote matrices, except for X
which denotes the i-th order-3 tensor factors in the TT format,
bold lowercase letters (e.g., y) to denote vectors, and italic
letters (e.g., y) to denote scalar quantities. Elements of matrices
and tensors are denoted in parentheses, as in Matlab nota-
tion. For example, X (i1, i3, ¢3) denotes the element in position
(i1,12,13) of the order-3 tensor X. The inner product of A €
RéXxdy apnd B € RO* %N can be denoted as (A, B) =
Zfllzl - ijgzl A(s1,...,sn)B(s1,...,5n). The vector-
ization of X € R%4>* >4~ denoted as vec(X), transforms the
tensor X’ into a vector. The (s1, ..., sy )-th element of X’ can
be found in the vector vec(X') at the position s1 + dq(s2 —
1)+'~'+d1d2~-~dN,1<SN—1). HX”F: <X,X> is the
Frobenius norm of X. || X || and || X || respectively represent
the spectral norm and Frobenius norm of X. ¢;(X) is the i-th
singular value of X. For vector x, ||x||2 denotes its ¢5 norm.
For a positive integer K, [K] denotes the set {1,..., K}. For
two positive quantities a,b € R, b = O(a) means b < ca for
some universal constant ¢; likewise, b = 2(a) represents b > ca
for some universal constant c. To simplify notations in the
following sections, for an order-N TT format tensor with ranks
(ri,...,7n-1), we define 7 = maxfi}l r; and d = max?®Y | d;.

Il. ¢y /05 -RESTRICTED ISOMETRY PROPERTY AND
SHARPNESS FOR ROBUST TT RECOVERY

A. Tensor Train Decomposition

Recall the TT format in (2). Considering that X, (:, s;, :) will
be extensively used, we denote it by X ;(s;) € R™i-1*"i ag one
“slice” of X; with the second index being fixed at s;. Thus,
forany X = [X1,..., X 5] € R4X X4~ in the TT format, we
can express its (s1, ..., $x)-th element as the following matrix
product form

N N
X(s1,osn) = [[ XiGsi) =] Xi(si). (D)
i=1 i=1
We may also arrange the slices { X ; (sz)}f:1 into the following
form:
X;(1)
L(X;)=| : |eRbm-—" vie[N], ()
Xi(d;)

where L(X) is often referred to as the left unfolding of X,
when viewing X ; as a tensor.

The decomposition of the tensor X into the form of (7) is
generally not unique: not only the factors X ;(s;) are not unique,
but also the dimension of these factors can vary. According
to [61], there exists a unique set of ranks © = (ry,...,rN_1)
for which X admits a minimal TT decomposition. We say the
decomposition (7) is minimal if the rank of the left unfolding
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matrix L(X;) in (8) is r;. In addition, the factors can be chosen
such that L(X;) is orthonormal for all i € [N — 1]; that is

LY(X)L(X;)=1,, ic[N—1]. ©)

The resulting TT decomposition is called the left-orthogonal
format of X. Moreover, in this case, r; equals to the rank of
the i-th unfolding matrix X{? e R(d1dr)x(dkt1dN) of the
tensor X', where the (s - - - 8;, 5;11 - - - sy )-th element® of X0
is given by X<i>(51 8, 8iq1 - SN) = X(s1,...,8n). This
can also serve as an alternative way to define the TT rank. With
the i-th unfolding matrix X{?7 and TT ranks, we can define its
smallest singular value o(X) = min} ! o, (X)), its largest
singular value 7(X') = max ;' oy (X)) and condition num-

ber k(X) = jg;

B. (1 /ly-Restricted Isometry Property

We first prove the ¢1 /¢2-RIP property for the robust TT re-
covery problem with Gaussian measurement operators, a “gold
standard” for studying random linear measurements in the com-
pressive sensing literature [62], [63], [64], [65]. As previously
studied in the contexts of low-rank matrix and Tucker tensor re-
covery problems [16], [36], [41], [42] and covariance estimation
[44], ¢, /{5-RIP establishes a connection between ||.A(X)]|; and
|IX|| r, differing from previous work on ¢5/¢5-RIP [5], [40] on
TT recovery problem, which examine the relationship between
JA(2)[3 and [l

Theorem 1 ({1/l2-RIP of Gaussian measurement opera-
tors): Suppose the linear map A : R4 > XN _ R™ i5 a Gaus-
sian measurement operator where {.A };" ; have i.i.d. standard
Gaussian entries. Let = € (0, /2/7) be a positive constant. If
the number of measurements satisfies m > Q(Ndr? log N/62),
then with probability exceeding 1 — e~V dr*log N) - A satis-
fies the ¢1 /¢o-restricted isometry property in the sense that

(V2/m = br)[|X]|F < %\\A(X)Ill <(V2/m+ &)1 X r
(10)

hold for all low-TT-rank
rT= (7“1, ce ,TNfl).

The proof is provided in Appendix B. Theorem 1 guaran-
tees the RIP for Gaussian measurements where the number of
measurements m scales linearly, rather than exponentially, with
respect to the tensor order /N. When RIP holds, then for any two
distinct TT format tensors X7, X5 with TT ranks smaller than
7, we have distinct measurements since

tensors X with ranks

1 1
g”v‘l(gﬁ) —A(X)|1 = EHA(Xl — X))
> (V2/m — bo7) || X1 — Xa|p, (11)

6Speciﬁcally, s1---s; and s;41 - -+ s respectively represent the (s1 +
di(s2 — 1) + oo tdy-- difl(si — 1))—th row and (5i+1 + di+1(8i+2 —
1)+ +dit1--dy_1(sy — 1))-th column.

TWe can also define the i-th unfolding matrix as X = XSiX2i+1,
where each row of the left part X <% and each column of the right
part X Z*+1 can be represented as X =% (s - - - s4,:) = X1(s1) - - X4(s7)
and X2 (2 5500 - -sn) = Xiv1(six1) - X n(sn). When factors are
in left-orthogonal form, we have X< X<z L., and o; (X)) =
o (X2 e [N —1].

Authorized licensed use limited to: The Ohio State University. Downloaded on June 24,2025 at 20:12:54 UTC from IEEE Xplore. Restrictions apply.



2026

which guarantees the possibility of exact recovery in the ab-
sence of outliers. In addition, we note that Theorem 1 can
also be applicable to other measurement operators, such as
subgaussian measurements [66], using a similar analysis.

C. Sharpness

We now study the ¢ loss function f(X) = L[ A(X) — y1
and establish the sharpness property [45], [46] that can ensure
exact recovery with corrupted measurements in (1). Let S C
{1,...,m} denote the support of the outlier vector s, and S¢ =
{1,...,m}\S. We define p, = % as the fraction of outliers
in y. The following result establishes the sharpness property
for A.

Lemma 1 (Sharpness of Gaussian measurement opera-
tors): Given an unknown target tensor X'* with ranks r =
(r1,...,7n_1), suppose the linear map A :RI*>dn
R™ is a Gaussian measurement operator. Let dor € (0, (1 —
2ps)+/2/m) be a positive constant. If the number of measure-
ments satisfies m > Q(Ndr? log N/62.), then with probabil-
ity exceeding 1 — 2e— (N @ log N) - A satisfies the following
sharpness property:

1 1
— A = X7) = slly = —lsll
> (1 - 203)V/2/7 = 627)|X — X7

holds for all low-TT-rank tensors X with ranks r.

