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Borel–Serre proved that SLn(Z) is a virtual duality group 
of dimension 

(n
2
)

and the Steinberg module Stn(Q) is 
its dualizing module. This module is the top-dimensional 
homology group of the Tits building associated to SLn(Q). 
We determine the “relations among the relations” of this 
Steinberg module. That is, we construct an explicit partial 
resolution of length two of the SLn(Z)-module Stn(Q). 
We use this partial resolution to show the codimension-2
rational cohomology group H(n

2)−2(SLn(Z); Q) of SLn(Z)
vanishes for n ≥ 3. This resolves a case of a conjecture of 
Church–Farb–Putman. We also produce lower bounds for the 
codimension-1 cohomology of certain congruence subgroups 
of SLn(Z).

© 2024 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.
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1. Introduction

1.1. Steinberg modules and Borel–Serre duality

Although the Steinberg module was initially introduced as an object of study in 
representation theory, the work of Borel–Serre [3] showed its importance to the study 
of cohomology of arithmetic groups. In this paper, we are interested in the arithmetic 
group SLn(Z) and its congruence subgroups. We use their relationship to the Steinberg 
module for SLn(Q) to obtain new insights about the high-dimensional cohomology of 
these groups.

We begin by recalling the relevant definitions. Let F be a field. The Tits building
associated to SLn(F), denoted Tn(F), is the geometric realisation of the poset of proper 
nonzero subspaces of Fn. It is (n − 2)-spherical by the Solomon–Tits Theorem [21] and 
its one potentially nonvanishing reduced homology group is called the Steinberg module

Stn(F) := H̃n−2(Tn(F)).

The group SLn(F) acts on the Tits building and hence the Steinberg module is a repre-
sentation of SLn(F). The results of Borel–Serre [3] show that SLn(Z) is a virtual duality 
group of dimension 

(n
2
)

and that the Steinberg module Stn(Q) is the virtual dualizing 
module. Thus, for any finite index subgroup ! ⊆ SLn(Z), we have Hk(!; Q) = 0 for 
k >

(n
2
)

and

H(n2)−i(!;Q) ∼= Hi(!; Stn(Q) ⊗Q). (1)

If ! is torsion-free, then H(n2)−i(!) ∼= Hi(!; Stn(Q)). We call the cohomology group 
H(n2)−i(!) the codimension-i cohomology of !.

1.2. Resolutions of Steinberg modules

Borel–Serre duality is useful because it translates questions about the high-degree co-
homology of SLn(Z) and its finite index subgroups to questions about their low-degree 
homology, at the cost of working with twisted coefficients. One can compute this group 
homology with twisted coefficients by constructing a projective resolution of the co-
efficient module. The main achievement of this work is the construction of a partial 
resolution of Stn(Q),

M2 −→ M1 −→ M0 −→ Stn(Q) −→ 0,

where the SLn(Z)-modules Mi for i = 0, 1, 2 have generating sets that allow for an easy 
description of the SLn(Z)-action (see below).
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Fig. 1. The apartment A{!v0,!v1,!v2} in T3(Q).

This extends work of Solomon–Tits [21], Ash–Rudolph [1], and Bykovskĭı [4]: Given a 
basis β = {"v0, . . . , "vn−1} of Qn, let Aβ be the full subcomplex of Tn(Q) of all subspaces 
that are spans of nonempty proper subsets of {"v0, . . . , "vn−1}. This subcomplex is called 
an apartment. It is homeomorphic to Sn−2 and this sphere has a canonical fundamental 
class [Aβ ] (well-defined up to sign). See Fig. 1. By the Solomon–Tits Theorem, the images 
of all these homology classes form a generating set for the Steinberg module Stn(Q) =
H̃n−2(Tn(Q)). Ash–Rudolph [1] showed that in fact, a generating set is given by the 
integral apartment classes (also known as modular symbols), i.e. the images of [Aβ ], 
where β = {"v0, . . . , "vn−1} is a basis of Zn. Bykovskĭı [4] extended this to a presentation. 
Now our resolution computes the two-syzygies (the relations among the relations) of 
Stn(Q).

Our partial resolution admits the following “combinatorial” description: We define the 
groups Mi as quotients of free abelian groups, generated by formal symbols [["v0, . . . , "vk]], 
where "v0, . . . , "vk are certain sets of vectors in Zn. The action of SLn(Z) on Zn induces an 
action on the sets of these formal symbols, given by φ · [["v0, . . . , "vk]] = [[φ("v0), . . . , φ("vk)]].
Generators: Let M0 be the quotient of the free abelian group

〈[["v0, . . . ,"vn−1]] | "v0, . . . ,"vn−1 a basis of Zn〉Z

by the relations:

i) [["v0, . . . , "vn−1]] = sgn(σ)[["vσ(0), . . . , "vσ(n−1)]] for all permutations σ ∈ Sym(n),
ii) [["v0, . . . , "vn−1]] = [[±"v0, . . . , ±"vn−1]], (with the n signs each chosen independently).

Relations: Let M1 be the quotient of the free abelian group

〈
[["v0, . . . ,"vn]]

∣∣∣∣∣∣∣

there exist indices i, j, k with
• "v0, . . . ,"vi−1,"vi+1, . . . ,"vn is a basis of Zn,
• "vi = ±"vj ± "vk or "vi = ±"vj ± "vk ± "vl for l )= i, j, k

〉

Z

by the relations

i) [["v0, . . . , "vn]] = sgn(σ)[["vσ(0), . . . , "vσ(n)]] for all permutations σ ∈ Sym(n + 1),
ii) [["v0, . . . , "vn]] = [[±"v0, . . . , ±"vn]] (signs chosen independently).
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Relations among the relations: Let M2 be the quotient of the free abelian group
〈

[["v0, . . . ,"vn+1]]

∣∣∣∣∣∣∣∣∣

there exist distinct indices i, j, k, l,m with
• "v0, . . . ,"vi−1,"vi+1, . . . ,"vj−1,"vj+1, , . . . ,"vn is a basis of Zn,
• "vi = ±"vk ± "vl
• "vj = ±"vm ± "vl or "vj = ±"vm ± "vp for p )= i, j, k, l,m

〉

Z

by the relations

i) [["v0, . . . , "vn+1]] = sgn(σ)[["vσ(0), . . . , "vσ(n+1)]] for all permutations σ ∈ Sym(n + 2),
ii) [["v0, . . . , "vn+1]] = [[±"v0, . . . , ±"vn+1]] (signs chosen independently).

Maps in the resolution: Let δ1 : M1 → M0 and δ2 : M2 → M1 be the maps

δ1 : [["v0, . . . ,"vn]] *−→
∑

i

(−1)i [["v0, . . . ,"vi−1,"vi+1, . . . ,"vn]].

δ2 : [["v0, . . . ,"vn+1]] *−→
∑

i

(−1)i+1 [["v0, . . . ,"vi−1,"vi+1, . . . ,"vn+1]].

For these maps, we define the symbols [["v0, . . . , "vi−1, "vi+1, . . . , "vn]] and [["v0, . . . , "vi−1, "vi+1,

. . . , "vn+1]] to be zero if the vectors do not span Zn.
The map ε : M0 → Stn(Q) is the “integral apartment class map” mentioned above. 

More precisely, it is defined as follows. If [["v0, . . . , "vn−1]] is a generator of M0, then 
β = {"v0, . . . , "vn−1} is a basis of Zn that comes with an order that is well-defined up to 
the action of the alternating group. This order determines a sign of the corresponding 
apartment class [Aβ]. Define ε via the formula:

ε : M0 −→ Stn(Q)
[["v0, . . . ,"vn−1]] *−→ [Aβ ].

Theorem A. The sequence

M2
δ2−→ M1

δ1−→ M0
ε−→ Stn(Q) −→ 0

is exact.

Exactness of

M0
ε−→ Stn(Q) −→ 0

is due to Ash–Rudolph [1] and exactness of

M1
δ1−→ M0

ε−→ Stn(Q) −→ 0
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follows from Bykovskĭı [4]. See Church–Putman [6] for an alternate proof.

1.3. Applications to the cohomology of SLn(Z)

Using Theorem A, we show that the codimension-2 rational homology of SLn(Z)
vanishes for large n.

Theorem B. For n ≥ 3, H(n2)−2(SLn(Z); Q) ∼= 0.

A standard transfer argument implies that Hi(GLn(Z); Q) is a summand of 
Hi(SLn(Z); Q). Thus H(n2)−2(GLn(Z); Q) ∼= 0 for n ≥ 3. Theorem B resolves the 
codimension-2 case of a conjecture of Church–Farb–Putman [7, Conjecture 2].

Conjecture 1.1 (Church–Farb–Putman). For n ≥ i + 2, H(n2)−i(SLn(Z); Q) ∼= 0.

For codimension i = 0, this conjecture is true and due to Lee–Szczarba [11]. Vanish-
ing in codimension-0 follows easily from Ash–Rudolph’s [1] generating set for Stn(Q). 
For codimension-1, the conjecture was established by Church–Putman [6] and follows 
from the Bykovskĭı presentation [4] of Stn(Q). Similarly, Theorem B follows readily 
from our result determining the relations among the relations in the Steinberg mod-
ule, Theorem A.

The rational cohomology of SLn(Z) has been completely computed for n ≤ 7 (Soulé 
[22] for n = 3, Lee–Szczarba [12] for n = 4, and Elbaz-Vincent–Gangl–Soulé [9] for 
n = 5, 6, and 7). These calculations verify Conjecture 1.1 for n ≤ 7 and also show that 
the vanishing range predicted by Conjecture 1.1 is not sharp for n = 3, 5, or 7. This 
failure of sharpness is reflected in the fact that Theorem B implies that the codimension-2
rational cohomology vanishes for n ≥ 3 while the codimension-2 case of Conjecture 1.1
only concerns vanishing for n ≥ 4.

1.4. Applications to the cohomology of congruence subgroups

The principal level p-congruence subgroup of SLn(Z), denoted !n(p), is defined to be 
the kernel of the mod-p reduction map

SLn(Z) −→ SLn(Z/p).

Using Theorem A, we obtain a combinatorial chain complex computing H1(!n(p);
Stn(Q)) ∼= H(n2)−1(!n(p)) (see Proposition 9.2). In the case p = 3 or 5, we use this 
to obtain the following numerical estimate on the size of the codimension-1 homology. 
For a field F let Grmk (F) denote the Grassmannian of k-planes in Fm.

Theorem C. For p = 3 or 5, dimQH(n2)−1(!n(p); Q) ≥ p(
n−2

2 )|Grn2 (Fp)| 
(
p− 1

2

)n−2
.



B. Brück et al. / Advances in Mathematics 451 (2024) 109795 7

See [16, Corollary 1.2] for an upper bound of a similar flavour in the case p = 3.

1.5. Proof structure and paper outline

Following Lee–Szczarba [11], Church–Farb–Putman [8], and Church–Putman [6], we 
will construct our resolution of Stn(Q) by proving that certain simplicial complexes 
are highly-connected. The complexes relevant to our paper are called BAAn. These com-
plexes are related to Maazen’s complex of partial bases [13,14] with added augmentations 
in the sense of Church–Putman [6]. The augmentations are inspired by the Voronoi tes-
sellation of the symmetric spaces associated to the groups SLn(Z). In Section 2, we 
define BAAn and some variants. In the following sections, we adapt an argument of 
Church–Putman [6] to prove BAAn is highly-connected, and in fact Cohen–Macaulay of 
dimension n + 1. Because of the added complexity needed to study the relations among 
the relations, we use computer calculations for one step in the proof. In Section 3, we 
construct a retraction map that is used in the connectivity argument and is based on 
the Euclidean algorithm. The last step of the construction of this retraction uses that 
certain finite subcomplexes of BAA4 are highly-connected. This is proved in Section 4
using computer calculations. In Section 5 and Section 6, we complete the proof that 
BAAn is highly-connected. In Section 7, we recall a spectral sequence due to Quillen 
[20] concerning maps of posets. We use this spectral sequence in Section 8 to study 
the codimension-2 cohomology of SLn(Z) and in Section 9 to study the codimension-1
cohomology of congruence subgroups.

1.6. Code for the computer calculations

The code that was used to perform the computer calculations described in Section 4
is publicly available under https://github .com /benjaminbrueck /codim2 _cohomology _
SLnZ. Comments on runtime and verifiability of the results can be found in Section 4.4.

1.7. Acknowledgments

We thank Alexander Kupers, Andrew Putman, Nathalie Wahl, and Dan Yasaki for 
helpful conversations and Lukas Kühne and Joshua Maglione for comments on the pre-
sentation of the python code. We thank our anonymous referee for their feedback.

2. Definitions

Following Church–Putman [6] (building on ideas of Church–Farb–Putman [8] and 
Lee–Szczarba [11]), we will construct our partial resolution of Steinberg modules using 
highly-connected complexes. In this section, we define the relevant complexes.

https://github.com/benjaminbrueck/codim2_cohomology_SLnZ
https://github.com/benjaminbrueck/codim2_cohomology_SLnZ
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2.1. Definition of Bn and BAn

We begin by recalling a variant of Maazen’s complex of partial bases Bn [13,14]. 
Church–Farb–Putman [8] observed that high connectivity of this complex can be used 
to construct generators for Steinberg modules. We will then recall the definition of a 
large complex of augmented partial bases, denoted BAn, that was introduced by Church–
Putman to study relations in Steinberg modules.

Definition 2.1. Let Λ be a PID. A vector "v ∈ Λn is called primitive if it spans a summand.

Recall that a vector "v ∈ Λn is primitive if and only if the greatest common divisor of 
its entries is a unit. If Λ is a field, every "v ∈ Λn\ {0} is primitive.

Convention 2.2. Throughout this text, we take Λ to be either Z or Fp. Given a primitive 
vector "v, the equivalence class ±"v is denoted by v. Given an equivalence class v, we let 
"v denote an (arbitrary) choice of representative of v. We refer to equivalence classes v as 
±-vectors. If Λ = Z, we also call v a line, since in this case there is a bijection between 
rank-1 summands (lines) in Zn and equivalence classes of primitive vectors.

For "v0, . . . , "vk ∈ Λn, we write 〈"v0, . . . , "vk〉Λ for the Λ-span of "v0, . . . , "vk. If Λ = Z, we 
shorten this notation to 〈"v0, . . . , "vk〉 := 〈"v0, . . . , "vk〉Z.

Definition 2.3. Let Λ be Z or Fp. Let V ±
n (Λ) be the set

V ±
n (Λ) := {v | "v ∈ Λn is primitive}.

A subset

σ = {v0, . . . , vk} ⊂ V ±
n (Λ)

of (k + 1) ±-vectors is called

i) a standard simplex, if 〈"v0, . . . , "vk〉Λ is a rank-(k+1) summand of Λn and if k = n −1, 
the determinant of ["v0 · · ·"vn−1] is ±1;

ii) a 2-additive simplex, if (possibly after re-indexing)

"v0 = ±"v1 ± "v2

for some choice of signs and σ \ {v0} is a standard simplex.

Note that the condition in Definition 2.3 Part i) that the determinant of ["v0 · · ·"vn−1]
be ±1 is always true in the case Λ = Z and is only an extra condition in the case Λ = Fp.

Definition 2.4. Let Λ be Z or Fp and n ∈ N0. The simplicial complexes B±
n (Λ) and 

BA±
n (Λ) have V ±

n (Λ) as their vertex set, and
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i) the simplices of B±
n (Λ) are all standard simplices;

ii) the simplices of BA±
n (Λ) are all either standard simplices or 2-additive simplices.

2.2. Definition of BAAn

We now introduce a larger complex denoted BAAn. This complex captures relations 
among the relations in Steinberg modules. The second “A” indicates that we add even 
more augmentations.

Definition 2.5. Let Λ be Z or Fp. A subset

σ = {v0, . . . , vk} ⊂ V ±
n (Λ)

of (k + 1) ±-vectors is called

i) a 3-additive simplex, if (possibly after re-indexing)

"v0 = ±"v1 ± "v2 ± "v3,

for some choice of signs and σ \ {v0} is a standard simplex;
ii) a double-triple simplex, if (possibly after re-indexing)

"v0 = ±"v2 ± "v3, "v1 = ±"v2 ± "v4,

for some choice of signs and σ \ {v0, v1} is a standard simplex;
iii) a double-double simplex, if (possibly after re-indexing)

"v0 = ±"v2 ± "v3, "v1 = ±"v4 ± "v5,

for some choice of signs and σ \ {v0, v1} is a standard simplex.

We remark that the name “double-triple” reflects that, after performing a change of 
basis and re-indexing, a double-triple simplex is represented by vectors of the form

"v0 = ±"v2 ± "v3, "v1 = ±"v2 ± "v3 ± "v4, "v2, "v3, . . . , "vk

for some choice of signs and a partial basis "v2, "v3, . . . , "vk of Λn. See also Observation 4.11.

Definition 2.6. Let Λ be Z or Fp and n ∈ N0. The simplicial complex BAA±
n (Λ) has 

V ±
n (Λ) as its vertex set. The simplices of BAAn are precisely the ones introduced in 

Definition 2.3 and Definition 2.5.

Convention 2.7. When Λ = Z, we also write Bn, BAn and BAAn for B±
n (Z), BA±

n (Z)
and BAA±

n (Z), respectively.
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2.3. Definition of L̂ink, Bm
n , BAm

n , BAAm
n and L̂ink

<

In this subsection, we specialise to the case Λ = Z. We will define some subcomplexes 
of links of simplices. Throughout this section, let "e1, . . . , "ek denote the standard basis 
elements of Zk and e1, . . . , ek the corresponding lines.

