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Abstract 17 

The tumor microenvironment (TME) is an immensely complex ecosystem1,2. This 18 

complexity underlies difficulties in elucidating principles of spatial organization and using 19 

molecular profiling of the TME for clinical use3. Through statistical analysis of 96 spatial 20 

transcriptomic (ST-seq) datasets spanning twelve diverse tumor types, we found  21 

a conserved distribution of multicellular, transcriptionally covarying units termed ‘Spatial Groups’ 22 

(SGs). SGs were either dependent on a hierarchical local spatial context – enriched for cell-23 

extrinsic processes such as immune regulation and signal transduction – or independent from 24 

local spatial context – enriched for cell-intrinsic processes such as protein and RNA metabolism, 25 

DNA repair, and cell cycle regulation. We used SGs to define a measure of gene spatial 26 

heterogeneity – 'spatial lability’ – and categorized all 96 tumors by their TME spatial lability 27 

profiles. The resulting classification captured spatial variation in cell-extrinsic versus cell-intrinsic 28 

biology and motivated class-specific strategies for therapeutic intervention. Using this 29 

classification to characterize pre-treatment biopsy samples of 16 non-small cell lung cancer 30 

(NSCLC) patients outside our database distinguished responders and non-responders to 31 

immune checkpoint blockade while programmed death-ligand 1 (PD-L1) status and spatially 32 

unaware bulk transcriptional markers did not. Our findings show conserved principles of TME 33 

spatial biology that are both biologically and clinically significant.  34 
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Main 35 

The tumor microenvironment (TME) is a complex milieu of interacting cells, proteins, and 36 

other biological components that influences critical properties of tumor biology such as growth, 37 

metastasis, and response to therapy1,2. Biological variation within the TME reflects clinically 38 

relevant differences across genetic, pathway, cellular, and tissue-level scales4,5. For instance, 39 

recent studies have shown the prognostic and predictive power of TME-specific biomarkers 40 

such as tumor infiltrating lymphocyte (TIL) score in melanoma and ‘Immunoscore’ – the spatial 41 

balance of CD3+ and CD8+ T cell density – in colorectal cancer6–10. These and other similar 42 

findings have motivated significant investment in studying the TME as an ecosystem of cells 43 

interacting within the spatial constraints of a tumor, most notably with technologies that couple 44 

cellular information about RNA or protein levels with cellular spatial locations11. Such spatial 45 

molecular profiling studies conducted in a variety of tumor types have revealed a common 46 

theme: the substantial heterogeneity within tumors (intratumoral) and across tumors 47 

(intertumoral) makes elucidating organizing principles of the TME very challenging3. By 48 

extension, the clinical utility of TME spatial profiling has been limited in scope.  49 

Recent efforts have begun to outline a strategy to learn conserved aspects of TME 50 

spatial biology with the idea that these aspects reflect organizing principles of biological interest. 51 

These studies have collectively demonstrated the existence of recurrent multicellular spatial 52 

structures associated with tumor biology – somatic mutations, cell cycle synchrony, invasive 53 

fronts – and with cancer prognosis12–17. Obtaining these insights relied on imaging-based 54 

technologies that query tens of proteins to identify phenotypes such as cell type, cell cycle state, 55 

and a limited set of cell functional states. While these studies have been invaluable in 56 

demonstrating the relevance of spatial organization for TME biology, it has remained unclear 57 

whether a broader and more unbiased assessment of cellular phenotypes might demonstrate 58 

general principles of TME spatial organization. Spatial transcriptomics (‘ST-seq’) and related 59 

technologies, which provide genome-wide transcriptional information coupled to nearly single-60 
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cell-resolution of spatial coordinates, enable broad and unbiased assessment of TME spatial 61 

biology. However, the complexity of such data has precluded moving beyond mere description 62 

into an elucidation of spatial biology principles18.  63 

 Advances in statistical inference developed in other fields of biology – protein science, 64 

genomics, and microbiome science – provide useful frameworks for addressing this challenge.  65 

For instance, at the scale of proteins, analysis of conserved amino acid covariation within 66 

ensembles of related proteins has yielded protein ‘sectors’ – groups of amino acids that are 67 

critical for engineering synthetically folded and functional proteins19–22. At the scale of genomes, 68 

covariation analysis of gene content across extant diversity within kingdoms of life has revealed 69 

units of collective protein-protein interactions that are critical for behavior and organismal 70 

fitness23–26. At the scale of microbiomes, covariation between bacterial taxa across individuals 71 

has yielded ‘ecogroups’ – groups of taxa that are of functional and clinical significance amongst 72 

humans27–29. Thus, these studies have established a general strategy for parsing organization 73 

amongst complex biological systems: first identify an ensemble of systems, then statistically 74 

deduce features that are conserved across the ensemble.  75 

 Using such studies as inspiration, we hypothesized that statistical analysis of ST-seq 76 

data across a diverse ensemble of solid tumors – a ‘pan-tumor’ database – would reveal 77 

conserved patterns of TME spatial biology in an unbiased manner. Our results showed that all 78 

TMEs shared the presence of multicellular groups of transcriptionally covarying spots, ‘Spatial 79 

Groups’ (SGs), with expression profiles that are either dependent (defined as ‘nested Spatial 80 

Groups’, NSGs) or independent (defined as ‘non-nested Spatial Groups’, non-NSGs) on their 81 

local spatial environments. We found that NSG biology obeys a characteristic pattern: variation 82 

in local-scale biological processes, such as cell adhesion, are nested within the spatial context 83 

of larger-scale processes, such as T cell infiltration. We compressed SGs into a tumor-wide 84 

measure of spatial heterogeneity in gene expression that we termed ‘spatial lability’. This 85 

enabled the comparison of spatial biology across our ensemble of tumors. The resulting 86 
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classification distinguished biologically and clinically relevant elements of immune regulation, 87 

cell signaling, DNA repair, protein and RNA metabolism, and cell cycle regulation. To 88 

interrogate the clinical applicability of our findings, we performed ST-seq on 16 ‘out-of-sample’ 89 

pre-treatment biopsy samples of patients with metastatic non-small cell lung cancer (NSCLC) 90 

who received immune checkpoint blockade (ICB) therapy and were not within our pan-tumor 91 

database. Using the pan-tumor spatial lability classification to describe these samples, we found 92 

that immune spatial lability distinguished patient response to ICB therapy while standard and 93 

previously described spatially unaware markers –  PD-L1 status, bulk transcriptional differences, 94 

and existing gene sets – did not. 95 

 Overall, our findings revealed conserved principles of TME spatial biology that are 96 

biologically and clinically meaningful. Our results motivate further interrogation into the nature of 97 

collective spatial organization within the TME and open the possibility for interpretable statistical 98 

models of clinical endpoints using spatial biology. 99 

 100 

Spatial Groups (SGs) define a conserved architecture of TME spatial biology 101 

As our goal was to discover organizing principles of TME spatial biology, we sought to 102 

construct a mapping that could infer TME spatial organization from ST-seq transcriptional data. 103 

Each dataset we studied was created using 10X Visium technology, which generates 104 

transcriptome-wide measurements for up to 14,000 spatial locations (called spots, each of 105 

which contains multiple cells) in up to an 11 mm x 11 mm region of biopsy tissue30. Previous 106 

literature has demonstrated the presence and importance of spatially nested and non-nested 107 

biological processes in the TME17,31. As such, we wanted our mapping to simultaneously 108 

capture and distinguish nested and non-nested biological processes – a quality that currently 109 

developed frameworks for ST-seq data do not contain (Fig. 1A)32–37. We therefore developed a 110 

new framework called ‘TumorSPACE’ (Tumor Spatial Architectures from the Complete 111 

Eigenspectrum). While this framework is described in detail in Methods, TumorSPACE first uses 112 
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patterns of transcriptional covariation to define hierarchical relationships between ST-seq 113 

spots26,38. This yields a tree-like relationship between all spots in the TME where each leaf of 114 

the tree defines an individual spot and branchpoints in the tree group spots together that are 115 

transcriptionally similar. TumorSPACE then removes branches of that tree that do not relate to 116 

spatial organization (Extended Data Fig. 1A). This resulting tree is a dataset-specific 117 

‘TumorSPACE map’ between transcriptional information and spatial organization. 118 

 We applied TumorSPACE to a diverse database of 96 tumors profiled by ST-seq and 119 

used the resulting maps to infer the spatial locations of spots (Methods). Each dataset in our 120 

database represented a unique patient sample; the database spanned 12 distinct tumor types, 121 

multiple disease stages (localized versus metastatic), and multiple tumor body locations 122 

(primary, metastatic lymph node, metastatic organ) (Extended Data Fig. 1B, Supplementary 123 

Table 1). We found that for all datasets, the TumorSPACE maps significantly inferred spot 124 

spatial locations (q < 0.01) (Fig. 1B, Methods). Thus, TumorSPACE maps accurately related 125 

transcriptional and spatial information within TMEs. 126 

 We next interrogated whether the TumorSPACE maps revealed any underlying 127 

conserved principles of TME spatial organization. We first focused on the best-performing 128 

TumorSPACE map, a small-cell ovarian cancer dataset ‘SCOC-P2’. Branchpoints in this map 129 

defined groups of spots that were anisotropically distributed in the biopsy sample and comprised 130 

spots that were either (i) physically separated from each other or (ii) were spatially nested within 131 

other groups of spots defined by the TumorSPACE map. We therefore termed the branchpoints 132 

of TumorSPACE maps ‘Spatial Groups’ (SGs). We defined any SG that was spatially nested 133 

within its parent SG – the SG one layer closer to the root of the map – as a nested Spatial 134 

Group (NSG). Any SG that was not spatially nested within its parent was a non-nested Spatial 135 

Group (non-NSG) (Fig. 1C). We found that in the SCOC-P2 dataset, NSGs could be spatially 136 

nested to varying degrees. We therefore defined ‘NSG depth’ for any NSG as the following: as 137 

one moves from an NSG towards the root of the TumorSPACE map, ‘NSG depth’ is the number 138 
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of NSGs that are encountered inclusive of the original NSG prior to arriving at a non-NSG 139 

(Extended Data Fig. 1C) (Methods). A systematic analysis of all tumors in our database 140 

revealed a spatial architecture of the TME that is broadly conserved: SGs are comprised of a 141 

consistent distribution of non-NSGs and NSGs that can be nested up to several degrees (Fig. 142 

1D). 143 

 We next sought to characterize the biology reflected by NSGs and non-NSGs. We 144 

described TME biology using cell type distribution and cellular gene pathway usage since these 145 

qualities have been implicated in TME spatial biology across many cancer types. At each SG, 146 

we detected differential abundance of genes, pathways, and cell types (Extended Data Fig. 147 

2A) (Methods). Since each spot consists of multiple cells, we used SpaCET for deconvoluting 148 

cell types (Methods)39. We found a relationship between the spatial scale of SGs and biological 149 

processes: SGs that were larger in spatial distribution displayed changes in cell type abundance 150 

(particularly in CD4+ and CD8+ T cells) while SGs that were smaller in spatial distribution 151 

displayed changes in pathway usage (particularly in pathways for cell adhesion, cell cycle, and 152 

adaptive cytotoxicity) (Extended Data Fig. 2B).  153 

As NSGs are nested within the local spatial context of their parent SGs, we asked how 154 

much a differential process (pathway or cell type) within an NSG was dependent on biological 155 

processes defined by the spatial context of its parent. For this, we quantified contextual 156 

dependence as the odds ratio of detecting a change in a biological process within an NSG 157 

(‘Process B’) given a particular change in a biological process (‘Process A’) at its parent SG. We 158 

then computed whether any odds ratio was significantly different than 1. This measured whether 159 

the associated set of parent-child processes was contextually dependent or independent (Fig. 160 

1E, left) (Methods). We found that 74% of differential processes within an NSG were dependent 161 

on the local spatial context defined by the parent SG, illustrating extensive biological nesting 162 

within NSGs. Moreover, we found that certain biological processes were associated with 163 

stronger local spatial contexts: NSG processes were nearly universally dependent on oncogenic 164 
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pathways in parent SGs yet were less frequently dependent on parent SG pathways that largely 165 

involved direct cell-cell contacts, such as cell adhesion and immune cytotoxicity (Fig. 1E, right; 166 

Extended Data Fig. 2C). Additionally, the strength of local spatial context associated with a 167 

biological process within a parent SG –  an averaged odds ratio across all processes – was 168 

linearly related to the spatial scale of the parent NSG (Fig. 1F, top). Thus, as parent SGs 169 

became larger, their influence on biological processes encoded within NSGs became greater. In 170 

contrast, no such relationship was present when considering the influence of biological 171 

processes in non-NSGs on their local spatial environment (Fig. 1F, bottom). These results 172 

demonstrated that NSGs reflect nested biological properties. 173 

Overall, our findings revealed a general spatial architecture of TMEs. TMEs are 174 

hierarchically organized into multicellular units of transcriptional covariation, ‘Spatial Groups’, 175 

that can be either spatially nested (NSGs) or non-nested (non-NSGs). The spatial organization 176 

of NSGs reflects the contextual dependence of smaller-scale biological processes involving cell-177 

cell interactions, amongst larger-scale biological processes such as cell type abundance (Fig. 178 

1G). These findings motivated using SGs as a common unit of spatial organization for 179 

investigating heterogeneity in TME spatial biology. 180 

 181 

Using SGs to define spatial lability in TMEs 182 

 To capture variation in gene expression patterns amongst SGs in a holistic manner, we 183 

defined gene ‘spatial lability’ – the extent of change of gene expression when comparing across 184 

partitions of the TME. We first identified all SGs for a given TME. Then, for a given gene, we 185 

isolated the SGs and associated ST-seq spots where the gene was differentially expressed 186 

(Fig. 2A, top). Finally, we computed the fraction of the tumor dataset represented by those ST-187 

seq spots and termed this fraction the ‘spatial lability’ (SLAB) score for the gene of interest (Fig. 188 

2A, bottom) (Methods). A comparison of SLAB scores with gene expression for all genes across 189 

all tumors in our database illustrated that SLAB scores were positively correlated with average 190 
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gene expression but also captured other modes of gene-level spatial variation. For example, 191 

genes with low average expression exhibited variation in SLAB score (Fig. 2B). Furthermore, 192 

77% of genes had no correlation between bulk gene expression and SLAB score when 193 

comparing across tumors (Extended Data Fig. 3). As a specific example, the calreticulin gene 194 

(CALR) had similar bulk expression levels in 3 selected tumors, yet its SLAB score varied from 195 

high to low across these tumors (Fig. 2C). Visualization of CALR expression across the TME 196 

clearly illustrated that the degree of spatial heterogeneity in gene expression followed the 197 

degree of spatial lability across tumors (Fig. 2D). Examination of the SGs associated with 198 

differential expression of CALR showed that the high spatial lability tumor contained changes in 199 