The proof is given in Appendix C. To simplify the nota-
tion, we use do7, as in Theorem 1, to represent the constant.
Lemma 1 establishes an exact recovery condition for measure-
ments with outliers (1), showing that when the outlier ratio
ps < % — 2\5/2;/7 < %,the sharpness property (12) implies exact
recovery as the left-hand side is equal to f(X) — f(X™*). Addi-
tionally, this property indicates that we can tolerate nearly m /2
outliers in the measurements when do7 is sufficiently small.
Denote by As and Age as the linear operators in { Ay : k € S}
and {Ay, : k € 8¢}, respectively. One can also use the same
analysis of [36, Proposition 2] to obtain a similar sharpness
by directly using the ¢ /¢>-RIP property: assuming that the
measurement operators A and Ags. obey 1 /¢5-RIP as in The-
orem 1, then we have i.e., L[ A(X — X*) — s[j; — L||s]l; >
(2(1 — ps)(\/2/ — 0o7) — (\/2/7 + b27))[| X — X*|| with

L S92z Compared to this result, our result pro-

< = - 97
Ps = 2 \/2/m—027

vides a more relaxed condition for do7 when p, is fixed, or for
ps when o7 is fixed.

12)

III. PROVABLY CORRECT ALGORITHMS FOR ROBUST
TT RECOVERY

In this section, we develop gradient-based algorithms to re-
cover X* from corrupted measurements y = A(X™*) + s as
described in (1) by solving (3). Specifically, we introduce two
iterative algorithms. The first algorithm, the projected subgra-
dient method (PSubGM), optimizes the entire tensor in each
iteration and employs the TT-SVD to project the iterates back
to the TT format. To address the challenge of high-order ten-
sors, which can be exponentially large, we then propose the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 73, 2025

factorized Riemannian subgradient method (FRSubGM). This
method, based on the factorization approach, directly optimizes
over the factors, reducing storage memory requirements at the
expense of a slightly slower convergence rate compared to
PSubGM. Finally, we show that the commonly used truncated
spectral initialization provides a valid starting point for both
PSubGM and FRSubGM.

A. Projected Subgradient Method

We commence by reiterating the loss function in (3), which
seeks to minimize the disparity between the measurements y
and the linear map of the estimated low-TT-rank tensor X as:

i X)=L|AX) —y|.
o nin | F&) =S IAX) —ylh (13)
rank(X) = (rq, ..., rN_1)

We solve (13) by a Projected SubGradient Method
(PSubGM) with the following iterative updates:

XD —svDI(x® — p,af(x®)), (14)

where is the  step  size, of(x®) =
LS sign((Ag, X)) —y) Ay is a subgradient® of f,
and SVDY(-) denotes the TT-SVD operation [19] that projects
a given tensor to a TT format. Computing the optimal low-
TT-rank approximation, in general, is NP-hard [67]. While the
TT-SVD is not a nonexpansive projection, when two tensors
are sufficiently close, it can have an improved guarantee that
is independent of N, distinguishing it from the result in [19,
Corollary 2.4].

Lemma 2 ([68, Lemma 26]): Let X* be in TT format
with the ranks (r1,...,7n_1). For any £ € RO Xdn with
Cn|IE||F < a(X*) for some constant Cy > 500N, we have

600N||E][3%
a(Xx*)

Lemma 2 implies that when the initialization of PSubGM is
close to A'*, the perturbation bound of the*TT—SVD is indepen-
dent of the order N due to ||€]|F < %. To facilitate ana-
lyzing the local convergence of the PSubGM, we first establish
the robust regularity condition which has been widely built in
contexts such as low-rank matrix recovery [69], phase retrieval
[70] and robust subspace learning [71]. The result is as follows:

Lemma 3 (Robust regularity condition of f with respect to
the full tensor): Let the ground truth tensor X'* be in TT format
with ranks r = (ry,...,7y_1). Assume the linear map A is
a Gaussian measurement operator where {Aj}7" , have ii.d.
standard Gaussian entries. Then, based on the ¢; /¢5-RIP and

ISVDy (X* + &) — X% < [|€]|F + (16)

8The definition of (Fréchet) subdifferential [36] of f at X is

F(X) = f(x) — (D, x/ — &)

af(X) = {D erdL X XdN lim inf

20}, (15)
x'—x X" — X|| g

where each D € 9f(X) is called a subgradient of f at X. In general, a
nonsmooth function may have multiple subgraidents at certain points. Here,
if there exist multiple subgradients, we pick the one with sign function defined

~1, <0
as sign(z) =< 0, =0, and with abuse of notation, we use 9f(X) to
1, x>0

denote this subgradient.
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sharpness property, f satisfies the robust regularity condition
in the sense that

(X =X, 0f(X)) 2 (1 = 2ps)V/2/m — 0o7) | X — X[,

A7)

for any low-TT-rank tensors X with ranks r = (ry,...,ry_1).

The proof is given in Appendix D. This result essentially
ensures that at any feasible point X, the associated negative
search direction 0f(X’) maintains a positive correlation with
the error —(X — X*). This enables subgradient method with
an appropriate step size will consistently move the current point
closer to the global solution in each update.

In contrast to gradient descent, subgradient method with a
constant step size may fail to converge to a critical point of a
nonsmooth function, such as the ¢; loss, even if the function
is convex [50], [S1], [52]. Therefore, to ensure convergence
of PSubGM, it is generally necessary to use a diminishing
step size [52], [72]. Based on Lemma 3, we analyze the local
convergence of the PSubGM with a diminishing step size.

Theorem 2 (Local linear convergence of PSubGM): Let
X* be in TT format with ranks r = (r1,...,7ny_1). As-
sume that .4 obeys the ¢;/¢>-RIP and sharpness with a con-

1—2ps—+/4c/(3+3c)
stant Jor \/2 for a positive constant ¢ <
o < 14/4e/(3+3c) /m p
3(1—2p,)>

THizp. 122 Suppose that the PSubGM in (14) is initialized
with X(© satisfying

co(X™)

X* < =" 7

Ir < “So0w

and uses the step size ;= \¢'

\/(1 o)1 — 3((1-2ps)y/2/m—d27)? ) and A= HX(O) — X*||p

4(\/2/7+827)?
% w Then, the iterates {X ® }i>0 generated by

the PSubGM will converge linearly to X'™*:

@) — (18)

in (14), where ¢=

JX© - x7|F <P XO - xE (19)

This proof is provided in Appendix E. Note that the required
initialization (18) and the term 1+ ¢ in (19) are introduced
because of the sub-optimality of the TT-SVD operation. While
we present the result using a single choice of A and ¢ for
simplicity, a wider range of values can be slightly modified to
the arguments, without compromising linear convergence. In
practice, these parameters should be carefully tuned to ensure
convergence. In order to ensure that the upper bound of recovery
error in (19) is monotonically decreasing, we can choose dor <

- 2p§ V/dc/(313c) 2/m < (1 — 2ps)+/2/m. This can be guar-

4c/(343c¢)
antee by choosing sufficiently large m according to Theorem

1. Additionally, it should be noted that the linear convergence
rate of the PSubGM improves when either the outlier ratio pg
decreases or the number of measurements m increases.

B. Factorized Riemannian Subgradient Method

One drawback of PSubGM is that it requires storing the
. =N, . . S
entire tensor (O(d ) size) in each iteration. To reduce the space
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complexity, an alternative approach is to directly estimate tensor
factors { X ; }, which have a complexity of O(Ndr?), by solving

min F(Xl,...,XN)
X, qu_lxdlxw‘i’

’LG[N]
= Ljaqx,. . xa) -yl
_m Ty---s N Yii1,

d;
st > X[ (s ) Xa(e84,0) =

Sizl

I, ie[N-1].

