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Abstract

This work is an extension of our past study focused on a covariant representation of the electro-
magnetic (EM) current of spin-1/2 Dirac particles, specifically, nucleons. In the past study the EM
responses that occur in unpolarized electron scattering from unpolarized nucleons were derived;
however, scattering of polarized electrons from polarized nucleons was beyond the scope of that
earlier work. Here such extensions are studied in detail. While in other work the EM response has
already been developed for the double-polarization scattering problem, that effort was focused on
high-energy collider physics. In the present study the formalism is recast into a set of EM response
functions that have transparent dependencies on the relevant kinematic variables, especially on
how these behave with respect to the momentum p of the (moving) struck, polarized nucleon. The
motivation for such a reformulation of the problem is the desire to see a clear path to expansions
in p of the EM response for use in devising “prescriptions for nuclear physics”. Results are pro-
vided where comparisons of the full (unexpanded) responses with various approximations that are
frequently employed in studies of EM nuclear physics are made, demonstrating that under some
circumstances such approximations are reasonable, whereas in other circumstances the expanded
results are likely to be invalid. In addition, the EM current operators and approximations to them

are discussed in detail.

I. INTRODUCTION

The present study provides extensions to our previous one undertaken in [1]. This earlier
work was focused on unpolarized single-nucleon electron scattering from unpolarized nucle-
ons and, while the basic formalism was provided for the situations where both the incident
electron and target nucleon could be polarized, this subject was felt to be beyond scope of
the original project. Here we consider that polarized scenario in some depth. We begin in
Sec. II with a review and some new details on the electromagnetic current of single nucleons,
building on the previous developments in [1]. Importantly, we explain why caution should
be exercised when employing simple implementations of what is termed the “prescription
for nuclear physics” where one goes from some representation of the single-nucleon elec-
tromagnetic current — usually approximated — to operators for the current to be used

in coordinate space. We explain why the usually so-approximated current operators may



work in very specific situations, but not in modern applications, namely, in the so-called
“quasielastic” regime where they are suspect; such situations are central to modern studies
with GeV-scale electron scattering or neutrino reactions.

Section II is followed in Sec. IIT by a detailed treatment of the single-nucleon electron
scattering response functions, both unpolarized (from [1]) and their extensions to polarized
responses, the latter being considerably more involved to obtain given the need to address the
issue of providing the formalism for handling the target nucleon spin. Section III A begins
by summarizing the general nature of the electromagnetic hadronic tensors that underlie all
electron scattering, using the formalism in [2, 3] as a basis for those discussions. This is
followed in Sec. II1 B by the basic developments required in deriving both the unpolarized and
polarized single-nucleon response functions, to be found in Secs. III C and IIT D, respectively.
Section IIIE contains a brief treatment of what happens in situations where the target
momentum is small. And then in Sec. IV numerical results are provided to quantify the
behavior with kinematics of all of the single-nucleon response functions. Finally, in Sec.V

we present our conclusions.

II. ON-SHELL SINGLE-NUCLEON ELECTROMAGNETIC CURRENT

A. Basic Kinematics

In this study we draw on the presentations in [2, 3], adopting the conventions used in that
work (see also Appendix A). The basic electron scattering reaction is shown schematically
in Fig. 1, where an incident electron with 4-momentum K* = (¢,k) is scattering to 4-
momentum K" = (¢/,k’) and exchanges the 4-momentum Q" = (w,q) = K* — K'* carried
by the virtual photon. This implies that w = ¢ — ¢ and q = k — k’. The virtual photon is
absorbed by the target having 4-momentum P* = (E,, p), going to a final state having 4-
momentum P* = (£}, p’). Four-momentum conservation then requires that Q* = P — P*,
which implies that w = E| — E, and q = p’ — p. In the special case of elastic electron
scattering from the nucleon of mass my that forms the focus of the present study one also
has E, = /m% + p? and E, = Vm3 + 2.

We begin by summarizing the various coordinate systems used in the following devel-



FIG. 1. General kinematics for single-nucleon electron scattering showing the relevant kinematic

variables (see text for details).

opments. As in past work the 123-system is set up to be convenient for electron scat-
tering from hadronic systems as shown in the figure, where us lies along q, u;y is in the
lepton scattering plane, and u, = uz x u;. This system is chosen because of the spe-
cial role played by the virtual photon when invoking the plane-wave Born approximation
(single-photon exchange) in that one has q = quz. In the 123-system one can write p =
p(sin 6 cos pu; + sin 0 sin puy + cos fuz) and p’ = p/(sin &' cos ¢'u; + sin 0’ sin ¢'uy + cos §'ug),

with ¢’ = 6.

It is also convenient to rotate to the 1'2'3'-system where u) lies in the hadron plane as
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usual (see Fig. 2). The two systems are related by the following:

u; = cos¢u; + sin guy
u, = —sin@guy + cos puy

ug = U3 (1)
and

u; = cos¢u) — sin puy
uy; = sin¢u} + cos gus

us = us. (2)

In the 12'3'-system one then has p = p(sinfu] + cosfuj) and p’ = p'(sin #'u) + cos #'u}).

The 4-momentum conservation condition then requires that

p'sin@ = psinf

p cos® = pcos+q. (3)

Later, when considering the spin content in the problem, it is also useful to employ
a coordinate system determined by the direction of the incoming nucleon, i.e., using the

3-momentum p. We take this direction to define a unit vector in the direction 3” via
p = pu, (4)
we take the direction 2” to be the same as 2/,
u; = uj, (5)
and then the remaining unit vector required is given by
uf = u) x ug; (6)

see Fig. 3. We can then immediately relate the unit vectors in the 1'2’3’-system to those in

the 172"3"-system:

u) = cosfuf + sin fuy

uy = uj (7)
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FIG. 2. Rotation relating the 123- and 1’2’3 systems. Here u} = us.
u; = —sinfu] + cosfus.
and

o / . /

u; = cosfu; — sinfug
o !/

U; = U

u; = sinfu) + cos buj. (8)

B. Current Matrix Elements

The discussions of the on-shell single-nucleon current to follow all come from the study
presented in [1]. We begin by transforming some of the results presented there into the

present notation. In particular, in that cited work the coordinate system was chosen to
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FIG. 3. Rotation relating the 1’2’3~ and 172"”3” systems. Here uj = uj.

be referenced to the hadron plane and accordingly what are called (uj,us,u3) there are
(uf,u), u}) in the present choice of conventions. For clarity we rewrite the results in [1]
using the present notation. The familiar single-nucleon on-shell current matrix element is

given as
1

JHPNSPA) = 6(P'N) [ Fi® + —Fyo™Q, | u(PA), 9)

my
where the initial and final spin projections are denoted A and A’, respectively, with A, A’ =

+1/2. As in [1] we introduce the following expression in which a current operator enters

sandwiched between two spin-1/2 spinors:
JH(PA; P'A') = x L, JH(P; P')xa. (10)

As noted in [1], one sees that while J* in Eq. (9) is a 4-vector, J* in Eq. (10) is not.

Next we summarize results found in [1] for explicit expressions involving the operator J#:

Jh = foVr (11)



fo = araafy (12)

3 2 T 2 2

As in [1] we employ dimensionless variables:

K = q/2my
2
T = |Q2| =r* =N >0
4ms;
2
p = @—2|=12 0<p<1
q K
n = p/my
e = E,/my=+1+n2 (14)
We have that
d = nsinéd
8 = ncosb
/‘65, = )\E—T:)\g—/‘ig (15)
_ 1 1 K
e=etd= g (B4 E) = Vit (16)

where 6 is the angle between q and p (see above). Additionally, using results from [1] we

introduce the following:

o o= L VTE
e /L1_/<a\/1+7'
02 7
= 4/1 1
+1—1—7’ (17)
1 _yTi+r+e)
2= Mz_ 26/ 14+ 7
1
= Sl +0) (18)
with
A/ T(1
CEM. (19)
K
One can also show that
~_ T T \2 2



where

A==-(1+¢). (21)

N =

Using results from above we may express the kinematic variables in terms of a single set
of three independent quantities; specifically, let us write everything in terms of (7,7, 6). We
have that ¢ = /1 4+ 12, § = nsinf and &' = ncosd, and that the dimensionless 3-momentum

transfer and energy transfer may be written

po VT (V7 VT 7+ 2 (22)

1462
- 1f52 [Vre+oViTr+ o). (23)

Other useful identities are the following: from Eq. (15) one can show that

An?