CALR expression at both large- and medium-sized SGs, while the tumors with lower SLAB 200 

scores had SG changes restricted to medium and small SGs (Fig. 2E). Together, these data 201 

demonstrate that the SLAB score captures information about the spatial heterogeneity of gene 202 

expression across the TME that is distinct from bulk gene expression. 203 

 To validate that SLAB scores captured spatial heterogeneity in the TME, we compared 204 

SLAB scores with an orthogonal measure of spatial biology – multiplexed immunofluorescence 205 

(mIF) across 51 marker genes – for two diffuse large B cell lymphoma (DLBCL) samples within 206 

our pan-tumor database (Methods). We used a grid approach to define spatial domains of 207 

varying sizes. Variation in cell type abundance was computed using the coefficient of variation 208 

across these grids (Extended Data Fig. 4A) (Methods). This approach demonstrated cell types 209 

to be more spatially labile in the DLBCL-P2 tumor (Patient 2) than in DLBCL-P1 (Patient 1) 210 

(Extended Data Fig. 4B). SLAB scores, computed across SpaCET-deconvoluted cell type 211 

proportions, recapitulated this finding (Extended Data Fig. 4C). Examination of IF intensity 212 

distributions for CD3 (a pan T cell marker) and CD21 (an abundant B cell marker) demonstrated 213 

that germinal center (GC) effacement might explain the inter-tumoral differences in cell type 214 

spatial lability between the two DLBCL samples (Extended Data Fig. 4D). Moreover, we found 215 
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that SGs with simultaneous enrichment of T cells and depletion of B cells included many H&E-216 

identified GCs in DLBCL-P2 (Extended Data Fig. 4E).  217 

 Together, these results demonstrate that the SG-based metric we created – SLAB scores 218 

– accurately captured information about the spatial heterogeneity of gene expression across 219 

TMEs, thereby enabling spatially based comparisons between tumors. 220 

 221 
Classification of TMEs by spatial lability 222 

 To compare TMEs by their profiles of spatial lability, we aligned the genome-wide SLAB 223 

scores across for all tumors in our database and computed the Euclidean distance between 224 

each pair of tumors (Extended Data Fig. 5). Hierarchical clustering of pairwise distance 225 

between tumors defined a tree representing a pan-tumor classification where tumors were 226 

grouped by similarity of their spatial lability profiles and branchpoints reflected signatures of 227 

differential spatial lability between groups (Fig. 3A,B). Interrogation of the tree illustrated two 228 

results. First, tumors were approximately ordered by their average spatial lability. In the 229 

representation depicted in Fig. 3B, tumors ordered from left to right – labeled as groups A 230 

through M – reflected a continuum of average SLAB scores from high to low respectively 231 

(Extended Data Fig. 6A). As an example, while the average gene expression across all genes 232 

for the group of tumors on the far right (group M) was higher than the other groups, the spatial 233 

lability of genes in group M tumors was significantly lower than the other groups (Extended 234 

Data Fig. 6B). Second, the resulting clusters illustrated that tumor groups were either uniform 235 

(e.g. groups C and F) or varied (e.g. groups E, L, M) in their tissue of origin. For example, we 236 

found that tumors originating in breast tissue (91% triple-negative, rest unknown) classified into 237 

groups B, D, E, H, I, L, and M. Furthermore, we saw that group E were composed of tumors 238 

originating in breast, skin, ovarian, and central nervous system (CNS) tissues. These results 239 

suggested that patterns of spatial lability across our pan-tumor database described both tumor-240 

type-specific and tumor-type-agnostic differences in the TME. 241 
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We wanted to test whether the pan-tumor classification based on spatial lability captured 242 

similarity in spatial organization at the level of individual spots. For this, we tested whether the 243 

TumorSPACE map of one tumor (tumor A) could be used to predict the pairwise distances 244 

between spots of another tumor (tumor B). We then compared whether the accuracy of such 245 

predictions related to tumors being within the same or different spatial lability class. We 246 

computed predictions by projecting the transcriptional data from tumor B into the TumorSPACE 247 

map previously built for tumor A, which had not incorporated any information about tumor B. As 248 

a result, pairwise spot-spot distances were predicted between all spots in tumor B. These 249 

predictions were then compared to the actual pairwise distances between spots in tumor B 250 

(Extended Data Fig. 7A) (Methods). We excluded group M tumors from this analysis since our 251 

results showed that these tumors lacked spatial lability altogether. Overall, we found that 52% of 252 

such tumor pairs predicted spot distance information better than null models. Additionally, 253 

models were more likely to be predictive when selecting two tumors from the same spatial 254 

lability class than from different classes (67% versus 49%), similar to the prediction increase 255 

when comparing tumors of the same type versus different type (65% versus 47%) (Extended 256 

Data Fig. 7B). In accord with this finding, spatial lability was an independent contributor to 257 

cross-tumor spatial prediction from tumor type, suggesting that classes of tumors defined by 258 

profiles of spatial lability reflect shared spatial organization even when composed of diverse 259 

tumors (Extended Data Fig. 7C). Thus, while our pan-tumor database lacked the IHC 260 

information required for comparison to clinical classification schemes such as TIL score and 261 

Immunoscore, our analysis of the tree in Fig. 3B illustrated a classification of tumors by their 262 

spatial biology that was not oriented merely by tumor type. This motivated further investigation 263 

into the spatial lability changes that separated tumor groups. 264 

 We interrogated differences at branchpoints of the spatial lability classification (e.g. group 265 

A versus group nA) using multiple complementary approaches – gene-level SLAB differences, 266 

pathway-level SLAB differences using over-representation analysis (ORA), and pathway-level 267 
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SLAB differences using gene-set enrichment analysis (GSEA). The results we report for each of 268 

these analyses were robust to gene co-linearity and multiple hypothesis testing (Methods). Four 269 

branchpoints contained statistically significant differences in spatial lability amongst genes (Fig. 270 

3C, left panel). We therefore performed an in-depth analysis at these four branchpoints of the 271 

genes and pathways underlying differences in spatial lability (Supplementary Table 2). 272 

 Two of these branchpoints defined groups of tumors – C and E – that exhibited significant 273 

changes in spatial lability associated with TME immune biology. Group C was comprised of a 274 

set of exclusively primary CNS tumors and exhibited increased spatial lability of 275 

neurotransmitter activity genes (GRIK1, KCNN2) and of complement activation pathways (Fig. 276 

3C, top row). Notably, complement activation has been implicated in promoting glioma cell 277 

proliferation and neovascularization in the hypoxic TME characteristically found in such tumors 278 

as well as in mediating the suppression of anti-tumor immunity in both CNS tumors and non-279 

CNS tumor types40. Group E tumors, comprised of a diverse mixture of tumor types, showed 280 

increased spatial lability of genes associated with immune exhaustion through diverse 281 

mechanisms such as myeloid cell activation (P2RY11), TGF-	" signaling (SMAD5), antigen 282 

presentation (DPP9), innate immune cell activation (TRIM11, TRIM44), T cell migration (DPP9, 283 

ELMO2), and T cell activation (STAT5, STAT5A, NFATC2IP, PLCG1, ORAI1) (Fig. 3C, second 284 

row)41–50. Analysis of pathways demonstrated increased spatial lability in well-studied immune 285 

signaling pathways (vesicle transport, solute carrier (SLC) transporters) as well as in pathways 286 

linked to antigen generation (RNA metabolism, post-translational protein modifications), 287 

suggesting that complementary biological processes collectively reflect immune spatial lability51–288 

54. Together, these data illustrated that group C and group E tumors have TMEs with increased 289 

immune spatial lability via distinct components of TME immune biology.  290 

 The other two branchpoints defined groups of tumors – F and L – with spatial lability in 291 

non-immune areas of TME biology as well as group M, the group notable for spatially invariant 292 

biology across all studied genes and pathways. Group F was comprised of exclusively ovarian 293 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.18.619136doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.18.619136
http://creativecommons.org/licenses/by-nc-nd/4.0/


tumors and had increased spatial lability for pathways related to olfactory receptors – a class of 294 

cancer testis antigens that are abundantly expressed in ovarian tumors and are under 295 

development as a CAR-T therapeutic target (Fig. 3C, third row)55. Group L, composed of 296 

diverse tumors, demonstrated increased spatial lability for genes involved in mitochondrial 297 

biology (MRPL40, LYRM1, MRPS14, NDUFS4, NFU1, MRPL21) as well as in RNA and protein 298 

processing (COPS8, TCEAL8, RPAIN, ZCCHC17, SNW1, TTC1, KIAA1191, PEX19, GPN1, 299 

PPIE) (Fig. 3C, fourth row panel). Accordingly, this group of tumors was enriched in spatial 300 

lability for pathways related to cell-intrinsic processes – metabolism, transcriptional regulation, 301 

and DNA repair.  302 

 We previously observed that cell-extrinsic versus cell-intrinsic processes were enriched in 303 

NSGs and non-NSGs respectively (Fig. 1F, G). Having now observed that the spatial lability 304 

classification varied across groups in enrichment for cell-extrinsic versus cell-intrinsic 305 

processes, we hypothesized that the classification in Fig. 3B was reliant on information with 306 

NSGs and non-NSGs to different degrees depending on tumor group. To test this idea, we 307 

performed GSEA pathway enrichment at branchpoints E/nE and L/M using spots found within 308 

only NSGs or within only non-NSGs. We examined these branchpoints because they 309 

demonstrated enrichment for cell-extrinsic and cell-intrinsic biology respectively. We found that 310 

NSGs alone identified 69% of pathways enriched by GSEA for spatial lability in Group E, while 311 

non-NSGs alone did not identify any of these pathways. Conversely, non-NSGs alone identified 312 

42% of pathways enriched for spatial lability in Group L, while NSGs alone did not identify any 313 

of these pathways (Fig. 3D). Notably, 31% and 58% of pathways with altered spatial lability in 314 

groups E and L, respectively, required transcriptional information contained within both NSGs 315 

and non-NSGs. Furthermore, across all studied branchpoints we found that the likelihood of a 316 

pathway exhibiting detectable changes in spatial lability within NSGs versus non-NSGs 317 

depended on whether the pathway described cell-extrinsic or cell-intrinsic processes (Fig. 3E).   318 
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 Together, these results illustrated a pan-tumor classification defined by spatial lability. The 319 

biological variation associated with this classification distinguished cell-extrinsic processes – i.e. 320 

immune signaling – that are found mostly within NSGs versus cell-intrinsic processes like DNA 321 

repair found in both NSGs and non-NSGs. Interrogation of genes and pathways distinguishing 322 

groups also showed spatial lability in targets with proven therapeutic significance. Together, 323 

these findings motivated using our pan-tumor classification schema to predict the clinical 324 

outcome of patients whose tumors were not contained within our tumor database. 325 

 326 

Pan-tumor TME classification by spatial lability distinguishes response to immunotherapy in 327 

metastatic NSCLC 328 

 As two branchpoints in our pan-tumor classification demonstrated variation in immune 329 

spatial lability, we hypothesized that classification of a separate cohort of tumors by immune 330 

spatial lability could be used to predict patient response to anti-PD1/anti-PD-L1 immune 331 

checkpoint blockade (ICB) – a widely approved therapeutic modality across diverse solid 332 

tumors. To this end, we focused our efforts on patients diagnosed with metastatic NSCLC. 333 

Despite substantial improvements in overall survival with the use of ICB therapies in the 334 

metastatic NSCLC frontline setting, 5-year overall survival remains quite poor at 19%56. 335 

Moreover, the only clinically approved biomarker of response to ICB therapy, PD-L1 336 

immunohistochemistry (IHC), is weakly predictive of outcomes in the frontline metastatic setting 337 

for NSCLC, prompting ongoing studies on whether gene expression or cell type abundance 338 

biomarkers might be more predictive of such outcomes5,56–58. 339 

To address whether spatial lability informs ICB response, we conducted a retrospective 340 

pilot study of 16 patients with metastatic NSCLC without targetable mutations who received 341 

frontline ICB with or without chemotherapy (Methods). For each patient, we conducted ST-seq 342 

on pre-treatment biopsy samples followed by (i) computing genome-wide SLAB profiles for all 343 

samples and (ii) contextualizing the resulting data using the pan-tumor classification of tumor 344 
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spatial lability defined by the discovery cohort in Fig. 3B. We also performed 345 

immunohistochemistry (IHC) to determine PD-L1 tumor proportion score on the same pre-346 

treatment diagnostic biopsy sample. We then evaluated whether classification by spatial lability 347 

or PD-L1 status could predict Progression-Free Survival (PFS) after ICB treatment (Fig. 4A). 348 

Two possible variables were identified that could confound an association with ICB response: 349 

ICB regimen choice and presence of the somatic mutation KRAS G12C, which is targetable in 350 

the second line (Extended Data Fig. 8A,B). Univariate analysis found that neither variable was 351 

associated with PFS, excluding the possibility that these factors influenced our study (Extended 352 

Data Fig. 8C).  353 

 To evaluate this out-of-sample validation cohort of NSCLC tumors within the context of our 354 

pan-tumor classification from Fig. 3B, we first used TumorSPACE to identify SGs for each 355 

NSCLC tumor. We found a similar distribution of nested and non-nested SGs as within our pan-356 

tumor database, illustrating the generalizability of the distribution of SGs in TMEs (Extended 357 

Data Fig. 9). Comparison of spatial lability profiles between the NSCLC tumors and the pan-358 

tumor database defined two groups. One group, comprised of twelve NSCLC tumors, exhibited 359 

a spatial lability profile similar to group C and group E tumors in our pan-tumor classification –360 

high spatial lability amongst immune-related components (‘immune spatially labile’, ‘ISL’). The 361 

other group, comprised of four NSCLC tumors, exhibited a spatial lability profile similar to group 362 

L and group M tumors – low spatial lability in immune biology (‘immune spatially invariant’, ‘ISI’) 363 

(Fig. 4B) (Methods). Classification by immune spatial lability (ISL versus ISI) was highly 364 

predictive of PFS after ICB treatment (hazard ratio = 0.09, p = 0.00095), unlike classification by 365 

PD-L1 using either classical NSCLC groupings  – < 1%, 1-49%, ³ 50% (p = 0.55) – or binary 366 

cutoffs of either 1% (p = 0.27) or 50% (p = 0.77) (Fig. 4C, Extended Data Fig. 10A). Moreover, 367 

classification by bulk expression using either all genes or 8 previously published gene sets for 368 