The additional constraints Ed? X (8,0 X5 80,0) =1,
are introduced to reduce the scahng ambiguity of the factors
[49], i.e., recovering the left-orthogonal form. Noticing that
constraints define a Stiefel manifold structure, we apply a Rie-
mannian Subgradient method on the Stiefel manifold [73] to
optimize it. We call the resulting algorithm FRSubGM, short for
factorized Riemannian Subgradient Method, to emphasize the
factorization approach. Specifically, recalling the left unfolding
L(X;) of factors in (8), FRSubGM involves iterative updates

(t+1)y _ (t) Ht

,PTL(Xi)St(aL(XL')F(th)v s 7X§\tf)))>7l S [N — 1]7

(20)

L(X%+1)) = L(Xg\ff)) - NtaL(XN)F(th), oo 7X§ff))7
2D
where Prox,U)=U — IL(X)(UTL(X,) +
(L(X;))TU) denotes the projection onto the tangent

space of the Stifel manifold at the point L(X;)
and the polar decomposition-based retraction is
Retr;(x,)(G) = G(G'G)~z. Moreover, i, is a diminishing
step size. Note that we use discrepant step sizes between
{L(X;)} and L(X y), i.e., ¢ /5>(X*) for {L(X;)} and p;
for L(X ). This is because ||Lr(X})||*=1,i€[N —1]
and IR(X%)|2 = o2(x*N=1) <52(x%), where
R(Xy)=[XN(1) XN (dy)] e Rrv—rxdn, are
satisfied in each iteration. For simplicity, we use &%(X™*) to
unify the step size. However, in practical implementation, we
have the flexibility to fine-tune the two step sizes.

Before analyzing the FRSubGM algorithm, we will establish
an error metric to quantify the distinctions between factors in
two left-orthogonal form tensors, namely X = [X4,..., X ]
and X* =[X7,..., Xy]- Note that the left-orthogonal form
still has rotation amb1gu1ty among the factors in the sense
that TIY. | X7 (s;) = 1IN, R, , X (s;)R; for any orthonormal
matrix R; € Q"i*" (with Ry = Ry = 1). To capture this ro-
tation ambiguity, by defining the rotated factors Lg(X7}) as

R, X;()R;

R(X:) = ,VR;_1 and R; € Q""" we

R 1X (d;)R;
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then apply the distance between the two sets of factors as [49]

N-1

dis®({ X}, {X;})= min > 7 (x%)
R;€07iX"i, =1
i€[N—1] =

IL(X:) = Lr(X

where we note that L(X ), Lr(X%) € RUN-1dn)x1 gre
vectors. Subsequently, we establish a connection between
dist?({X,},{X}}) and ||X — X*||%, implying the conver-
gence behavior of ||X — X*||% as {X;} approaches global
minima.

Lemma 4 ([49, Lemma 1]): For any two TT format tensors X’
and X* with ranks » = (rq,...,7y_1) and 72(X) < M
let {X;} and { X} be the corresponding left-orthogonal form
factors. Then || X — X*||% and dist®({ X}, {X}}) defined in
(22) satisfy

DIF + IL(X~) = Lr(XN)IIZ, (22)

8(N + 1+ ZL N T‘l)lﬁ2(X*)

1 — x*|% < T Y aist? (X} (X)),

(23)

(24)

Lemma 4 ensures that X’ is close to X'* once the correspond-
ing factors are close with respect to the proposed distance mea-
sure, and the convergence behavior of || X — X*||% is reflected
by the convergence in terms of the factors. Next, we first provide
the robust regularity condition of F/(X,..., X y).

Lemma 5 (Robust regularity condition of F with respect to
tensor factors): Let the ground truth tensor X* be in TT format
withranks » = (r1,...,7ny—1). Assume the linear map A obeys
the £1/0>-RIP and sharpness with a constant J(y41)r < (1 —

2ps)\/2/m. Define the set C(b) as

C(b):= {X:IIXX*H%Sb}, (25)

(X ((1=2ps)V/2/7 =6 (N 1y7)?
L44(2N2 2N+ 1) (N 145751 )2 (1/2/m 46 (v 1)r) 252 (X))

Then for any TT format X' € C(b), F satisfies the robust regu-
larity condition:

where b =

N

Z<L(Xi) — Lr(X3), Pr, (8L<xi>F<X1’ o XN)>>

=1
]. — 2ps \/ 2/7T — 5(N+1)?

dis*({ X}, {X7}).
4\/2 (N 414550 ()

(26)

To simplify the expression, we define

the identity operator Proxyst=1 such

that Pryix st Vox ) F( X1, ..., Xv)) =
Vi) F( X, X ).

The proof is shown in Appendix F. This result guaran-
tees a positive correlation between the errors —{L(X;) —
Lr(X?)}N, and negative Riemannian search directions
{Prx,)stOnx ) F(X1,..., X)) }L, for N factors in the
Riemannian space, ie., negative Riemannian direction points
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TABLE 11
COMPLEXITY COMPARISON BETWEEN PSUBGM AND FRSUBGM

[ Algorithm ][ Space Complexity |
IHT O((m +1)d")
FRSubGM || O(md" + Ndr?)

Computational Complexity |
O(ng +E 72)
O@2md" + Nd" 72 + Ndr3)

towards the true factors. When initialed properly, we then obtain
a linear convergence of the FRSubGM with a diminishing step
size as following:

Theorem 3 (Local linear convergence of the FRSubGM):
Let the ground truth tensor X* be in TT format with
ranks 7= (r1,...,7N—1). Assume that the linear map
A obeys the ¢;/¢5-RIP and sharpness with a constant
dN+1)r < (1 —2ps)y/2/m. Suppose that the FRSubGM in
(20) and (21) is initialized with X'(9) satisfying X(©) € C(b).
In addition, we \j«i the step size u; = Ag' with A=

(1=2ps)\/2/7m=8(N1+1)7 (0)

V2N 142N r) (9N —5) (v/2/ 748w 1y7) 2K (X*) dist({ X7 AX D)
<<1—2ps>\/2/7—6(N+1>?>2
8(N+1+zl 5! T (ON=5)(\/2/7+8(ny1)m) 22 (X))
Then, the iterates {X }t>0 generated by the FRSubGM will

converge linearly to { X} (up to rotation):

and

g=4/1—

dis?({X ("}, {X}}) <dis?({X "}, {X;})¢*. @)

The proof is provided in Appendix G. It is important to
note that the convergence rate of FRSubGM is still linear, but
the convergence rate of FRSubGM depends not only on the
values of J(n1)r and ps, but also on the ratio ﬁ and the
parameter V. Consequently, the convergence rate of FRSubGM
could be slower than that of PSubGM. In addition, according
to Lemma 4, we can also derive the linear convergence in
terms of the entire tensor, i.e., | X)) — X*||p < O(ir))qmt
Ultimately, even though it may not be straightforward to choose
exact deterministic values for A and ¢ in practice, we can still
select values that are close to these desired values.

C. Comparison Between PSubGM and FRSubGM

First, the space and computational complexities of PSubGM
and FRSubGM are summarized in Table II. As shown, PSubGM
has a higher space complexity than FRSubGM, whereas FR-
SubGM incurs greater computational complexity as a trade-
off for reduced space requirements. Therefore, the choice be-
tween these methods necessitates a balance between space and
computational efficiency, depending on practical constraints.

