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1. Introduction
1.1. Steinberg modules and Borel-Serre duality

Although the Steinberg module was initially introduced as an object of study in
representation theory, the work of Borel-Serre [3] showed its importance to the study
of cohomology of arithmetic groups. In this paper, we are interested in the arithmetic
group SL,,(Z) and its congruence subgroups. We use their relationship to the Steinberg
module for SL,(Q) to obtain new insights about the high-dimensional cohomology of
these groups.

We begin by recalling the relevant definitions. Let F be a field. The Tits building
associated to SL,, (IF), denoted T, (F), is the geometric realisation of the poset of proper
nonzero subspaces of F”. It is (n — 2)-spherical by the Solomon—Tits Theorem [21] and
its one potentially nonvanishing reduced homology group is called the Steinberg module

Stn(F) := Hy—o(Tn(F)).

The group SL,,(F) acts on the Tits building and hence the Steinberg module is a repre-
sentation of SL, (IF). The results of Borel-Serre [3] show that SL,(Z) is a virtual duality
group of dimension (}) and that the Steinberg module St, (Q) is the virtual dualizing
module. Thus, for any finite index subgroup I' C SL,,(Z), we have H*(I'; Q) = 0 for
k> (3) and

n

HG)=(; Q) = Hy(T;St,(Q) ® Q). (1)

If T' is torsion-free, then H(S)*i(r) = H,(T;St,(Q)). We call the cohomology group
H(g)*i(I‘) the codimension-i cohomology of T'.

1.2. Resolutions of Steinberg modules

Borel-Serre duality is useful because it translates questions about the high-degree co-
homology of SL,(Z) and its finite index subgroups to questions about their low-degree
homology, at the cost of working with twisted coefficients. One can compute this group
homology with twisted coefficients by constructing a projective resolution of the co-
efficient module. The main achievement of this work is the construction of a partial
resolution of St,(Q),

MQ — Ml — Mo — Stn(Q) — 0,

where the SL,,(Z)-modules M; for i = 0,1, 2 have generating sets that allow for an easy
description of the SL,(Z)-action (see below).
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Fig. 1. The apartment Az, 7, 5,3 in 73(Q).

This extends work of Solomon-Tits [21], Ash-Rudolph [1], and Bykovskif [4]: Given a
basis 8 = {tp,...,0,—1} of Q", let Ag be the full subcomplex of 7,,(Q) of all subspaces
that are spans of nonempty proper subsets of {#y, ..., ¥,_1}. This subcomplex is called
an apartment. It is homeomorphic to S™~2 and this sphere has a canonical fundamental
class [Ag] (well-defined up to sign). See Fig. 1. By the Solomon-Tits Theorem, the images
of all these homology classes form a generating set for the Steinberg module St,,(Q) =
ﬁn_g(ﬁ((@)). Ash-Rudolph [1] showed that in fact, a generating set is given by the
integral apartment classes (also known as modular symbols), i.e. the images of [Ag],
where § = {¥p,...,U,—1} is a basis of Z™. Bykovskil [4] extended this to a presentation.
Now our resolution computes the two-syzygies (the relations among the relations) of
St (Q).

Our partial resolution admits the following “combinatorial” description: We define the

groups M as quotients of free abelian groups, generated by formal symbols [[¥p, . . ., Tk]],
where 1, . .., U, are certain sets of vectors in Z™. The action of SL,,(Z) on Z™ induces an
action on the sets of these formal symbols, given by ¢-[[y, . .., Ux]] = [[¢(¥0), - - - , ?(Tk)]]-

Generators: Let M be the quotient of the free abelian group
([[Yos .- Un=1]] | To,...,Un-1 a basis of Z"),
by the relations:

i) [[T0, ..., Tn1]] = sgn(0)[[Us(0); - - - » Us(n—1)]] for all permutations o € Sym(n),

ii) [[To, .., Tn-1]] = [[£Y0,- .., ETn_1]], (with the n signs each chosen independently).

Relations: Let Mj be the quotient of the free abelian group

there exist indices i, j, k with
<[[170, coy Un]]l | @ o, e Tim1, Tig1, - -, Un i8 a basis of Z™, >
L] ﬁi:iﬁjﬂ:ﬁk or 171' :iﬁjﬂ:ﬁkﬂ:ﬁl fOI‘l#i,j,k 7
by the relations
i) [[Vo,...,Tn]] = sgn(0)[[Us(0)s - - - » Us(ny]] for all permutations o € Sym(n + 1),

it) [[To,-..,Tn]] = [[£V0,- - ., £0,]] (signs chosen independently).
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Relations among the relations: Let My be the quotient of the free abelian group

there exist distinct indices 1, 7, k, [, m with
([ Tl ® Uy,...,Ui—1,Uit1, -, 0j—1,Uj+1,,.--,Un is a basis of Z",
05+ Untl - - -
o o U, = 0, £ 7

o U; = xiy, £ 0 or U = £0,, £ Uy for p #i,5,k,I,m

z
by the relations
i) [[To, -, Ung1]] = sgn(0)[[Us(0); - - - » Up(n1)]] for all permutations o € Sym(n + 2),
ii) [[To, .., Tnt1]] = [[£T0, . - ., £0n+1]] (signs chosen independently).
Maps in the resolution: Let d;: M1 — My and d3: My — M be the maps
811 [0, s Tall — D> (=) [[Foy - -, Tim1, Tig1s - - Bl
i
8o [0, s Upga]] — D (1) ([T, .., Fimr, Bt - - g ]
i
For these maps, we define the symbols [0y, . . ., Ti—1, Tit1, - . ., Us]] and [[Vo, - . . , Vi1, Tit1,

.« s Un+1]] to be zero if the vectors do not span Z".

The map e: My — St,,(Q) is the “integral apartment class map” mentioned above.
More precisely, it is defined as follows. If [[¥p,...,¥U,—1]] is a generator of M, then
B ={0o,...,Un_1} is a basis of Z™ that comes with an order that is well-defined up to
the action of the alternating group. This order determines a sign of the corresponding
apartment class [Ag]. Define € via the formula:

e: My — St,(Q)

[[To, - -+, Tn—1]] — [Ap].
Theorem A. The sequence
My RN My N My - St,(Q) — 0
18 exact.
Exactness of
My - St,(Q) — 0

is due to Ash-Rudolph [1] and exactness of

My 25 Mo =5 St,(Q) — 0
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follows from Bykovskil [4]. See Church—Putman [6] for an alternate proof.
1.3. Applications to the cohomology of SL,(Z)

Using Theorem A, we show that the codimension-2 rational homology of SL,(Z)
vanishes for large n.

Theorem B. Forn > 3, H(Z)_2(SLn(Z); Q) =0.

A standard transfer argument implies that H®(GL,(Z);Q) is a summand of
H(SL,(Z); Q). Thus H(;>_2(GLn(Z);Q) >~ 0 for n > 3. Theorem B resolves the
codimension-2 case of a conjecture of Church—-Farb—Putman [7, Conjecture 2].

Conjecture 1.1 (Church—Farb—Putman). For n > i+ 2, H(g)_i(SLn(Z); Q)=o0.

For codimension ¢ = 0, this conjecture is true and due to Lee—Szczarba [11]. Vanish-
ing in codimension-0 follows easily from Ash-Rudolph’s [1] generating set for St,(Q).
For codimension-1, the conjecture was established by Church-Putman [6] and follows
from the Bykovskii presentation [4] of St,(Q). Similarly, Theorem B follows readily
from our result determining the relations among the relations in the Steinberg mod-
ule, Theorem A.

The rational cohomology of SL,,(Z) has been completely computed for n < 7 (Soulé
[22] for n = 3, Lee-Szczarba [12] for n = 4, and Elbaz-Vincent-Gangl-Soulé [9] for
n =5, 6, and 7). These calculations verify Conjecture 1.1 for n < 7 and also show that
the vanishing range predicted by Conjecture 1.1 is not sharp for n = 3, 5, or 7. This
failure of sharpness is reflected in the fact that Theorem B implies that the codimension-2
rational cohomology vanishes for n > 3 while the codimension-2 case of Conjecture 1.1
only concerns vanishing for n > 4.

1.4. Applications to the cohomology of congruence subgroups

The principal level p-congruence subgroup of SL,,(Z), denoted I',,(p), is defined to be
the kernel of the mod-p reduction map

SLn(Z) — SLn(Z/p).

Using Theorem A, we obtain a combinatorial chain complex computing H; (T, (p);
St,(Q)) = H(g)’l(Fn(p)) (see Proposition 9.2). In the case p = 3 or 5, we use this
to obtain the following numerical estimate on the size of the codimension-1 homology.
For a field F let Gr}*(IF) denote the Grassmannian of k-planes in F™.

n—2
Theorem C. For p =3 or 5, dimg H(g)_l(l"n(p); Q) > p(n;2)|Gr§(FP)\ (Z%l) .
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See [16, Corollary 1.2] for an upper bound of a similar flavour in the case p = 3.
1.5. Proof structure and paper outline

Following Lee—Szczarba [11], Church-Farb—Putman [8], and Church-Putman [6], we
will construct our resolution of St,(Q) by proving that certain simplicial complexes
are highly-connected. The complexes relevant to our paper are called BAA,,. These com-
plexes are related to Maazen’s complex of partial bases [13,14] with added augmentations
in the sense of Church-Putman [6]. The augmentations are inspired by the Voronoi tes-
sellation of the symmetric spaces associated to the groups SL,(Z). In Section 2, we
define BAA,, and some variants. In the following sections, we adapt an argument of
Church-Putman [6] to prove BAA,, is highly-connected, and in fact Cohen—Macaulay of
dimension n + 1. Because of the added complexity needed to study the relations among
the relations, we use computer calculations for one step in the proof. In Section 3, we
construct a retraction map that is used in the connectivity argument and is based on
the Euclidean algorithm. The last step of the construction of this retraction uses that
certain finite subcomplexes of BAA, are highly-connected. This is proved in Section 4
using computer calculations. In Section 5 and Section 6, we complete the proof that
BAA, is highly-connected. In Section 7, we recall a spectral sequence due to Quillen
[20] concerning maps of posets. We use this spectral sequence in Section 8 to study
the codimension-2 cohomology of SL,(Z) and in Section 9 to study the codimension-1
cohomology of congruence subgroups.

1.6. Code for the computer calculations

The code that was used to perform the computer calculations described in Section 4
is publicly available under https://github.com/benjaminbrueck/codim2_cohomology
SLnZ. Comments on runtime and verifiability of the results can be found in Section 4.4.

1.7. Acknowledgments

We thank Alexander Kupers, Andrew Putman, Nathalie Wahl, and Dan Yasaki for
helpful conversations and Lukas Kiihne and Joshua Maglione for comments on the pre-
sentation of the python code. We thank our anonymous referee for their feedback.

2. Definitions

Following Church-Putman [6] (building on ideas of Church-Farb-Putman [8] and
Lee—Szczarba [11]), we will construct our partial resolution of Steinberg modules using
highly-connected complexes. In this section, we define the relevant complexes.
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2.1. Definition of B,, and BA,,

We begin by recalling a variant of Maazen’s complex of partial bases B,, [13,14].
Church-Farb—Putman [8] observed that high connectivity of this complex can be used
to construct generators for Steinberg modules. We will then recall the definition of a
large complex of augmented partial bases, denoted BA,,, that was introduced by Church—
Putman to study relations in Steinberg modules.

Definition 2.1. Let A be a PID. A vector v € A" is called primitive if it spans a summand.

Recall that a vector ¢ € A™ is primitive if and only if the greatest common divisor of
its entries is a unit. If A is a field, every ¢ € A™\ {0} is primitive.

Convention 2.2. Throughout this text, we take A to be either Z or [F,,. Given a primitive
vector ¥, the equivalence class +¢ is denoted by v. Given an equivalence class v, we let
¥ denote an (arbitrary) choice of representative of v. We refer to equivalence classes v as
+-vectors. If A = 7, we also call v a line, since in this case there is a bijection between
rank-1 summands (lines) in Z™ and equivalence classes of primitive vectors.

For vy, ...,T; € A", we write (Tp,...,U)a for the A-span of ¥y, ..., Uk. If A = Z, we
shorten this notation to (v, ..., 0%) == (To,...,Vk)z-

Definition 2.3. Let A be Z or F,,. Let V,;5(A) be the set
VE(A) == {v | ¥ € A™ is primitive}.
A subset
o= {vy,..., e} C VEA)

of (k+ 1) +-vectors is called

i) a standard simplex, if (¥y, ..., Ux)a is a rank-(k+1) summand of A™ and if k = n—1,
the determinant of [¥y - - - ¥),—1] is £1;
ii) a 2-additive simplex, if (possibly after re-indexing)

Up = £01 £ Vs
for some choice of signs and o \ {vp} is a standard simplex.

Note that the condition in Definition 2.3 Part i) that the determinant of [¢ - - U,—1]
be %1 is always true in the case A = Z and is only an extra condition in the case A = F),.

Definition 2.4. Let A be Z or F, and n € Ng. The simplicial complexes B (A) and
BAZ(A) have VE(A) as their vertex set, and
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i) the simplices of BX(A) are all standard simplices;
ii) the simplices of BAT(A) are all either standard simplices or 2-additive simplices.

2.2. Definition of BAA,,

We now introduce a larger complex denoted BAA,,. This complex captures relations
among the relations in Steinberg modules. The second “A” indicates that we add even

more augmentations.
Definition 2.5. Let A be Z or F,,. A subset
o= {vo,...,vx} C VE(A)
of (k+ 1) x-vectors is called
i) a 8-additive simplex, if (possibly after re-indexing)
Uo = 01 £ Uy £ U3,

for some choice of signs and o \ {vg} is a standard simplex;
ii) a double-triple simplex, if (possibly after re-indexing)

—

’(70 = :Eﬁg + ’l_fg, U1 :|:172 + 174,

for some choice of signs and o \ {vg,v1} is a standard simplex;
iii) a double-double simplex, if (possibly after re-indexing)

To = £ & U3, Uy = +0y + U5,
for some choice of signs and o \ {vg,v1} is a standard simplex.

We remark that the name “double-triple” reflects that, after performing a change of
basis and re-indexing, a double-triple simplex is represented by vectors of the form

—

170::|:172:|:?73, ’171 :ig2i63i174, 1727 173, ey Vk
for some choice of signs and a partial basis ¥, 3, . . . , U of A™. See also Observation 4.11.

Definition 2.6. Let A be Z or F, and n € Ny. The simplicial complex BAAE(A) has
VE(A) as its vertex set. The simplices of BAA,, are precisely the ones introduced in
Definition 2.3 and Definition 2.5.

Convention 2.7. When A = Z, we also write B,,, BA,, and BAA,, for B:—: (Z), BAf (Z)
and BAA(Z), respectively.



10 B. Briick et al. / Advances in Mathematics 451 (2024) 109795

2.8. Definition of L/im(, B BA, BAAY and Cink

In this subsection, we specialise to the case A = Z. We will define some subcomplexes
of links of simplices. Throughout this section, let €1,..., €y denote the standard basis
elements of Z* and ey, ..., ey the corresponding lines.

Definition 2.8. Let n € Ny and let X,, denote the complex B,,, BA,, or BAA,,. Consider
a simplex o = {wy,...,w;} of X. Then Linkx, (o) is defined to be the full subcomplex
of Linkx, (o) on the vertex set

{v € Linkx, (o) | 7 ¢ (o, ..., @)}

Definition 2.9. Let m,n € Ny and let X,,4, denote the complex B,,1,, BA,, 1, or
BAA,,+n. Consider the standard simplex A™ = {ey,...,e,} contained in X,,1,. We
set

X = Linkx,,,. (A™).
When X, 4s i8 Byin, BAyn or BAA,, 1, respectively, we write B)', BA" or BAA",
respectively, for X".

The majority of the paper will be devoted to proving the following theorem. It is our
main technical tool and the main theorems follow fairly quickly from it.

Theorem 2.10. Let n > 1. Then BAA]" is n-connected.

For the cases where n + m < 2, this immediately follows from results of Church-
Putman: The complex BAA? = Bj is a single point given by the unique line spanning
Z; the complex BAA% = BA% is isomorphic to the Cayley graph of Z with respect to
the generating set {e;}, so it is a line [6, Proof of Theorem C’, base casel; the complex
BAAY = BA, is contractible as well by [6, Remark 1.4].

In the present article, we prove that Theorem 2.10 also holds if n 4+ m > 2. In this
case, the following stronger statement is true.

Theorem 2.11. Let n > 1 and m+n > 3. Then BAA" is Cohen—Macaulay of dimension
n+1.

Recall that a simplicial complex is called Cohen—Macaulay of dimension d if it is d-
dimensional, (d — 1)-connected, and links of p-simplices are (d — 1 — p)-connected. In
fact, to deduce the main theorems, it will be sufficient to prove the connectivity result
Theorem 2.10 for the case m = 0. The complexes BAAT" are “relative versions” of this
complex that naturally show up in our inductive proof. The Cohen—Macaulay property
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is not directly needed for this induction or the main theorems; it however follows rather
easily from the steps of our proof.
We need to consider the following subcomplex of links.

Definition 2.12. Let m,n € Ny and let X" denote the complex B, BAT" or BAAT".
Consider a simplex o = {wo, ..., wy} of X}7'. Then Linkxm (o) is defined to be the full
subcomplex of Linkxm (o) on the vertex set

{v € Linkxm (o) | ¥ ¢ (€1,...,€Em,Wo,. .., W)}

Definition 2.13. Let R € Z>1, let X" denote the complex B}, BAT" or BAA]" and
—— <R
consider a simplex o = {wy, ..., wg} of X™. We write Link y.. (¢) for the full subcomplex

of Ijrﬁ(X;Ln (o) on the vertex set
{v € Linkxm () | 7= c181 + -+ + CognCmin With [coin| < R}.

< <R
We will use the notation Link ym () = Linkyxm () with R equal to the absolute value of

the maximum nonzero last coordinate of the vectors in o.
3. Constructing the retraction

In this section, we present the main technical result that enables us to show that
BAA,, is spherical of dimension n + 1. To prove it, we build on ideas of Church-Putman
[6] and Maazen [13].

Theorem 3.1. Let n > 2, m > 0 and w = (W) € BAA]" be a vertex. Assume the last
coordinate of @ € Z™T™ is nonzero. Then, the inclusion

—< —
i: Linkgaam (w) < Linkgaam (w)
admits a topological retraction
- — <
7: Linkpaam (w) — Linkg pm (w).

The definition of the retraction map occurring in Theorem 3.1 is inspired by work of
Church—Putman [6, Section 4] and Maazen [13, Chapter III]. On vertices, the retraction
is given by using the Euclidean algorithm to “reduce” the last coordinate of vertices in
the domain “modulo R”, where R > 0 is the last coordinate of a fixed vector w € Z™*"
(compare with Definition 3.9). Church-Putman [6, Section 4.1] demonstrated that this
map can be used to prove that the complex of partial frames B,, is spherical (compare
with Proposition 3.14). However, the method does not directly apply to the complex of
augmented partial frames BA,,. To show that BA,, is spherical, Church-Putman [6] need
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to modify the definition of the retraction. The reason for this additional difficulty in the
paper of Church—Putman comes from the following algebraic fact. For an integer z, let
us denote by (z mod R) € {0,..., R — 1} the remainder of division of z by R > 0. Let
R > 0 and a,b > 0 be nonnegative integers. Then

(a+b mod R) or

(e mod R)+ (b mod R) = {

(a+b mod R) + R.
It is a consequence of this fact that the simplicial retraction maps defined for B,, do
not extend to simplicial retraction maps for BA,,. The problem is that, because of the
second case in the equation above, the image of a 2-additive simplex might not always
span a simplex [6, p. 1020]. To circumvent this problem, Church—Putman subdivide all
problematic 2-additive simplices, which they call carrying simplices, in the domain of the
retraction. They do this by adding a single vertex at the barycentre of every carrying
simplex and extending this subdivision to the whole complex. Then, they specify the
value that their “modified” retraction takes at these newly introduced vertices and prove
that the resulting map is a topological retraction (compare with Proposition 3.20). In
our construction of the retraction map for BAA,,, i.e. Theorem 3.1, we need to deal
additionally with 3-additive simplices. For these simplices, the following algebraic fact is
the main source of trouble. Let R > 0 and a, b, ¢ > 0 be nonnegative integers. Consider
the integer a + b+ c or a + b — ¢. Then

(a+b+c mod R),
i) (@ mod R)+ (b mod R)+ (¢ mod R) =< (a+b+c mod R)+ R, or  for the

(a+b+c mod R) + 2R
sum a + b+ c and
(a4+b—c¢ mod R),

ii) (¢ mod R) + (b mod R) — (¢ mod R) = { (a+b—c mod R)+ R, or  for the
(a+b—c mod R)— R

sum a+ b —c.

Similarly to the difficulty for BA,,, the problem is that, because of the second and
third case in both item i) and ii), the image of a 3-additive simplex might not always
span a simplex. To circumvent this, we subdivide these problematic carrying 3-additive
simplices by adding a new vertex at their barycentre and, in analogy with Church-
Putman, construct a topological retraction map for BAA,,. However, since double-double
and double-triple simplices might contain multiple problematic 2-additive and 3-additive
facets (codimension-1 faces) we face novel difficulties. We not only need to explain how
2-additive and 3-additive simplices are subdivided but also need to describe how higher
dimensional simplices can be subdivided in a compatible fashion. For the most compli-
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cated case, we use computer calculations to show the existence of a retraction and do not
make the corresponding subdivisions explicit (see Lemma 3.52 et seq. and Section 4).

We now start working towards the proof of Theorem 3.1 by introducing and fixing
some notation. In the next subsection, we discuss the results that Church—-Putman ob-
tained for BA,, in greater detail. In each of the following subsections, we explain how
the retraction maps can be defined on and extended over double-double, 3-additive, and
double-triple simplices, respectively.

Convention 3.2. Throughout this section, we work in the setting of Theorem 3.1. We fix
the natural numbers n > 2, m > 0. For each line v in Z™™™, we let ¥ denote a choice
of primitive vector in v with nonnegative last coordinate. Note that the vector v is
uniquely defined unless its last coordinate is zero. The line w occurring in the statement
of Theorem 3.1 is fixed throughout this section and R always denotes the last coordinate
of w, which by assumption satisfies R > 0.

The following notions will be frequently used for Linkpa Am (w) in this section, and for
BAA”" in the subsequent section.

Definition 3.3. Let o be a simplex of Ier(BAA;n (w) or BAAT'. We say that o is a standard,
2-additive, 3-additive, double-double or double-triple simplex of IRBAA? (w) or BAAT!
if the underlying simplex

ox{e1,...,em,w}orox{er,....en}
in BAA,,,, is a simplex of this type.

Example 3.4. Let @1, 03 € Z™ "™ such that {¥, 02, €1, ...,Emn, W} is a partial basis. Then
{v1, (th +W)} is a standard simplex in BAA,,, and BAA", but it is a 2-additive simplex

in Linkgaam (w). Similarly, {v1,va, (U1 4 U2 4 €1)} is a 3-additive simplex in BAA" (and
in Linkpaam (w)) and {v1, (01 +€1), (U1 +)} is a double-triple simplex in Linkpaam (w).

Any simplex o that is not a standard simplex contains a unique minimal face that
determines its type. This is the content of the next definition.

Definition 3.5. Let o be a simplex of Ier(BAAZm (w) or BAAT".

i) The simplex ¢ is called a minimal simplex of 2-additive, 3-additive, double-double,
or double-triple type (in mBAA? (w) or BAA") if o is of this type and o does not
contain a proper face also of this type.

ii) The additive core of a nonstandard simplex o is the unique minimal face of ¢ with
the same type as o.
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Example 3.6. Let again 07,7, € Z™T" such that {¢},¥s,€1,...,Em, W} is a partial basis.
The simplices {vy,ve, (U7 + T2)} and {v1, (¢) + W)} are minimal in mBAA? (w). In
particular, these simplices form their own additive cores. The simplex {v1, va, (¥1 + W)}
is not minimal in EH(BAA;;L (w). Its additive core is {vy, (¥; + W) }.