NSCLC IO response was not predictive of PFS. However, notably a DNA damage response 369 

gene set was predictive (p = 0.003) only when using SLAB scores instead of gene expression (p 370 
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= 0.33) (Extended Data Fig. 10B,C) (Supplementary Table 3). Moreover, eight out of the 371 

twelve patients with measurable disease at treatment onset demonstrated shrinkage in tumor 372 

volumes shortly after treatment began, suggesting that classification by PFS was detecting 373 

differences in treatment response and durability rather than in treatment-agnostic factors such 374 

as disease prognosis (Extended Data Fig. 10D) (Methods). Together, these results showed 375 

that our pan-tumor classification schema, defined by variation in spatial lability, was sufficient to 376 

distinguish variation in response to ICB therapy in our patient cohort in contrast to PD-L1 IHC 377 

and previously published bulk expression gene sets. 378 

 Since our pan-tumor classification distinguished the NSCLC tumors as immune spatially 379 

labile versus immune spatially invariant, we sought to determine which biological processes 380 

were relevant to NSCLC ICB response. We tested whether genes with differential SLAB scores 381 

at the pan-tumor group E branchpoint also exhibited differential SLAB scores between the ISL 382 

and ISI NSCLC datasets. Of the 537 genes distinguishing the group E branchpoint, 398 were 383 

also statistically enriched for spatial lability in NSCLC ISL tumors compared to NSCLC ISI 384 

tumors, while the other 139 were not (Fig. 4D, left). Pathway analysis of these two gene groups 385 

demonstrated that both groups related to immune activation and signal transduction (Fig. 4D, 386 

right). However, the 139 non-differential SLAB genes were enriched for signaling via the VEGF 387 

receptor, estrogen receptor, and NTRK receptors – signaling pathways implicated in immune 388 

activation in cancers other than lung cancer. On the other hand, the 398 differential genes were 389 

enriched for immune signaling pathways (e.g. vesicle transport) and specifically for Notch 390 

signaling, a pathway that has been implicated to mediate immune checkpoint exhaustion in lung 391 

cancer through a variety of mechanisms59. Closer investigation of the Notch pathway 392 

demonstrated a set of 11 genes with coordinated SLAB changes between ISL and ISI tumors 393 

(Extended Data Fig. 11). As an example, an examination of three genes (HDAC6, NOTCH2, 394 

and PSEN1) that each promote Notch pathway activation via distinct mechanisms demonstrated 395 

spatially coordinated expression changes at large, medium, and small SG scales (Fig. 4E).  396 
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  397 

Discussion 398 

 Through statistical analysis of a broad diversity of solid tumors, we have shown that there 399 

is a conserved, hierarchical spatial architecture that organizes the apparent biological 400 

complexity of the TME. Individual spots group together into either non-nested or nested SGs 401 

which hierarchically integrate into the whole biopsy sample, thereby providing a holistic picture 402 

of emergent TME organization. The results in Figs. 3 and 4 suggest a cohesive model that 403 

directly links this spatial architecture with clinical response to ICB therapy in patients. SGs are 404 

information-dense units of spatial organization encoding complex molecular interactions 405 

between cells and variation amongst SG-based TME profiles distinguishes ICB therapy 406 

response (Fig. 4F, left). Our findings have implications for both tumor biology and for translation 407 

towards clinical oncology.  408 

 With respect to tumor biology, our findings demonstrate that Spatial Groups can be 409 

conceptualized as statistical ‘units’ of the hierarchical organization in TMEs. A natural next step 410 

is to deeply interrogate the biology underlying this statistical structure to elucidate drivers of 411 

variation in SG distribution and TME organization (Fig. 4F, top right). In general, existing 412 

biological knowledge of tumors (e.g. databases reflecting experimental results from cell lines 413 

and in vivo models) has viewed individual cells as the components of interest with respect to 414 

understanding properties of whole tumors. Our results suggest an alternative foundation for 415 

biological interrogation: the collective spatial interactions amongst SGs are key to understanding 416 

emergent biological qualities of tumors. Elucidating the biology underlying these interactions will 417 

likely require interrogating SGs without perturbing their native context rather than isolating and 418 

removing them from a tumor. As such, approaches studying SG variation under observable 419 

metabolic gradients and pairing SG identification with spatial metabolomics and proteomics may 420 

be useful for discovering biological mechanisms influencing TME organization.  421 
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 Efforts to bring spatial molecular profiling into clinical settings are limited by not having a 422 

consensus description of tumor spatial biology. Terms such as “immune inflamed”, “immune 423 

excluded”, and “immune desert” have served as a useful paradigm, yet, as recent studies have 424 

illustrated, are too broad for describing TME heterogeneity60,61. Our results demonstrate how 425 

treating the TME as an emergent cellular ecosystem and identifying conserved statistical 426 

features of spatial organization results in a holistic, unbiased, and quantitative approach for 427 

classifying tumors. The resulting SG-based classification was built on a discovery cohort of 96 428 

tumors spanning twelve tumor types gathered from multiple institutions and countries and tested 429 

in a validation cohort on a tumor type (NSCLC) with markedly low representation in the 430 

discovery cohort. Importantly, our discovery cohort was not pre-selected to represent variation 431 

in ICB response but was assembled in an unbiased manner and studied to characterize the 432 

biology reflecting heterogeneity in TME spatial organization. Thus, the success of this 433 

classification in delineating responders and non-responders to ICB therapy in the setting of 434 

metastatic NSCLC underscores the shared qualities of SGs across tumor types and suggests 435 

that variation amongst TME SG profiles may be useful for developing a framework for 436 

therapeutic ‘logic’ (Fig. 4F, middle right). NSGs may have increased relevance for 437 

understanding and targeting key aspects of cell-cell signaling while non-NSGs might reflect 438 

elucidating molecular determinants of tumor fitness that are independent of the local 439 

environment. The incorporation of more cohort studies into our classification where pre-440 

treatment biopsy samples are coupled with outcomes following therapeutic intervention will 441 

address this concept. It is possible that future studies of patient cohorts in both ICB-naïve and 442 

ICB-refractory settings could leverage SG-based descriptions for the discovery of therapeutics 443 

that augment ICB (Fig. 4F, bottom right).  We anticipate that describing TMEs using SGs will 444 

open the possibility of creating interpretable statistical models of the TME that enable spatially 445 

informed precision oncology.   446 
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 447 

Figure 1. A conserved architecture of TME spatial biology. (A) A map (pink arrows) relating 448 
transcriptional (‘T’) and spatial (‘S’) information that captures non-nested and nested spatial 449 
contexts of biological processes. (B) Histogram of correlation values (Pearson R) between actual 450 
spatial distances for all pairs of spots within a given ST-seq dataset and pairwise distances 451 
inferred by TumorSPACE. Gray distribution reflects a background expectation of correlation 452 
values (Methods). (Inset) Actual spot locations and inferred spot locations for the small-cell 453 
ovarian cancer patient 2 ST-seq dataset (SCOC-P2). (C) (Top) Section of TumorSPACE map for 454 
sample SCOC-P2; squares at the bottom of the tree are individual spots, each circle is a Spatial 455 
Group (SG). ‘Parent SG’ is delineated to define the relationship between SGs. (Bottom) Picture 456 
of actual SCOC-P2 spot locations with spots colored by SG designation. The left and right panels 457 
illustrate examples of non-nested spatial groups (non-NSGs) and nested spatial groups (NSGs) 458 
respectively. (D) Fraction of spots in an ST-seq dataset (y-axis) belonging to non-NSGs (gray 459 
bars) or NSGs of varying depth (colored bars) for all tumors in our pan-tumor database (‘Tumor 460 
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Type’ on x-axis, see color key). (E) (Left) Workflow for evaluating if a differentially abundant 461 
biological process within a parent SG (‘Biological Process A’) influences a biological process 462 
within an NSG (‘Biological Process B’). (Right) The fraction of processes in an NSG (x-axis) that 463 
are dependent (purple bar) or independent (blue bar) on processes in a parent SG (y-axis). (F) 464 
Mean odds ratio (y-axis) of processes (colored dots) versus size of SG (x-axis). (G) A model of 465 
TME spatial biology: TMEs are comprised of non-nested and nested Spatial Groups. Nested 466 
spatial groups encode large-scale processes that influence small-scale processes.  467 
  468 
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 469 
 470 
Figure 2. Spatial lability: a measure of spatial heterogeneity based on Spatial Groups. (A) 471 
Workflow for computing spatial lability (SLAB) score. R is the root SG in this example dataset 472 
consisting of 10 spots and 6 descendant SGs: A, A’, B, B’, C, C’. Highlighted spots reflect spots 473 
belonging to the smaller of the descendant SGs from R (Methods). Numbers in parentheses 474 
indicate number of spots within an SG. (B) Mean gene expression for all genes across all tumors 475 
in our database (y-axis) versus mean SLAB score across all tumors in our database (x-axis). Each 476 
point is a single gene; density of points enumerated by histograms on x and y axes. Dot in the 477 
center is the gene calreticulin (CALR). (C) Expression of CALR averaged across all spots in each 478 
tumor (y-axis) versus CALR SLAB score (x-axis). Each dot is a tumor in our database. Three 479 
tumors (black circle, square, and triangle) are highlighted that harbor the same mean CALR 480 
expression but varying SLAB scores. (D) Spatial distribution of CALR expression across tumors 481 
highlighted in panel C. CALR expression is represented in log-scale (see colorbar); below colorbar 482 
is distribution of CALR expression across all spots in the labeled tumor. Spots in each triangle, 483 
square, and circle tumors are colored by CALR expression. (E) CALR expression within SGs 484 
illustrated as SGs decrease in spatial scale for circle, square, and triangle tumors with 485 
corresponding spatial lability scores. Green spots reflect increased CALR expression within SG; 486 
brown spots reflect decreased CALR expression within SG; gray spots reflect no difference in 487 
expression within SG. SGs are included in plots from left to right if they impact (i) 20 – 50% of 488 

Behera et al., Figure 2

(A)
SGs of 

TumorSPACE model

For a given gene

DA Spots
at any SG

SLAB score

DA Spots

0.4

SGs where process 
is differentially abundant (DA)

B’A’

B C
C’ A

A’

C
C’

A (7) and A’ (3)
C (1) and C’ (2)

A

Union

CALR Expression
(log-scale)

CALR expression
relative to 

local SG context

SLAB = 0.72
“High CALR lability”

SLAB = 0.31
“Medium CALR lability”

SLAB = 0.01
“Low CALR lability”

Decreasing
SG scale

Up
Down
NoChange

(B)

(C)
Mean SLAB

M
ea

n 
Ex

pr
es

si
on

(lo
g-

sc
al

e)

0

0.75

1.5

0 0.3 0.6

SLAB

Ex
pr

es
si

on
 (l

og
-s

ca
le

)

iDD

CALR

CALR

0

1

2

0 0.2 0.4

0 1 2

(D)

(E)

R R

Isolate smaller of:

0

5000

0 5000

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.18.619136doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.18.619136
http://creativecommons.org/licenses/by-nc-nd/4.0/


biopsy spots, (ii) 10 – 20% of biopsy spots, (iii) 5 – 10% of biopsy spots, or (iv) less than 5% of 489 
biopsy spots. SLAB scores are computed from the union of colored spots and displayed below. 490 
  491 
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Figure 3. Pan-tumor spatial lability classification distinguishes tumors by spatial 495 
heterogeneity amongst cell-intrinsic and cell-extrinsic processes. (A) Workflow for defining 496 
and interrogating a classification of tumors based on spatial lability. (B) The pan-tumor 497 
classification tree. Each leaf is labeled alphabetically and comprised of specific tumors with the 498 
remaining tumors labeled to indicate not being a part of the group of tumors in the leaf. For 499 
instance, two Diffuse Large B Cell Lymphoma (DLBCL) tumors comprise group A; all other tumors 500 
comprise the ‘nA’ category. Parentheses indicate number of tumors of a specific tumor type in the 501 
group. (C) (Left) Branchpoints in the spatial lability classification where any statistically significant 502 
differences in gene spatial lability were detected. (Middle) Volcano plots describing significant 503 
differences in gene spatial lability for each group. (Right) Over-representation analysis (ORA) and 504 
gene-set enrichment analysis (GSEA) of pathway-based spatial lability. Within each sub-panel 505 
(ORA, GSEA), these results are shown as Volcano plots and histograms grouped by pathway 506 
category. (D) Fraction of significant pathways detected by GSEA (see Fig. 3C, right) that were 507 
enriched (y-axis) at branchpoints E vs nE or L vs M (x-axis) when considering spots within only 508 
NSGs (green) or only non-NSGs (orange). (E) Fraction of significant pathways per pathway 509 
category detected by GSEA (see Fig. 3C, right; x-axis) that were enriched at any branchpoint (y-510 
axis) when considering spots within only NSGs (green) or only non-NSGs (orange). 511 
 512 
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Figure 4. Pan-tumor classification distinguishes responders to immune checkpoint 516 
blockade in metastatic non-small cell lung cancer (NSCLC). (A) Sixteen patients with 517 
metastatic NSCLC underwent a diagnostic biopsy and were given immunotherapy (IO) or a 518 
combination of IO and chemotherapy. The diagnostic biopsy was subjected to ST-seq and 519 
immunohistochemistry (IHC) for PD-L1 status. From the ST-seq data, spatial lability classification 520 
was performed, and progression-free survival (PFS) was compared between groups defined by 521 
(i) spatial lability and (ii) PD-L1 status. (B) Comparison of NSCLC samples from panel A with the 522 
pan-tumor classification from Fig. 3B. Twelve samples had similar spatial lability profiles to tumors 523 
in groups C and E (‘Immune Spatially Labile’, ‘ISL’). Four samples had similar spatial lability 524 
profiles to tumors in groups L and M (‘Immune Spatially Invariant’, ‘ISI’). (C) Kaplan-Meier curves 525 
for PFS (y-axis) in months (x-axis) stratified by ISL/ISI (left) or by PD-L1 status (right). Number at 526 
risk tables show the number of patients remaining uncensored at each time point. (D) SLAB 527 
scores amongst the 537 genes defining the branchpoint of group E versus nE in Fig. 3B were 528 
computed for all NSCLC tumors. (Left) Volcano plot depicts difference in spatial lability (x-axis) 529 
and Wilcoxon p-value (y-axis, log-transformed) for NSCLC tumors grouped by ISL versus ISI. 530 
Dashed line indicates p = 0.05. Over-representation analysis (ORA) of the 537 genes stratified by 531 
p <= 0.05 (upper) or p > 0.05 (lower) is represented as number of significant pathways grouped 532 
by category (Middle) and top pathways (Right). (E) Part of the NOTCH signaling cascade (top 533 
panel) highlighting three proteins: NOTCH2, PSEN1, and HDAC6. Gene expression of these 534 
three proteins across an NSCLC sample (colorbar in white to green); gene expression changes 535 
of these three proteins in the depicted NSCLC sample across SGs (bottom panel with associated 536 
color key). (F) A depiction of our model that relates tumor SG profiles to NSCLC ICB response 537 
(left) and future directions motivated by these results (right).  538 
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Extended Data Figure 1. (A) Workflow for generating a TumorSPACE map involves first 546 
identifying hierarchical relationships between ST-seq spots using transcriptional data alone (left) 547 
and then performing ‘spatial de-noising’ by removing tree nodes with high spatial dispersion 548 
values (right) (Methods). These maps can capture both spatially nested and spatially non-nested 549 
spot relationships. Grey lines at the bottom of each branchpoint indicate that trees continue to 550 
branch until terminating at the individual ST-seq spots (black squares). (B) Description of our pan-551 
tumor ST-seq database. Number of datasets for each tumor type (color key) is delineated in the 552 
pie graph. (C) Description of how NSG depth is calculated for an example set of SGs. 553 
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 555 
 556 
Extended Data Figure 2. (A) Using TumorSPACE models to conduct differential analysis of gene 557 
expression, pathway usage with gene set variation analysis (GSVA), and cell type differences 558 
using SpaCET for spot deconvolution into cells39. SGs are labeled as A, A’, B, B’, C, and C’. (B) 559 
Mean distance between pairs of spots within a SG across SGs for all ST-seq datasets in our 560 
database (x-axis) versus all KEGG pathway categories (purple) and all major cell types as defined 561 
by SpaCET (blue) (y-axis). Error bars reflect 95% confidence intervals. *Wilcoxon p-value < 1e-562 
9. (C) Odds ratio (absolute value, log-scaled) that a parent SG biological process (‘A’, rows) is 563 
associated with a coordinated direction of change in a second biological process (‘B’, columns) 564 
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reflected within a daughter NSG. Color key indicates magnitude of effect where 1 indicates no 565 
effect. Gray cells indicate biological process pairs that were not observed. Rows and columns are 566 
hierarchically clustered. 567 
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 569 
 570 
Extended Data Figure 3. Histogram of correlations (Pearson R) between bulk gene expression 571 
and SLAB scores across all tumors in our pan-tumor database for all genes. Genes are stratified 572 
by whether correlation was statistically significant (black) or not (grey) compared to an empirical 573 
null distribution.  574 
  575 