Additionally, we note that the terms maN and 2m3N in the
space and computational complexities originate from the mea-
surement operators { Ay} ;. In most cases, such complexity is
unavoidable. However, when the measurement operators exhibit
local structure—such as those formed by tensor products in
quantum state tomography [5]—the exponential complexity can
be reduced to linear, specifically O(mN7?).

Next, we discuss the scalability of PSubGM and FR-
SubGM. (i) The initial requirement || X(?) — X*|| for these

methods is proportional to O(%) and O(#&)*)),
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respectively. This indicates that the initialization require-
ment depends on N polynomially rather than exponen-
tially. (i¢) The convergence rates g for the two methods
3((1—2ps)/2/m—827)>
<1 1-
4(\/2/7+627)2 )<1 and

). This implies that: (1) The con-

are given by (1+¢)(1—

( ((1*2175)\/2/7*5(1\744)?)2

N2T(y/2/m46 (4 1ym)2 2 (X7)
vergence rate of PSubGM primarily depends on ps and do7.
(2) Due to the highly nonconvex property, the convergence
rate of FRSubGM is also influenced by N, 7 and x(X™*).
Nonetheless, both methods exhibit polynomial dependence on
these parameters rather than exponential dependence, suggest-
ing that their scalability is not significantly hindered by d,
7 and N, as supported by numerical experiments. (iii) Fi-
nally, we analyze the required number of measurements for
both methods. Under Gaussian measurements, the conditions
m > Q(Ndr?log N/62.) and m > Q(N3dr? log N/5(2N+1)F)
should be satisfied, further confirming a polynomial rather than
exponential dependence on N. In summary, PSubGM and FR-
SubGM maintain polynomial scalability with respect to key pa-
rameters, ensuring their feasibility for high-dimensional tensor
recovery problems.

D. Truncated Spectral Initialization

The above local linear convergence for both PSubGM and
FRSubGM requires an appropriate initialization. To achieve
such an initialization, the spectral initialization method is com-
monly employed in the literature [49], [60], [70], [74], [75].
In the presence of outliers, we employ the truncated spectral
initialization method [16], [32], [76]:

1 m
0
X = SVD?((l —po)m Zyk‘Akﬂ{lykKy((psmw)})’
s k=1
(28)

where |y () denotes the k-th largest amplitude of y and
Ly |<|wl((p.myy} indicates that this term is 1 if [y <
|yl ([p.m1) and O otherwise. Recall that SVD}! (-) is the TT-SVD
algorithm for finding a TT approximation.

The following result ensures that such an initialization x'(*)
provides a good approximation of X*.

Theorem 4: Let the ground truth tensor X'* be in TT format
with ranks 7 = (r1,...,rNy_1). Suppose the linear map A :
R < xdn _ R™ jg a Gaussian measurement operator where
{ A}, haveii.d. standard Gaussian entries. Then with prob-
ability at least 1 — e~ Q(Nd™logN) _ o—Q(log(1-p:)m))  the
spectral initialization X'(°) generated by (28) satisfies

HX(O) —XM||p < O(NHOg((l —ps)m)[|X*]|pv legN> .
(1—ps)m

The proof is provided in Appendix H. In summary, Theorem
4 indicates that a sufficiently large m allows for the identifi-
cation of a suitable initialization that is appropriately close to
the ground truth. Additionally, although p; is specified in (28),
it is generally unknown in practical scenarios. Therefore, any
constant « € [0, 1] can substitute for p, in [psm]. It should be
noted that while a smaller o may eliminate more measurements

2029

containing outliers, this might necessitate a larger number of
measurements m to achieve a satisfactory initialization.

IV. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to evaluate
the performance of PSubGM and FRSubGM algorithms in ro-
bust TT recovery. We generate an order-N ground truth tensor
X* € RO XN with ranks © = (71, ...,7y_1) by truncating
a random Gaussian tensor using a sequential SVD, followed
by normalizing it to unit Frobenius norm. To simplify the se-
lection of parameters, we let d=d; =---=dy and r=r; =
.-+ =1rxN_1. We then obtain measurements {y; }}"_; in (1) from
measurement operator A which is a random tensor with inde-
pendent entries generated from the normal distribution, ensur-
ing that (A, X*) ~ N(0,1), and outlier s, ~ N (0,10),k €S
where |S| = psm. The elements in S are randomly selected
from the set {1, ..., m}. We conduct 20 Monte Carlo trials and
take the average over the 20 trials.

In the first experiment, we evaluate the performance of
PSubGM and FRSubGM in terms of N, d, and r. Fig. 1(a)-1(c)
clearly demonstrate that PSubGM exhibits a faster convergence
speed compared to FRSubGM. However, the final recovery
error of PSubGM is slightly higher than that of FRSubGM,
which can possibly be attributed to the sub-optimality of the TT-
SVD. Notably, unlike the significantly slower convergence rates
of IHT [40] and FRGD [49] as N, r, and d increase observed
from [48, Fig. 1], PSubGM and FRSubGM do not exhibit
such degradation, attributable to the use of a diminishing step
size.

In the second experiment, we test the performance of
PSubGM and FRSubGM in terms of A and ¢. In Fig. 2(a) and
2(b), we can observe that both larger and smaller values of
A or ¢ can potentially result in slower convergence or worse
recovery error. Therefore, it is crucial to carefully fine-tune the
parameters A\ and ¢ to ensure optimal performance.

In the third experiment, we test the performance of PSubGM
and FRSubGM in terms of ps and m. Fig. 2(c) illustrates the
relationship between recovery error and ps and m. It is evident
that a larger value of 77— ensures better performance, as the
{1 /£5-RIP constant 0 is inversely proportional to m. Moreover,
as p, increases, a larger number of measurement operators m
is required.

In the fourth experiment, we investigate the necessary value
of m for different NV utilizing PSubGM and FRSubGM. This
investigation is illustrated in Fig. 3(a) and 3(b), where we eval-
uate the success rate of achieving % <1075 over
100 independent trials. Our findings demonstrate a trend: as
the value of m increases and N decreases, the success rate of
recovery also improves. In addition, we establish a linear corre-
lation between the number of measurements, m, and the tensor
oders N, aligning with the conditions stipulated in Theorem
1. It is important to recognize that FRSubGM necessitates a
larger value of m compared to PSubGM. This difference arises
from our analysis, where FRSubGM must adhere to the (N +
1)7-¢1 /¢5-RIP, whereas PSubGM only requires the 37-¢1 /{5
-RIP.
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q = 0.93 (FRSubGM) (c) for different d with N = 3, r =2, m = 3000, ps = 0.3, A= 0.5, ¢ = 0.9 (PSubGM) and ¢ = 0.93 (FRSubGM).
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Performance comparison of (a) PSubGM and (b) FRSubGM in the robust tensor recovery, for different N and m with d =4, r =2, ps = 0.05,

A =0.07 and ¢ = 0.99, (c) PSubGM in the quantum state tomography using K POVMs with N =3, ps = 0.1, A =1, ¢ = 0.97 for states with d =4, as
well as A =2, ¢ =0.965 or ¢ = 0.97 for LPTN states with d =9 and r =1 or r = 4.