The next definition is parallel to [6, Definition 4.9].

Definition 3.7. Let o be a simplex of mBAA? (w) or BAAT".

i) We say that o is external if the additive core of the underlying simplex in BAA,,, 4+,
contains e; for some 1 < i < m.
ii) We say that o is w-related if o is a simplex in EH(B aam(w) and the additive core
of the underlying simplex in BAA,,+, contains w.
iii) We say that o is internal if the additive core of the underlying simplex in BAA,,, 1,
is contained in o.

Note that an internal simplex is neither external nor w-related.

Example 3.8. Among the simplices in Example 3.4 and Example 3.6, in mB Aam (w),

- {vy, (U1 + W)} is w-related, - {v1, (U1 + &), (V1 + W)} is external and
- {v1, 09, (U1 +02+€1)} is ex- w-related,
ternal, - {v1,v2, (U + Ta)} is internal.

3.1. Definition on vertices, standard and 2-additive simplices

We start by defining the retraction maps on the set of vertices Vert(mg aam(w)) of

the simplicial complex m(BAAZm (w).

Definition 3.9. Let Vert(X) denote the vertex set of the simplicial complex X. Then, we
define

r: Vert(ljrﬁ(BAAZL (w)) — Vert(mgAAm (w))

v +— (0 — aw)
where a € Z is chosen so that ¥ — aw has last coordinate in the interval [0, R).

The constant a € Z in Definition 3.9 is determined by the Euclidean algorithm. We
note that, although the vector v is not uniquely determined by wv if its last coordinate
is zero, the line r(v) is still uniquely determined because r(v) = v. More generally, we
observe that r(v) = v if the last coordinate of v is contained in [0, R).

Convention 3.10. Consider v € Vert(mBAAg (w)), then the line r(v) € Vert(mgAA? (w))

is spanned by a vector r(v). Recall that this vector is not well-defined if the last coor-
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dinate of 7(v) is zero (see Convention 3.2). We use the following notational convention
for r(v). Let v be a vector representing v that has nonnegative last coordinate aR + b

where a € Z and b € [0, R). In this situation, r(v) always denotes the vector v — aw.

Before we discuss the effect of this map on standard and 2-additive simplices, we
record some facts that will help us to calculate the value of r on certain vertices. The
following observation is elementary but useful.

Observation 3.11. Let {vg, 1,02, ...,0p, w} be a partial basis for Z™*". Then, if we
replace any element v; by v; + aw for any a € Z, the result is still a partial basis for
Z™ " and spans the same summand. In particular, ¥; + aw is necessarily primitive.

The next lemma describes some properties of the map r. Its proof is easy and left to
the reader.

Lemma 3.12. Let v € Vert(mBAAg (w)) and let €1,e3 € {—1,4+1} be two signs. Then,
the map r introduced in Definition 3.9 has the following properties.

i) Ifu € Vert(ljrﬁ(BAAzln (w))U{e1,...,em} is a line such that the last coordinate of u
is zero, then

r({€10 + e2u)) = (e17(v) + e2u).
it) It holds that

r({e10 + e2w)) = r(v), if €1 = €2,
and, if €1 # €a, then

r(v), if the last coordinate of v is in {0} U [R, c0),

r({e1v+e2w)) =  (e17(v) + e2w) = (w — r(v)) = (W — V), if the last coordinate of
v is in (0, R).

iii) Given two vertices vy, vg € Vert(mBAAg (w)). Let a;R+b; fora; > 0 andb; € [0, R)
denote the last coordinate of v;. Then,

(r(v1) + r(va)), if by + b2 € [0, R),
<T’(1}1) + T(UQ) — II)>, if b1 + bs € [R, 2R)

r((v1 +v2)) = {

We now discuss the effect of the retraction on standard simplices. This has been
studied by Church-Putman in Section 4.1 of [6] as part of their proof that B;' is a
Cohen—Macaulay complex of dimension n — 1 [6, Theorem 4.2].
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Definition 3.13. Let Ijrﬁ(BZz (w) and L/lrﬁq;? (w) denote the subcomplexes of Ier(BAAZ» (w)

— <
and Linkgaam (w), respectively, that consists of all standard simplices in the sense of
Definition 3.3.

Note that the vertex sets of me (w) and mBAAg (w) are equal. The following
result is a case of Church-Putman [6, Lemma 4.5].

Proposition 3.14 (/6, Lemma 4.5]). Let n,m > 0. Then, Definition 3.9 induces a simpli-
cial map

r: Linkpy: (w) = Linkpy () < Cinkpp pm ()

—< —
that restricts to the inclusion on the subcomplex Linkgm (w) of Linkgm (w). In particular,

m;x (w) is a simplicial retract of L/irﬁ(B;n (w).

We now explain how Church-Putman extended the simplicial retraction of mB;n (w)

— <
onto Linkgm (w) over 2-additive simplices to a topological retraction between the following
two simplicial complexes.

Definition 3.15. Let mBAg(w) and m;Anm(w) denote the subcomplexes of

_ — <
Linkpaam (w) and Linkgaam (w) respectively that consist of all standard and 2-additive
simplices in the sense of Definition 3.3.

The following definition captures the reason why Definition 3.9 does not induce a

- <
simplicial retraction r: Linkgam (w) — Linkgam (w) as one might initially hope.

Definition 3.16. Let 0 = 7, * 7o be a 2-additive simplex in mBAA;@ (w), where 71 is a
minimal 2-additive simplex and 75 is a standard simplex. o is called carrying if one of
the following equivalent conditions holds

<
i) The set r(71) does not span a simplex in Linkgm (w). (Note the BA* subscript.)
ii) 7 = {vo,v1,v2 = (Vg + v1)} is internally 2-additive with by + by € [R,2R), where
a;R + b; with a; > 0 and b; € [0, R) is the last coordinate of v;.

We remark that in Condition ii), vs is the unique vertex in 7y with last coordinate
of ¥; maximal and r(r) = {r(vg),r(v1),7r(v2) = (r(vg) + r(v1) — w)} by Part iii) of
Lemma 3.12. The equivalence of i) and ii) in Definition 3.16 follows from [6, §4.4. Claim

1-4 and the discussion on p. 1022].
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Remark 3.17. In the first condition of Definition 3.16, we highlighted the BA" subscript

— <
because 7(71) does form a w-related 3-additive simplex in Linkg am (w), as visible in the
second condition.

OO

Example 3.18. Let w = . Then {vg,v1,v2 = (Vo + 1)}

I OO

0
_ 1 _
, Vg = O,andvlz
10 9

is a 2-additive simplex in mB Aa(w). However,
r({vo, v1,v2}) = {vo, v1,7(v2) = (V1 + V2 — W)}

<
is not a simplex of Linkga;(w) and therefore {vg,v1,v2} is an example of a carrying
2-additive simplex.

To circumvent this problem and, instead, construct a topological retraction

—

r: Linkpam (w) — L/irﬁ(gA:?(w)7

Church—Putman modify the definition of r on all carrying 2-additive simplices. To do
this, they pass to the following subdivision of Linkgam (w).

Definition 3.19. Let sd(l_/irmBAzz (w)) denote the coarsest subdivision of Ijrﬁ(BA;n (w),
where every carrying minimal 2-additive simplex 71 = {vp,v1,v2 = (vg + v1)} is subdi-
vided by inserting a single vertex ¢(71) at the barycentre of 7.

Concretely, sd( mB am(w)) in Definition 3.19 is constructed as follows: Let o = 71 %7
be a 2-additive simplex of IRBAZL (w), where 7 = {vg,v1,v2 = (Vg + v1)} is a carrying
minimal 2-additive simplex and 75 is standard. Then, when passing from IﬁB Am(w) to
sd(lj—rﬁm am (w)), each such simplex o is replaced by sd(c), its subdivision into the three
simplices {vo,...,0;,...,v2,t(11)} * 72 for ¢ = 0,1,2. Here the notation 9; means v; is
omitted. Note that L/irW(BZL (w) and Ijn\k];Am (w) are subcomplexes of sd(l_/irﬂBA? (w)).

The following is the main technical result of Church—Putman [6], and the key input
for their proof that BA" is a Cohen—Macaulay complex of dimension n [6, Theorem C’].

Proposition 3.20 (/6, Proposition 4.17.]). Let n > 2 and m > 0. Then, the simplicial
map constructed in Proposition 3.1/

_ < <
r: Linkgp (w) — Linkgm (w) <= Linkga am (w)
extends to a simplicial map

T sd(mBAT (w)) — m;AzL (w) — m«;AAZL (w)
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— < —
that restricts to the inclusion on the subcomplex Linkgam (w) of sd(Linkgam (w)). The
value of r on the barycentre t(m1) of a carrying minimal 2-additive simpler 7 =
{vg,v1,v2 = (Vg + 01)} is defined by the formula

r(t(n)) = (r(v) — w)

where | € {0,1} is arbitrarily chosen, i.e. v; is one of the two lines in 1 with the property
—<
that the last coordinate of vy is not mazimal. In particular, it follows that Linkgam (w) is

a topological retract of Ier(BAZL (w) = sd(Ier(BA;n (w)).

This completes our discussion of the definition of r on vertices, and standard and 2-
additive simplices. We close this subsection by presenting a proof of the following lemma.
It will frequently be used to reduce the question of whether the map r extends over a
simplex o = 7 * 7o with additive core 7 to the question whether r extends over the
additive core ;. To shorten notation, we write (v) := (¢ | (¥) € v) for the Z-linear span
of a set of lines v in Z™+",

Lemma 3.21. Let 0 = 11 x 75 be a simplex of L/ili(BAAzm (w) such that the additive core of
o is contained in Ty and o is a standard simplex. Let v be a set of lines in Z™T™ such
that (v) C (ry U{e1,...,em,w}). If v spans a simplex in m;AAT (w), then v x r(72)
spans a simplex of the same type.

Proof. Since v is a simplex in m; aam (w), there exists a (not necessarily unique)
maximal standard simplex v C v that is contained in v. Observe that (/) @
{er,...,em,w}) = (U {e1,...,em,w}) is a direct summand of Z™*". Since 71 * T2
is a simplex in Ijrﬁ«BAA;n (w) and the additive core of it is contained in 71, it follows
that (ry U {e1,...,em,w}) ® (12) is a direct summand of Z™*". The assumption that
(v) € (mU{e1,...,em,w}) implies that (v')® ({e1,...,em,w}) C (mmU{e1,...,em,w}).
We conclude that (V') & ({e1,...,em,w}) @ (12) is a direct summand of Z™*" as well,
using e.g. [6, Lemma 2.6]. Proposition 3.14 implies that 7(72) is a standard simplex and
Observation 3.11 yields

<{61a s aemvw}> D <7_2> = <{€1a s 7emvw}> D <T(7-2)>'

Hence, (V)Y@ {{e1, ..., em,w})® (r(r2)) is a direct summand of Z™*™. It follows that v/ x
r(72) is a standard simplex in mBAAm (w). The fact that v is a simplex in GH(EAM (w)
means that the vertices in v \ v/ can in an appropriate way be written as sums of the
vectors spanning the lines v/ U {e1, ..., e, w}. Therefore, v * r(72) spans a simplex of

<
the same type as v in Linkgaam (w). O
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3.2. Eztending over double-double simplices

The goal of this subsection is to extend the map
_ <
r: sd(Linkpam (w)) — Linkgppm (w)

defined in Proposition 3.20 over all double-double simplices. For this, we need to study
minimal double-double simplices in the sense of Definition 3.5.

Observation 3.22. A minimal double-double simplex 71 in EH(B aam (w) is the join 771 *
71,2 of two minimal 2-additive simplices in Linkgaam (w). In particular, any facet of 7y is
2-additive.

If one of the two minimal 2-additive simplices in a double-double simplex ¢ in
Linkgaam (w) is carrying, then the set 7(c) might or might not span a simplex in

@B Aam (w). This is illustrated in the next example.
Example 3.23. Consider a minimal double-double simplex 71 in mg AA™ (w) of the form
71 = {wo, v1,v2 = (Vo + 1), v3, (U3 +€-w)}

for € € {+1,—1}. Assume that {vp,v1,v2 = (Vg + 01)} is carrying. If ¢ = +1, then
Lemma 3.12 implies that (1) = {r(vo), r(v1), (r(ve) + r(v1) — W), r(vs) }, which spans a
w-related 3-additive simplex in Linkpaam (w). If € = —1 and the last coordinate of v3 is

contained in (0, R), then Lemma 3.12 implies that r(71) = {r(vo),r(v1), (r(ve) + r(v1) —

—

w),r(v3), (w — 7(v3)) }, which does not define a simplex in Linkpaam (w).

Because we decided to construct the retraction maps r for BAA]" occurring in
Theorem 3.1 as extensions of the retraction maps that Church-Putman defined for BAT"
(compare with Proposition 3.20), we nevertheless subdivide every minimal double-double
simplex that contains a carrying 2-additive face. This leads us to the following definition.

Definition 3.24. Let ¢ = 71 * 75 be a double-double simplex of Ier(BAA;Ln (w), where
Ti = T1,1 * T1,2 is a minimal double-double simplex and 7 is a standard simplex. Then o
is called carrying if one of the following equivalent conditions holds.

i) 71 has a carrying facet.
ii) One of the two 2-additive simplices 713 or 712 is carrying in the sense of
Definition 3.16.

Since any carrying 2-additive simplex has been subdivided in sd(L/im(BAzL (w)), we
need to subdivide every carrying double-double simplex in a compatible fashion. This is
done in the next definition.
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Definition 3.25. Let Ier(DD;n(w) and m;Dx(w) denote the subcomplexes of

- <
Linkpaam (w) and Linkgaam(w), respectively, consisting of all simplices that are
standard, 2-additive, or of type double-double in the sense of Definition 3.3. Let
sd(Linkppm (w)) denote the coarsest subdivision of Linkppm(w) that contains

sd(L/irW(BAzz (w)) as a subcomplex.

Concretely, sd(ljn\kDD;@ (w)) in Definition 3.25 is constructed as follows: Let o0 = 71 %72
be a double-double simplex of Linkppm (w), where 71 = 71,1 * 71 2 is a carrying minimal
double-double simplex and 73 is standard. Then, when passing from Linkppm (w) to

sd(ljrﬁ(DD;n (w)), each such simplex ¢ is replaced by the simplicial join
sd(o) = sd(11,1) * sd(11,2) * T2,

where sd(m ;) for ¢ € {1,2} denotes the subdivision of the 2-additive simplex 7 ; (see
Definition 3.19) if it is carrying, and sd(m,;) = 7, if it is not carrying. Note that
m;DT (w) and sd(ljm(BAZz (w)) are subcomplexes of sd(mDDzz (w)).

The main result of this subsection is the following proposition.

Proposition 3.26. The simplicial map constructed in Proposition 3.20
— <
r: sd(Linkpam (w)) — Linkgs gm (w)
extends to a simplicial map
- — <
r: sd(Linkppm (w)) — Linkga om (w)
that restricts to the inclusion
—_—< — <
—< —
on the subcomplex Linkppm (w) of sd(Linkppm (w)).

Proof. Our goal is to check that r is simplicial on all (possibly subdivided) double-double
simplices. Let o = 7 *T5 be a double-double simplex of mDD;;L (w), where 71 = T4 1 %71 2
is a minimal double-double simplex and 79 is standard. We need to argue that r extends
over its subdivision sd(¢) = sd(7y)*72. We will show that if & C sd (1) = sd(71,1)*sd(71,2)
is a simplex, then r(«) is a simplex in m;AA? (w). An application of Lemma 3.21
for 0 = 7 * 75 and v = r(a) then yields that r(a * o) = r(«a) * r(72) is a simplex of
m; AA™ (w) as well and the claim follows. The use of Lemma 3.21 is justified because the
definition of r on carrying 2-additive simplices (compare with Proposition 3.20) implies
that v = r(a) C (11,€1,...,€m,Ww).
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Firstly, assume that 7y is not carrying. Then, sd(71,1) = 71,1 and sd(m1,2) = 712, i.e.
neither of the two 2-additive simplices 711 and 7 2 is subdivided. We will show that r
extends over 71 = a. Because 11 is a double-double simplex, it is impossible that 7 ;
and 7y 2 are both w-related or that 711 and 7 2 are both externally 2-additive involving
the same e;. The following is verified in the proof of [6, Section 4.4, Claim 2-4]. If 7y ; is

- w-related 2-additive, then r(7 ;) is a w-related 2-additive or standard simplex,
- externally 2-additive involving e;, then (7 ;) is externally 2-additive involving e;,
- internally 2-additive, then r(7 ;) is internally 2-additive.

This implies that it also is impossible that the simplices r(71,1) and r(m,2) are both w-
related 2-additive or that 7(71,1) and 7(71,2) are both externally 2-additive involving the
same e;. We now compute and compare the two summands (r(7y;)) of Z™" obtained
for i € {1,2}. Let m1; C 71,; be a maximal standard simplex for ¢ € {1,2}. Then
M = 1,1 * N1,2 is a maximal standard simplex in 7;. By Observation 3.11, it holds that
r(m) =r(m1)*r(n2) is a standard simplex in mEAAZ (w) of the same dimension as
n1. In particular, (r(n1.1)) ® (r(nm2)) ® w®d (€1,...,En) is a direct summand of Z™*".
The summand (r(7;)) is equal to ...

- (r(my)) @ wif r(m ;) is w-related 2-additive,
« (r(m,)) @ ej if (1 ;) is externally additive involving e;, and
- (r(m)y if (71 ;) is standard or internally 2-additive.

Hence, the previous conclusion implies that the two summands (r(71,1)) and (r(71,2))
of Z™*™ intersect trivially. Since at least one of the two simplices r(71,1) and 7(712)
is 2-additive and the other one is either a standard simplex or 2-additive as well, we
conclude that (71) = 7(71,1) * r(71,2) spans a 2-additive or double-double simplex.

Secondly, assume that 7 is carrying such that 7 ; is a carrying 2-additive simplex
and 7 2 is carrying or not. Then, 7y 1 = {vo, v1,v2 = (Vo + 01)} and 7(sd(71,1)) consists
of the following three simplices where we write {/,'} = {0, 1},

cAr(u), (o), r(t(ra)) = (r(v) — @)}, which is w-related 2-additive,

- {r(vw),rt(r1)) = (r(v) — w),r(v2) = (r(v) + r(vy) — w)}, which is w-related 2-
additive, - S

- {r(t(r,1)) = (r(v) — w),r(vy),r(ve) = (r(v) + r(vpy) — w)}, which is internally
2-additive.

Let oy C sd(7y,1) and ag C sd(71,2) be simplices of maximal dimension. We show that r
extends over o = a * ao. If it is not the case that both r(«;) and r(aq) are w-related
2-additive, we can argue as in the first part to see that the two summands (r(a;)) and
(r(ag)) of Z™*™ intersect trivially and conclude that r(a) = r(ay) * r(ag) spans a 2-
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additive or double-double simplex. If both r(«; ) and r(«s) are w-related 2-additive, then
they are of the form {v, (v +w),v’'} and {u, (u+w),u'} where {v,v’,u, v’} is a standard
simplex in m;AA? (w) or of the form {v, (vtw), v’} and {u, (u+w)} where {v,v',u} is a
standard simplex in m;AAZl (w). In both cases it follows that (a1 *ag) = r(a) *r(as)
is a w-related double-triple simplex. O

3.3. Extending over 3-additive simplices
The goal of this subsection is to extend the map
— — <
r: sd(Linkppm (w)) — LinkBAAzL (w)

defined in the previous subsection over all 3-additive simplices. For this, we need to study
minimal 3-additive simplices in the sense of Definition 3.5.

Observation 3.27. A 3-additive simplex of Ijn\kB AA™ (w) is minimal if all of its facets are
standard.

As in the 2-additive case, studied by Church-Putman [6], the difficulty is to extend r
over carrying simplices; that is 3-additive simplices in Linkgaam (w) whose image under

— <
r is not a simplex in the target Linkgsam (w).

Definition 3.28. Let 0 = 71 * 72 be a 3-additive simplex in mBAAzL (w), where 7 is a
minimal 3-additive simplex and 75 is a standard simplex. o is called carrying if the set

Z— <
r(71) does not span a simplex of Linkg om (w).

As part of our discussion in this subsection, we will find the following characterisation
of carrying 3-additive simplices.

Lemma 3.29. Let 0 = 7 % 7o be a 3-additive simplex of EEBAAT (w) such that 11 is
minimal 3-additive and T is a standard simplex. For any vertex v; = (v;), write the last
coordinate of v; as a; R+ b; with a; > 0 and 0 < b; < R. Then o is carrying if and only
if 71 is of one of the following two types for some € € {—1,+1}:

i) 71 = {vo,v1,v2 = (Vo+01+¢€€;)} is minimal externally 3-additive and bo+b; & [0, R).
it) 7 = {vo,v1,v2,v3 = (Vg + U1 + €v2)} is minimal internally 3-additive and by + by +
€b2 ¢ [O, R)

This lemma, follows from Lemma 3.32, Lemma 3.33 and Lemma 3.34, which are proved
below.
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To extend the map r over these carrying 3-additive simplices, we need to subdivide
them. This leads us to the definition of the complex sd(Linkpam (w)) that will serve as
the new domain of the map r when extending over 3-additive simplices.

Definition 3.30. Let mTA;n (w) and m;A:F (w) denote the subcomplexes of
@BAA? (w) and Ijn\kg aam (w), respectively, consisting of all simplices that are stan-
dard, 2-additive, double-double, or 3-additive. Let sd(l_TrW(TA;n (w)) denote the coarsest
subdivision of L/irW(TA;Ln (w) that contains Sd(l_/iqu)D;n (w)) as a subcomplex and that sub-
divides every carrying minimal 3-additive simplex 71 by inserting a single vertex ¢(77)
at its barycentre.

Using Lemma 3.29, this means that sd(mDD;ln (w)) in Definition 3.30 is constructed
as follows: Let 0 = 71 * 73 be a 3-additive simplex of Linkram (w), where 71 is a carrying
minimal 3-additive simplex and 75 is standard. Then, when passing from Ijrﬁ(TA;n (w) to

sd(ljrﬁ(TAg (w)), each such simplex o is replaced as follows.

- If 1 = {vo,v1,v2} is a carrying minimal ezternally 3-additive simplex, we re-
place o by sd(o) = sd(m) * 72, the subdivision of ¢ into the three simplices
{vg,y vy Viy. ey v2,t(m1)} %19 for i = 0,1, 2.

- If 11 = {vg,v1,v2,v3} is a carrying minimal internally 3-additive simplex, we
replace o by sd(o) = sd(71) * 72, the subdivision of o into the four simplices
{vo, . 04y y03,t(m1)} x 2 for i =0,1,2,3.

In addition, the subdivisions described in Definition 3.25 are performed on the sub-
— —— —— <
complex Linkppr (w) of Linkar (w). Note that sd(Linkppy (w)) and Linkpym (w) are
subcomplexes of sd(lj-rﬁ«TA;n (w)).
The main result of this subsection is the following proposition.
Proposition 3.31. The simplicial map constructed in Proposition 3.26
- ——<
r: sd(Linkppm (w)) — Linkg om (w)
extends to a simplicial map
) TP
r: sd(Linkpam (w)) — Linkga om (w)
that restricts to the inclusion

—< — <
Linkppm (w) < Linkgpam (w)

—< —
on the subcomplex Linkpym (w) of sd(Linkram (w)).
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The proof of this proposition and the definition of the extension of r is split into
several lemmas, which we present below. We start by proving that r extends over all
3-additive simplices that cannot be possibly carrying (compare Lemma 3.29).