= =X e—7=(\— 24
K K1) COS e—1=( T)—i—l+€ (24)
and therefore that
An?
A\—T = k) — 25
g " 1+¢ (25)
)\ 2
N7 = gy = TENT (26)
1+¢

We then turn to focus on the 4-vector V* = (V°,v) with v = Vu} + V?u, 4+ V3uj and
with V# = pi,uV*. From [1] we have that

VO = vy +iv) (uy - o)

e = (2)vo
K
€L

vo = nu)

—i{v; (u x o) + vy (uy - o) wy + (v — 1)) (uy - o) wy } (27)
and accordingly

0 __ s 2
V5 = 1 +ivyo

VY =y +2'V102/
VY = [1/501/ + V§’03/]
3 3 AN 10
V :V:(E>V, (28)



the last arising from the continuity equation. The functions 1y, etc. are all real and have

been derived previously in [1]. For convenience we also choose to remove factors ppo by

defining vy = py sty = o/ s, etc. where, by doing so to define the functions with tildes,

one compensates the factors ajas in Eq. (12). The required quantities are then found to be

the following:

. K 1 9
vy = Nz {alagGE—i- o0 —|—7')TGM5 ]
7 . [ Gy — 2enG } 5

vy = o - -«

. 1 1

Vv = \/1—|——7' |:C]{2GE + 50[17'GM:| (S

) 1

VvV = \/F |:Oéla2GM — mGE52:|

~/ 1 2

Uy = \/F{alog 2(1—|—7’)6]GM

g = (%) N (29)

Substituting from above for the coefficients we then obtain the V° and V3 components

of the current,

where

VO

v

K 1
— |G 205Gy — GR)i(u, - o) - = Gy - 22 30
NG [ e+ e, (200G — a1GR)i (uy - o) - =+ S, oM (30)

Vi = (5> Vo (31)

KR
-
Vi 32

—_
—
—

and, with v* = Vllu’1 + V2/u’2, the transverse components of the 3-vector current

!/ ].
V= NG [TGMZ. (uy- o) + 20109 (200Gp + au7Guy) - 2
1
o G . / . . EQ
2o gl (uy - o) }
, . 1 A 1+7 —_
V2 = —ivTGu |(u) - o) + 2019 (E) T (- ) =
1 ! —2
_27a1a2 (fu,1 . a') =l (33)

These results are completely general, namely, no expansions in any of the kinematic variables

have been made; they may be used at any energy scale. As above we may take as independent
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variables (7,7, 0) and via ¢ = nsin  together with the relationships for x and A in Egs. (22)
and (23), respectively, determine all of the needed kinematic factors. These expressions
may be used in ultra-relativistic situations such as in collider physics where one may have a
high-energy electron colliding with a high-energy proton; both particles may have energies
and momenta involving relativistic y-variables much larger than unity. For instance, if one
has a proton of 250 GeV colliding with an energetic electron then 1 = 266 and therefore
0 = nsin#, which enters above in the quantity =, becomes unity at a scattering angle of
about 0.22°. Clearly for scattering at larger angles = cannot be taken to be small and all
contributions to V* above must be taken into account. Finally, note that the developments
in the present work are completely compatible with those undertaken in [4] where the focus
was entirely placed on collider physics. The present study is focused more on the general
(1,1, 0)-dependencies of the currents and later the single-nucleon response functions.

That said, it is frequently useful to make some reasonable approximations. As mentioned
above there are circumstances where we may assume that 7 is small and accordingly im-
mediately drop the contributions proportional to =2 in the above equations. Moreover, for
the terms above that are linear in 7, namely, those having explicit factors of = we may
evaluate the rest of the expressions at n — 0, which implies that o; and s go to unity and

Ak — +/7/(1 + 7) which leads to the following linear-order results:

v = 2 JGe e+ (Gu—36e) i(ut- o) 2400 (34)
ve s = () o 35

<n> (35)
vy = % {TGMi (uh o)+ (GE + %TGM) 2+ 0(772)} (36)
V¥ = /TGy {(U’l o) + % (uz-o) E+ 0(772)} ; (37)

where we have chosen to retain the factor x//7 in Eq. (34) although, as stated above, it
may also be expanded in 7 (see Eq. (90)):

\%: 1+T{1+\/ZUCOS‘9+O(W2>1- (38)

See also the discussions to follow in Sec. IV. We note that the leading-order contributions

(O(n°)) are proportional to G for the charge sector and to G for the transverse current

sector, the latter involving the spin operator via the factors u) - o and w), - o. That is,
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the leading-order effects arise via the charge operator and the transverse projections of the
spin current operator. The linear contributions (O(n')) involve both Gg and Gy, which is
natural, since one expects charge-like effects to arise from a moving magnetic moment, and
magnetic-like effects to arise from a moving charge.

In Eq. (34) we see that these contributions are proportional to Gy — 3G and involve
the spin operator via u) - . In Eq. (36) the linear-order contribution goes as Gg + 537Gy
and is spin-independent — this is the convection current. Moreover, in Eq. (37) the leading-
order contribution is spin-dependent, involving the factor u] - o, together with a first-
order contribution that is proportional to Gp; and involves the spin operator via the factor
u; - 0. Indeed, note that a strict expansion in 1 would yield only a magnetization current
in leading order and only at O(n) would one have a convection current, while, of course,
most treatments include the latter. However, some treatments of the single-nucleon EM
current include only the convection current at linear order in n and do not include the
linear-order contributions to the charge operator and to the transverse current contribution
in Eq. (37). This is inconsistent and, depending on the specific kinematics these linear-order
contributions are not insignificant (see later).

Note that we have not expanded in w/2my = A, q¢/2my = & or |Q?|/4m3% = 7, but have
assumed that these kinematic quantities may take on any values and, in general, should not
be assumed to be small and therefore expandable to low orders. All that has been assumed
is that an expansion in p/my = n may be made, and even this is not necessary if the goal
is simply to have results for the on-shell single-nucleon current matrix elements, since above
we have the exact results to all orders.

However, there are many circumstances when using these results in nuclear physics appli-
cations where various expansions are typically undertaken. We advocate using Eqs. (34-37)
in general, since there are important occasions where only an expansion in 7 makes sense.
Such expansions in 77 do make sense, for instance, when treating quasielastic electron scat-
tering in circumstances where the main contributions arise from nucleons in the nucleus that
are relatively slowly-moving, namely, where p < my. We shall discuss this in more detail in
Sec. IV. However, in many modern applications of interest in quasielastic electron scattering
one certainly cannot assume that A\, k and 7 may be treated as small. Accordingly, the basic
“prescription for nuclear physics” may be taken to be the following: start with Eqs. (34-37)

and, where 7 enters via the factors 6 = nsinf = psin6/my, which are part of the definition
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of A, and replace p with —iV. This prescription is then employed in coordinate space where
one has to evaluate matrix elements both of the operator V and of the spin operator o —
these are all familiar ideas in standard treatments of electromagnetic nuclear physics using
(typically) non-relativistic nuclear many-body wave functions.