Behera et al., Extended Data Figure 3

0

500

1000

−0.5 0.0 0.5 1.0

Pearson R

N
um

be
r o

f G
en

es

P-adj < 0.05

Yes

No

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.18.619136doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.18.619136
http://creativecommons.org/licenses/by-nc-nd/4.0/


 576 
 577 
Extended Data Figure 4. (A) Schematic for computing the coefficient of variation (CoV) for cell 578 
type abundance across a slide from immunofluorescence (IF) data. (B) Mean CoV across all 579 
cell types (y-axis) versus grid width of biopsy region (x-axis) for DLBCL-P1 (blue) and DLBCL-580 
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P2 (purple). (* Wilcoxon p < 0.05) (C) Distribution of SLAB scores (y-axis) for cell types (y-axis) 581 
in DLBCL-P1 and DLBCL-P2 (x-axis). (D) High-resolution H&E (left) and 51-plex IF (right) 582 
images for DLBCL Patients 1 (top) and 2 (bottom). Colors in IF images represent staining for T 583 
cells (anti-CD3, blue) and B cells (anti-CD21, red). (E) Spatial distribution of spots (grey dots) in 584 
DLBCL-P1 (upper) and DLBCL-P2 (lower) within SGs with simultaneous B cell enrichment and 585 
T cell depletion. (D, E) Dashed circles indicate germinal centers identified from the 586 
corresponding H&E images. 587 
  588 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.18.619136doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.18.619136
http://creativecommons.org/licenses/by-nc-nd/4.0/


 589 
 590 
Extended Data Figure 5. Workflow for pan-tumor classification by SLAB scores. First, SLAB 591 
scores are computed for each gene for all tumors. This creates a genome-wide profile of SLAB 592 
scores for each ST-seq dataset. The datasets are aligned by their genome-wide SLAB profiles 593 
creating a matrix where rows are ST-seq datasets, columns are genes, and each entry is the 594 
SLAB score for a gene in an ST-seq dataset. Euclidean distance based on genome-wide SLAB 595 
scores is computed for all pairs of ST-seq datasets. Hierarchical clustering of pairwise SLAB-596 
based distance results in a pan-tumor classification where tumors that are close together share a 597 
similar genome-wide SLAB profile.  598 
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 600 
 601 
Extended Data Figure 6. (A) First, for a given gene, the mean SLAB score is computed grouped 602 
by spatial lability as in Fig. 3B (x-axis). Second, the mean of these group-wise SLAB scores was 603 
computed across all genes (y-axis). Error bars depict standard error of the mean. (B) Violin plots 604 
depicting mean gene expression (log-scale, left) and mean SLAB (right) for all genes where 605 
tumors in the pan-tumor database were grouped by whether they belonged to Group M or Groups 606 
A-L. * Paired Wilcoxon p < 1e-100. 607 
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 609 
 610 
Extended Data Figure 7. (A) Workflow for testing if a TumorSPACE model built for tumor A could 611 
predict the spatial organization of tumor B. (B) Proportion of all pairs of non-Group M 612 
TumorSPACE models that are predictive for spot-spot distances (y-axis) when pairs are stratified 613 
as being within the same class or different classes (x-axis). Classes were defined by either spatial 614 
lability (left) or by tumor type (right). (C) Linear modeling of cross-tumor spatial prediction using 615 
either tumor type or spatial lability class as independent variables. 616 
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 618 
 619 
Extended Data Figure 8. (A) Swimmer plot illustrating patient treatment courses starting when 620 
patients began frontline immunotherapy treatment in the metastatic NSCLC setting. Colors 621 
indicate immunotherapy (IO)/chemo-IO regimen, shapes indicate significant events. 622 
Chemotherapies are abbreviated as follows: C = carboplatin, G = gemcitabine, Pa = paclitaxel, B 623 
= bevacizumab, Pe = pemetrexed. IO therapies include anti-PD1 (pembrolizumab, nivolumab), 624 
anti-PD-L1 (atezolizumab), and anti-CTLA-4 (ipilimumab) therapies. (B) Mutation status for 625 
clinically relevant mutations amongst the 16-patient cohort at the time of pre-treatment diagnostic 626 
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biopsy. (C) Univariate analysis between (i) ICB regimen type, and (ii) KRAS G12C status and 627 
progression-free survival (PFS). 628 
  629 
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 630 
 631 
Extended Data Figure 9. Fraction of spots in an ST-seq dataset (y-axis) belonging to non-NSGs 632 
(gray bars) or NSGs of varying depth (colored bars) for NSCLC out-of-sample tumors (left) and 633 
for the two tumors in our pan-tumor database representing the highest and lowest non-NSG 634 
fraction (right). 635 
  636 
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 637 
 638 
Extended Data Figure 10. (A) Kaplan-Meier curve of progression-free survival comparing 639 
NSCLC patients of PD-L1 status with binary cutoffs of either 1% (left) or 50% (right) by IHC. (B) 640 
Mean p-values (log10-transformed, y-axis) of log rank statistical tests using several gene sets (x-641 
axis) to predict progression-free survival amongst NSCLC patients using either bulk gene 642 

Behera et al., Extended Data Figure 10
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expression data (blue) or SLAB score data (purple) (see Supplementary Table 3 for gene sets). 643 
Error bars represent standard error of the mean when performing classification 100 times 644 
(Methods). Dashed line indicates p = 0.05. (C) Kaplan-Meier curve of progression-free survival 645 
comparing NSCLC patients stratified by the DNA Damage Response gene set using either bulk 646 
expression data (left) or SLAB score data (right). (D) Spider plot depicting percent change in 647 
volume of index tumor lesion using serial computed tomography (CT) scans (y-axis) in the months 648 
following treatment start (x-axis). Each line describes a single patient classified as either ISL 649 
(blue) or ISI (red), and each point on a line indicates a CT scan measurement at that time. 650 
  651 
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 652 
 653 
Extended Data Figure 11. Heatmap of SLAB scores (cells, see color key) for 11 NOTCH-654 
pathway genes (rows) in the 16 NSCLC datasets (columns). Both rows and columns are 655 
hierarchically clustered by Euclidean Distance. Patients are labeled as either immune spatially 656 
labile (ISL, red) or immune spatially invariant (ISI, blue). 657 
  658 
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Behera et al., Extended Data Figure 12
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Extended Data Figure 12. Pan-tumor dataset classification by SLAB scores. Each leaf in the tree 660 
is a distinct patient dataset. 661 
  662 
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 663 
 664 
Extended Data Figure 13. (A) Density plots of QC metrics – signal sum across IF markers, signal 665 
coefficient of variation (CV) across IF markers, and DAPI intensity – for DLBCL Patients 1 (top) 666 
and 2 (bottom). Dotted lines represent 95% (right) and 5% (left) quantile boundaries used to 667 
remove outlier cells. (B) Spatial locations of spots that passed (green) versus failed (red) the QC 668 
thresholds in (A). 669 
  670 
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Behera et al., Extended Data Figure 14
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Extended Data Figure 14. (A) Background correction intensities (y-axis) for specific IF markers 672 
(x-axis). Each boxplot comprises the set of region-specific intensities where each point is the 673 
background correction intensity for a given tumor region. (B) Density plot of background correction 674 
values from (A) for DLBCL Patient 1 (green) and 2 (blue). (C) Heatmap depicting normalized 675 
intensities for representative markers (rows) from 50 cells (columns) in each cell type 676 
classification group (see color key). 677 
  678 
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 679 
 680 
Extended Data Figure 15. Fraction abundance of cell type as determined by multiplexed 681 
immunofluorescence (mIF) (y-axis) versus fraction abundance of cell type as determined by 682 
SpaCET-estimated deconvolution from ST-seq transcriptional data (x-axis) for two DLBCL 683 
patients shown in Extended Data Fig. 4. Dashed line indicates linear with associated Pearson 684 
correlation.  685 
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Methods 689 

Computational method details 690 
 691 
ST-seq dataset download and alignment 692 
Previously deposited ST-seq datasets (Supplementary Table 1) were downloaded for 693 
integration from GEO (https://www.ncbi.nlm.nih.gov/geo/) into the pan-tumor ST-seq database 694 
as long as they had the following SpaceRanger outputs available: 1) a spot-by-UMI gene count 695 
matrix, 2) a spot-by-pixel location matrix, and 3) a scalefactors_json.json file containing 696 
‘spot_diameter_fullres’. For analyses including physical distance rather than pixel distance, pixel 697 
distance was converted to physical distance by computing a !"#$%

&'
= ()*+,_./012,23_456632)’

88
 scaling 698 

factor that compares spot diameter in pixels to the known spot diameter of 55 $%. 699 
 700 
SpaceRanger 701 
For internally generated ST-seq datasets, reads were aligned and mapped to the hg38 702 
(GRCh38) human genome reference using the SpaceRanger v2.0.0 count pipeline 703 
(Supplementary Table 4). This pipeline generates a raw unique molecular identifier (UMI) gene 704 
count matrix in which each row consists of a spot that has X/Y coordinates in pixels that 705 
correspond to the aligned H&E image. The SpaceRanger algorithm also identifies spots within 706 
or outside of detectable tissue, and for all subsequent analyses only spots within tissue were 707 
used. 708 
 709 
TumorSPACE: models and associated analysis 710 
The sub-sections within this section will introduce a number of variables. As such, below is a 711 
table of variable definitions.  712 
 713 
Variable Definition Section Where First Referenced 
M SpaceRanger UMI gene count matrix Creating a latent space 
m Number of ST-seq spots in M Creating a latent space 
n Number of genes in M Creating a latent space 
U SVD left singular matrix Creating a latent space 
S SVD singular value matrix Creating a latent space 
VT Transpose of SVD right singular 

matrix 
Creating a latent space 

D Spectral Distance matrix Creating a latent space 
p PC depth hyperparameter Creating a latent space 
T TumorSPACE tree model Creating a latent space 
G The set of tree internal nodes Creating a latent space 
g A single tree internal node Creating a latent space 
MB Bootstrapped gene count matrix Bootstrapping the latent space… 
X Statistical random variable Bootstrapping the latent space… 
N Normal Distribution Bootstrapping the latent space… 
µ Mean Bootstrapping the latent space… 
s Standard deviation Bootstrapping the latent space… 
TB Bootstrapped TumorSPACE tree  Bootstrapping the latent space… 
b Node TBE support Bootstrapping the latent space… 
k Node spatial dispersion Calculating physical spatial 

dispersion… 
K Ripley’s reduced second moment 

function with border correction 
Calculating physical spatial 
dispersion… 
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gs The set of spots in node g Calculating physical spatial 
dispersion… 

lenx The x-axis range of values for a set of 
spots 

Calculating physical spatial 
dispersion… 

leny The y-axis range of values for a set of 
spots 

Calculating physical spatial 
dispersion… 

l Ripley intensity normalization factor Calculating physical spatial 
dispersion… 

rmax Ripley maximum spot distance Calculating physical spatial 
dispersion… 

R The set of spot distances used to 
compute spatial dispersion 

Calculating physical spatial 
dispersion… 

r A particular spot distance for 
computing spatial dispersion 

Calculating physical spatial 
dispersion… 

d Spot pairwise physical distance Calculating physical spatial 
dispersion… 

D Matrix of pairwise spot-spot physical 
distances 

Calculating physical spatial 
dispersion… 

Xspot X axis physical location of a spot Calculating physical spatial 
dispersion… 

Yspot Y axis physical location of a spot Calculating physical spatial 
dispersion… 

k The number of spot KNN matches  Calculating physical spatial 
dispersion… 

P The set of p being tested Calculating physical spatial 
dispersion… 

np The length of set P Calculating physical spatial 
dispersion… 

Uniform([a,b]) The Uniform Distribution between a 
and b 

Calculating physical spatial 
dispersion… 

H The set of hyperparameters for b, k, 
and k 

Calculating physical spatial 
dispersion… 

nH The length of set H Calculating physical spatial 
dispersion… 

hi A given choice of hyperparameter 
values for b, k, and k 

Calculating physical spatial 
dispersion… 

Gfilt The set of internal nodes in G that 
meet a given set of hyperparameter 
bounds on b and k 

Calculating physical spatial 
dispersion… 

Gfilt’ The set of Gfilt plus the parent nodes 
of Gfilt within T 

Calculating physical spatial 
dispersion… 

Tfilt Tree T filtered for internal nodes 
within Gfilt’ 

Calculating physical spatial 
dispersion… 

d Spot pairwise spectral distance Prediction accuracy calculation 
I The set of all spots in a biopsy Prediction accuracy calculation 
NNi,k The set of k nearest neighbors to 

spot i in latent space T 
Prediction accuracy calculation 

spoti,z A given nearest neighbor spot within 
NNi,k 

Prediction accuracy calculation 

r Pearson Correlation Coefficient Prediction accuracy calculation 
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corr Pearson Correlation function Prediction accuracy calculation 
vec Matrix vectorization function Prediction accuracy calculation 
Sspot The tuple of spot locations (Xspot, 

