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Abstract

The tumor microenvironment (TME) is an immensely complex ecosystem'?. This
complexity underlies difficulties in elucidating principles of spatial organization and using
molecular profiling of the TME for clinical use®. Through statistical analysis of 96 spatial
transcriptomic (ST-seq) datasets spanning twelve diverse tumor types, we found
a conserved distribution of multicellular, transcriptionally covarying units termed ‘Spatial Groups’
(SGs). SGs were either dependent on a hierarchical local spatial context — enriched for cell-
extrinsic processes such as immune regulation and signal transduction — or independent from
local spatial context — enriched for cell-intrinsic processes such as protein and RNA metabolism,
DNA repair, and cell cycle regulation. We used SGs to define a measure of gene spatial
heterogeneity — 'spatial lability’ — and categorized all 96 tumors by their TME spatial lability
profiles. The resulting classification captured spatial variation in cell-extrinsic versus cell-intrinsic
biology and motivated class-specific strategies for therapeutic intervention. Using this
classification to characterize pre-treatment biopsy samples of 16 non-small cell lung cancer
(NSCLC) patients outside our database distinguished responders and non-responders to
immune checkpoint blockade while programmed death-ligand 1 (PD-L1) status and spatially
unaware bulk transcriptional markers did not. Our findings show conserved principles of TME

spatial biology that are both biologically and clinically significant.
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The tumor microenvironment (TME) is a complex milieu of interacting cells, proteins, and
other biological components that influences critical properties of tumor biology such as growth,
metastasis, and response to therapy'?. Biological variation within the TME reflects clinically
relevant differences across genetic, pathway, cellular, and tissue-level scales*®. For instance,
recent studies have shown the prognostic and predictive power of TME-specific biomarkers
such as tumor infiltrating lymphocyte (TIL) score in melanoma and ‘Immunoscore’ — the spatial
balance of CD3+ and CD8+ T cell density — in colorectal cancer®'°. These and other similar
findings have motivated significant investment in studying the TME as an ecosystem of cells
interacting within the spatial constraints of a tumor, most notably with technologies that couple
cellular information about RNA or protein levels with cellular spatial locations''. Such spatial
molecular profiling studies conducted in a variety of tumor types have revealed a common
theme: the substantial heterogeneity within tumors (intratumoral) and across tumors
(intertumoral) makes elucidating organizing principles of the TME very challenging®. By
extension, the clinical utility of TME spatial profiling has been limited in scope.

Recent efforts have begun to outline a strategy to learn conserved aspects of TME
spatial biology with the idea that these aspects reflect organizing principles of biological interest.
These studies have collectively demonstrated the existence of recurrent multicellular spatial
structures associated with tumor biology — somatic mutations, cell cycle synchrony, invasive
fronts — and with cancer prognosis'*'". Obtaining these insights relied on imaging-based
technologies that query tens of proteins to identify phenotypes such as cell type, cell cycle state,
and a limited set of cell functional states. While these studies have been invaluable in
demonstrating the relevance of spatial organization for TME biology, it has remained unclear
whether a broader and more unbiased assessment of cellular phenotypes might demonstrate
general principles of TME spatial organization. Spatial transcriptomics (‘ST-seq’) and related

technologies, which provide genome-wide transcriptional information coupled to nearly single-
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cell-resolution of spatial coordinates, enable broad and unbiased assessment of TME spatial
biology. However, the complexity of such data has precluded moving beyond mere description
into an elucidation of spatial biology principles'®.

Advances in statistical inference developed in other fields of biology — protein science,
genomics, and microbiome science — provide useful frameworks for addressing this challenge.
For instance, at the scale of proteins, analysis of conserved amino acid covariation within
ensembles of related proteins has yielded protein ‘sectors’ — groups of amino acids that are
critical for engineering synthetically folded and functional proteins'®-??. At the scale of genomes,
covariation analysis of gene content across extant diversity within kingdoms of life has revealed
units of collective protein-protein interactions that are critical for behavior and organismal
fitness®*~%°. At the scale of microbiomes, covariation between bacterial taxa across individuals
has yielded ‘ecogroups’ — groups of taxa that are of functional and clinical significance amongst
humans®~2°. Thus, these studies have established a general strategy for parsing organization
amongst complex biological systems: first identify an ensemble of systems, then statistically
deduce features that are conserved across the ensemble.

Using such studies as inspiration, we hypothesized that statistical analysis of ST-seq
data across a diverse ensemble of solid tumors — a ‘pan-tumor’ database — would reveal
conserved patterns of TME spatial biology in an unbiased manner. Our results showed that all
TMEs shared the presence of multicellular groups of transcriptionally covarying spots, ‘Spatial
Groups’ (SGs), with expression profiles that are either dependent (defined as ‘nested Spatial
Groups’, NSGs) or independent (defined as ‘non-nested Spatial Groups’, non-NSGs) on their
local spatial environments. We found that NSG biology obeys a characteristic pattern: variation
in local-scale biological processes, such as cell adhesion, are nested within the spatial context
of larger-scale processes, such as T cell infiltration. We compressed SGs into a tumor-wide
measure of spatial heterogeneity in gene expression that we termed ‘spatial lability’. This

enabled the comparison of spatial biology across our ensemble of tumors. The resulting
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87  classification distinguished biologically and clinically relevant elements of immune regulation,
88  cell signaling, DNA repair, protein and RNA metabolism, and cell cycle regulation. To
89 interrogate the clinical applicability of our findings, we performed ST-seq on 16 ‘out-of-sample’
90 pre-treatment biopsy samples of patients with metastatic non-small cell lung cancer (NSCLC)
91  who received immune checkpoint blockade (ICB) therapy and were not within our pan-tumor
92  database. Using the pan-tumor spatial lability classification to describe these samples, we found
93  that immune spatial lability distinguished patient response to ICB therapy while standard and
94  previously described spatially unaware markers — PD-L1 status, bulk transcriptional differences,
95 and existing gene sets — did not.
96 Overall, our findings revealed conserved principles of TME spatial biology that are
97  biologically and clinically meaningful. Our results motivate further interrogation into the nature of
98 collective spatial organization within the TME and open the possibility for interpretable statistical
99  models of clinical endpoints using spatial biology.

100

101 Spatial Groups (SGs) define a conserved architecture of TME spatial biology

102 As our goal was to discover organizing principles of TME spatial biology, we sought to
103 construct a mapping that could infer TME spatial organization from ST-seq transcriptional data.
104  Each dataset we studied was created using 10X Visium technology, which generates

105  transcriptome-wide measurements for up to 14,000 spatial locations (called spots, each of

106  which contains multiple cells) in up to an 11 mm x 11 mm region of biopsy tissue®. Previous
107  literature has demonstrated the presence and importance of spatially nested and non-nested
108  biological processes in the TME'"3'. As such, we wanted our mapping to simultaneously

109  capture and distinguish nested and non-nested biological processes — a quality that currently
110  developed frameworks for ST-seq data do not contain (Fig. 1A)**=". We therefore developed a

111 new framework called ‘TumorSPACE’ (Tumor Spatial Architectures from the Complete

112 Eigenspectrum). While this framework is described in detail in Methods, TumorSPACE first uses
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113 patterns of transcriptional covariation to define hierarchical relationships between ST-seq

114  spots®®®. This yields a tree-like relationship between all spots in the TME where each leaf of
115  the tree defines an individual spot and branchpoints in the tree group spots together that are
116  transcriptionally similar. TumorSPACE then removes branches of that tree that do not relate to
117  spatial organization (Extended Data Fig. 1A). This resulting tree is a dataset-specific

118  “TumorSPACE map’ between transcriptional information and spatial organization.

119 We applied TumorSPACE to a diverse database of 96 tumors profiled by ST-seq and
120  used the resulting maps to infer the spatial locations of spots (Methods). Each dataset in our
121  database represented a unique patient sample; the database spanned 12 distinct tumor types,
122 multiple disease stages (localized versus metastatic), and multiple tumor body locations

123 (primary, metastatic lymph node, metastatic organ) (Extended Data Fig. 1B, Supplementary
124  Table 1). We found that for all datasets, the TumorSPACE maps significantly inferred spot

125  spatial locations (g < 0.01) (Fig. 1B, Methods). Thus, TumorSPACE maps accurately related
126  transcriptional and spatial information within TMEs.

127 We next interrogated whether the TumorSPACE maps revealed any underlying

128  conserved principles of TME spatial organization. We first focused on the best-performing

129  TumorSPACE map, a small-cell ovarian cancer dataset ‘SCOC-P2’. Branchpoints in this map
130  defined groups of spots that were anisotropically distributed in the biopsy sample and comprised
131  spots that were either (i) physically separated from each other or (ii) were spatially nested within
132 other groups of spots defined by the TumorSPACE map. We therefore termed the branchpoints
133 of TumorSPACE maps ‘Spatial Groups’ (SGs). We defined any SG that was spatially nested
134 within its parent SG — the SG one layer closer to the root of the map — as a nested Spatial

135  Group (NSG). Any SG that was not spatially nested within its parent was a non-nested Spatial
136  Group (non-NSG) (Fig. 1C). We found that in the SCOC-P2 dataset, NSGs could be spatially
137  nested to varying degrees. We therefore defined ‘NSG depth’ for any NSG as the following: as

138  one moves from an NSG towards the root of the TumorSPACE map, ‘NSG depth’ is the number
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139  of NSGs that are encountered inclusive of the original NSG prior to arriving at a non-NSG

140  (Extended Data Fig. 1C) (Methods). A systematic analysis of all tumors in our database

141  revealed a spatial architecture of the TME that is broadly conserved: SGs are comprised of a
142 consistent distribution of non-NSGs and NSGs that can be nested up to several degrees (Fig.
143 1D).

144 We next sought to characterize the biology reflected by NSGs and non-NSGs. We

145  described TME biology using cell type distribution and cellular gene pathway usage since these
146  qualities have been implicated in TME spatial biology across many cancer types. At each SG,
147  we detected differential abundance of genes, pathways, and cell types (Extended Data Fig.
148  2A) (Methods). Since each spot consists of multiple cells, we used SpaCET for deconvoluting
149  cell types (Methods)®. We found a relationship between the spatial scale of SGs and biological
150  processes: SGs that were larger in spatial distribution displayed changes in cell type abundance
151  (particularly in CD4+ and CD8+ T cells) while SGs that were smaller in spatial distribution

152  displayed changes in pathway usage (particularly in pathways for cell adhesion, cell cycle, and
153  adaptive cytotoxicity) (Extended Data Fig. 2B).

154 As NSGs are nested within the local spatial context of their parent SGs, we asked how
155  much a differential process (pathway or cell type) within an NSG was dependent on biological
156  processes defined by the spatial context of its parent. For this, we quantified contextual

157  dependence as the odds ratio of detecting a change in a biological process within an NSG

158  (‘Process B’) given a particular change in a biological process (‘Process A’) at its parent SG. We
159  then computed whether any odds ratio was significantly different than 1. This measured whether
160  the associated set of parent-child processes was contextually dependent or independent (Fig.
161  1E, left) (Methods). We found that 74% of differential processes within an NSG were dependent
162  on the local spatial context defined by the parent SG, illustrating extensive biological nesting
163  within NSGs. Moreover, we found that certain biological processes were associated with

164  stronger local spatial contexts: NSG processes were nearly universally dependent on oncogenic
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165  pathways in parent SGs yet were less frequently dependent on parent SG pathways that largely
166  involved direct cell-cell contacts, such as cell adhesion and immune cytotoxicity (Fig. 1E, right;
167 Extended Data Fig. 2C). Additionally, the strength of local spatial context associated with a

168  biological process within a parent SG — an averaged odds ratio across all processes — was

169 linearly related to the spatial scale of the parent NSG (Fig. 1F, top). Thus, as parent SGs

170  became larger, their influence on biological processes encoded within NSGs became greater. In
171  contrast, no such relationship was present when considering the influence of biological

172 processes in non-NSGs on their local spatial environment (Fig. 1F, bottom). These results

173  demonstrated that NSGs reflect nested biological properties.

174 Overall, our findings revealed a general spatial architecture of TMEs. TMEs are

175  hierarchically organized into multicellular units of transcriptional covariation, ‘Spatial Groups’,
176  that can be either spatially nested (NSGs) or non-nested (non-NSGs). The spatial organization
177  of NSGs reflects the contextual dependence of smaller-scale biological processes involving cell-
178  cell interactions, amongst larger-scale biological processes such as cell type abundance (Fig.
179  1G). These findings motivated using SGs as a common unit of spatial organization for

180 investigating heterogeneity in TME spatial biology.

181

182 Using SGs to define spatial lability in TMEs

183 To capture variation in gene expression patterns amongst SGs in a holistic manner, we
184  defined gene ‘spatial lability’ — the extent of change of gene expression when comparing across
185  partitions of the TME. We first identified all SGs for a given TME. Then, for a given gene, we
186 isolated the SGs and associated ST-seq spots where the gene was differentially expressed

187  (Fig. 2A, top). Finally, we computed the fraction of the tumor dataset represented by those ST-
188  seq spots and termed this fraction the ‘spatial lability’ (SLAB) score for the gene of interest (Fig.
189  2A, bottom) (Methods). A comparison of SLAB scores with gene expression for all genes across

190 all tumors in our database illustrated that SLAB scores were positively correlated with average
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191  gene expression but also captured other modes of gene-level spatial variation. For example,
192 genes with low average expression exhibited variation in SLAB score (Fig. 2B). Furthermore,
193 77% of genes had no correlation between bulk gene expression and SLAB score when

194  comparing across tumors (Extended Data Fig. 3). As a specific example, the calreticulin gene
195  (CALR) had similar bulk expression levels in 3 selected tumors, yet its SLAB score varied from
196  high to low across these tumors (Fig. 2C). Visualization of CALR expression across the TME
197  clearly illustrated that the degree of spatial heterogeneity in gene expression followed the

198  degree of spatial lability across tumors (Fig. 2D). Examination of the SGs associated with

199  differential expression of CALR showed that the high spatial lability tumor contained changes in
200  CALR expression at both large- and medium-sized SGs, while the tumors with lower SLAB

201  scores had SG changes restricted to medium and small SGs (Fig. 2E). Together, these data
202  demonstrate that the SLAB score captures information about the spatial heterogeneity of gene
203  expression across the TME that is distinct from bulk gene expression.