Let us discuss in a little more detail several examples of what this approach entails. First,
consider V% in Eq. (30) and to make estimates of how relevant the linear-order contribution is
with respect to the leading-order contribution consider the following approximations for the
nucleon form factors when the focus is on the isovectorsector. This sector is of special interest
since typically it proves to be important to analyze isovector electron scattering before going
on to model charge-changing neutrino reactions, which are closely related processes and
where the latter are entirely isovector in nature. Take G} = Gp and G}, = p’Gp with
w’ = pp, — pn, = 4.70 for the isovector magnetic moment, where Gp is the dipole form
factor often used as a (reasonably good) approximation for the measured form factors (see
[5, 6]). Accordingly, the leading-order contribution is proportional to G% = Gp, while the
next-to-leading-order contribution is proportional to G, — %Gj{; = 4.20Gp. If one’s interest
is in multi-GeV quasielastic electron scattering the dependence on 7 cannot be assumed to
be small — taking 7 ~0.25-0.5 is typical — and therefore the basic measure is to compare
the leading order ~1 with the next-to-leading-order ~4.20n. As noted above 7 typically lies
somewhat below np ~ 0.25 and thus the linear contribution becomes ~1/4 and one should
therefore expect roughly 25% effects from the contributions that are O(n') versus those of
O(n°); going the other way, contributions of O(n?) may be only of order a few percent.
These estimates are consistent with the results for the response functions obtained later in
this work.

Another example that occurs in the quasielastic regime is when neutrons are involved.
Then one has G}, ~ u,Gp along with the Galster parametrization for the neutron’s electric
form factor, G% ~ —u,7Gp(1 + 5.67)~" (see [5, 6]). In this case, at moderate values
of 7 the leading-order contribution is strongly suppressed with respect to the linear-order
contribution, and any modeling of quasielastic electron scattering from neutrons that lacks
both terms is liable to be incorrect for the charge sector.

Finally, we briefly note that the above results expanded to linear order in 7 agree with
other “prescriptions for nuclear physics”, such as those in [7] (see Appendix D in that work

as well as [8]), once the different assumptions made there are taken into account. Specifically,
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note that in [7] the direction of the momentum transfer is opposite to the one chosen in this
work (Q%,, = —Q") and that the spinor conventions are also different. Moreover, those
authors expand in powers of m,}, retaining contributions only up to O(my?). They also
assume that w ~ my', which is valid for elastic scattering from nuclei or excitation of low-
lying states in nuclei, and hence A\ ~ m]_\,2 rather that being of O(m}') as is the case for
high-energy quasielastic scattering. Our focus in the present work has been on this latter
regime and hence we have a contribution that is absent even when expanding in powers of

mj_vl. Nevertheless, the final expressions are very similar if these differences are taken into

account and if one maintains the distinction between 3- and 4-momentum transfers.

III. SINGLE-NUCLEON ELECTRON SCATTERING RESPONSE FUNCTIONS

We next turn to the single-nucleon (elastic) response functions. We again build on the
study undertaken in [1]; there only the unpolarized responses were considered and thus the
present work constitutes an extension to include the situation where the target nucleon is
polarized. We begin with a few developments concerning general EM hadronic tensors before

specializing to the on-shell single-nucleon case.

A. General Electromagnetic Hadronic Tensors

In this section we discuss the general form of the hadronic tensor W*” used in studies of
electromagnetic interactions with nucleons and nuclei, again drawing on the presentations

in [2, 3]. This satisfies the continuity equation:
QW = QW =0. (39)
With our conventions where q lies in the 3-direction,
Q" = (w,0,0,q9), (40)

and we can then eliminate any tensors with longitudinal (1 = 3) components in terms of

components having p = 0:
W3,u — V/WOy
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W = VW, (41)

where as usual v/ = w/q. Thus the only cases we need to consider when rotating are WO,

W107 WOQ, W2O, Wll, W22, W12 and W21'

Now, moving to the EM response functions employed in other work (see [2, 3, 9, 10]), we

have the following nine familiar (real) response functions:

wt =

WT

WOO

w2 4wt

W22 o Wll

22 = 2y/2ReW ™

2iW,? = —2ImW*?

2V2iW % = —24/2ImW 2

QW = 2ReW!?

2V/2W 0% = 2v/2ReW 2

—2V2iW O = 2¢/2ImIW O (42)

Here the subscripts “s” and “a” are used to indicate the parts of the hadronic tensor that

are symmetric and anti-symmetric under the interchange p <+ v, respectively. We may also

introduce similar response functions in the rotated coordinate system, denoted by tildes:

W
w2 4w
w2 —wt'

22O = 2/2ReW ™

2iW Y = —2ImWw¥

2V2iW? = —24/2ImW %%

oW = oReW ¥

2V/2W 0% = 2v/2ReW

—2v2iW0 = 2/2ImW O (43)

Upon employing explicit identities relating the various coordinate systems discussed

above, the following relationships between the EM responses in the 123-system and those in
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the 1'2'3'-system emerge immediately:

wh = wt
wT = w7
WIT = WTT cos 2¢ + WL sin 2¢
WTL = WTL cos o — WL sin 10)
wT = w7
WTE = W cos o — WZIL sin )
WIT — WIL cos 2¢ — WTT sin 2¢
WZIL — WZTLcog o+ WL sin )
WIL — WTL cos ¢+ WY sin ¢. (44)
Of course one may derive the inverse relationships; however, for the present purposes the

above equations are adequate.
B. On-shell Single-nucleon Response

The discussions in this section again build on the study presented in [1], here with ex-
tensions to include single-nucleon responses where the target nucleon is polarized — the
previous study was limited to the unpolarized sector. For the response functions we require

the bilinear products of the current matrix elements
Wi, = JUPA; PN J7(PA; P'A)
= (xTAJ”(P; P/)XA>* (X}L\'jy(P; P’)XA>
= XhJ“(P; P xaxh, J"(P; P')xa. (45)
Since in the present work only the initial incoming nucleon is assumed to be polarized we

must sum over final spin states and then, using closure, we obtain the following:

Wy = Z WA
Y
= XhJH(P; P') T (P; P)xa. (46)
Using the results in Eq. (46) we then have
Wi = fixi v v, (47)
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The various required combinations of V#TV" are the following:

‘70T‘70

vty

‘72'1‘72'

PO

‘707 ‘72'

‘71

’

12

~2 ~12
Yy + vy = ZOO

U+ U= Ziy

~ /12

1/2 + Uy 4 Uyl

~/2 ~/12
Vy + 0y = Zyy

[ﬂoﬁl + 56131] +1 [170171 —

. /
Z()l’ + 2261/0'2

ﬂ(l)ﬁl] o

/ / ’ / T
~/ //|: 1T0_3 +<0_1T0_3>:|

2/

i||:1/20' +y§’ 3]

~7~r1 3
—i{ [ty + Dol ot + [y — Dyh) o }

—i |y —ivy0 ] [

—1

U + U, ] ot gt

-il7
{
Z{Z()Q/U +Z02,<7 }
&
{

///

_Z {21/210- + 21/2/0-3,} 9

~ 11 3’
VZO' —|—1/2 }

1% — 7] o }

(53)

where the fact that the Pauli matrices are hermitean has been used, as well as the fact that

oFat = 64 4 jektmgm

and where we have defined the following

ZOO

iy =
22/2/

Zov

/
01’
ZOQ’

/
02’

21/2/

/
172/

~/12
1/0 + 1

~12
Vl + vy
~/2 ~112
+ 1y

~ ~ ~/ ~/
Vo1 + Yyl
~ ~/ ~) ~
Wy — Vol

~! ~1

Dol + Vyly
Doy — Uyl
DUy + D10y
Uy — D)1y,

(54)

(55)

Note that the results in Eqs. (48-51) are purely real and therefore contribute only in the