Lemma 3.32. The map r in Proposition 3.31 extends over all 3-additive simplices o =
T, * Ty of L/irW(BAA;n (w), where 7o is a standard simplex and 71 is a minimal 3-additive
simplex that is not internally 3-additive or externally 3-additive of dimension two. In
these cases, the set r(o) = r(m) *r(12) is a simplex of m;AAZl (w), so in particular, o
is not carrying.

Proof. Any minimal 3-additive simplex 71 = {vo, ..., Vqim(r )} satisfies 1 < dim(r) < 3.
The underlying simplex of 71 in BAA,,, 4, is a subset {vg, v1,v2,v3} C {e1, ..., em,w, vy,
Uy -+ Udim(ry) }, Where {e1, ..., em,w,v1,. .., Vdim(r,)} 15 @ standard simplex and vy =

(01 + €202 + €303) for some choice of signs ez, e5 € {—1,+1}. We consider the possible
minimal 3-additive simplices 7y, one after the other, to prove this lemma.
Firstly, assume that dim(7;) = 1 and write 71 = {vg,v1}. Then there are two cases.
Case (a): If vy = e;,v3 = e; for some 1 < ¢ # j < m, then vy = (U1 + €2€; + €3€;).

Hence, r(vo) = (r(v1) + €26; + €3€;) by Lemma 3.12 and it follows that r(7;) is a 3-
additive edge in m;AAm (w) as well. Hence by Lemma 3.21, r(0) = r(m) * r(72) is a
3-additive simplex. A

Case (b): If v = w,v3 = e; for some 1 < i < m, then vy = (V1 + €W + €3€;)
and, by Lemma 3.12, it holds that r(vg) = (er((v; + eow)) + €3€;) where e = —1 if
the last coordinate of v; + eaw is negative, and € = +1 otherwise. By Lemma 3.12 we
furthermore have that 7((7; + exw)) € {r(v1), (w — r(v1))}. Note that r((; + ew)) =
(w0 — r(v1)) requires that e = —1 and that ¢ = —1. Resolving the signs, it follows that

r(m) = {r(vo),r(v1)} is either an externally 2-additive edge {({r(v1) + €3€;),r(v1)} or an
externally w-related 3-additive edge {(r(vi) — @ + €3¢;),7(v1)}. Hence by Lemma 3.21,
r(o) =r(m) *r(r2) is a 2-additive or 3-additive simplex in m;AAm (w).

Secondly, assume that dim(m) = 2 and write 71 = {wvg, v1,v2}. Assume further that
71 is w-related, i.e. v3 = w. Then,

r(vo) = r({V1 + €202 + €3w)) € {r((V1 + €202)), (W — r({V1 + €202)))}

by Lemma 3.12. Note that the value of r(vg) depends on the last coordinate of v; + €203,
which might be negative, and the sign e3 (compare Lemma 3.12). There are different
cases that can occur, depending on how 7((v1 + €292)) compares to r(vi) and r(vs2). We
use the internally 2-additive simplex {vy, vs, v, = (U1 + €202)} to list these cases.

Case (a): If {v1,ve,v) = (U1 + €2¥2)} is not carrying, then its image under r is
internally 2-additive [6, Section 4.4, Claim 4]. It follows that r(77) is internally 2-additive
if 7(vo) = 7(vp), and w-related 3-additive if r(vg) = (w — r(v})). Hence by Lemma 3.21,
r(o) =r(m) *r(m2) is a 2-additive or 3-additive simplex.
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Case (b): If {v1,va,v) = (U1 + €202)} is carrying, then it contains a unique vertex
whose coordinate is maximal in absolute value (see Definition 3.16 et seq.). We consider
two subcases.

Case (b.1): If the absolute value of the last coordinate of v; (or similarly vy) is maximal

among {v1,vs,v}}, then r(vy) = r(va) + r(v))) — @ (see Definition 3.16 et seq.). In the
case where r(vg) = r(v(), it follows that f(7) is w-related 3-additive. In the case r(vg) =
(w —r(v})), it follows that f(r;) is 2-additive. Hence by Lemma 3.21, r(c) = 7(71) *7(72)
is a 3-additive or 2-additive simplex.

Case (b.2): If on the other hand, the absolute value of the last coordinate of v] is

maximal among {v1,v2,v)}, then we must have ez = +1 and 7(v}) = r(v1) + r(v2) — ©.

In the case where r(vg) = r(v(), it follows that f(r) is w-related 3-additive. Hence
by Lemma 3.21, r(o) = r(m) * r(72) is a 3-additive simplex. The case where r(vg) =
(w —7(v})) cannot occur, because this only happens if the last coordinate of vj, = o1 + s
in (0,R) (see Lemma 3.12), which is impossible under the assumption that the last
coordinate of v is the maximum of the carrying simplex {vy, va, v}}.

Thirdly and lastly, the remaining two possibilities are those where 7 has dimension
two and is externally 3-additive and the one where 7; has dimension three, which is
equivalently to it being internally 3-additive. These are the cases we excluded in this
lemma. O

We now deal with minimal externally 3-additive simplices of type 7 = {vg = (v1 £
l_}g + éi>, V1, 1}2}.

Lemma 3.33. The map r in Proposition 3.31 extends over all externally 3-additive sim-
plices 0 = 11 * T2 of Linkpaam (w), where 9 is a standard simplex and T is minimal
externally 3-additive of dimension two.

More precisely, in the proof of Lemma 3.33 we check that the map
_ <
r: sd(Linkppm (w)) — Linkgaam (w)

in Proposition 3.31 extends over the simplex ¢ = 7y * 73 if it is not carrying, and over the
subdivision sd(o) described in Definition 3.30 if it is carrying. The carrying case occurs
if and only if 71 is as case i) of Lemma 3.29; we then define r(t(m1)) = r({(v1 + 02)) =

(r(v1) 4+ r(ve2) — w), where vy, v2 € 71 are the two unique vertices whose last coordinate
is not maximal in absolute value.

Proof. There is an ordering of the vertices of 71 such that 71 = {vg, v1,v2}, where
Vg =01 + U2 £ €

for some 1 <4 < m, an appropriate choice of sign and where vg is a (possibly not unique)
vertex of 71 whose last coordinate is maximal in absolute value.
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Let R; denote the last coordinate of v; and write R; = Ra; + b; with b; € [0, R). Note
that Ry = Ry + Ra. There are two cases: either by = by +by € [0, R) or b+ R =b; +bs &
[0, R). In the following we use that (v;) = (¥; — a;w) and r((@ £ &)) = (r(u) + &) for
all lines u.

Firstly, assume that by = by + by € [0, R). Then

r(m1) = {(r(v1) +r(v2) £ &), r(v1),7(v2)}

forms an externally 3-additive simplex. Hence it follows from Lemma 3.21 that r(c) =
r(m1) * r(12) is a 3-additive simplex in m;AA? (w).
Secondly, assume that by + R = b1 + b2 & [0, R). Then

r(vo) = (01 — a1 @) + (2 — agw) £ & — w) = (r(v1) +r(v2) + €; — W),

and r(71) does not form a simplex in m; Aam (w). Hence, 71 is a carrying minimal ex-
ternally 3-additive simplex (compare Lemma 3.29) and, in sd(ljrﬁ(TAx (w)), the simplex
o = 71 * o has been subdivided as sd(c) = sd(71) * 72 into three simplices (compare
Definition 3.30)

;% T2 =V, ..., 04y ... 09, t(T1) k2 for i =0,1,2.

Observe that by + R = by + bs € [R, 2R) implies that all v; have nonzero last coordinate
and hence that vy is the unique vertex in 7, whose last coordinate is maximal in absolute
value. To see that r extends over sd(o) by defining r(t(m1)) = r({(v1 + 02)) = (r(v1) +
r(vy) — w), we first observe that the three sets r(q;) span 2-simplices in mEAAZ}, (w).
Indeed,

- rlag) = { ,r(v1), } is externally 2-addi-
tive,”

- rlag) = { ,m(v2), } is externally 2-addi-
tive, and

- rlag) =4 } is a w-related 3-additive in LinkgAAZL (w).

Then, we invoke Lemma 3.21 for o = 7 * 72 to conclude that r(a; * 72) = r(a;) * r(12)
spans a simplex of the same type. O

We are left with proving that we can extend over internally 3-additive simplices. This
is done in the next lemma, whose proof also yields a description of the possible values
that the vertices of a carrying internally 3-additive simplex can take under r.

7 For better readability, we highlight the vertices that are contained in the additive core of the simplex
in light blue (for interpretation of the colours in the text, the reader is referred to the web version of this
article).
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Lemma 3.34. The map r in Proposition 3.31 extends over all internally 3-additive sim-
plices o of Linkpaam (w).

More precisely, in Lemma 3.34 we consider an internally 3-additive simplex ¢ = 71 x o
of mB aam (w) such that 71 = {vg,v1,v2,v3} is a minimal internally 3-additive simplex
and 79 is a standard simplex. We may assume that the last coordinate of v3 is maximal
(perhaps not uniquely). Then, the proof of Lemma 3.34 establishes the following sequence
of claims: Possibly after reordering, we have that

@3:170+171+172 Or173:170+171—62.

Letting R; = a;R + b; for a; > 0 and b; € [0, R) denote the last coordinate of v;, one of
the following is true:

i) r(vs) =71(vo) +7r(v1) + r(ve) — 2w iv) r(vs) = r(vg) + r(vy) — r(vy) — w,
and by + b1 € [R,2R), v) r(vs) =r(vg) + r(v1) — r(va), or
ii) r(vsz) = r(vo) +7(v1) + r(ve) —w, vi) r(vs) =r(ve) +r(vy) —r(va) + w
iii) r(v3) = r(vg) + r(vy) + r(va), and by + b1 € [0, R).

In case iii) and case v), it holds that by + by & by € [0, R),® that the set r(r;) forms a

simplex in m; AAM (w) and that r extends over the simplex o = 71%72. In all other cases,
it holds that by 4+ b1 b2 & [0, R), that r(71) is not a simplex (i.e. o is carrying) and that
r extends over the subdivision sd(o) by defining r(t(71)) = r({vo + v1)). Here, r(t(71)) is

equal to (r(vg) + r(vy) — w) if by + b1 € [R,2R) or (r(vo) + r(v1)) if by + b1 € [0, R). In
particular, the definition of r(¢(71)) depends on a choice of vy and v as above.

Proof. Firstly, assume that v; has last coordinate zero for some 0 < ¢ < 3. Possibly after
reordering we may assume that v, has last coordinate zero and that v has maximal last
coordinate (perhaps not uniquely). It follows that 3 = ¥y + 01 &+ U2 and Lemma 3.12
implies that r(vs) = (r(v9 + v1)) £ v2). There are two subcases.

(1) If bo + by = bo + b1 £ b2 € [0, R), then r(vs) = r(vo) + r(v1) £ r(v2). It follows
that the set r(71) is an internally 3-additive simplex in m; aam (w) and hence by
Lemma 3.21 that r(o) = r(m1) * r(72) is a 3-additive simplex as well.

(2) If bg + by = by + by £ b € [R,2R), then r(vs) = r(vg) + r(v1) £ r(vy) —w and r(71)

— <
is not a simplex in Linkga am (w). At the end of this proof we will discuss how r can

be extended over sd(o) = sd(m) * 72 in this case.

Secondly, assume that the last coordinate of all v; for 0 < ¢ < 3 is nonzero. Let us
assume that ¥3 has maximal last coordinate (possibly after reordering and perhaps not

8 Here and in the following sentence, “+” is to be understood as “the same sign as the one in front of
r(v2)”.
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uniquely). By the definition of 3-additive, it follows that vs = +vy + v1 &+ v2 for some
choice of signs. Then, there are three cases up to reordering

a) U3 = Ug + 1 + U2 (no minus signs)
b) v3 = vg + v1 — v2 (one minus sign) or
c) U3 = Ug — ¥1 — V2 (two minus signs).

The last case cannot occur because then the last coordinate of vy is bigger than the last
coordinate of v3 (violating the assumption that the last coordinate of T3 is maximal). It
follows that either

U3 = Vg + U1 + Uy Or V3 = Vg + V1 — Va.

Observe that by + by + by € [0,3R) and by + by — ba € (=R, 2R).

(3) Incasea) and if bg+b1+ba € [2R, 3R), it follows that r(vs) = r(vg)+r(vy)+r(ve)—2w
and that (71 ) is not a simplex in m;AA? (w). Observe that we must have by+by €
[R,2R) in this case.

(4) In case a) and if by +b1 +b2 € [R,2R), it follows that r(vs) = r(ve)+7(v1) +7r(ve) —w
and that r(71) is not a simplex in m;AAnm (w).

(5) In case a) and if by + by + b2 € [0, R), it follows that r(vs) = r(vg) + 7(v1) + r(ve),
that r(71) is an internally 3-additive simplex and hence by Lemma 3.21 that (o) =

r(m1) * r(72) is a 3-additive simplex in m;AA? (w) as well.

(6) In case b) and if bg+b1 —ba € [R,2R), it follows that r(vs) = r(vg)+7(v1) —r(ve) —w
and that r(71) is not a simplex in mBAAzL (w).

(7) In case b) and if by + by — by € [0, R), it follows that r(v3) = r(vg) + r(v1) — r(ve),
that r(71) is an internally 3-additive simplex and hence by Lemma 3.21 that r(o) =

r(m) * r(m2) is a 3-additive simplex in m;AAZL (w) as well.

(8) In case b) and if bg+b; —by € (—R,0), it follows that r(vs) = r(vg)+r(v1)—7(v2) +w
and that r(7;) is not a simplex in Ijrﬁ(;AAzL (w). Observe that we must have by+b; €
[0, R) in this case.

This establishes the first three claims in the paragraph after Lemma 3.34. To finish,
we are left with proving that the map extends over sd(o) whenever o = 71 %73 is carrying,
i.e. in the situations (2), (3), (4), (6) and (8). In sd(ljrﬁ(TAg, (w)) the simplex ¢ has been
subdivided as sd(¢) = sd(71) * 72 into four simplices

a; %719 ={vg,...,0i,...,v3,t(11)} x172 fori=0,1,2,3.

To see that r extends over «; x 7o by defining r(¢(71)) = r({vg + v1)), we first note that

r((vo+711)) € m;AAZL (w) by definition, and that hence all elements in the set r(a; *72)
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are vertices of m; AA™ (w). We only need to check that they from simplices. For this,
we distinguish two cases depending on whether by + by € [0, R) or by + by € [R,2R).

Assume that bg+b1 € [R,2R). Observe that this is always true in the situation (2) and
(3), might happen in situation (4) and (6), and is impossible in situation (8) described
above. By Lemma 3.12 we have that r((To +71)) = (r(vo) + 7(v1) — w). With the value
of r(v3) calculated above, it follows that in mBAAzl (w),

- rlas) =1 ,7(v2), } is w-related 3-additive,
r(az) = { ,r(v3), } is w-related 3-additive,
r(aq) r(vo), } is w-related 3-additive in situation
(3) or 2-additive in situation (2), (4) and (6), and
r(ap) = {r(v1), } is w-related 3-additive in situation
(3) or 2-additive in situation (2), (4) and (6).

Invoking Lemma 3.21 for o = 71 * 7o, we conclude that r(o; * 72) = 7(a;) * r(72) spans a
simplex of the same type. Hence, we can extend over sd(o) in this case.

Assume that by + by € [0, R). Observe that this is always true in the situation (8),
might happen in situation (4) and (6), and is impossible in situation (2) and (3) described
above. By Lemma 3.12 we have that r((To + 1)) = (r(vo) + r(v1)). With the value of
r(v3) calculated above, it follows that in m; aam (W),

- r(az) ={ ,r(v2), } is 2-additive,

s r(az) ={ ,r(vs), } is 2-additive,

- r(a1) = {r(vo), } is w-related 3-additive, and
- r(ag) = {r(v1), } is w-related 3-additive.

Invoking Lemma 3.21 for o = 71 % 79, we conclude that r(c; * 72) = r(a;) * r(72) spans a
simplex of the same type. Hence, we can extend over sd(o) in this case as well. O

Lemma 3.32, Lemma 3.33 and Lemma 3.34 imply Proposition 3.31 and Lemma 3.29,
so this concludes our discussion of 3-additive simplices.

3.4. Eztending over double-triple simplices
The goal of this subsection is to extend the map
— — <
r: sd(Linkpam (w)) — LinkBAAZL (w)

defined in the previous subsection over all double-triple simplices. For this, we need to
study minimal double-triple simplices in the sense of Definition 3.5.
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Observation 3.35. A double-triple simplex of BAA™" is minimal if all of its facets are
2-additive or 3-additive.

The difficulty is to extend r over carrying double-triple simplices, i.e. double-triple
simplices that have a carrying facet.

Definition 3.36. Let 0 = 7 * 75 be a double-triple simplex in Ijrﬁ(BAAx (w), where 71 is
a minimal double-triple simplex and 75 is a standard simplex. The simplex o is called
carrying if 7 has a carrying facet.

We use the following characterisation of carrying double-triple simplices.

Lemma 3.37. Let 0 = 11 * 7o be a double-triple simplex of mBAAnm (w) such that 11 is a
minimal double-triple and 79 is a standard simplex. For any vertex v; = (v;), write the
last coordinate of v; as a;R + b; with a; > 0 and 0 < b; < R. Then o is carrying if and
only if 71 s of one of the following types for some € € {—1,+1}:

-+ 71 = {vo,v1, (Vo + V1 + €w), (vo + 1)} and by + b1 ¢ [0, R),

- 11 = {wo,v1, (Vo + 01 + €€;), (Vo + €€;) } for some i < m, byg+ by ¢ [0, R),

- 11 = {wo,v1, (Vo + 01 + €&;), (Vo + V1) } for some i < m and by + by ¢ [0, R), or

- = {vo,vl,vg,<50+51+652>, <’170+’171>} and by + by ¢ [O,R) or by + by +€by ¢ [O,R).

This follows from Lemma 3.43, Lemma 3.45, Lemma 3.48 and Lemma 3.52, which are
proved below.

Since all carrying 2-additive and 3-additive simplices have been subdivided in
sd(ler(TAZz (w)), we will need to subdivide every double-triple simplex in a compati-
ble fashion. The general type of subdivision of mB aam(w) that we will be considering
is described in the next definition. The construction of such a subdivision will be part
of the proof of the main result of this subsection.

Definition 3.38. Assume that for every carrying minimal double-triple simplex 7 in
mBAAZz (w), we are given a simplicial disc sd(71) whose boundary sphere is exactly
the subcomplex sd(971) of sd(mTA;n (w)). Let sd(lj-rﬁ(BAA;n (w)) denote the coarsest
subdivision of mBAA;n (w) that contains sd(ljm(TA;ln (w)) as a subcomplex and that
subdivides every carrying minimal double-triple simplex 71 according to sd (7).

Concretely, sd(mBAAT (w)) in Definition 3.38 is constructed as follows: In addi-
tion to the subdivisions described in Definition 3.30 on the subcomplex GH(TA? (w) of
Linkg aam(w), we subdivide carrying double-triple simplices of L’@BAA? (w) in the fol-
lowing fashion. Let 0 = 71 * 75 be a double-triple simplex of mg aam(w), where 7y is
a carrying minimal double-triple simplex and 75 is standard. Then, when passing from
mBAAZz (w) to sd(mBAAzz (w)), each such simplex is replaced by the simplicial join
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sd(o) =sd(m1) * 12

where sd(71) is the simplicial disc associated to 71 that we fixed before. Note that
sd(ljrﬁ(TAx (w)) and m;AA:F (w) are subcomplexes of sd(ljrﬁ(BAAZL (w)).

The main result of this subsection is the following proposition, which implies
Theorem 3.1.

Proposition 3.39. There exists a subdivision sd(m(BAAnm (w)) of mBAAT (w) as in
Definition 3.38 such that the simplicial map constructed in Proposition 3.51

r: sd(Linkpag (w)) — Cinkgp am (w)
extends to a simplicial map
— — <
r: sd(Linkgaarm (w)) — Linkgyom (w)
that restricts to the identity map on the subcomplex m;AA? (w) of sd(ljm(BAA;n (w)).

The proof of this proposition, the precise definition of sd(mBAAzz (w)), and the
definition of the extension of r is split into several lemmas, which we present below.

Recall that the extension of the simplicial map r over carrying 2-additive and 3-
additive simplices involved a subdivision as well as a choice of vertices. This is the main
source of difficulty in this section. The following discussion shows that for carrying 2-
additive simplices the two possible extensions of r are “homotopic”.

3.4.1. Different extensions of r over 2-additive simplices are “homotopic”
Let 8 € Linkpaam (w) be a minimal carrying 2-additive simplex. Then, Definition 3.16
implies that

B = {vo,v1,v2 = (Vo + V1) }.

The definition of the map r in Proposition 3.20 on the subdivision sd(5) of 8 involves
a choice v; € {vg,v1}. This choice allowed Church-Putman [6] to specify r on the new
vertex t(f) € sd(f), the barycentre of 8, by the formula

Let us write rg: sd(8) — mBAAnm (w) for the map defined using [ = 0 and r1: sd(8) —

mg AAT (w) for the map defined using ! = 1. The next lemma shows that these two

— <
maps are homotopic relative to the boundary 98 in Linkgaam (w).
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1 (r(vy) - @)

A‘ (r(og) + r(oy) = )

lo (r(vg) — )

"(Uo)

Fig. 2. The simplices A? x {to(83),t1(8)} and their image under h.

Lemma 3.40. Let 8 = {vg,v1,v2 = (Vg + 1)} € L’iﬂBAA? (w) be a carrying 2-additive
simplex. Then, the two maps ro and r1, where r; for | = 0,1 is as above, are homotopic
relative to Of wvia the simplicial map

hs A% ¢ {to(8), 11(8)} — Linkgang (w),

where h(to(5)) = ro(t(B)) and h(t1(B)) = ri(t(5)) (see Fig. 2).

Proof. Observe that the set of vertices in

ri(sd(B)) = {r(vo), r(v1), (r(vo) + r(v1) — @), (r(v) — w)}

spans a double-triple simplex for each of the two choices, I = 0 and [ = 1, and that the

two simplices share their 3-additive facet {r(vg),r(v1), (r(vo) + r(v1) —w)}. O

This observation allows us to perform the following construction, which we will use
later.

Corollary 3.41. Let 71 be a carrying minimal double-triple simplex of mBAAx (w) that
contains a 2-dimensional carrying facet B that is 2-additive. Then,

— <
rlor, Uh: sd(071) Usa(s) D(B) — Linkgaam (w)

defines a stmplicial homotopy between the two possible definitions of the map r on
sd(971), one obtained from 1o and one obtained from 11 as discussed above. Here,
D(B) = A% x {to(B),t1(B)} is the domain of the homotopy defined in Lemma 3.40.

The homotopy in Corollary 3.41 is illustrated in Fig. 3 for 71 a 3-dimensional double-
triple simplex with a carrying 2-additive face.
We now start proving the main results of this subsection.

3.4.2. Proof of Proposition 3.39 and Lemma 3.37

Note that any minimal double-triple simplex 7 in L/irW(BAA;n (w) satisfies 2 <
dim(7;) < 4, that any minimal double-triple simplex has a unique 3-additive face and
all other faces are 2-additive (see Observation 4.11).
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PN

h

Fig. 3. The homotopy r|s-, U h.

Convention 3.42. Let 7 be a minimal double-triple simplex 7; in L/irW(BAA;Ln (w). In the
remainder of this section, the unique 3-additive face of 7 will be denoted by . The
simplex 71 can then be written as a join 7 * z, where z € 71 is a vertex. We remark that
the vertex z has the property that it is contained in the additive core of every 2-additive
facet of 7.

The next lemma shows that the map r can be extended over minimal double-triple
simplices of dimension two without any subdivisions.