Yspot) 
Prediction accuracy calculation 

&9"%:
;!: The optimized TumorSPACE model 

for a given tumor biopsy 
Prediction accuracy calculation 

'<!
!=:> The full ancestral node path for an 

internal node gi in any tree T 
Spatial Group (SG) depth 

(<!
?  The kth ancestor of an internal node gi 

in any tree T 
Spatial Group (SG) depth 

)@;A$" The spatial domain size of an internal 
node gi in any tree T 

Spatial Group (SG) depth 

*@;A$" The SG depth of an internal node gi 
in any tree T 

Spatial Group (SG) depth 

GDA The subset of internal nodes within 
tree T that will be used for differential 
abundance computation 

SG-based differential abundance 
 

W(a,b) Wilcoxon rank-sum test between a 
and b 

SG-based differential abundance 

+<#$,9 Differential Abundance Probability at 
node gDA for process f 

SG-based differential abundance 

,<#$,9 Differential Abundance Probability at 
node gDA for process f, empirically 
bootstrapped and multiple hypothesis 
adjusted  

SG-based differential abundance 

-' The set of differentially abundant 
spots for process i at node j in a 
given tumor biopsy 

SG-based differential abundance 

./",C The odds ratio of independence 
between process i in an NSG and 
process j in a parent SG 

Contextual dependence of 
processes… 

01'2 The SLAB Score for process i in a 
given tumor biopsy 

SG-based spatial lability (SLAB) score 
 

1? The matrix of SLAB scores composed 
of samples (rows) in groups K and nK 

Differential SLAB score analysis 

MW(a,b) 
 

Mann-Whitney U Test between a and 
b 

Differential SLAB score analysis 

+D,9 p-value of the MW test between 
samples in groups K vs nK for 
process f 

Differential SLAB score analysis 

+D,9
E>F99%$A p-value of the MW test between 

samples shuffled between groups K 
vs nK for process f 

Differential SLAB score analysis 
 

 714 
Overview 715 
Building a TumorSPACE model requires spatial transcriptomic data and two inputs from 716 
SpaceRanger: (1) the raw gene UMI count matrix and (2) the spot spatial coordinate matrix. 717 
Model building subsequently operates on the gene count matrix to build many models that vary 718 
in hyperparameter choice. The spot spatial coordinates are then used for selecting the optimal 719 
hyperparameter set that maximizes accurate recovery of spatial spot organization.  720 
 721 
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Four hyperparameters are tuned during this process: (1) the number of principal components 722 
(PCs) of data-variance used for creating a latent space of the transcriptional data, (2) the limit of 723 
statistical robustness for spot-spot relatedness in the latent space, (3) the spatial dispersion of 724 
the nodes in the latent space hierarchical tree model, and (4) the number of KNN matches used 725 
for spot spatial prediction. The following sections will first establish the model latent space and 726 
compute statistical robustness and spatial dispersion properties of that latent space. 727 
Subsequently, all hyperparameters will be tuned to define the optimal model for mapping 728 
transcriptional content from TME spots to TME spatial organization. 729 
 730 
Creating a latent space 731 
The first step in building a TumorSPACE model is to create a latent space representation of the 732 
gene count data that incorporates statistical bootstrapping. TumorSPACE first embeds ST-seq 733 
spots into a latent space by applying singular value decomposition (SVD) to the gene count 734 
matrix62: 735 
     736 
      3 = 4Σ6G     (1) 737 
 738 
M is the SpaceRanger gene count matrix (m spots as rows, n genes as columns), U is the left 739 
singular matrix, S is the singular value matrix, and V is the right singular matrix. U is defined by 740 
cell spots (rows) and left singular vectors (columns), where each entry is the projection of a cell 741 
spot onto a left singular vector. S is a diagonal matrix where entries are singular values. 6G is 742 
defined by genes (rows) and right singular vectors (columns) where each entry is the projection 743 
of a gene onto a right singular vector.  744 
 First, from (1), a metric termed ‘spectral distance’ (D) between all spots is calculated. 745 
This metric was previously developed by our laboratory in the context of analyzing phylogenetic 746 
bacterial proteome content9. As implemented for spatial data in this manuscript, performing SVD 747 
on the gene count matrix determines the extent to which each cell spot projects onto each left 748 
singular vector. Therefore, a distance considering the transcriptomes of two spots can be 749 
computed by measuring the difference in the projections of two spots onto a left singular vector. 750 
Note, this definition of distance does not consider any information about spatial spot distribution.  751 

Next, groups of left singular vectors are combined to create ‘spectral groups’. These 752 
groups are defined based on the eigenvalues associated with each left singular vector: left 753 
singular vectors with similar eigenvalues are grouped together:  754 

 755 
07 = {9:H, 9:I, … }    (2) 756 

 757 
where SG is the total set of spectral groups, 9:His first set of columns extracted from U, 9:I is 758 
the second set of columns extracted from U, and so on. The concept of spectral groups was 759 
also previously developed by our laboratory38. Defining 9:" and 9:"JH is done by identifying 760 
larger than expected decreases in singular values between consecutive left singular vectors. To 761 
compute spectral groups, a vector of differences between consecutive singular values is 762 
computed for all left singular vectors. We use the upper and lower quartiles of this distribution in 763 
combination with a scaling parameter alpha to define the ‘expected difference’ bounds between 764 
singular values. Any difference in singular values outside of these bounds deviates from 765 
expectation and therefore defines a spectral group (see associated GitHub code for 766 
specification of parameters). The spectral distance for a pair of spots within a spectral group is 767 
then computed as the Euclidean distance between spot projections onto left singular vectors 768 
comprising the spectral group weighted by the eigenvalue associated with each left singular 769 
vector. The summation of these distances across all spectral groups is the spectral distance, 770 
>",C, between spots	? and @.  771 
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After computing >",C for all spots, the resulting construct is a spectral distance matrix D 772 
comprised of m rows and m columns where m is the number of spots in the original gene count 773 
matrix and each entry in D is the spectral distance between two spots. D is then used as input 774 
for hierarchical clustering with complete linkage to result in a tree T that relates all spots in a 775 
tumor sample to each other. T has m leaves and (m-1) internal vertices (nodes). The leaves are 776 
the ST-seq spots and the nodes : ∈ 7 represent G hierarchically ordered groupings of these 777 
spots. The resulting network is the TumorSPACE latent space of the original gene count matrix.  778 
 The number of spectral groups is dependent on how many of the total left singular 779 
vectors are considered. An increasing number of left singular vectors being included 780 
corresponds directly to the inclusion of deeper principal components when computing the latent 781 
space. For TumorSPACE models, the depth of principal components, ‘p’, is a hyperparameter 782 
that is tuned for embedding the gene count matrix into a latent space.  783 

 784 
Bootstrapping the latent space to evaluate statistical robustness 785 
TumorSPACE does not assume that each node g arises from biological signal. Instead, 786 
TumorSPACE bootstraps T using the Booster package’s implementation of transfer bootstrap 787 
expectation (TBE), the probability that node g appears in an empirically bootstrapped tree 788 
(default settings used for Booster)63. For generating empirically bootstrapped trees, we applied 789 
Gaussian multiplicative noise injection to the initial gene count matrix M to create a 790 
“bootstrapped” gene count matrix MB.  791 
 792 
      3K = 3	⨀C     (3) 793 
 794 
such that ⊙ indicates element-wise multiplication by a normally distributed random variable 795 
C	~	F($, )I)	with µ = 1 and s = 0.2. This matrix was then used as an input to (1) and a tree was 796 
created following the steps outlined in ‘Creating a latent space’ to generate a bootstrapped tree 797 
TB. Bootstrapping was done 10 times for a given dataset, followed by input of the original tree T 798 
and the bootstrapped trees TB into Booster for TBE computation. This results in a labeling of the 799 
original tree T’s set of nodes G with TBE support values bG such that IL 	 ∈ [0,1]. 800 
 801 
Calculating physical spatial dispersion in latent space 802 
The final property of T that is computed is the spatial dispersion k for each node comprising T. 803 
Spatial dispersion is estimated for each node using Ripley’s reduced second moment function 804 
K(r) with border correction64,65.  Let gs be the set of ST-seq spots within node g in T. The window 805 
of physical tumor space is defined by the spot spatial coordinate matrix such that lenx indicates 806 
the x-axis window length and leny indicates the y-axis window length. We then compute l, a 807 
normalization factor for spot intensity within a spatial region, and rmax, a factor that incorporates 808 
lambda to determine the maximum spatial distance being assessed. 809 
 810 
      * = |N%|

%$@&∗%$@'
       (4) 811 

    N'=#	 = min	{minRSTU# , STUQV , W
HRRR

S∗T
}    (5) 812 

where min denotes the minimum between a set of values. Let R be the set of spot spatial 813 
distances that will be assessed, such that  814 
   815 
    N	 ∈ /	|	/ = {0, U()&

8HI
, I∗U()&

8HI
, … , N'=#}    (6) 816 

 817 
We define the physical distance d  between any two spots as 818 
 819 
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YZ9+[\" , 9+[\C] = Δ",C =		ΔC," =	W(CE!;:! − CE!;:*)
I + (aE!;:! − aE!;:*)

I   (7) 820 

 821 
where (Xspot,Yspot) denote the physical space coordinates for a given spot. Spatial dispersion K(r) 822 
with border correction is then computed for all spots :E," , ∈ 	:E as 823 
     824 
   \<+,.!

U = bZ:E," , N] = 	∑ d{0	 < 	YZ:E," , 9+[\C] 	< N}'
CVH    (8) 825 

 826 

f(N) = 	
∑ (Y	{[!	\	U}∗:"+,.!

./).0(2)
!45
T∗∑ Y	{[!	\	U}

/).0(2)
!45

− 	gNI    (9) 827 

 828 
where \Z:E," , N] is the number of spots within distance r of a given :E," and I" is the distance from 829 
spot :E," to the window boundary. The general notation card(S) indicates the number of 830 
elements in a set S, and the general notation 1{f(x)} signifies a value of 1 when f(x) is true and a 831 
value of 0 when f(x) is false. Finally, spatial dispersion k is computed by summing the absolute 832 
value of K(r) over N	 ∈ / as follows. 833 
     834 
     h = 	∑ (I9(f(N))U	∈_      (10) 835 
 836 
This calculation labels all nodes G in tree T with spatial dispersion values kG such that 837 
hL 	 ∈ℝ [0,∞]. 838 
 839 
Hyperparameter optimization to create a TumorSPACE map 840 
TumorSPACE model optimization involves selecting the values of four hyperparameters that 841 
maximize model prediction accuracy (described in ‘Prediction Accuracy Calculation’) for a given 842 
dataset. These hyperparameters tune three properties of tree T – principal component depth p 843 
(from ‘Creating a latent space’), node TBE support b (from ‘Bootstrapping the latent space to 844 
evaluate statistical robustness’), node spatial dispersion k (from ‘Calculating physical spatial 845 
dispersion in latent space’) – as well as one property of accuracy computation, the number of 846 
spot KNN matches k. We perform hyperparameter tuning as a nested grid search by tuning p as 847 
an outer layer and then optimizing  [b, k, k] for a given value of p.  848 
 First, a set of PC depth values (np where default is set to 10) is randomly selected to 849 
create a set j = {+H, +I, … , +@6}. The PCs termed +" are chosen on a logarithmic interval 850 
between a minimum and maximum PC depth, which is the rank of the gene count matrix M. 851 
Next, a matrix of three hyperparameter values, k = {ℎH…@7

(H) , ℎH…@7
(I) , ℎH…@7

(c) }, are created where the 852 
vectors ℎ(H), ℎ(I), and ℎ(c) are independently sampled from distributions as follows. 853 
 854 

ℎ(H) ∈ℝ 	 10
d∗%;<HRe

8()&95
8(!:95

fJ%;<HR([(!:JH) − 1	   (11) 855 

ℎ(I) ∈ℝ 	 10
d∗%;<HRe

;()&95
;(!:95

fJ%;<HR(?(!:JH)	   (12) 856 

ℎ(c) ∈ℤ 	 N[mU>(10
d∗%;<HRe

<()&95
<(!:95

fJ%;<HR(h(!:JH))	  (13) 857 
 858 
 859 
In (11-13), X is a random variable drawn from 4U?b[N%([0,1]). Default values for 860 
hyperparameter bounds are I'"@ = 0, I'=# = 0.5, h'"@ = 0, h'=# = 1 p'"@ = 5, p'=# = 300. A 861 
minimum of Ui = 100 sets of {ℎ(H), ℎ(I), ℎ(c)} are initially sampled, after which additional sets are 862 
sampled until prediction accuracy optimization has converged. Prediction accuracy convergence 863 
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is reached when the difference in prediction accuracy (defined below in ‘Prediction Accuracy 864 
Calculation’) for the top 2 scoring hyperparameter sets is less than 0.05. For a given 865 
hyperparameter set hi, the TumorSPACE tree T is filtered for the set of nodes Gfilt such that 866 
each node in Gfilt satisfies 867 
    868 
    I ≥ ℎ"

(H) AND  h ≥ ℎ"
(I)   (14) 869 

 870 
The final filtered tree, Tfilt, comprises the set of nodes Gfilt’, which consists of Gfilt as well as the 871 
complete set of parent nodes from which Gfilt descend even if those parent nodes do not meet 872 
the criteria in (14), along with all ST-seq spots.  873 
 874 
Prediction accuracy calculation 875 
To identify the TumorSPACE model properties that were optimized for predicting spot spatial 876 
locations from transcriptomic data, we masked the physical location of each ST-seq spot and 877 
identified its k nearest neighbors in the TumorSPACE latent space by minimizing spectral 878 
distance.  879 
 880 
For any masked spot i amongst all spots I, we can define its p nearest neighbors FF",h as 881 
 882 
    FF",h = (N:%?UC	∈j

h s>Z9+[\" , 9+[\C]t	    (15) 883 
 884 
where ?	 ∈ u, p ∈ 	ℎ(c) as defined in (13), J is the set of all spots other than spot i, and argmink 885 
selects the set of p spots with the smallest spectral distance relative to spot i. To prevent 886 
overfitting, we identified for each 9+[\",k	 ∈ FF",h a randomly chosen 9+[\",k(  that belongs to the 887 
internal node :",k within Tfilt immediately ancestral to 9+[\",k	.  888 
 889 
We then estimated the location of masked spot i based on the x and y locations of the 890 
corresponding 9+[\",k(  spots. 891 
 892 
   CvE!;:! =	

H

h
∑ CE!;:!,=>
h
kVH  and avE!;:! =	

H

h
∑ aE!;:!,=>
h
kVH    (16) 893 

 894 
Finally, we computed the Pearson Correlation r  between the vectorized matrix Dactual  of 895 
pairwise actual spot-spot physical distances and the vectorized matrix Dpredicted  of pairwise 896 
predicted spot-spot physical distances.  897 
 898 
   Δ=l:F=%[?, @] = 	W(CE!;:! − CE!;:*)

I + (aE!;:! − aE!;:*)
I   (17) 899 

Δ!U$A"l:$A[?, @] = 	W(CvE!;:! − CvE!;:*)
I + (avE!;:! − avE!;:*)

I  (18) 900 

w = x[NNZyTx(Δ=l:F=%), yTx(Δ!U$A"l:$A)]	    (19) 901 
 902 
where vec() indicates matrix vectorization to a single column and corr() indicates Pearson 903 
Correlation. To compute a null distribution for r using empirical bootstrapping of actual versus 904 
predicted spot locations in a given dataset, we shuffled the vector 0zE!;:! = (CvE!;:! , avE!;:!) without 905 
replacement and then re-computed (17-18) using this shuffled vector 0zE!;:!