(symmetric) unpolarized response sector, while those in Eqs. (52-53) are purely imaginary
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and therefore contribute only in the (anti-symmetric) unpolarized response sector. Only
TRE responses are nonzero. Also note that for the polarized results only those involving
the Pauli matrices ¢ and ¢ occur with none involving ¢2’; the last involving polarizations
normal to the plane defined by q and p are parity violating. Referring to Egs. (43), these
specific results show that only the unpolarized responses W%, W7T, WTT and WTL are
nonzero, whereas WTT and WZL are both zero, and that only the polarized responses wr
and WTL are nonzero, whereas WZIL is zero. The relationships in Eqs. (44) where responses
in the 123-system are related to those in the 1'2'3'-system then simply reduce to the following:
WL — Wk
wh =w"
WTT = WTT cos 20
WwTL = WL cos ¢
wl — W
W = W cos ¢
WIT — W' gin 2¢
WIL — WTL sin ¢
WIL = WTL gin ¢. (56)
To go from these response functions to the relevant electron scattering cross sections one
may use the formalism presented in [2, 3] — all conventions used there are exactly those

employed in the present work. From that work one has that the inclusive cross section for

scattering of electrons from spin-1/2 targets including electron and target polarizations may

be written
dQO_ MN incl
dqar ~ el g R (57)
where
Rincl — Rzincl + hRénCl + h*RénCl + hh*RZﬂCl (58)

and where h = +1 and h* = +1 carry the polarizations of the electron and nucleon, respec-
tively. The Mott cross section oy and the factor f are discussed in [2, 3]. In the present

situation the four sectors (which may be separated by using the polarizations) are found to

be

Rinct = W+ oW + vope W pop WTE
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; ! /!
Ry = op W +vp W

Réncl — Réncl =0. (59)
C. Unpolarized Single-nucleon Response

For the unpolarized responses (all symmetric in g > v) in the 1'2'3’-system the spinor
matrix elements are all unity since no Pauli matrices are present and accordingly one may

evaluate the spin-averaged responses,

v 1 174 v
W = W +Wﬁl/2], (60)

unpol — ) +1/2

where immediately we find the following nonzero results

ngpol = fg Zoo
Wapot = foZ1v
W = 3 Zo
Wt = Wanpat = Wangot = ReWoor = fo Zov, (61)

with no contribution coming from the term proportional to Zj,,. These results have already

been presented in [1]; specifically one has

Wq?’r?pol = f3Zp0 = %2 (G5, + 8°Ws)

Wz};goz = f(?Zw =W, + 6*Ws

qu%oz = fiZyy =W,

Wonoot = Jo Zor = E0Wo, (62)

where as usual W, = 7G3; and W, = [G% + 7G3,] /(1 + 7). Then, using the results in
Egs. (43) in the 1'2'3'-system one immediately has that

unpol —

. 2
W = Wik = =[G} + "W
WT = W22+ WL = 2w, + §2W,

w unpol
/_V\V/TT = WuQ;?p;ol - ul;mlp;ol = _52W2
WTL = 2V/2W0 | = 2v/220Ws, (63)
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together with the facts that
WL — WIT — o, (64)

since in Eqgs. (43) where these two responses are defined require the real parts of specific
components of the hadronic tensor and yet those components are manifestly imaginary (see
Egs. (52-53)). Finally, via Eqs. (44) that one has the required results in the 123-system,

namely, the results already found in [1]:

wh = “72 (G + 8°Ws) (65)
WT = 2W, + 6°W, (66)
W = —52W, cos 2¢ (67)
WTL = 2v/286W, cos ¢. (68)

Note that there are symmetries under the transformation § — m — 6 that emerge imme-
diately: since § = nsinf, under this transformation § — § and therefore WTHTTTL 3]l do
not change, whereas W' does change because of the transformation of k. By examining Eq.
(22) and noting that ¢’ = ncos — —¢' under this transformation one sees that the values
of k for # and for m — 6 are different.

We also note in passing that Egs. (65) and (66) were long ago used without approximation
in formulating the relativistic Fermi gas model for the longitudinal and transverse responses;

see [11].

D. Polarized Single-nucleon Response

For the case where the initial nucleon is polarized one can employ the following

WH = 1 wWH W

pol = 5 +1/2 —1/21>

(69)

and furthermore, the required response functions expressed in both the 123- and 1'2'3'-
systems are given in Eqs. (42-44). The polarized responses are all anti-symmetric in p <> v;
see Egs. (44), and we note that only the 7" and T'L’' responses enter for the polarized
responses, the former involving the 1’2" and 02" Lorentz components of the polarized tensor

above. In Sec. IT we noted that when considering the spin of the target, it is useful to employ
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a coordinate system determined by the direction of the incoming nucleon, i.e., using the 3-
momentum p; we do so now by relating the unit vectors in the 1'2'3’-system to those in the
1"2"3"-system, namely where u, = uj (see Egs. (8)). We have already seen that only linear
combinations of o' and ¢ enter in the polarized sector and accordingly it is advantageous
to rotate these combinations as above, yielding for the components of the Pauli matrices the

following relationships for the 3-vector components:

/ " . "
o' = cosfo' + sinfo®
! 17
o? = o°
’ . 7 "
0¥ = —sinfo’ + cosfo®. (70)

Accordingly, the required bilinear products of the form yutyy given in Egs. (52) and (53)

involve the functions

73, = Zoysinb + Zb, cos

Zly = Zoy cos® — Zb, sinf

Z% = Zyy sinb + Zl,y cosf

Zlo = Zyycos® — Zl,, sinf. (71)

Then we require spinor matrix elements of the form XR\N/’”V”XA, where pv = 02" and 12".
Longitudinal polarization (L) is when the spin axis of quantization is defined to be in the
3" direction and sideways polarization (S) when it is defined to be in the 1”7 direction. In
the former case one has XRO'?)//XA = 2A and XRO’I//XA = 0, while in the latter case one
has Xj\a?’"XA =0 and Xj\al” xa = 2A. We then have for the two types of polarization the

following:
Wi = 2V2f323,
W = ARz
W§' = 2f5Zi (72)

and therefore the required polarized response functions

* e '
c Gu |:041GE -4/ 1jTLTGMZ (COS@ — 277)] sin 6 cos ¢
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These are new results and are completely general,

= 2V2

* 1
2V/2 CHGM aGg — T GM—()\—TE)] sin @ cos ¢

147 K

1
2V2h* kG T [EGE — (A — 7€) G ] sin 0 cos ¢

P _T [T o msin?
c Gy = <cos€ En) Gg + 1+TGM7751n 0] cos ¢

1
Qﬁh*HGMm [é (cos@ — %77) G + kG yensin? 9} cos ¢

h*
_QFGM [? <cos€ - In) TGy — ,/1_‘_ Ggnsin? 9]

—2GM(1 e [ (cos@ — %n) TGy — kG gensin® 9]
no

Q—GM51 {alTGM—i—,/ GEZ cos@——n)}
/ 1
2—GMsm9 |:Oz17'GM-|— GE/{ —7'8}

21" Gy sin91 g TGy + (A —1e) Ggl,

together with the inverses

GE:Fl—TFQ
Gy = P+ I,
Fi = —— (G +rCu)
1—1+ ETTGM
1

F:
2 = 77 (Gu—Gi).

to write the following very compact forms for the polarized single-nucleon responses:

WILY = 2V2h* kG [eGE — (X — T€) Fy] sin 6 cos ¢
WTL/ = 2V2h* kG [cos 9G i + knsin® QFQ} cos ¢
WL = 2h*G )y [cos 971Gy — K sin? GFJ

W& = 2n* G sin 0 [e7Gyy + (A — 7¢) F.