Definition 2.8. Let n ∈ N0 and let Xn denote the complex Bn, BAn or BAAn. Consider 
a simplex σ = {w0, . . . , wk} of X. Then L̂inkXn(σ) is defined to be the full subcomplex 
of LinkXn(σ) on the vertex set

{v ∈ LinkXn(σ) | "v /∈ 〈"w0, . . . , "wk〉}.

Definition 2.9. Let m, n ∈ N0 and let Xm+n denote the complex Bm+n, BAm+n or 
BAAm+n. Consider the standard simplex ∆m = {e1, . . . , em} contained in Xm+n. We 
set

Xm
n := L̂inkXm+n(∆m).

When Xm+n is Bm+n, BAm+n or BAAm+n, respectively, we write Bm
n , BAm

n or BAAm
n , 

respectively, for Xm
n .

The majority of the paper will be devoted to proving the following theorem. It is our 
main technical tool and the main theorems follow fairly quickly from it.

Theorem 2.10. Let n ≥ 1. Then BAAm
n is n-connected.

For the cases where n + m ≤ 2, this immediately follows from results of Church–
Putman: The complex BAA0

1 = B1 is a single point given by the unique line spanning 
Z; the complex BAA1

1 = BA1
1 is isomorphic to the Cayley graph of Z with respect to 

the generating set {e1}, so it is a line [6, Proof of Theorem C’, base case]; the complex 
BAA0

2 = BA2 is contractible as well by [6, Remark 1.4].
In the present article, we prove that Theorem 2.10 also holds if n + m > 2. In this 

case, the following stronger statement is true.

Theorem 2.11. Let n ≥ 1 and m +n ≥ 3. Then BAAm
n is Cohen–Macaulay of dimension 

n + 1.

Recall that a simplicial complex is called Cohen–Macaulay of dimension d if it is d-
dimensional, (d − 1)-connected, and links of p-simplices are (d − 1 − p)-connected. In 
fact, to deduce the main theorems, it will be sufficient to prove the connectivity result 
Theorem 2.10 for the case m = 0. The complexes BAAm

n are “relative versions” of this 
complex that naturally show up in our inductive proof. The Cohen–Macaulay property 
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is not directly needed for this induction or the main theorems; it however follows rather 
easily from the steps of our proof.

We need to consider the following subcomplex of links.

Definition 2.12. Let m, n ∈ N0 and let Xm
n denote the complex Bm

n , BAm
n or BAAm

n . 
Consider a simplex σ = {w0, . . . , wk} of Xm

n . Then L̂inkXm
n

(σ) is defined to be the full 
subcomplex of LinkXm

n
(σ) on the vertex set

{v ∈ LinkXm
n

(σ) | "v /∈ 〈"e1, . . . ,"em, "w0, . . . , "wk〉}.

Definition 2.13. Let R ∈ Z≥1, let Xm
n denote the complex Bm

n , BAm
n or BAAm

n and 

consider a simplex σ = {w0, . . . , wk} of Xm
n . We write L̂ink

<R

Xm
n

(σ) for the full subcomplex 

of L̂inkXm
n

(σ) on the vertex set

{v ∈ L̂inkXm
n

(σ) | "v = c1"e1 + · · · + cm+n"em+n with |cm+n| < R}.

We will use the notation L̂ink
<

Xm
n

(σ) = L̂ink
<R

Xm
n

(σ) with R equal to the absolute value of 
the maximum nonzero last coordinate of the vectors in σ.

3. Constructing the retraction

In this section, we present the main technical result that enables us to show that 
BAAn is spherical of dimension n +1. To prove it, we build on ideas of Church–Putman 
[6] and Maazen [13].

Theorem 3.1. Let n ≥ 2, m ≥ 0 and w = 〈"w〉 ∈ BAAm
n be a vertex. Assume the last 

coordinate of "w ∈ Zm+n is nonzero. Then, the inclusion

i : L̂ink
<

BAAm
n

(w) ↪→ L̂inkBAAm
n

(w)

admits a topological retraction

r : L̂inkBAAm
n

(w) ! L̂ink
<

BAAm
n

(w).

The definition of the retraction map occurring in Theorem 3.1 is inspired by work of 
Church–Putman [6, Section 4] and Maazen [13, Chapter III]. On vertices, the retraction 
is given by using the Euclidean algorithm to “reduce” the last coordinate of vertices in 
the domain “modulo R”, where R > 0 is the last coordinate of a fixed vector "w ∈ Zm+n

(compare with Definition 3.9). Church–Putman [6, Section 4.1] demonstrated that this 
map can be used to prove that the complex of partial frames Bn is spherical (compare 
with Proposition 3.14). However, the method does not directly apply to the complex of 
augmented partial frames BAn. To show that BAn is spherical, Church–Putman [6] need 
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to modify the definition of the retraction. The reason for this additional difficulty in the 
paper of Church–Putman comes from the following algebraic fact. For an integer z, let 
us denote by (z mod R) ∈ {0, . . . , R − 1} the remainder of division of z by R > 0. Let 
R > 0 and a, b ≥ 0 be nonnegative integers. Then

(a mod R) + (b mod R) =
{

(a + b mod R) or
(a + b mod R) + R.

It is a consequence of this fact that the simplicial retraction maps defined for Bn do 
not extend to simplicial retraction maps for BAn. The problem is that, because of the 
second case in the equation above, the image of a 2-additive simplex might not always 
span a simplex [6, p. 1020]. To circumvent this problem, Church–Putman subdivide all 
problematic 2-additive simplices, which they call carrying simplices, in the domain of the 
retraction. They do this by adding a single vertex at the barycentre of every carrying 
simplex and extending this subdivision to the whole complex. Then, they specify the 
value that their “modified” retraction takes at these newly introduced vertices and prove 
that the resulting map is a topological retraction (compare with Proposition 3.20). In 
our construction of the retraction map for BAAn, i.e. Theorem 3.1, we need to deal 
additionally with 3-additive simplices. For these simplices, the following algebraic fact is 
the main source of trouble. Let R > 0 and a, b, c ≥ 0 be nonnegative integers. Consider 
the integer a + b + c or a + b − c. Then

i) (a mod R) + (b mod R) + (c mod R) =






(a + b + c mod R),
(a + b + c mod R) + R, or
(a + b + c mod R) + 2R

for the 

sum a + b + c and

ii) (a mod R) + (b mod R) − (c mod R) =






(a + b− c mod R),
(a + b− c mod R) + R, or
(a + b− c mod R) −R

for the 

sum a + b − c.

Similarly to the difficulty for BAn, the problem is that, because of the second and 
third case in both item i) and ii), the image of a 3-additive simplex might not always 
span a simplex. To circumvent this, we subdivide these problematic carrying 3-additive 
simplices by adding a new vertex at their barycentre and, in analogy with Church–
Putman, construct a topological retraction map for BAAn. However, since double-double 
and double-triple simplices might contain multiple problematic 2-additive and 3-additive 
facets (codimension-1 faces) we face novel difficulties. We not only need to explain how 
2-additive and 3-additive simplices are subdivided but also need to describe how higher 
dimensional simplices can be subdivided in a compatible fashion. For the most compli-
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cated case, we use computer calculations to show the existence of a retraction and do not 
make the corresponding subdivisions explicit (see Lemma 3.52 et seq. and Section 4).

We now start working towards the proof of Theorem 3.1 by introducing and fixing 
some notation. In the next subsection, we discuss the results that Church–Putman ob-
tained for BAn in greater detail. In each of the following subsections, we explain how 
the retraction maps can be defined on and extended over double-double, 3-additive, and 
double-triple simplices, respectively.

Convention 3.2. Throughout this section, we work in the setting of Theorem 3.1. We fix 
the natural numbers n ≥ 2, m ≥ 0. For each line v in Zm+n, we let v̄ denote a choice 
of primitive vector in v with nonnegative last coordinate. Note that the vector v̄ is 
uniquely defined unless its last coordinate is zero. The line w occurring in the statement 
of Theorem 3.1 is fixed throughout this section and R always denotes the last coordinate 
of w̄, which by assumption satisfies R > 0.

The following notions will be frequently used for L̂inkBAAm
n

(w) in this section, and for 
BAAm

n in the subsequent section.

Definition 3.3. Let σ be a simplex of L̂inkBAAm
n

(w) or BAAm
n . We say that σ is a standard, 

2-additive, 3-additive, double-double or double-triple simplex of L̂inkBAAm
n

(w) or BAAm
n

if the underlying simplex

σ ∗ {e1, . . . , em, w} or σ ∗ {e1, . . . , em}

in BAAm+n is a simplex of this type.

Example 3.4. Let "v1, "v2 ∈ Zm+n such that {"v1, "v2, "e1, . . . , "em, "w} is a partial basis. Then 
{v1, 〈"v1+ "w〉} is a standard simplex in BAAm+n and BAAm

n , but it is a 2-additive simplex 
in L̂inkBAAm

n
(w). Similarly, {v1, v2, 〈"v1 +"v2 +"e1〉} is a 3-additive simplex in BAAm

n (and 
in L̂inkBAAm

n
(w)) and {v1, 〈"v1 +"e1〉, 〈"v1 + "w〉} is a double-triple simplex in L̂inkBAAm

n
(w).

Any simplex σ that is not a standard simplex contains a unique minimal face that 
determines its type. This is the content of the next definition.

Definition 3.5. Let σ be a simplex of L̂inkBAAm
n

(w) or BAAm
n .

i) The simplex σ is called a minimal simplex of 2-additive, 3-additive, double-double, 
or double-triple type (in L̂inkBAAm

n
(w) or BAAm

n ) if σ is of this type and σ does not 
contain a proper face also of this type.

ii) The additive core of a nonstandard simplex σ is the unique minimal face of σ with 
the same type as σ.
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Example 3.6. Let again "v1, "v2 ∈ Zm+n such that {"v1, "v2, "e1, . . . , "em, "w} is a partial basis. 
The simplices {v1, v2, 〈"v1 + "v2〉} and {v1, 〈"v1 + "w〉} are minimal in L̂inkBAAm

n
(w). In 

particular, these simplices form their own additive cores. The simplex {v1, v2, 〈"v1 + "w〉}
is not minimal in L̂inkBAAm

n
(w). Its additive core is {v1, 〈"v1 + "w〉}.

The next definition is parallel to [6, Definition 4.9].

Definition 3.7. Let σ be a simplex of L̂inkBAAm
n

(w) or BAAm
n .

i) We say that σ is external if the additive core of the underlying simplex in BAAm+n

contains ei for some 1 ≤ i ≤ m.
ii) We say that σ is w-related if σ is a simplex in L̂inkBAAm

n
(w) and the additive core 

of the underlying simplex in BAAm+n contains w.
iii) We say that σ is internal if the additive core of the underlying simplex in BAAm+n

is contained in σ.

Note that an internal simplex is neither external nor w-related.

Example 3.8. Among the simplices in Example 3.4 and Example 3.6, in L̂inkBAAm
n

(w),
· {v1, 〈"v1 + "w〉} is w-related,
· {v1, v2, 〈"v1+"v2+"e1〉} is ex-

ternal,

· {v1, 〈"v1 + "e1〉, 〈"v1 + "w〉} is external and 
w-related,

· {v1, v2, 〈"v1 + "v2〉} is internal.

3.1. Definition on vertices, standard and 2-additive simplices

We start by defining the retraction maps on the set of vertices Vert(L̂inkBAAm
n

(w)) of 
the simplicial complex L̂inkBAAm

n
(w).

Definition 3.9. Let Vert(X) denote the vertex set of the simplicial complex X. Then, we 
define

r : Vert(L̂inkBAAm
n

(w)) −→ Vert(L̂ink
<

BAAm
n

(w))
v *−→ 〈v̄ − aw̄〉

where a ∈ Z is chosen so that v̄ − aw̄ has last coordinate in the interval [0, R).

The constant a ∈ Z in Definition 3.9 is determined by the Euclidean algorithm. We 
note that, although the vector v̄ is not uniquely determined by v if its last coordinate 
is zero, the line r(v) is still uniquely determined because r(v) = v. More generally, we 
observe that r(v) = v if the last coordinate of v̄ is contained in [0, R).

Convention 3.10. Consider v∈Vert(L̂inkBAAm
n

(w)), then the line r(v) ∈Vert(L̂ink
<

BAAm
n

(w))
is spanned by a vector r(v). Recall that this vector is not well-defined if the last coor-
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dinate of r(v) is zero (see Convention 3.2). We use the following notational convention 
for r(v). Let v̄ be a vector representing v that has nonnegative last coordinate aR + b

where a ∈ Z and b ∈ [0, R). In this situation, r(v) always denotes the vector v̄ − aw̄.

Before we discuss the e%ect of this map on standard and 2-additive simplices, we 
record some facts that will help us to calculate the value of r on certain vertices. The 
following observation is elementary but useful.

Observation 3.11. Let {v̄0, ̄v1, ̄v2, . . . , ̄vp, w̄} be a partial basis for Zm+n. Then, if we 
replace any element v̄i by v̄i + aw̄ for any a ∈ Z, the result is still a partial basis for 
Zm+n and spans the same summand. In particular, v̄i + aw̄ is necessarily primitive.

The next lemma describes some properties of the map r. Its proof is easy and left to 
the reader.

Lemma 3.12. Let v ∈ Vert(L̂inkBAAm
n

(w)) and let ε1, ε2 ∈ {−1, +1} be two signs. Then, 
the map r introduced in Definition 3.9 has the following properties.

i) If u ∈ Vert(L̂inkBAAm
n

(w)) / {e1, . . . , em} is a line such that the last coordinate of ū
is zero, then

r(〈ε1v̄ + ε2ū〉) = 〈ε1r(v) + ε2ū〉.

ii) It holds that

r(〈ε1v̄ + ε2w̄〉) = r(v), if ε1 = ε2,

and, if ε1 )= ε2, then

r(〈ε1v̄+ε2w̄〉) =






r(v), if the last coordinate of v̄ is in {0} / [R,∞),
〈ε1r(v) + ε2w̄〉 = 〈w̄ − r(v)〉 = 〈w̄ − v̄〉, if the last coordinate of

v̄ is in (0, R).

iii) Given two vertices v1, v2 ∈ Vert(L̂inkBAAm
n

(w)). Let aiR+bi for ai ≥ 0 and bi ∈ [0, R)
denote the last coordinate of v̄i. Then,

r(〈v̄1 + v̄2〉) =
{
〈r(v1) + r(v2)〉, if b1 + b2 ∈ [0, R),
〈r(v1) + r(v2) − w̄〉, if b1 + b2 ∈ [R, 2R).

We now discuss the e%ect of the retraction on standard simplices. This has been 
studied by Church–Putman in Section 4.1 of [6] as part of their proof that Bm

n is a 
Cohen–Macaulay complex of dimension n − 1 [6, Theorem 4.2].
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Definition 3.13. Let L̂inkBm
n

(w) and L̂ink
<

Bm
n

(w) denote the subcomplexes of L̂inkBAAm
n

(w)
and L̂ink

<

BAAm
n

(w), respectively, that consists of all standard simplices in the sense of 
Definition 3.3.

Note that the vertex sets of L̂inkBm
n

(w) and L̂inkBAAm
n

(w) are equal. The following 
result is a case of Church–Putman [6, Lemma 4.5].

Proposition 3.14 ([6, Lemma 4.5]). Let n, m ≥ 0. Then, Definition 3.9 induces a simpli-
cial map

r : L̂inkBm
n

(w) ! L̂ink
<

Bm
n

(w) ↪→ L̂ink
<

BAAm
n

(w)

that restricts to the inclusion on the subcomplex L̂ink
<

Bm
n

(w) of L̂inkBm
n

(w). In particular, 
L̂ink

<

Bm
n

(w) is a simplicial retract of L̂inkBm
n

(w).

We now explain how Church–Putman extended the simplicial retraction of L̂inkBm
n

(w)
onto L̂ink

<

Bm
n

(w) over 2-additive simplices to a topological retraction between the following 
two simplicial complexes.

Definition 3.15. Let L̂inkBAm
n

(w) and L̂ink
<

BAm
n

(w) denote the subcomplexes of
L̂inkBAAm

n
(w) and L̂ink

<

BAAm
n

(w) respectively that consist of all standard and 2-additive 
simplices in the sense of Definition 3.3.

The following definition captures the reason why Definition 3.9 does not induce a 
simplicial retraction r : L̂inkBAm

n
(w) ! L̂ink

<

BAm
n

(w) as one might initially hope.

Definition 3.16. Let σ = τ1 ∗ τ2 be a 2-additive simplex in L̂inkBAAm
n

(w), where τ1 is a 
minimal 2-additive simplex and τ2 is a standard simplex. σ is called carrying if one of 
the following equivalent conditions holds

i) The set r(τ1) does not span a simplex in L̂ink
<

BAm
n

(w). (Note the BAm
n subscript.)

ii) τ1 = {v0, v1, v2 = 〈v̄0 + v̄1〉} is internally 2-additive with b0 + b1 ∈ [R, 2R), where 
aiR + bi with ai ≥ 0 and bi ∈ [0, R) is the last coordinate of v̄i.