In the final experiment, we evaluate the proposed method
for quantum state tomography in the presence of outliers. As
demonstrated in previous results, PSubGM requires fewer mea-
surements than FRSubGM. Therefore, we primarily employ
PSubGM to determine the necessary number of measurements
to ensure that HX(TUXO)*F( il < 10719 over 100 independent
trials. In this setting, weFdo not introduce measurement errors;
instead, outliers are incorporated as s, ~ AN (0,10),k € S. To
conduct the experiments, we generate m = d % K measurements
using K positive operator-valued measures (POVMs), which
are chosen as Haar-random projective measurements. The tar-
get states include the random locally purified tensor network
(LPTN) state [4], the thermal state with temperature 7" = 0.2
[6], and the Greenberger-Horne-Zeilinger (GHZ) state [6]. The
detailed model can be found in [5]. From Fig. 3(c), we observe
that PSubGM successfully recovers the ground truth tensor
even when the magnitude of outliers is significantly larger than
that of the pure measurements. Moreover, as d and 7 increase,

a greater number of POVMs are required to ensure a higher
success rate.

V. CONCLUSION

In this paper, we develop efficient algorithms with guaranteed
performance for robust tensor train (TT) recovery in the pres-
ence of outliers. We first prove the ¢; /¢5-RIP of the Gaussian
measurement operator and the sharpness property of the robust
¢; loss formulation, implying the possibility of exact recovery
even when the measurements are corrupted by outliers. We
then propose two iterative algorithms, namely the projected
subgradient method (PSubGM) and the factorized Riemannian
subgradient method (FRSubGM), to solve the corresponding
recovery problems. With suitable initialization and diminishing
step sizes, we show that both PSubGM and FRSubGM converge
to the ground truth tensor at a linear rate and can tolerate
(0.5 —0.50/+/2/m) x 100% of outliers, where § € (0, \/2/7)

represents the ¢1 /¢5-RIP constant. We also demonstrate that a
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truncated spectral method can provide an appropriate initializa-
tion to ensure the local convergence of both algorithms.

As mentioned earlier, the convergence rate of the FRSubGM
is influenced by the condition number ~(X'™*), with larger values
of k(X™*) leading to slower convergence. A potential direc-
tion for future research is to incorporate the scaled technique
[47], [59], [77] into our algorithms to mitigate the impact of
k(X™*) on convergence. Another promising avenue for future
exploration is the investigation of robust overparameterized TT
recovery, building upon the advancements made in the matrix
case [78], [79], [80].

APPENDIX A
TECHNICAL ToOOLS USED IN PROOFS

We present some useful results for the proofs in the next
sections.

Lemma 6 ([49, Lemma 3]): For any A; A€
R"i-1%7i 4 € [N], we have A1Ay--- Ay — ATAS - Ay =
YL AT AL (A A A - Ay

Lemma 7: Consider the loss function f(X) = %HA(X ) —
yl|1, where the measurement operator A satisfies the 1 /{5-
RIP with a constant do7. Then for any X, it holds that || D]z <
\/2/m + 697, VD € Of (X).

Proof: Recall the definition of (Fréchet) subdifferential
of f at X in (15). Now for any X e ROx<xXdn  we have

Lf(X7) — ( )= L|AX) =yl — [AX) —yll1| < £
AX = X)[1 < \/2/7-1-5% )X — X||F, where the

second inequality follows from the /¢;/¢o-RIP of A.

This further implies that liminfy/_,» W <
. (/274007 | X' =X
th’—)X / HXIZ ')!“F ”F \/ 2/7T+62T

Upon taking X' =X +tD,t— 0 and invoking (15), we
have || D||r < v/2/7 + do7, VDE@f( ). 0O

Lemma 8 ([81, Lemma 1]): Let X ' X =1 and £ on the
tangent space of Stiefel manifold be given. Consider the point
X" = X + & Then, the polar decomposmon based retraction
satisfies Retrx (X ) = X+(X+ X*)~2 and

[Retrx (X ) = X|[p < | X" —

Xlp=[IX+€-X|r

(29)

for any X'X=1

Finally, we introduce a new operation related to the mul-
tiplication of submatrices within the left unfolding matrices
LX) =[X] (1) X[ (d)] € RUi-14)%7% i ¢ [N]. For
simplicity, we will only consider the case d; = 2, but extend-
ing to the general case is straightforward. In particular, let
A= {i;] and B = g;
R™*"™2 and B; € R™*"s for i = 1,2. We introduce the nota-
tion ® to represent the Kronecker product between submatri-
ces in the two block matrices, as an alternative to the stan-
dard Kronecker product based on element-wise multiplication.

HEHIE

[(A1B))T (A:B1)7 (A1B2)T (A;:B,)7]".

be two block matrices, where A; €

Specifically, we define ARB as ARB =

2031

According to [49, Lemma 2], we can conclude that for
any left-orthogonal TT format tensor X* = [X7,..., X §], we
have

% llp = |LXDE - BLE Rl = LX), G0
IL(X)@ - BL(X v )BLX )2

<5 L(X z)ll\lL(X?v)llz, Vie [N —1], 3D
IL(X)@ - BLIXS)|

ST_IL(X))II =1, i<j, Vi,je[N—1], (32)
IL(X)@ - BLIX])|r

<TH_MNLXDILX) e, i<j, Vije[N-1].

(33)

APPENDIX B
PROOF OF THEOREM 1

Proof: We first compute the covering number for any low-
TT-rank tensor X = [X1,..., X y] € R4* %N with ranks
(ri,...,rN—1). Given that any TT format can be converted to
its left-orthogonal form, we denote X = [X1,..., X n] as the
left-orthogonal format. According to [82], we can construct
enet {L(XM), ... L(X"))},ie [N —1] for each set of
matrices {L(X;) € R%mi-1xri j € [N —1]: [|L(X;)| <1}
(7’0 = 1) such that SupL(X7)HL(X1)H§1 Hlinpigni ||L(X1) —
L(XEPZ))H < € with the covering number n; < (4£€)diri-ri,
Also, we can construct e-net {L(Xg\}))7 e ,L(XE(;N))}
for {L(X n) € RINTN-1XL || (X N)|l2 < 1} such
that SUPL(X p ):[| L(X ) [|l2<1 Milpy <ny [[L(X N) —
L(X(pN))H <e with the covering number ny <
(2£e)dnrv-1rN | Hence, for any low-rank TT format X with
|X]F < HXN||F < 1 derived from (31), its covering argument
is HN 177/1 < (4+6)d17’1+21 5 Ydiri_iri+dNrN_1 < (4-6&-6)
where 7 = max; r; and d = max; d;.

Without loss of the generality, we assume that X is in TT for-
mat with || X|| r = 1. For simplicity, we use Z to denote the in-
dex set [n1] X - -+ X [nx]. According to the construction of the
e-net, there exists p= (p1,...,pn) €Z such that ||L§X1) -
LX) <e, €[N —1] and [|IL(Xy) — LX T2
<e

Taking € = ' with a positive constant ¢ gives

sup LA — X0,
x m

1/mi‘<Ak,[X17...

k=1
- XYL X )

= _sup , X ]

(X1, X N]

= sup 1/mz (A, Z Xgpl),...,X((f;"'l)
(X1, . X n] o=l
— Xal,...,XN]>|
Ne cor
< sup —[|A(X) |1 = sup — [ A(X)]||1, (34)
x m xX m

where we write [X1,..., Xy] — [XPY, .., X)) in the
second line as the sum of IV terms via Lemma 6.
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According to (34), we have
1
sup | — [A(X)[1 — v2/7
X |m
1
< sup | —[|AXP)[ly = /2/7
xm® |
1
< sup | — [|AQXP)], - v/2/

X (p)

1
+sup —[|AX — Xl
x m

057
+sup —[lA(X) 2
x m

1
< sup EHA(X(”))Hl —V2/m

X (®)

o+ sup o (X)L — V2/7| + cde/2/T, (35)
and then it follows
sup A1 — V2]
sup ) | AX P[0 = /27| + e /2/7
< (36)

- 1-— 06?