being small (or for that matter, large).
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(73)

where we have incorporated the “spin flipper” h* = +1 as in [2, 3]. We may also employ

the usual relationships between the Sachs form factors and the Pauli/Dirac form factors,

(74)

76
77

(76)
(77)
(78)
(79)

79

e., they are valid for all kinematic

conditions and no assumptions have been made (see later) on any of the kinematic variables



Note that for § = 0, 7 one has the following;:

], = ¥, =0
[WSTL’:M = +2V2h* kG pCar cos ¢
[WS': L= T (80)

with the signs being determined by the factor cosé in Eqs. (77) and (78). The results in
Egs. (76-79) may then be combined by employing the polarizations defined by

P = sin 0 cos ¢*”
Py = sin 6* sin ¢*”
P3r = cos 0 (81)

involving the polarization angles in the 1”2”3"-system. This leads to the following:

W = WY Py + WEE Py

W = WPy + WEP. (82)
Moreover, it is then possible to re-express these results in terms of polarizations given with
respect to the other choices of coordinate system made in this work. Specifically, defining

those polarizations by

Py = sinb* cos ¢*

Py = sin* sin ¢*

Py = cosf” (83)
for the 1'2'3’-system, and

P1 = sinf” cos ¢*

Py = sinf* sin ¢*

P3 = cosl” (84)

for the 123-system, one can use the following identities to relate the results in the three

frames:

P = cos 0Py — sin OPs
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= cos 0 [cos ¢P; + sin ¢P,] — sin 6Ps
Por = Py
= —sin¢P; + cos Py
Psr = sin 0Py + cos OPs
= sinf [cos ¢P; + sin ¢pPs] + cos OPs (85)

together with their inverses.

We end this section by specializing to collinear kinematics. As is well-known in studying
elastic electron scattering including from nucleons as targets, it proves useful to cast the
results in the so-called Breit frame (“B”). In this frame one has the target 3-momentum
pp collinear with the 3-momentum transfer q and opposed to it, and has the final-state 3-
momentum p’s in the direction of q and equal in magnitude to that of pg. This implies that
the initial and final 3-momenta are pp = p3 = qp/2 and therefore that the corresponding

nucleon energies are E,p = E 5 = \/m% + qp/4. Immediately the following identities

emerge:

N = —KB

g = m

op = 0

539 = B

wp =0

Ap =0

kp = VT kp/VT =1

ep = \/14+ Ky =V1+T, (86)
where g = 7w implies that sinflp = 0 and cosfp = —1. We shall also assume that “L”

will refer to longitudinal polarization along pg, namely, along —qp ~ —wu3, while “S” will
refer to sideways polarization in the original 123-frame, namely, in the —u;-direction; hence

¢p = 0. This yields the following for the 4-vectors employed in this study:

Q/é = QB(0,0,0,l) :2mN\/;(O,O,O,1)
P = (\/m% +¢%/4,0,0,—q5/2) = myx(V1+7,0,0, —/7). (87)
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These results allow one to write the required responses in the Breit frame for the unpo-
larized cases using Eqs. (65-68) in this work together with the identities kg = /7, 0 = 0

from above. One immediately obtains

[WL}B = GZE
[WT}B = 27G3,
(W], = W', =0, (88)

Finally, employing Eqs. (76-79) and the results above for the required kinematic factors,

the polarized results in the Breit frame are then

, 1 incl N
[WT = 2GR,

IrB

7 incl
[WTL SN AN eel

pol lsn

|: 7 1 incl TL incl (

W = wir]” =o. 89
pol_ S.B pol LB )

E. Expansions for Low Target Momentum

As discussed earlier, in some applications it is advantageous to expand for small 7 (and
hence § and §’), retaining contributions up to order n while dropping those of order n? and
higher. Now, in contrast to the strict rest-frame results (see below), x differs from /7(1 4 7)

by of order n, namely

k= /T(1+T1) {1 + \/Z” cos 6 + O(nQ)} : (90)

Using the fact that A2 = k%2 — 7 one then also has that

1
L+ 4/ +Tncos€+(’)(n2)
T

Expanding the general expressions in Eqgs. (65-68) for the unpolarized results gives rise to

A=T

. (91)

the following expanded form for the nonzero unpolarized response functions:

K2 K2
sznpol = ?G2E + 0(772) - ? [(1 + T)W2 - Wl} + 0(772) (92)
Wepot = 271G+ O(n?) = 2W, + O(i”) (93)
Wipa = O (94)
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Wg;{;‘wl = 2\/5(1 + 7)Wad cos ¢ + O(n?), (95)

where, as usual,

W1 = TG?V[
1

These unpolarized results were already derived in [1]. As discussed above, all other unpolar-
ized response functions are zero, and in particular only time-reversal even (TRE) responses
are nonzero while all time-reversal odd (TRO) responses are zero, as they should be for
elastic scattering.

In situations where 7 is small one may also expand the polarized results in 7 to find the

following;:

WIY = 2v2h*Gy [kGpsind — 7(1 + 1)y sinf cos F, + O(n?)] cos ¢ (97)
W3t = 2Vah" Gy (kG cosf + (1 + 7)ysin 0F, + O(n*)] cos ¢ (%8)
Wl = —2n*Gy [TGM cosf — mn sin? 0 F + (9(772)} (99)
WS’ — 20*Gy [TGM sin @ + mn sinf cos OF) + (9(772)} . (100)

Note that the way that A enters the full expressions for the polarized response functions is via
the combination A — 7¢ which is of order 7 (see Eq. (26)) and accordingly this combination
may simply be replaced by k7 cos 6 as above. Furthermore, one could also expand the factors
x in Eq. (92) and Egs. (97-98) using Eq. (90), although retaining the factors x leads to very
compact expressions. Below we shall explore the implications of retaining terms only up to
linear in 7, either as in Eq. (92) and Egs. (97-98) or when also expanding & to linear order in
n as above; these two approximations will only differ at O(n?). While the expanded results
above are potentially useful approximations, the exact results in Eqgs. (65-68) and (97-100)
are so simple that they can be employed without expanding.

As a special case, one may also recover results in the target rest-frame where one has
ng = 0 and hence dg = 0. For this degenerate case where the initial-state nucleon is
assumed to be at rest, we assume, as in the discussion above of the Breit frame results, that
the original 123-frame is to be the one in which to express the polarizations, with “L” in the

3-direction and “S” in the 1-direction; note that these are opposite to the directions chosen
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when discussing the Breit frame results. For the kinematic variables in the target rest frame

one has the following:

erp = 1

AR = T

kr = /T(1+7)

pr = 1/(1+7)

r =1

Er = 147
ap = 1
agp = 1

for = for=1, (101)

with p = —Q?/¢?, as usual. From Egs. (29) in the target rest frame one then has that

or = V1+7Gp

Uop = 0

rr =0

51,1?. = V7Gu

DQ,R = \/FGM

ﬁ;’,R = 0, (102)

which then yields the following for the unpolarized responses in the rest system:

1 1
[WL}R = (1+ T)GQE = — (—Wz - W1)
PR

[WT}R = 2
(Wt = W, =o0. (103)
Moreover, using the above expressions for the kinematic variables in the rest system (see
Egs. (101,102)) plus the fact that A—7e = 0 in the rest system, and thus obtaining simplified
results for the general expressions in Eqs. (76-79), we have the following for the polarized

responses in the rest system:

] = oG cos b
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[WTL’}R — 2V92h*, /7(1 4 7)GEG )y sin 0% cos ¢F, (104)

which are familiar results (for general discussion of polarized electron-nucleon elastic scat-
tering see, for instance, |9, 12| and references therein, as well as Chapter 8 in [13]). Finally,
we note that these rest-frame results emerge immediately from those in the Breit frame ob-
tained above once the directions are adjusted appropriately; namely, here the polarization
angles are in the original 123-system, whereas the Breit-frame conventions chosen above
have L referring to the —us-direction and S referring to the —wu;-direction, which explains
the sign reversals. Of course, one should remember that the angles in the two frames are

not the same, since they are frame-dependent.