We remark that in Condition ii), v2 is the unique vertex in τ1 with last coordinate 
of v̄i maximal and r(τ1) = {r(v0), r(v1), r(v2) = 〈r(v0) + r(v1) − w̄〉} by Part iii) of 
Lemma 3.12. The equivalence of i) and ii) in Definition 3.16 follows from [6, §4.4. Claim 
1-4 and the discussion on p. 1022].
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Remark 3.17. In the first condition of Definition 3.16, we highlighted the BAm
n subscript 

because r(τ1) does form a w-related 3-additive simplex in L̂ink
<

BAAm
n

(w), as visible in the 
second condition.

Example 3.18. Let w̄ =





1
0
0
10



, v̄0 =





0
1
0
9



, and v̄1 =





0
0
1
6



. Then {v0, v1, v2 = 〈v̄0 + v̄1〉}

is a 2-additive simplex in L̂inkBAA1
3
(w). However,

r({v0, v1, v2}) = {v0, v1, r(v2) = 〈v̄1 + v̄2 − w̄〉}

is not a simplex of L̂ink
<

BA1
3
(w) and therefore {v0, v1, v2} is an example of a carrying 

2-additive simplex.

To circumvent this problem and, instead, construct a topological retraction

r : L̂inkBAm
n

(w) ! L̂ink
<

BAm
n

(w),

Church–Putman modify the definition of r on all carrying 2-additive simplices. To do 
this, they pass to the following subdivision of L̂inkBAm

n
(w).

Definition 3.19. Let sd(L̂inkBAm
n

(w)) denote the coarsest subdivision of L̂inkBAm
n

(w), 
where every carrying minimal 2-additive simplex τ1 = {v0, v1, v2 = 〈v̄0 + v̄1〉} is subdi-
vided by inserting a single vertex t(τ1) at the barycentre of τ1.

Concretely, sd(L̂inkBAm
n

(w)) in Definition 3.19 is constructed as follows: Let σ = τ1∗τ2
be a 2-additive simplex of L̂inkBAm

n
(w), where τ1 = {v0, v1, v2 = 〈v̄0 + v̄1〉} is a carrying 

minimal 2-additive simplex and τ2 is standard. Then, when passing from L̂inkBAm
n

(w) to 
sd(L̂inkBAm

n
(w)), each such simplex σ is replaced by sd(σ), its subdivision into the three 

simplices {v0, . . . , ̂vi, . . . , v2, t(τ1)} ∗ τ2 for i = 0, 1, 2. Here the notation v̂i means vi is 
omitted. Note that L̂inkBm

n
(w) and L̂ink

<

BAm
n

(w) are subcomplexes of sd(L̂inkBAm
n

(w)).
The following is the main technical result of Church–Putman [6], and the key input 

for their proof that BAm
n is a Cohen–Macaulay complex of dimension n [6, Theorem C’].

Proposition 3.20 ([6, Proposition 4.17.]). Let n ≥ 2 and m ≥ 0. Then, the simplicial 
map constructed in Proposition 3.14

r : L̂inkBm
n

(w) ! L̂ink
<

Bm
n

(w) ↪→ L̂ink
<

BAAm
n

(w)

extends to a simplicial map

r : sd(L̂inkBAm
n

(w)) ! L̂ink
<

BAm
n

(w) ↪→ L̂ink
<

BAAm
n

(w)
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that restricts to the inclusion on the subcomplex L̂ink
<

BAm
n

(w) of sd(L̂inkBAm
n

(w)). The 
value of r on the barycentre t(τ1) of a carrying minimal 2-additive simplex τ1 =
{v0, v1, v2 = 〈v̄0 + v̄1〉} is defined by the formula

r(t(τ1)) = 〈r(vl) − w̄〉

where l ∈ {0, 1} is arbitrarily chosen, i.e. vl is one of the two lines in τ1 with the property 

that the last coordinate of v̄l is not maximal. In particular, it follows that L̂ink
<

BAm
n

(w) is 
a topological retract of L̂inkBAm

n
(w) ∼= sd(L̂inkBAm

n
(w)).

This completes our discussion of the definition of r on vertices, and standard and 2-
additive simplices. We close this subsection by presenting a proof of the following lemma. 
It will frequently be used to reduce the question of whether the map r extends over a 
simplex σ = τ1 ∗ τ2 with additive core τ1 to the question whether r extends over the 
additive core τ1. To shorten notation, we write 〈ν〉 := 〈"v | 〈"v〉 ∈ ν〉 for the Z-linear span 
of a set of lines ν in Zm+n.

Lemma 3.21. Let σ = τ1 ∗ τ2 be a simplex of L̂inkBAAm
n

(w) such that the additive core of 
σ is contained in τ1 and τ2 is a standard simplex. Let ν be a set of lines in Zm+n such 
that 〈ν〉 ⊆ 〈τ1 ∪ {e1, . . . , em, w}〉. If ν spans a simplex in L̂ink

<

BAAm
n

(w), then ν ∗ r(τ2)
spans a simplex of the same type.

Proof. Since ν is a simplex in L̂ink
<

BAAm
n

(w), there exists a (not necessarily unique) 
maximal standard simplex ν′ ⊆ ν that is contained in ν. Observe that 〈ν′〉 ⊕
〈{e1, . . . , em, w}〉 = 〈ν ∪ {e1, . . . , em, w}〉 is a direct summand of Zm+n. Since τ1 ∗ τ2
is a simplex in L̂inkBAAm

n
(w) and the additive core of it is contained in τ1, it follows 

that 〈τ1 ∪ {e1, . . . , em, w}〉 ⊕ 〈τ2〉 is a direct summand of Zm+n. The assumption that 
〈ν〉 ⊆ 〈τ1∪{e1, . . . , em, w}〉 implies that 〈ν′〉 ⊕〈{e1, . . . , em, w}〉 ⊆ 〈τ1∪{e1, . . . , em, w}〉. 
We conclude that 〈ν′〉 ⊕ 〈{e1, . . . , em, w}〉 ⊕ 〈τ2〉 is a direct summand of Zm+n as well, 
using e.g. [6, Lemma 2.6]. Proposition 3.14 implies that r(τ2) is a standard simplex and 
Observation 3.11 yields

〈{e1, . . . , em, w}〉 ⊕ 〈τ2〉 = 〈{e1, . . . , em, w}〉 ⊕ 〈r(τ2)〉.

Hence, 〈ν′〉 ⊕〈{e1, . . . , em, w}〉 ⊕〈r(τ2)〉 is a direct summand of Zm+n. It follows that ν′∗
r(τ2) is a standard simplex in L̂ink

<

BAAm
n

(w). The fact that ν is a simplex in L̂ink
<

BAAm
n

(w)
means that the vertices in ν \ ν′ can in an appropriate way be written as sums of the 
vectors spanning the lines ν′ ∪ {e1, . . . , em, w}. Therefore, ν ∗ r(τ2) spans a simplex of 
the same type as ν in L̂ink

<

BAAm
n

(w). !
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3.2. Extending over double-double simplices

The goal of this subsection is to extend the map

r : sd(L̂inkBAm
n

(w)) → L̂ink
<

BAAm
n

(w)

defined in Proposition 3.20 over all double-double simplices. For this, we need to study 
minimal double-double simplices in the sense of Definition 3.5.

Observation 3.22. A minimal double-double simplex τ1 in L̂inkBAAm
n

(w) is the join τ1,1 ∗
τ1,2 of two minimal 2-additive simplices in L̂inkBAAm

n
(w). In particular, any facet of τ1 is 

2-additive.

If one of the two minimal 2-additive simplices in a double-double simplex σ in 
L̂inkBAAm

n
(w) is carrying, then the set r(σ) might or might not span a simplex in 

L̂inkBAAm
n

(w). This is illustrated in the next example.

Example 3.23. Consider a minimal double-double simplex τ1 in L̂inkBAAm
n

(w) of the form

τ1 = {v0, v1, v2 = 〈v̄0 + v̄1〉, v3, 〈v̄3 + ε · w̄〉}

for ε ∈ {+1, −1}. Assume that {v0, v1, v2 = 〈v̄0 + v̄1〉} is carrying. If ε = +1, then 
Lemma 3.12 implies that r(τ1) = {r(v0), r(v1), 〈r(v0)+ r(v1)− w̄〉, r(v3)}, which spans a 
w-related 3-additive simplex in L̂inkBAAm

n
(w). If ε = −1 and the last coordinate of v̄3 is 

contained in (0, R), then Lemma 3.12 implies that r(τ1) = {r(v0), r(v1), 〈r(v0) + r(v1)−
w̄〉, r(v3), 〈w̄ − r(v3)〉}, which does not define a simplex in L̂inkBAAm

n
(w).

Because we decided to construct the retraction maps r for BAAm
n occurring in 

Theorem 3.1 as extensions of the retraction maps that Church–Putman defined for BAm
n

(compare with Proposition 3.20), we nevertheless subdivide every minimal double-double 
simplex that contains a carrying 2-additive face. This leads us to the following definition.

Definition 3.24. Let σ = τ1 ∗ τ2 be a double-double simplex of L̂inkBAAm
n

(w), where 
τ1 = τ1,1 ∗ τ1,2 is a minimal double-double simplex and τ2 is a standard simplex. Then σ
is called carrying if one of the following equivalent conditions holds.

i) τ1 has a carrying facet.
ii) One of the two 2-additive simplices τ1,1 or τ1,2 is carrying in the sense of 

Definition 3.16.

Since any carrying 2-additive simplex has been subdivided in sd(L̂inkBAm
n

(w)), we 
need to subdivide every carrying double-double simplex in a compatible fashion. This is 
done in the next definition.
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Definition 3.25. Let L̂inkDDm
n

(w) and L̂ink
<

DDm
n

(w) denote the subcomplexes of
L̂inkBAAm

n
(w) and L̂ink

<

BAAm
n

(w), respectively, consisting of all simplices that are 
standard, 2-additive, or of type double-double in the sense of Definition 3.3. Let 
sd(L̂inkDDm

n
(w)) denote the coarsest subdivision of L̂inkDDm

n
(w) that contains

sd(L̂inkBAm
n

(w)) as a subcomplex.

Concretely, sd(L̂inkDDm
n

(w)) in Definition 3.25 is constructed as follows: Let σ = τ1∗τ2
be a double-double simplex of L̂inkDDm

n
(w), where τ1 = τ1,1 ∗ τ1,2 is a carrying minimal 

double-double simplex and τ2 is standard. Then, when passing from L̂inkDDm
n

(w) to 
sd(L̂inkDDm

n
(w)), each such simplex σ is replaced by the simplicial join

sd(σ) = sd(τ1,1) ∗ sd(τ1,2) ∗ τ2,

where sd(τ1,i) for i ∈ {1, 2} denotes the subdivision of the 2-additive simplex τ1,i (see 
Definition 3.19) if it is carrying, and sd(τ1,i) = τ1,i if it is not carrying. Note that 
L̂ink

<

DDm
n

(w) and sd(L̂inkBAm
n

(w)) are subcomplexes of sd(L̂inkDDm
n

(w)).
The main result of this subsection is the following proposition.

Proposition 3.26. The simplicial map constructed in Proposition 3.20

r : sd(L̂inkBAm
n

(w)) → L̂ink
<

BAAm
n

(w)

extends to a simplicial map

r : sd(L̂inkDDm
n

(w)) → L̂ink
<

BAAm
n

(w)

that restricts to the inclusion

L̂ink
<

DDm
n

(w) ↪→ L̂ink
<

BAAm
n

(w)

on the subcomplex L̂ink
<

DDm
n

(w) of sd(L̂inkDDm
n

(w)).

Proof. Our goal is to check that r is simplicial on all (possibly subdivided) double-double 
simplices. Let σ = τ1∗τ2 be a double-double simplex of L̂inkDDm

n
(w), where τ1 = τ1,1∗τ1,2

is a minimal double-double simplex and τ2 is standard. We need to argue that r extends 
over its subdivision sd(σ) = sd(τ1) ∗τ2. We will show that if α ⊆ sd(τ1) = sd(τ1,1) ∗sd(τ1,2)
is a simplex, then r(α) is a simplex in L̂ink

<

BAAm
n

(w). An application of Lemma 3.21
for σ = τ1 ∗ τ2 and ν = r(α) then yields that r(α ∗ τ2) = r(α) ∗ r(τ2) is a simplex of 
L̂ink

<

BAAm
n

(w) as well and the claim follows. The use of Lemma 3.21 is justified because the 
definition of r on carrying 2-additive simplices (compare with Proposition 3.20) implies 
that ν = r(α) ⊂ 〈τ1, e1, . . . , em, w〉.
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Firstly, assume that τ1 is not carrying. Then, sd(τ1,1) = τ1,1 and sd(τ1,2) = τ1,2, i.e. 
neither of the two 2-additive simplices τ1,1 and τ1,2 is subdivided. We will show that r
extends over τ1 = α. Because τ1 is a double-double simplex, it is impossible that τ1,1
and τ1,2 are both w-related or that τ1,1 and τ1,2 are both externally 2-additive involving 
the same ej . The following is verified in the proof of [6, Section 4.4, Claim 2-4]. If τ1,i is 
. . .

· w-related 2-additive, then r(τ1,i) is a w-related 2-additive or standard simplex,
· externally 2-additive involving ej , then r(τ1,i) is externally 2-additive involving ej ,
· internally 2-additive, then r(τ1,i) is internally 2-additive.

This implies that it also is impossible that the simplices r(τ1,1) and r(τ1,2) are both w-
related 2-additive or that r(τ1,1) and r(τ1,2) are both externally 2-additive involving the 
same ej . We now compute and compare the two summands 〈r(τ1,i)〉 of Zm+n obtained 
for i ∈ {1, 2}. Let η1,i ⊂ τ1,i be a maximal standard simplex for i ∈ {1, 2}. Then 
η1 = η1,1 ∗ η1,2 is a maximal standard simplex in τ1. By Observation 3.11, it holds that 
r(η1) = r(η1,1) ∗ r(η1,2) is a standard simplex in L̂ink

<

BAAm
n

(w) of the same dimension as 
η1. In particular, 〈r(η1,1)〉 ⊕ 〈r(η1,2)〉 ⊕ w ⊕ 〈ē1, . . . , ̄em〉 is a direct summand of Zm+n. 
The summand 〈r(τ1,i)〉 is equal to . . .

· 〈r(η1,i)〉 ⊕ w if r(τ1,i) is w-related 2-additive,
· 〈r(η1,i)〉 ⊕ ej if r(τ1,i) is externally additive involving ej , and
· 〈r(η1,i)〉 if r(τ1,i) is standard or internally 2-additive.

Hence, the previous conclusion implies that the two summands 〈r(τ1,1)〉 and 〈r(τ1,2)〉
of Zm+n intersect trivially. Since at least one of the two simplices r(τ1,1) and r(τ1,2)
is 2-additive and the other one is either a standard simplex or 2-additive as well, we 
conclude that r(τ1) = r(τ1,1) ∗ r(τ1,2) spans a 2-additive or double-double simplex.

Secondly, assume that τ1 is carrying such that τ1,1 is a carrying 2-additive simplex 
and τ1,2 is carrying or not. Then, τ1,1 = {v0, v1, v2 = 〈v̄0 + v̄1〉} and r(sd(τ1,1)) consists 
of the following three simplices where we write {l, l′} = {0, 1},

· {r(vl), r(vl′), r(t(τ1,1)) = 〈r(vl) − w̄〉}, which is w-related 2-additive,
· {r(vl), r(t(τ1,1)) = 〈r(vl) − w̄〉, r(v2) = 〈r(vl) + r(vl′) − w̄〉}, which is w-related 2-

additive,
· {r(t(τ1,1)) = 〈r(vl) − w̄〉, r(vl′), r(v2) = 〈r(vl) + r(vl′) − w̄〉}, which is internally 

2-additive.

Let α1 ⊂ sd(τ1,1) and α2 ⊂ sd(τ1,2) be simplices of maximal dimension. We show that r
extends over α = α1 ∗ α2. If it is not the case that both r(α1) and r(α2) are w-related 
2-additive, we can argue as in the first part to see that the two summands 〈r(α1)〉 and 
〈r(α2)〉 of Zm+n intersect trivially and conclude that r(α) = r(α1) ∗ r(α2) spans a 2-
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additive or double-double simplex. If both r(α1) and r(α2) are w-related 2-additive, then 
they are of the form {v, 〈v̄± w̄〉, v′} and {u, 〈ū± w̄〉, u′} where {v, v′, u, u′} is a standard 

simplex in L̂ink
<

BAAm
n

(w) or of the form {v, 〈v̄±w̄〉, v′} and {u, 〈ū±w̄〉} where {v, v′, u} is a 

standard simplex in L̂ink
<

BAAm
n

(w). In both cases it follows that r(α1 ∗α2) = r(α1) ∗r(α2)
is a w-related double-triple simplex. !

3.3. Extending over 3-additive simplices

The goal of this subsection is to extend the map

r : sd(L̂inkDDm
n

(w)) → L̂ink
<

BAAm
n

(w)

defined in the previous subsection over all 3-additive simplices. For this, we need to study 
minimal 3-additive simplices in the sense of Definition 3.5.

Observation 3.27. A 3-additive simplex of L̂inkBAAm
n

(w) is minimal if all of its facets are 
standard.

As in the 2-additive case, studied by Church–Putman [6], the difficulty is to extend r
over carrying simplices; that is 3-additive simplices in L̂inkBAAm

n
(w) whose image under 

r is not a simplex in the target L̂ink
<

BAAm
n

(w).