To finish our derivation, we need to obtain the concentration
inequality with respect to L 3™ (A, X®))]. For any
fixed TT format tensor X®) with |X®)||p =1, [(Ag, XP))]|
obeys standard Gaussian with mean \/2/7 and unit variance
since {Ay}7, have i.i.d. standard Gaussian entries. Hence,
based on the tail function of Gaussian random variable, we

LS (AR, XY — /27| > g) -

2 .
2e~ 1% where c1 1S a constant.
Based on (36), we can derive

<sup]A |1—W\> E3

have P ( supyw)

1—co

+C5F>

< IP’<(sup ‘ JAX®P)|L = /2/7| + cor/2/7) /(1 — cb7)
X ()
> 7‘+C(5 \/2/7T <HN1n 61 Clm(Sg
1-— 057
Ndr?

< <4 + €> 617(:1m5% < 61701m6§+02NE?2 log N (37)
= € — b

where in the last line, we choose € = %, and c9 is a positive

constant. Based on (37), we have

1 o 4 07/ 2
P (sup Lja@), - ¢2/7r] < 15/W>
x |[m CO7

>1— elfclm5§+(;2NE?2 log N (38)
2 T +cory/2
To guarantee that T 57 T <6< \/2
we can select c¢=YZT in e= C‘STT. Furthermore, if

m > Q(Ndr?log N/62), we obtain the following result:

P (sup | 114G - V2R <67) 21
where c3 1s a constant. In other words, with probability at least
1 — emesNdrloa N it holds that

(V2/m = o)X F < *HA ) <

_ _—c3Ndr?log N
& ’

(V2/m + o)l X

(39)
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for any low-TT-rank tensor X € R%* X4~ with ranks
(7’1,...,7"1\/_1). ]

APPENDIX C
PROOF OF LEMMA 1

Proof: We first expand L ||A(X — X*) — s|l; — L 5|
as

1 1

—JAX — X*) — 8|y — —

A = %) = sl = sl
1 1

= [l Ase (X — x* — |l As(x — x*
[ Ase(X = X+ [ As(¥ — X7)
~ slly = = ls]
1 m 1

> L Ase(X = X~ [ As(X — X)) @0)
m m
In the subsequent part, we focus on analyzing the lower bound
of L{|Ase(X)[|; — [ As(X)]1 for any tensor X in TT for-
mat with TT ranks smaller than 27. We can construct an
e-net {XP)} with the covering number (2+€)*N 4™ for any
low-TT-rank tensor X' with ranks (2ry,...,2ry_1) such that
(34) holds. Without loss of the generality, we assume that X' =

[X1,..., X n]is in left-orthogonal TT format with || X||z = 1.
Then we define Y, = (A, X)) + /2w, k€S,
|<AkaX(p)>|_ \/2/71—7 ke Se.

Hoeffding inequality for Gaussian random variables tells that

1 m 1 1
P(—Y Vi=—|Asc(XP)||; — — x )
<m > Y A Ase (X1 = — [ As (X))l

k=1
—(1=2ps)V/2/m > _62> > 1M (4

where ¢ is a constant.

On the other hand, L[| Ase(X)[1 Z%”ASC(;\{(IJ))”l _

o Ase (X — X(P))Hl and L[| As ()]l < 5 [ As(X @)1 +
T L As(X — XP)|; hold "for any tensor X. Hence we
have L[l Ase (X)) — SlIAs(X)]l1 > L[l Ase (XD, -

I As(X @)l = L[LAX — X@)]|;.
Combing (34), we can get

it (s (@) = s

> inf (1 As- (@)l — =A@, )
—sup =AY — X))

> inf (1|ASC<X@>>1 - ;nAs(W))ll)
—sp A

> it (s (Xl - L As(x )

1-— C(st

/2 =1/ 2
— o7 (62T/ + oo /Tr +

o7r).
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where the last line follows the (38) with probability 1 —
e~c2Nd™log N jn which ¢, is a positive constant. Denote the
event F := {(38) is satisfied} which holds with probability 1 —
e—c2Nd™10g N We can take the union bound with 41) to

conclude

Pyt (s ()l — 1A @) ) = (1~ 20 V2R
g (Bl T )

1-— C(Sz?

44 4ANdr?
>1— T 02 ™0 > 1 — ( 6) el-c1mds
- B €
>1— 61761777,53?4»63]\7&?2 log N (43)
- K
where c3 is a positive constant.

To guarantee that — 2= — c%;(% V2T 2/m) >
0 and dor < 2/m, we set c¢= @. While m >
Q(Ndr?log N/62.), we can ob-
tain ]P’(inf;( (%HASC(X)HI — %

=2
[As(X)[1) = (1 —2ps)\/2/m — 05| F) > 1 — ¢~ caNdrlog N,

where ¢4 is a constant. In the end, we can derive (44), shown
at the bottom of the page, where c5 is a positive constant. [J

APPENDIX D
PROOF OF LEMMA 3

Proof: We can apply the norm inequalities to derive

OF(X), X — %)
= L3 sien((Aw, X)
k=1

1 o~ .
+ > sign((Ag, X) — yi)sk
k=1

=) ((Ag, X — &) — s1)

1 1
> —JAX —X*) — 8|y — —
> —|lA( ) = sl = —lIslh

2033

600N
a(x*)

<(1+

| X*|F) 12O — L af(X®) - 242

600N
= (1+ S 1A - 2l ) (1 - 2
2 (DF (), X0 — X7) + D F(XO) )
N
< (14 S 1 - 2l ) (1 - 2

=20 ((1 = 2ps)\/2/7 — 62;)||X
+ 17 (v 2/7T+62F)2)7
where we use Lemma 2 in the first inequality and subsequently
employ Lemma 3 and Lemma 7 in the last line.

Under the initial condition || X'(©) — X*||» <
constant ¢, (46) can be rewritten as

I D — 243 < (1 + o) (14

2/ = 8ar) | X —

- X r
(46)

ca(X*)
600N

with a

— X*)|% — 20 ((1 — 2ps)

X+ (V27 + b)),
47)

Based on the discussion in Appendix E-A, we can se-

1—2ps)\/2/7m— b7 *
lect 1y = Aq" where A = « 2(\1}2)/—#427)22 )||X(O) — X*||r and
qg= \/(1 +o)(1— 3((1;(2\/1);)7 ;ig;)ng ), and then obtain

1A — 2|7 < X — 2| Fg* (48)
J

A. Proof of (48)
Proof: Define ¢1 =2((1 — 2ps)\/2/m — 097) and co =

(\/2/7 + o7 )?