IV. RESULTS FOR UNPOLARIZED AND POLARIZED SCATTERING

While it is straightforward to employ the exact on-shell single-nucleon responses devel-
oped above, since in their final forms they are relatively compact, nevertheless it proves
useful in some circumstances to explore quantitatively what happens when the expanded
expressions are employed. In particular, the so-called “prescription for nuclear physics”
for studies of electron scattering from nuclei (see also below) entails taking the on-shell
single-nucleon momentum space current operators as developed here and using some ap-
proximation to them to deduce effective single-nucleon operators for use in coordinate space.
If one uses the Fermi momentum kpr to gauge the scale of the missing momentum below
which the PWIA cross sections are relatively large then the corresponding dimensionless
scale is np = kp/my. For all but the few-body nuclei this scale does not change radically
across the periodic table (see [14] for determinations of the relevant values of kr) — these
vary from kp(*2C) = 228 MeV/c to krp(***Pb) = 248 MeV/c, and correspondingly one has
nr(?C) = 0.25 and nr(?*®Pb) = 0.26. Accordingly, for many nuclei across the periodic
table we expect that when 7 lies below ~1/4 the PWIA cross sections are relatively large.
The few-body nuclei are somewhat different: the values of the Fermi momenta in that case
are kp(*H) = 55 MeV/c, kr(®*He) = 150 MeV/c and kr(*He) = 200 MeV /c, which yield
nr(*H) = 0.06, nr(*He) = 0.16 and nz(*He) = 0.21. However, the few-body nuclei have
spectral functions that peak at zero missing momentum, being dominated by S-wave com-

ponents in their ground states, and thus the relevant values of missing momenta for these
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systems are even smaller than the Fermi momentum estimates given here.

Thus, if one chooses to work only to leading order in 7, neglecting contributions of O(n)
and higher, then for typical nuclei one may incur errors of order 25% in the regime where
the PWIA cross sections are large, with smaller errors for the few-body nuclei. However,
if one includes the next order, namely if one includes terms of O(n), but neglects terms of

O(n?) as discussed above, then the errors are reduced to only a few percent.

If one attempts to go to very large values of missing momentum then these arguments
become invalid; however, in such a case it is less likely that the strategy of using on-shell

single-nucleon currents is a robust approximation.

Next we consider the single-nucleon electron scattering responses where we choose to
express these for a specific choice of a complete set of the input kinematic variables. Namely
all results are given for ¢ = 0, since the dependence on this variable is very simply through
the factors of cos¢ or cos2¢ in Egs. (67), (68), (76) and (77). We fix 7, which has the
advantage of fixing the values of the electromagnetic form factors, and for chosen values of
the angle 6 show results as functions of the target 3-momentum p or correspondingly its

dimensionless version 7).

Now, we provide numerical results for the responses. We compare the “full results” in
Egs. (65-68) and (76-79) with two specific first-order approximations: one is called the
“single first-order approximation” wherein factors involving the ratio x/y/7 are not approx-
imated, but where higher-order contributions in 7 to the responses are neglected, and a
second called the “double first-order approximation” in which the factors involving x/+/7
are also expanded to linear order in 7. Specifically, for the unpolarized responses this implies

that the single first-order responses are taken to be the following

2
[WL} single - I{?G%
[WT} single - 2W1
[WTT} single =0
(W) e = 2V2(1+7)6W; cos 6, (105)

while the double first-order responses also employ Eq. (38) where x/4/7 is expanded to first
order in n; only W is affected. For the polarized responses we use Eqs. (97-100) expanding
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in 7, namely, for the single first-order approximation we have

[WEL’_ = 2V2h* Gy [kGEsin€ — 7(1 + 7)nsin 6 cos 0 F;] cos ¢
1 single
WE¥] = 3V G [Gpcost + (1 + Pysind 6] coso
1 single
[WLT’ = —2h*Gy |:TGM cos — \/7(1 + 7)nsin? 0F1]
1 single
[WS’ = 2h*G |:7'GM sinf + /7(1 + 7)nsin O cos 9F1} ; (106)
1 single

while for the double first-order approximation we also expand k to linear order in 7 again
using Eq. (38); only the T'L’ responses are affected. For comparison, the rest frame answers
are given in Egs. (103) and Egs. (104)

We fix the value for 7, so that the values for the nucleon form factors are also fixed.
We focus on the proton case, although later we also comment on what differences are
to be found when neutrons are considered or, alternatively, when the focus is placed on
isoscalar /isovector form factors. We use the dipole parametrization for the proton form
factors for simplicity, although none of our results is particularly sensitive to the choice we
make here.

Then, we fix the polar angle # and use 7 as a variable. The azimuthal angle ¢ is set to
zero here — the only place where it shows up is in the form of overall factors of cos ¢ and
cos 2¢ for the interference responses. We choose to consider only values of n < 0.6 which, as
discussed previously and below, is actually quite large for most nuclear physics applications.
In order to keep the number of figures manageable, we will present results for the values of
6 = 0°,180° only for the responses that have non-trivial values there, and then the results for
0 = 45°,90°. We will present both the values for the responses, which allows one to compare
the size of the different responses directly, and give some numerical values for the ratios of
the single and double first-order responses to the full response results. The latter graphs
will show most clearly when approximations in lowest order are acceptable, and when they
lead to major deviations.

We will start our presentation of numerical results with a value of 7 = 0.25, namely, for
|Q?] ~ 1 (GeV/c)?. By fixing 7 and therefore %, we deal with the same value for the form
factors throughout the kinematics. We have chosen 7 as independent variable and fix the
value of the angle # for each panel with numerical results, using # = 0°,45°,90°, 180°, thus

scanning the entire phase space. Various kinematics variables are plotted in Fig. 4. Among
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them are the exact value for k, and the first order in 7 approximation to s, using Eq. (38).
It is clear from all four panels, showing results for § = 0°,45°,90°, 180° that the full value
of k and the first-order approximation are numerically quite close. The biggest deviations
are observed for larger 7 values for § = 0° and 6 = 180°.

We also include the scaling variable ¢ introduced in [11],

1 AN—T

Y = : (107)
\/f_F\/(l + AT+ K /T(T+ 1)
where
€p = \/1—|—77%
fF = €p — 1
ne = krp/my. (108)

In order to calculate v, we have employed a value of kr = 0.25 GeV/c [14] as being repre-
sentative of medium to heavy nuclei.

As discussed in [11] the Relativistic Fermi Gas (RFG) model for the nuclear EM response
is based directly on the fully covariant single-nucleon matrix elements that constitute the
focus of the present work. In the non-Pauli-blocked region the RFG cross section may be
written in terms of this variable, where then the quasielastic peak occurs at ¢» = 0 and
the response falls to zero when ¢ = +1. We take this model only as a rough measure of
where the nuclear quasielastic response is large, say in the region —0.7 < ¢ < +0.7, which
we denote as the “Fermi cone” and outside this region which we call the “tail regions”.
Accordingly, in evaluating the results to follow one should distinguish what happens in the
Fermi cone where strength may be assumed to be significant (at least if the RFG is used as
an indicator) from the tail regions where typically the nuclear response is smaller.