Definition 3.28. Let σ = τ1 ∗ τ2 be a 3-additive simplex in L̂inkBAAm
n

(w), where τ1 is a 
minimal 3-additive simplex and τ2 is a standard simplex. σ is called carrying if the set 
r(τ1) does not span a simplex of L̂ink

<

BAAm
n

(w).

As part of our discussion in this subsection, we will find the following characterisation 
of carrying 3-additive simplices.

Lemma 3.29. Let σ = τ1 ∗ τ2 be a 3-additive simplex of L̂inkBAAm
n

(w) such that τ1 is 
minimal 3-additive and τ2 is a standard simplex. For any vertex vi = 〈v̄i〉, write the last 
coordinate of v̄i as aiR + bi with ai ≥ 0 and 0 ≤ bi < R. Then σ is carrying if and only 
if τ1 is of one of the following two types for some ε ∈ {−1, +1}:

i) τ1 = {v0, v1, v2 = 〈v̄0+v̄1+εēi〉} is minimal externally 3-additive and b0+b1 )∈ [0, R).
ii) τ1 = {v0, v1, v2, v3 = 〈v̄0 + v̄1 + εv̄2〉} is minimal internally 3-additive and b0 + b1 +

εb2 )∈ [0, R).

This lemma follows from Lemma 3.32, Lemma 3.33 and Lemma 3.34, which are proved 
below.
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To extend the map r over these carrying 3-additive simplices, we need to subdivide 
them. This leads us to the definition of the complex sd(L̂inkTAm

n
(w)) that will serve as 

the new domain of the map r when extending over 3-additive simplices.

Definition 3.30. Let L̂inkTAm
n

(w) and L̂ink
<

TAm
n

(w) denote the subcomplexes of
L̂inkBAAm

n
(w) and L̂ink

<

BAAm
n

(w), respectively, consisting of all simplices that are stan-
dard, 2-additive, double-double, or 3-additive. Let sd(L̂inkTAm

n
(w)) denote the coarsest 

subdivision of L̂inkTAm
n

(w) that contains sd(L̂inkDDm
n

(w)) as a subcomplex and that sub-
divides every carrying minimal 3-additive simplex τ1 by inserting a single vertex t(τ1)
at its barycentre.

Using Lemma 3.29, this means that sd(L̂inkDDm
n

(w)) in Definition 3.30 is constructed 
as follows: Let σ = τ1 ∗ τ2 be a 3-additive simplex of L̂inkTAm

n
(w), where τ1 is a carrying 

minimal 3-additive simplex and τ2 is standard. Then, when passing from L̂inkTAm
n

(w) to 
sd(L̂inkTAm

n
(w)), each such simplex σ is replaced as follows.

· If τ1 = {v0, v1, v2} is a carrying minimal externally 3-additive simplex, we re-
place σ by sd(σ) = sd(τ1) ∗ τ2, the subdivision of σ into the three simplices 
{v0, . . . , ̂vi, . . . , v2, t(τ1)} ∗ τ2 for i = 0, 1, 2.

· If τ1 = {v0, v1, v2, v3} is a carrying minimal internally 3-additive simplex, we 
replace σ by sd(σ) = sd(τ1) ∗ τ2, the subdivision of σ into the four simplices 
{v0, . . . , ̂vi, . . . , v3, t(τ1)} ∗ τ2 for i = 0, 1, 2, 3.

In addition, the subdivisions described in Definition 3.25 are performed on the sub-
complex L̂inkDDm

n
(w) of L̂inkTAm

n
(w). Note that sd(L̂inkDDm

n
(w)) and L̂ink

<

TAm
n

(w) are 

subcomplexes of sd(L̂inkTAm
n

(w)).
The main result of this subsection is the following proposition.

Proposition 3.31. The simplicial map constructed in Proposition 3.26

r : sd(L̂inkDDm
n

(w)) → L̂ink
<

BAAm
n

(w)

extends to a simplicial map

r : sd(L̂inkTAm
n

(w)) → L̂ink
<

BAAm
n

(w)

that restricts to the inclusion

L̂ink
<

TAm
n

(w) ↪→ L̂ink
<

BAAm
n

(w)

on the subcomplex L̂ink
<

TAm
n

(w) of sd(L̂inkTAm
n

(w)).



24 B. Brück et al. / Advances in Mathematics 451 (2024) 109795

The proof of this proposition and the definition of the extension of r is split into 
several lemmas, which we present below. We start by proving that r extends over all 
3-additive simplices that cannot be possibly carrying (compare Lemma 3.29).

Lemma 3.32. The map r in Proposition 3.31 extends over all 3-additive simplices σ =
τ1 ∗ τ2 of L̂inkBAAm

n
(w), where τ2 is a standard simplex and τ1 is a minimal 3-additive 

simplex that is not internally 3-additive or externally 3-additive of dimension two. In 
these cases, the set r(σ) = r(τ1) ∗ r(τ2) is a simplex of L̂ink

<

BAAm
n

(w), so in particular, σ
is not carrying.

Proof. Any minimal 3-additive simplex τ1 = {v0, . . . , vdim(τ1)} satisfies 1 ≤ dim(τ1) ≤ 3. 
The underlying simplex of τ1 in BAAm+n is a subset {v0, v1, v2, v3} ⊆ {e1, . . . , em, w, v0,

v1, . . . , vdim(τ1)}, where {e1, . . . , em, w, v1, . . . , vdim(τ1)} is a standard simplex and v0 =
〈v̄1 + ε2v̄2 + ε3v̄3〉 for some choice of signs ε2, ε3 ∈ {−1, +1}. We consider the possible 
minimal 3-additive simplices τ1, one after the other, to prove this lemma.

Firstly, assume that dim(τ1) = 1 and write τ1 = {v0, v1}. Then there are two cases.
Case (a): If v2 = ei, v3 = ej for some 1 ≤ i )= j ≤ m, then v0 = 〈v̄1 + ε2ēi + ε3ēj〉. 

Hence, r(v0) = 〈r(v1) + ε2ēi + ε3ēj〉 by Lemma 3.12 and it follows that r(τ1) is a 3-
additive edge in L̂ink

<

BAAm
n

(w) as well. Hence by Lemma 3.21, r(σ) = r(τ1) ∗ r(τ2) is a 
3-additive simplex.

Case (b): If v2 = w, v3 = ei for some 1 ≤ i ≤ m, then v0 = 〈v̄1 + ε2w̄ + ε3ēi〉
and, by Lemma 3.12, it holds that r(v0) = 〈εr(〈v̄1 + ε2w̄〉) + ε3ēi〉 where ε = −1 if 
the last coordinate of v̄1 + ε2w̄ is negative, and ε = +1 otherwise. By Lemma 3.12 we 
furthermore have that r(〈v̄1 + ε2w̄〉) ∈ {r(v1), 〈w̄ − r(v1)〉}. Note that r(〈v̄1 + ε2w̄〉) =
〈w̄ − r(v1)〉 requires that ε2 = −1 and that ε = −1. Resolving the signs, it follows that 
r(τ1) = {r(v0), r(v1)} is either an externally 2-additive edge {〈r(v1) + ε3ēi〉, r(v1)} or an 
externally w-related 3-additive edge {〈r(v1) − w̄ + ε3ēi〉, r(v1)}. Hence by Lemma 3.21, 
r(σ) = r(τ1) ∗ r(τ2) is a 2-additive or 3-additive simplex in L̂ink

<

BAAm
n

(w).
Secondly, assume that dim(τ1) = 2 and write τ1 = {v0, v1, v2}. Assume further that 

τ1 is w-related, i.e. v3 = w. Then,

r(v0) = r(〈v̄1 + ε2v̄2 + ε3w̄〉) ∈ {r(〈v̄1 + ε2v̄2〉), 〈w̄ − r(〈v̄1 + ε2v̄2〉)〉}

by Lemma 3.12. Note that the value of r(v0) depends on the last coordinate of v̄1 + ε2v̄2, 
which might be negative, and the sign ε3 (compare Lemma 3.12). There are di%erent 
cases that can occur, depending on how r(〈v̄1 + ε2v̄2〉) compares to r(v1) and r(v2). We 
use the internally 2-additive simplex {v1, v2, v′0 = 〈v̄1 + ε2v̄2〉} to list these cases.

Case (a): If {v1, v2, v′0 = 〈v̄1 + ε2v̄2〉} is not carrying, then its image under r is 
internally 2-additive [6, Section 4.4, Claim 4]. It follows that r(τ1) is internally 2-additive 
if r(v0) = r(v′0), and w-related 3-additive if r(v0) = 〈w̄ − r(v′0)〉. Hence by Lemma 3.21, 
r(σ) = r(τ1) ∗ r(τ2) is a 2-additive or 3-additive simplex.
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Case (b): If {v1, v2, v′0 = 〈v̄1 + ε2v̄2〉} is carrying, then it contains a unique vertex 
whose coordinate is maximal in absolute value (see Definition 3.16 et seq.). We consider 
two subcases.

Case (b.1): If the absolute value of the last coordinate of v1 (or similarly v2) is maximal 
among {v1, v2, v′0}, then r(v1) = r(v2) + r(v′0) − w̄ (see Definition 3.16 et seq.). In the 
case where r(v0) = r(v′0), it follows that f(τ1) is w-related 3-additive. In the case r(v0) =
〈w̄−r(v′0)〉, it follows that f(τ1) is 2-additive. Hence by Lemma 3.21, r(σ) = r(τ1) ∗r(τ2)
is a 3-additive or 2-additive simplex.

Case (b.2): If on the other hand, the absolute value of the last coordinate of v′0 is 
maximal among {v1, v2, v′0}, then we must have ε2 = +1 and r(v′0) = r(v1) + r(v2) − w̄. 
In the case where r(v0) = r(v′0), it follows that f(τ1) is w-related 3-additive. Hence 
by Lemma 3.21, r(σ) = r(τ1) ∗ r(τ2) is a 3-additive simplex. The case where r(v0) =
〈w̄−r(v′0)〉 cannot occur, because this only happens if the last coordinate of v′0 = v̄1 + v̄2
in (0, R) (see Lemma 3.12), which is impossible under the assumption that the last 
coordinate of v′0 is the maximum of the carrying simplex {v1, v2, v′0}.

Thirdly and lastly, the remaining two possibilities are those where τ1 has dimension 
two and is externally 3-additive and the one where τ1 has dimension three, which is 
equivalently to it being internally 3-additive. These are the cases we excluded in this 
lemma. !

We now deal with minimal externally 3-additive simplices of type τ1 = {v0 = 〈v̄1 ±
v̄2 ± ēi〉, v1, v2}.

Lemma 3.33. The map r in Proposition 3.31 extends over all externally 3-additive sim-
plices σ = τ1 ∗ τ2 of L̂inkBAAm

n
(w), where τ2 is a standard simplex and τ1 is minimal 

externally 3-additive of dimension two.

More precisely, in the proof of Lemma 3.33 we check that the map

r : sd(L̂inkDDm
n

(w)) → L̂ink
<

BAAm
n

(w)

in Proposition 3.31 extends over the simplex σ = τ1 ∗τ2 if it is not carrying, and over the 
subdivision sd(σ) described in Definition 3.30 if it is carrying. The carrying case occurs 
if and only if τ1 is as case i) of Lemma 3.29; we then define r(t(τ1)) = r(〈v̄1 + v̄2〉) =
〈r(v1) + r(v2) − w̄〉, where v1, v2 ∈ τ1 are the two unique vertices whose last coordinate 
is not maximal in absolute value.

Proof. There is an ordering of the vertices of τ1 such that τ1 = {v0, v1, v2}, where

v̄0 = v̄1 + v̄2 ± ēi

for some 1 ≤ i ≤ m, an appropriate choice of sign and where v0 is a (possibly not unique) 
vertex of τ1 whose last coordinate is maximal in absolute value.
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Let Ri denote the last coordinate of v̄i and write Ri = Rai + bi with bi ∈ [0, R). Note 
that R0 = R1 +R2. There are two cases: either b0 = b1 +b2 ∈ [0, R) or b0 +R = b1 +b2 )∈
[0, R). In the following we use that r(vi) = 〈v̄i − aiw̄〉 and r(〈ū ± ēi〉) = 〈r(u) ± ēi〉 for 
all lines u.

Firstly, assume that b0 = b1 + b2 ∈ [0, R). Then

r(τ1) = {〈r(v1) + r(v2) ± ēi〉, r(v1), r(v2)}

forms an externally 3-additive simplex. Hence it follows from Lemma 3.21 that r(σ) =
r(τ1) ∗ r(τ2) is a 3-additive simplex in L̂ink

<

BAAm
n

(w).
Secondly, assume that b0 + R = b1 + b2 )∈ [0, R). Then

r(v0) = 〈(v̄1 − a1w̄) + (v̄2 − a2w̄) ± ēi − w̄〉 = 〈r(v1) + r(v2) ± ei − w̄〉,

and r(τ1) does not form a simplex in L̂ink
<

BAAm
n

(w). Hence, τ1 is a carrying minimal ex-
ternally 3-additive simplex (compare Lemma 3.29) and, in sd(L̂inkTAm

n
(w)), the simplex 

σ = τ1 ∗ τ2 has been subdivided as sd(σ) = sd(τ1) ∗ τ2 into three simplices (compare 
Definition 3.30)

αi ∗ τ2 = {v0, . . . , v̂i, . . . , v2, t(τ1)} ∗ τ2 for i = 0, 1, 2.

Observe that b0 +R = b1 + b2 ∈ [R, 2R) implies that all v̄i have nonzero last coordinate 
and hence that v0 is the unique vertex in τ1 whose last coordinate is maximal in absolute 
value. To see that r extends over sd(σ) by defining r(t(τ1)) = r(〈v̄1 + v̄2〉) = 〈r(v1) +
r(v2) − w̄〉, we first observe that the three sets r(αi) span 2-simplices in L̂ink

<

BAAm
n

(w). 
Indeed,

· r(α2) = {〈r(v1) + r(v2) ± ēi − w̄〉, r(v1), 〈r(v1) + r(v2) − w̄〉} is externally 2-addi-
tive,7

· r(α1) = {〈r(v1) + r(v2) ± ēi − w̄〉, r(v2), 〈r(v1) + r(v2) − w̄〉} is externally 2-addi-
tive, and

· r(α0) = {r(v1), r(v2), 〈r(v1) + r(v2) − w̄〉} is a w-related 3-additive in L̂ink
<

BAAm
n

(w).

Then, we invoke Lemma 3.21 for σ = τ1 ∗ τ2 to conclude that r(αi ∗ τ2) = r(αi) ∗ r(τ2)
spans a simplex of the same type. !

We are left with proving that we can extend over internally 3-additive simplices. This 
is done in the next lemma, whose proof also yields a description of the possible values 
that the vertices of a carrying internally 3-additive simplex can take under r.

7 For better readability, we highlight the vertices that are contained in the additive core of the simplex 
in light blue (for interpretation of the colours in the text, the reader is referred to the web version of this 
article).



B. Brück et al. / Advances in Mathematics 451 (2024) 109795 27

Lemma 3.34. The map r in Proposition 3.31 extends over all internally 3-additive sim-
plices σ of L̂inkBAAm

n
(w).

More precisely, in Lemma 3.34 we consider an internally 3-additive simplex σ = τ1∗τ2
of L̂inkBAAm

n
(w) such that τ1 = {v0, v1, v2, v3} is a minimal internally 3-additive simplex 

and τ2 is a standard simplex. We may assume that the last coordinate of v̄3 is maximal 
(perhaps not uniquely). Then, the proof of Lemma 3.34 establishes the following sequence 
of claims: Possibly after reordering, we have that

v̄3 = v̄0 + v̄1 + v̄2 or v̄3 = v̄0 + v̄1 − v̄2.

Letting Ri = aiR + bi for ai ≥ 0 and bi ∈ [0, R) denote the last coordinate of v̄i, one of 
the following is true:

i) r(v3) = r(v0) + r(v1) + r(v2) − 2w̄
and b0 + b1 ∈ [R, 2R),

ii) r(v3) = r(v0) + r(v1) + r(v2) − w̄,
iii) r(v3) = r(v0) + r(v1) + r(v2),

iv) r(v3) = r(v0) + r(v1) − r(v2) − w̄,
v) r(v3) = r(v0) + r(v1) − r(v2), or
vi) r(v3) = r(v0) + r(v1) − r(v2) + w̄

and b0 + b1 ∈ [0, R).
In case iii) and case v), it holds that b0 + b1 ± b2 ∈ [0, R),8 that the set r(τ1) forms a 

simplex in L̂ink
<

BAAm
n

(w) and that r extends over the simplex σ = τ1∗τ2. In all other cases, 
it holds that b0 + b1 ± b2 )∈ [0, R), that r(τ1) is not a simplex (i.e. σ is carrying) and that 
r extends over the subdivision sd(σ) by defining r(t(τ1)) = r(〈v̄0 + v̄1〉). Here, r(t(τ1)) is 
equal to 〈r(v0) + r(v1) − w̄〉 if b0 + b1 ∈ [R, 2R) or 〈r(v0) + r(v1)〉 if b0 + b1 ∈ [0, R). In 
particular, the definition of r(t(τ1)) depends on a choice of v0 and v1 as above.