204 To validate that SLAB scores captured spatial heterogeneity in the TME, we compared
205  SLAB scores with an orthogonal measure of spatial biology — multiplexed immunofluorescence
206  (mlIF) across 51 marker genes — for two diffuse large B cell ymphoma (DLBCL) samples within
207  our pan-tumor database (Methods). We used a grid approach to define spatial domains of

208  varying sizes. Variation in cell type abundance was computed using the coefficient of variation
209 across these grids (Extended Data Fig. 4A) (Methods). This approach demonstrated cell types
210  to be more spatially labile in the DLBCL-P2 tumor (Patient 2) than in DLBCL-P1 (Patient 1)

211  (Extended Data Fig. 4B). SLAB scores, computed across SpaCET-deconvoluted cell type

212 proportions, recapitulated this finding (Extended Data Fig. 4C). Examination of IF intensity
213 distributions for CD3 (a pan T cell marker) and CD21 (an abundant B cell marker) demonstrated
214  that germinal center (GC) effacement might explain the inter-tumoral differences in cell type

215  spatial lability between the two DLBCL samples (Extended Data Fig. 4D). Moreover, we found


https://doi.org/10.1101/2024.10.18.619136
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.18.619136; this version posted October 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

216  that SGs with simultaneous enrichment of T cells and depletion of B cells included many H&E-
217  identified GCs in DLBCL-P2 (Extended Data Fig. 4E).

218 Together, these results demonstrate that the SG-based metric we created — SLAB scores
219  —accurately captured information about the spatial heterogeneity of gene expression across
220  TMEs, thereby enabling spatially based comparisons between tumors.

221
222 Classification of TMEs by spatial lability

223 To compare TMEs by their profiles of spatial lability, we aligned the genome-wide SLAB
224  scores across for all tumors in our database and computed the Euclidean distance between
225  each pair of tumors (Extended Data Fig. 5). Hierarchical clustering of pairwise distance

226  between tumors defined a tree representing a pan-tumor classification where tumors were

227  grouped by similarity of their spatial lability profiles and branchpoints reflected signatures of
228  differential spatial lability between groups (Fig. 3A,B). Interrogation of the tree illustrated two
229  results. First, tumors were approximately ordered by their average spatial lability. In the

230  representation depicted in Fig. 3B, tumors ordered from left to right — labeled as groups A

231  through M - reflected a continuum of average SLAB scores from high to low respectively

232 (Extended Data Fig. 6A). As an example, while the average gene expression across all genes
233 for the group of tumors on the far right (group M) was higher than the other groups, the spatial
234 lability of genes in group M tumors was significantly lower than the other groups (Extended
235 Data Fig. 6B). Second, the resulting clusters illustrated that tumor groups were either uniform
236  (e.g. groups C and F) or varied (e.g. groups E, L, M) in their tissue of origin. For example, we
237  found that tumors originating in breast tissue (91% triple-negative, rest unknown) classified into
238 groups B, D, E, H, |, L, and M. Furthermore, we saw that group E were composed of tumors
239  originating in breast, skin, ovarian, and central nervous system (CNS) tissues. These results
240  suggested that patterns of spatial lability across our pan-tumor database described both tumor-

241  type-specific and tumor-type-agnostic differences in the TME.
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242 We wanted to test whether the pan-tumor classification based on spatial lability captured
243 similarity in spatial organization at the level of individual spots. For this, we tested whether the
244 TumorSPACE map of one tumor (tumor A) could be used to predict the pairwise distances

245  between spots of another tumor (tumor B). We then compared whether the accuracy of such
246  predictions related to tumors being within the same or different spatial lability class. We

247  computed predictions by projecting the transcriptional data from tumor B into the TumorSPACE
248  map previously built for tumor A, which had not incorporated any information about tumor B. As
249  aresult, pairwise spot-spot distances were predicted between all spots in tumor B. These

250  predictions were then compared to the actual pairwise distances between spots in tumor B

251 (Extended Data Fig. 7A) (Methods). We excluded group M tumors from this analysis since our
252 results showed that these tumors lacked spatial lability altogether. Overall, we found that 52% of
253 such tumor pairs predicted spot distance information better than null models. Additionally,

254  models were more likely to be predictive when selecting two tumors from the same spatial

255  lability class than from different classes (67% versus 49%), similar to the prediction increase
256  when comparing tumors of the same type versus different type (65% versus 47%) (Extended
257  Data Fig. 7B). In accord with this finding, spatial lability was an independent contributor to

258  cross-tumor spatial prediction from tumor type, suggesting that classes of tumors defined by
259  profiles of spatial lability reflect shared spatial organization even when composed of diverse
260  tumors (Extended Data Fig. 7C). Thus, while our pan-tumor database lacked the IHC

261 information required for comparison to clinical classification schemes such as TIL score and
262  Immunoscore, our analysis of the tree in Fig. 3B illustrated a classification of tumors by their
263  spatial biology that was not oriented merely by tumor type. This motivated further investigation
264  into the spatial lability changes that separated tumor groups.

265 We interrogated differences at branchpoints of the spatial lability classification (e.g. group
266 A versus group nA) using multiple complementary approaches — gene-level SLAB differences,

267  pathway-level SLAB differences using over-representation analysis (ORA), and pathway-level
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268  SLAB differences using gene-set enrichment analysis (GSEA). The results we report for each of
269 these analyses were robust to gene co-linearity and multiple hypothesis testing (Methods). Four
270  branchpoints contained statistically significant differences in spatial lability amongst genes (Fig.
271  3C, left panel). We therefore performed an in-depth analysis at these four branchpoints of the
272  genes and pathways underlying differences in spatial lability (Supplementary Table 2).

273 Two of these branchpoints defined groups of tumors — C and E — that exhibited significant
274  changes in spatial lability associated with TME immune biology. Group C was comprised of a
275  set of exclusively primary CNS tumors and exhibited increased spatial lability of

276  neurotransmitter activity genes (GRIK1, KCNN2) and of complement activation pathways (Fig.
277  3C, top row). Notably, complement activation has been implicated in promoting glioma cell

278  proliferation and neovascularization in the hypoxic TME characteristically found in such tumors
279  as well as in mediating the suppression of anti-tumor immunity in both CNS tumors and non-
280  CNS tumor types*’. Group E tumors, comprised of a diverse mixture of tumor types, showed
281 increased spatial lability of genes associated with immune exhaustion through diverse

282  mechanisms such as myeloid cell activation (P2RY11), TGF- 8 signaling (SMADS5), antigen

283  presentation (DPP9), innate immune cell activation (TRIM11, TRIM44), T cell migration (DPP9,
284  ELMO2), and T cell activation (STAT5, STAT5A, NFATC2IP, PLCG1, ORAI1) (Fig. 3C, second
285  row)*"™°, Analysis of pathways demonstrated increased spatial lability in well-studied immune
286  signaling pathways (vesicle transport, solute carrier (SLC) transporters) as well as in pathways
287  linked to antigen generation (RNA metabolism, post-translational protein modifications),

288  suggesting that complementary biological processes collectively reflect immune spatial lability®'-
289 % Together, these data illustrated that group C and group E tumors have TMEs with increased
290  immune spatial lability via distinct components of TME immune biology.

2901 The other two branchpoints defined groups of tumors — F and L — with spatial lability in
292 non-immune areas of TME biology as well as group M, the group notable for spatially invariant

293  biology across all studied genes and pathways. Group F was comprised of exclusively ovarian
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294 tumors and had increased spatial lability for pathways related to olfactory receptors — a class of
295  cancer testis antigens that are abundantly expressed in ovarian tumors and are under

296  development as a CAR-T therapeutic target (Fig. 3C, third row)®. Group L, composed of

297  diverse tumors, demonstrated increased spatial lability for genes involved in mitochondrial

298 biology (MRPL40, LYRM1, MRPS14, NDUFS4, NFU1, MRPL21) as well as in RNA and protein
299  processing (COPS8, TCEALS8, RPAIN, ZCCHC17, SNW1, TTC1, KIAA1191, PEX19, GPN1,
300 PPIE) (Fig. 3C, fourth row panel). Accordingly, this group of tumors was enriched in spatial

301 lability for pathways related to cell-intrinsic processes — metabolism, transcriptional regulation,
302  and DNA repair.

303 We previously observed that cell-extrinsic versus cell-intrinsic processes were enriched in
304 NSGs and non-NSGs respectively (Fig. 1F, G). Having now observed that the spatial lability
305 classification varied across groups in enrichment for cell-extrinsic versus cell-intrinsic

306 processes, we hypothesized that the classification in Fig. 3B was reliant on information with
307 NSGs and non-NSGs to different degrees depending on tumor group. To test this idea, we

308 performed GSEA pathway enrichment at branchpoints E/nE and L/M using spots found within
309  only NSGs or within only non-NSGs. We examined these branchpoints because they

310 demonstrated enrichment for cell-extrinsic and cell-intrinsic biology respectively. We found that
311 NSGs alone identified 69% of pathways enriched by GSEA for spatial lability in Group E, while
312  non-NSGs alone did not identify any of these pathways. Conversely, non-NSGs alone identified
313  42% of pathways enriched for spatial lability in Group L, while NSGs alone did not identify any
314  of these pathways (Fig. 3D). Notably, 31% and 58% of pathways with altered spatial lability in
315 groups E and L, respectively, required transcriptional information contained within both NSGs
316 and non-NSGs. Furthermore, across all studied branchpoints we found that the likelihood of a

317  pathway exhibiting detectable changes in spatial lability within NSGs versus non-NSGs

318  depended on whether the pathway described cell-extrinsic or cell-intrinsic processes (Fig. 3E).
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319 Together, these results illustrated a pan-tumor classification defined by spatial lability. The
320 Dbiological variation associated with this classification distinguished cell-extrinsic processes —i.e.
321  immune signaling — that are found mostly within NSGs versus cell-intrinsic processes like DNA
322 repair found in both NSGs and non-NSGs. Interrogation of genes and pathways distinguishing
323  groups also showed spatial lability in targets with proven therapeutic significance. Together,
324  these findings motivated using our pan-tumor classification schema to predict the clinical

325  outcome of patients whose tumors were not contained within our tumor database.

326

327 Pan-tumor TME classification by spatial lability distinquishes response to immunotherapy in

328  metastatic NSCLC

329 As two branchpoints in our pan-tumor classification demonstrated variation in immune
330 spatial lability, we hypothesized that classification of a separate cohort of tumors by immune
331  spatial lability could be used to predict patient response to anti-PD1/anti-PD-L1 immune

332 checkpoint blockade (ICB) — a widely approved therapeutic modality across diverse solid

333  tumors. To this end, we focused our efforts on patients diagnosed with metastatic NSCLC.

334  Despite substantial improvements in overall survival with the use of ICB therapies in the

335  metastatic NSCLC frontline setting, 5-year overall survival remains quite poor at 19%°°.

336  Moreover, the only clinically approved biomarker of response to ICB therapy, PD-L1

337  immunohistochemistry (IHC), is weakly predictive of outcomes in the frontline metastatic setting
338  for NSCLC, prompting ongoing studies on whether gene expression or cell type abundance
339  biomarkers might be more predictive of such outcomes®°¢-8,

340 To address whether spatial lability informs ICB response, we conducted a retrospective
341  pilot study of 16 patients with metastatic NSCLC without targetable mutations who received
342 frontline ICB with or without chemotherapy (Methods). For each patient, we conducted ST-seq

343 on pre-treatment biopsy samples followed by (i) computing genome-wide SLAB profiles for all

344  samples and (ii) contextualizing the resulting data using the pan-tumor classification of tumor
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345  spatial lability defined by the discovery cohort in Fig. 3B. We also performed

346  immunohistochemistry (IHC) to determine PD-L1 tumor proportion score on the same pre-

347  treatment diagnostic biopsy sample. We then evaluated whether classification by spatial lability
348  or PD-L1 status could predict Progression-Free Survival (PFS) after ICB treatment (Fig. 4A).
349  Two possible variables were identified that could confound an association with ICB response:
350 ICB regimen choice and presence of the somatic mutation KRAS G12C, which is targetable in
351 the second line (Extended Data Fig. 8A,B). Univariate analysis found that neither variable was
352  associated with PFS, excluding the possibility that these factors influenced our study (Extended
353 Data Fig. 8C).