E>F99%$Aof predicted spot 906 
locations. 907 
 908 
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0zE!;:
E>F99%$A = Rf	 ⊆ 	0zE!;:!|	x(N>(f) = 	x(N>(u)} 	= (CvE!;:

E>F99%$A , avE!;:
E>F99%$A)   (20) 909 

Δ!U$A"l:$A
E>F99%$A [?, @] = 	W(CvE!;:!

E>F99%$A − CvE!;:*
E>F99%$A)I + (avE!;:!

E>F99%$A − avE!;:*
E>F99%$A)I  (21) 910 

wE>F99%$A = x[NNsyTx(Δ=l:F=%), yTx(Δ!U$A"l:$A
E>F99%$A )t	   (22) 911 

 912 
For Fig. 1B, wE>F99%$A is computed for 100 shuffles and the maximum w is taken as the ‘null’ 913 
prediction value. The null distribution is plotted in the grey distribution in Fig. 1B. 914 
 915 
Finally, the optimal TumorSPACE model &9"%:

;!: is found that maximizes r across hyperparameter 916 
sets P and H. 917 
 918 

&9"%:
;!: =	(N:%(}!∈m,>∈i

H 	(w!,>)    (23) 919 
 920 
 921 
TumorSPACE model outputs 922 
For a given input tumor ST-seq dataset, the output from TumorSPACE includes: (1) the 923 
TumorSPACE model &9"%:

;!:, (2) the Pearson Correlation estimate r, and (3) the set of predicted 924 
spot locations (CvE!;:! , avE!;:!) for all ST-seq spots. The final set of internal nodes within &9"%:

;!: are 925 
termed Spatial Groups (SGs).  926 
 927 
Spatial Group (SG) depth 928 
We computed SG depth as a measurable quantity that describes how a given SG relates to the 929 
other parts within a TumorSPACE model. As such, we first define ‘SG depth’ as a property of all 930 
SGs within a TumorSPACE model, and next define ‘spot SG depth’ as a property of all spots 931 
within the gene count matrix. 932 
 933 
To first define SG depth, we compute the complete ancestral node path for any internal node gi 934 
within &9"%:

;!: as 935 
 936 

'<!
!=:> = R(<!

R , (<!
H , (<!

I , … , (<!
@ V	    (24) 937 

 938 
such that  939 

	(<!
R = :" 	     (24) 940 

 941 
(<!
?JH = 'Z(<!

? ]	b[N	h	 ∈ [1, U − 1]   (25) 942 
 943 
  (<!

@ 	 ∈ 7     (26) 944 
 945 
(<!
?  indicates the kth ancestral node of node gi, A(node) denotes the immediate ancestral node	of 946 

a given node in &9"%:
;!:, and G is the set of internal nodes in &9"%:

;!:. By definition, (<!
@  will be the root 947 

node of &9"%:
;!:. We next define the spatial domain size )@;A$" 	for a given node g as the mean 948 

spot-spot physical distance between all spots within g. 949 
 950 

)@;A$" =	
∑ ∑ noE!;:!,E!;:*p

?
*45

@
!45

q∗j
	~ℎTNT	u = � = x(N>(:E)  (27) 951 

 952 
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Finally, we identify the subset of nodes '<!
@$E:$A 	within '<!

!=:> that satisfy the condition whereby 953 
the (k+1)th node is equal to or larger in spatial domain size than the kth node in that path.  954 
 955 

'<!
@$E:$A 	 ∈ 	'<!

!=:>	| 	Ä

'<!
!=:> = R(<!

R , (<!
H , (<!

I , … , (<!
@ V

'<!
@$E:$A = R(<!

R , (<!
H , (<!

I , … , (<!
? V

)="!
A95 ≥	)="!

A

  (28) 956 

 957 
where h ≤ U and 0 ≤ S ≤ h. The SG depth, *@;A$", for a given internal node gi is defined to be 958 
the number of ancestral generations that satisfy this condition of spatial domain nesting. 959 
 960 
    *@;A$" = x(N>Z'<!

@$E:$A] − 1     (29) 961 
 962 
SG-based differential abundance 963 
Differential abundance calculation requires two inputs: (1) an optimized TumorSPACE model 964 
&9"%:
;!:	and (2) a spot-by-feature matrix F. We computed differential abundance using three types 965 

of biological processes: genes, pathways, and deconvoluted cell type proportions. Computation 966 
of gene count, pathway usage, and cell type proportion matrices are described in the 967 
‘SpaceRanger’, ‘GSVA’, and ‘SpaCET’ Methods sections, respectively. The gene count matrix is 968 
normalized by the spot-wise total UMI count. 969 
 970 
First, we identified a subset of SGs 7rs ∈ 7 at which DA will be computed. We set a minimum of 971 
10 spots that must be present in both a given SG :rs ∈ 7rs and in its sibling node :rs(  (e.g. A 972 
and A’ in Fig. 2A) for inclusion within 7rs. 973 
 974 

7rs = Ç:rs ∈ 	79"%:
( 	|	x(N>(É(:rs)) ≥ 10	&		x(N>(É(:rs

( )) ≥ 10]  (30) 975 
 976 
where C(n) indicates the row indices within matrix F of the spots descending from SG :rs. 977 
Subsequently, for each node :rs and process f, the spot-wise process values between :rs and 978 
:rs
(  are compared using a two-sided Wilcoxon Rank Sum Test, where the test p-value is given 979 

by W(a,b). 980 
 981 
    +<#$,9 = Ö(Üt(<#$),9 , Üto<#$> p,9)    (31) 982 
 983 
To facilitate empirical correction for multiple hypothesis testing, we perform 20 shuffles of the 984 
process values between :rs and :rs( , followed by computation of the Wilcoxon p-value between 985 
these shuffles. Let É@BCB)A be the concatenation of spot indices É(:rs) and É(:rs( ). 986 
 987 

É<BCB)A = 	É(:rs)  + É(:rs( )    (32) 988 
 989 

É<BCB)A
E>F99%$A = Rf	 ⊆ 	É<BCB)A|	x(N>(f) = 	x(N>(É<BCB)A)} = 	É<#$

E>F99%$A +	É
<#$
>
E>F99%$A 	 (33) 990 

 991 
É<#$
E>F99%$A = É<BCB)A

E>F99%$A[1: x(N>(É(:rs))]   (34) 992 
 993 

É
<#$
>
E>F99%$A = É<BCB)A

E>F99%$A[(x(N>ZÉ(:rs)] + 1): (x(N>(É(:rs)) + x(N>(É(:rs
( )))] (35) 994 

 995 
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    +<#$,9
E>F99%$A = Ö(Ü

t"#$
+DEFFAG0,9 , Üt"#$>

+DEFFAG0,9)   (36) 996 

 997 
Let j<#$,C

E>F99%$A = {+<#$,C,H
E>F99%$A , +<#$,C,I

E>F99%$A , … , +<#$,C,@
E>F99%$A} be the set of n DA probabilities for node gDA 998 

and shuffle j, where n is the number of processes in F. Then, a given process is found to be 999 
differentially abundant at a given node if its unadjusted p-value, +<#$,9, is less than the minimum 1000 
of all shuffled probabilities for that node. To assign the direction of process abundance change 1001 
for nodes with significant abundance changes, given that our test examines relative changes in 1002 
expression between :rsand in its sibling node :rs( , we defined the larger of the two nodes as 1003 
having a “baseline expression profile” for that shared local transcriptional and spatial context. 1004 
Conversely, the smaller of the two nodes was defined as having either increased or decreased 1005 
abundance relative to the larger node. 1006 
 1007 
Contextual dependence of processes based on architecture of SGs 1008 
To determine whether differentially abundant processes within NSGs were impacted by the 1009 
differentially abundant processes of their parent SGs, we computed the odds ratio test for 1010 
independence as follows. Let b" ∈ Ü and bC	 ∈ Ü denote two biological processes drawn from the 1011 
set of all pathways and cell types identified (see ‘GSVA’ and ‘SpaCET’ sections). Across all 1012 
TumorSPACE models, we identified the set of NSG-parent SG pairs – denoted by (F" , jC) – 1013 
such that F"Jand F"u indicate the subset of NSGs where process	?		was increased or decreased 1014 
in abundance, respectively, and j"Jand j"u indicate the subset of parent SGs where 1015 
process	@		was increased or decreased in abundance, respectively. Then, the odds ratio of 1016 
independence ./",C was defined as, 1017 
  1018 

./",C =	
(
l=UA(v!

9,m!
9)

l=UA(v!
H,m!

9)w )

(
l=UA(v!

9,m!
H)

l=UA(v!
H,m!

H)w )
    (37) 1019 

 1020 
Standard definitions were used for calculation of odds ratio standard error and p-values66. 1021 
 1022 
SG-based spatial lability (SLAB) score 1023 
Given a single TumorSPACE model &9"%:

;!: and a process b" for which differential abundance has 1024 
been computed in &9"%:

;!:, we define the SLAB score as follows. Let 79! be the set of SGs in &9"%:
;!: 1025 

in which the process b" is differentially abundant (, < 0.05). For each node :?
9! ∈ 	79!, this 1026 

means that process b" is differentially abundant between :?
9! and its sister node :?

9!′ in	&9"%:
;!:. 1027 

First, we identify which of the nodes, either	:?
9! or :?

9!′, contains the fewer number of spots. This 1028 
node is defined as the node with either increased or decreased abundance of process b", while 1029 
the node with the greater number of spots is considered to be the ‘baseline’ abundance state for 1030 
process b" in that subset of the tumor biopsy. -'s&9"%:

;!: , b" , :?
9!t describes the set of spots with 1031 

differential abundance in process b" for TumorSPACE model &9"%:
;!: at node :?

9!: 1032 
 1033 

-'s&9"%:
;!: , b" , :?

9!t = {min sâÉs:?
9!t, És:?

9!(tä)	ã	:?
9! ∈ 	79! 	}	  (38) 1034 

 1035 
Next, we compute the union of those differentially abundant spots and compute the fraction that 1036 
these spots constitute compared to the total set of spots I in the biopsy as a whole.  1037 
 1038 
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 1039 

01'2s&9"%:
;!: , b"t = 	

l=UA(x{rsyGF!AB
C6B,9!,<;

F!z	|	<;
F!∈	LF!})

l=UA(q)
  (39) 1040 

 1041 
For Fig. 3D,E, SLAB scores were computed using either only NSGs or only non-NSGs as the 1042 
input set of SGs used for computing 79!. 1043 
 1044 
SLAB score correlation with bulk expression 1045 
For correlation of genome-wide SLAB scores with bulk gene expression, as in Fig. 2B and 1046 
Extended Data Fig. 3, we did the following. First, we identified the set of all dataset-gene pairs 1047 
for which the gene had greater than 0 UMIs detected per spot and a non-zero SLAB score in 1048 
that dataset. Next, to enable computing correlation statistics, we identified genes with greater 1049 
than 10 dataset entries in the filtered dataset-gene pair list. For these genes, we computed the 1050 
Pearson Correlation estimate and p-value between SLAB score and mean spot UMI count 1051 
across datasets. Correction for multiple hypothesis testing was done using the Benjamini-1052 
Hochberg method with a corrected q-value threshold of 0.0567. 1053 
 1054 
Spatial lability pan-tumor classification 1055 
Given the set of SLAB scores that were computed for all available genes for each of the 96 1056 
datasets within the pan-tumor ST-seq database (see ‘ST-seq dataset download and alignment’), 1057 
we aligned these score vectors into a matrix 3{|sK

m=@ 	such that each dataset was a row and each 1058 
gene was a column. For any instances where a gene had mapped reads in one dataset but not 1059 
another – thus resulting in blank cells in this matrix – the score within this matrix was set to zero. 1060 
Next, Euclidean distance was computed between each pair of rows, resulting in a distance 1061 
matrix of dimensions 96 x 96 that compared all datasets to each other. Finally, the Unweighted 1062 
Pair Group Method with Arithmetic mean (UPGMA) algorithm was used for constructing a 1063 
hierarchical tree relating datasets to each other (Extended Data Fig. 12)68.  1064 
 1065 
For defining tumor groups from this tree, we used the path of tree connections containing the 1066 
highest number of tumors as our reference point. From this ‘main path’, we labeled any 1067 
diverging branchpoints with labels A, B, C, … as shown in Fig. 3B. Whenever a group was 1068 
defined (e.g. group ‘A’), the remaining ‘main path’ tumors were defined as not in that group (e.g. 1069 
group ‘nA’, where ‘n’ indicates ‘not’). 1070 
 1071 
Building across-tumor spatial models 1072 
To evaluate the ability of spatial organization in one tumor biopsy (training) to predict spatial 1073 
organization in another tumor biopsy (testing), we applied the TumorSPACE workflow in the 1074 
following manner. First, an alignment was performed between the training tumor gene count 1075 
matrix and the testing tumor gene count matrix since the experiments may have used distinct 1076 
probe sets and thus mapped reads to non-identical sets of genes. Next, the testing tumor spot 1077 
transcriptomes were projected into the latent space of the training data, after which spectral 1078 
distances were computed to determine similarity between training tumor spots and testing tumor 1079 
spots. Finally, the training tissue TumorSPACE model T was optimized on the same properties 1080 
as before (see ‘Hyperparameter optimization to create a TumorSPACE map’) by tuning spatial 1081 
predictions on the training tissue and then evaluating prediction quality on the testing tissue. 1082 
 1083 
For latent space projection between the aligned gene count matrices, we denote the aligned 1084 
gene count matrices for training and testing tissues as Mtr (m1 x g) and Mte (m2 x g) respectively. 1085 
As follows from (1), we computed SVD on Mtr as  1086 
 1087 
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     3:U = 4:U ∗ 	Σ:U ∗ 6:UG      (40) 1088 
 1089 
We then projected Mte into the latent space 4:U as follows. The value of the hyperparameter p is 1090 
the value of p that maximizes spatial prediction in the training tumor dataset. 1091 
 1092 
    4:$ = 3:$ ∗ 	(6:UG