Proof. Firstly, assume that vi has last coordinate zero for some 0 ≤ i ≤ 3. Possibly after 
reordering we may assume that v̄2 has last coordinate zero and that v̄3 has maximal last 
coordinate (perhaps not uniquely). It follows that v̄3 = v̄0 + v̄1 ± v̄2 and Lemma 3.12
implies that r(v3) = 〈r(v̄0 + v̄1〉) ± v̄2〉. There are two subcases.

(1) If b0 + b1 = b0 + b1 ± b2 ∈ [0, R), then r(v3) = r(v0) + r(v1) ± r(v2). It follows 
that the set r(τ1) is an internally 3-additive simplex in L̂ink

<

BAAm
n

(w) and hence by 
Lemma 3.21 that r(σ) = r(τ1) ∗ r(τ2) is a 3-additive simplex as well.

(2) If b0 + b1 = b0 + b1 ± b2 ∈ [R, 2R), then r(v3) = r(v0) + r(v1) ± r(v2) − w and r(τ1)
is not a simplex in L̂ink

<

BAAm
n

(w). At the end of this proof we will discuss how r can 
be extended over sd(σ) = sd(τ1) ∗ τ2 in this case.

Secondly, assume that the last coordinate of all v̄i for 0 ≤ i ≤ 3 is nonzero. Let us 
assume that v̄3 has maximal last coordinate (possibly after reordering and perhaps not 

8 Here and in the following sentence, “±” is to be understood as “the same sign as the one in front of 
r(v2)”.
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uniquely). By the definition of 3-additive, it follows that v̄3 = ±v̄0 ± v̄1 ± v̄2 for some 
choice of signs. Then, there are three cases up to reordering

a) v̄3 = v̄0 + v̄1 + v̄2 (no minus signs)
b) v̄3 = v̄0 + v̄1 − v̄2 (one minus sign) or
c) v̄3 = v̄0 − v̄1 − v̄2 (two minus signs).

The last case cannot occur because then the last coordinate of v̄0 is bigger than the last 
coordinate of v̄3 (violating the assumption that the last coordinate of v3 is maximal). It 
follows that either

v̄3 = v̄0 + v̄1 + v̄2 or v̄3 = v̄0 + v̄1 − v̄2.

Observe that b0 + b1 + b2 ∈ [0, 3R) and b0 + b1 − b2 ∈ (−R, 2R).

(3) In case a) and if b0+b1+b2 ∈ [2R, 3R), it follows that r(v3) = r(v0)+r(v1)+r(v2)−2w
and that r(τ1) is not a simplex in L̂ink

<

BAAm
n

(w). Observe that we must have b0+b1 ∈
[R, 2R) in this case.

(4) In case a) and if b0+b1+b2 ∈ [R, 2R), it follows that r(v3) = r(v0)+r(v1)+r(v2)−w

and that r(τ1) is not a simplex in L̂ink
<

BAAm
n

(w).
(5) In case a) and if b0 + b1 + b2 ∈ [0, R), it follows that r(v3) = r(v0) + r(v1) + r(v2), 

that r(τ1) is an internally 3-additive simplex and hence by Lemma 3.21 that r(σ) =
r(τ1) ∗ r(τ2) is a 3-additive simplex in L̂ink

<

BAAm
n

(w) as well.
(6) In case b) and if b0+b1−b2 ∈ [R, 2R), it follows that r(v3) = r(v0)+r(v1)−r(v2)−w

and that r(τ1) is not a simplex in L̂ink
<

BAAm
n

(w).
(7) In case b) and if b0 + b1 − b2 ∈ [0, R), it follows that r(v3) = r(v0) + r(v1) − r(v2), 

that r(τ1) is an internally 3-additive simplex and hence by Lemma 3.21 that r(σ) =
r(τ1) ∗ r(τ2) is a 3-additive simplex in L̂ink

<

BAAm
n

(w) as well.
(8) In case b) and if b0+b1−b2 ∈ (−R, 0), it follows that r(v3) = r(v0)+r(v1)−r(v2)+w

and that r(τ1) is not a simplex in L̂ink
<

BAAm
n

(w). Observe that we must have b0+b1 ∈
[0, R) in this case.

This establishes the first three claims in the paragraph after Lemma 3.34. To finish, 
we are left with proving that the map extends over sd(σ) whenever σ = τ1∗τ2 is carrying, 
i.e. in the situations (2), (3), (4), (6) and (8). In sd(L̂inkTAm

n
(w)) the simplex σ has been 

subdivided as sd(σ) = sd(τ1) ∗ τ2 into four simplices

αi ∗ τ2 = {v0, . . . , v̂i, . . . , v3, t(τ1)} ∗ τ2 for i = 0, 1, 2, 3.

To see that r extends over αi ∗ τ2 by defining r(t(τ1)) = r(〈v̄0 + v̄1〉), we first note that 
r(〈v̄0+ v̄1〉) ∈ L̂ink

<

BAAm
n

(w) by definition, and that hence all elements in the set r(αi∗τ2)
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are vertices of L̂ink
<

BAAm
n

(w). We only need to check that they from simplices. For this, 
we distinguish two cases depending on whether b0 + b1 ∈ [0, R) or b0 + b1 ∈ [R, 2R).

Assume that b0+b1 ∈ [R, 2R). Observe that this is always true in the situation (2) and 
(3), might happen in situation (4) and (6), and is impossible in situation (8) described 
above. By Lemma 3.12 we have that r(〈v0 + v1〉) = 〈r(v0) + r(v1) − w̄〉. With the value 

of r(v3) calculated above, it follows that in L̂ink
<

BAAm
n

(w),

· r(α3) = {r(v0), r(v1), r(v2), 〈r(v0) + r(v1) − w̄〉} is w-related 3-additive,
· r(α2) = {r(v0), r(v1), r(v3), 〈r(v0) + r(v1) − w̄〉} is w-related 3-additive,
· r(α1) = {r(v0), r(v2), r(v3), 〈r(v0) + r(v1) − w̄〉} is w-related 3-additive in situation 

(3) or 2-additive in situation (2), (4) and (6), and
· r(α0) = {r(v1), r(v2), r(v3), 〈r(v0) + r(v1) − w̄〉} is w-related 3-additive in situation 

(3) or 2-additive in situation (2), (4) and (6).

Invoking Lemma 3.21 for σ = τ1 ∗ τ2, we conclude that r(αi ∗ τ2) = r(αi) ∗ r(τ2) spans a 
simplex of the same type. Hence, we can extend over sd(σ) in this case.

Assume that b0 + b1 ∈ [0, R). Observe that this is always true in the situation (8), 
might happen in situation (4) and (6), and is impossible in situation (2) and (3) described 
above. By Lemma 3.12 we have that r(〈v0 + v1〉) = 〈r(v0) + r(v1)〉. With the value of 
r(v3) calculated above, it follows that in L̂ink

<

BAAm
n

(w),

· r(α3) = {r(v0), r(v1), r(v2), 〈r(v0) + r(v1)〉} is 2-additive,
· r(α2) = {r(v0), r(v1), r(v3), 〈r(v0) + r(v1)〉} is 2-additive,
· r(α1) = {r(v0), r(v2), r(v3), 〈r(v0) + r(v1)〉} is w-related 3-additive, and
· r(α0) = {r(v1), r(v2), r(v3), 〈r(v0) + r(v1)〉} is w-related 3-additive.

Invoking Lemma 3.21 for σ = τ1 ∗ τ2, we conclude that r(αi ∗ τ2) = r(αi) ∗ r(τ2) spans a 
simplex of the same type. Hence, we can extend over sd(σ) in this case as well. !

Lemma 3.32, Lemma 3.33 and Lemma 3.34 imply Proposition 3.31 and Lemma 3.29, 
so this concludes our discussion of 3-additive simplices.

3.4. Extending over double-triple simplices

The goal of this subsection is to extend the map

r : sd(L̂inkTAm
n

(w)) → L̂ink
<

BAAm
n

(w)

defined in the previous subsection over all double-triple simplices. For this, we need to 
study minimal double-triple simplices in the sense of Definition 3.5.
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Observation 3.35. A double-triple simplex of BAAm
n is minimal if all of its facets are 

2-additive or 3-additive.

The difficulty is to extend r over carrying double-triple simplices, i.e. double-triple 
simplices that have a carrying facet.

Definition 3.36. Let σ = τ1 ∗ τ2 be a double-triple simplex in L̂inkBAAm
n

(w), where τ1 is 
a minimal double-triple simplex and τ2 is a standard simplex. The simplex σ is called 
carrying if τ1 has a carrying facet.

We use the following characterisation of carrying double-triple simplices.

Lemma 3.37. Let σ = τ1 ∗ τ2 be a double-triple simplex of L̂inkBAAm
n

(w) such that τ1 is a 
minimal double-triple and τ2 is a standard simplex. For any vertex vi = 〈v̄i〉, write the 
last coordinate of v̄i as aiR + bi with ai ≥ 0 and 0 ≤ bi < R. Then σ is carrying if and 
only if τ1 is of one of the following types for some ε ∈ {−1, +1}:

· τ1 = {v0, v1, 〈v̄0 + v̄1 + εw̄〉, 〈v̄0 + v̄1〉} and b0 + b1 /∈ [0, R),
· τ1 = {v0, v1, 〈v̄0 + v̄1 + εēi〉, 〈v̄0 + εēi〉} for some i ≤ m, b0 + b1 /∈ [0, R),
· τ1 = {v0, v1, 〈v̄0 + v̄1 + εēi〉, 〈v̄0 + v̄1〉} for some i ≤ m and b0 + b1 /∈ [0, R), or
· τ1 = {v0, v1, v2, 〈v̄0 + v̄1 +εv̄2〉, 〈v̄0 + v̄1〉} and b0 +b1 /∈ [0, R) or b0 +b1 +εb2 /∈ [0, R).

This follows from Lemma 3.43, Lemma 3.45, Lemma 3.48 and Lemma 3.52, which are 
proved below.

Since all carrying 2-additive and 3-additive simplices have been subdivided in 
sd(L̂inkTAm

n
(w)), we will need to subdivide every double-triple simplex in a compati-

ble fashion. The general type of subdivision of L̂inkBAAm
n

(w) that we will be considering 
is described in the next definition. The construction of such a subdivision will be part 
of the proof of the main result of this subsection.

Definition 3.38. Assume that for every carrying minimal double-triple simplex τ1 in 
L̂inkBAAm

n
(w), we are given a simplicial disc sd(τ1) whose boundary sphere is exactly 

the subcomplex sd(,τ1) of sd(L̂inkTAm
n

(w)). Let sd(L̂inkBAAm
n

(w)) denote the coarsest 
subdivision of L̂inkBAAm

n
(w) that contains sd(L̂inkTAm

n
(w)) as a subcomplex and that 

subdivides every carrying minimal double-triple simplex τ1 according to sd(τ1).

Concretely, sd(L̂inkBAAm
n

(w)) in Definition 3.38 is constructed as follows: In addi-
tion to the subdivisions described in Definition 3.30 on the subcomplex L̂inkTAm

n
(w) of 

L̂inkBAAm
n

(w), we subdivide carrying double-triple simplices of L̂inkBAAm
n

(w) in the fol-
lowing fashion. Let σ = τ1 ∗ τ2 be a double-triple simplex of L̂inkBAAm

n
(w), where τ1 is 

a carrying minimal double-triple simplex and τ2 is standard. Then, when passing from 
L̂inkBAAm

n
(w) to sd(L̂inkBAAm

n
(w)), each such simplex is replaced by the simplicial join
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sd(σ) = sd(τ1) ∗ τ2

where sd(τ1) is the simplicial disc associated to τ1 that we fixed before. Note that 
sd(L̂inkTAm

n
(w)) and L̂ink

<

BAAm
n

(w) are subcomplexes of sd(L̂inkBAAm
n

(w)).
The main result of this subsection is the following proposition, which implies 

Theorem 3.1.

Proposition 3.39. There exists a subdivision sd(L̂inkBAAm
n

(w)) of L̂inkBAAm
n

(w) as in 
Definition 3.38 such that the simplicial map constructed in Proposition 3.31

r : sd(L̂inkTAm
n

(w)) → L̂ink
<

BAAm
n

(w)

extends to a simplicial map

r : sd(L̂inkBAAm
n

(w)) → L̂ink
<

BAAm
n

(w)

that restricts to the identity map on the subcomplex L̂ink
<

BAAm
n

(w) of sd(L̂inkBAAm
n

(w)).

The proof of this proposition, the precise definition of sd(L̂inkBAAm
n

(w)), and the 
definition of the extension of r is split into several lemmas, which we present below.

Recall that the extension of the simplicial map r over carrying 2-additive and 3-
additive simplices involved a subdivision as well as a choice of vertices. This is the main 
source of difficulty in this section. The following discussion shows that for carrying 2-
additive simplices the two possible extensions of r are “homotopic”.

3.4.1. Different extensions of r over 2-additive simplices are “homotopic”
Let β ∈ L̂inkBAAm

n
(w) be a minimal carrying 2-additive simplex. Then, Definition 3.16

implies that

β = {v0, v1, v2 = 〈v̄0 + v̄1〉}.

The definition of the map r in Proposition 3.20 on the subdivision sd(β) of β involves 
a choice vl ∈ {v0, v1}. This choice allowed Church–Putman [6] to specify r on the new 
vertex t(β) ∈ sd(β), the barycentre of β, by the formula

r(t(β)) = 〈r(vl) − w̄〉.

Let us write r0 : sd(β) → L̂inkBAAm
n

(w) for the map defined using l = 0 and r1 : sd(β) →
L̂inkBAAm

n
(w) for the map defined using l = 1. The next lemma shows that these two 

maps are homotopic relative to the boundary ,β in L̂ink
<

BAAm
n

(w).
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Fig. 2. The simplices ∆2 ∗ {t0(β), t1(β)} and their image under h.

Lemma 3.40. Let β = {v0, v1, v2 = 〈v̄0 + v̄1〉} ∈ L̂inkBAAm
n

(w) be a carrying 2-additive 
simplex. Then, the two maps r0 and r1, where rl for l = 0, 1 is as above, are homotopic 
relative to ,β via the simplicial map

h : ∆2 ∗ {t0(β), t1(β)} → L̂ink
<

BAAm
n

(w),

where h(t0(β)) = r0(t(β)) and h(t1(β)) = r1(t(β)) (see Fig. 2).

Proof. Observe that the set of vertices in

rl(sd(β)) = {r(v0), r(v1), 〈r(v0) + r(v1) − w̄〉, 〈r(vl) − w̄〉}

spans a double-triple simplex for each of the two choices, l = 0 and l = 1, and that the 
two simplices share their 3-additive facet {r(v0), r(v1), 〈r(v0) + r(v1) − w̄〉}. !

This observation allows us to perform the following construction, which we will use 
later.

Corollary 3.41. Let τ1 be a carrying minimal double-triple simplex of L̂inkBAAm
n

(w) that 
contains a 2-dimensional carrying facet β that is 2-additive. Then,

r|∂τ1 ∪ h : sd(,τ1) ∪sd(β) D(β) → L̂ink
<

BAAm
n

(w)

defines a simplicial homotopy between the two possible definitions of the map r on 
sd(,τ1), one obtained from r0 and one obtained from r1 as discussed above. Here, 
D(β) = ∆2 ∗ {t0(β), t1(β)} is the domain of the homotopy defined in Lemma 3.40.

The homotopy in Corollary 3.41 is illustrated in Fig. 3 for τ1 a 3-dimensional double-
triple simplex with a carrying 2-additive face.

We now start proving the main results of this subsection.

3.4.2. Proof of Proposition 3.39 and Lemma 3.37
Note that any minimal double-triple simplex τ1 in L̂inkBAAm

n
(w) satisfies 2 ≤

dim(τ1) ≤ 4, that any minimal double-triple simplex has a unique 3-additive face and 
all other faces are 2-additive (see Observation 4.11).
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Fig. 3. The homotopy r|∂τ1 ∪ h.

Convention 3.42. Let τ1 be a minimal double-triple simplex τ1 in L̂inkBAAm
n

(w). In the 
remainder of this section, the unique 3-additive face of τ1 will be denoted by γ. The 
simplex τ1 can then be written as a join γ ∗ z, where z ∈ τ1 is a vertex. We remark that 
the vertex z has the property that it is contained in the additive core of every 2-additive 
facet of τ1.

The next lemma shows that the map r can be extended over minimal double-triple 
simplices of dimension two without any subdivisions.

Lemma 3.43. The map r : L̂inkTAm
n

(w) → L̂ink
<

BAAm
n

(w) in Proposition 3.31 extends sim-
plicially over all double-triple simplices σ = τ1∗τ2 in L̂inkBAAm

n
(w), where τ1 is a minimal 

double-triple simplex of dimension two and τ2 is a standard simplex. I.e. for any such 
simplex it holds that r(σ) = r(τ1) ∗ r(τ2) forms a simplex in L̂ink

<

BAAm
n

(w), so σ is not 
carrying.

Proof. Let τ1 = γ∗z, where γ = {v0, v1} is the unique 3-additive facet of τ1. In this proof, 
we will use exactly the same strategy as in the proof of Lemma 3.32 and consider the 
possible minimal 3-additive simplices γ, one after the other. The underlying simplex of γ
in BAAm+n is a subset {v0, v1, v2, v3} ⊆ {e1, . . . , em, w, v0, v1}, where {e1, . . . , em, w, v1}
is a standard simplex and v0 = 〈v̄1+ε2v̄2+ε3v̄3〉 for some choice of signs ε2, ε3 ∈ {−1, +1}. 
As in the first part of the proof of Lemma 3.32, we need to consider two cases.