Lemma 3.43. The map r: ljn\kTAZL (w) — m;AA;y (w) in Proposition 3.31 extends sim-
plicially over all double-triple simplices 0 = T1%To in mBAAZL (w), where 11 is a minimal
double-triple simplex of dimension two and 1o is a standard simplex. I.e. for any such
simplex it holds that r(o) = r(m) * r(12) forms a simplex in m;AAm (w), so o is not
carrying. '

Proof. Let 71 = y*z, where v = {vg, v1 } is the unique 3-additive facet of 7;. In this proof,
we will use exactly the same strategy as in the proof of Lemma 3.32 and consider the
possible minimal 3-additive simplices 7y, one after the other. The underlying simplex of ~y
in BAA,,, is a subset {vg, v1,v2,v3} C {e1,...,em,w, vy, vy}, where {e1,...,em,w,v1}
is a standard simplex and vy = (U1 +€302+€303) for some choice of signs e, e5 € {—1,+1}.
As in the first part of the proof of Lemma 3.32, we need to consider two cases.

Case (a): If vo = e; and v3 = e; for some 0 < i # j < m, then vy = (V1 + €26; +

€s€;) and z = (U1 + €2€;) or z = (U1 + €3€;). Hence, r(vg) = (r(vi) + €26; + €3€;) and
r(z) = (r(vi) + €26;) or r(z) = (r(vi) + €3€;) by Lemma 3.12. It follows that r(7)

— <
is a double-triple simplex in Linkgaam (w). An application of Lemma 3.21 implies that

r(o) = r(m) * r(72) is a double-triple simplex as well.

Case (b): If vy = w,v3 = e; for some 1 < i < m, then vy = (U1 + eaw + €3€;) and
z = (U1 + eaw) or z = (U1 + €3€;). By Lemma 3.12, r(vg) = (er({v1 + e2w)) + €3€;)
where ¢ = —1 if the last coordinate of v; + esw is negative, and ¢ = +1 otherwise.
Lemma 3.12 also implies that r((01 + €3€;)) = (r(v1) + €s€;) and that 7((v1 + e2w)) €
{r(v1), (@—7(v1))}. Note that ({01 4 eaw)) = (w—r(vy)) requires that e; = —1 and that
€ = —1 (compare with Lemma 3.12). Resolving the signs, it follows that if z = (v; +€3€;),
then




34 B. Briick et al. / Advances in Mathematics 451 (2024) 109795

(01 +0p) =2 vy = (01 + 0, + )
)

Fig. 4. The subdivision of d7; in the carrying case.

r(11) = {r(vo),7(v1),7(2)} = trlwn) + esé) } s r(vy) * (r(v1) + ese;)

(r(vy) —w + €e3€;)

is a 2-additive or double-triple simplex. If z = (U1 +€xw), then r(71) = {r(vo), r(v1),r(2)}
is equal to either

{(r(vy) + ese;), r(vy),r(v1)},

which is externally 2-additive, or

{(r(v1) — w + ezes), r(v1), (0 —r(v1))},
which is a double-triple simplex. Hence r(7;) forms a simplex in each case. By
Lemma 3.21 we therefore conclude that f(o) = f(71) * f(72) is a simplex of the same

— <
type in Linkggam (w). O

We now work towards extending the retraction over minimal double-triple simplices
that are 3-dimensional. The unique 3-additive facet of such simplices is either w-related
or externally 3-additive. We start by considering 3-dimensional double-triple simplices
whose unique 3-additive facet is w-related. The next observation explains why such
minimal double-triple simplices can only have one carrying facet.

Observation 3.44. Let 74 = < % z be a minimal double-triple simplex of dimension 3
whose unique 3-additive facet v = {vg = (V1 + €202 + e3w), v1,v2} is w-related, where
€9,€63 € {—1,+1}. If 2z = (0 + e3w) for k € {1,2} and €; = +1, then 71 cannot
have any carrying facet. If z = (01 + €202), then there exists a unique 2-additive facet
{v1,v2, 2z} that might be carrying, as in Fig. 4.

Proof. Recall that z is contained in the additive core of any 2-additive facet of 7. If
z = (exU; + esw) for k € {1,2}, then any facet of 71 is w-related and it follows from
Definition 3.16 and Lemma 3.29 that no such simplex can be carrying. If z = (v; + €202),
then all facets but the 2-additive facet {v1,vq, 2z} are w-related. Hence, it follows from
Definition 3.16 and Lemma 3.29 that {v;, va, 2} is the unique possibly carrying facet. O

We now extend the retraction over the first type of minimal double-triple simplex of
dimension 3.
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Uy

Z:<l_11+l_)2> U0=<E|+52iw>
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Fig. 5. The subdivision of 71 = 7 * z in the carrying case.

Lemma 3.45. The map r introduced in Proposition 5.51 extends over all double-triple
simplices 0 = T % Ty in LinkBAA;n (w), where 71 = vz is a minimal double-triple simplex
of dimension 3 with w-related 3-additive facet v and 75 is a standard simplex.

More precisely, in the proof of Lemma 3.45 we check that the map
— — <
r: sd(Linkpam (w)) — Linkgaam (w)

in Proposition 3.31 extends over the simplex o = 71 * 75 if the simplex is not carrying,
and over a subdivision sd(c) = sd(7y) * 72 if the simplex is carrying. Here, sd(m) =
sd(n) * v is the coarsest subdivision of 71 that is compatible with the subdivision of its
unique carrying 2-additive facet n = {v1,va, 2 = (U1 + 02)} described in Definition 3.19.
The carrying case (illustrated in Fig. 5) occurs if and only if 71 = {vg = (01 + v2 £
W), 1,02,z = (U1+702)} contains a unique carrying 2-additive facet {v1,ve,z = (01 +702)}.

Proof. Let 71 = vz and v = {vg, v1, v} with vg = (v1 4+ €202 +€e3w) for two signs €3, €5 €
{=1,+1}. Then, z € {{v1 + €202), (U1 + €3W), (€2V2 + €3w) }. We will sometimes use the
convention that €; = +1. In this proof, we use exactly the same strategy as in the proof
of Lemma 3.32. The underlying simplex of v in BAA,,,;, is the set {vg, v1,v2,v3 = w}.
We need to consider three cases, which are similar to the cases in the second part of the
proof of Lemma 3.32: We again set v, = (U1 + €202) and recall that

r(vo) = r((v1 + €2tz + eaw)) € {r(vg), (@ — r(vg))}

by Lemma 3.12. Furthermore, we note that the value of 7(vg) depends on the last coordi-
nate of 01 + €202, which might be negative, and the sign e5 (compare with Lemma 3.12).
There are three subcases.

Case (a): Assume that {v1,ve,v) = (U1 + €202)} is not carrying and hence r(v) =
(r(v1) + €ar(v2)). Using Lemma 3.12 to calculate r(vp) and r(2), the possible values of
r(m) = {r(vo), r(v1),r(vs2),r(2)} are of the following form. If z = (U1 + €302), then r(r)

is
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s« 7(v1) * 7(ve) * (r(v1) + €2r(v2)) which is 2-additive or double-triple.

Let k € {1,2} and €1 := +1. I 2 = (e0% + e3w) and 7(z) = r(vy), then () is

—
)
~

(v1) + ear(ve)
(’Ul) + 627’(’1}2) + 637I)>

—~
<

} *1(v1) * r(ve) * r(vg) which is 2-additive or 3-additive.

If z = (e, Uk + e3w) and r(2) = {exr(vy) + e3w), then r(m) is

—~
3

-

N

)
+ 63'[1)>

(v1) + ear(ve

} x1(v1) * r(ve) * (epr(vg) + e3w) which is double-triple.

—
=

-

N

(’01 + EQT(UQ

— <
It follows that r(71) is a simplex in Linkgs om (w). Then, an application of Lemma 3.21
. —<
implies that r(o) = r(71) * r(72) is a simplex in Linkga om (w) as claimed.
Case (b): Assume that {vi,ve,v) = (U1 + €202)} is carrying and that z € {(v; +
€3W), (€202 + e3w) }. We start by recording two observations.

- If the absolute value of the last coordinate of vy is maximal among {v1, va,v}} for
k € {1,2} = {k,k'}, then one obtains the relation r(vg) = r(vg) + r(v)) — w.
Note that in this case, the last coordinate of v is contained in [R,00) and hence

that, if €5, # €3, it is impossible that r((exvx + e3w)) = (w — r(vg)) (compare with
Lemma 3.12). Therefore, this case will not be considered below.
- If the absolute value of the last coordinate of v, is maximal among {v,vs, v}, then

one obtains the relation r(v}) = r(v1) + r(ve) — w. As observed in case (b.2) in the

proof of Lemma 3.32, it is impossible that vf, is maximal and r(vg) = (@ — 7(v()).
Hence, this case will not be considered below.

Using Lemma 3.12 to calculate r(vg) and r(z), the possible values of r(m) =
{r(vo),r(v1),r(v2),r(z)} are of the following form. Let [ € {1,2}. If r(vo) = r(v(),
then
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(r(vi) = r(ve)) * 7(v1) * 7(v2) * {r(vl) is 2-additive, or

(w — r(v;)) is double-triple.
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It follows that r(;) is a simplex in Ijn\kgAAx (w). Hence Lemma 3.21 implies that r(c) =

r(m) * r(12) is a simplex in m;AAzz (w) as claimed.

Case (c): Assume that n = {v1,v2,v) = (U1 + €202)} is carrying and that z = (v; +
€202). Then, the carrying facet n = {v1,ve, 2} of 71 is subdivided into three simplices in
Sd(mTAg (w)) and we extend this subdivision to 7; by replacing 7; with the simplicial
join sd(11) = sd(n) * vo. The resulting subdivision sd(7y) of 71 consists of the following
three 3-simplices

{v1,v2},
{vo,t(n)} * § {v1, (U1 + €202)} and
{va, (01 + €202) }.

Recall that the barycentre t(n) is mapped to 7(t(n)) = (r(v;) — w) for some choice
I € {1,2}. Note that we must have r(vg) = r(v}) if n is carrying, i.e. we can’t have
7(vo) = (w — r(vo)) (compare with Lemma 3.12). The images of these simplices under
are therefore given by the following.

{r(v1),r(v2)} is double-triple,

), (r(vr) —w)}* S {r(vy), (r(v1) + r(v2) — w)} is 2-additive and
{r(va), (r(v1) + r(ve) — w)} is 2-additive.

—
=
3
=
<

S
N—
Jr
<
=
4

[\V)
S~—

|
g

It follows that r extends over sd(7y). Hence, Lemma 3.21 implies that r extends over any
simplex in sd(o) = sd(71) * 72 = sd(n) xvg * 2. O

In the next step, we extend the retraction over all minimal double-triple simplices of
dimension 3 whose unique 3-additive facet is externally 3-additive. The next observation
records that if such a simplex is carrying, then it has exactly two carrying facets.

Observation 3.46. Let 71 = ~y*2z be a minimal double-triple simplex of dimension 3 whose
unique 3-additive facet v is externally 3-additive. Assuming that vy has maximal last
coordinate, we get that v = {vg = (U1 + €202 + €3€;),v1,v2}. If 7y is carrying, then 7
has exactly two carrying facets and it holds that vy = (01 + U2 + €3€;), i.e. €2 = +1. See
an illustration in Fig. 6. In this case, the 3-additive facet « has to be carrying and the
second carrying facet (3 is the unique internally 2-additive facet of 71, which is one of the
following

B = {vo, v,z = (Up + €36;)} for {k,k'} = {1,2} or B = {v1,v2,2 = (V1 + a)}.

Proof. If v is carrying, then it follows from Lemma 3.29 that v = {vg = (v1 + U2 +
€3€;),v1,v2} with by + by € [R,2R). It follows that z € {(v; + e3€;), (v1 + v2)} for
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vo =0, + 0, + ;)

z= (0 +¢) Uy
Uy

Fig. 6. The subdivision of d7; in the carrying case.

z "\ w
y
Fig. 7. The subdivision sd(A?%).

I € {1,2}. Recall from Definition 3.16 that the only carrying 2-additive simplices are
internally 2-additive. 7y contains a unique internally 2-additive facet 8 spanned by 8 =
{vo, vpr, 2z = (Uk + €3€;) } for {k,k'} = {1,2} or B = {v1,v2,2 = (U1 + ¥2)}. Observe that
B has to be carrying, because b; + by € [R,2R). If v is not carrying, then the unique
internally 2-additive facet 5 cannot be carrying since adding or subtracting e; does not
change the last coordinate (compare with Lemma 3.12). O

We now finish our discussion on how to extend the retraction over minimal double-
triple simplices of dimension 3. The following simplicial 3-disc and Corollary 3.41 will be
used to describe the subdivision sd(7y) of a carrying minimal double-triple simplex with
externally 3-additive facet.

Definition 3.47. Let sd(9A?%) be subdivision of the standard simplicial 2-sphere A® on
the vertex set {w,x,y, 2} obtained by subdividing the facet v = {w,x,y} by placing
the vertex t(v) at its barycentre and the facet 8 = {x,y, 2z} by placing the vertex t(5)
at its barycentre. Let sd(A3) be the simplicial 3-disc that is obtained by extending the
subdivision of sd(9A3) to a subdivision of the 3-simplex A3 using the following five
3-simplices (shown in Fig. 7),

{t(),t(B),z,y},  {t(),t(B),w,z},  {t(y),t(8),w,y}, {t(B),w,z,z}, and
{t(ﬂ)’w7y7 Z}'

Lemma 3.48. The map r in Proposition 3.51 extends over all double-triple simplices o =
T1 % To N LinkBAAZl (w), where 11 = v* z is a minimal double-triple simplex of dimension
3 with externally 3-additive facet v and 1o is a standard simplex.
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vy = (U1 + 0, +€) vy

(U +e)=1z v (O )=z Yo
U2 U2

Fig. 8. The carrying cases of Lemma 3.48.

More precisely, in the proof of Lemma 3.48 we check that the map
_ <
r: sd(Linktam (w)) — Linkgaam (w)

in Proposition 3.31 extends over the simplex o = 7y %7 if the simplex is not carrying, and
over a subdivision sd(o) = sd(7 )72 of o if the simplex is carrying. Here, the subdivision
sd(7y) is of the form sd(A?) described in Definition 3.47 or of the form sd(A%) Ugq(g)
D(p) using Definition 3.47 and applying Corollary 3.41 once to the internally 2-additive
carrying facet § of 7. The carrying case occurs if and only if 7 = {v1,ve, (U1 + U2 +
€3€;), (U1 +€3€;) } for some i < m and e3 € {+1,—1} or 71 = {v1,va, (U1 + U2 +€3€;), (U1 +
v2)} for some i < m and €5 € {+1, —1}. These cases are illustrated in Fig. 8.

Proof. Let 71 = y*z and v = {vg, v1, v2} with vg = (U1 +e€202+€3€;) for €2, 65 € {+1,—1}.
Then, z € {<’l_}1 + 621_}2>, <1_)1 + €3éi>, <€2’l_}2 + 63éi>}.

Firstly, assume that 7y is not carrying. Then, it holds that (vo) = (r(v1) + ear(vs) +
e3€;) and 7(2) € {(r(v1) + ear(va)), (r(v1) + €3€;), (€2 (va) + €3€;)} using Lemma 3.12. Tt
follows that

(r(vy) + €ar(v2)) is double-triple,
{(r(v1) + e2r(v2) + €3€;),7(v1),7(v2)} * < (r(v1) + €3€;) is double-triple, and

(ea7(v2) + €3€;) is double-triple.

Hence, r(71) spans a simplex in m; Aam(w) and, by Lemma 3.21, it therefore follows
that r(o) = (1) * 7(72) is a simplex in m;AA:{L (w) as claimed.

Secondly, assume that 7 is carrying. Then, it holds by Observation 3.46 that 7
contains exactly two carrying facets and that we may assume vg = (U1 + U + €3€;), i.e.
€2 = +1. It follows that r(vy) = (r(vy) + r(vs) — @ + €3€;).

Case (a): Assume that z = (v; + v2). Observation 3.46 implies that the two car-
rying facets of 7, are the 3-additive facet v and the unique internally 2-additive facet

B = {v1,v2, z}. Since § is carrying, we have that r(z) = r(v1) +r(v2) — @ (compare with
Definition 3.16). The two facets v = {vg, v1,v2} and 8 = {v1, v, z} of 71 have been sub-
divided in mTAW (w). Applying Corollary 3.41 once, it suffices to show that r extends
over the subdivision sd(71) of 71 that extends sd(971) as described in Definition 3.47, for
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the case r(t(7)) = (r(v1) + r(ve) — w) and 7(t(B)) = (r(vi) — w).” The following shows
that the image of every simplex in sd(71) (compare with Definition 3.47) is a simplex of

Ijmﬁ:AAgl (w),

{r(v1),r(v2)} is double-triple,
{rt()),rt(B)} * < {r(vo) = (r(t(y)) + ez&;),r(v1)} is double-double,
{r(vo) = (r(t(y)) + €3€;),r(ve)} is double-triple,

and,
e v S e SRR {r(vo),r(v1)} is double-double,
{r(t(B)),m(z) = {r(v) +r(va) & {{r(vo),r(vg)} is double-triple.

It follows that the map extends the subdivision sd(r;). By Lemma 3.21, it therefore
follows that r extends over any simplex in sd(o) = sd(7y) * 2.

Case (b): Assume that z = (p+esé;) for k € {1,2} = {k, k¥'}. Observation 3.46 implies
that the two carrying facets of 7 are the 3-additive facet v and the unique internally
2-additive facet § = {vg, v, 2z}. The two facets v = {vg,v1,v2} and § = {vg, v, 2}
of 7 have been subdivided in mT m(w). Applying Corollary 3.41 once, it suffices to
show that r extends over the subdivision sd(71) of 71 that extends sd(97) as described in

Definition 3.47, for the case r(¢t(7y)) = (r(v1)+7r(ve)—w) and r(¢(8)) = (r(vg:)—w).'"" The

S <
following shows that the image of every simplex in sd(7) is a simplex of Linkga pm (w),

{r(v1),r(v2)} is double-triple,
{r(t(7)), r@(B))} = < {r(vo) = (r(t(y)) + €3€:),7(vir)} is double-double,
{r(vo) = (r(t(y)) + €s&;), r(vy)} is double-triple,

and,

{r(vg),r(vg )} is double-double,
{r(vo),r(v)} is double-triple.

{r(t(8)),r(2) = (r(ve) + es@)} {

It follows that the map extends the subdivision sd(7;). By Lemma 3.21, it therefore
follows that r extends over any simplex in sd(c) = sd(m) * 2. O

In the final step, we prove that the retraction extends over minimal double-triple
simplices of dimension 4, i.e. these are internally double-triple simplices. The next ob-
servation gives a large class of examples of such double-triple simplices with have the
property that every facet is carrying.

9 The other choice for r(t(8)) is (r(vs) — w).
10 The other choice for r(¢(8)) is (r(vg) + €3&; — ).
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Observation 3.49. Let 71 = v * 2z be a double-triple simplex of dimension 4. Then any
face of 71 can be a carrying simplex. This is for example the case for

{UQ,’Ul,Ug, <’l_)0 +171>, <1_10 + v +1_)2>} with by + b1 + by € [QR, 3R)

Up to this point, the construction of the retraction involved explicit subdivisions. For
this last case, the complexity is great enough that we will resort to computer calculations.
In particular, we will use computers to check high connectivity of the following simplicial
complexes, which will aid in our construction of the retraction.

Definition 3.50. Let n > 4 and ©41,7,73, W € Z™T™ be a partial basis such that
{v1,v9,v3,w} is a simplex of B7. Assume that the last coordinate R of o is positive
and that the last coordinates of ¥, 75, U3 have absolute value smaller than R, that is,
v; € L/irﬂgAA? (w). Let Q(¥, Vs, Us; W) be the full subcomplex of Ijn\kgAA;n (w) on the
set of lines spanned by vectors of the form /

i) U1 + (Zlu_J', iV) U1 + Vs + algii, Vi) U1 + U3 + a13W
ii) ¥y + ag, V) U1 + Uy + U3 + a3,
111) 173 + CL37IJ, or

for a; € Z.

Theorem 3.51. The complexes QI (¥, Ua, Us; W) are 3-connected for all m,n € Ny satis-
fyingm >0 and n > 4.

This theorem will be shown in Section 4 with the help of computer calculations. We
will assume it for now to deal with the last case for defining the retraction:

Lemma 3.52. The map r in Proposition 3.31 extends over all double-triple simplices o =
T1 % Ty 1N LinkBAAx, (w) where 11 is a minimal double-triple simplex of dimension 4 and
To 15 a standard simplex.

More precisely, in the proof of Lemma 3.52 we check that the map
_ <
r: sd(Linktam (w)) — Linkgaam (w)

in Proposition 3.31 extends over the simplex o = 71 *73 if the simplex is not carrying, and
over a subdivision sd(c) = sd(m) * 72 of o if the simplex is carrying. On the subdivision
sd(71) of 71 the extension takes values in one of the complexes Q" (d, 5, ¢ W) introduced
in Definition 3.50. The carrying case occurs if and only if 7 = {vg,v1,v9, (Vg + U1 £
v2), (Vo +v1)} and by + b1 ¢ [0, R) or by + by £ b & [0, R).

Proof. Let 7 be a minimal internal double-triple simplex. Let sd(97;) be the subdivision
of Oy in Linktam (w). By Proposition 3.31 we obtain a map
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r: sd(0m) — L/irW(;AAZL (w).

Let v C 71 be the unique 3-additive facet. As in Lemma 3.34 et seq., we fix three lines
{vo,v1,v2} C 7 such that

v = {vo,v1,v2,v3 = (Vg + U1 + (€202))}

for the choice of a sign ez € {—1, 1} and where the absolute value of the last coordinate
of 3 is maximal in . Then, 71 = v x vy with

(Vo + V1),
vy = 4 (U1 + (e202)),
<’L_1() + (6252».

Firstly, assume that 7 is not carrying. Then, r(v3) = (vo) + 7(v1) + €27 (v2) and

+r(vy) = @-ﬁ- ear(v2),

It follows that r(7y) is a double-triple simplex. By Lemma 3.21, it follows that (o) =
r(11) * r(72) is a double-triple simplex as well.

Secondly, assume that 7 is carrying. Consider the complexes Qo1 = QI (r(vo), 7(v1),
€3 - 7(va);w) and Q10 = Q™ (r(v1),7(v0), €2 - 7(va); W) introduced in Definition 3.50. We
claim that r(sd(d7)) is contained in @ = Qo1 or Q = Q0. To see this, it suffices to
check that the image of every vertex in sd(0m) is contained in this complex. We will

explain how to choose between Qg1 and Q19 in the first step of the proof of this claim.
Step (a): Every vertex in r(971) is contained in Q. Indeed, observe that

7(vo) + 7(v1) + ag1w
£r(ve) = ¢ 7(v1) + (e2r(v2)) + arpw,
r(vo) + (e2r(v2)) + ap2w,

for agp1, a1z, a02 € {—1,0,1}. Hence, r(v4) € Q10 in the first two cases and r(v4) € Qo1 in
the third case. Fix this choice of Q). Observe furthermore that r(vo), r(vy),r(v2 ) € Q and
that r(v3) € Q, since r(vs) = r(vo) + 7(v1) + €27(v2) + ap12 - W for agiz € {—2,-1,0,1}
by Lemma 3.34 et seq.

Step (b): Assume that the unique 3-additive facet v of 71 is carrying and hence
subdivided in sd(d71) using the new vertex ¢(7y). Lemma 3.34 et seq. shows that
r(t(y)) = r((vo + 1)) is equal to (r(vo) + r(v1) — w) or (r(vg) 4+ r(v1)). In either case,
r(t(7y)) is contained in Q = Qo1 and Q = Q1o.
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Step (c¢): Assume that one of the 2-additive facets a of 71 is carrying and hence
subdivided in sd(071). Let n C « denote the minimal 2-additive simplex that has been
barycentrically subdivided using the new vertex ¢(n). Then,

r(t(n)) = (r(v) — w) for some vertex v; € n C 1.