(H:!)
)uH ∗ (Σ:U

(H:!))uH    (41) 1093 
 1094 
where (6:UG

(H:!)
)uH is computed using the pseudo-inverse. Vertical concatenation of 4:U and 4:$ 1095 

yields a joint U matrix 4:U,:$. From 4:U,:$ and Σ:U, we compute spectral distance between all 1096 
spots in Mtr and Mte as -:U,:$. 1097 
 1098 
  -:U,:$ 	= 	9+Tx\N(S>?9\(UxT9(4:U,:$

(H:!), Σ:U
(H:!), :T\?U\TNy(S9 s4:U,:$

(H:!)t)  (42)  1099 
 1100 
Finally, we filtered matrix -:U,:$ for the matrix of spectral distances -:U,:$(  of shape m2 x m1 that 1101 
contains pairwise distances of spots only between Mtr and Mte. This operation removes intra-1102 
group spectral distance comparisons for both Mtr and Mte and keeps only inter-group spectral 1103 
distance comparisons between pairs of spots in Mtr and Mte. 1104 
 1105 

-:U,:$( =	-:U,:$
(('5JH):('5J'I),H:'5)    (43) 1106 

 1107 
Differential SLAB score analysis 1108 
Using the tumor groups as defined in ‘Spatial lability pan-tumor classification’, we compared 1109 
each group K to the set nK of ‘main path’ tumors divergent from that group.  1110 
 1111 
To compare gene-level SLAB scores, we first compose the matrix 1? of SLAB scores where 1?  1112 
has h +	h@	rows corresponding to tumors h ∈ f and h@ ∈ Uf and F columns where b ∈ Ü 1113 
constitutes the full set of genes. Next, for each gene f, we compare the tumors in K and nK 1114 
where C(X) indicates the row indices within matrix 1? that correspond to tumors in either group. 1115 
Comparison is performed using a Mann-Whitney U Test, where the test p-value is given by 1116 
MW(a,b). 1117 
 1118 
     +D,9 = 3Ö(1t(D),9

? , 1t(@D),9
? )    (44) 1119 

 1120 
To facilitate empirical correction for multiple hypothesis testing, we perform 1000 shuffles of the 1121 
SLAB counts between K and nK, followed by computation of the MW p-value between these 1122 
shuffles. Let ÉDBCB)A be the concatenation of row indices É(f) and É(Uf). 1123 
 1124 

ÉDBCB)A = 	É(f)  + É(Uf)    (45) 1125 
 1126 

ÉDBCB)A
E>F99%$A = R�	 ⊆ 	ÉDBCB)A|	x(N>(�) = 	x(N>(ÉDBCB)A)} = 	ÉD

E>F99%$A +	É@D
E>F99%$A 	 (46) 1127 

 1128 
ÉD
E>F99%$A = ÉDBCB)A

E>F99%$A[1: x(N>(É(f))]   (47) 1129 
 1130 

É@D
E>F99%$A = ÉDBCB)A

E>F99%$A[(x(N>ZÉ(f)] + 1): (x(N>(É(f)) + x(N>(É(Uf)))] (48) 1131 
 1132 

    +D,9
E>F99%$A = 3Ö(1

tJ
+DEFFAG0,9

? , 1
t:J
+DEFFAG0,9

? )   (49) 1133 
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 1134 
Let jD,C

E>F99%$A = {+D,C,H
E>F99%$A , +D,C,I

E>F99%$A , … , +D,C,@
E>F99%$A} be the set of n probabilities for group K and 1135 

shuffle j, where n is the number of genes in F. Then, a given gene is found to have a differential 1136 
SLAB score between a given grouping K vs nK if its unadjusted p-value, +D,9, is less than the 5th 1137 
percentile (q = 0.05) of all shuffled probabilities. 1138 
 1139 
To compare pathway-level SLAB scores, we used either over-representation analysis (ORA) or 1140 
gene-set enrichment analysis (GSEA). For both analyses, we computed enrichment for the set 1141 
of Reactome pathways within the MSigDB database69,70 (Supplementary Table 5). ORA was 1142 
performed using Enrichr with default parameters, which uses a Fisher exact test to compute 1143 
enrichment of a gene list for a given pathway71. The background gene set used was the set of 1144 
all genes with mapped reads in any sample. GSEA was performed using 20,000 permutations 1145 
with the “signal-to-noise” ratio used for ranking69. For both ORA and GSEA, correction for 1146 
multiple hypothesis testing was implemented by using a false discovery rate threshold of < 0.1. 1147 
 1148 
Classification of NSCLC datasets by pan-tumor immune spatial lability 1149 
For comparison of out-of-sample NSCLC tumors to pan-tumor spatial lability groups shown in 1150 
Fig. 3B, we first computed SLAB scores for all genes and aligned the score vectors to match 1151 
the columns (genes) of the pan-tumor SLAB score matrix 3{|sK

m=@ 	. Any genes with no detectable 1152 
reads for a given sample had their SLAB score set to zero. We called this new matrix 3{|sK

v{t|t. 1153 
For every pair of rows (N!!

m=@, N@*
v{t|t), where N!!

m=@ indicates the score vector for sample +" ∈ j in 1154 
the pan-tumor database and N@*

v{t|t indicates the score vector for sample UC ∈ F in the NSCLC 1155 
out-of-sample dataset, we computed the Euclidean distance -!!,@*

{|sK that describes the similarity 1156 
between these two samples with respect to their SLAB scores. For a given NSCLC sample UC, 1157 
we identified the pan-tumor dataset +" with the lowest Euclidean distance to UC and assigned UC 1158 
to the same spatial lability class as +". 1159 
 1160 
For defining immune spatial lability, since tumor groups ‘C’ and ‘E’ both demonstrated 1161 
enrichment in SLAB score for immune biology components, we defined ‘nE’ tumors as immune 1162 
spatially invariant (ISI) and tumors in groups A, B, C, D, or E as immune spatially labile (ISL). 1163 
 1164 
Classification of NSCLC datasets using bulk expression and published gene sets 1165 
To determine whether classification of tumor datasets by either (1) bulk expression versus 1166 
SLAB score or (2) previously published gene sets for NSCLC IO response was predictive of 1167 
PFS in our NSCLC cohort, we performed the following analysis.  1168 
 1169 
First, we computed aligned matrices as described in ‘Spatial lability pan-tumor classification’ for 1170 
both the pan-tumor datasets and the NSCLC datasets where matrices contained either bulk 1171 
expression data or SLAB score data. For bulk expression, we computed the mean spot-wise 1172 
UMI count for any given gene. Second, we filtered the aligned matrices for subset of columns 1173 
(genes) described by a particular gene set or used all columns for the ‘all genes’ analysis. Third, 1174 
we computed a hierarchical tree using the pan-tumor data and identified the best matches to 1175 
datasets within that tree for all NSCLC datasets as described in ‘Spatial lability pan-tumor 1176 
classification’. Fourth, K-means clustering with K = 2 was applied to the Euclidean distances 1177 
between all pairs of ‘best match’ pan-tumor datasets. K-means clustering was performed 100 1178 
times for each condition using different random seeds each time. Finally, the two classes that 1179 
were defined were used to classify the NSCLC cohort based on the matching performed 1180 
between the NSCLC tumors and the pan-tumor datasets in the third step described above. 1181 
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These classes were subsequently applied to survival analysis (described below in ‘Survival 1182 
analysis’) to determine if they were predictive of NSCLC ICB outcomes. 1183 
 1184 
Survival analysis 1185 
For survival analysis we used the R ‘survival’ package to model progression-free survival (PFS) 1186 
as a function of possible confounder variables (Treatment regimen, KRAS mutation status) or 1187 
classification variables (PD-L1 multi-class, PD-L1 binary, ISL/ISI, bulk expression- and SLAB 1188 
score- gene sets). For confounder analysis, outcomes were modeled using Cox’s univariate 1189 
proportional hazards model. For Kaplan-Meier survival curves stratified by classification 1190 
variables, survival was estimated using the Kaplan-Meier method and reported p-values were 1191 
calculated using the log rank statistical test. For censored data labeling, 1 indicates that PFS 1192 
was observed while 0 indicates the patient was censored for PFS.  1193 
 1194 
GSVA 1195 
Gene set variation analysis (GSVA) estimates GSVA pathway enrichment scores for a given set 1196 
of pathways from gene expression data72. It requires (1) the spot-by-gene count matrix from 1197 
SpaceRanger and (2) a list of pathway gene sets. We used a subset of the KEGG pathways 1198 
from the MSigDB database69,73 (Supplementary Table 6). The ‘KCDF’ parameter was set to 1199 
“none”, which enforces a direct estimation of cumulative density function without assuming a 1200 
kernel function. Otherwise, default parameters were used. 1201 
 1202 
SpaCET 1203 
SpaCET estimates deconvoluted cell type proportions within spots of an ST-seq experiment39. It 1204 
requires the user to supply (1) the SpaceRanger gene count matrix as input and (2) a value for 1205 
the ‘cancerType’ parameter to define the SpaCET library scRNA-seq datasets used for cell type 1206 
definition. The ‘cancerType’ values chosen for each ST-seq dataset are listed in 1207 
Supplementary Table 7. Otherwise, default parameters and commands were used as per the 1208 
repository instructions (https://data2intelligence.github.io/SpaCET/articles/visium_BC.html). 1209 
 1210 
CODEX multiplexed immunofluorescence - analysis 1211 
 1212 
Cell segmentation 1213 
Following image acquisition and pre-processing (see ‘Experimental method details: CODEX 1214 
multiplexed immunofluorescence’), we applied the neural network-based cell segmentation tool, 1215 
DeepCell, on the DAPI channel for nuclei identification74. Next, these nuclei segmentation 1216 
masks were used to estimate whole cell segmentation boundaries using the 1217 
‘skimage.morphology.binary_dilation’ function in the Python scikit-image package75. This 1218 
function dilates nuclear segmentation boundaries by stochastically flipping pixels into the mask 1219 
boundary with a probability equal to the fraction of positive neighboring pixels for 9 cycles. We 1220 
then computed mean expression for each antibody across pixels within each whole cell 1221 
segmentation boundary, which we define as the signal intensity 0?:U(S":	for cell i and target t. 1222 
 1223 
Cell-level quality control 1224 
Since there is technical variation in CODEX staining and imaging quality, we applied multiple 1225 
quality control filters to eliminate cells with atypical quality characteristics. First, we defined for 1226 
cell i the signal sum Σ", mean µ", standard deviation σ", and coefficient of variation CoV" 	across 1227 
the set of targets T, composed of DAPI + all antibodies in Supplementary Table 8. 1228 
  1229 

Σ" =	∑ 0?:U(S"
:	b[N	\	 ∈ &:     (50) 1230 

 1231 
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µ" =	
~!

l=UA(G)
     (51) 1232 

 1233 

σ" =	W
∑ ({"<@=%!

B	u	�!)IB
l=UA(G)

     (52) 1234 
 1235 

CoV" =	
Ä!
�!

     (53) 1236 
 1237 

We then filtered cells for analysis only when Σ", CoV", and 0?:U(S"rsmq fall within the 5 – 95% of 1238 
values for cells within that particular sample (Extended Data Fig. 13A). Let I indicate the set of 1239 
cells within a single sample. Then, 1240 
 1241 

xTSS99"%:	 ∈ xTSS9q 	| 	í

,m(U\?ST(Σq , 0.05) ≤ 	Σ9 ≤ 	,m(U\?ST(Σq , 0.95)
,m(U\?ST(CoVq , 0.05) ≤ 	CoV9 ≤ 	,m(U\?ST(CoVq , 0.95)

,m(U\?ST(0?:U(Sq
r , 0.05) ≤ 	0?:U(S9

r ≤ 	,m(U\?ST(0��:U(Sqr , 0.95)
  (54) 1242 

 1243 
where Σ9, CoV9, and 0?:U(S9r	denote the signal sum, signal CoV, and DAPI intensity signal for a 1244 
given cell f in xTSS99"%:	. We found that excluded cells tended to be found along tissue borders 1245 
(Extended Data Fig. 13B). 1246 
 1247 
Signal normalization 1248 
We normalized signal intensities for (1) variation in local background and (2) variation in signal 1249 
distribution between samples. 1250 
 1251 
To correct for variation in local background, we divided each sample into 100 equally sized bins 1252 
and used multi-Gaussian modeling for each target \	 ∈ & to identify the upper limits of that 1253 
marker’s local null distribution. Let i and j represent the bin numbers in the x and y directions 1254 
respectively. Then we denote cellsi,j as the set of cells in a given sample bin (i,j) and 0?:U(S",C:  as 1255 
the set of signal intensities for marker t for cellsi,j. We used the ‘mclust’ R package to fit 2 1256 
Gaussians to 0?:U(S",C:  for all values of i, j, and t. Then we defined the upper bound 1257 
2(xh:N[mU>",C

: 	of the null distribution as the 95% percentile of that distribution for a given bin 1258 
and marker. We found wide variation in the distributions of 2(xh:N[mU>",C:  for different targets t 1259 
and for different samples, underscoring the need to use target-specific background correction 1260 
(Extended Data Fig. 14A, B). Finally, we subtracted 2(xh:N[mU>",C:  from  0?:U(S",C:  as a 1261 
correction for local background signal variation. 1262 
 1263 

?, @	 ∈ℤ 	 {1, 2, 3, . . . , 10}     (55)  1264 
 1265 

0?:U(S",C
: 	~	F($H, )H

I) + 	F($I, )I
I) where $H <	$I  (56) 1266 

 1267 
2(xh:N[mU>",C

: = $H + 	1.645 ∗
Å5

Çl=UA(l$%%E!.*)
   (57) 1268 

 1269 
F[N%",C

: =	0?:U(S",C
: −	2(xh:N[mU>",C

:    (58) 1270 
 1271 

To minimize variation in signal quantitation between samples, we then scaled the intensity 1272 
distribution for each target to match across both DLBCL samples, using ‘DLBCL Patient 1’ as a 1273 
reference for scaling. Let F[N%"

: and 0x(ST": indicate the distribution of normalized and scaled 1274 
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intensities, respectively, from (54) for target t and DLBCL patient i. Let mean and sd indicate the 1275 
mean and standard deviations of these intensity distributions. 1276 
 1277 

 0x(ST": =	
v;U'!