Case (a): If v2 = ei and v3 = ej for some 0 ≤ i )= j ≤ m, then v0 = 〈v̄1 + ε2ēi +
ε3ēj〉 and z = 〈v̄1 + ε2ēi〉 or z = 〈v̄1 + ε3ēj〉. Hence, r(v0) = 〈r(v1) + ε2ēi + ε3ēj〉 and 
r(z) = 〈r(v1) + ε2ēi〉 or r(z) = 〈r(v1) + ε3ēj〉 by Lemma 3.12. It follows that r(τ1)
is a double-triple simplex in L̂ink

<

BAAm
n

(w). An application of Lemma 3.21 implies that 
r(σ) = r(τ1) ∗ r(τ2) is a double-triple simplex as well.

Case (b): If v2 = w, v3 = ei for some 1 ≤ i ≤ m, then v0 = 〈v̄1 + ε2w̄ + ε3ēi〉 and 
z = 〈v̄1 + ε2w̄〉 or z = 〈v̄1 + ε3ēi〉. By Lemma 3.12, r(v0) = 〈εr(〈v̄1 + ε2w̄〉) + ε3ēi〉
where ε = −1 if the last coordinate of v̄1 + ε2w̄ is negative, and ε = +1 otherwise. 
Lemma 3.12 also implies that r(〈v̄1 + ε3ēi〉) = 〈r(v1) + ε3ēi〉 and that r(〈v̄1 + ε2w̄〉) ∈
{r(v1), 〈w̄−r(v1)〉}. Note that r(〈v̄1+ε2w̄〉) = 〈w̄−r(v1)〉 requires that ε2 = −1 and that 
ε = −1 (compare with Lemma 3.12). Resolving the signs, it follows that if z = 〈v̄1+ε3ēi〉, 
then
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Fig. 4. The subdivision of ∂τ1 in the carrying case.

r(τ1) = {r(v0), r(v1), r(z)} =
〈r(v1) + ε3ēi〉

〈r(v1) − w̄ + ε3ēi〉

}
∗ r(v1) ∗ 〈r(v1) + ε3ēi〉

is a 2-additive or double-triple simplex. If z = 〈v̄1+ε2w̄〉, then r(τ1) = {r(v0), r(v1), r(z)}
is equal to either

{〈r(v1) + ε3ēi〉, r(v1), r(v1)},

which is externally 2-additive, or

{〈r(v1) − w̄ + ε3ēi〉, r(v1), 〈w̄ − r(v1)〉},

which is a double-triple simplex. Hence r(τ1) forms a simplex in each case. By 
Lemma 3.21 we therefore conclude that f(σ) = f(τ1) ∗ f(τ2) is a simplex of the same 

type in L̂ink
<

BAAm
n

(w). !

We now work towards extending the retraction over minimal double-triple simplices 
that are 3-dimensional. The unique 3-additive facet of such simplices is either w-related 
or externally 3-additive. We start by considering 3-dimensional double-triple simplices 
whose unique 3-additive facet is w-related. The next observation explains why such 
minimal double-triple simplices can only have one carrying facet.

Observation 3.44. Let τ1 = γ ∗ z be a minimal double-triple simplex of dimension 3
whose unique 3-additive facet γ = {v0 = 〈v̄1 + ε2v̄2 + ε3w̄〉, v1, v2} is w-related, where 
ε2, ε3 ∈ {−1, +1}. If z = 〈εkv̄k + ε3w̄〉 for k ∈ {1, 2} and ε1 := +1, then τ1 cannot 
have any carrying facet. If z = 〈v̄1 + ε2v̄2〉, then there exists a unique 2-additive facet 
{v1, v2, z} that might be carrying, as in Fig. 4.

Proof. Recall that z is contained in the additive core of any 2-additive facet of τ1. If 
z = 〈εkv̄k + ε3w̄〉 for k ∈ {1, 2}, then any facet of τ1 is w-related and it follows from 
Definition 3.16 and Lemma 3.29 that no such simplex can be carrying. If z = 〈v̄1 +ε2v̄2〉, 
then all facets but the 2-additive facet {v1, v2, z} are w-related. Hence, it follows from 
Definition 3.16 and Lemma 3.29 that {v1, v2, z} is the unique possibly carrying facet. !

We now extend the retraction over the first type of minimal double-triple simplex of 
dimension 3.
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Fig. 5. The subdivision of τ1 = γ ∗ z in the carrying case.

Lemma 3.45. The map r introduced in Proposition 3.31 extends over all double-triple 
simplices σ = τ1 ∗τ2 in L̂inkBAAm

n
(w), where τ1 = γ ∗z is a minimal double-triple simplex 

of dimension 3 with w-related 3-additive facet γ and τ2 is a standard simplex.

More precisely, in the proof of Lemma 3.45 we check that the map

r : sd(L̂inkTAm
n

(w)) → L̂ink
<

BAAm
n

(w)

in Proposition 3.31 extends over the simplex σ = τ1 ∗ τ2 if the simplex is not carrying, 
and over a subdivision sd(σ) = sd(τ1) ∗ τ2 if the simplex is carrying. Here, sd(τ1) =
sd(η) ∗ v0 is the coarsest subdivision of τ1 that is compatible with the subdivision of its 
unique carrying 2-additive facet η = {v1, v2, z = 〈v̄1 + v̄2〉} described in Definition 3.19. 
The carrying case (illustrated in Fig. 5) occurs if and only if τ1 = {v0 = 〈v̄1 + v̄2 ±
w̄〉, v1, v2, z = 〈v̄1+v̄2〉} contains a unique carrying 2-additive facet {v1, v2, z = 〈v̄1+v̄2〉}.

Proof. Let τ1 = γ∗z and γ = {v0, v1, v2} with v0 = 〈v̄1+ε2v̄2+ε3w̄〉 for two signs ε2, ε3 ∈
{−1, +1}. Then, z ∈ {〈v̄1 + ε2v̄2〉, 〈v̄1 + ε3w̄〉, 〈ε2v̄2 + ε3w̄〉}. We will sometimes use the 
convention that ε1 := +1. In this proof, we use exactly the same strategy as in the proof 
of Lemma 3.32. The underlying simplex of γ in BAAm+n is the set {v0, v1, v2, v3 = w}. 
We need to consider three cases, which are similar to the cases in the second part of the 
proof of Lemma 3.32: We again set v′0 = 〈v̄1 + ε2v̄2〉 and recall that

r(v0) = r(〈v̄1 + ε2v̄2 + ε3w̄〉) ∈ {r(v′0), 〈w̄ − r(v′0)〉}

by Lemma 3.12. Furthermore, we note that the value of r(v0) depends on the last coordi-
nate of v̄1 + ε2v̄2, which might be negative, and the sign ε3 (compare with Lemma 3.12). 
There are three subcases.

Case (a): Assume that {v1, v2, v′0 = 〈v̄1 + ε2v̄2〉} is not carrying and hence r(v′0) =
〈r(v1) + ε2r(v2)〉. Using Lemma 3.12 to calculate r(v0) and r(z), the possible values of 
r(τ1) = {r(v0), r(v1), r(v2), r(z)} are of the following form. If z = 〈v̄1 + ε2v̄2〉, then r(τ1)
is

〈r(v1) + ε2r(v2)〉
〈r(v1) + ε2r(v2) + ε3w̄〉

}
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∗ r(v1) ∗ r(v2) ∗ 〈r(v1) + ε2r(v2)〉 which is 2-additive or double-triple.

Let k ∈ {1, 2} and ε1 := +1. If z = 〈εkv̄k + ε3w̄〉 and r(z) = r(vk), then r(τ1) is

〈r(v1) + ε2r(v2)〉
〈r(v1) + ε2r(v2) + ε3w̄〉

}
∗ r(v1) ∗ r(v2) ∗ r(vk) which is 2-additive or 3-additive.

If z = 〈εkv̄k + ε3w̄〉 and r(z) = 〈εkr(vk) + ε3w̄〉, then r(τ1) is

〈r(v1) + ε2r(v2)〉
〈r(v1) + ε2r(v2) + ε3w̄〉

}
∗ r(v1) ∗ r(v2) ∗ 〈εkr(vk) + ε3w̄〉 which is double-triple.

It follows that r(τ1) is a simplex in L̂ink
<

BAAm
n

(w). Then, an application of Lemma 3.21
implies that r(σ) = r(τ1) ∗ r(τ2) is a simplex in L̂ink

<

BAAm
n

(w) as claimed.
Case (b): Assume that {v1, v2, v′0 = 〈v̄1 + ε2v̄2〉} is carrying and that z ∈ {〈v̄1 +

ε3w̄〉, 〈ε2v̄2 + ε3w̄〉}. We start by recording two observations.

· If the absolute value of the last coordinate of vk is maximal among {v1, v2, v′0} for 
k ∈ {1, 2} = {k, k′}, then one obtains the relation r(vk) = r(vk′) + r(v′0) − w̄. 
Note that in this case, the last coordinate of v̄k is contained in [R, ∞) and hence 
that, if εk )= ε3, it is impossible that r(〈εkv̄k + ε3w̄〉) = 〈w̄ − r(vk)〉 (compare with 
Lemma 3.12). Therefore, this case will not be considered below.

· If the absolute value of the last coordinate of v′0 is maximal among {v1, v2, v′0}, then 
one obtains the relation r(v′0) = r(v1) + r(v2) − w̄. As observed in case (b.2) in the 
proof of Lemma 3.32, it is impossible that v′0 is maximal and r(v0) = 〈w̄ − r(v′0)〉. 
Hence, this case will not be considered below.

Using Lemma 3.12 to calculate r(v0) and r(z), the possible values of r(τ1) =
{r(v0), r(v1), r(v2), r(z)} are of the following form. Let l ∈ {1, 2}. If r(v0) = r(v′0), 
then

〈r(vk) − r(vk′) + w̄〉

〈r(v1) + r(v2) − w̄〉

}
∗ r(v1) ∗ r(v2) ∗ r(vl) is 3-additive or 2-additive,

{〈r(vk) − r(vk′) + w̄〉, r(v1), r(v2), 〈w̄ − r(vk′)〉} is double-triple, or
{〈r(v1) + r(v2) − w̄〉, r(v1), r(v2), 〈w̄ − r(vl)}〉} is double-triple.

If r(v0) = 〈w̄ − r(v′0)〉, then

〈r(vk) − r(vk′)〉 ∗ r(v1) ∗ r(v2) ∗
{
r(vl) is 2-additive, or
〈w̄ − r(vl)〉 is double-triple.
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It follows that r(τ1) is a simplex in L̂ink
<

BAAm
n

(w). Hence Lemma 3.21 implies that r(σ) =
r(τ1) ∗ r(τ2) is a simplex in L̂ink

<

BAAm
n

(w) as claimed.
Case (c): Assume that η = {v1, v2, v′0 = 〈v̄1 + ε2v̄2〉} is carrying and that z = 〈v̄1 +

ε2v̄2〉. Then, the carrying facet η = {v1, v2, z} of τ1 is subdivided into three simplices in 
sd(L̂inkTAm

n
(w)) and we extend this subdivision to τ1 by replacing τ1 with the simplicial 

join sd(τ1) = sd(η) ∗ v0. The resulting subdivision sd(τ1) of τ1 consists of the following 
three 3-simplices

{v0, t(η)} ∗






{v1, v2},
{v1, 〈v̄1 + ε2v̄2〉} and
{v2, 〈v̄1 + ε2v̄2〉}.

Recall that the barycentre t(η) is mapped to r(t(η)) = 〈r(vl) − w̄〉 for some choice 
l ∈ {1, 2}. Note that we must have r(v0) = r(v′0) if η is carrying, i.e. we can’t have 
r(v0) = 〈w̄− r(v0)〉 (compare with Lemma 3.12). The images of these simplices under r
are therefore given by the following.

{〈r(v1) + r(v2) − w̄〉, 〈r(vl) − w̄〉} ∗






{r(v1), r(v2)} is double-triple,
{r(v1), 〈r(v1) + r(v2) − w̄〉} is 2-additive and
{r(v2), 〈r(v1) + r(v2) − w̄〉} is 2-additive.

It follows that r extends over sd(τ1). Hence, Lemma 3.21 implies that r extends over any 
simplex in sd(σ) = sd(τ1) ∗ τ2 = sd(η) ∗ v0 ∗ τ2. !

In the next step, we extend the retraction over all minimal double-triple simplices of 
dimension 3 whose unique 3-additive facet is externally 3-additive. The next observation 
records that if such a simplex is carrying, then it has exactly two carrying facets.

Observation 3.46. Let τ1 = γ∗z be a minimal double-triple simplex of dimension 3 whose 
unique 3-additive facet γ is externally 3-additive. Assuming that v̄0 has maximal last 
coordinate, we get that γ = {v0 = 〈v̄1 + ε2v̄2 + ε3ēi〉, v1, v2}. If τ1 is carrying, then τ1
has exactly two carrying facets and it holds that v0 = 〈v̄1 + v̄2 + ε3ēi〉, i.e. ε2 = +1. See 
an illustration in Fig. 6. In this case, the 3-additive facet γ has to be carrying and the 
second carrying facet β is the unique internally 2-additive facet of τ1, which is one of the 
following

β = {v0, vk′ , z = 〈v̄k + ε3ēi〉} for {k, k′} = {1, 2} or β = {v1, v2, z = 〈v̄1 + v̄2〉}.

Proof. If γ is carrying, then it follows from Lemma 3.29 that γ = {v0 = 〈v̄1 + v̄2 +
ε3ēi〉, v1, v2} with b1 + b2 ∈ [R, 2R). It follows that z ∈ {〈v̄l + ε3ēi〉, 〈v̄1 + v̄2〉} for 
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Fig. 6. The subdivision of ∂τ1 in the carrying case.

Fig. 7. The subdivision sd(∆3).

l ∈ {1, 2}. Recall from Definition 3.16 that the only carrying 2-additive simplices are 
internally 2-additive. τ1 contains a unique internally 2-additive facet β spanned by β =
{v0, vk′ , z = 〈v̄k + ε3ēi〉} for {k, k′} = {1, 2} or β = {v1, v2, z = 〈v̄1 + v̄2〉}. Observe that 
β has to be carrying, because b1 + b2 ∈ [R, 2R). If γ is not carrying, then the unique 
internally 2-additive facet β cannot be carrying since adding or subtracting ēi does not 
change the last coordinate (compare with Lemma 3.12). !

We now finish our discussion on how to extend the retraction over minimal double-
triple simplices of dimension 3. The following simplicial 3-disc and Corollary 3.41 will be 
used to describe the subdivision sd(τ1) of a carrying minimal double-triple simplex with 
externally 3-additive facet.

Definition 3.47. Let sd(,∆3) be subdivision of the standard simplicial 2-sphere ,∆3 on 
the vertex set {w, x, y, z} obtained by subdividing the facet γ = {w, x, y} by placing 
the vertex t(γ) at its barycentre and the facet β = {x, y, z} by placing the vertex t(β)
at its barycentre. Let sd(∆3) be the simplicial 3-disc that is obtained by extending the 
subdivision of sd(,∆3) to a subdivision of the 3-simplex ∆3 using the following five 
3-simplices (shown in Fig. 7),

{t(γ), t(β), x, y}, {t(γ), t(β), w, x}, {t(γ), t(β), w, y}, {t(β), w, x, z}, and

{t(β), w, y, z}.

Lemma 3.48. The map r in Proposition 3.31 extends over all double-triple simplices σ =
τ1 ∗ τ2 in L̂inkBAAm

n
(w), where τ1 = γ ∗ z is a minimal double-triple simplex of dimension 

3 with externally 3-additive facet γ and τ2 is a standard simplex.
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Fig. 8. The carrying cases of Lemma 3.48.

More precisely, in the proof of Lemma 3.48 we check that the map

r : sd(L̂inkTAm
n

(w)) → L̂ink
<

BAAm
n

(w)

in Proposition 3.31 extends over the simplex σ = τ1∗τ2 if the simplex is not carrying, and 
over a subdivision sd(σ) = sd(τ1) ∗τ2 of σ if the simplex is carrying. Here, the subdivision 
sd(τ1) is of the form sd(∆3) described in Definition 3.47 or of the form sd(∆3) ∪sd(β)
D(β) using Definition 3.47 and applying Corollary 3.41 once to the internally 2-additive 
carrying facet β of τ1. The carrying case occurs if and only if τ1 = {v1, v2, 〈v̄1 + v̄2 +
ε3ēi〉, 〈v̄1 +ε3ēi〉} for some i ≤ m and ε3 ∈ {+1, −1} or τ1 = {v1, v2, 〈v̄1 + v̄2 +ε3ēi〉, 〈v̄1 +
v̄2〉} for some i ≤ m and ε3 ∈ {+1, −1}. These cases are illustrated in Fig. 8.

Proof. Let τ1 = γ∗z and γ = {v0, v1, v2} with v0 = 〈v̄1+ε2v̄2+ε3ēi〉 for ε2, ε3 ∈ {+1, −1}. 
Then, z ∈ {〈v̄1 + ε2v̄2〉, 〈v̄1 + ε3ēi〉, 〈ε2v̄2 + ε3ēi〉}.