354 To evaluate this out-of-sample validation cohort of NSCLC tumors within the context of our
355  pan-tumor classification from Fig. 3B, we first used TumorSPACE to identify SGs for each

356  NSCLC tumor. We found a similar distribution of nested and non-nested SGs as within our pan-
357  tumor database, illustrating the generalizability of the distribution of SGs in TMEs (Extended
358 Data Fig. 9). Comparison of spatial lability profiles between the NSCLC tumors and the pan-
359  tumor database defined two groups. One group, comprised of twelve NSCLC tumors, exhibited
360 a spatial lability profile similar to group C and group E tumors in our pan-tumor classification —
361  high spatial lability amongst immune-related components (‘immune spatially labile’, ‘ISL’). The
362  other group, comprised of four NSCLC tumors, exhibited a spatial lability profile similar to group
363 L and group M tumors — low spatial lability in immune biology (‘immune spatially invariant’, ‘ISI’)
364 (Fig. 4B) (Methods). Classification by immune spatial lability (ISL versus ISI) was highly

365 predictive of PFS after ICB treatment (hazard ratio = 0.09, p = 0.00095), unlike classification by
366  PD-L1 using either classical NSCLC groupings — < 1%, 1-49%, > 50% (p = 0.55) — or binary
367  cutoffs of either 1% (p = 0.27) or 50% (p = 0.77) (Fig. 4C, Extended Data Fig. 10A). Moreover,
368 classification by bulk expression using either all genes or 8 previously published gene sets for
369 NSCLC IO response was not predictive of PFS. However, notably a DNA damage response

370  gene set was predictive (p = 0.003) only when using SLAB scores instead of gene expression (p
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371 =0.33) (Extended Data Fig. 10B,C) (Supplementary Table 3). Moreover, eight out of the

372  twelve patients with measurable disease at treatment onset demonstrated shrinkage in tumor
373  volumes shortly after treatment began, suggesting that classification by PFS was detecting

374  differences in treatment response and durability rather than in treatment-agnostic factors such
375 as disease prognosis (Extended Data Fig. 10D) (Methods). Together, these results showed
376  that our pan-tumor classification schema, defined by variation in spatial lability, was sufficient to
377  distinguish variation in response to ICB therapy in our patient cohort in contrast to PD-L1 IHC
378  and previously published bulk expression gene sets.

379 Since our pan-tumor classification distinguished the NSCLC tumors as immune spatially
380 labile versus immune spatially invariant, we sought to determine which biological processes

381  were relevant to NSCLC ICB response. We tested whether genes with differential SLAB scores
382  atthe pan-tumor group E branchpoint also exhibited differential SLAB scores between the ISL
383 and ISI NSCLC datasets. Of the 537 genes distinguishing the group E branchpoint, 398 were
384  also statistically enriched for spatial lability in NSCLC ISL tumors compared to NSCLC ISI

385  tumors, while the other 139 were not (Fig. 4D, left). Pathway analysis of these two gene groups
386  demonstrated that both groups related to immune activation and signal transduction (Fig. 4D,
387  right). However, the 139 non-differential SLAB genes were enriched for signaling via the VEGF
388  receptor, estrogen receptor, and NTRK receptors — signaling pathways implicated in immune
389  activation in cancers other than lung cancer. On the other hand, the 398 differential genes were
390 enriched for immune signaling pathways (e.g. vesicle transport) and specifically for Notch

391 signaling, a pathway that has been implicated to mediate immune checkpoint exhaustion in lung
392  cancer through a variety of mechanisms®. Closer investigation of the Notch pathway

393  demonstrated a set of 11 genes with coordinated SLAB changes between ISL and ISI tumors
394 (Extended Data Fig. 11). As an example, an examination of three genes (HDAC6, NOTCHZ2,
395 and PSEN1) that each promote Notch pathway activation via distinct mechanisms demonstrated

396  spatially coordinated expression changes at large, medium, and small SG scales (Fig. 4E).
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397

398 Discussion

399 Through statistical analysis of a broad diversity of solid tumors, we have shown that there
400 is a conserved, hierarchical spatial architecture that organizes the apparent biological

401  complexity of the TME. Individual spots group together into either non-nested or nested SGs
402  which hierarchically integrate into the whole biopsy sample, thereby providing a holistic picture
403  of emergent TME organization. The results in Figs. 3 and 4 suggest a cohesive model that

404  directly links this spatial architecture with clinical response to ICB therapy in patients. SGs are
405 information-dense units of spatial organization encoding complex molecular interactions

406  between cells and variation amongst SG-based TME profiles distinguishes ICB therapy

407  response (Fig. 4F, left). Our findings have implications for both tumor biology and for translation
408  towards clinical oncology.

409 With respect to tumor biology, our findings demonstrate that Spatial Groups can be

410  conceptualized as statistical ‘units’ of the hierarchical organization in TMEs. A natural next step
411  is to deeply interrogate the biology underlying this statistical structure to elucidate drivers of
412  variation in SG distribution and TME organization (Fig. 4F, top right). In general, existing

413  biological knowledge of tumors (e.g. databases reflecting experimental results from cell lines
414  and in vivo models) has viewed individual cells as the components of interest with respect to
415  understanding properties of whole tumors. Our results suggest an alternative foundation for
416  biological interrogation: the collective spatial interactions amongst SGs are key to understanding
417  emergent biological qualities of tumors. Elucidating the biology underlying these interactions will
418 likely require interrogating SGs without perturbing their native context rather than isolating and
419  removing them from a tumor. As such, approaches studying SG variation under observable

420  metabolic gradients and pairing SG identification with spatial metabolomics and proteomics may

421  be useful for discovering biological mechanisms influencing TME organization.
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422 Efforts to bring spatial molecular profiling into clinical settings are limited by not having a
423  consensus description of tumor spatial biology. Terms such as “immune inflamed”, “immune
424  excluded”, and “immune desert” have served as a useful paradigm, yet, as recent studies have
425  illustrated, are too broad for describing TME heterogeneity®®®'. Our results demonstrate how
426 treating the TME as an emergent cellular ecosystem and identifying conserved statistical

427  features of spatial organization results in a holistic, unbiased, and quantitative approach for
428  classifying tumors. The resulting SG-based classification was built on a discovery cohort of 96
429  tumors spanning twelve tumor types gathered from multiple institutions and countries and tested
430 in a validation cohort on a tumor type (NSCLC) with markedly low representation in the

431  discovery cohort. Importantly, our discovery cohort was not pre-selected to represent variation
432  in ICB response but was assembled in an unbiased manner and studied to characterize the
433  biology reflecting heterogeneity in TME spatial organization. Thus, the success of this

434  classification in delineating responders and non-responders to ICB therapy in the setting of
435  metastatic NSCLC underscores the shared qualities of SGs across tumor types and suggests
436  that variation amongst TME SG profiles may be useful for developing a framework for

437  therapeutic ‘logic’ (Fig. 4F, middle right). NSGs may have increased relevance for

438  understanding and targeting key aspects of cell-cell signaling while non-NSGs might reflect
439  elucidating molecular determinants of tumor fitness that are independent of the local

440  environment. The incorporation of more cohort studies into our classification where pre-

441  treatment biopsy samples are coupled with outcomes following therapeutic intervention will
442  address this concept. It is possible that future studies of patient cohorts in both ICB-naive and
443  ICB-refractory settings could leverage SG-based descriptions for the discovery of therapeutics
444  that augment ICB (Fig. 4F, bottom right). We anticipate that describing TMEs using SGs will
445  open the possibility of creating interpretable statistical models of the TME that enable spatially

446  informed precision oncology.


https://doi.org/10.1101/2024.10.18.619136
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.18.619136; this version posted October 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Behera et al., Figure 1

( ) ( ) ---- " Actual
Biological 10] = Acua oo E
A = g
Biological Pro;ess o B o pectaroune (sgg?:c)e-r P2 S
Process l Biological 5@ .
C o\ Process o &5 .
B g S . Inferred
'o' hEN z N "
N ., 0 s
T > S T ‘ > S 0 0.5 1 - <
non-nested nested TumorSPACE Pearson R
©) A O
\ ¢ pata M Non-NSG  NSGDepth ™1 W2 W3 m>3
PN paren Groups
“«, SG (SGs) 1% 1 i
7/ ‘ e}
ST-seq % \
spots 5 ‘
K S 0s
9
3 - ™y . °
s D ‘
S k ™ ©
e 2 . o
Sl Tumor Type INANNIANARIRNARERNSNRNRURRRRRRERN RN AN RN R AR AR AR
N [ Breast BN GIST  ELung [ PDAC
¥ - % [ DLBCL I HCC I Melanoma [ Primary CNS
: ' [ Endometrial [ HNSCC [ Ovarian [l RCC
non-nested SG nested SG
(non-NSG) (NSG)
i NSG local
Ogggggﬁ;gcs%en’;ﬁﬁg' Nobs o CellType ® Pathway spatial
R=0.44 toxt
o 3- ot o our contex
] o
s . Large-Scale
< Lo 242 e L, Biological
Odds Ratio g 8 8, ¢ CellAdhesion Process Small-Scale
Test for Biological < 1H==s==—= (e.g. CD4 T cells) Biological
Dependence Process o 12 14 16 Process
A 5] _ ;
( % Signal Transduﬁ:;sr; non-NSGs (e.g. cell adhesion)
_g Cell Dg:ll; °
Biological 2 8 R=-0.2
Process X _*, N o Adaptive C&lotoxigﬁ\!/l g
B ell C c &U 6
o _ @
TCD =8 44 kS .
Innate Cytotoxicity o [ .. [d N s,
Immune Signaling (@] 2 - g s .’. ° " .
owowo G en = = o o . X
— T T
SN’ NS nested
[ independent cygen~s 12 14 16 non-nested

. B depends on A

Fraction of B

Mean distance between

Spatial Groups

447 Processes pairs of spots in SG (mm)

448  Figure 1. A conserved architecture of TME spatial biology. (A) A map (pink arrows) relating
449  transcriptional (‘T’) and spatial (‘S’) information that captures non-nested and nested spatial
450  contexts of biological processes. (B) Histogram of correlation values (Pearson R) between actual
451  spatial distances for all pairs of spots within a given ST-seq dataset and pairwise distances
452  inferred by TumorSPACE. Gray distribution reflects a background expectation of correlation
453  values (Methods). (Inset) Actual spot locations and inferred spot locations for the small-cell
454  ovarian cancer patient 2 ST-seq dataset (SCOC-P2). (C) (Top) Section of TumorSPACE map for
455  sample SCOC-P2; squares at the bottom of the tree are individual spots, each circle is a Spatial
456  Group (SG). ‘Parent SG’ is delineated to define the relationship between SGs. (Bottom) Picture
457  of actual SCOC-P2 spot locations with spots colored by SG designation. The left and right panels
458 illustrate examples of non-nested spatial groups (non-NSGs) and nested spatial groups (NSGs)
459  respectively. (D) Fraction of spots in an ST-seq dataset (y-axis) belonging to non-NSGs (gray
460  bars) or NSGs of varying depth (colored bars) for all tumors in our pan-tumor database (‘Tumor
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Type’ on x-axis, see color key). (E) (Left) Workflow for evaluating if a differentially abundant
biological process within a parent SG (‘Biological Process A’) influences a biological process
within an NSG (‘Biological Process B’). (Right) The fraction of processes in an NSG (x-axis) that
are dependent (purple bar) or independent (blue bar) on processes in a parent SG (y-axis). (F)
Mean odds ratio (y-axis) of processes (colored dots) versus size of SG (x-axis). (G) A model of
TME spatial biology: TMEs are comprised of non-nested and nested Spatial Groups. Nested
spatial groups encode large-scale processes that influence small-scale processes.
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471  Figure 2. Spatial lability: a measure of spatial heterogeneity based on Spatial Groups. (A)
472 Workflow for computing spatial lability (SLAB) score. R is the root SG in this example dataset
473  consisting of 10 spots and 6 descendant SGs: A, A’, B, B, C, C'. Highlighted spots reflect spots
474  belonging to the smaller of the descendant SGs from R (Methods). Numbers in parentheses
475  indicate number of spots within an SG. (B) Mean gene expression for all genes across all tumors
476  inourdatabase (y-axis) versus mean SLAB score across all tumors in our database (x-axis). Each
477  point is a single gene; density of points enumerated by histograms on x and y axes. Dot in the
478  centeris the gene calreticulin (CALR). (C) Expression of CALR averaged across all spots in each
479  tumor (y-axis) versus CALR SLAB score (x-axis). Each dot is a tumor in our database. Three
480  tumors (black circle, square, and triangle) are highlighted that harbor the same mean CALR
481  expression but varying SLAB scores. (D) Spatial distribution of CALR expression across tumors
482  highlighted in panel C. CALR expression is represented in log-scale (see colorbar); below colorbar
483 s distribution of CALR expression across all spots in the labeled tumor. Spots in each triangle,
484  square, and circle tumors are colored by CALR expression. (E) CALR expression within SGs
485 llustrated as SGs decrease in spatial scale for circle, square, and triangle tumors with
486  corresponding spatial lability scores. Green spots reflect increased CALR expression within SG;
487  brown spots reflect decreased CALR expression within SG; gray spots reflect no difference in
488  expression within SG. SGs are included in plots from left to right if they impact (i) 20 — 50% of
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489  biopsy spots, (ii) 10 — 20% of biopsy spots, (iii) 5 — 10% of biopsy spots, or (iv) less than 5% of
490  biopsy spots. SLAB scores are computed from the union of colored spots and displayed below.
491
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495  Figure 3. Pan-tumor spatial lability classification distinguishes tumors by spatial
496 heterogeneity amongst cell-intrinsic and cell-extrinsic processes. (A) Workflow for defining
497 and interrogating a classification of tumors based on spatial lability. (B) The pan-tumor
498 classification tree. Each leaf is labeled alphabetically and comprised of specific tumors with the
499  remaining tumors labeled to indicate not being a part of the group of tumors in the leaf. For
500 instance, two Diffuse Large B Cell Lymphoma (DLBCL) tumors comprise group A; all other tumors
501  comprise the ‘nA’ category. Parentheses indicate number of tumors of a specific tumor type in the
502  group. (C) (Left) Branchpoints in the spatial lability classification where any statistically significant
503  differences in gene spatial lability were detected. (Middle) Volcano plots describing significant
504 differences in gene spatial lability for each group. (Right) Over-representation analysis (ORA) and
505  gene-set enrichment analysis (GSEA) of pathway-based spatial lability. Within each sub-panel
506 (ORA, GSEA), these results are shown as Volcano plots and histograms grouped by pathway
507  category. (D) Fraction of significant pathways detected by GSEA (see Fig. 3C, right) that were
508  enriched (y-axis) at branchpoints E vs nE or L vs M (x-axis) when considering spots within only
509 NSGs (green) or only non-NSGs (orange). (E) Fraction of significant pathways per pathway
510 category detected by GSEA (see Fig. 3C, right; x-axis) that were enriched at any branchpoint (y-
511  axis) when considering spots within only NSGs (green) or only non-NSGs (orange).