B	u	'$=@(v;U'!
B)

EA(v;U'!
B)

∗ 9>(F[N%H
:) + %T(U(F[N%H

:)  (59) 1278 
 1279 
Cell type classification 1280 
Cell types were identified from CODEX data using the following thresholds on the scaled 1281 
intensities 0x(ST":. Let cellsall indicate the set of all cells across both DLBCL samples. Let 1282 
xTSS9l 	 ∈ xTSS9=%%	indicate the subset of these cells classified as class c for all cell types x	 ∈ É. 1283 
The limits for each cell-type defining marker in the following definitions were identified and 1284 
tested iteratively to minimize the fraction of ‘Unidentifiable’ cells while maintaining specific 1285 
classifications for each cell type (Extended Data Fig. 14C). 1286 
  1287 

xTSS9tsÉ ∈ xTSS9=%% 	| 	ó
0x(ST"

={Ñs > 0.25	[N

0x(ST"
Ö"'$@:"@ > 10

b[N	?	 ∈ 	 xTSS9tsÉ  (60) 1288 

 1289 

xTSS9$@A;:>$%"=% ∈ xTSS9=%% 	| 	ó
0x(ST"

trcH > 2.5	[N
0x(ST"

trHÜH > 2
b[N	?	 ∈ 	 xTSS9$@A;:>$%"=% (61) 1290 

 1291 

xTSS9r|Kt| ∈ xTSS9=%% 	|

⎩
⎪
⎨

⎪
⎧ 0x(ST"

trcá > 4	[N
0x(ST"

trIR > 10	[N
0x(ST"

trIH > 20	[N
0x(ST"

tràâ= > 0.25

	b[N	?	 ∈ 	 xTSS9r|Kt| (62) 1292 

 1293 

xTSS9trÜ	G ∈ xTSS9=%% 	| 	ùó
0x(ST"

trc$ > 50	(U>
0x(ST"

trÜ > 15
	b[N	?	 ∈ 	 xTSS9trÜ	G (63) 1294 

 1295 

xTSS9trá	G ∈ xTSS9=%% 	| 	

⎩
⎨

⎧
í
0x(ST"

trc$ > 50	(U>
0x(ST"

trÜ < 15	(U>
0x(ST"

trá > 5

	b[N	?	 ∈ 	 xTSS9trá	G (64) 1296 

 1297 

xTSS9lrt ∈ xTSS9=%% 	| 	ùó
0x(ST"

trHHl > 15	[N
0x(ST"

trHÜH > 2
	b[N	?	 ∈ 	 xTSS9lrt  (65) 1298 

 1299 

xTSS9'=lU;!>=<$ ∈ xTSS9=%% 	| 	ùó
0x(ST"

trHHl < 15	(U>
0x(ST"

träá > 50
	b[N	?	 ∈ 	 xTSS9'=lU;!>=<$  (66) 1300 

 1301 
 1302 

xTSS9@$F:U;!>"% ∈ xTSS9=%% 	| 	ùó
0x(ST"

Ñmã > 5	[N
0x(ST"

trää > 0.25
	b[N	?	 ∈ 	 xTSS9@$F:U;!>"%  (67) 1303 

 1304 
For cells that were classified into multiple classes by these criteria, we labeled cells as “DLBCL” 1305 
if one of their multiple class labels was “DLBCL” and otherwise labeled them as “Unidentifiable”. 1306 
 1307 
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As an orthogonal validation of SpaCET-based cell type deconvolution, we observed high 1308 
concordance (R = 0.99) in cell type classification between transcriptional inference and IF-1309 
based classification (Extended Data Fig. 15, Supplementary Table 9).  1310 
 1311 
CoV analysis of cell type abundance 1312 
For estimating variation in cell type abundance at a variety of distance scales, we computed the 1313 
coefficient of variation (CoV) in cell type abundance across a grid of regions in each tumor 1314 
biopsy. First, we divided each tumor region into bins of size ranging from 0.3 x 0.3 mm to 10 x 1315 
10 mm. Let 2?U9q? indicate the set of I bins for a given width k for a tumor sample. We then 1316 
selected the subset 2?U9q?′ in which every bin I?U"?( ∈ 2?U9q?′  that has at least 100 annotated 1317 
cells. We computed the fractional abundance of each cell type in I?U"?( as bN(x",l?(  where x	 ∈ É is 1318 
the set of all annotated cell types. Finally, we computed É[6l? 	to be coefficient of variation for a 1319 
given cell type c at length scale k. 1320 
 1321 

Σl? =	∑ bN(x",l
?( 	b[N	?	 ∈ u"     (68) 1322 

 1323 
$l? =	

~/;

l=UA(q)
     (69) 1324 

 1325 

)l? =	W
∑ (9U=l!,/

;>	u	&/;)I!
l=UA(q)

     (70) 1326 
 1327 

É[6l? =	
Å/;

&/;
     (71) 1328 

 1329 
 1330 
Experimental method details 1331 
 1332 
10X Visium CytAssist spatial transcriptomics (ST-seq) 1333 
Tissue quality was determined by isolation of RNA from FFPE using the Qiagen RNeasy FFPE 1334 
kit. Samples were then analyzed for tissue extraction quality using the Agilent 2100 bio-analyzer 1335 
and Agilent RNA-6000 pico kit. For each sample, a DV200 score – the fraction of RNA 1336 
fragments > 200 nucleotides in length – was calculated. Tissue quality for all samples was 1337 
tested on unstained sections adjacent to the section used for ST-seq. 1338 
 1339 
DLBCL samples were previously H&E stained. Imaging and coverslip removal were completed 1340 
as described by 10X Protocol CG000518-Rev A and decrosslinking was performed according to 1341 
10X Protocol CG000520-Rev A76,77. NSCLC samples underwent deparaffinization, H&E 1342 
staining, imaging, and decrosslinking according to CG000520-Rev B78. Sample imaging for all 1343 
samples was performed using the Akoya Biosciences Vectra Polaris at 20X magnification. 1344 
 1345 
We next performed the following steps as per either 10X Protocol CG000495-Rev A for the 1346 
DLBCL samples or 10X Protocol CG000495-Rev E for the NSCLC samples79,80. First, samples 1347 
underwent probe hybridization with Visium Human Transcriptome Probe Set v2.0, followed by 1348 
probe ligation, and associated washes (Supplementary Table 10). Two native tissue slides and 1349 
one Visium CytAssist 11 x 11 mm slide were then placed within the Visium CytAssist to enable 1350 
RNA digestion, tissue removal, and transfer of ligated products onto the two fiducial frames of 1351 
the Visium Slide. Next, we performed probe extension and elution off the Visium Slide, followed 1352 
by pre-amplification and SPRIselect cleanup. For SPRIselect cleanup, DLBCL samples placed 1353 
in only the ‘High’ position of the 10X magnetic separator, while NSCLC samples were placed in 1354 
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both ‘High’ and ‘Low’ positions according to CG000495-Rev E. To identify the optimal number of 1355 
cycles for library amplification, we performed qPCR using Applied Biosciences QuantStudio 6 1356 
Pro as per CG000495-Rev E (Supplementary Table 4). For this step, we included 0.5 µl of 1357 
carboxy-X-rhodamine (ROX) with the DLBCL samples and not with the NSCLC samples. 1358 
Sample Index PCR was run using the sample-specific optimal number of cycles, followed by: 1359 
cleanup, Agilent TapeStation QC, sequencing, and demultiplexing using Bcl2fastq. Sample 1360 
sequencing was performed on a NovaSeq 6000 for DLBCL samples and a NovaSeqX for 1361 
NSCLC samples. Sample-specific parameters and QC are listed in Supplementary Table 4. 1362 
For DLBCL experiments, we used the Applied Biosystems Veriti 96 well thermocycler, while for 1363 
NSCLC samples we used the Eppendorf Mastercycler X50a and X50I. 1364 
 1365 
CODEX multiplexed immunofluorescence 1366 
 1367 
Slide preparation 1368 
DLBCL samples were previously obtained as unstained slides mounted with 5 µm thickness 1369 
formaldehyde-fixed, paraffin-embedded (FFPE) sections from the same patient biopsies as 1370 
described in ‘Patient samples‘. Coverslips were coated with 0.1% poly-l-lysine solution prior to 1371 
mounting tissue sections to enhance adherence. The prepared coverslips were washed and 1372 
stored according to guidelines from the CODEX user manual.  1373 
 1374 
Antibody preparation 1375 
Custom conjugated antibodies were conjugated using the CODEX conjugation kit as per the 1376 
CODEX user manual (Supplementary Table 8). Briefly, the antibody is (1) partially reduced to 1377 
expose thiol ends of the antibody heavy chains, (2) conjugated with a CODEX barcode, (3) 1378 
purified, and (4) added to Antibody Storage Solution for long-term stabilization. Subsequently, 1379 
antibody conjugation is verified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis 1380 
and with QC staining. 1381 
 1382 
Staining and data acquisition 1383 
Sample slides are stained following protocols in the CODEX User Manual. Briefly, samples are 1384 
pretreated by heating at 60°C overnight, followed by deparaffinization, rehydration using ethanol 1385 
washes, and antigen retrieval via immersion in Tris-EDTA pH 9.0 for 20 minutes. Samples are 1386 
then blocked in staining buffer and incubated with the antibody cocktail for 3 hours at room 1387 
temperature. After incubation, samples are washed and fixed following the CODEX User 1388 
Manual. Data acquisition was performed using the PhenoCycler-Fusion 2.0 with a 20X 1389 
objective, resulting in a resolution of 0.5 µm/pixel. 1390 
 1391 
Patient tumor PD-L1 IHC 1392 
FFPE biopsy samples were probed for PD-L1 expression using a qualitative 1393 
immunohistochemical assay with the Dako 22C3 antibody (Pharm Dx kit). PD-L1 expression 1394 
was classified using the Tumor Proportion Score (TPS), which represents the percentage of 1395 
viable tumor cells that show partial or complete membrane staining. Normal background 1396 
histiocytes served as internal controls to ensure quality of the PD-L1 staining. Quantification 1397 
was performed by a board-certified pathologist as part of routine clinical care. 1398 
 1399 
Patient somatic mutation testing 1400 
The molecular profiles of the tumor biopsies were analyzed using Oncoplus or Oncoscreen, two 1401 
Next Generation Sequencing (NGS) assays81. A description of patient mutation status can be 1402 
found in Supplementary Table 11. Since the list of targeted genomic regions varied by the year 1403 
in which testing was performed, a list of Oncoplus/Oncoscreen versions used for each patient 1404 
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as well as a list of the targeted genomic regions for each version can be found in 1405 
Supplementary Tables 11 and 12, respectively. 1406 
 1407 
For the Oncoplus analysis, DNA was isolated from the samples using the QIAamp DNA Blood 1408 
Mini Kit (Qiagen), fragmented, and prepared into a sequencing library with patient-specific 1409 
indexes (HTP Library Preparation Kit, Kapa Biosystems). Targeted genomic regions were 1410 
enriched using a panel of biotinylated oligonucleotides (SeqCap EZ, Roche Nimblegen) 1411 
supplemented with additional oligonucleotides (xGen Lockdown Probes, IDT). The enriched 1412 
libraries were then sequenced on an Illumina HiSeq 2500 system, and the data was analyzed 1413 
via bioinformatics pipelines against the hg19 (GRCh37) human genome reference sequence. 1414 
  1415 
For Oncoscreen, DNA was isolated from formalin-fixed paraffin-embedded (FFPE) tumor tissue 1416 
using the QIAamp DNA FFPE Tissue Kit (Qiagen). DNA was quantified using the Qubit 1417 
fluorometric assay (Thermo Fisher Scientific) and a quantitative PCR assay (hgDNA 1418 
Quantitation and QC kit, KAPA Biosystems). Targeted genomic regions were amplified using 1419 
multiplex PCR (Thermo Fisher Scientific); PCR products were used to prepare NGS libraries 1420 
with patient-specific adapter index sequences (HTP Library Preparation Kit, KAPA Biosystems). 1421 
The enriched libraries were then sequenced on an Illumina MiSeq system, and the data was 1422 
analyzed via bioinformatics pipelines against the hg19 (GRCh37) human genome reference 1423 
sequence. 1424 
 1425 
Patient tumor volume measurements 1426 
For measurement of tumor volume changes over time, computed tomography (CT) imaging 1427 
reports were obtained for patients in the NSCLC as permitted by the IRBs referenced in ‘Patient 1428 
samples’. For patients with measurable disease at the time of treatment start (denoted as month 1429 
zero), the largest lesion was identified and labeled the ‘index lesion’. Changes in index lesions 1430 
were collected when described in serial reports by a board-certified radiologist as part of routine 1431 
clinical care. 1432 
 1433 
Subject details 1434 
 1435 
Patient samples 1436 
Non-small cell lung cancer (NSCLC) patients were treated with immune checkpoint blockade 1437 
therapy +/- chemotherapy at the University of Chicago Medical Center (Chicago, IL). All patients 1438 
provided written informed consent for the collection and study of pre-treatment diagnostic tumor 1439 
biopsy samples and for clinical outcomes including treatment regimen, treatment-related 1440 
toxicities, and disease outcomes, as approved by the University of Chicago Institutional Review 1441 
Board (IRB 9571 and IRB 24-0063). For the ST-seq analysis, 16 tumor samples were collected 1442 
prior to therapy initiation, each from a separate patient. Inclusion criteria for these patients 1443 
included (1) NSCLC stage IV patients either at initial presentation or as progression from 1444 
previously treated early-stage disease, (2) biopsy of either the primary tumor or a metastatic 1445 
tumor performed and stored within 6 months prior to treatment in the metastatic setting, (3) 1446 
subsequent first line treatment with anti-PD1/anti-PD-L1 immune checkpoint blockade (ICB) with 1447 
or without platinum-based chemotherapy. Exclusion criteria included (1) no prior therapy in the 1448 
metastatic setting and (2) less than 2 doses of ICB therapy administered. We selected the first 1449 
16 patients that met these criteria and that had an available FFPE tumor biopsy block. From the 1450 
archival block, a fresh 5 µm section was cut and placed on a standard slide for use in ST-seq 1451 
protocols (see ‘10X Visium spatial transcriptomics (ST-seq)‘). Progression was defined as time 1452 
from the first dose of ICB until either radiographic or symptom-based evidence of disease 1453 
progression. ICB regimen, ICB treatment duration, reason for ICB discontinuation, time to 1454 
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progression following ICB start, and time to death following ICB start are listed for all patients 1455 
(Supplementary Table 11). 1456 
 1457 
Diffuse large B-cell lymphoma (DLBCL) patients were treated at the University of Chicago 1458 
Medical Center (Chicago, IL). All patients provided written informed consent for the collection 1459 
and study of pre-treatment diagnostic tumor biopsy samples and for clinical outcomes including 1460 
treatment regimen, treatment-related toxicities, and disease outcomes, as approved by the 1461 
University of Chicago Institutional Review Board (IRB 13-1297). Each biopsy was reviewed by 2 1462 
hematopathologists for diagnostic confirmation. Biopsy slides were previously cut from FFPE 1463 
sections and H&E stained for prior studies82.  1464 
  1465 
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