Firstly, assume that τ1 is not carrying. Then, it holds that r(v0) = 〈r(v1) + ε2r(v2) +
ε3ēi〉 and r(z) ∈ {〈r(v1) + ε2r(v2)〉, 〈r(v1) + ε3ēi〉, 〈ε2r(v2) + ε3ēi〉} using Lemma 3.12. It 
follows that

{〈r(v1) + ε2r(v2) + ε3ēi〉, r(v1), r(v2)} ∗






〈r(v1) + ε2r(v2)〉 is double-triple,
〈r(v1) + ε3ēi〉 is double-triple, and
〈ε2r(v2) + ε3ēi〉 is double-triple.

Hence, r(τ1) spans a simplex in L̂ink
<

BAAm
n

(w) and, by Lemma 3.21, it therefore follows 
that r(σ) = r(τ1) ∗ r(τ2) is a simplex in L̂ink

<

BAAm
n

(w) as claimed.
Secondly, assume that τ1 is carrying. Then, it holds by Observation 3.46 that τ1

contains exactly two carrying facets and that we may assume v0 = 〈v̄1 + v̄2 + ε3ēi〉, i.e. 
ε2 = +1. It follows that r(v0) = 〈r(v1) + r(v2) − w̄ + ε3ēi〉.

Case (a): Assume that z = 〈v̄1 + v̄2〉. Observation 3.46 implies that the two car-
rying facets of τ1 are the 3-additive facet γ and the unique internally 2-additive facet 
β = {v1, v2, z}. Since β is carrying, we have that r(z) = r(v1)+ r(v2)− w̄ (compare with 
Definition 3.16). The two facets γ = {v0, v1, v2} and β = {v1, v2, z} of τ1 have been sub-
divided in L̂inkTAm

n
(w). Applying Corollary 3.41 once, it suffices to show that r extends 

over the subdivision sd(τ1) of τ1 that extends sd(,τ1) as described in Definition 3.47, for 
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the case r(t(γ)) = 〈r(v1) + r(v2) − w̄〉 and r(t(β)) = 〈r(v1) − w̄〉.9 The following shows 
that the image of every simplex in sd(τ1) (compare with Definition 3.47) is a simplex of 
L̂ink

<

BAAm
n

(w),

{r(t(γ)), r(t(β))} ∗






{r(v1), r(v2)} is double-triple,
{r(v0) = 〈r(t(γ)) + ε3ēi〉, r(v1)} is double-double,
{r(v0) = 〈r(t(γ)) + ε3ēi〉, r(v2)} is double-triple,

and,

{r(t(β)), r(z) = 〈r(v1) + r(v2) − w̄〉} ∗
{
{r(v0), r(v1)} is double-double,
{r(v0), r(v2)} is double-triple.

It follows that the map extends the subdivision sd(τ1). By Lemma 3.21, it therefore 
follows that r extends over any simplex in sd(σ) = sd(τ1) ∗ τ2.

Case (b): Assume that z = 〈v̄k+ε3ēi〉 for k ∈ {1, 2} = {k, k′}. Observation 3.46 implies 
that the two carrying facets of τ1 are the 3-additive facet γ and the unique internally 
2-additive facet β = {v0, vk′ , z}. The two facets γ = {v0, v1, v2} and β = {v0, vk′ , z}
of τ1 have been subdivided in L̂inkTAm

n
(w). Applying Corollary 3.41 once, it suffices to 

show that r extends over the subdivision sd(τ1) of τ1 that extends sd(,τ1) as described in 
Definition 3.47, for the case r(t(γ)) = 〈r(v1)+r(v2)−w̄〉 and r(t(β)) = 〈r(vk′)−w̄〉.10 The 

following shows that the image of every simplex in sd(τ1) is a simplex of L̂ink
<

BAAm
n

(w),

{r(t(γ)), r(t(β))} ∗






{r(v1), r(v2)} is double-triple,
{r(v0) = 〈r(t(γ)) + ε3ēi〉, r(vk′)} is double-double,
{r(v0) = 〈r(t(γ)) + ε3ēi〉, r(vk)} is double-triple,

and,

{r(t(β)), r(z) = 〈r(vk) + ε3ēi〉} ∗
{
{r(vk), r(vk′)} is double-double,
{r(v0), r(vk)} is double-triple.

It follows that the map extends the subdivision sd(τ1). By Lemma 3.21, it therefore 
follows that r extends over any simplex in sd(σ) = sd(τ1) ∗ τ2. !

In the final step, we prove that the retraction extends over minimal double-triple 
simplices of dimension 4, i.e. these are internally double-triple simplices. The next ob-
servation gives a large class of examples of such double-triple simplices with have the 
property that every facet is carrying.

9 The other choice for r(t(β)) is 〈r(v2) − w̄〉.
10 The other choice for r(t(β)) is 〈r(vk) + ε3ēi − w̄〉.
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Observation 3.49. Let τ1 = γ ∗ z be a double-triple simplex of dimension 4. Then any 
face of τ1 can be a carrying simplex. This is for example the case for

{v0, v1, v2, 〈v̄0 + v̄1〉, 〈v̄0 + v̄1 + v̄2〉} with b0 + b1 + b2 ∈ [2R, 3R).

Up to this point, the construction of the retraction involved explicit subdivisions. For 
this last case, the complexity is great enough that we will resort to computer calculations. 
In particular, we will use computers to check high connectivity of the following simplicial 
complexes, which will aid in our construction of the retraction.

Definition 3.50. Let n ≥ 4 and "v1, "v2, "v3, "w ∈ Zm+n be a partial basis such that 
{v1, v2, v3, w} is a simplex of Bm

n . Assume that the last coordinate R of "w is positive 
and that the last coordinates of "v1, "v2, "v3 have absolute value smaller than R, that is, 
vi ∈ L̂ink

<

BAAm
n

(w). Let Qm
n ("v1, "v2, "v3; "w) be the full subcomplex of L̂ink

<

BAAm
n

(w) on the 
set of lines spanned by vectors of the form

i) "v1 + a1 "w,
ii) "v2 + a2 "w,
iii) "v3 + a3 "w,

iv) "v1 + "v2 + a12 "w,
v) "v1 + "v2 + "v3 + a123 "w, 

or

vi) "v1 + "v3 + a13 "w

for ai ∈ Z.

Theorem 3.51. The complexes Qm
n ("v1, "v2, "v3; "w) are 3-connected for all m, n ∈ N0 satis-

fying m ≥ 0 and n ≥ 4.

This theorem will be shown in Section 4 with the help of computer calculations. We 
will assume it for now to deal with the last case for defining the retraction:

Lemma 3.52. The map r in Proposition 3.31 extends over all double-triple simplices σ =
τ1 ∗ τ2 in L̂inkBAAm

n
(w) where τ1 is a minimal double-triple simplex of dimension 4 and 

τ2 is a standard simplex.

More precisely, in the proof of Lemma 3.52 we check that the map

r : sd(L̂inkTAm
n

(w)) → L̂ink
<

BAAm
n

(w)

in Proposition 3.31 extends over the simplex σ = τ1∗τ2 if the simplex is not carrying, and 
over a subdivision sd(σ) = sd(τ1) ∗ τ2 of σ if the simplex is carrying. On the subdivision 
sd(τ1) of τ1 the extension takes values in one of the complexes Qm

n ("a, "b, "c; "w) introduced 
in Definition 3.50. The carrying case occurs if and only if τ1 = {v0, v1, v2, 〈v̄0 + v̄1 ±
v̄2〉, 〈v̄0 + v̄1〉} and b0 + b1 /∈ [0, R) or b0 + b1 ± b2 /∈ [0, R).

Proof. Let τ1 be a minimal internal double-triple simplex. Let sd(,τ1) be the subdivision 
of ,τ1 in L̂inkTAm

n
(w). By Proposition 3.31 we obtain a map
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r : sd(,τ1) → L̂ink
<

BAAm
n

(w).

Let γ ⊂ τ1 be the unique 3-additive facet. As in Lemma 3.34 et seq., we fix three lines 
{v0, v1, v2} ⊆ γ such that

γ = {v0, v1, v2, v3 = 〈v̄0 + v̄1 + (ε2v̄2)〉}

for the choice of a sign ε2 ∈ {−1, 1} and where the absolute value of the last coordinate 
of v̄3 is maximal in γ. Then, τ1 = γ ∗ v4 with

v4 =






〈v̄0 + v̄1〉,
〈v̄1 + (ε2v̄2)〉,
〈v̄0 + (ε2v̄2)〉.

Firstly, assume that τ1 is not carrying. Then, r(v3) = r(v0) + r(v1) + ε2r(v2) and

±r(v4) =






r(v0) + r(v1),
r(v0) + ε2r(v2),
r(v1) + ε2r(v2).

It follows that r(τ1) is a double-triple simplex. By Lemma 3.21, it follows that r(σ) =
r(τ1) ∗ r(τ2) is a double-triple simplex as well.

Secondly, assume that τ1 is carrying. Consider the complexes Q01 = Qm
n (r(v0), r(v1),

ε2 · r(v2); w̄) and Q10 = Qm
n (r(v1), r(v0), ε2 · r(v2); w̄) introduced in Definition 3.50. We 

claim that r(sd(,τ1)) is contained in Q = Q01 or Q = Q10. To see this, it suffices to 
check that the image of every vertex in sd(,τ1) is contained in this complex. We will 
explain how to choose between Q01 and Q10 in the first step of the proof of this claim.

Step (a): Every vertex in r(,τ1) is contained in Q. Indeed, observe that

±r(v4) =






r(v0) + r(v1) + a01w̄,

r(v1) + (ε2r(v2)) + a12w̄,

r(v0) + (ε2r(v2)) + a02w̄,

for a01, a12, a02 ∈ {−1, 0, 1}. Hence, r(v4) ∈ Q10 in the first two cases and r(v4) ∈ Q01 in 
the third case. Fix this choice of Q. Observe furthermore that r(v0), r(v1), r(v2) ∈ Q and 
that r(v3) ∈ Q, since r(v3) = r(v0) + r(v1) + ε2r(v2) + a012 · w̄ for a012 ∈ {−2, −1, 0, 1}
by Lemma 3.34 et seq.

Step (b): Assume that the unique 3-additive facet γ of τ1 is carrying and hence 
subdivided in sd(,τ1) using the new vertex t(γ). Lemma 3.34 et seq. shows that 
r(t(γ)) = r(〈v̄0 + v̄1〉) is equal to 〈r(v0) + r(v1) − w̄〉 or 〈r(v0) + r(v1)〉. In either case, 
r(t(γ)) is contained in Q = Q01 and Q = Q10.
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Step (c): Assume that one of the 2-additive facets α of τ1 is carrying and hence 
subdivided in sd(,τ1). Let η ⊂ α denote the minimal 2-additive simplex that has been 
barycentrically subdivided using the new vertex t(η). Then,

r(t(η)) = 〈r(vl) − w̄〉 for some vertex vl ∈ η ⊂ τ1.

By Step (a) it holds that r(vl) ∈ Q for any vertex vl ∈ τ1 and since the last coordinate 
of r(vl) − w̄ is contained in (−R, 0), it therefore holds that

r(t(η)) = 〈r(vl) − w̄〉 = 〈−r(vl) + w̄〉 ∈ Q.

This completes the proof of the claim that r(sd(,τ1)) is contained in Q = Q01 or Q = Q10.
It follows that

r : sd(,τ1) → Q ↪→ L̂ink
<

BAAm
n

(w).

Recall that sd(,τ1) is a simplicial 3-sphere. By Theorem 3.51 the complex Q is 3-
connected. It follows, that there exists a simplicial pair (sd(τ1), sd(,τ1)) ∼= (D4, S3)
and a simplicial extension rτ1 : sd(τ1) → Q of r : sd(,τ1) → Q. Subdivide every simplex 
σ = τ1 ∗ τ2 by using the coarsest simplicial structure sd(σ) on σ that is compatible with 
the simplicial structure specified by sd(τ1) on τ1. I.e. this is defined by replacing the 
internal double-triple simplex σ = τ1 ∗ τ2 by the collection of simplices

{ν ∗ τ2 | ν a simplex of sd(τ1)}.

An application of Lemma 3.21 for σ = τ1 ∗ τ2 implies that we can extend the map

rτ1 : sd(τ1) → L̂inkBAAm
n

(w)

to a map

rτ1 ∗ r : sd(σ) = sd(τ1) ∗ τ2 → L̂inkBAAm
n

(w).

This completes the proof. !

Lemma 3.43, Lemma 3.45, Lemma 3.48 and Lemma 3.52 imply Proposition 3.39 and 
Lemma 3.37, so this concludes our discussion of double-triple simplices. Furthermore, 
the proof of Proposition 3.39 completes the construction of the retraction map and es-
tablishes the main result of this section, Theorem 3.1.

4. High connectivity of the complexes Qm
n (!v1, !v2, !v3; !w)

The aim of this section is to prove Theorem 3.51, which states that the complexes 
Qm

n ("v1, "v2, "v3; "w) introduced in Definition 3.50 are 3-connected for all m, n ∈ N0. This 
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Fig. 9. Some values of int3(z) and int4(z).

was used to define the retraction on double-triple simplices. Throughout this section, we 
assume that n ≥ 4.

To prove this theorem, we will first observe that all of these complexes are finite 
and then show that there is a finite list that contains all of their isomorphism types. 
Afterwards, we use a computer to verify that the reduced homology of this finite list of 
finite simplicial complexes vanishes in homological degrees i ≤ 3 and that each complex 
is simply connected. The result then follows from Hurewicz’s theorem.

4.1. Listing the isomorphism types

We start by introducing notation that will be useful for studying the isomorphism 
types of Qm

n ("v1, "v2, "v3; "w). It slightly di%ers from similar notation used in previous sec-
tions, but allows for an easy formalisation on a computer.

Definition 4.1. Let R ∈ Z≥1 and z ∈ Z. We define the R-interval of z as

intR(z) :=






2k, if z = kR for some k ∈ Z;
2k + 1, if kR < z < (k + 1)R for some k ≥ 0;
−(2k + 1), if − (k + 1)R < z < −kR for some k ≥ 0.

If "v ∈ Zm+n is a vector with last coordinate equal to z ∈ Z, we write intR("v) := intR(z).

In other words, for k ∈ Z, the R-interval of z is 2k + 1 if z lies in the open interval 
between kR and (k + 1)R and it is equal to 2k if z is equal to kR.

Example 4.2. The 3-intervals and 4-intervals of some integers are labelled in Fig. 9.

The next lemma contains three elementary observations about the R-interval function 
(with R fixed) that say that it is close to being linear: It commutes with scalar multi-
plication by −1, it is always close to being additive and it is actually additive if one of 
the inputs is a multiple of R. See Lemma 3.12, which states similar results in a slightly 
di%erent language.

Lemma 4.3. Let R ∈ Z≥1 and z, z1, z2 ∈ Z. Then
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i) intR(−z) = − intR(z),
ii) intR(z1+z2) ∈{intR(z1) + intR(z2) − 1, intR(z1) + intR(z2), intR(z1) + intR(z2)+1}, 

and
iii) intR(z1 + z2) = intR(z1) + intR(z2) if at least one of intR(z1), intR(z2) is even.

Proof. All three claims follow immediately from the definitions. !

The reason that we use these R-intervals is that they allow us to give a formal de-
scription of the vertex set of Qm

n ("v1, "v2, "v3; "w). Using Lemma 4.3, it is easy to deduce the 
following properties:

Lemma 4.4. Let "v ∈ Zm+n, let "w ∈ Zm+n be a vector with last coordinate equal to R ≥ 1
and a ∈ Z.

i) The last coordinate of "v has absolute value strictly smaller than R if and only if 
intR("v) ∈ {−1, 0, 1}.

ii) If intR("v) = 2k is even, then the last coordinate of "v+a"w has absolute value strictly 
smaller than R if and only if a = −k.

iii) If intR("v) = 2k + 1 is odd, then the last coordinate of "v + a"w has absolute value 
strictly smaller than R if and only if a ∈ {−(k + 1),−k}.

A consequence of Lemma 4.4 is that all the Qm
n ("v1, "v2, "v3; "w) are finite simplicial com-

plexes on at most 12 vertices. Our next aim is to create an explicit (finite) list of simplicial 
complexes such that Qm

n ("v1, "v2, "v3; "w) is isomorphic to one of these for every list of ele-
ments ("v1, "v2, "v3; "w). This list will consist of complexes of the following form.

Definition 4.5. Let "e1, "e2, "e3, "e4 denote the standard basis of Z4. We write Q(r1, r2, r3, r12,
r123, r23) for the full subcomplex of LinkBAA4(e4) on all lines spanned by vertices of the 
form

i) "e1 + a1"e4,
ii) "e2 + a2"e4,
iii) "e3 + a3"e4,

iv) "e1 + "e2 + a12"e4,
v) "e1 + "e2 + "e3 + a123"e4, 

or

vi) "e1 + "e3 + a13"e4,

where ai = −k if ri = 2k is even and ai ∈ {−(k + 1),−k} if ri = 2k + 1 is odd.

The following key proposition tells us that the isomorphism type of any complex 
Qm

n ("v1, "v2, "v3; "w) is determined by six integers, namely the R-intervals of "v1, "v2, "v3, "v1 +
"v2, "v1 + "v2 + "v3 and "v1 + "v3.

Proposition 4.6. Let "v1, "v2, "v3 and "w be as in Definition 3.50 and let

(r1, r2, r3, r12, r123, r13) :=(intR("v1), intR("v2), intR("v3), intR("v1 + "v2), intR("v1 + "v2 + "v3),
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intR("v1 + "v3)).