512
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516 Figure 4. Pan-tumor classification distinguishes responders to immune checkpoint
517 blockade in metastatic non-small cell lung cancer (NSCLC). (A) Sixteen patients with
518 metastatic NSCLC underwent a diagnostic biopsy and were given immunotherapy (I0) or a
519  combination of IO and chemotherapy. The diagnostic biopsy was subjected to ST-seq and
520  immunohistochemistry (IHC) for PD-L1 status. From the ST-seq data, spatial lability classification
521  was performed, and progression-free survival (PFS) was compared between groups defined by
522 (i) spatial lability and (ii) PD-L1 status. (B) Comparison of NSCLC samples from panel A with the
523  pan-tumor classification from Fig. 3B. Twelve samples had similar spatial lability profiles to tumors
524  in groups C and E (‘Immune Spatially Labile’, ‘ISL’). Four samples had similar spatial lability
525  profiles to tumors in groups L and M (‘Immune Spatially Invariant’, ‘ISI’). (C) Kaplan-Meier curves
526  for PFS (y-axis) in months (x-axis) stratified by ISL/ISI (left) or by PD-L1 status (right). Number at
527  risk tables show the number of patients remaining uncensored at each time point. (D) SLAB
528  scores amongst the 537 genes defining the branchpoint of group E versus nE in Fig. 3B were
529  computed for all NSCLC tumors. (Left) Volcano plot depicts difference in spatial lability (x-axis)
530  and Wilcoxon p-value (y-axis, log-transformed) for NSCLC tumors grouped by ISL versus ISI.
531 Dashed line indicates p = 0.05. Over-representation analysis (ORA) of the 537 genes stratified by
532 p <=0.05 (upper) or p > 0.05 (lower) is represented as number of significant pathways grouped
533 by category (Middle) and top pathways (Right). (E) Part of the NOTCH signaling cascade (top
534  panel) highlighting three proteins: NOTCH2, PSEN1, and HDACG6. Gene expression of these
535  three proteins across an NSCLC sample (colorbar in white to green); gene expression changes
536  of these three proteins in the depicted NSCLC sample across SGs (bottom panel with associated
537  color key). (F) A depiction of our model that relates tumor SG profiles to NSCLC ICB response
538  (left) and future directions motivated by these results (right).
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Extended Data Figure 1. (A) Workflow for generating a TumorSPACE map involves first
identifying hierarchical relationships between ST-seq spots using transcriptional data alone (left)
and then performing ‘spatial de-noising’ by removing tree nodes with high spatial dispersion
values (right) (Methods). These maps can capture both spatially nested and spatially non-nested
spot relationships. Grey lines at the bottom of each branchpoint indicate that trees continue to
branch until terminating at the individual ST-seq spots (black squares). (B) Description of our pan-
tumor ST-seq database. Number of datasets for each tumor type (color key) is delineated in the
pie graph. (C) Description of how NSG depth is calculated for an example set of SGs.
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557 Extended Data Figure 2. (A) Using TumorSPACE models to conduct differential analysis of gene
558  expression, pathway usage with gene set variation analysis (GSVA), and cell type differences
559  using SpaCET for spot deconvolution into cells*. SGs are labeled as A, A’, B, B’, C, and C'. (B)
560 Mean distance between pairs of spots within a SG across SGs for all ST-seq datasets in our
561  database (x-axis) versus all KEGG pathway categories (purple) and all major cell types as defined
562 by SpaCET (blue) (y-axis). Error bars reflect 95% confidence intervals. *Wilcoxon p-value < 1e-
563 9. (C) Odds ratio (absolute value, log-scaled) that a parent SG biological process (‘A’, rows) is
564  associated with a coordinated direction of change in a second biological process (‘B’, columns)
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reflected within a daughter NSG. Color key indicates magnitude of effect where 1 indicates no
effect. Gray cells indicate biological process pairs that were not observed. Rows and columns are
hierarchically clustered.
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570
571  Extended Data Figure 3. Histogram of correlations (Pearson R) between bulk gene expression

572  and SLAB scores across all tumors in our pan-tumor database for all genes. Genes are stratified
573 by whether correlation was statistically significant (black) or not (grey) compared to an empirical
574  null distribution.
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Extended Data Figure 4. (A) Schematic for computing the coefficient of variation (CoV) for cell
type abundance across a slide from immunofluorescence (IF) data. (B) Mean CoV across all
cell types (y-axis) versus grid width of biopsy region (x-axis) for DLBCL-P1 (blue) and DLBCL-
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581 P2 (purple). (* Wilcoxon p < 0.05) (C) Distribution of SLAB scores (y-axis) for cell types (y-axis)
582  in DLBCL-P1 and DLBCL-P2 (x-axis). (D) High-resolution H&E (left) and 51-plex IF (right)

583  images for DLBCL Patients 1 (top) and 2 (bottom). Colors in IF images represent staining for T
584  cells (anti-CD3, blue) and B cells (anti-CD21, red). (E) Spatial distribution of spots (grey dots) in
585  DLBCL-P1 (upper) and DLBCL-P2 (lower) within SGs with simultaneous B cell enrichment and
586 T cell depletion. (D, E) Dashed circles indicate germinal centers identified from the

587  corresponding H&E images.
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Behera et al., Extended Data Figure 5
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Extended Data Figure 5. Workflow for pan-tumor classification by SLAB scores. First, SLAB
scores are computed for each gene for all tumors. This creates a genome-wide profile of SLAB
scores for each ST-seq dataset. The datasets are aligned by their genome-wide SLAB profiles
creating a matrix where rows are ST-seq datasets, columns are genes, and each entry is the
SLAB score for a gene in an ST-seq dataset. Euclidean distance based on genome-wide SLAB
scores is computed for all pairs of ST-seq datasets. Hierarchical clustering of pairwise SLAB-
based distance results in a pan-tumor classification where tumors that are close together share a
similar genome-wide SLAB profile.
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602 Extended Data Figure 6. (A) First, for a given gene, the mean SLAB score is computed grouped
603 by spatial lability as in Fig. 3B (x-axis). Second, the mean of these group-wise SLAB scores was
604  computed across all genes (y-axis). Error bars depict standard error of the mean. (B) Violin plots
605 depicting mean gene expression (log-scale, left) and mean SLAB (right) for all genes where
606  tumors in the pan-tumor database were grouped by whether they belonged to Group M or Groups
607  A-L.* Paired Wilcoxon p < 1e-100.
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Behera et al., Extended Data Figure 7
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Extended Data Figure 7. (A) Workflow for testing if a TumorSPACE model built for tumor A could
predict the spatial organization of tumor B. (B) Proportion of all pairs of non-Group M
TumorSPACE models that are predictive for spot-spot distances (y-axis) when pairs are stratified
as being within the same class or different classes (x-axis). Classes were defined by either spatial
lability (left) or by tumor type (right). (C) Linear modeling of cross-tumor spatial prediction using
either tumor type or spatial lability class as independent variables.
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Behera et al., Extended Data Figure 8
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620 Extended Data Figure 8. (A) Swimmer plot illustrating patient treatment courses starting when
621  patients began frontline immunotherapy treatment in the metastatic NSCLC setting. Colors
622 indicate immunotherapy (IO)/chemo-IO regimen, shapes indicate significant events.
623  Chemotherapies are abbreviated as follows: C = carboplatin, G = gemcitabine, Pa = paclitaxel, B
624 = bevacizumab, Pe = pemetrexed. 10 therapies include anti-PD1 (pembrolizumab, nivolumab),
625 anti-PD-L1 (atezolizumab), and anti-CTLA-4 (ipilimumab) therapies. (B) Mutation status for
626  clinically relevant mutations amongst the 16-patient cohort at the time of pre-treatment diagnostic
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627  biopsy. (C) Univariate analysis between (i) ICB regimen type, and (ii) KRAS G12C status and
628  progression-free survival (PFS).
629
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Behera et al., Extended Data Figure 9
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Extended Data Figure 9. Fraction of spots in an ST-seq dataset (y-axis) belonging to non-NSGs
(gray bars) or NSGs of varying depth (colored bars) for NSCLC out-of-sample tumors (left) and
for the two tumors in our pan-tumor database representing the highest and lowest non-NSG
fraction (right).
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Behera et al., Extended Data Figure 10
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638

639 Extended Data Figure 10. (A) Kaplan-Meier curve of progression-free survival comparing
640  NSCLC patients of PD-L1 status with binary cutoffs of either 1% (left) or 50% (right) by IHC. (B)
641  Mean p-values (log10-transformed, y-axis) of log rank statistical tests using several gene sets (x-
642  axis) to predict progression-free survival amongst NSCLC patients using either bulk gene
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expression data (blue) or SLAB score data (purple) (see Supplementary Table 3 for gene sets).
Error bars represent standard error of the mean when performing classification 100 times
(Methods). Dashed line indicates p = 0.05. (C) Kaplan-Meier curve of progression-free survival
comparing NSCLC patients stratified by the DNA Damage Response gene set using either bulk
expression data (left) or SLAB score data (right). (D) Spider plot depicting percent change in
volume of index tumor lesion using serial computed tomography (CT) scans (y-axis) in the months
following treatment start (x-axis). Each line describes a single patient classified as either ISL
(blue) or ISI (red), and each point on a line indicates a CT scan measurement at that time.
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Behera et al., Extended Data Figure 11
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Extended Data Figure 11. Heatmap of SLAB scores (cells, see color key) for 11 NOTCH-
pathway genes (rows) in the 16 NSCLC datasets (columns). Both rows and columns are
hierarchically clustered by Euclidean Distance. Patients are labeled as either immune spatially
labile (ISL, red) or immune spatially invariant (1SI, blue).
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Behera et al., Extended Data Figure 12
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660 Extended Data Figure 12. Pan-tumor dataset classification by SLAB scores. Each leaf in the tree
661 is a distinct patient dataset.
662
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Behera et al., Extended Data Figure 13
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665 Extended Data Figure 13. (A) Density plots of QC metrics — signal sum across IF markers, signal
666  coefficient of variation (CV) across IF markers, and DAPI intensity — for DLBCL Patients 1 (top)
667 and 2 (bottom). Dotted lines represent 95% (right) and 5% (left) quantile boundaries used to
668  remove outlier cells. (B) Spatial locations of spots that passed (green) versus failed (red) the QC
669  thresholds in (A).

670
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Extended Data Figure 14
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Extended Data Figure 14. (A) Background correction intensities (y-axis) for specific IF markers
(x-axis). Each boxplot comprises the set of region-specific intensities where each point is the
background correction intensity for a given tumor region. (B) Density plot of background correction
values from (A) for DLBCL Patient 1 (green) and 2 (blue). (C) Heatmap depicting normalized
intensities for representative markers (rows) from 50 cells (columns) in each cell type
classification group (see color key).
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Behera et al., Extended Data Figure 15
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Extended Data Figure 15. Fraction abundance of cell type as determined by multiplexed
immunofluorescence (mIF) (y-axis) versus fraction abundance of cell type as determined by
SpaCET-estimated deconvolution from ST-seq transcriptional data (x-axis) for two DLBCL
patients shown in Extended Data Fig. 4. Dashed line indicates linear with associated Pearson
correlation.
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689 Methods

690 Computational method details

691

692  ST-seq dataset download and alignment

693  Previously deposited ST-seq datasets (Supplementary Table 1) were downloaded for

694  integration from GEO (https://www.ncbi.nIm.nih.gov/geo/) into the pan-tumor ST-seq database
695 as long as they had the following SpaceRanger outputs available: 1) a spot-by-UMI gene count
696  matrix, 2) a spot-by-pixel location matrix, and 3) a scalefactors_json.json file containing

697  ‘spot_diameter_fullres’. For analyses including physical distance rather than pixel distance, pixel

: o : ixel t_diameter_fullres’ ____
698  distance was converted to physical distance by computing a 2 = ZRECEREE T scaling

um 55
699  factor that compares spot diameter in pixels to the known spot diameter of 55 um.
700

701  SpaceRanger

702  For internally generated ST-seq datasets, reads were aligned and mapped to the hg38

703  (GRCh38) human genome reference using the SpaceRanger v2.0.0 count pipeline

704  (Supplementary Table 4). This pipeline generates a raw unique molecular identifier (UMI) gene
705  count matrix in which each row consists of a spot that has X/Y coordinates in pixels that

706  correspond to the aligned H&E image. The SpaceRanger algorithm also identifies spots within
707  or outside of detectable tissue, and for all subsequent analyses only spots within tissue were
708  used.