Now we can simplify (47) as [X0TD —x*|2 <
(14 )(IXO — X[ — s | XO — X¥][p + pdea). Next,
we aim to show

X — X*||p < coq? = co(1+c)2p? (49)

> (1= 2p )2/ — Gop) | X — X[, 45
(« Ps) . / 2l |7 @) where ¢g = ||X©) — X*|| and p is a parameter that needs to
where the last line follows Lemma 1 for ds7 < be determined. Let us therefore fix a value x € [0, 1] satisfying
(1= 2ps)/2/m. O |X® — x*||p = zco(1 + ¢) 2 p2. Assume the above induction
hypothesis (49) holds at the 7-iteration. We need to further prove
APPENDIX E
PROOF OF THEOREM 2 (t41) ) .
X - X 1+o)(cg(1+e)'p'a? — ppeoer (14 ¢)2
Proof: We expand || X #+1) — x*||2 as following: | I = el ) <) 2} )l:ilo ;(1 )
-p?x—i—,ucQ <cl+c p.
XD — [ = [SVDY (X — o f (X)) - 2} t (50)
1 1
P f(— c - — X > (1 =2ps)\/2/7 — dor
(i (oA ) = - IAS(OI) > (1 = 200) 27 — b
1 1
> (igf (s () = 2| AS(E)h) 2 (120 V277 - dr (1 F )
. 1
=P (F) P (igf (- As- (D)l = A1) 2 (1= 2) V27 ~ 6 |F )
Z (1 _ 6—02N372 log N)(]. _ 6—04N872 log N) Z 1 _ 26—C5NEF2 logN’ (44)

Authorized licensed use limited to: The Ohio State University. Downloaded on June 24,2025 at 20:12:54 UTC from IEEE Xplore. Restrictions apply.



2034

When we select 1y = \gt = cpa(1l + c)%p% where a is a pa-
rameter which needs to be determined, (50) can be simplified
as

z? —clax+02a2§p. 6

Note that the left hand side of (51) is a convex quadratic in x
and therefore the maximum between [0, 1] must occur either at
r=0orz=1.
e When selecting x =0, we can derive the condition
coa? < D.
e When choosing = =1, we have ca? —cia+1— p<

cl—\/c%—402(1—p)<a<
2co — —

0. Since c1,co >0, we have

c1+ cf74cz(lfp)
202 5
_ 34 — <
By selecting pfl 6o, and a = -, we can ensure that

conditions csa® <p and c2a® —cia+1—p<0 holds for

do7 > 0. Hence we can respectively choose A = <% and g =
\/ (I+¢)(1—- 16C ) which further guarantees (50). O
APPENDIX F
PROOF OF LEMMA 5
Proof: First, we provide one useful
property. Based on dis?({X;},{X}}) <
2 (X")(1=2po)y 2/” S 1yr)” which  can

18(2N2—2N+1) (N+1+ V51 1) (V/2/ 748w 1 1)7)?
be obtained by X € C( ) and Lemma 4, for i € [N — 1], we

can obtain

< min 2RISR 2 - R
R;cQmi*xTi
<272(X*)+ min 2)xW — a0 4 @
R;cQmiXmi

_ ngRTX*Zerl ||2
7 (X*) +4)lX - X%

+ min  A4|R XS -

R; €07 XTi

PPN 1652 (X™)
< 0’2(.)(' )+(4+0'2(X*)

X*S'R;|1%

JESER EEAES
952(X™*)

4 )
where the fourth and last lines respectively follow [49, eq.
(60)] and Lemma 4. Note that 72(X) = max. ;' o7 (X)) <

4 BNTY) e xa, (X0 < (52)

952 (X*)
—_—
Then we need to define the subgradient of F/(X1,..., X y)
as following:
Ix,F(X1,..., XN)
8L(X1)F(XlaaXN):
Ox, @) F(X1,.. ., Xn)
(53)

Here the subgradient with respect to each factor X ;(s;) can be
computed as Ox, (s, F(X1,..., X n) = L 37" sign((Ay,
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)=y 2o (Ar(s1 s sv) X1 (si-1) - X (51)

Xy (sw) - Xz-‘rl(sl-i-l))'
Before analyzing the robust regularity condition, we need to
define three matrices for i € [N] as follows:

Dy(i)=[X (1) X{ (1) - X y(dima) - X (d1)]
=L (X;1)®- - ®LT(X;) e Rmx*(hdiz) 1 (54)
Xy X1 (1)
Dy(i) = : € R{di+1dn)xri
XN (dw) - X (diga)
(35
where we note that D;(1)=1 and Dy(N)=1.

Moreover, for each s; € [d;], we define matrix E(s;) €

R(ddim)x(dividN)  whose  (s1---8i_ 1,541 SN)-
th element is given by E(s;)(s1--8i—1,8i41 " SN)=
% > oney sign((Ag, X) — yp) Ar(s1, ..., 5n).

Based on the aforementioned notations, we can derive

020 F(X - X )

d;
= Z ||8XL(SL)F(X1,,X

N)HF
Si:].
d;
= > ID1(i) E(s:) Da(i)|[3
sL—l
< Z LT (X))@ - &L (X )| D2 ()P E(si) || %
s;=1
<LX )P LX) P12 — ZSlgn (Ap, X

(\/2/7 + 027)%, €[N —1],

952 (X*)
yr) Ael|F < { =

(\/2/71'4—62?)2, Z:N7
(56)
D5 (i) = [|X= " and S5, | E(si)lI%

=Ly, s1gn(<Ak, X) — yp)Ar||% in the second inequal-
ity. ‘In addition, the third inequality follows || X=+1|| =
o1 (X®) < M and Lemma 7.

Now, we rewrlte the cross term in the robust regularity con-
dition as following:

N

) <L<X¢>  La(XD), Pry s (O F(X - XN>)>

i=1

N

1l )
— > sign({(Ag, X) — yr)(Ar, X — &)
mk:

1 m
EZ sign((Ax, X) = ye) (vee(Ai), B) =T, (57)
k=1

where h=Lgr(X))® - -®Lr(XN) - L(X1)® - ®
L(XN_1)®Lr(X3) + XN L(X)@ - BL(X,1)®
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N—-1
D (LX) -
To get the lower bound of (57), we need to obtain upper
bounds of h and 7. According to [49, eq. (82)], we directly
obtain

LR(X:)ﬂP’IJ‘_L(Xi)St(aL(Xi)F(Xh R

IN(N — 1)

[R5 < W (58)

dist*({ X}, {X7})-

Then, we can derive

N—1
T= <7>#L(xi)sl(L(X) Lr(X7)),0u(x, )F(X17-~7XN)>
=1
gé ILX)INL(X ) — LR(XDIF|0nx ) F(X1, .., XN
EX * 2
§3 W) (Varm + bar) ZHL La(X)II%

i=1

=)dist” ({ X}, {X 7)),

2/m

(59)

where the first inequality follows (56) and PTJ‘L(

xi)St(') is de-
fined as

PE, e (LX) — (X))
= L(Xi) = Lr(X7) — Pryx,s(L(X:) — Lr(X7))
= JLX)((L(X2) — La(X7) LX)
+ 17 (X)(L(X,) - La(XD)))
= JL(X)@L, ~ LA(XDLX:) — L (X0) La(X]))
= LEXO(L(X2) ~ La(XD) (LX) ~ La(XD). (60)

Ultimately, we arrive at

M=

<L(Xi) - LR(X:),PTL(X”SL((?L(X,i)F(Xl, . .,XN))>
1

.
Il

Z%ibélk,)( x*) fsk|f—Z\sk|f—Z|vecAk
h)| — (V27 + ba7)dis? ({ X}, { X))

40 X*
> ( 1*2ps V2/m =) |X = X |lr — (V2/7 + dv+1yr) ]2
= X* (V2] + Sor)dis? (X}, {X )
a(X*)((1 —2ps)/2/m — S(ny1)7) dist({ X}, {X: )
42N + 1+ SV rE(x)

I \/

(61)

where (59) is used in the first inequality. Note that
h can be viewed as a TT format where the rank

is at most ((N—1)r,...,(N—1)ry_1). Hence,
we apply /¢1/¢>-RIP and Lemma 1 in the second
inequality. ~The last line follows dor < d(ni1)F <

(1 —2ps)\/2/m, (58), Lemma 4 and dist®>({X;},{X}}) <
(X)) ((1—2pa)\/2/ 7= (n41)r)” 0
18(2N2—2N+1)(N+1+ 32N, ) (v/2/ 7+ (v yr)? |

2035

APPENDIX G
PROOF OF THEOREM 3

Proof: To utilize the robust regularity condition of Lemma
5 in the derivation of Theorem 3, we need to prove conditions
in Lemma 5. Due to the retraction operation, we can guarantee

that L(X; (¢ )) are orthonormal. In addition, we assume that
dise*({X ("} {X1})
Q(X* 1—2p \/2/71' 5(N+1)7)2
~ 18(2N2 —

2N + 1)(N + 14+ SN ) (V2 7+ (v 1yr)?
(62)

which can be proven later, and following (52), then obtain

o2 (X0 <X oy ),
Next, we define the best rotation matrices as follo-
wing: (Rgt)7 e ,Rs\t,)_l) = argmin g corixri, va 11 a3 -
ie[N—1]
LX) = Lr(X))[3 + |L(XY) - Lr(X3)|3.