By Step (a) it holds that r(v;) € @ for any vertex v; € 7y and since the last coordinate
of r(v;) — w is contained in (—R,0), it therefore holds that

(—r(v) +w) € Q.

/\
3
=
IS
S—
|
g
~
I

This completes the proof of the claim that r(sd(d7)) is contained in Q = Qo1 or Q = Q1p.
It follows that

r: sd(0n) = Q — mgAA?(w).

Recall that sd(d7) is a simplicial 3-sphere. By Theorem 3.51 the complex @ is 3-
connected. It follows, that there exists a simplicial pair (sd(r),sd(07)) = (D*,S3)
and a simplicial extension r,, : sd(11) — @ of r: sd(dm1) — Q. Subdivide every simplex
0 = T1 * T2 by using the coarsest simplicial structure sd(o) on ¢ that is compatible with
the simplicial structure specified by sd(71) on 7y. Le. this is defined by replacing the
internal double-triple simplex o = 71 * 79 by the collection of simplices

{v* 7y | v a simplex of sd(m)}.
An application of Lemma 3.21 for o = 7 * 7o implies that we can extend the map
T osd(m) — mBAAT (w)
to a map
rr k1 sd(o) =sd(m) * T2 — mBAAZz(w).
This completes the proof. O

Lemma 3.43, Lemma 3.45, Lemma 3.48 and Lemma 3.52 imply Proposition 3.39 and
Lemma 3.37, so this concludes our discussion of double-triple simplices. Furthermore,
the proof of Proposition 3.39 completes the construction of the retraction map and es-
tablishes the main result of this section, Theorem 3.1.

4. High connectivity of the complexes Q7 (¥, U2, Us; W)

The aim of this section is to prove Theorem 3.51, which states that the complexes
Q" (v, Vs, Us; W) introduced in Definition 3.50 are 3-connected for all m,n € Ng. This
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intg(z) -6 -5-5-4-3-3-2-1-1 0 1 1 2 3 3 1 5 5 6
N - | ! ! | ! ! | ! ! | ! ! { ! ! | ! ! | -
| T T T T T T T T T T T T T T T T T T T Ll

z -9 -8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9

int,(z -5 -4 -3-3-3-2-1-1-1 0 1 1 1 2 3 3 3 4 5
4( ) - ! | ! ! ! | ! ! ! | ! ! ! | ! ! ! | ! T
~<r T T T T T T T T T T T T T T T T T T T L

z -9 -8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9

Fig. 9. Some values of int3(z) and int4(z).

was used to define the retraction on double-triple simplices. Throughout this section, we
assume that n > 4.

To prove this theorem, we will first observe that all of these complexes are finite
and then show that there is a finite list that contains all of their isomorphism types.
Afterwards, we use a computer to verify that the reduced homology of this finite list of
finite simplicial complexes vanishes in homological degrees ¢ < 3 and that each complex
is simply connected. The result then follows from Hurewicz’s theorem.

4.1. Listing the isomorphism types

We start by introducing notation that will be useful for studying the isomorphism
types of Q' (0y,Ua, Us; w). It slightly differs from similar notation used in previous sec-
tions, but allows for an easy formalisation on a computer.

Definition 4.1. Let R € Z>; and z € Z. We define the R-interval of z as

2k, if z = kR for some k € Z;
intp(z) == ¢ 2k +1, if kR < z < (k+ 1)R for some k > 0;
—(2k+1), if —(k+1)R <z < —EkR for some k > 0.

If ¥ € Z™*"™ is a vector with last coordinate equal to z € Z, we write intg(¥) = intg(2).

In other words, for k € Z, the R-interval of z is 2k + 1 if z lies in the open interval
between kR and (k4 1)R and it is equal to 2k if z is equal to kR.

Example 4.2. The 3-intervals and 4-intervals of some integers are labelled in Fig. 9.

The next lemma contains three elementary observations about the R-interval function
(with R fixed) that say that it is close to being linear: It commutes with scalar multi-
plication by —1, it is always close to being additive and it is actually additive if one of
the inputs is a multiple of R. See Lemma 3.12, which states similar results in a slightly
different language.

Lemma 4.3. Let R € Z> and 2,21, 22 € Z. Then
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i) intg(—z) = —intgr(2),
i) intg(z14292) € {intr(z1) + intg(22) — 1,intg(21) + intg(22), intr(21) + intg(z2)+1},
and

iii) intg(z1 + 22) = intr(z1) + intg(22) if at least one of intg(z1), intr(22) is even.
Proof. All three claims follow immediately from the definitions. O

The reason that we use these R-intervals is that they allow us to give a formal de-
scription of the vertex set of QI (71, U2, Us; wW). Using Lemma 4.3, it is easy to deduce the
following properties:

Lemma 4.4. Let G € Z™t", let @ € Z™T™ be a vector with last coordinate equal to R > 1
and a € Z.

i) The last coordinate of U has absolute value strictly smaller than R if and only if
intr(¥) € {-1,0,1}.
it) If intg(¥) = 2k is even, then the last coordinate of U+ aw has absolute value strictly
smaller than R if and only if a = —k.
iti) If intr(¥) = 2k + 1 is odd, then the last coordinate of U+ aw has absolute value
strictly smaller than R if and only if a € {—(k + 1), —k}.

A consequence of Lemma 4.4 is that all the Q7' (U1, U2, U3; W) are finite simplicial com-
plexes on at most 12 vertices. Our next aim is to create an explicit (finite) list of simplicial
complexes such that Q' (U1, U2, Us; W) is isomorphic to one of these for every list of ele-
ments (07, ¥, U3;w). This list will consist of complexes of the following form.

Definition 4.5. Let €1, &, €3, €4 denote the standard basis of Z*. We write Q(r1, 72, r3, 12,
r123,723) for the full subcomplex of Linkpaa,(e4) on all lines spanned by vertices of the

form
i) €1 + ai€éy, iV) €1 + €5 + a12€y, Vi) €1 + €3 + a3€y,
ii) € + aséy, V) €1+ €+ €3 + a123€4,

111) €3 + az€y, or

where a; = —k if r; = 2k is even and a; € {—(k + 1), —k} if r;, = 2k + 1 is odd.

The following key proposition tells us that the isomorphism type of any complex
QI (v, Vs, U3; W) is determined by six integers, namely the R-intervals of 0y, Ua, ¥5, U7 +
Uy, U1 + U + U3 and ¥ + U3.

Proposition 4.6. Let v, U5, U3 and W be as in Definition 3.50 and let

(r1,72,73, 12,7123, 713) =(int g (T1), int g (v2), int g (T3), int g (U + U2), int g(V) + Vo + U3),
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intp(vh + U3)).
Then there is an isomorphism

¢: Q:Ln(1717172363;w) — Q(r17r27’r37r123r1237T13)'

In particular, the isomorphism type of Q' (U1, Va, Us; W) only depends on the siz-tuple of

integers (r1,72,73,712,7123,713)-

Proof. To shorten notation in this proof, we set vo = ¥ + U, VU123 = U + U2 + U3,
U13 = U1 + U3 and €5 := €] + €5, €123 = €1 + €5 + €3, €13 = €1 + €3. With this, we have
intg(¥;) = r; and by Lemma 4.4, the span of ¢ + a is a vertex in QI (¥, Vs, Us; W) if
and only if the span of &; 4+ aéy is a vertex in Q(ry, 72,73, 712,7123,713). This gives rise
to an obvious bijection ¢ between the vertex sets of the two complexes.

We want to show that ¢ induces a simplicial isomorphism. Let ly,...,l; €
Q" (v, U2, Us; ). We need to show that lg,...,l; form a simplex if and only if their
images ¢(lp), . .., ¢(lx) do. Spelling out the definitions, one sees that {ly, ..., I} is a sim-
plex in QM (U, Vs, v3; W) if and only if {ly,...,lg,w,e1,...,emn} is a simplex in BAA,,4p,
and none of the [; is in the span (€1, ...,€m,w) (with a slight abuse of notation, we use
the same symbols €; to denote the standard basis of Z™*" and Z%). A set of vectors
gives rise to a simplex in BAA; if up to two of them are certain linear combinations
of the others and the others from a partial basis; the form of the linear combinations
depends on the type of simplex, see the definitions in Section 2. Assume that there is a

linear dependency between l_('), vy, W, e, ., €m}, i.e. there are c¢;, d; such that
k m
Z Cili + Ck+1117+ Z djé}' =0. (2)
i=0 j=1
——
€(U1,V2,73,%) €(&1,-,€m)

By assumption, {v1,vs,v3, w} is a simplex in B/, which means that {0}, ¥s, U3, W, €1, . . .,
€n} is a partial basis. Hence, Equation (2) implies Zf:o cil_; + ¢ = 0. It follows
that {lo,...,lk,w,e1,...,emn} is a simplex in BAA,,, if and only if {lo,...,l, w}
is a simplex of the same type in the full subcomplex of BAA,,;, on all lines that
are contained in (¥, v, U3, W) = Z*. The latter is clearly equivalent to saying that
{6(lo),- .., o(lk), p(w) = eq} is a simplex in BAAy, i.e. that {¢(lp),...,d(lk)} is a sim-
plex in Q(r1,72,73,712,7123,713). O

By the above proposition, we can produce a list with all isomorphism types of
the complexes QI (¥, U2, Us; W) by listing the possible combinations of R-intervals of
U1, U, U3, U1 + Us, U1 + Us + U3 and ¥ + v3. Before we do this in Corollary 4.8, we record
in the following lemma isomorphisms between these complexes. These are easy to show
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Table 1
A list of 48 tuples (r1,r2, 73,712, 7123, 713) containing (at least) one represen-
tative for each isomorphism type Q(r1, 72,73, r12, 123, 713).

T1 T2 T3 T12 T123 T13 T1 T2 T3 T12 T123 T13
-1 -1 -1 -3 -5 -3 -1 -1 1 -1 0 1
-1 -1 -1 -3 -4 -3 -1 -1 1 -1 1 1
-1 -1 -1 -3 -3 -3 -1 0 0 -1 -1 -1
-1 -1 -1 -3 -3 -2 -1 0 1 -1 -1 -1
-1 -1 -1 -3 -3 -1 -1 0 1 -1 0 0
-1 -1 -1 -2 -3 -2 -1 0 1 -1 1 1
-1 -1 -1 -2 -3 -1 -1 1 1 -1 -1 -1
-1 -1 -1 -1 -3 -1 -1 1 1 -1 0 -1
-1 -1 -1 -1 -2 -1 -1 1 1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 1 1 0 1 -1
-1 -1 0 -3 -3 -1 -1 1 1 0 1 0
-1 -1 0 -2 -2 -1 -1 1 1 0 1 1
-1 -1 0 -1 -1 -1 -1 1 1 1 1 -1
-1 -1 1 -3 -3 -1 -1 1 1 1 1 1
-1 -1 1 -3 -2 -1 -1 1 1 1 2 1
-1 -1 1 -3 -1 -1 -1 1 1 1 3 1
-1 -1 1 -3 -1 0 0 -1 -1 -1 -3 -1
-1 -1 1 -3 -1 1 0 -1 -1 -1 -2 -1
-1 -1 1 -2 -1 -1 0 -1 -1 -1 -1 -1
-1 -1 1 -2 -1 0 -1 -1 -1 0
-1 -1 1 -2 -1 1 0 -1 1 -1 -1 1
-1 -1 1 -1 -1 -1 0 -1 1 -1 0 1
-1 -1 1 -1 -1 0 0 -1 1 -1 1 1
-1 -1 1 -1 -1 1 0 0 0 0 0 0

and allow us to reduce the size of the list of isomorphism types, which is helpful for the
computer calculations we want to perform.

Lemma 4.7. Let r1,rq,73,712,7123, 713 € Z. We have the following identities:

i) Q(ri,r2, 73,712,123, 713) = Q(11,73,72,713, 7123, T12);
i) Q(ri,r2, 73,712,123, 713) = Q(—r1, —T2, —T3, —T12, —T123, —T13);

We would like to remark that these are not the only isomorphisms that exist be-
tween complexes Q(r1,re, r3,712,7123,713) and Q(r}, rh, 5, o, 793, 713). However, they
are sufficient to reduce the list of isomorphism types to a size that is small enough to
allow computer calculations.

Corollary 4.8. Let vy, Vs, U3, W as in Definition 3.50. Then

Q(thR(ﬁl), intR(ﬁg), intR(l_fg), intR(l_fl + 172), intR(l_fl + Uy + 173), intR(l_fl + 173))

agrees with Q(ry,ra,73,712,T123,713) for one of the tuples (r1,r9,73,712,7123,713) listed
in Table 1.

Proof. Let 19 = 01 + Vs, U123 = U1 + Uy + U3, 13 = U1 + U3 and let z; denote the last
coordinate of v;. As the last coordinates of ¥, ¥, /3 are smaller than R, we have
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intp(z;) € {-1,0,1} for 1 <i<3.

Furthermore, by Lemma 4.3, we know that intg(z12) = intg(2z1 + 22) is either equal to
the sum intp(z1) + intg(22) or differs from it by at most 1, depending on the parity of
intr(z1) and intg(z2). Similarly, intg(z123) = intg (21 + 22 + 23) can differ from the sum
intg(212) +intg(23) by at most one. Also, 213 = 21 + 23 can be written both as (z1) + (23)
and as (21 + 22 + 23) — (22). Hence, its R-interval differs both from intr(z1) + intr(z3)
and from intp(z123) — intg(22) by at most one.

These rules allow one to generate a list with all possible tuples that can occur as

(intg(z1),intg(22),int g(23), intg(z12), intg(z123), int g (213)).

The list can be further shortened by using the identities of Lemma 4.7. We did this using
computer calculations (available under https://github.com/benjaminbrueck/codim2
cohomology_ SLnZ/blob/main/Connectivity %20Q%20complexes.ipynb) and the result
was Table 1. O

4.2. Computer implementation of the complezes

To show that all the complexes obtained in Corollary 4.8 are indeed 3-connected, we
use computer calculations. These are made available under the following link https://
github.com/benjaminbrueck/codim2 cohomology SLnZ.

The core of the calculations is a function, written in python, that takes as an input a set
of vectors in Z™ and returns the subcomplex of BAA,, that is spanned by these vectors.
This simplicial complex is implemented using the Simplex Tree module of GUDHI [15].
The GUDHI library was developed for topological data analysis. It allows to conveniently
work with filtered simplicial complex and we used the filtration functionality to keep track
of the type of the simplices (standard, 2-additive, 3-additive, double-triple or double-
double). However, one cannot compute homology with integral coefficients in GUDHI.
For performing these homology computations, we use the SimplicialComplex class of
SAGEMATH [23].

4.2.1. Simplices by facet type

One fact that we used for building subcomplexes of BAA,, on a computer is that for
many simplices, it is sufficient to know what types of simplices their facets form. This is
used in the computations to check whether a set of vertices forms a simplex.

Definition 4.9. Let S = {vp,...,vq} be a set of vertices of BAA,, such that every d-
element subset of S forms a simplex in BAA. Then the facet type of S is the multiset of
simplex types that arise among these d-element subsets.

With slight abuse of notation, call a subset of size k a facet of S = {vg,...,v;} (even
if it does not necessarily form a simplex in BAAT").


https://github.com/benjaminbrueck/codim2_cohomology_SLnZ/blob/main/Connectivity%20Q%20complexes.ipynb
https://github.com/benjaminbrueck/codim2_cohomology_SLnZ/blob/main/Connectivity%20Q%20complexes.ipynb
https://github.com/benjaminbrueck/codim2_cohomology_SLnZ
https://github.com/benjaminbrueck/codim2_cohomology_SLnZ
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Example 4.10. Let ey, e, €3, e4 be the standard basis of Z* and let S = {e1, e, e3, (€] +
@), (€1 + €5),eq}. Then the facet type of S is

{3-additive, 2-additive, 2-additive, 2-additive, 2-additive, double-triple} .

Observation 4.11. If 7 is one of the types of simplices defined in Section 2 and d € Z,
then every set that forms a d-dimensional simplex of type 7 has the same facet type.
These types are as follows: Let S be a set of vertices of BAA.

i) If S forms a standard simplex then its facet type is
{standard, ..., standard} .
ii) If S forms a 2-additive simplex, then its facet type is
{standard, standard, standard, 2-additive, . . ., 2-additive} .
iii) If S forms a 3-additive simplex, then its facet type is
{standard, standard, standard, standard, 3-additive, . . ., 3-additive} .
iv) If S forms a double-triple simplex, then its facet type is

{2-additive, 2-additive, 3-additive, 2-additive, 2-additive, double-triple, . . .,
double-triple} .

v) If S forms a double-double simplex, then its facet type is

{2-additive, 2-additive, 2-additive, 2-additive, 2-additive, 2-additive,
double-double, . . ., double-double} .

We will see that in most cases, the converse of this is true as well, i.e. if we have a
set of vertices whose facet type agrees with one of the types of the list above, then it
already forms a simplex of the corresponding type.

Definition 4.12. Let 7 be one of the types of simplices defined in Section 2 and let d € Z.
We say that 7 is determined by its facet type in dimension d if the following is true:
Given a set of vertices S = {vg,...,vq} of BAA,, such that every d-element subset of S
forms a simplex in BAA,,. Then S forms a simplex of type 7 if and only if it has the
same facet type as a d-dimensional simplex of type 7.

It is not hard to check that only 2- and 3-additive simplices are determined by their
facet type if they are not minimal and that double-triple and double-double simplices are
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even determined by their facet types in all possible dimensions. We use these properties
for the computer implementation of the complexes. We record them in the following
lemma, but omit the (elementary) proofs.

Lemma 4.13. The following hold:

i) An m-additive simplex is determined by its facet type in all dimensions d > m.
it) A double-triple simplex is determined by its facet type in all dimensions d > 4.
i1) A double-double simplex is determined by its facet type in all dimensions d > 5.

4.8. Results of the homology calculations and simple connectivity

In addition to computing the homology of the complexes Q7*(¥, U, U3; W), we need
to show that they are simply connected. We will do this by showing that they are very
“dense” and using the following criterion:

Lemma 4.14. Let QQ be a simplicial complex with k vertices. Assume that every pair of
vertices forms an edge in Q) and that there are only m triples of vertices that do not form
a two-simplex. If m < k — 2, then Q is simply connected.

Proof. Let = be a vertex of @ and let 71(Q,x) denote the fundamental group of @
with base point z. The inclusion of the l-skeleton Q) < @ induces a surjection
frm(QW, z) — m1(Q, x). Hence, it is sufficient to show that f has trivial image.

The 1-skeleton Q1) is the full graph with vertex set Q(®). This implies that 7 (Q(, z)
is a free group with generating set given by {A(z,u,v)lu,v € Q® \ {z}}, where
A(z,u,v) is the triangle consisting of the three (oriented) edges from z to w, u to v
and v to x. We need to show that A(x,u,v) is trivial in 71(Q, x). This is definitely true
if {x,u,v} forms a 2-simplex in @, so we can assume that this is not the case. It then
suffices to show that there is a vertex w such that {z,u, w}, {z,v,w} and {u,v,w} are
all 2-simplices in @; such a w would form a cone point for the triangle A(z, u,v), showing
that it is trivial in m1 (@, ).

Now by assumption, there are at most m — 1 triples other than {z,u,v} that do not
form a 2-simplex. Hence, if there are more than (m — 14 3) = m + 2 vertices, there is at
least one w with the desired properties. O

The preceding Lemma 4.14 also follows from [2, Lemma 2.1].

Lemma 4.15. For all tuples (r1,72,73,712,7123,713) in Table 1, the complex Q(ri,r2,73,
T12,7123,T13) @8 simply connected.

Proof. This follows from Lemma 4.14 using the computer calculations in the jupyter
notebook https://github.com/benjaminbrueck/codim2__cohomology_ SLnZ/blob/main/
Connectivity%20Q%20complexes.ipynb. O


https://github.com/benjaminbrueck/codim2_cohomology_SLnZ/blob/main/Connectivity%20Q%20complexes.ipynb
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We are now ready to show that every complex Q7 (¥, U, U3; W) is 3-connected.

Proof of Theorem 3.51. By Proposition 4.6 and Corollary 4.8, it suffices to find for ev-
ery tuple (rqy,72,73,712,7123,713) in Table 1 vectors ¥, ¥, U3, W € Z* with last entries
21, 22, 23, R such that (rq,rs,73,7r12,7123,713) is given by

(intg(z1),intp(22),int g(23), intg(z1 + 22),intg(21 + 22 + 23), intg(z1 + 23))

and to show that QY (%, ¥z, U3; 1) is 3-connected.

As this complex is always simply connected (Lemma 4.15), Hurewicz’s theorem implies
that it is sufficient to show that its integral homology vanishes in degrees 2 and 3.
This reduces the proof to computing the homology of a finite list of finite simplicial
complexes. We performed these calculations with a computer, the results can be found
in the following notebook https://github.com/benjaminbrueck/codim?2 cohomology
SLnZ/blob/main/Connectivity%20Q%20complexes.ipynb. O

4.4. Resource consumption, runtime and verifiability of the computer calculations

All of the used algorithms are exact and guaranteed to terminate. The entire com-
putations take less than one minute on a mid-class laptop and have negligible memory
consumption.

There are four steps in this section where we use computer calculations. Firstly, to
find the list of isomorphism types of the complexes Q(r1,72,73,712,7123,713) given in
Corollary 4.8. Finding this list, i.e. creating Table 1, amounts in a simple application of
the relations given in Lemma 4.3 and Lemma 4.7. This is done by a sequence of case
distinctions. While this is a tedious task and we believe that the computer is less likely
to make mistakes, this can also be verified by hand. Secondly, to find a representative for
each such isomorphism type, i.e. to find for each tuple of integers (1, 72,73, 712, 7123, 713)
in Table 1 a basis 9], U, U3, @ of Z* such that

(intR(T)’l),intR(q_J'g)7intR(173)7intR(171 + 172),intR(171 + Uy + 173),int3(171 + 173))

= (T1,7‘2,T3,T12,T123,T13)-

For this, the computer needs to calculate R-intervals and to check whether a set of
vectors forms a basis of Z*. It is easy to verify by hand (also just in examples) that the
vectors given by the computer actually form a basis and do have the correct R-intervals.
Thirdly, to calculate the set of simplices for each of the 48 complexes Q(¥, vz, ¥3; ).
This is done by iterating through increasingly big subsets of the vertex set and for
each such subset checking whether it forms a simplex in BAAY. Using Lemma 4.13,
it is sufficient to do these checks for standard, 2-additive and 3-additive simplices. This
amounts in verifying whether a set of lines in Z* forms a partial basis or satisfies a certain
linear relation. The code for this, together with comments giving further explanations,
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is contained in the files complex_constructor.py and simplex_constructor.py in the
repository https://github.com/benjaminbrueck/codim2 cohomology SLnZ. Lastly, the
computer calculates the homology of the 48 given complexes QY(%y, U2, ¥3; 1) and counts
their simplices in order to show that they are simply connected by Lemma 4.14. These
homology calculations are performed with established software (the SimplicialComplex
class of SAGEMATH [23]) and can also be verified with different existing or self-written
code. The efficiency of the used software here is not very important as the complexes are
all comparably small (they each have between 62 and 1097 simplices).

5. Towards the connectivity of BAA™

In this section, we prepare for proving that the complexes BAA" are Cohen-Macaulay
(Theorem 2.11). We study links and certain subcomplexes of the links. We prove the case
n = 1, which will be our induction base case, and we show some auxiliary results that
will be used in the induction step. Throughout this section, we assume that n > 1 and
n+m > 3.

5.1. Description of Link, Link and the Cohen—Macaulay property

In this subsection, we show that the complexes BAA" are Cohen—Macaulay, provided
that they are highly-connected.

Definition 5.1. Let o be 3-additive simplex of BAA". We can write o = {vg,v1,..., Uk},
where {¥1,...,Uk,€1,...,8n} is a partial basis and vy = Wy + Wy + Wy for certain
wy,we,ws € {vV1,...,Vk,€1,...,em}. Let J(o) be the set of vertices of BAA]" that are
lines spanned by a vector of the form {w; + Wa, Wy + Ws, Wa + Ws}.