709

710  TumorSPACE: models and associated analysis

711  The sub-sections within this section will introduce a number of variables. As such, below is a
712 table of variable definitions.

713

Variable Definition Section Where First Referenced
M SpaceRanger UMI gene count matrix  Creating a latent space

m Number of ST-seq spots in M Creating a latent space

n Number of genes in M Creating a latent space

u SVD left singular matrix Creating a latent space

x SVD singular value matrix Creating a latent space

4 Transpose of SVD right singular Creating a latent space

matrix

D Spectral Distance matrix Creating a latent space

p PC depth hyperparameter Creating a latent space

T TumorSPACE tree model Creating a latent space

G The set of tree internal nodes Creating a latent space

g A single tree internal node Creating a latent space

Mg Bootstrapped gene count matrix Bootstrapping the latent space...
X Statistical random variable Bootstrapping the latent space...
N Normal Distribution Bootstrapping the latent space...
7 Mean Bootstrapping the latent space...
o Standard deviation Bootstrapping the latent space...
Ts Bootstrapped TumorSPACE tree Bootstrapping the latent space...
b Node TBE support Bootstrapping the latent space...
k Node spatial dispersion Calculating physical spatial

dispersion...
K Ripley’s reduced second moment Calculating physical spatial

function with border correction

dispersion...
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The set of spots in node g

The x-axis range of values for a set of
spots

The y-axis range of values for a set of
spots

Ripley intensity normalization factor

Ripley maximum spot distance

The set of spot distances used to
compute spatial dispersion

A particular spot distance for
computing spatial dispersion
Spot pairwise physical distance

Matrix of pairwise spot-spot physical
distances
X axis physical location of a spot

Y axis physical location of a spot
The number of spot KNN matches
The set of p being tested

The length of set P

The Uniform Distribution between a
and b

The set of hyperparameters for b, k,
and k

The length of set H

A given choice of hyperparameter
values for b, k, and x

The set of internal nodes in G that
meet a given set of hyperparameter
bounds on b and k

The set of Gy plus the parent nodes
of Ggr within T

Tree T filtered for internal nodes
within Gy’

Spot pairwise spectral distance

The set of all spots in a biopsy

The set of k nearest neighbors to
spotiin latent space T

A given nearest neighbor spot within
NN «

Pearson Correlation Coefficient

Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...
Calculating physical spatial
dispersion...

Calculating physical spatial
dispersion...

Calculating physical spatial
dispersion...

Prediction accuracy calculation
Prediction accuracy calculation
Prediction accuracy calculation

Prediction accuracy calculation

Prediction accuracy calculation
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corr Pearson Correlation function Prediction accuracy calculation

vec Matrix vectorization function Prediction accuracy calculation

Sspot The tuple of spot locations (Xspot, Prediction accuracy calculation
yspot)

Tf"iftt The optimized TumorSPACE model Prediction accuracy calculation
for a given tumor biopsy

AZ{"’I The full ancestral node path for an Spatial Group (SG) depth

' internal node g;in any tree T

af. The k™ ancestor of an internal node g;  Spatial Group (SG) depth
inanytree T

Onode, The spatial domain size of an internal  Spatial Group (SG) depth
node giin any tree T

Anode, The SG depth of an internal node g; Spatial Group (SG) depth
inanytree T

Gpa The subset of internal nodes within SG-based differential abundance

tree T that will be used for differential
abundance computation

W(a,b) Wilcoxon rank-sum test between a SG-based differential abundance
and b

Pypaf Differential Abundance Probability at ~ SG-based differential abundance
node gpa for process f

Agpaf Differential Abundance Probability at ~ SG-based differential abundance

node gpa for process f, empirically
bootstrapped and multiple hypothesis
adjusted
DA The set of differentially abundant SG-based differential abundance
spots for process i at node jin a
given tumor biopsy

OR; ; The odds ratio of independence Contextual dependence of
between process i in an NSG and processes...
process j in a parent SG
SLAB The SLAB Score for process iin a SG-based spatial lability (SLAB) score
given tumor biopsy
L¥ The matrix of SLAB scores composed Differential SLAB score analysis
of samples (rows) in groups K and nK
MW(a,b) Mann-Whitney U Test between a and  Differential SLAB score analysis
b
Dk, f p-value of the MW test between Differential SLAB score analysis
samples in groups K vs nK for
process f
pf(hf“f fled p-value of the MW test between Differential SLAB score analysis
’ samples shuffled between groups K
vs nK for process f
Overview

Building a TumorSPACE model requires spatial transcriptomic data and two inputs from
SpaceRanger: (1) the raw gene UMI count matrix and (2) the spot spatial coordinate matrix.
Model building subsequently operates on the gene count matrix to build many models that vary
in hyperparameter choice. The spot spatial coordinates are then used for selecting the optimal
hyperparameter set that maximizes accurate recovery of spatial spot organization.
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722 Four hyperparameters are tuned during this process: (1) the number of principal components
723  (PCs) of data-variance used for creating a latent space of the transcriptional data, (2) the limit of
724  statistical robustness for spot-spot relatedness in the latent space, (3) the spatial dispersion of
725  the nodes in the latent space hierarchical tree model, and (4) the number of KNN matches used
726  for spot spatial prediction. The following sections will first establish the model latent space and
727  compute statistical robustness and spatial dispersion properties of that latent space.

728  Subsequently, all hyperparameters will be tuned to define the optimal model for mapping

729  transcriptional content from TME spots to TME spatial organization.

730

731  Creating a latent space

732 The first step in building a TumorSPACE model is to create a latent space representation of the
733 gene count data that incorporates statistical bootstrapping. TumorSPACE first embeds ST-seq
734  spots into a latent space by applying singular value decomposition (SVD) to the gene count

735  matrix®%

736

737 M =UzVT (1)
738

739  Mis the SpaceRanger gene count matrix (m spots as rows, n genes as columns), U is the left
740  singular matrix, 2'is the singular value matrix, and V is the right singular matrix. U is defined by
741  cell spots (rows) and left singular vectors (columns), where each entry is the projection of a cell
742 spot onto a left singular vector. X'is a diagonal matrix where entries are singular values. VT is
743  defined by genes (rows) and right singular vectors (columns) where each entry is the projection
744  of a gene onto a right singular vector.

745 First, from (1), a metric termed ‘spectral distance’ (D) between all spots is calculated.
746  This metric was previously developed by our laboratory in the context of analyzing phylogenetic
747  bacterial proteome content®. As implemented for spatial data in this manuscript, performing SVD
748  on the gene count matrix determines the extent to which each cell spot projects onto each left
749  singular vector. Therefore, a distance considering the transcriptomes of two spots can be

750  computed by measuring the difference in the projections of two spots onto a left singular vector.
751  Note, this definition of distance does not consider any information about spatial spot distribution.
752 Next, groups of left singular vectors are combined to create ‘spectral groups’. These
753  groups are defined based on the eigenvalues associated with each left singular vector: left

754 singular vectors with similar eigenvalues are grouped together:

755

756 SG ={sg1,592, --- } (2)
757

758  where SG is the total set of spectral groups, sg,is first set of columns extracted from U, sg, is
759  the second set of columns extracted from U, and so on. The concept of spectral groups was
760  also previously developed by our laboratory®®. Defining sg; and sg;.; is done by identifying

761  larger than expected decreases in singular values between consecutive left singular vectors. To
762  compute spectral groups, a vector of differences between consecutive singular values is

763  computed for all left singular vectors. We use the upper and lower quartiles of this distribution in
764  combination with a scaling parameter alpha to define the ‘expected difference’ bounds between
765  singular values. Any difference in singular values outside of these bounds deviates from

766  expectation and therefore defines a spectral group (see associated GitHub code for

767  specification of parameters). The spectral distance for a pair of spots within a spectral group is
768  then computed as the Euclidean distance between spot projections onto left singular vectors
769  comprising the spectral group weighted by the eigenvalue associated with each left singular
770  vector. The summation of these distances across all spectral groups is the spectral distance,
771  d;;, between spots i and j.
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772 After computing d; ; for all spots, the resulting construct is a spectral distance matrix D
773  comprised of m rows and m columns where m is the number of spots in the original gene count
774  matrix and each entry in D is the spectral distance between two spots. D is then used as input
775  for hierarchical clustering with complete linkage to result in a tree T that relates all spots in a
776  tumor sample to each other. T has m leaves and (m-7) internal vertices (nodes). The leaves are
777  the ST-seq spots and the nodes g € G represent G hierarchically ordered groupings of these
778  spots. The resulting network is the TumorSPACE latent space of the original gene count matrix.
779 The number of spectral groups is dependent on how many of the total left singular

780  vectors are considered. An increasing number of left singular vectors being included

781  corresponds directly to the inclusion of deeper principal components when computing the latent
782  space. For TumorSPACE models, the depth of principal components, ‘p’, is a hyperparameter
783  thatis tuned for embedding the gene count matrix into a latent space.

784

785  Bootstrapping the latent space to evaluate statistical robustness

786  TumorSPACE does not assume that each node g arises from biological signal. Instead,

787  TumorSPACE bootstraps T using the Booster package’s implementation of transfer bootstrap
788  expectation (TBE), the probability that node g appears in an empirically bootstrapped tree

789  (default settings used for Booster)®. For generating empirically bootstrapped trees, we applied
790  Gaussian multiplicative noise injection to the initial gene count matrix M to create a

791  “bootstrapped” gene count matrix Ms.

792

793 Mg =M OX (3)
794

795  such that © indicates element-wise multiplication by a normally distributed random variable
796 X ~ N(u,0?%) with =1 and o= 0.2. This matrix was then used as an input to (1) and a tree was
797  created following the steps outlined in ‘Creating a latent space’ to generate a bootstrapped tree
798  Ts. Bootstrapping was done 10 times for a given dataset, followed by input of the original tree T
799  and the bootstrapped trees Tz into Booster for TBE computation. This results in a labeling of the
800  original tree T's set of nodes G with TBE support values bg such that b; € [0,1].

801

802  Calculating physical spatial dispersion in latent space

803  The final property of T that is computed is the spatial dispersion k for each node comprising T.
804  Spatial dispersion is estimated for each node using Ripley’s reduced second moment function
805  K(r) with border correction®®°. Let gs be the set of ST-seq spots within node g in T. The window
806  of physical tumor space is defined by the spot spatial coordinate matrix such that /en, indicates
807  the x-axis window length and /en, indicates the y-axis window length. We then compute 4, a
808  normalization factor for spot intensity within a spatial region, and rnax, a factor that incorporates
809  lambda to determine the maximum spatial distance being assessed.

810

811 A=l (4)
lenyxlen,,

812 Tmax = Min {min{lenx, leny}, /%} (5)

813  where min denotes the minimum between a set of values. Let R be the set of spot spatial
814  distances that will be assessed, such that

815
816 rERIR = {02, T i) ©
817

818  We define the physical distance 6 between any two spots as
819
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820 6(Sp0tirsp0tj) =05 = b = \/(Xspoti - Xspotj)z + (Yspoti - Yspotj)z (7)

821
822  where (Xspot, Yspot) denote the physical space coordinates for a given spot. Spatial dispersion K(r)
823  with border correction is then computed for all spots g, ;, € g as

824
825 tge: = f(gsir) = i 1{0 < 8(9gsi spot;) <t} (8)
826

SOz
827 K(r) = AT sy nr 9)
828

829  where t(gsli,r) is the number of spots within distance r of a given g;; and b; is the distance from
830  spot g, ; to the window boundary. The general notation card(S) indicates the number of

831 elements in a set S, and the general notation 7{f(x)} signifies a value of 1 when f(x) is true and a
832  value of 0 when f(x) is false. Finally, spatial dispersion k is computed by summing the absolute
833  value of K(r) over r € R as follows.

834

835 k= Y,crabs(K(r)) (10)
836

837  This calculation labels all nodes G in tree T with spatial dispersion values k¢ such that

838 ki €Rr [0, ].

839

840  Hyperparameter optimization to create a TumorSPACE map

841  TumorSPACE model optimization involves selecting the values of four hyperparameters that
842  maximize model prediction accuracy (described in ‘Prediction Accuracy Calculation’) for a given
843  dataset. These hyperparameters tune three properties of tree T — principal component depth p
844  (from ‘Creating a latent space’), node TBE support b (from ‘Bootstrapping the latent space to
845  evaluate statistical robustness’), node spatial dispersion k (from ‘Calculating physical spatial
846  dispersion in latent space’) — as well as one property of accuracy computation, the number of
847  spot KNN matches . We perform hyperparameter tuning as a nested grid search by tuning p as
848  an outer layer and then optimizing [b, k, «] for a given value of p.

849 First, a set of PC depth values (n, where default is set to 10) is randomly selected to
850 create aset P = {p;1,p,, w1 Pny}- The PCs termed p; are chosen on a logarithmic interval

851  between a minimum and maximum PC depth, which is the rank of the gene count matrix M.