When considering the kinematics variables plotted in Fig. 4, it is obvious that ¢ changes
considerably with 7 for § = 0°,180°. For these two angles #, the values for ¢ correspond to
the Fermi cone roughly for n < 0.2, indicating that we would probe both regions of large
response (Fermi cone) and small response values (Fermi tail), when scanning the whole range
of 1 values for applications in medium or large nuclei. For § = 45°, the change-over between
Fermi cone and Fermi tail is happening around n ~ 0.3, with lower n values corresponding

to the Fermi cone. Interestingly, for § = 90°, the whole range of 7 leads to values of ||
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FIG. 4. Various dimensionless kinematic variables are shown as functions of n for 7 = 0.25 and
0 = 0° (top left panel), 8 = 180° (top right panel), 8 = 45° (bottom left panel), and 6 = 90°
(bottom right panel). For each panel, the black solid line is v, the blue long-dash-dotted line is A,
the red long-dashed line is k, the cyan dotted line is x to O(n), the brown dashed line is 7, the red

loosely dotted line is §, and the green loosely dash-dotted line is €.

considerably less than 0.7, so the only region relevant for these kinematics is the Fermi cone.
We are considering these regions in 1/ so that we have an idea where to expect larger cross
sections when applying our results for the electron-nucleon cross section to electron-nucleus
scattering, and to get a handle on the practical relevance of differences in approximations

to the electron-nucleon responses for the nuclear case.

We look first at the results for # = 0° and 6 = 180°, as the only two interesting responses
at these values of 6 are W and W& L For these two 0 values, the two responses W7 and
W reduce to the value of 2W, and +2h*W, respectively, for the full and both single first-

order and double first-order approximations. The value of 2WW; happens to be just above 0.15
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FIG. 5. The two responses W’ (left panels) and W& (right panels) are shown as functions of
n for 7 = 0.25 and # = 0° (top panels) and # = 180° (bottom panels). For these two 6 values,
wiT = wTt = WLTL/ = Wg/ =0, and W7 and WLT/ reduce to the value of 2W7 = 0.154 and
+2h*W7, respectively.

for 7 = 0.25. The remaining four responses, W WL Wl L' and W " are equal to zero
for # = 0° and # = 180°. In Fig. 5, we show the two relevant responses. The longitudinal
response shows agreement, with the value given by (k?/7)G%, between the full version and
the single first-order approximation in 7. The double first-order result for both 7 and
starts to deviate from the full result for n > 0.1, i.e., already in the region belonging to the
Fermi cone, due to the deviation of the lowest order approximation of x from the exact value
of k. For the highest values of n we consider, the ratio for W, in the double first-order
approximation, dips down close to 70%, and the ratio for WZ L' holds up much better, only
reaching 80%. In Fig. 5, for 8 = 0°, the full result and single first-order approximation are

the largest for both responses. For 6 = 180°, the ordering of the different approximations is

33



different for W L' due to the different behavior of & for the different angles, see Fig. 4. Here,
the double first-order results are smallest. For § = 0, k increases slightly with increasing 7,
whereas for § = 180°, k decreases slightly with increasing 7. We now consider the numerical
results for W1 L" at the two 6§ values. The behavior of the different approximations at 6 = 0°
is qualitatively very similar to W¥: the full and single first-order approximation agree, and
are the largest. The double first-order approximation in both 7 and s deviates noticeably
from the full result for > 0.1. For # = 180°, the sign of WZ* changes due to the factor
of cos @ in the non-vanishing part of the response. And just like for W%, the ordering of the
sizes is different, with the double first-order approximation having the smallest magnitude.

The size and onset of deviations from the full result is the same as for 6 = 0°.

Now we consider the angles 8 = 45°,90°,135°. Here, all unpolarized and polarized re-
sponses show interesting behavior. We will start with 6 = 45° and the unpolarized responses,
see Fig. 6. For the longitudinal response W, we now observe a difference between the full
solution and the single first-order approximation in 7, due to the 62W, term in the full
expression: 0 = nsin @ is non-zero for 6 # 0°,180° and thus leads to a noticeable difference
between the two expressions. The two first-order expressions also differ slightly from each
other, but are quite close throughout. At n = 0.2, roughly the changeover between the Fermi
cone and tail regions, the ratio of the single first-order approximation to the full result is
equal to 95.5%, and for the double first-order approximation, the corresponding ratio is
94.3%. For n = 0.5, these ratios take the values of 77.2% and 74.0%. For the transverse
response W7 the term 62W, now distinguishes the full response from both approximations,
and the differences increase with increasing 7, just like for W¥. The first-order approxima-
tions are all identical, taking the rest value 2W;. However, throughout the whole range of
71 for which we calculate the responses, the percentage deviation is quite small: at n = 0.2,
the ratio of the single first-order approximation to the full result is equal to 98.8%, and the
ratio of the double first-order approximation is exactly the same. For nn = 0.5, both of these
ratios take the value of 93.0%. For W7 only the full expression is nonzero. The magnitude
of the response increases with 7, as it is proportional to 2. For W%, the two first-order
results coincide. The full result is just a bit above the first-order values, and the difference
increases with 7, and becomes noticeable only for n > 0.2, i.e., in the Fermi cone region.
At n = 0.2, the ratio of either first-order approximation to the full result is equal to 92.7%,

and at n = 0.5, the corresponding ratio is 80.6%. The numerical difference between full and
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FIG. 6. The unpolarized responses are shown as functions of n for 7 = 0.25 and 0 = 45°. The
top row shows W (left) and W7 (right), and the bottom row shows W7 (left) and WTE (right).
The solid line in these four panels shows the full solution, the red dashed line the single first-order

approximation and the dash-dotted green line the double first-order approximation.

first-order expressions stems from the difference between &, which increases slightly with 7,

see the bottom left panel of Fig. 4, and the factor 1 + 7, which we hold constant.

We now present the polarized responses for § = 45° in Fig. 7. For the polarized responses,
we observe a similar behavior to W* in both W/ and WZ*. The full result leads to
the largest values, but below n = 0.2, corresponding to the Fermi cone, the difference
to the first-order approximations is very small. At n = 0.2, the ratio of the single first-
order approximation to the full result for WLTL' is 97.7%, and for the double first-order
approximation, the ratio to the full result is 97.0%. For W1 L' these ratios are 98.6% and
98.1%, respectively. For larger values of 7, the gap between the full solution and the two
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FIG. 7. The polarized responses are shown as functions of n for 7 = 0.25 and 0 = 45°. The top
row shows W] (left) and WZ*' (right), and the bottom row shows W} (left) and WZ* (right).
The solid line in these four panels shows the full solution, the red dashed line the single first-order

approximation and the dash-dotted green line the double first-order approximation.

approximations widens. Both first-order approximations remain very close to each other,
the small difference stems from the factor £ multiplying the Gg term in Eqs. (76), (77). At
n = 0.5, the ratio of single first-order to full result for W} drops to 84.6%, and the double
first-order to full ratio is 82.3%. For WZ*' these ratios are 92.8% and 91.3%, respectively.
For the polarized W' responses, the two first-order approximations agree throughout, as
there is no x in the expressions for the first-order approximation for W7 in Eqs. (78), (79).
For W1, the first-order results deviate for > 0.2, still in the Fermi cone region for this
value, from the full result. At n = 0.2, the ratio of first-order to full result is 101%, and at

n = 0.5, it is 113%. For W ', full and both first-order approximations are extremely close
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FIG. 8. The unpolarized responses are shown as functions of n for 7 = 0.25 and 6 = 90°. The
top row shows W (left) and W7 (right), and the bottom row shows W7 (left) and WTE (right).
The solid line in these four panels shows the full solution, the red dashed line the single first-order

approximation and the dash-dotted green line the double first-order approximation.

to each other for the entire range of 1 considered. At n = 0.2, the ratio of first-order to full
result is 99.3%, and at n = 0.5, it is 97.8%.

For 8 = 135°, we qualitatively observe the same trends as for § = 45°. The shape of some
of the polarized responses changes (increasing or decreasing) due to the way the various
kinematic quantities change with the angle 0, as well as the signs of the cosine functions.

For brevity, we omit showing this figure.