Now we can prove the assumption dist2({XZ(.t+1)}7 {X7}
<dis?({ XV}, {X7}), expand dis>({X "}, {X?}) and
subsequently derive (63), shown at the bottom of the next page,
where the first inequality follows the nonexpansiveness prop-

erty of Lemma 8.
Based on (56), we can easily obtain

N-—-1
1
7 2o Pruces (Guxo FOGT, - XD)IE
+ ||aL<xN>F<X§”, L XDB
1 N-1
(t) ()12
< P E_:l 0L xHF (X7, ..., X )llF

9N — 5

H10e ) FXT o X8 < == (V2/m + ),
(64)
where the first inequality follows from the fact that for any ma-
trix B =Pr,, s(B)+ PTLL(X”S[(B) where Pr, . s(B)
and PTL( )s[(B) are orthogonal, we have ||Pr, . si(B)l|% <

1B]I%-

Hence, combing the robust regularity condition in Lemma 5

and (64), we have

dis?({ X (X7} < dis?({X P}, {X7))

_o(X)((A - 2ps) )V2/T = (n11)r)
2\/2 (N + 1+ r)a(xx)

9N —5
(V2/m + §nr1yr) s -

Following the same analysis of (48) in Appendix E-A,

we can set u; = Ag' where we respectively select \ =

(1-2ps)+/2/7— S(N+1T dlSt({X(O)} (X))

V2N 145N 5T r) (ON =5) (v/2/ 748w 1y7) 2R (X*) Lo
B (1=2ps)\/2/7 =8N 1))

Co T SV ) (ON—5) (V2 m S g 1y 22 ()

and then guarantee that
dis?({X "} {X7}) <dis?({X "} {X;})g*.  (66)

Proof: of (62): We now prove (62) by induction. First
note that (62) holds for ¢ = 0 which can be proved by comb-
ing X(© €C(b) and Lemma 4. We now assume it holds

pdist({X 7}, {X 1)

(65)

and
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at t =1/, which implies that o2 (X)) < 92X ¢ [y
1). By invoking (66), we have dist®({X‘" =) L{X}) <
dis?({X "'}, {X}). Consequently, (62) also holds at £ = ¢/ +
1. By induction, we can conclude that (62) holds for all £ > 0.

This completes the proof. O
APPENDIX H
PROOF OF THEOREM 4
Proof: Before analyzing the truncated spectral
initialization, we first define the following restricted
Frobenius norm for any tensor H € R%Xxdn:

||H||F,F:maxxemdl>< XAN x| p<1, <H7X>9 where rank(.)c')
rank(X)=(r1,...,

denotes the TT ranks of X.
Following the same analysis of [49, eq. (89)], we have

TN—1)

||X<0>—X*||F<( L+VN-1)
1 *

X (1—ps)m ZykAk]I{\yklﬂyl((psnm} X o

14+
= eema S 3 (- ),

faer.]i(x):(zrl,..ﬂ”,;!fil) S kes’
(67)

where &' = {k: |yr| < |Yl(rp.m1), k € [m]} and |S'|=

[(1 = ps)m]. Since Yl (rpm) < maxy (A, X*)|
where  (Ag, X*) ~N(0,|X*||%), we first  have
t2

P (|(Ag, X*)| > t) <2 *1¥71%,

P (max, [(Ar, A <O 21 = 2[(1—p,)
1_ e1 H2 +log((1—ps)m)

Then taking ¢ = cl||X*HF log((1 — ps)

follows  that

__ ¢?
m|e

and it

2013 >

2||X*

m) with a positive
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for any TT format tensors X with TT ranks (2ry,...,2ry—_1)
such that
o > (o = X7, X)
):aenri(;) (2r11,v...erH;<11) kes’
<2 (s - X7, X0) (68)
keSS’
using € = 5.
Note that EA,C<ykAk —X*,X(p)> E.Ak(<¢4kv ™)+
si) (Ag, X))y — (X, 2 @) = (x* 2@y — (x* xP)) =0

since each element in Aj; follows the normal distribution.
In addition, (yzAp —X*, X®) is a  subgaussian
random variable with subgaussian norm ||{yx.Ar —
XXy, < [l [ (A AP, + X6 AP
<O(log((1 —ps)m)||X*||r) where we use |yx| <
Yl (rp.m1) SO(HIOg((l—ps) X7, (Ap, X®) ~
N(0,[|X®]2) and |XP)||p < 1. According to the General
Hoeffding’s inequality [66, Theorem 2.6.2], we have

IP’(I D (A — X7, X)) > t)

keS’
< 2¢

cot?
A—pe)ymoa((—paym) 22" %
)

(69)

where co is a positive constant. Combing (68) with (69), we
further derive

P

max
xerd1 X Xdyn HXHF<1
rank(X)=(2r1,...,2r N

<P (el - x@) > L
2

keS’
= )

(ypAp — X%, X) > t)

keS’

| Z (yp Ay, — X, X@)) >

kes’
constant ¢;, with probability 1 — e~2(loe((1=p)m)) we can © ANTF2 5
. cot
obtain  |y|(rp.m7) < maxy [(Ar, X*) < O(||X|| F log((1 — < <4 + 6) el_4(1—ps)m(log((1—ps)m))2HX*H%
ps)m €
Next, according to [49, Appendix E], we can construct an 1— cat? caNd72 log N
enet {XW, ... XP} with covering number p < (A€ )4V <e H-p)mUos((-ps)m)ZIXIE, e o (70)
dist2<{X<t“’} {x:})
N—
= T PEOILE) - Lo KD+ IEXE) = Lo (X312
i=1
N-1 u 2
t * t t t
< LX) — Lo (X}) - WPTL(Xi)St(aL(Xi)F(Xg ) 7X§v))) .
i=1
+ ||L<X§?> — Lo (X i) = mdnoen FXY, . X Q)13
= dis® (X"} AX 7)) — 20 Z< LX) = Ly (X7), Pry s (Onx ) F(X T, 7X§\tz)))>
;N
t t t
1 (g 20 1Py Gucxa PR XD+ Ioncx o FX, o XDIE) (69
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where c3 is a constant and based on the assumption in (68),
1
Ae _ AN QN 4+1.

€ L

2N
Taking = log((1 — p.)m) | X*|#1/(1 — p)mNdr? log N,

with probability 1 — e~ (N log N) _ o=Q(log((1-p.)m))  ye

have [|¥®) — 2| < O(NTsioz I e on )
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