Note that J(o) might contain less than three elements (e.g. if ¥y = U + €1 + €,
because {(€1 + é2)} & BAA), but it is always nonempty. Going through the definitions
of different simplex types, one obtains the following:

Lemma 5.2. Let o be a simplex of BAAT,.

i) If o is a standard simplex of dimension k, there is an isomorphism mBAA;y (o) =

+h41
BAA T
it) If o is a 2-additive simplex, we can write 0 = {vg,v1,..., v} with {U1,..., 0%} a
partial basis. We then have Linkpaam (o) = Linkpam ({v1, ..., vk }).
itt) If o is a 3-additive simplex, we can write o = {vg,v1,..., vk} with {¥1,..., 0} a

partial basis. We then have

LTrEBAA;@ (o) = Linkgm ({v1,...,v}) and

Linkpaam (o) = Linkpm ({v1, ..., v }) x J(0),
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where J(o) is seen as a 0-dimensional complex.

i) If o is a double-triple or double-double simplex, we can write 0 = {vo,v1,..., vk}
with {Ua, ..., Uk} a partial basis. We then have
Linkpaan (o) = Linkpaan (o) = Linkgy ({va, . .., vk }).

The description of the links in the following lemma is easy to see and will both be
used in Section 6 and in the proof of Proposition 5.5 below.

Lemma 5.3. Let o be a simplex of BAAT' and 7 € Linkgaam (o) such that no vertex of
s in mBAA:}(U). Then LinkLinkBAAm(a)(T) N L/iI’W(BAA;Ln(U) = mBAA?(U @] T).

m
n

Once we show connectivity of BAA", Proposition 5.5 below implies that the complex

is Cohen—Macaulay. To prove this proposition, we will use the following lemma.

Lemma 5.4 (Galatius—Randal-Williams [10, Proposition 2.5]). Let X be a simplicial com-
plex, and' Y C X be a full subcomplex. Let N be an integer with the property that for each
p-simplex T in X having no vertex in'Y, the complex Y NLkx (1) is (N —p—1)-connected.
Then the inclusion |Y| — |X| is N-connected.

Proposition 5.5. If BAAT' is n-connected for alln > 1 and m +n > 3, then for every
k-simplex o, the link Linkgaam (o) is (n — k — 1)-connected.

Proof. Case 1: ¢ is a 3-additive, double-double or double-triple simplex. By the work
of Church-Putman, there is an isomorphism Linkpm ({vo, ..., ve}) = B! [6, Lemma
4.3] and this complex is (n — ¢ — 3)-connected for all n,m > 0and 0 < ¢ < n—1 [6,
Theorem 4.2]. Combining this with Lemma 5.2, we obtain the claim if ¢ is a 3-additive,

double-double or double-triple simplex.

Case 2: o is a 2-additive simplex. Next assume that o is 2-additive. If & = n,
then we must check that Linkpaam(c) is nonempty. First suppose o has the form
{(¥ + ¥a),v1,...,0,}, where {¥1, ..., Upn, €1, ..En} is a basis for Z™F™. Since m+n > 3,
either m > 1 or m = 0 and n > 3. In these two cases, either (¥} 4+ €1) or (¥} + ¥U3),
respectively, is an element of Linkpaam(c). Alternatively suppose o has the form
{(th +¢é1),v1,...,0,}, where {U1,...,Ty,€1,...En} is a basis for Z™*". Now m+n > 3
implies either m > 2 or n > 2. But then at least one of (¥} + &) or (¥ + U2) must be a
vertex in Linkgaam (o).

Now suppose that k& # n. By Lemma 5.2, we can write 0 = {vg,v1,...,v;} with
{¥1,...,0,} a partial basis and
Linkgaam (o) = Linkgam ({v1, ..., v }).

By [6, Lemma 4.12(b)], L/irW(BAZL({vl,..ka}) is isomorphic to BA”"" and this
complex is (n — k — 1)-connected by [6, Theorem C’]. We want to extend this to
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Linkgaam (o) 2 Ijrﬁ(BAA;n (o). We will apply Lemma 5.4 with N = n—k — 1. We need to

show that for every 7 € Linkgaam () that has no vertex in Ijrﬁ(BAAZL (o), the intersection
LinkLinkBAAz’L (o) (7‘) n LinkBAA:{L (O’)

is (n—k —dim(7) — 2))-connected. By Lemma 5.3, this complex is equal to mBAAT (cU
7). Every vertex v of T satisfies ¥ € (¥, ..., Uk, €1,...,Em), so in particular, it is contained
in the additive core of o U 7. Hence, o U T is a double-double or double-triple simplex of
dimension k+dim(7)+1.'' As observed in Lemma 5.2, mBAAZL (cUT) = Linkpaam (cU
7) for such simplices. In Case 1 we showed that this link is (n — k —dim(7) — 2)-connected
as claimed.

Case 3: o is a standard simplex. If o is a standard simplex, we apply the same
argument in two steps. By Lemma 5.2, EﬂBAAg(a) is isomorphic to BA nmfkkfll
and this is (n — k — 1)-connected by our assumption. Furthermore, every vertex in
Linkpaam () \ Ijrﬁ(BAAg (o) is either of the form (W + wh) or (W) + Wy + wW3) for some
wy, we, w3 € {vg,..., Vg, €1,...,En}. We will apply Lemma 5.4 twice to the chain sub-
complexes

mBAA;ﬁ (o) € Z C Linkpaarm (o),

where Z is spanned by Linkg aam (o) and all vertices of the form () + ) as above.
We first consider the inclusion Ijm(B aam(0) < Z and consider Lemma 5.4 with N =
n —k — 1. Let 7 be a simplex of Z that has no vertex in Ijrﬁ«BAA;n (o). Then using
Lemma 5.3,

Linkz(7) N Linkgaan (o) = Linkgaam (0 UT).

Depending on the form of 7, the simplex o U 7 is 2-additive, a double-triple simplex
or a double-double simplex. For each possibility, we have already seen in Case 2 that
mBAAx (oUr) is (n—k—dim(7)—2)-connected. It follows that Z is (n—k—1)-connected.

Now we apply Lemma 5.4 to the inclusion Z < Linkgaam (o) and again let N =
n —k — 1. Let 7 be a simplex of Linkgaam (o) that has no vertex in Z. Then 7 has the
form {{w; + w2 + w3)} and o U7 is 3-additive. It follows from Lemma 5.3 that

LinKpinkgaam (o) (7) N Z = Linkpaam (0 U T).
We already demonstrated in Case 1 that this 3-additive simplex’s link is (n—k—dim(7) —

2)-connected. This implies that Linkpaam (o) is (n —k — 1)-connected, and concludes the
final case in the proof. 0O

11 In fact, it follows that dim(7) = 0 here.
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Remark 5.6. The preceding proof shows that for a standard, 2-additive, double-triple and
double-double simplex o, not only Linkpaam (o), but also Linkgaam (o) is (n—dim(o)—1)-
connected. The latter is however not the case for 3-additive simplices.

5.2. Description of Link<, m<

We next describe the structure of certain links in BAAT'. As before, we omit the
proofs of a few statements that simply follow by spelling out the definitions.

Lemma 5.7. Let v € BAAT' be a vertex with nonzero last coordinate. Then

i) LinkEAAm(v) = m;AA?(v), and

ii) Linksaar ({0, (£ €)}) = Linkgpam ({0, (52 &))) for all 1 < i < m.

Later on, we will need to know that LinkEAAzl {v, (T €)}) = m;AA? ({v, (T éN})

— <
is highly-connected. To prepare for this, we compare this complex to Linkgsm (v):

Lemma 5.8. Let v € BAAT' be a vertex with nonzero last coordinate and 1 <i <m. Let
o be a set of vectors in Z™T™. Then the following hold.

i) The simplex o is a standard simplex of L/irﬁq;Ax (v) if and only if it is a 2-additive
simplex of m;AAT ({v, (T ¢€)}).
it) The simplex o is a 2-additive simplex of m;A:@ (v) such that the additive core of
{e1,...,em} U{v} Uo does not contain v or e; if and only if o is a double-double
simplez of m;AAm ({v, (T €)}).
iit) If o is a 2-additive simplex of fﬂ;w (v) such that the additive core of {e1, ..., em U
{v}Uo contains v or e;, then o is a double-triple simplex of Ijn\kgAAx ({v, (Tx€&)}).
i) If o is a double-triple simplex of m«;AAZL({v, (U £ &)}), then it is a simplex of
L/irW(];AZl(v) except if it is of the form o = {w, (V£ & + W), va,...,vx}.

v) No simplex of m;AAzz({U, (Txe;)}) is 3-additive.

— < — <

In particular, Linkg ym (v) is a subcomplex of Linkga am ({v, (U£€;)}) C Linkpaam ({v, (£
—< — <

€ }) and every simplex of Linkgaam ({v, (T % €;)}) that is not contained in Linkgsm (v)

s of type double-triple.

Proof. Throughout this proof, we will use the observation that for 1 < j &k < m, the

S o\ m oo PN o 5o : TP
lines (¥ + ¢€;), (VL€ £ ¢€;), (€; £ &) or (€; = €; £ &) are not vertices of Linkgam (v) or
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— <
Linkgaam (v). This follows because their last coordinate is equal to that of v or they lie

in <€1, ey €m>
Part i) is immediate. Part ii) follows because, if the additive core of {ey,..., e} U
{v}Uo does not contain v or e;, then {ey,...,en U{v, (U £ &) }Uc contains two disjoint

2-additive faces. .

If o is a 2-additive simplex of Linkgam (v) such that the additive core of {e1, ..., en}U
{v} U o contains v or e;, then this additive core must be of the form {v,w, (¥ + W)} or
{ei,w, (€; + W)} for some w € ¢. This implies Part iii).

For Part iv) note that if o is a double-triple simplex of m; aam ({v, (V£ €)}), then
the additive core of {ey,...,en} U{v, (£ &) } Uo is of the form

{ei, v, (VL&) }UT,

where 7 = {w, (¥ + @)}, {w, (+&; + W)} or {w, (¥ £ & + @)} for some w € o. In the first

two cases, 0 = 7 U {vg,..., v} is a simplex of Ijn\kBAm (v). If however {w, (¥ + €; + W)},
then {e1,...,en} U{v} Uo contains the 3-additive simplex {e;,v,w, (V£ & + W)}, so o

is not a simplex in E@BAM (v).
— <
Finally, Part v) follows because for any simplex o in Linkgaam ({v, (T £ &;)}), the
simplex {e1,...,en} U{v, (U £ &) } Uo contains the 2-additive face {e;, v, (Ut €;)}. As
every face of a 3-additive simplex is either standard or 3-additive (see Observation 4.11),
this implies that ¢ cannot be 3-additive. O

The following will be used to describe the link of 3-additive simplices during the proof
that BAAT" is spherical.

Lemma 5.9. Let o be a 3-additive simplex in BAA]" and R > 0 the highest abso-
lute wvalue of the last coordinates of all of its wvertices. As in Definition 5.1, write
o = {vo,v1,...,05}, where Ty = W + Wy + Ws, let J(o) be as in Definition 5.1 and
let J< C J(o) be the subset of all vertices with last coordinate smaller in absolute value
than R.

Then J< is empty if and only if the last coordinate of vy is £ R and there are 1 <1 < k,
1 <i+# j<m such that vp = U} £ €; L €.

5.3. Induction beginning
The following is an adaptation of [6, Proof of Theorem C’, Base Case].
Lemma 5.10. Let m > 2. The complex BAAT" is 1-connected.
Proof. We show this by successively describing the structures of B, BAT* and BAAT".

All of these complexes have the same vertex set. Every vertex is a line v that is spanned
by a vector ¢ of the form (ay,...,am, 1), which we will write as ¥ = (a@, 1) for @ € Z™.
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(T—é +¢é;) (T+e;) (T+e+¢e)) a+e—¢; daté  a+é+é
. . . . . .
(T &) v (T + &) ~J i—é I3 i+
L { ] pr— L ] L
(T—¢& —€;) (v—¢e;) (T+¢é —¢)) i—¢é+€ d—€& a—¢ —¢;
. . . .

Fig. 10. We identify the 1-skeleton of BAAT" (left) with a graph obtained by gluing edges onto the Cayley
graph of Z™ (right). Here v is spanned by ¥ = (@, 1).

This gives an identification of the vertex set with Z™. The complex B]" has dimension
zero, so it has no simplices other than these vertices.

The complex BAT" has dimension one. In [6, Proof of Theorem C’, Base Case], Church—
Putman show that it is isomorphic to the Cayley graph of Z™ with respect to the
generating set given by €1,...,&,: Every edge in BAT" can be written in the form
o = {v,(T+¢&;)} for some v € Bf* and 1 < ¢ < m; such an edge comes from the
2-additive simplex {v, (¥ + &)} U{ey,...,en} in BAi,,,. For ¥ = (@,1), this edge gets
identified with the edge {d@,d + €;} of the Cayley graph. (We slightly abuse notation here
by writing €; both for elements in Z'*™ and in Z™.)

The complex BAAT" has dimension two. It is obtained from BAT" by attaching sim-
plices o such that cU{ey, ..., e} is either 3-additive or of type double-triple in BAA .
(No double-double simplices can occur in this low dimensional case.) Concretely, the
double-triple simplices in BAAT" are all of the form

o={v,(FLE), (TLE+E), o={v,(T+), [T+ +E)]},

o= {0, (TL£E),(FLE)}, or o= {((F£8),(T+8), (T +8)},

for some v € BY* and 1 < i < j < m. The 3-additive simplices arise as faces of these.
Fig. 10 shows the 1-skeleton of BAAT" and its relationship to the Cayley graph of Z™
with respect to the standard generators. In fact, the 1-skeleton of BAA" is isomorphic
to the Cayley graph of Z™ with respect to generators of the form €; and é; & €;.
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Fig. 11. The subcomplex spanned by {d,d + €;,ad + €;,d + &; + €;}.

It follows that BAAT" is isomorphic to a complex that is obtained as follows. Start with
the Cayley graph of Z™ with respect to the generating set €1,...,€,,. Every minimal
cycle in this graph has length four and vertices @, @ + €;, @ + €;, @ + €; + €; for some
aceZmand 1 <i<j<m.

Now attach to each such cycle two quadrilaterals along their boundaries. Both quadri-
laterals are composed of two triangles, the first one of

—

{d,d+é,ad+¢é +¢} and {d,d+¢€;,d+ & +¢€;},
the second one of
{6,&:4—5,,5—1—5}} and {@’+€Z,d+€J,(i’+€l+€7}

See Fig. 11. The fundamental group of this Cayley graph (with base point the identity) is
generated by loops of the form pg-lz ;. ; -pgl, where pgz is a path from the identity to d, pz is
its inverse and lg ; ; is the 4-edges loop around the square {d@,d + €;,d + €;,d + €; + €;}.
Our complex is constructed by gluing a 2-disk (in fact, two 2-disks) to each such square,
the resulting complex is 1-connected. We conclude BAAT" is 1-connected as claimed. O

6. Proof of Theorem 2.11

In this section, we will finish the proof of Theorem 2.11, which states that BAA" is
Cohen—Macaulay of dimension (n+1) whenever n > 1 and m+n > 3. By Proposition 5.5,
to prove this it suffices to show BAA" is n-connected whenever n > 1 and m +n > 3.
Our proof roughly follows the strategy of Church-Putman [6, Proof of Theorem C’, Steps
1-4]. The analogue of [6, Proof of Theorem C’, Step 2] does not work in our context but
fortunately it is not essential here or in [6, Proof of Theorem C’]. Step 1 in our proof is
roughly speaking a combination of Step 1 and Step 3 of the proof of Church-Putman
while our Step 2 corresponds to their Step 4.
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Let n > 1 and m + n > 3. By Lemma 5.10, BAAT" is 1-connected for all m > 2.
We use this as a base case for an induction on n. Now assume that n > 2 and that
by induction, BAA™ ! is (n — 1)-connected. For d < n, let f: S* — BAA”" be a map
that is simplicial with respect to some simplicial structure on S?. Here and from now
on, we will assume that all simplicial structures on manifolds (possibly with boundary)
are chosen to be combinatorial. This ensures that links of simplices are homeomorphic
to spheres of the appropriate dimension. Let R be the maximum of the absolute value
of the last coordinate of f(x) over all vertices z € S%. If R = 0, then f can be extended
to a disk via coning its image with the vertex e,,,. Thus, we are done if we can show
that we can homotope f to lower R. A visual outline of the proof is shown in Fig. 12.

This homotopy is done in two steps: In Step 1, we isolate vertices in S? that get
mapped to vertices with last entry £R, i.e. we homotope f such that if z,y form an
edge in S? and f(x), f(y) have last entry £R, then f(x) = f(y). In Step 2, we then
successively replace all of these “bad” vertices by vertices whose last coordinate has
absolute value less than R. Only this second step uses our inductive hypothesis. In order
to perform these two steps, we will perform a sequence of homotopies that step-by-step
replace f by “better” maps. Before we start with these, we make some definitions that
help us to keep track of the progress we make and describe a Procedure 1 that we will
repeatedly use during Step 1.

Definition 6.1. A simplex o of S? is called edgy if f(0) = {vo,v1} is an edge with the
last coordinates of vy and vy equal to =R.

If f: S¢ — BAA”" has no edgy simplices, then the bad vertices are isolated in the
above sense. So removing all edgy simplices is the aim of Step 1.

Our method for removing edgy simplices only works if we can control the stars of such
simplices. For this, we need to make sure that there are no simplices of the following

type:

Definition 6.2. A simplex o of S? is called (a, b, ¢)-over-augmented, a,b, c € Ny, if

- f(o) is a 3-additive, double-triple, or double-double simplex,

- every vertex of f(o) either has last coordinate =R or is contained in the additive
core,

- o contains exactly a > 1 vertices x such that f(z) has last coordinate +R,

- o contains exactly b > 0 vertices x such that f(x) is contained in the additive core
of a 3-additive face of f(o),

- dim(o) = ¢, and

- if f(o) is 3-additive, then for all vy € f(o) with last coordinate £R, there does not
exist v1 € f(o) and 1 < i # j < m such that ¥p = ¥ £ ¢&; £ €.
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74 Implicit homotopy: Accomplished by verifying Claim 7.4, Claim 7.5, Claim 7.6 and using a
highly-connected subcomplex

A\ Explicit homotopy: Accomplished through subdividing ‘bad’ simplices by introducing a new vertex at
the barycentre

€ Procedure 1: Removing overly-augmented simplices
Implicit homotopy
« highly-connected subcomplex: link in B} (Church-Putman [CP17])

« does not introduce any edgy simplices

Reducing R

Step 1: Separating bad vertices by removing all edgy simplices

A
Step 1.1: Removing edgy simplices with 3-additive image
A\ Explicit homotopy to remove “bad” simplices one after another
order does not matter
introduces new edgy simplices with standard or 2-additive image
€ Procedure 1 applied after each homotopy
N—

/

Step 1.2: Removing edgy simplices with standard image

—

/A Explicit homotopy to remove “bad” simplices one after another
order does not matter

€ Procedure 1 applied after each homotopy

) !

Step 1.3: Removing edgy simplices with 2-addtive image

Implicit homotopy to remove “bad” simplices one after another
highly connected subcomplex: link in BA}' (Church-Putman [CP17])

« always remove a maximal bad simplex

€ Procedure 1 applied after each homotopy

Step 2: Removing bad vertices by removing all repugnant simplices
Implicit homotopy to remove “bad” simplices one after another
» highly connected subcomplex: link in BAA}'

(induction hypothesis and our retraction)
« always remove a maximal bad simplex

If R = 0: cone off with vertex ¢

ntm

Fig. 12. A schematic of the proof of Theorem 2.11.
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We call a simplex overly augmented if it is (a, b, ¢)-over-augmented for some a > 1 and
b,c > 0. Suppose o is an (a,b, c)-over-augmented simplex and 7 is a (a/,¥, ¢')-over-
augmented simplex. We call 7 better than o if (a,b,c) < (a',V, ) lexicographically.

Note that the last condition of the definition coincides with the one given in the
last bullet point of Lemma 5.9. It excludes the case of edgy simplices ¢ whose image
f(o) = {(th £ € £ €&;),v1} is 3-additive. These are considered in detail later on (Step
1.2). For later reference, we record the following observation. It describes the stars of
edgy simplices in the case where f has no overly augmented simplices.

Observation 6.3. If f has no overly augmented simplices, then the following is true: Let
o be a simplex of S¢ such that f(o) contains two vertices with last coordinate +R.
Then f(o) is neither a double-triple nor a double-double simplex. If it is 3-additive, it
can be written in the form f(o) = {(th £ € £ &}),v1,v2,..., v}, where the last coordi-
nate of v; is +R; in particular, o then contains an edgy simplex with 3-additive image
{{th € x¢€;),v}

Procedure 1: Removing overly augmented simplices. We will now describe a procedure
that allows us to remove overly augmented simplices from f. Let ¢ be an (a, b, ¢)-over-
augmented simplex with (a,b,c) as large as possible lexicographically. Our goal is to
homotope f to have one less (a, b, ¢)-over-augmented simplex while only adding better
simplices and no new edgy simplices. In order to do so, we will modify f |Stars (o) such
that image of the result lies in f(do) x K(o), where K (o) is a certain subcomplex of
BAA”" whose vertices have more desirable properties than those of f(o). The same type
of argument will be used several times in this article (Step 1.3, Step 2, Proposition 9.3).
We spell it out in detail here and will use this as a blueprint for later occurrences. This
is a standard procedure that has been used by many authors to prove various simplicial
complexes are highly-connected. This proof strategy is often called a “bad simplex”

argument.
We start by defining K (o). If f(o) is a double-triple or double-double simplex, we can
write f(o) = {vo,v1,...,vk}, where {¥Us,..., Ty} is a partial basis. We define
K(o) = Linkégl({vg, ce Uk} [f(o) double-triple or double-double].
If f(o) is a 3-additive simplex, we can write f(o) = {vo,v1,...,vx} as in Definition 5.1,
i.e. such that {#1,...,0k,€1,...,8,} is a partial basis and ¥y = @ + Wy + Wz for
wy, w2, ws € {vV1,...,Vk,€1,...,em}. Let J(o) be the set of vertices of BAA]" that are

lines spanned by a vector of the form {w; + wa, W) + Ws, Ws + W3}, as in Definition 5.1
and J< C J(o) the subset of all vertices with last coordinate smaller in absolute value
than R. By the last assumption in the definition of overly augmented simplices and

Lemma 5.9, the set J< is nonempty. We view J< as a 0-dimensional simplicial complex
and define
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K(o) = LinkEZL {v1,...,vp}) * J< [f(o) 3-additive].
Claim 6.4. K (o) is a subcomplex of Linkpaa= (f(0)) and f (Linkga(c)) C K(0).

As f is simplicial, we have f(Linkga (o)) C Stargaa= (f(c)). Since o is maximally over-
augmented, every € Linkga(o) gets mapped to a vertex f(x) € Linkpaam(f(0)) with
last coordinate smaller in absolute value than R. Hence, we actually have f(Linkga (o)) C
Linksaam (f(0)) and it suffices to show that K (o) = Linkgaam (f(c)). This follows im-
mediatel} from Lemma 5.2. "

Claim 6.5. K (o) is (dim Linkga(0))-connected.

By the work of Church-Putman, Link]<3:ln({v07 ...,u}) is (n — £ — 3)-connected [6,
Theorem 4.2 and Lemma 4.5; see the first paragraph on p. 1016]. This implies that K (o)
is (n — k — 1)-connected in all cases under consideration; note when o is 3-additive, we
know J< # () by Lemma 5.9. The claim follows because dim Linkga(0) = d—dim(o)—1 <
n—k—1.