852  Next, a matrix of three hyperparameter values, H = {hg?nH, hf?nH, hﬁ?nH}, are created where the

853  vectors h, h(® and h® are independently sampled from distributions as follows.
854

X*loglO(bmax+1)+log10(bmin+1)

855 h® er 10 Dinint1 1 (11)
kmax
256 h® ep 1OX*IoglO(Wrﬁ)+log10(kmin+1) (12)
Kmax+1
857 h® g, round(1OX*loglo(“min+1)+log10(Kmin+1)) (13)
858

859

860 In (77-13), X is a random variable drawn from Uniform([0,1]). Default values for

861  hyperparameter bounds are b, = 0, byax = 0.5, kmin = 0, Kmax = 1 Kmin = 5, Kmax = 300. A
862  minimum of ny = 100 sets of {h(V), L, h(®} are initially sampled, after which additional sets are
863  sampled until prediction accuracy optimization has converged. Prediction accuracy convergence
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864 is reached when the difference in prediction accuracy (defined below in ‘Prediction Accuracy
865  Calculation’) for the top 2 scoring hyperparameter sets is less than 0.05. For a given

866  hyperparameter set h;, the TumorSPACE tree T is filtered for the set of nodes Gy such that
867  each node in Gy satisfies

868

869 b > h™" AND k= h® (14)
870

871  The final filtered tree, T, comprises the set of nodes G, which consists of Gy as well as the
872  complete set of parent nodes from which G descend even if those parent nodes do not meet
873  the criteria in (14), along with all ST-seq spots.

874

875  Prediction accuracy calculation

876  To identify the TumorSPACE model properties that were optimized for predicting spot spatial
877 locations from transcriptomic data, we masked the physical location of each ST-seq spot and
878 identified its k nearest neighbors in the TumorSPACE latent space by minimizing spectral
879  distance.

880

881  For any masked spot i amongst all spots /, we can define its k nearest neighbors NN; , as
882

883 NN;, = argminj,; (d(spoti,spotj)) (15)
884

885 wherei €1, k € h®® as defined in (13), J is the set of all spots other than spot i, and argmin®
886  selects the set of k spots with the smallest spectral distance relative to spot i. To prevent

887  overfitting, we identified for each spot; , € NN;, a randomly chosen spot; , that belongs to the
888 internal node g“# within Ts immediately ancestral to spot; , .

889

890  We then estimated the location of masked spot i based on the x and y locations of the

891  corresponding spot;, spots.

892

893 Xspoti = %Zgzlxspoti"z and Yspoti = %Zgzl Yspoti"z (16)
894

895  Finally, we computed the Pearson Correlation p between the vectorized matrix Aactuar Of

896  pairwise actual spot-spot physical distances and the vectorized matrix Apredicted Of pairwise
897  predicted spot-spot physical distances.

898
899 Aactual [i,j] = \/(Xspoti - Xspotj)2 + (Yspoti - Yspotj)z (17)
900 Apredicted [i,j] = \/(Xspoti - Xspotj)z + (?spoti - ?spotj)z (18)
901 p= Corr(veC(AactuaZ)v 17ec(Apredicired)) (1 9)
902

903  where vec() indicates matrix vectorization to a single column and corr() indicates Pearson
904  Correlation. To compute a null distribution for p using empirical bootstrapping of actual versus

905  predicted spot locations in a given dataset, we shuffled the vector Ss,or, = (Xspot; Yspot;) Without

SAshuffled

906  replacement and then re-computed (77-78) using this shuffled vector Sg,,..

907 locations.
908

of predicted spot
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909 S Tted = (K € Sspor,| card(K) = card(1)} = (Roped’t?, v et (20)
shuffled . shuffled _ shuffled huffled huffled

910 Apredlcted \/(Xspot spot )2 + (Ysspout ) sspoli] ‘ )2 (21)

911 pshuffled — corr(vec(Aactual),vec(A;};Zglefd)) (22)

912

913  For Fig. 1B, ps"™/fled js computed for 100 shuffles and the maximum p is taken as the ‘null’
914  prediction value. The null distribution is plotted in the grey distribution in Fig. 1B.

915

916  Finally, the optimal TumorSPACE model Tf"f: is found that maximizes p across hyperparameter
917 sets Pand H.

918

919 Tfol?tt = argmaxpep ner (Pp,n) (23)
920

921

922  TumorSPACE model outputs

923  For a given input tumor ST-seq dataset, the output from TumorSPACE includes: (1) the

924  TumorSPACE model T}/, (2) the Pearson Correlation estimate p, and (3) the set of predicted

925  spot locations ()?Spoti, ﬁpoti) for all ST-seq spots. The final set of internal nodes within Tﬂftt are
926  termed Spatial Groups (SGs).

927

928  Spatial Group (SG) depth

929  We computed SG depth as a measurable quantity that describes how a given SG relates to the
930  other parts within a TumorSPACE model. As such, we first define ‘SG depth’ as a property of all
931  SGs within a TumorSPACE model, and next define ‘spot SG depth’ as a property of all spots
932  within the gene count matrix.

933

934  To first define SG depth, we compute the complete ancestral node path for any internal node g;
935  within T7} as

936

937 Ag?th ={ad,a}, a2, .., a} (24)
938

939  such that

940 ag, = g (24)
941

942 aktt = A(ak) fork €[1,n—1] (25)
943

944 ag, €G (26)
945

946  af, indicates the k" ancestral node of node g;, A(node) denotes the immediate ancestral node of

947  agiven node in Tf"iﬁ’t , and G is the set of internal nodes in Tmt By definition, ag, will be the root

948  node of Tf"ftt We next define the spatial domain size Onode, for a given node g as the mean

949  spot-spot physical distance between all spots within g.

950

25:121215(sp0ti,spotj)
Ix]

951 Onodey = where I = ] = card(gs) (27)

952
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953  Finally, we identify the subset of nodes A}¢s*¢? within Agfth that satisfy the condition whereby

954  the (k+1)" node is equal to or larger in spatial domain size than the k" node in that path.
955

path __ al
Ay, {a ag, Agy, - gl}
nested path nested __
956 Ag; € Ag, " | 4g; {aguaguagu" agl} (28)
o) altt = 0' L
.91, gl

957
958 wherek <nand0 <1< k. The SG depth, Anodeg, for a given internal node g; is defined to be

959  the number of ancestral generations that satisfy this condition of spatial domain nesting.

960

961 Anode, = card(Apested) — 1 (29)
962

963  SG-based differential abundance

964 Differential abundance calculation requires two inputs: (1) an optimized TumorSPACE model
965 Tf"iftt and (2) a spot-by-feature matrix F. We computed differential abundance using three types

966  of biological processes: genes, pathways, and deconvoluted cell type proportions. Computation
967  of gene count, pathway usage, and cell type proportion matrices are described in the

968  ‘SpaceRanger’, ‘GSVA’, and ‘SpaCET’ Methods sections, respectively. The gene count matrix is
969 normalized by the spot-wise total UMI count.

970

971 First, we identified a subset of SGs G, € G at which DA will be computed. We set a minimum of
972 10 spots that must be present in both a given SG g, € Gp, and in its sibling node gp, (e.g. A
973 and A’in Fig. 2A) for inclusion within Gp,.

974

975 Gpa = [gpa € Gy, | card(C(gpa)) = 10 & card(C(gp,)) = 10] (30)
976

977  where C(n) indicates the row indices within matrix F of the spots descending from SG gp,.

978  Subsequently, for each node gp4 and process f, the spot-wise process values between g, and
979  gp, are compared using a two-sided Wilcoxon Rank Sum Test, where the test p-value is given
980 by W(a,b).

981

982 Papas =W Ecigpa.r FC(gbA),f) (31)
983

984  To facilitate empirical correction for multiple hypothesis testing, we perform 20 shuffles of the
985  process values between g4 and gp,, followed by computation of the Wilcoxon p-value between
986  these shuffles. Let C be the concatenation of spot indices C(gp,) and C(gp4)-

Ntotal

987
938 Cgtotal = C(gDA) + C(gbA) (32)
989
990 C;Z)sz:lflEd = {K - totu_l| card(K) - Card( gtotal)} = Cgsgj:ffled + CShfoZEd (33)
991
ggg comusfled = csmITIeA 1 card (C(gpa))] (34)
994 et = g1 (card(C (gpa)) + 1): (card(C(gpa)) + card(Clgp))]  (35)

995
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shuffled __
996 oo 50 = W (F s ried F C;Z:ffled_ P (36)
997
shuffled __ shuffled _ shuffled shuf fled egs
998  Let Py = {pgDA»j'l Pgpaiz +oPgpain } be the set of n DA probabilities for node gpa

999  and shuffle j, where n is the number of processes in F. Then, a given process is found to be
1000  differentially abundant at a given node if its unadjusted p-value, pg, , ¢, is less than the minimum
1001  of all shuffled probabilities for that node. To assign the direction of process abundance change
1002  for nodes with significant abundance changes, given that our test examines relative changes in
1003  expression between g, 4and in its sibling node g4, we defined the larger of the two nodes as
1004  having a “baseline expression profile” for that shared local transcriptional and spatial context.
1005  Conversely, the smaller of the two nodes was defined as having either increased or decreased
1006  abundance relative to the larger node.

1007

1008  Contextual dependence of processes based on architecture of SGs

1009  To determine whether differentially abundant processes within NSGs were impacted by the
1010  differentially abundant processes of their parent SGs, we computed the odds ratio test for

1011  independence as follows. Let f; € F and f; € F denote two biological processes drawn from the
1012 set of all pathways and cell types identified (see ‘GSVA’and ‘SpaCET’ sections). Across all
1013 TumorSPACE models, we identified the set of NSG-parent SG pairs — denoted by (N;, ;) —
1014  such that N;"and N;™ indicate the subset of NSGs where process i was increased or decreased
1015  in abundance, respectively, and P"and P;” indicate the subset of parent SGs where

1016  process j was increased or decreased in abundance, respectively. Then, the odds ratio of
1017  independence OR; ; was defined as,

1018
(card (N 1+ ,Pi+) )
card(NL-_,PiJr)
1019 ORij = a5 (37)
( . card(NL-_,PL-_))
1020

1021  Standard definitions were used for calculation of odds ratio standard error and p-values®.
1022
1023  SG-based spatial lability (SLAB) score

1024 Given a single TumorSPACE model Tfoiftt and a process f; for which differential abundance has
1025  been computed in T}, we define the SLAB score as follows. Let G be the set of SGs in T}/

1026  in which the process f; is differentially abundant (¢ < 0.05). For each node g,’:i € G/i, this

1027  means that process f; is differentially abundant between g/ and its sister node g/’ in TN
1028  First, we identify which of the nodes, either g, * or g,f“, contains the fewer number of spots. This
1029  node is defined as the node with either increased or decreased abundance of process f;, while
1030  the node with the greater number of spots is considered to be the ‘baseline’ abundance state for

1031  process f; in that subset of the tumor biopsy. DA(Tf"iftt, fir g,f") describes the set of spots with

1032 differential abundance in process f; for TumorSPACE model Tfoiﬁ’tt at node g;":

1033

1034 DA(TfOiftt,ﬁ,g,fi) = {min ([C(g,{i), C(g,{i')]) | glie ¢/} (38)
1035

1036  Next, we compute the union of those differentially abundant spots and compute the fraction that

1037  these spots constitute compared to the total set of spots / in the biopsy as a whole.
1038
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1039

car o,pt_ Lgli fig ofi
1040 SLAB(TfOiltht,ﬁ) _ az(U{DA(Tf;ZrJ;Z(gI;;c ) gt cfip) (39)
1041

1042  For Fig. 3D,E, SLAB scores were computed using either only NSGs or only non-NSGs as the
1043 input set of SGs used for computing G/

1044

1045  SLAB score correlation with bulk expression

1046  For correlation of genome-wide SLAB scores with bulk gene expression, as in Fig. 2B and

1047  Extended Data Fig. 3, we did the following. First, we identified the set of all dataset-gene pairs
1048  for which the gene had greater than 0 UMIs detected per spot and a non-zero SLAB score in
1049  that dataset. Next, to enable computing correlation statistics, we identified genes with greater
1050  than 10 dataset entries in the filtered dataset-gene pair list. For these genes, we computed the
1051  Pearson Correlation estimate and p-value between SLAB score and mean spot UMI count

1052  across datasets. Correction for multiple hypothesis testing was done using the Benjamini-

1053  Hochberg method with a corrected g-value threshold of 0.05%.

1054

1055  Spatial lability pan-tumor classification

1056  Given the set of SLAB scores that were computed for all available genes for each of the 96
1057  datasets within the pan-tumor ST-seq database (see ‘ST-seq dataset download and alignment’),
1058  we aligned these score vectors into a matrix M{4% such that each dataset was a row and each
1059  gene was a column. For any instances where a gene had mapped reads in one dataset but not
1060  another — thus resulting in blank cells in this matrix — the score within this matrix was set to zero.
1061  Next, Euclidean distance was computed between each pair of rows, resulting in a distance
1062  matrix of dimensions 96 x 96 that compared all datasets to each other. Finally, the Unweighted
1063 Pair Group Method with Arithmetic mean (UPGMA) algorithm was used for constructing a

1064  hierarchical tree relating datasets to each other (Extended Data Fig. 12)%.

1065

1066  For defining tumor groups from this tree, we used the path of tree connections containing the
1067  highest number of tumors as our reference point. From this ‘main path’, we labeled any

1068  diverging branchpoints with labels A, B, C, ... as shown in Fig. 3B. Whenever a group was
1069  defined (e.g. group ‘A’), the remaining ‘main path’ tumors were defined as not in that group (e.g.
1070  group ‘nA’, where ‘n’ indicates ‘not’).