Finally, we take a look at 6§ = 90°, with the unpolarized responses shown in Fig. 8. For
this value of @, we observe that for W% W7 and W}, the single first-order approximation
and the double first-order approximation differ visibly from the full expression for n > 0.2.

Note that for 6 = 90°, all values of n correspond to the Fermi cone region, so these differences
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FIG. 9. The polarized responses are shown as functions of n for 7 = 0.25 and 0 = 90°. The top
row shows W] (left) and WZ*' (right), and the bottom row shows W} (left) and WZ* (right).
The solid line in these four panels shows the full solution, the red dashed line the single first-order

approximation and the dash-dotted green line the double first-order approximation.

at higher n are very significant for nuclear applications. However, the single first-order and
double first-order approximations agree (almost) perfectly with each other. There is a slight
difference for W for the single first-order and double first-order results to the x dependence
in the first-order expression. Here, for # = 90°, the double first-order expression is slightly
larger than the single first-order approximation, and thus slightly closer to the full result.
This is due to the behavior of the first-order approximation of k, which is slightly larger
than the actual, unapproximated value of k, see the corresponding panel in Fig. 4. For
n = 0.2, the ratio of the single first-order approximation to the full result is 91.4% and for
the double first-order approximation, the ratio is 92.1%. At n = 0.5, these two ratios are
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equal to 62.9% and 65.5%. For W7 and WTT| the two first-order approximations coincide,
as already pointed out above. For W7, they do deviate a bit more from the full result here
compared with the 6 = 45° result, as expected, as the difference is oc §2W,, and § = 7 sin 6
is largest for § = 90°. For n = 0.2, the ratio of the first-order approximations to the full
result is 97.6%, and for n = 0.5, it is 86.9%. In the case of W7, the disagreement with the
full result starts right at n = 0, as the first-order approximations are both zero. For W71
all three expressions agree for n < 0.3, and differences for higher values of n are minimal.
For n = 0.2, the ratio of the first-order approximations to the full result is 98.8%, and for
n = 0.5, it is 93.2%.

The polarized responses for § = 90° are shown in Fig. 9. For this value of 6, we observe
that for W1 L' the single first-order approximation and the double first-order approximation
differ visibly from the full expression for n > 0.2. For n = 0.2, the ratio of the single first-
order approximation to the full result is 96.7%, and for the double first-order approximation,
the ratio is 97.1%. For n = 0.5, these ratios are 83.5% and 85.2%, respectively.

For the remaining responses, namely WZ* W] and W' the single and double first-
order approximations coincide. For the W7 responses, this is the case for any value of 6,
and for WI' | for § = 90° the term containing & is zero due to a factor cos # multiplying it.

For these three responses, the first-order approximations and the full expression agree
for n < 0.3, and differences for higher values of 1 are minimal. Namely, for n = 0.2, the
first-order to full ratio is 101% for WZ*', 100% for W} and 99.9% for WI". For n = 0.5,
the first-order to full ratio is 104% for W2 102% for W} and 99.1% for Wl".

The above calculations and figures simply serve to illustrate that the quality of the single
first-order approximation and the double first-order approximation vary strongly with the
kinematics and the response function considered. When considering other values of 7, both
smaller and larger than the value of 7 = 0.25 we used here, the results are qualitatively
extremely similar. However, the results for assuming a neutron as the target, i.e., using
neutron electric and magnetic form factors in our calculations, are in a few cases a bit
different: apart from the value for some responses, e.g., the longitudinal response, being
considerably smaller due to the much smaller value of G% compared to G4, the leading
term proportional to Gg may now be relatively smaller than the higher-order terms that
are proportional to G ;. This leads, for some responses and in some kinematics, to a larger

divergence between the full solution and either version of first-order approximation. Similar
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effects may be observed when using isovector form factors, relevant for charge-changing
neutrino scattering, where the electric term, G%, is essentially G, ~ Gp, while the magnetic

term, GY, = G%, — G}, ~ 4.70Gp, is significantly larger.

V. CONCLUSIONS

We have presented equations for the response functions appearing when polarized leptons
scatter elastically from polarized nucleons, both the exact results and systematic approx-
imations involving expansions in terms of 7, the dimensionless momentum of the initial
nucleon. In what is called the single first-order approximation, we approximated any terms
with explicit n dependence, while retaining the distinction between 7 and x, the dimen-
sionless 4- and 3-momentum transfers, respectively. In what is called the double first-order
approximation, we used 7 as an independent variable, but then expanded s in terms of 7,
up to first order in 77. We have presented all of these expressions in detail, thus extending
our past work [1] for the unpolarized scattering.

In our presentation of the responses we have used the Relativistic Fermi Gas model to
guide us in identifying what we dub the “Fermi cone” and what lies outside that kinematic
regime, dubbed the “tail region”. Note that nothing depends in detail on having invoked
the RFG and it is only employed as a rough guide in the present work. On the one hand, in
some applications one may be focused on results in the former region and there expansions
in 7 of the above types may or may not be appropriate — such observations are detailed in
the present study. On the other hand, when the tail region is the one of interest expansions
in n are typically counter-indicated.

In summary, we have found that, while for some responses the single fist-order approxi-
mation does a decent job, especially at lower values of 7, for other responses, especially the
polarized ones, there is a clear difference between the full result and the single first-order
approximation once even moderate values of n are reached. We conclude that using the
double first-order approximation is probably not a good idea, and that the use of the single
first-order approximation should be carefully weighed for larger n values.

Our numerical illustrations have been performed for the proton as target. Note that for a
neutron target, the current contributions involving the electric form factor will be suppressed

since |G| < G%, and thus higher-order terms in 7 may gain more relative weight. Also,
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when considering isoscalar and isovector form factors, e.g., for neutrino scattering, one may
run into situations where the weighting of the leading terms through the form factors is less
pronounced, and higher-order terms may become more relevant. The numerical calculations
for scattering from a proton target presented here are, in a way, the best case for making
the discussed approximations.

Having these electromagnetic response functions for a wide range of kinematics, specif-
ically, in the Fermi cone and tail regions, they also serve to shed some light on other tra-
ditional approaches to prescriptions for nuclear physics, in which approximations in 7,
or A are often invoked. For instance, practical use usually demands such approximations
when working with the current operators in coordinate space. Accordingly we have included
some discussion on the general form of the current operators. Clearly, the appropriateness
of these approximations depends on the kinematics and the observable considered. We con-
clude that, at least in the quasielastic regime, great care should be exercised when working

in coordinate space where traditional approximations may be inadequate.

Appendix A: Conventions

In this work we employ the conventions adopted in previous work including [2, 3, 9, 10]:
4-vectors are written A* = (A%, A A2 A3) = (A° a) with capital letters for the 4-vectors
and lower-case letters for 3-vectors. The magnitude of a 3-vector is written as a = |a|. One

also has A, = g, A" = (A%, — A —A? —A3) with

10 0 0
) 0-10 0

G =97 = 00 —10 | (A1)
00 0 -1

The scalar product of two 4-vectors is given by A - B = A,B* = (A°)? — a?, following the
conventions of [15]. For instance, for the 4-momentum of an on-shell particle of mass M,
energy E, and 3-momentum p we have P* = (E,, p) and hence P? = P, P+ = Eg —p? = M2
One problem occurs with these conventions, viz. for the momentum transfer 4-vector we
have Q% = (Q°)? — ¢* which, for electron scattering is spacelike, and accordingly Q% < 0.
One should be careful not to confuse our sign convention for this quantity with the so-called

SLAC convention which has the opposite sign.
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The totally anti-symmetric Levi-Civita symbol follows the conventions of [15] where

€0123 = —60123 = +1. (A2)

When applying the Feynman rules we also employ the conventions of [15].

We take h = ¢ = 1.
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