These two claims allow us to modify f up to homotopy on Star(c): By Claim 6.4, f
restricts to a map

Linkga (o) — K(o)

whose domain Linkga (o) is isomorphic to a triangulated sphere. By Claim 6.5, this map
can be extended to a map

g: Cone(Linkga(o)) = K(o)

that is simplicial with respect to some simplicial structure on Cone(Linkga(c0)). Again by
Claim 6.4, K (o) is a subcomplex of Linkgaam (f(c)). This implies that g extends to

flo * g: 0 % Cone(Linkga(0)) — f(0) * K(0) C BAAT".
Topologically, o * Cone(Linkga (o)) is a ball whose boundary can be decomposed as
9(o x Cone(Linkga(c0))) = (0o * Cone(Linkga(c))) U Starga (o).
Note that f|Linde(o) = g||_inksd(o). It follows that the restriction of f to Starga(o) is
homotopic to a simplicial map h: Ao * Cone(Linkga(c)) — f(0) * K (o) that agrees with

f on 9o * Linkga (o).

Claim 6.6. The map h: do * Cone(Linkga(c)) — f(o) * K (o) has only simplices that are
better than o. Furthermore, every edgy simplex of A is contained in Jo.
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Every simplex in 0o * Cone(Linkga(c)) is of the form ¢/ = U7, where ) C 5 Coisa
proper face of o. Such a simplex gets mapped to h(o’) = f(5)Ug(7), where g(7) C K(0o).
Observe that every vertex of K (o) has last entry of absolute value smaller than R. This
implies that every edgy simplex of h must be contained in do. Now let ¢/ = 6 U7 be
a simplex in the domain of h that is (a’,b, ¢')-over-augmented. We need to show that
(a', b, ) < (a,b,c) lexicographically. That a’ < a follows immediately because every
vertex of K (o) has last entry of absolute value smaller than R.

Assume that f(o) is a double-triple or double-double simplex. In this case, the def-
inition of K (o) implies that no vertex of g(7) can be contained in the additive core
of h(co’). This and the assumption that o’ is overly augmented imply firstly that
b < b and secondly that 7 is the empty simplex, i.e. ¢/ = & C o. But then, as
¢ = dim(o’) < dim(o) = ¢, we have (a’,V, ) < (a,b,c).

Next assume that f(o) is 3-additive. Here, we defined K (o) = LinkEZL({Ul, coUR ) x
J<. The vertices of ¢g(7) that are contained in Linkéﬂm({vl, ..., Uk }) can neither be in
the additive core of h(o’) nor do they have last coordinate of absolute value +R. Hence,
as o/ = & U7 is overly augmented, we have g(7) N LinkET({vl, ...,v5}) = 0. In other
words, either 7 is the empty simplex and ¢/ = & C o or h(c’) = f(5) U {j} for some
j € J< and & C o. In the first case, we have (a’,V/,c’) < (a,b,c) for the same reasons
as in the situation of double-triple or double-double simplices. For the second case, note
that although j might be contained in the additive core of h(o’), it cannot be contained
in the additive core of a 3-additive face: We know that f(o) U {j} is a double-triple
simplex containing h(c’) and that f(o) is a 3-additive face of it. But a double-triple
simplex has exactly one 3-additive face (see Observation 4.11). Hence, b’ < b. As o is
overly augmented, every vertex of it is either mapped to a vertex with last coordinate
+R or to the additive core of the 3-additive simplex f(¢). This implies that every vertex
contributes either to a or b (or to both). On the other hand, the vertices of 7 are mapped
to 7, which neither has rank R nor is it contained in the additive core of a 3-additive face
of h(o’). It follows that these vertices neither contribute to a’ nor to b’'. Consequently,
we have @’ + b’ < a + b, which implies (a/, b, ') < (a,b,c).

We can now replace f by the homotopic map f’: S? — BAA'" that is obtained by
replacing Star(o) with 9o * Cone(Linkga (o)) and setting f’ to be equal to h on this subset
of S By Claim 6.6, the map f’ has one less (a, b, c)-over-augmented simplex than f,
no worse simplices and no additional edgy simplices. Iterating this shows that we may
replace f by a map that has no overly augmented simplices and no other edgy simplices
than those of f.

We now proceed with the process of reducing R, the maximum of the absolute values
of the last coordinate of vectors in the image of f.

Step 1: Separating bad vertices. In this first step, we will remove all edgy simplices. If o
is edgy, then its image f(o) = {vo, v1} is either a standard simplex (if {y, ¥1,€1,...,Emn}
is a partial basis) or a 2-additive simplex (if vy = ¥ £ €;) or a 3-additive simplex (if
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Up = U1 £€;+€;). We will now successively remove edgy simplices by first removing those
with 3-additive image, then those with standard image and finally those with 2-additive
image. While doing so, we will repeatedly apply Procedure 1.

Step 1.1 Removing edgy simplices with 3-additive image. Let o be an edgy simplex such
that f(o) = {vo,v1} is 3-additive. We can find representatives ¢y and #; such that their
last coordinates are equal to R and ¥y = ¥ & €; £ € for some 1 < ¢ # j < m. Define
v = (U1 £ €;), where the sign + of e; agrees with its sign in the sum ¥y = ¢4 £ ¢€; £¢&;. Our
aim is to use v to replace f by a map f’ that avoids the simplex ¢ and has no further
edgy simplices with 3-additive image than those of f.

Consider a simplex 7 2 o of S that contains . Then its image f(7) = {vo,v1, ..., v}
contains vy and vy, which have last coordinates +R. As f has no overly augmented
simplices, this implies that f(7) cannot be a double-triple or double-double simplex
(see Observation 6.3). On the other hand, f(7) contains the 3-additive edge f(o), so
it must be 3-additive itself, with additive core {vo,vi,€;,¢e;} (see Observation 4.11).
Hence, f(7) U {v} = {(th £¢&;),(0h £€& £€&;),v1,...,v;} is a double-triple simplex
in BAA}" with additive core {v,vg,v1,€;,¢e;}. This implies that f maps Stargs(c) to
StarBAAZn ({’Uo, U1, U})

Let (S%)’ be the coarsest subdivision of S? that subdivides o by adding a new vertex
t at its barycentre. Let f’: (S?)’ — BAA!" be the map that agrees with f on vertices
of S and sends t to v. The previous paragraph proves that f’ is simplicial, and f and
f' are homotopic. The structure of f’ can be described as follows: To obtain f’ from
f, subdivide every simplex 7 D ¢ that contains ¢ into (dim(o) + 1)-many simplices of
the same dimension as 7. Each such new simplex is obtained by replacing one vertex of
o C 7 with the newly added t. This vertex gets mapped to f/(t) = v and f’ agrees with
f on the remaining vertices of 7. Every simplex of S¢ that does not contain o is also a
simplex in (S¢)’ and the maps f and f’ agree on these simplices.

Clearly, f’ does not contain the edgy simplex o anymore. We claim that furthermore,
no new edgy simplices with 3-additive image were created when passing from f to f’.
To see this, assume that ¢’ is an edgy simplex of f’ that is not an edgy simplex of f.
Then o’ must contain the newly added vertex ¢t and hence is a face of some 7’ that was
obtained by subdividing a simplex 7 2 ¢. This implies that the image f(¢’) must be of
one of the forms

{v,vo} = {0 £ &), (T £ & £}, {v,v} ={{th £ &), v}, or
{v, v } for some v; such that {0,7),¢é1,...,€,} is a partial basis.

But f(0) is not 3-additive in any of these cases.'”

The subdivision mentioned above might have introduced new overly augmented sim-
plices. Before we can remove another edgy simplex, we need to get rid of these simplices.

12 The subdivision created new edgy simplices with 2-additive image though, e.g. of the form
{(01 £ &;),v1}. These will be removed in the next Step 1.2.
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To do so, we apply Procedure 1 again. This removes all overly augmented simplices with-
out introducing new edgy simplices. Afterwards, we can remove another edgy simplex
whose image is 3-additive. Iterating this procedure leads to a map in which the image
of every edgy simplex is either standard or 2-additive.

Step 1.2: Removing edgy simplices with standard image. After the previous step, we can
assume that f has no edgy simplices with 3-additive image and (after possibly applying
Procedure 1 again) also has no overly augmented simplices. In this step, we will also
remove all edgy simplices with standard image.

Let 0 be an edgy simplex such that f(o) = {vo,v1} is standard. We will use a
procedure that is very similar to the one described in Step 1.1 in order to replace f by a
map f' that avoids o. Choose representatives ¥y and #; such that their last coordinates
are equal to R and define ¥ := ¢y — #. Clearly, v is a vertex in BAA]" and has last
coordinate equal to 0.

Let 7 O o be a simplex of S¢ that contains . Then its image f(7) = {vo,v1, ..., v}
contains vy and vy, which have last coordinates +R. As f has no overly augmented
simplices and no edgy simplices with 3-additive image, this implies that f(7) cannot be
a 3-additive, double-triple or double-double simplex (see Observation 6.3). Hence, it must
be either standard or 2-additive. In either case, f(7)U{v} = {{Ty — ¥1),v0,v1,..., U} i8
a simplex in BAA". Here, we use the observation that v = (y — ¥1) might be contained
in f(7), but (¥y+v1) cannot: the last coordinate of i+ ¢4 is 2R, which would contradict
the definition of R. This implies that f maps Starga(o) to Stargaam ({vo,v1,v}).

Let (S?)" be the coarsest subdivision of S¢ that subdivides o by adding a new vertex
t at its barycentre. Let f/: (S¢)’ — BAA!" be the map that agrees with f on vertices of
59 and sends t to v. By the observations of the previous paragraph, this map is simplicial
and f and f’ are homotopic. Just as in Step 1.1, every edgy simplex of f’ is either also
an edgy simplex of f or it contains the vertex ¢t. However, the latter is impossible here
as t gets mapped to the vertex v. This has last coordinate 0, whereas every vertex in the
image of an edgy simplex must have last coordinate +R.

It follows that f’ has one less edgy simplex than f (namely o, which got subdivided)
and that every edgy simplex of f/ also forms an edgy simplex of f. In particular, as f
does not have any edgy simplex with 3-additive image, neither does f’. It might be that
f' has overly augmented simplices.'® However, we can use Procedure 1 again to remove
those without introducing new edgy simplices. Afterwards, we can remove another edgy
simplex with standard image. After finitely many iterations, we obtain a map that has
only edgy simplices with 2-additive image.

Step 1.3: Removing edgy simplices with 2-additive image. We can now assume that f has
no edgy simplices whose image is standard or 3-additive. After performing Procedure

13 If o is contained in 7 and f(7) is 2-additive, it might be that the image of f’ contains a 3-additive
simplex with a vertex that has last coordinate +R. For example if f(7) = {vo, v1, (U1 + ¥U2), v2}, then there
is a simplex 7’ with f'(7") = {vo, (¥o — 1), (U1 + T2),v2}.



66 B. Briick et al. / Advances in Mathematics 451 (2024) 109795

1, we can also assume that is has no overly augmented simplices. What remains to be
done for completing Step 1 is to remove edgy simplices with 2-additive image. Let o be
a maximal such simplex, i.e. f(o) = {vg, v1} is a 2-additive simplex, the last coordinates
of vg and v; are equal to £R and if 7 D o, then f(7) # f(0). As f(0) = {vo,v1} is
2-additive, we have ¥y = ¥ % €; for some 1 < i < m. Here, we cannot proceed as in
the case of standard simplices (Step 1.2), because if ¥, ¥; have last coordinate R, then
Up — U1 = *€; is a not vertex in BAA!". What we will do instead is to apply an argument
similar to the one of Procedure 1: We will define a complex K (o) and homotope f such
that it maps Starga (o) to f(do) * K (o).

Define K (o) == Eri(B Am(vo). In order to perform an argument similar to Procedure
1, we need to verify the analogues of Claim 6.4, Claim 6.5 and Claim 6.6.

That K (o) is a subcomplex of Linkgaam (f(o)) is a part of Lemma 5.8. Furthermore,
f maps Linkga(o) to K(o): As f is simplicial, we have f(Linkga(c)) C Stargaam (f(0))
and because we assumed o to be maximal with respect to inclusion, f(Linkga(o)) C
Linkpaam (f(0)). Next, we show that the image of every vertex of Linkga(o) has last
coordinate of absolute value less than R. Assume for contradiction that there is a vertex
x € Linkga(o) such that the last coordinate of f(x) is £R. As we assumed o to be
maximal, the image of the simplex o U {z} has three vertices. Its image f(c U {z})
contains vertices with last coordinate £R and has the 2-additive simplex f(o) as a
(proper) face. As f has no overly augmented simplices, this implies that f(c U {z}) is
2-additive as well (see Observation 6.3 and Observation 4.11). But then it has a face that
is a standard edge. As all three vertices of f(cU{x}) have last coordinate +R, this shows
that f needs to have an edgy simplex whose image is standard. This is a contradiction
to our assumption. Hence, we have f(Linkga()) C Linkgaam (f()).

By Lemma 5.7, we know that

Linkisaag: (£(0)) = Linkpaay (/())

and by Lemma 5.8, every simplex of Ier(EAAZL (f(0)) is either contained in m;Azl (vo) =
K(o) or is of type double-triple. However, as vy has last coordinate £R (as does
v1) and there are no overly augmented simplices, there are no double-triple sim-
plices in f(Linkga(o)) (see Observation 6.3). This finishes the proof of our claim that
f(Linkga(o)) C K(o).

The analogue of Claim 6.5 is to show that K (o) is (dim Linkga(o))-connected. Here,
we can use again a result of Church-Putman. By [6, Section 4.5, third paragraph after
Step 4 on p. 1029], K (o) = L/imq;Am (vo) is (n — 2)-connected. The claim follows because
dim Linkga (o) = d — dim(o) =1 <n —1— 1.

As in Procedure 1, it follows that the restriction of f to Stargs(o) is homotopic to a
simplicial map

h: 0o x Cone(Linkga(0)) — f(o) * K (o)
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that agrees with f on 9o * Linkga(c) and has the property that h(Cone(Linkga(o))) C
K (o). We next verify the analogue of Claim 6.6, namely that every edgy simplex of h is
contained in do. This is immediate here because every vertex of K (o) has last coordinate
of absolute value smaller than R. Hence, a simplex can only be edgy if h maps it to f(c).
This is only the case for simplices in do.

We can now replace Star(o) with do * Cone(Linkga(c)) and replace f by a homotopic
map f’ that agrees with f outside Star(o) and is equal to h on 9o * Cone(Linkga(0)).
As every edgy simplex of h is contained in do, every edgy simplex of f/ is also an edgy
simplex of f. Hence, no new edgy simplices are created when passing from f to f’. In
particular, f’ still has only edgy simplices whose image is 2-additive. However, f’ has
one less of these simplices than f (namely o).

After applying Procedure 1 again to remove overly augmented simplices, we can go
on and remove another edgy simplex of the resulting map. Iterating this leads to a map
that has no edgy simplices (with 2-additive, standard, or 3-additive image).

Step 2: Removing bad vertices. We can now assume that f has no edgy simplices. Call
a simplex o of S¢ bad if f(0) = {v} with the last coordinates of v equal to +R. Recall
that our aim is to the replace f by a map whose image has only vertices with last entries
of absolute value less than R. Hence, we are done if we can remove all bad simplices. Let
o be a bad simplex that is maximal with respect to inclusion among all bad simplices.
We define K (o) == LinkEAAx (v) and proceed as in Procedure 1 above, verifying in the
following three paragraphs the analogues of Claim 6.4, Claim 6.5 and Claim 6.6.

First note that f maps Linkga (o) to K(o): As f is simplicial and o is maximal among
bad simplices, we have f(Linkga(c)) C Linkgaam(f(0)). Assume that there was €
Linkga (o) that gets mapped to a line with last entry =R. Then, as there are no edgy
simplices, we have f(z) = v and o U {z} gets mapped to {v}. This contradicts o being
maximal. Consequently, we have f(Linkga(c)) C LinkgAA;n(f(a)) = K (o).

Next, we want to verify that K (o) is (dim Linkga(c))-connected. For this, we finally
use the inductive hypothesis and the retraction defined in Section 3: First note that by
the first item of Lemma 5.7, K (o) actually coincides with m; aam (v). Hence, it suffices
to show that this complex is (dim Linkga (o)) = (d — dim(c) — 1)-connected. As noted in
Lemma 5.2, there is an isomorphism

mBAA? (v) = BAAZL_-T,
so by induction, mBAAzz (v) is (n — 1)-connected. By Theorem 3.1, L’@;\A? (v) is
as highly-connected as mg aam(v) and hence is also (n — 1)-connected. The claimed
connectivity of K (o) now follows because (n — 1) > (d — dim(c) — 1).

As in Procedure 1 and Step 1.3, it follows that the restriction of f to Starga(o) is
homotopic to a simplicial map h: do * Cone(Linkga(0)) = f(0) * K (o) that agrees with
f on Jo * Linkga(o) and such that h(Cone(Linkga(o))) C K(o). For the analogue of
Claim 6.6, observe that every bad simplex of h is contained in do and that h does not



68 B. Briick et al. / Advances in Mathematics 451 (2024) 109795

have any edgy simplices: This follows similarly to Step 1.3 because every vertex of K (o)
has last coordinate of absolute value smaller than R.

We now replace Star(o) with do * Cone(Linkga (o)) and f by the map f’ that agrees
with f outside Star(o) and is equal to h on 0o % Cone(Linkga(o)). This removes the bad
simplex ¢ without introducing any new bad or edgy simplices. Iterating this, we obtain
a map that has no bad simplices and hence maps every vertex of S? to a line with last
entry of absolute value less than R. 0O

7. Maps of posets

In this section, we recall Quillen’s map of posets spectral sequence [20] and some of its
corollaries. In this and the following sections, we use posets as they are closely related to
simplicial complexes. In fact, to each poset A, we associate a simplicial complex of chains
in A, i.e. its vertices are the elements of A and a set {ao,...,a,} forms a p-simplex if
it is a chain ag < --- < a, in A. Vice versa, given a simplicial complex X, we denote
by P(X) the poset of simplices of X. The associated simplicial complex to P (X) is the
barycentric subdivision of X.

We begin by fixing some terminology concerning posets.

Definition 7.1. Let A be a poset and a € A. Define
ht(a) :=min({k|Ja1 < az < --- < ar < a}).
We call ht(a) the height of a.

Definition 7.2. Let A be a poset and let a € A. Let A5, be the subposet of A of elements
x with > a.

Definition 7.3. Let ¢: A — B be a map of posets and b € B. Let ¢=° be the subposet of
A of elements a with ¢(a) < b.

When we speak about the homology of a poset A, we mean the homology of the
geometric realisation of its associated simplicial complex, which we will just refer to
as the geometric realisation of A. Similarly, when we say that a poset is d-connected,
d-dimensional, etc., we mean its geometric realisation has this property.

We now define a more general notion of homology of posets.

Definition 7.4. Let Ab denote the category of abelian groups. Let A be a poset (viewed as
a category with objects the elements of A and exactly one morphism a1 — a9 if a1 < aq
and none otherwise) and let T: A — Ab be a functor. For p > 0, let

Co(AT) = @ T(ao).

apg<---<ap
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Define maps
di: Cp(A;T) = Cpr (A T), (0<i<p)

as follows. For i > 0 let d; be given by the identity map T'(ag) — T'(ao) from the summand
indexed by ag < --- < a, to the summand indexed by ap < --- < a;—1 < @j1 < -+ < ap.
Let do: Cp(A;T) — Cp_1(A;T) be given by T(ag — a1): T(ag) — T(a1) from the
summand indexed by ag < --- < a, to the summand indexed by a; < --- < a,. Let

d= Z )idi: Cp(A;T) = Cp1(A;T).
Since d o d = 0, these groups and maps form a chain complex which we denote by
C.(A;T). Let
Hi(A;T) = Hi(Ci(A;T)).

One of the most basic examples of a functor is the constant functor Z which sends every
object to Z and every morphism to the identity map. Note that H;(A;Z) is isomorphic
to the homology of the geometric realisation of A. Another class of functors that we will
consider is the following.

Definition 7.5. Let ¢: A — B be a map of posets. Let H;(¢): B — Ab be the functor
sending b € B to H;(¢=) and by < by to H;(¢="*) — H;(¢="2) induced by the inclusion
¢St C <be.

The following spectral sequence is due to Quillen [20].

Theorem 7.6 (Quillen). Let ¢: A — B be a map of posets. There is a homologically
graded spectral sequence:

Eg%q = HP<B?Hq(¢)> = Hp-&-q(A)-
See Charney [5, Lemma 1.3] or [17, Lemma 3.2] for a proof of the following.

Lemma 7.7. Let A be a poset, let T: A — Ab be a functor, and m € N. Suppose T'(a) = 0
if ht(a) # m. Then there is a natural isomorphism:

@ Hz 1 A>aa ( ))

ht(a)=

Here H;_1(Asq;T(a)) means the reduced homology of the geometric realisation with
(untwisted) coefficients T'(a). This lemma gives the following corollary (see e.g. [18,
Lemma 3.7]).
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Proposition 7.8. Let ¢: A — B be a map of posets and let E , denote the map of posets
spectral sequence. Assume for some fized d,e,r > 0, the following holds for all V € B:

- Hy(¢=V) 20 for alli & [ht(V) +d — r, ht(V) + d].

- H;(B>v) =20 foralli#e—ht(V)—1.
Then for all a > 0 and b > 1 satisfying a+b & [d+ e — r,d + €], we have that Eg,b =~ 0.

A poset is called Cohen—Macaulay of dimension d if its associated simplicial complex
is Cohen—Macaulay. A map f: A — B is called k-acyclic if it induces an isomorphism
on H; for i < k and a surjection for k = i.

Proposition 7.9 (/6, Proposition 2.3]). Fix m > 0 and let ¢: A — B be a map of posets.
Assume that B is Cohen—Macaulay of dimension d and that for oll b € B and q #
ht(b) +m, we have Hy(¢=*) = 0. Then ¢ is (d + m)-acyclic.

8. Proof of Theorem A and Theorem B

The goal of this section is to prove Theorem A, which describes the relations among
the relations in Steinberg modules and use this to prove Theorem B, which states that
the codimension-2 rational homology of SL,(Z) vanishes for n > 3. Throughout this
section, we will assume that n > 3.

For a field F, we write T,,(IF) for the poset of proper nonzero subspaces of F™. As in
the introduction, the geometric realisation of this poset is the Tits building associated
to SL,(F), denoted by T,(FF). It is elementary to see that T, (Q) is isomorphic to the
following poset.

Definition 8.1. We write T,,(Z) (or simply T,,) for the poset of proper nonzero direct
summands of Z™ under inclusion. We write its geometric realisation as 7, (Z).

We prove Theorem A and Theorem B using n-connectivity of BAA,,. The proof here
works very similarly to [6, Proof of Theorem A and BJ; we largely follow [6, Section 3].

Definition 8.2. For A = Z or A = F,, let BAAFX(A)’ be the subcomplex of BAAE(A)
consisting of all simplices {vg, ..., v} such that (¥p,...,Uk)a is a proper subgroup of
A". Let BAA!, = BAAZ(Z)'.

In other words, the simplices of BAAZ(A) that are not contained in BAAZ(A) are
precisely

- the standard simplices of dimension n — 1,
- the 2-additive and 3-additive simplices of dimension n, and
- the double-triple and double-double simplices of dimension n + 1.
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In particular,

Cr(BAA,,BAA)) vanishes for k < (n —2),
Cn_1(BAA,,BAA)) is spanned by standard simplices,
Cn(BAA,,,BAA!) is spanned by 2-additive and 3-additive simplices,

Cni1(BAA,,BAA)) is spanned by double-triple and double-double simplices.

(Note that in the case n = 3, the complex BAA,, contains no double-double simplices.
So in this case, Cp,+1(BAA,,,BAA!)) is spanned by double-triple simplices.)