1071

1072 Building across-tumor spatial models

1073  To evaluate the ability of spatial organization in one tumor biopsy (training) to predict spatial
1074  organization in another tumor biopsy (testing), we applied the TumorSPACE workflow in the
1075  following manner. First, an alignment was performed between the training tumor gene count
1076 ~ matrix and the testing tumor gene count matrix since the experiments may have used distinct
1077  probe sets and thus mapped reads to non-identical sets of genes. Next, the testing tumor spot
1078  transcriptomes were projected into the latent space of the training data, after which spectral
1079  distances were computed to determine similarity between training tumor spots and testing tumor
1080  spots. Finally, the training tissue TumorSPACE model T was optimized on the same properties
1081  as before (see ‘Hyperparameter optimization to create a TumorSPACE map’) by tuning spatial
1082  predictions on the training tissue and then evaluating prediction quality on the testing tissue.
1083

1084  For latent space projection between the aligned gene count matrices, we denote the aligned
1085  gene count matrices for training and testing tissues as M (ms x g) and M; (m2 x g) respectively.
1086  As follows from (1), we computed SVD on M; as

1087



https://doi.org/10.1101/2024.10.18.619136
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.18.619136; this version posted October 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1088 My = Uy * Zp x VE (40)
1089

1090  We then projected M; into the latent space Uy, as follows. The value of the hyperparameter p is
1091  the value of p that maximizes spatial prediction in the training tumor dataset.

1092

1093 Ue = My + (VEUP)~1 4 (501 (41)
1094

1095  where (Vt7;(1:p))‘1 is computed using the pseudo-inverse. Vertical concatenation of U, and U,
1096  vyields a joint U matrix Uy ¢. From U, ., and X;,, we compute spectral distance between all
1097  spots in My and Mie @s Dyy ¢

1098

1099 Dirie = spectraldistances(U(Lp) Zg:p),getintervals (U(l:p))) (42)

tr,te’ tr,te
1100
1101  Finally, we filtered matrix D,,.., for the matrix of spectral distances Dy, ., of shape m2 x m; that
1102  contains pairwise distances of spots only between M; and M. This operation removes intra-
1103 group spectral distance comparisons for both M; and M; and keeps only inter-group spectral
1104  distance comparisons between pairs of spots in M and M.
1105
1106 Di,{r,te — Dg’r;lel+1):(m1+m2),1:m1) (43)
1107
1108  Differential SLAB score analysis
1109  Using the tumor groups as defined in ‘Spatial lability pan-tumor classification’, we compared
1110  each group K to the set nK of ‘main path’ tumors divergent from that group.
1111
1112 To compare gene-level SLAB scores, we first compose the matrix L* of SLAB scores where L*
1113 has k + k, rows corresponding to tumors k € K and k,, € nK and F columns where f € F
1114  constitutes the full set of genes. Next, for each gene f, we compare the tumors in K and nK
1115  where C(X) indicates the row indices within matrix L* that correspond to tumors in either group.
1116 ~ Comparison is performed using a Mann-Whitney U Test, where the test p-value is given by
1117  MW(a,b).
1118
1119 Picr =MW (Lego p Lo ) (44)
1120
1121  To facilitate empirical correction for multiple hypothesis testing, we perform 1000 shuffles of the
1122 SLAB counts between K and nK, followed by computation of the MW p-value between these
1123 shuffles. Let Cy, ,, be the concatenation of row indices C(K) and C(nK).

1124
1125 Ckpoes = C(K) + C(nK) (45)
1126
1127 CortTed = {] € Cypppl card() = card(Cy,,,, )} = Co7' e + cof7iee (46)
1128
1129 CerITted = cMuITeA 1 card (C(K))] (47)
1130
1131 Co 7ot = T (card (C(K)) + 1): (card (C(K)) + card(C(nK)))]  (48)
1132
1133 p;fl;tffled — MW(L'E;hufﬂed’f,L’érsl,;(ufﬂed'f) (49)
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1134

1135 Let pgi/fted = pptuftied polifried  pp /¢4 be the set of n probabilities for group K and

1136  shuffle j, where n is the number of genes in F. Then, a given gene is found to have a differential
1137  SLAB score between a given grouping K vs nK if its unadjusted p-value, py , is less than the 5"
1138  percentile (q = 0.05) of all shuffled probabilities.

1139

1140  To compare pathway-level SLAB scores, we used either over-representation analysis (ORA) or
1141  gene-set enrichment analysis (GSEA). For both analyses, we computed enrichment for the set
1142  of Reactome pathways within the MSigDB database®’® (Supplementary Table 5). ORA was
1143  performed using Enrichr with default parameters, which uses a Fisher exact test to compute
1144  enrichment of a gene list for a given pathway’"'. The background gene set used was the set of
1145  all genes with mapped reads in any sample. GSEA was performed using 20,000 permutations
1146  with the “signal-to-noise” ratio used for ranking®. For both ORA and GSEA, correction for

1147  multiple hypothesis testing was implemented by using a false discovery rate threshold of < 0.1.
1148

1149  Classification of NSCLC datasets by pan-tumor immune spatial lability

1150  For comparison of out-of-sample NSCLC tumors to pan-tumor spatial lability groups shown in
1151  Fig. 3B, we first computed SLAB scores for all genes and aligned the score vectors to match
1152  the columns (genes) of the pan-tumor SLAB score matrix M{4% . Any genes with no detectable
1153  reads for a given sample had their SLAB score set to zero. We called this new matrix MY355€.
1154 For every pair of rows (", 1, °¢), where r;%" indicates the score vector for sample p; € P in
1155 the pan-tumor database and r;*“*¢ indicates the score vector for sample n; € N in the NSCLC
1156  out-of-sample dataset, we computed the Euclidean distance D,ff;‘}f that describes the similarity
1157  between these two samples with respect to their SLAB scores. For a given NSCLC sample n;,
1158  we identified the pan-tumor dataset p; with the lowest Euclidean distance to n; and assigned n;
1159  to the same spatial lability class as p;.

1160

1161  For defining immune spatial lability, since tumor groups ‘C’ and ‘E’ both demonstrated

1162  enrichment in SLAB score for immune biology components, we defined ‘nE’ tumors as immune
1163  spatially invariant (ISI) and tumors in groups A, B, C, D, or E as immune spatially labile (ISL).
1164

1165  Classification of NSCLC datasets using bulk expression and published gene sets

1166  To determine whether classification of tumor datasets by either (1) bulk expression versus
1167  SLAB score or (2) previously published gene sets for NSCLC 10 response was predictive of
1168  PFS in our NSCLC cohort, we performed the following analysis.

1169

1170  First, we computed aligned matrices as described in ‘Spatial lability pan-tumor classification’ for
1171  both the pan-tumor datasets and the NSCLC datasets where matrices contained either bulk
1172  expression data or SLAB score data. For bulk expression, we computed the mean spot-wise
1173 UMI count for any given gene. Second, we filtered the aligned matrices for subset of columns
1174  (genes) described by a particular gene set or used all columns for the ‘all genes’ analysis. Third,
1175  we computed a hierarchical tree using the pan-tumor data and identified the best matches to
1176  datasets within that tree for all NSCLC datasets as described in ‘Spatial lability pan-tumor

1177  classification’. Fourth, K-means clustering with K = 2 was applied to the Euclidean distances
1178  between all pairs of ‘best match’ pan-tumor datasets. K-means clustering was performed 100
1179  times for each condition using different random seeds each time. Finally, the two classes that
1180  were defined were used to classify the NSCLC cohort based on the matching performed

1181  between the NSCLC tumors and the pan-tumor datasets in the third step described above.
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1182  These classes were subsequently applied to survival analysis (described below in ‘Survival
1183  analysis’) to determine if they were predictive of NSCLC ICB outcomes.

1184

1185  Survival analysis

1186  For survival analysis we used the R ‘survival’ package to model progression-free survival (PFS)
1187  as a function of possible confounder variables (Treatment regimen, KRAS mutation status) or
1188  classification variables (PD-L1 multi-class, PD-L1 binary, ISL/ISI, bulk expression- and SLAB
1189  score- gene sets). For confounder analysis, outcomes were modeled using Cox’s univariate
1190  proportional hazards model. For Kaplan-Meier survival curves stratified by classification

1191  variables, survival was estimated using the Kaplan-Meier method and reported p-values were
1192  calculated using the log rank statistical test. For censored data labeling, 1 indicates that PFS
1193  was observed while 0 indicates the patient was censored for PFS.

1194

1195 GSVA

1196  Gene set variation analysis (GSVA) estimates GSVA pathway enrichment scores for a given set
1197  of pathways from gene expression data’. It requires (1) the spot-by-gene count matrix from
1198  SpaceRanger and (2) a list of pathway gene sets. We used a subset of the KEGG pathways
1199  from the MSigDB database® " (Supplementary Table 6). The ‘KCDF’ parameter was set to
1200  “none”, which enforces a direct estimation of cumulative density function without assuming a
1201  kernel function. Otherwise, default parameters were used.

1202

1203  SpaCET

1204  SpaCET estimates deconvoluted cell type proportions within spots of an ST-seq experiment™®. It
1205  requires the user to supply (1) the SpaceRanger gene count matrix as input and (2) a value for
1206  the ‘cancerType’ parameter to define the SpaCET library scRNA-seq datasets used for cell type
1207  definition. The ‘cancerType’ values chosen for each ST-seq dataset are listed in

1208  Supplementary Table 7. Otherwise, default parameters and commands were used as per the
1209  repository instructions (https://dataZintelligence.qithub.io/SpaCET/articles/visium_BC.html).
1210

1211  CODEX multiplexed immunofluorescence - analysis

1212

1213 Cell segmentation

1214  Following image acquisition and pre-processing (see ‘Experimental method details: CODEX
1215  multiplexed immunofiuorescence’), we applied the neural network-based cell segmentation tool,
1216  DeepCell, on the DAPI channel for nuclei identification’®. Next, these nuclei segmentation

1217  masks were used to estimate whole cell segmentation boundaries using the

1218  ‘skimage.morphology.binary_dilation’ function in the Python scikit-image package’. This

1219  function dilates nuclear segmentation boundaries by stochastically flipping pixels into the mask
1220  boundary with a probability equal to the fraction of positive neighboring pixels for 9 cycles. We
1221  then computed mean expression for each antibody across pixels within each whole cell

1222 segmentation boundary, which we define as the signal intensity Signal! for cell i and target t.
1223

1224 Cell-level quality control

1225  Since there is technical variation in CODEX staining and imaging quality, we applied multiple
1226  quality control filters to eliminate cells with atypical quality characteristics. First, we defined for
1227  cell j the signal sum X;, mean ;, standard deviation o;, and coefficient of variation CoV; across
1228  the set of targets T, composed of DAPI + all antibodies in Supplementary Table 8.

1229

1230 % = Y. Signalf fort €T (50)
1231
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Z
1232 W = m (51)
1233
_ th(Signalf—uz)z
1234 o; = Td(ﬂ (52)
1235
1236 CoV; = 2 (53)
1237

1238 We then filtered cells for analysis only when %;, CoV;, and SignalP4*! fall within the 5 — 95% of
1239  values for cells within that particular sample (Extended Data Fig. 13A). Let / indicate the set of
1240  cells within a single sample. Then,
1241
quantile(Z;,0.05) < Zf < quantile(Z;,0.95)

1242 cellssy, € cells; | quantile(CoV;,0.05) < CoVy < quantile(CoV;,0.95) B

quantile(Signal?,0.05) < Signal? < quantile(SBBgnalf,0.95)
1243
1244 where X, CoVy, and Signal,’? denote the signal sum, signal CoV, and DAPI intensity signal for a
1245 given cell fin cellsg;;, . We found that excluded cells tended to be found along tissue borders
1246  (Extended Data Fig. 13B).
1247
1248  Signal normalization
1249  We normalized signal intensities for (1) variation in local background and (2) variation in signal
1250  distribution between samples.
1251
1252 To correct for variation in local background, we divided each sample into 100 equally sized bins
1253  and used multi-Gaussian modeling for each target t € T to identify the upper limits of that
1254  marker’s local null distribution. Let i and j represent the bin numbers in the x and y directions
1255  respectively. Then we denote cells;; as the set of cells in a given sample bin (i,j) and Signalit’j as
1256  the set of signal intensities for marker t for cells;;. We used the ‘mclust’ R package to fit 2
1257  Gaussians to Signalit']- for all values of j, j, and t. Then we defined the upper bound
1258 Backgroundf‘j of the null distribution as the 95% percentile of that distribution for a given bin
1259  and marker. We found wide variation in the distributions of Backgroundﬁj for different targets t
1260  and for different samples, underscoring the need to use target-specific background correction
1261  (Extended Data Fig. 14A, B). Finally, we subtracted Background; ; from Signalf; as a
1262  correction for local background signal variation.

1263
1264 ij € {1,2,3,...,10} (55)
1265
1266 Signalf; ~ N(uy,01) + N(uz,03) where p; < p, (56)
1267
t _ I S
1268 Background; ; = py + 1.645 x Jeardtcein) (57)
1269
37(1) Norm{; = Signal{; — Background; (58)
7

1272 To minimize variation in signal quantitation between samples, we then scaled the intensity
1273 distribution for each target to match across both DLBCL samples, using ‘DLBCL Patient 1’ as a
1274 reference for scaling. Let Norm! and Scale} indicate the distribution of normalized and scaled
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1275  intensities, respectively, from (54) for target t and DLBCL patient i. Let mean and sd indicate the
1276 ~ mean and standard deviations of these intensity distributions.