The connectivity of BAA,, gives us isomorphisms between the homology of these
relative chains and the homology of BAA! :

Lemma 8.3. Let n > 3. There are isomorphisms
H, 2(BAA!) = H, ,(BAA,,BAA!) and H,_1(BAA!) = H,(BAA,,,BAA)).

Proof. This follows immediately from the long exact sequence of the pair (BAA,,, BAA!))
because BAA,, is n-connected (Theorem 2.10). O

We use Proposition 7.9 to get an explicit description of the homology of BAA! in
high degrees.

Lemma 8.4. Let n > 3. There are isomorphisms
H, _2(BAA!) = St,,(Q) and H,,_1(BAA!) 0.

Proof. Let P(BAA!)) denote the poset of simplices of BAA! under inclusion, and con-
sider the map of posets

¢: P(BAA') — T,
{’1}07...,’(%} — <170,...,17k>.

We want to apply Proposition 7.9 with m = 2. As T,, is Cohen—Macaulay of dimension
(n—2), we have to verify that for every proper direct summand {0} # V' C Z", the fibre
¢<v has vanishing reduced homology in all degrees except (ht(V') +2) = (rank(V') +1).
But we have

0=V = {0 € P(BAA,) | 6(0) < V} = P(BAA(V)).

The complex BAA(V) has dimension at most'* rank(V) 4+ 1 and is rank(V)-connected
by Theorem 2.10.

14 In fact, its dimension is equal to rank(V) + 1 if rank(V) > 3, see the comments after Theorem 2.10.
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It follows that the map ¢ induces isomorphisms
Hy—o(|P(BAAL)) = Hin—2(Tn) = Sta(Q) and Hy—1(|P(BAA,)|) = Ha-1(Tn) = 0.

The claim follows because |P(BAA!)| is the geometric realisation of the barycentric
subdivision of | BAA! |. O

Proposition 8.5. Let n > 3. The sequence

Coi1(BAA,, BAA') 7% € (BAA,, BAA’) 2% C,_,(BAA, ,BAA') %
s H,_1(BAA,,BAA’) = St,,(Q) — 0

s exact.

Proof. Firstly, the map ¢ is surjective by the definition of homology, so we have exactness
at H,_1(BAA,,BAA/). Secondly, we noted above that C,,_o(BAA,,,BAA’) is trivial.
Hence,

H,_1(BAA,,BAA’) =~ C,,_,(BAA,,BAA")/im(d,),

which shows that the sequence is exact at C,_1(BAA,,,BAA]). Lastly, exactness at
Cn(BAA,,,BAA!) is equivalent to the vanishing of the homology group H,(BAA,,
BAA!). By Lemma 8.3, this group is isomorphic to H,_1(BAA!), which vanishes by
Lemma 8.4.

The isomorphism H,,_1(BAA,,BAA/) = St,(Q) is also an immediate consequence
of Lemma 8.3 and Lemma 8.4. O

This proposition implies Theorem A, our partial resolution of St,(Q).

Proof of Theorem A. If n = 2, the group Mo is trivial and the result was shown by
Church—Putman [6, Theorem B]|. If n > 3, for ¢ = 0,1 or 2, the groups M; in the state-
ment of Theorem A are isomorphic to the relative chain groups C,,_1.;(BAA,, BAA!).
The claim now follows from Proposition 8.5. O

To deduce Theorem B from this, we need the following well-known lemma. The proof
is adapted from Church-Putman [6, Lemma 3.2] using Putman-Studenmund [19, Lemma
2.2]. Also see Putman-Studenmund [19, Lemma 2.3].

Lemma 8.6. Let G be a group and let Y — X be an inclusion of G-simplicial complezes.
Assume that the setwise stabiliser subgroup of every k-simplex of X that is not contained
in the image of Y is finite. Let R be a ring such that the orders of all stabiliser groups
of such simplices are invertible in R. Then Cx(X,Y) is a projective R[G]-module.
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Proof. Let o be a k-simplex of X not contained in Y and pick an orientation on o.
Let G, C G be the stabiliser of . By abuse of notation, also view ¢ as an element of
Cy(X,Y; R). Let M, C Cx(X,Y;R) be the R[G]-submodule generated by o. Let R, be
the R[G,]-module whose underlying R-module is just R but an element of G acts by +1
depending on whether it reverses the orientation on ¢ or not. As in Church—Putman [6,
Lemma 3.2], we have that

M, =2 1ndg_R,.

Putman—Studenmund [19, Lemma 2.2] states that R, is a projective R[G|-module and
hence a summand of a free R[G,]-module. Since

Indg R[G,] = R[G],

it follows that M, is a summand of a free R[G]-module and hence M, is projective. Since
Cr(X,Y; R) is a direct sum of modules of the form M, the module C(X,Y; R) is also
projective. O

Lemma 8.7. Let R be a ring and let T be a subgroup of SL,(Z). Assume that for any
g €T of finite order j < oo, the element j is a unit in R. Then C,(BAA,,BAA!;R) is
projective as an R[T]-module.

Proof. Note that the groups Cx(BAA,,, BAA]; R) vanish unless & € {n —1,n,n+ 1},
so we shall restrict attention to those cases.

In order to apply Lemma 8.6, we will first show that for every k € {n —1,n,n + 1}
and for every k-simplex o of BAA,, that is not contained in BAA!,, the setwise stabiliser
SL,(Z), of o under the action of SL,,(Z) is finite. Let 0 = {wvo, ..., v} be such a simplex.
Then by definition, we have (T, ...,U;) = Z™ and we can assume that {¥p,..., 0,1}
is a basis. An element ¢ € SL,(Z) that stabilises o induces a signed permutation of
the set {0, ..., Uk }. Furthermore, any such ¢ is uniquely determined by the images of
Uoy - - -, Un—1 because these form a basis of Z™. It follows that SL,(Z), is a subgroup of
the group of signed permutations of a set with k+ 1 elements. This is the Coxeter group
of type By 1, a finite group of order 281 . (k + 1)!.

This implies that the stabiliser I', is finite and by assumption, the orders of all its
elements are invertible in R. It follows from Cauchy’s Theorem that the order of I, is
invertible in R as well, so we can apply Lemma 8.6. O

Remark 8.8. In particular, this implies that Cy(BAA,,BAA/;Q) is projective as a
Q[SL,(Z)]-module and Ci(BAA,,,BAA!;Z) is projective as a Z[[]-module if T' is
torsion-free.

We use the concrete description of C,,41(BAA,,, BAA!)) in terms of double-double and
double-triple simplices to show the following.
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Lemma 8.9. The group C,,.1(BAA,,,BAA!;Q) ®sL, (z) Q vanishes for all n > 3.

Proof. The group C,,1(BAA,,,BAA;Q) is generated by all oriented (n+1)-dimensional
double-triple and double-double simplices of BAA,,. (As noted above, the double-double
simplices only occur if n > 4.) Let 0 = {vg, ..., Un+1} be such an (n+ 1)-simplex, where
U, ..., Un+1 is & basis of Z™. We need to show that for any ¢ € Q, the element o ® ¢ is
trivial in C,,41(BAA,,,BAA!; Q) ®s1, (z) Q. There are two cases to consider.

First suppose that o is a double-double simplex. Then for suitable choices of signs,
we have Uy = U + U3 and U7 = U4 + U5. Let ¢: Z™ — Z"™ be the automorphism defined
by

O(V2) = Ua, ¢(Us) = U2, ¢(U3) = U5, ¢(T5) = U3, ¢(7;) = v; for i > 5.

The automorphism ¢ is contained in SL,(Z) because it acts as an even permutation on
the basis ¥, ..., ¥Up+1. On the other hand, it acts as an odd permutation on the vertices
of o, as

QS((UOa ceey 'Un+1)) = (’Ulvaa V4, U5, U2, U3, Vg, - - - ;vn+1)~

Hence, in C,,41(BAA,,,BAA!; Q) ®sL,(z) Q, we have 0 ® ¢ = ¢(0) ® ¢ = —o0 ® ¢ for any
q € Q. This implies that ¢ ® ¢ is trivial.

Next suppose that o is a double-triple simplex. In this case, we can choose signs such
that vy = vy + U3 and v; = Us 4+ Uy. We define ¢: Z™ — Z" as the automorphism given
by

Y(U2) = =02, Y(U3) = V2 + U3, ¢(Us) = —0y, »(¥;) = ¥; for i > 4.
It is easy to see that 1 has determinant 1 and hence is contained in SL,,(Z). Noting that

Y(Ty) = P (Va + U3) = U3 and (1) = (¥ + Us) = —01, one sees that 9 acts as an odd
permutation on the vertices of o, namely

1/1((’007 e avn+1)> = (U37’U13U2; Vo, V4, Vs, - .. >vn+1)~
As before, it follows that o ® ¢ is trivial. O

That the codimension-2 rational cohomology of SL, (Z) vanishes for n > 3 is an easy
consequence of the previous results:

Proof of Theorem B. Because of Borel-Serre duality (see Equation (1)), it is sufficient
to show that H(SL,(Z);St,(Q) ® Q) is trivial. Proposition 8.5 and Lemma 8.7 give us
a partial projective resolution of St,(Q) ® Q as follows:
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Cris1(BAA,,, BAA': Q) —s Cn(BAA,,, BAA':Q) — Cp_1(BAA,, BAA: Q)
— St,(Q) ® Q@ — 0.

As this partial resolution can be extended to a projective resolution, it suffices to show
that the second homology of the chain complex

- — Cpg1(BAA,, BAAT; Q) ®sr1,,(z) Q — C(BAA,, BAAT; Q) ®sr1,,(z) Q —
— Cp1(BAA,,BAAT; Q) ®s1,,(2) Q — 0

vanishes. This is an immediate consequence of Lemma 8.9. O

Remark 8.10. Church-Putman [6, Theorem A] also proved a vanishing result for the
codimension-1 cohomology of SL,(Z) with coefficients in rational representations of
GL,,(Q). The analogous result is true for the codimension-2 cohomology.

9. Proof of Theorem C

We now shift attention to the codimension-1 cohomology congruence subgroups and
prove Theorem C.

9.1. Relevant simplicial complexes and connectivity results
We will deduce our results about congruence subgroups by studying connectivity
properties of BAA,iL(IFp). To prove the following result, it is not difficult to adapt the

proofs of [18, Lemmas 2.35 and 2.43].

Proposition 9.1. For p an odd prime, BAA,, /T,,(p) = BAAE(F,) and BAA, /T, (p) =
BAAZ(F,).

An argument identical to [18, Lemma 3.23] gives the following corollary.
Proposition 9.2. Let p be an odd prime. There is a natural isomorphism
H (T (p); Sta(Q)) = Hy(BAA (F,), BAAZ(F,)").
Proof. Proposition 8.5 states that
Cni1(BAA,, BAA') 2% ¢ (BAA,, BAA.) 2 C,,_ (BAA,,BAA) — St.(Q) — 0

is exact. Note that for p odd T',,(p) is torsion-free. Thus Lemma 8.7 implies that the
groups Ci(BAA,,,BAA!) are projective Z[I',,(p)]-modules and hence that this is a partial
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projective resolution of Z[I',,(p)]-modules. Therefore, Hy (I, (p); St (Q)) is the homology
of the sequence

Cn+1 (BAAAn7 BAA;)Fn(p) — Cn (BAAn, BAA;;)F,I(p) — Cn—l (BAA.,“ BAA;)Fn (p)-

This sequence agrees with

— Cn_1(BAA, /T(p), BAA/n /Tn(p)).

Using Proposition 9.1, this is exactly

Coui1 (BAAY (F,), BAAE(F,)) — C,(BAAZ(F,), BAAX(E,))
— Cuo1(BAAE(F,), BAAZ(F,)).

Thus, the homology of this sequence is H,(BAAE(F,),BAAZ(F,)). O

Proposition 9.3. For all p, the inclusion BAE(F,) — BAAL(F,) induces a surjective
map on wq, d < n.

Proof. Fix d < n and let f: S¢ — BAAf (F,) be a map that is simplicial with respect
to some simplicial structure on S?. It suffices to show that f is homotopic to a map
f: 84— BAAE(F,) that factors through the inclusion BAZ(F,) < BAAZ(F,).

This can be shown similarly to Procedure 1, which was used in Section 6 to show
that BAAT" is highly-connected. We will follow this procedure very closely and keep
the notation as similar as possible to make it easier to follow. We first define the “bad”
simplices that we want to remove: A simplex o of S? is called (b, c)-over-augmented,
b,c € Ny, if

- f(o) is a 3-additive, double-triple, or double-double simplex,

- every vertex of f(o) is contained in the additive core,

- o has exactly b > 0 vertices « such that f(x) is contained in the additive core of a
3-additive face of f(o),

- dim(o) = ¢

We call a simplex overly augmented if it is (b, ¢)-over-augmented for some b, ¢ > 0. We say
that a (b, ¢)-over-augmented simplex o is better than a (¥, ¢’)-over-augmented simplex 7
if (b,¢) < (¥, ) lexicographically. If f has no overly augmented simplices, then its image
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lies in BAZE (Fp). To obtain such a map, we will successively replace f with homotopic
maps that have less such simplices that are maximally over-augmented.

Let o be a (b, ¢)-over-augmented simplex with (b, c) as large as possible lexicograph-
ically. We want to remove o from f. To do so, we first define, just as in Procedure
1, a complex K(o) and then verify adapted versions of Claim 6.4, Claim 6.5 and
Claim 6.6.

If f(o) is a double-triple or double-double simplex, it can be written as {vg, v1, ... vk},
where {#h,...,0;} is a partial basis. As we assumed that every vertex of f(o) is
contained in the additive core, we here have k = 4 for a double-triple and k£ = 5
for a double-double simplex. Define K(o) := Linkp+(p,)({v2,...,vx}). If f(o) is 3-
additive, we can write f(o) = {(U1 + U2 + ¥3),v1,v2,v3}, where {¥, 05, ¥3} is a par-
tial basis. Let J = {(¥ + Ta), (th + U3), (U2 + U3)}. Note that all elements of J are
vertices of BAAX(F,). We view J as a 0-dimensional simplicial complex and define
K (o) = Linkgx (g, )({v1,v2,v3}) * J.

As f is simplicial and o is maximally over-augmented, we have f(Linkga(c)) C
Linkgaaz(r,)(f(c)). So to prove the analogue of Claim 6.4, it suffices to see that
K(o) = Linkgaa+,)(f(0)). This can be checked easily just as in Procedure 1. In
Proposition 5.5, we describe the links of simplices in BAA,, and an analogous statement
is true for BAAZ(F,).

To see that K(o) is dimLinkga(o)-connected, note that by a result of Miller—
Patzt—Putman the complex Linkg+,)({vo, ..., vi}) is (n — 1 — 3)-connected [18, Propo-
sition 2.45]. Hence, K(o) is (n — 5)-connected if f(o) is a double-triple simplex,
(n — 6)-connected if f(o) is a double-double simplex and (n — 5 4+ 1) = (n — 4)-
connected if f(o) is 3-additive. We have dim Linkga(o0) < n — dim(f(c)) — 1. The
claim follows because f(o) is a double-triple, double-double or 3-additive simplex with
all vertices contained in the additive core and hence has dimension 4, 5 or 3, respec-
tively.

Consequently, the restriction f |5tars (o) is homotopic to a simplicial map h: do *
Cone(Linkga(o)) — f(o) * K(o) that agrees with f on do  Linkga(c) and such that
h(Cone(Linkga(0))) C K (o). We will now verify that h has only simplices that are better
than o. This is very similar to the proof of Claim 6.6 in Procedure 1, so we will be
slightly briefer here:

Every simplex in do * Cone(Linkga(c)) is of the form & U 7, where § C & C o is
a proper face of o. It gets mapped to h(c’) = f(5) U g(7), where g(t) C K(o). Let
o' = & UT be a simplex in the domain of h that is (¥, ¢’)-over-augmented. We need to
show that (V',¢") < (b,c) lexicographically. If f(o) is a double-triple or double-double
simplex, no vertex of g(7) C K (o) can be contained in the additive core of h(c’). As o’ is
overly augmented, this implies that b < b and that 7 is the empty simplex. Hence, ¢’ =
dim(o’) < dim(o) = ¢ and we have (b, ) < (b, ¢). Next assume that f(o) is 3-additive.
In this case, K (o) := Linkp=(r,)({v1,v2, v3}) *J. As 0’ is overly augmented and no vertex
of Linkg+(p,)({v1,v2,v3}) can be contained in the additive core of h(o”), all vertices of
7 get mapped to J. This means that either 7 is the empty simplex and ¢/ = & C o or
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h(co") = f(6)U{j} for some j € J and & C o. In the first case, we have (b, ¢’) < (b, ¢) with
the same argument as in the situation of double-triple or double-double simplices. In the
second case, f(0)U{j} is a double-triple simplex that contains h(c’) and has f(o) as its
unique 3-additive face. Hence, j cannot be contained in the additive core of a 3-additive
face of h(o’). It follows that ' < dim(5) < dim(o) = b. In particular, (V',c") < (b, c¢).

We now replace Star(o) with do * Cone(Linkga(c)) and f by the map f’ that agrees
with f outside Star(o) and is equal to h on do *Cone(Linkga(o)). This removes o without
introducing any other simplices that are (b, c)-over-augmented or worse. Iterating this
procedure, we obtain a map that has no overly augmented simplices and hence factors
through BAF (F,). O

Corollary 9.4. For p =3 or 5, the complex BAAE(F,) is (n — 1)-connected.
Proof. By Proposition 9.3, there is a surjection m4(BAE(F,)) — m4(BAAE(F,)) for d <
n. The claim follows because by [18, Proposition 2.50], the complex BAZ(F,) is (n —1)-

connected for p=3 or 5. O

Corollary 9.5. For p = 3 or 5, there is a surjection Hy(T',,(p); St,(Q)) —
anl(BAArjz: (Fp)/)'

Proof. This follows from the long exact sequence of the pair (BAAZ(F,), BAAL(F,)),
Proposition 9.2 and Corollary 9.4. O

1

Proposition 9.6. For p an odd prime, Hy(BAAS(F,)) = Z.

Proof. Note that the inclusion BAF (F,) — BAAZ(F,) is an isomorphism. The claim
follows from [18, Lemma 2.44] which identifies BAj (FF,) with the compactified modular
curve of level p, a compact surface of genus (p+2)(p —3)(p —5)/24. O

Remark 9.7. Proposition 9.6 shows that BAAT (F,) is not always n-connected. This may
come as a surprise. This fact is not just due to our restriction that the determinant of
bases be equal to 1 as this condition is vacuous for p = 3. If the reader is interested in
defining a complex BAA,, (F) to determine the relations among the relations in St,, (IF)
for F an arbitrary field, we expect that extra types of additive simplices will be needed.
For example, simplices of the form {vy,ve, (a¥; + biiz), (cty + diiz)} with ad — be # £1
might be needed in the n = 2 case.

We now describe a model for 7,(Q)/T,(p).

Definition 9.8. A +-orientation on a rank k submodule V' C [} is an equivalence class
of generators of A¥V = F, up to sign.
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Let Gr'(F,)* denote the set of +-oriented summands of rank & in Fy. We let T (F,)
denote the poset whose elements are all proper nonzero +-oriented summands of )} with
order induced by proper inclusion. Let 7,5 (FF,) denote its geometric realisation.

Note that the +-orientations play no role in deciding if summands of different ranks
are comparable and differently oriented subspaces of the same rank are never comparable.
The following results are due to Miller—Patzt—Putman [18].

Proposition 9.9 (/18, Proposition 3.16]). For p an odd prime, the natural map T,(Z)/
To(p) = T,E(F,) is an isomorphism.

Proposition 9.10 (/18, Lemma 3.15]). For all p, the complex T;=(F,) is Cohen—Macaulay
of dimension n — 2.

9.2. Lower bounds on the codimension-1 cohomology of certain congruence subgroups

In this subsection, we use the map-of-poset spectral sequence and the fact that
BAAF (Fp) is not 2-connected to produce cohomology classes in the codimension-1 co-
homology of level 3 and 5 congruence subgroups.

The following is a categorified version of Theorem C.

Theorem 9.11. For p =3 or 5 and n > 3, H(g>_1(1“n(p)) surjects onto
Z[Grs (Fy)*] @ Hya(Ti25(Fy)).

Proof. Since I';,(p) is torsion-free for p an odd prime, Borel-Serre duality holds with
integral coefficients. In particular,

n

HEZT, () = Hy (T (p); St (Q)).
Thus, by Corollary 9.5, it suffices to produce a surjection
H, 1 (BAAS(F,)") = Z[GrE (Fy)*] @ Hya(T;E 5 (Fy))-

Let ¢: P(BAAZ(F,)') — T (F,) be the map sending a simplex o = {vg, ..., v} to
(Vo, ..., Uk)F, with the orientation given by @;, AT;, A... AT, where {¥,, ¥, ..., ¥, }
is any maximal partial basis contained in o. Observe that this orientation does
not depend on the choice of the maximal partial basis in o: For example, if ¢ =
{01 + Ua, U1, Ta,..., U} is 2-additive, then

TIANToN . AT = (01 +T2) ANV AT3 A ... AT = (01 + T2) AL AT A ... A T

Reordering the vectors of the partial basis introduces a sign but does not change the
equivalence class of the orientation.
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501 0

4l o

3] o 0

2] o *x 0

Fig. 13. The page Eirb when n = 7. The domains of all subsequent differentials into Ei_312 are 0, as are
the codomains of all subsequent differentials out of Ei—sg' Thus E727,—3,2 = EX 3,

Let E , denote the associated map-of-poset spectral sequence associated to ¢ de-

scribed in Theorem 7.6. For V' a proper nonzero rank k +-summand of F’, note

that ht(V) = k — 1, ¢=V = P(BAAL(F,)), and T,5(F,)sy = TF ,(F,). Applying
Proposition 7.8 with e =n —2, d =2, and r = 1, we find that for b > 1, Eg,b 2 (0 unless
a+b=n—1ora+b=n. See Fig. 13.

Since 7, (Fp) is (n—2)-dimensional, Eib 2 0 for @ > n—2. This region is shaded grey
in Fig. 13. Thus Ei—g,z = E7° 55 as all higher differentials to or from Ej_5 5 vanish, as
in Fig. 13.

Observe that the group E;°,; (marked by & in Fig. 13) must vanish, since
Hi(BAAT(F,)) = Hy(BAY(F,)) = 0. Thus the abutment of the spectral sequence
surjects onto E° 3,. All that remains is to identify E2 5, with [Z[Gry(F,)*] ®
H,_4(T;5 ,(F,)). We will apply Lemma 7.7. Observe that the functor V — Hy(¢=)
is supported on vector spaces V of dimension 2, equivalently, of height 1 in the poset
T*(F,). By Lemma 7.7,

Erzl—3,2 = an?»(jrr:zt(]Fp);HQ((b)) = @ ﬁn74(TnifQ(Fp>§H2(BAA§:(]FP))~
ht(V)=1

The set of height-1 elements of T (F,) is isomorphic to Gr3(F,)*, and Hy(BAAS (F,)) =

Z by Proposition 9.6. Thus E2_5, = Z[Gry(F,)*] Efn,4(7:li72(]Fp)) and the result
follows. O

We now prove Theorem C which gives a numerical lower bound for H (3)-1 (Tn(p)); Q).
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Proof of Theorem C. We must show that if p = 3 or 5, then

n—2
g #E0,00:Q) 25 ars )] (U51)

When n = 2, both sides of the inequality are equal to 1. Assume n > 3. By Theorem 9.11,
dimg HE) ™! (T (p): Q) 2 G5 (Fy)* | dimg Hoa(T;E 4(F,): Q).

Observe that the order of Gr3(F,)* is 251 times the order of Gr§(F,). Furthermore,
18, Page 5] contains a proof that H,,_4(7;= 5(F,)) is a free abelian group of rank at least

n—2

p( 27) (%;1)”_3. We deduce Theorem C. O
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