1277
t t
1278 Scale! = Y™ _mean(tNorm") * sd(Norm!) + mean(Norm}) (59)
t sd(Norm;)
1279

1280  Cell type classification

1281  Cell types were identified from CODEX data using the following thresholds on the scaled
1282  intensities Scalef. Let cellsa indicate the set of all cells across both DLBCL samples. Let
1283  cells. € cells, indicate the subset of these cells classified as class c for all cell types ¢ € C.
1284  The limits for each cell-type defining marker in the following definitions were identified and
1285  tested iteratively to minimize the fraction of ‘Unidentifiable’ cells while maintaining specific
1286  classifications for each cell type (Extended Data Fig. 14C).

1287
Scale®M4 > 0.25 or
1288 cellsgar € cellsyy | { - . fori € cellsgar (60)
“ Scale] ™™ > 10
1289
ScalefP3' > 2.5 or
1290 cellSpnaothetiar € cellsqy | { ! fori € cellsengothetial (61)
endothelia a ScaleiCD“l > 2 endothelia
1291
ScalefP3® > 4 or
ScalefP?° > 10 or
1292 cellsprpcr € cellsqy | y fori € cellspipcr (62)
1 ScalefP?t > 20 or
Scalef?7°% > 0.25
1293
ScalefP3¢ > 50 and
1294 cellscpat € cellsyy | {{ ' fori € cellsgpsr (63)
“ ScalefP* > 15
1295

ScalefP3¢ > 50 and
1296 cellscpgr € cellsqy | {4 ScalefP* < 15and fori € cellscpgr (64)
ScalefP® > 5

1297

ScalefP¢ > 15 or )
1298 cells.pc € cellsy | {{ Scalle-cm‘“ 9 fori € cells.pc (65)

l
1299
ScalefP1'¢ < 15 and .

1300 cellsmacrophage € cellsqy | {{ Sccllle-CD68 > 50 fori € cellspmacrophage (66)

L
1301
1302

ScaleMP? > 5 or )
1303 cellSpeytrophil € cellsqy | {{Scale-lw“ - 0.25 fori € cellspeutropnit (67)
f .

1304

1305  For cells that were classified into multiple classes by these criteria, we labeled cells as “DLBCL”
1306 if one of their multiple class labels was “DLBCL” and otherwise labeled them as “Unidentifiable”.
1307
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1308  As an orthogonal validation of SpaCET-based cell type deconvolution, we observed high

1309  concordance (R = 0.99) in cell type classification between transcriptional inference and IF-
1310  based classification (Extended Data Fig. 15, Supplementary Table 9).

1311

1312 CoV analysis of cell type abundance

1313 For estimating variation in cell type abundance at a variety of distance scales, we computed the
1314 coefficient of variation (CoV) in cell type abundance across a grid of regions in each tumor
1315  biopsy. First, we divided each tumor region into bins of size ranging from 0.3 x 0.3 mm to 10 x
1316 10 mm. Let Binsy indicate the set of / bins for a given width k for a tumor sample. We then

1317  selected the subset Binsk' in which every bin binf’ € BinsF’ that has at least 100 annotated
1318 cells. We computed the fractional abundance of each cell type in binf’ as fracli where c € C is

1319  the set of all annotated cell types. Finally, we computed CoV.* to be coefficient of variation for a
1320  given cell type c at length scale k.

1321
1322 K= ¥ frack fori €l (68)
1323

k_ _ZE
1324 He = ram (69)
1325

k _ |ZiUractl - uk)?
1326 0 = " caran (70)
1327
k

1328 CoV)} = Z_k (71)
1329
1330
1331  Experimental method details
1332

1333 10X Visium CytAssist spatial transcriptomics (ST-seq)

1334  Tissue quality was determined by isolation of RNA from FFPE using the Qiagen RNeasy FFPE
1335  kit. Samples were then analyzed for tissue extraction quality using the Agilent 2100 bio-analyzer
1336  and Agilent RNA-6000 pico kit. For each sample, a DV200 score — the fraction of RNA

1337  fragments > 200 nucleotides in length — was calculated. Tissue quality for all samples was

1338  tested on unstained sections adjacent to the section used for ST-seq.

1339

1340  DLBCL samples were previously H&E stained. Imaging and coverslip removal were completed
1341  as described by 10X Protocol CG000518-Rev A and decrosslinking was performed according to
1342 10X Protocol CG000520-Rev A’®". NSCLC samples underwent deparaffinization, H&E

1343 staining, imaging, and decrosslinking according to CG000520-Rev B"8. Sample imaging for all
1344  samples was performed using the Akoya Biosciences Vectra Polaris at 20X magnification.

1345

1346  We next performed the following steps as per either 10X Protocol CG000495-Rev A for the
1347  DLBCL samples or 10X Protocol CG000495-Rev E for the NSCLC samples’®. First, samples
1348  underwent probe hybridization with Visium Human Transcriptome Probe Set v2.0, followed by
1349  probe ligation, and associated washes (Supplementary Table 10). Two native tissue slides and
1350  one Visium CytAssist 11 x 11 mm slide were then placed within the Visium CytAssist to enable
1351  RNA digestion, tissue removal, and transfer of ligated products onto the two fiducial frames of
1352 the Visium Slide. Next, we performed probe extension and elution off the Visium Slide, followed
1353 by pre-amplification and SPRIselect cleanup. For SPRIselect cleanup, DLBCL samples placed
1354  in only the ‘High’ position of the 10X magnetic separator, while NSCLC samples were placed in
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1355  both ‘High’ and ‘Low’ positions according to CG000495-Rev E. To identify the optimal number of
1356  cycles for library amplification, we performed gPCR using Applied Biosciences QuantStudio 6
1357  Pro as per CG000495-Rev E (Supplementary Table 4). For this step, we included 0.5 ul of
1358  carboxy-X-rhodamine (ROX) with the DLBCL samples and not with the NSCLC samples.

1359  Sample Index PCR was run using the sample-specific optimal number of cycles, followed by:
1360  cleanup, Agilent TapeStation QC, sequencing, and demultiplexing using Bcl2fastq. Sample
1361  sequencing was performed on a NovaSeq 6000 for DLBCL samples and a NovaSeqgX for

1362  NSCLC samples. Sample-specific parameters and QC are listed in Supplementary Table 4.
1363  For DLBCL experiments, we used the Applied Biosystems Veriti 96 well thermocycler, while for
1364  NSCLC samples we used the Eppendorf Mastercycler X50a and X50I.

1365

1366 CODEX multiplexed immunofluorescence

1367

1368  Slide preparation

1369  DLBCL samples were previously obtained as unstained slides mounted with 5 um thickness
1370  formaldehyde-fixed, paraffin-embedded (FFPE) sections from the same patient biopsies as
1371  described in ‘Patient samples®. Coverslips were coated with 0.1% poly-I-lysine solution prior to
1372 mounting tissue sections to enhance adherence. The prepared coverslips were washed and
1373  stored according to guidelines from the CODEX user manual.

1374

1375  Antibody preparation

1376  Custom conjugated antibodies were conjugated using the CODEX conjugation kit as per the
1377  CODEX user manual (Supplementary Table 8). Briefly, the antibody is (1) partially reduced to
1378  expose thiol ends of the antibody heavy chains, (2) conjugated with a CODEX barcode, (3)
1379  purified, and (4) added to Antibody Storage Solution for long-term stabilization. Subsequently,
1380  antibody conjugation is verified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis
1381  and with QC staining.

1382

1383  Staining and data acquisition

1384  Sample slides are stained following protocols in the CODEX User Manual. Briefly, samples are
1385  pretreated by heating at 60°C overnight, followed by deparaffinization, rehydration using ethanol
1386  washes, and antigen retrieval via immersion in Tris-EDTA pH 9.0 for 20 minutes. Samples are
1387  then blocked in staining buffer and incubated with the antibody cocktail for 3 hours at room
1388  temperature. After incubation, samples are washed and fixed following the CODEX User

1389  Manual. Data acquisition was performed using the PhenoCycler-Fusion 2.0 with a 20X

1390  objective, resulting in a resolution of 0.5 um/pixel.

1391

1392  Patient tumor PD-L1 IHC

1393  FFPE biopsy samples were probed for PD-L1 expression using a qualitative

1394  immunohistochemical assay with the Dako 22C3 antibody (Pharm Dx kit). PD-L1 expression
1395  was classified using the Tumor Proportion Score (TPS), which represents the percentage of
1396  viable tumor cells that show partial or complete membrane staining. Normal background

1397  histiocytes served as internal controls to ensure quality of the PD-L1 staining. Quantification
1398  was performed by a board-certified pathologist as part of routine clinical care.

1399

1400  Patient somatic mutation testing

1401  The molecular profiles of the tumor biopsies were analyzed using Oncoplus or Oncoscreen, two
1402  Next Generation Sequencing (NGS) assays®'. A description of patient mutation status can be
1403  found in Supplementary Table 11. Since the list of targeted genomic regions varied by the year
1404  in which testing was performed, a list of Oncoplus/Oncoscreen versions used for each patient
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1405  as well as a list of the targeted genomic regions for each version can be found in

1406  Supplementary Tables 11 and 12, respectively.

1407

1408  For the Oncoplus analysis, DNA was isolated from the samples using the QlAamp DNA Blood
1409  Mini Kit (Qiagen), fragmented, and prepared into a sequencing library with patient-specific

1410  indexes (HTP Library Preparation Kit, Kapa Biosystems). Targeted genomic regions were

1411  enriched using a panel of biotinylated oligonucleotides (SeqCap EZ, Roche Nimblegen)

1412 supplemented with additional oligonucleotides (xGen Lockdown Probes, IDT). The enriched
1413  libraries were then sequenced on an lllumina HiSeq 2500 system, and the data was analyzed
1414  via bioinformatics pipelines against the hg19 (GRCh37) human genome reference sequence.
1415

1416  For Oncoscreen, DNA was isolated from formalin-fixed paraffin-embedded (FFPE) tumor tissue
1417  using the QlAamp DNA FFPE Tissue Kit (Qiagen). DNA was quantified using the Qubit

1418  fluorometric assay (Thermo Fisher Scientific) and a quantitative PCR assay (hgDNA

1419  Quantitation and QC kit, KAPA Biosystems). Targeted genomic regions were amplified using
1420  multiplex PCR (Thermo Fisher Scientific); PCR products were used to prepare NGS libraries
1421  with patient-specific adapter index sequences (HTP Library Preparation Kit, KAPA Biosystems).
1422 The enriched libraries were then sequenced on an lllumina MiSeq system, and the data was
1423  analyzed via bioinformatics pipelines against the hg19 (GRCh37) human genome reference
1424  sequence.

1425

1426  Patient tumor volume measurements

1427  For measurement of tumor volume changes over time, computed tomography (CT) imaging
1428  reports were obtained for patients in the NSCLC as permitted by the IRBs referenced in ‘Patient
1429  samples’. For patients with measurable disease at the time of treatment start (denoted as month
1430  zero), the largest lesion was identified and labeled the ‘index lesion’. Changes in index lesions
1431  were collected when described in serial reports by a board-certified radiologist as part of routine
1432 clinical care.

1433

1434  Subject details

1435

1436  Patient samples

1437  Non-small cell lung cancer (NSCLC) patients were treated with immune checkpoint blockade
1438  therapy +/- chemotherapy at the University of Chicago Medical Center (Chicago, IL). All patients
1439  provided written informed consent for the collection and study of pre-treatment diagnostic tumor
1440  biopsy samples and for clinical outcomes including treatment regimen, treatment-related

1441  toxicities, and disease outcomes, as approved by the University of Chicago Institutional Review
1442  Board (IRB 9571 and IRB 24-0063). For the ST-seq analysis, 16 tumor samples were collected
1443  prior to therapy initiation, each from a separate patient. Inclusion criteria for these patients

1444  included (1) NSCLC stage IV patients either at initial presentation or as progression from

1445  previously treated early-stage disease, (2) biopsy of either the primary tumor or a metastatic
1446  tumor performed and stored within 6 months prior to treatment in the metastatic setting, (3)
1447  subsequent first line treatment with anti-PD1/anti-PD-L1 immune checkpoint blockade (ICB) with
1448  or without platinum-based chemotherapy. Exclusion criteria included (1) no prior therapy in the
1449  metastatic setting and (2) less than 2 doses of ICB therapy administered. We selected the first
1450 16 patients that met these criteria and that had an available FFPE tumor biopsy block. From the
1451  archival block, a fresh 5 um section was cut and placed on a standard slide for use in ST-seq
1452  protocols (see ‘10X Visium spatial transcriptomics (ST-seq)‘). Progression was defined as time
1453  from the first dose of ICB until either radiographic or symptom-based evidence of disease

1454  progression. ICB regimen, ICB treatment duration, reason for ICB discontinuation, time to
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1455  progression following ICB start, and time to death following ICB start are listed for all patients
1456  (Supplementary Table 11).

1457

1458  Diffuse large B-cell ymphoma (DLBCL) patients were treated at the University of Chicago

1459  Medical Center (Chicago, IL). All patients provided written informed consent for the collection
1460  and study of pre-treatment diagnostic tumor biopsy samples and for clinical outcomes including
1461  treatment regimen, treatment-related toxicities, and disease outcomes, as approved by the
1462  University of Chicago Institutional Review Board (IRB 13-1297). Each biopsy was reviewed by 2
1463  hematopathologists for diagnostic confirmation. Biopsy slides were previously cut from FFPE
1464  sections and H&E stained for prior studies®?.

1465
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