Then there is an isomorphism

φ : Qm
n ("v1,"v2,"v3; "w) → Q(r1, r2, r3, r12, r123, r13).

In particular, the isomorphism type of Qm
n ("v1, "v2, "v3; "w) only depends on the six-tuple of 

integers (r1, r2, r3, r12, r123, r13).

Proof. To shorten notation in this proof, we set "v12 := "v1 + "v2, "v123 := "v1 + "v2 + "v3, 
"v13 := "v1 + "v3 and "e12 := "e1 + "e2, "e123 := "e1 + "e2 + "e3, "e13 := "e1 + "e3. With this, we have 
intR("vi) = ri and by Lemma 4.4, the span of "vi + a"w is a vertex in Qm

n ("v1, "v2, "v3; "w) if 
and only if the span of "ei + a"e4 is a vertex in Q(r1, r2, r3, r12, r123, r13). This gives rise 
to an obvious bijection φ between the vertex sets of the two complexes.

We want to show that φ induces a simplicial isomorphism. Let l0, . . . , lk ∈
Qm

n ("v1, "v2, "v3; "w). We need to show that l0, . . . , lk form a simplex if and only if their 
images φ(l0), . . . , φ(lk) do. Spelling out the definitions, one sees that {l0, . . . , lk} is a sim-
plex in Qm

n ("v1, "v2, "v3; "w) if and only if {l0, . . . , lk, w, e1, . . . , em} is a simplex in BAAm+n

and none of the "li is in the span 〈"e1, . . . ,"em, "w〉 (with a slight abuse of notation, we use 
the same symbols "ei to denote the standard basis of Zm+n and Z4). A set of vectors 
gives rise to a simplex in BAAi if up to two of them are certain linear combinations 
of the others and the others from a partial basis; the form of the linear combinations 
depends on the type of simplex, see the definitions in Section 2. Assume that there is a 
linear dependency between 

{
"l0, . . . ,"lk, "w,"e1, . . . ,"em

}
, i.e. there are ci, dj such that

k∑

i=0
ci"li + ck+1 "w

︸ ︷︷ ︸
∈〈(v1,(v2,(v3,(w〉

+
m∑

j=1
dj"ej

︸ ︷︷ ︸
∈〈(e1,...,(em〉

= 0. (2)

By assumption, {v1, v2, v3, w} is a simplex in Bm
n , which means that {"v1, "v2, "v3, "w, "e1, . . . ,

"em} is a partial basis. Hence, Equation (2) implies 
∑k

i=0 ci
"li + ck+1 "w = 0. It follows 

that {l0, . . . , lk, w, e1, . . . , em} is a simplex in BAAm+n if and only if {l0, . . . , lk, w}
is a simplex of the same type in the full subcomplex of BAAm+n on all lines that 
are contained in 〈"v1,"v2,"v3, "w〉 ∼= Z4. The latter is clearly equivalent to saying that 
{φ(l0), . . . ,φ(lk),φ(w) = e4} is a simplex in BAA4, i.e. that {φ(l0), . . . ,φ(lk)} is a sim-
plex in Q(r1, r2, r3, r12, r123, r13). !

By the above proposition, we can produce a list with all isomorphism types of 
the complexes Qm

n ("v1, "v2, "v3; "w) by listing the possible combinations of R-intervals of 
"v1, "v2, "v3, "v1 + "v2, "v1 + "v2 + "v3 and "v1 + "v3. Before we do this in Corollary 4.8, we record 
in the following lemma isomorphisms between these complexes. These are easy to show 
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Table 1
A list of 48 tuples (r1, r2, r3, r12, r123, r13) containing (at least) one represen-
tative for each isomorphism type Q(r1, r2, r3, r12, r123, r13).
r1 r2 r3 r12 r123 r13

-1 -1 -1 -3 -5 -3
-1 -1 -1 -3 -4 -3
-1 -1 -1 -3 -3 -3
-1 -1 -1 -3 -3 -2
-1 -1 -1 -3 -3 -1
-1 -1 -1 -2 -3 -2
-1 -1 -1 -2 -3 -1
-1 -1 -1 -1 -3 -1
-1 -1 -1 -1 -2 -1
-1 -1 -1 -1 -1 -1
-1 -1 0 -3 -3 -1
-1 -1 0 -2 -2 -1
-1 -1 0 -1 -1 -1
-1 -1 1 -3 -3 -1
-1 -1 1 -3 -2 -1
-1 -1 1 -3 -1 -1
-1 -1 1 -3 -1 0
-1 -1 1 -3 -1 1
-1 -1 1 -2 -1 -1
-1 -1 1 -2 -1 0
-1 -1 1 -2 -1 1
-1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 0
-1 -1 1 -1 -1 1

r1 r2 r3 r12 r123 r13

-1 -1 1 -1 0 1
-1 -1 1 -1 1 1
-1 0 0 -1 -1 -1
-1 0 1 -1 -1 -1
-1 0 1 -1 0 0
-1 0 1 -1 1 1
-1 1 1 -1 -1 -1
-1 1 1 -1 0 -1
-1 1 1 -1 1 -1
-1 1 1 0 1 -1
-1 1 1 0 1 0
-1 1 1 0 1 1
-1 1 1 1 1 -1
-1 1 1 1 1 1
-1 1 1 1 2 1
-1 1 1 1 3 1
0 -1 -1 -1 -3 -1
0 -1 -1 -1 -2 -1
0 -1 -1 -1 -1 -1
0 -1 0 -1 -1 0
0 -1 1 -1 -1 1
0 -1 1 -1 0 1
0 -1 1 -1 1 1
0 0 0 0 0 0

and allow us to reduce the size of the list of isomorphism types, which is helpful for the 
computer calculations we want to perform.

Lemma 4.7. Let r1, r2, r3, r12, r123, r13 ∈ Z. We have the following identities:

i) Q(r1, r2, r3, r12, r123, r13) ∼= Q(r1, r3, r2, r13, r123, r12);
ii) Q(r1, r2, r3, r12, r123, r13) ∼= Q(−r1, −r2, −r3, −r12, −r123, −r13);

We would like to remark that these are not the only isomorphisms that exist be-
tween complexes Q(r1, r2, r3, r12, r123, r13) and Q(r′1, r′2, r′3, r′12, r′123, r′13). However, they 
are sufficient to reduce the list of isomorphism types to a size that is small enough to 
allow computer calculations.

Corollary 4.8. Let "v1, "v2, "v3, "w as in Definition 3.50. Then

Q(intR("v1), intR("v2), intR("v3), intR("v1 + "v2), intR("v1 + "v2 + "v3), intR("v1 + "v3))

agrees with Q(r1, r2, r3, r12, r123, r13) for one of the tuples (r1, r2, r3, r12, r123, r13) listed 
in Table 1.

Proof. Let "v12 := "v1 + "v2, "v123 := "v1 + "v2 + "v3, "v13 := "v1 + "v3 and let zi denote the last 
coordinate of vi. As the last coordinates of "v1, "v2, "v3 are smaller than R, we have
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intR(zi) ∈ {−1, 0, 1} for 1 ≤ i ≤ 3.

Furthermore, by Lemma 4.3, we know that intR(z12) = intR(z1 + z2) is either equal to 
the sum intR(z1) + intR(z2) or di%ers from it by at most 1, depending on the parity of 
intR(z1) and intR(z2). Similarly, intR(z123) = intR(z1 + z2 + z3) can di%er from the sum 
intR(z12) +intR(z3) by at most one. Also, z13 = z1 +z3 can be written both as (z1) +(z3)
and as (z1 + z2 + z3) − (z2). Hence, its R-interval di%ers both from intR(z1) + intR(z3)
and from intR(z123) − intR(z2) by at most one.

These rules allow one to generate a list with all possible tuples that can occur as

(intR(z1), intR(z2), intR(z3), intR(z12), intR(z123), intR(z13)).

The list can be further shortened by using the identities of Lemma 4.7. We did this using 
computer calculations (available under https://github .com /benjaminbrueck /codim2 _
cohomology _SLnZ /blob /main /Connectivity %20Q %20complexes .ipynb) and the result 
was Table 1. !

4.2. Computer implementation of the complexes

To show that all the complexes obtained in Corollary 4.8 are indeed 3-connected, we 
use computer calculations. These are made available under the following link https://
github .com /benjaminbrueck /codim2 _cohomology _SLnZ.

The core of the calculations is a function, written in python, that takes as an input a set 
of vectors in Zn and returns the subcomplex of BAAn that is spanned by these vectors. 
This simplicial complex is implemented using the Simplex Tree module of gudhi [15]. 
The gudhi library was developed for topological data analysis. It allows to conveniently 
work with filtered simplicial complex and we used the filtration functionality to keep track 
of the type of the simplices (standard, 2-additive, 3-additive, double-triple or double-
double). However, one cannot compute homology with integral coefficients in gudhi. 
For performing these homology computations, we use the SimplicialComplex class of
SageMath [23].

4.2.1. Simplices by facet type
One fact that we used for building subcomplexes of BAAn on a computer is that for 

many simplices, it is sufficient to know what types of simplices their facets form. This is 
used in the computations to check whether a set of vertices forms a simplex.

Definition 4.9. Let S = {v0, . . . , vd} be a set of vertices of BAAn such that every d-
element subset of S forms a simplex in BAA. Then the facet type of S is the multiset of 
simplex types that arise among these d-element subsets.

With slight abuse of notation, call a subset of size k a facet of S = {v0, . . . , vk} (even 
if it does not necessarily form a simplex in BAAm

n ).

https://github.com/benjaminbrueck/codim2_cohomology_SLnZ/blob/main/Connectivity%20Q%20complexes.ipynb
https://github.com/benjaminbrueck/codim2_cohomology_SLnZ/blob/main/Connectivity%20Q%20complexes.ipynb
https://github.com/benjaminbrueck/codim2_cohomology_SLnZ
https://github.com/benjaminbrueck/codim2_cohomology_SLnZ
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Example 4.10. Let e1, e2, e3, e4 be the standard basis of Z4 and let S = {e1, e2, e3, 〈"e1 +
"e2〉, 〈"e1 + "e3〉, e4}. Then the facet type of S is

{3-additive, 2-additive, 2-additive, 2-additive, 2-additive,double-triple} .

Observation 4.11. If τ is one of the types of simplices defined in Section 2 and d ∈ Z, 
then every set that forms a d-dimensional simplex of type τ has the same facet type. 
These types are as follows: Let S be a set of vertices of BAA.

i) If S forms a standard simplex then its facet type is

{standard, . . . , standard} .

ii) If S forms a 2-additive simplex, then its facet type is

{standard, standard, standard, 2-additive, . . . , 2-additive} .

iii) If S forms a 3-additive simplex, then its facet type is

{standard, standard, standard, standard, 3-additive, . . . , 3-additive} .

iv) If S forms a double-triple simplex, then its facet type is

{2-additive, 2-additive, 3-additive, 2-additive, 2-additive,double-triple, . . . ,
double-triple} .

v) If S forms a double-double simplex, then its facet type is

{2-additive, 2-additive, 2-additive, 2-additive, 2-additive, 2-additive,
double-double, . . . ,double-double} .

We will see that in most cases, the converse of this is true as well, i.e. if we have a 
set of vertices whose facet type agrees with one of the types of the list above, then it 
already forms a simplex of the corresponding type.

Definition 4.12. Let τ be one of the types of simplices defined in Section 2 and let d ∈ Z. 
We say that τ is determined by its facet type in dimension d if the following is true: 
Given a set of vertices S = {v0, . . . , vd} of BAAn such that every d-element subset of S
forms a simplex in BAAn. Then S forms a simplex of type τ if and only if it has the 
same facet type as a d-dimensional simplex of type τ .

It is not hard to check that only 2- and 3-additive simplices are determined by their 
facet type if they are not minimal and that double-triple and double-double simplices are 
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even determined by their facet types in all possible dimensions. We use these properties 
for the computer implementation of the complexes. We record them in the following 
lemma, but omit the (elementary) proofs.

Lemma 4.13. The following hold:

i) An m-additive simplex is determined by its facet type in all dimensions d > m.
ii) A double-triple simplex is determined by its facet type in all dimensions d ≥ 4.
iii) A double-double simplex is determined by its facet type in all dimensions d ≥ 5.

4.3. Results of the homology calculations and simple connectivity

In addition to computing the homology of the complexes Qm
n ("v1, "v2, "v3; "w), we need 

to show that they are simply connected. We will do this by showing that they are very 
“dense” and using the following criterion:

Lemma 4.14. Let Q be a simplicial complex with k vertices. Assume that every pair of 
vertices forms an edge in Q and that there are only m triples of vertices that do not form 
a two-simplex. If m < k − 2, then Q is simply connected.

Proof. Let x be a vertex of Q and let .1(Q, x) denote the fundamental group of Q
with base point x. The inclusion of the 1-skeleton Q(1) ↪→ Q induces a surjection 
f : .1(Q(1), x) ! .1(Q, x). Hence, it is sufficient to show that f has trivial image.

The 1-skeleton Q(1) is the full graph with vertex set Q(0). This implies that .1(Q(1), x)
is a free group with generating set given by 

{
∆(x, u, v)|u, v ∈ Q(0) \ {x}

}
, where 

∆(x, u, v) is the triangle consisting of the three (oriented) edges from x to u, u to v
and v to x. We need to show that ∆(x, u, v) is trivial in .1(Q, x). This is definitely true 
if {x, u, v} forms a 2-simplex in Q, so we can assume that this is not the case. It then 
suffices to show that there is a vertex w such that {x, u, w}, {x, v, w} and {u, v, w} are 
all 2-simplices in Q; such a w would form a cone point for the triangle ∆(x, u, v), showing 
that it is trivial in .1(Q, x).

Now by assumption, there are at most m − 1 triples other than {x, u, v} that do not 
form a 2-simplex. Hence, if there are more than (m − 1 + 3) = m + 2 vertices, there is at 
least one w with the desired properties. !

The preceding Lemma 4.14 also follows from [2, Lemma 2.1].

Lemma 4.15. For all tuples (r1, r2, r3, r12, r123, r13) in Table 1, the complex Q(r1, r2, r3,
r12, r123, r13) is simply connected.

Proof. This follows from Lemma 4.14 using the computer calculations in the jupyter 
notebook https://github .com /benjaminbrueck /codim2 _cohomology _SLnZ /blob /main /
Connectivity %20Q %20complexes .ipynb. !

https://github.com/benjaminbrueck/codim2_cohomology_SLnZ/blob/main/Connectivity%20Q%20complexes.ipynb
https://github.com/benjaminbrueck/codim2_cohomology_SLnZ/blob/main/Connectivity%20Q%20complexes.ipynb
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We are now ready to show that every complex Qm
n ("v1, "v2, "v3; "w) is 3-connected.

Proof of Theorem 3.51. By Proposition 4.6 and Corollary 4.8, it suffices to find for ev-
ery tuple (r1, r2, r3, r12, r123, r13) in Table 1 vectors "v1, "v2, "v3, "w ∈ Z4 with last entries 
z1, z2, z3, R such that (r1, r2, r3, r12, r123, r13) is given by

(intR(z1), intR(z2), intR(z3), intR(z1 + z2), intR(z1 + z2 + z3), intR(z1 + z3))

and to show that Q0
4("v1, "v2, "v3; "w) is 3-connected.

As this complex is always simply connected (Lemma 4.15), Hurewicz’s theorem implies 
that it is sufficient to show that its integral homology vanishes in degrees 2 and 3. 
This reduces the proof to computing the homology of a finite list of finite simplicial 
complexes. We performed these calculations with a computer, the results can be found 
in the following notebook https://github .com /benjaminbrueck /codim2 _cohomology _
SLnZ /blob /main /Connectivity %20Q %20complexes .ipynb. !

4.4. Resource consumption, runtime and verifiability of the computer calculations

All of the used algorithms are exact and guaranteed to terminate. The entire com-
putations take less than one minute on a mid-class laptop and have negligible memory 
consumption.

There are four steps in this section where we use computer calculations. Firstly, to 
find the list of isomorphism types of the complexes Q(r1, r2, r3, r12, r123, r13) given in 
Corollary 4.8. Finding this list, i.e. creating Table 1, amounts in a simple application of 
the relations given in Lemma 4.3 and Lemma 4.7. This is done by a sequence of case 
distinctions. While this is a tedious task and we believe that the computer is less likely 
to make mistakes, this can also be verified by hand. Secondly, to find a representative for 
each such isomorphism type, i.e. to find for each tuple of integers (r1, r2, r3, r12, r123, r13)
in Table 1 a basis "v1, "v2, "v3, "w of Z4 such that

(intR("v1), intR("v2), intR("v3), intR("v1 + "v2), intR("v1 + "v2 + "v3), intR("v1 + "v3))
= (r1, r2, r3, r12, r123, r13).

For this, the computer needs to calculate R-intervals and to check whether a set of 
vectors forms a basis of Z4. It is easy to verify by hand (also just in examples) that the 
vectors given by the computer actually form a basis and do have the correct R-intervals. 
Thirdly, to calculate the set of simplices for each of the 48 complexes Q0

4("v1, "v2, "v3; "w). 
This is done by iterating through increasingly big subsets of the vertex set and for 
each such subset checking whether it forms a simplex in BAA0

4. Using Lemma 4.13, 
it is sufficient to do these checks for standard, 2-additive and 3-additive simplices. This 
amounts in verifying whether a set of lines in Z4 forms a partial basis or satisfies a certain 
linear relation. The code for this, together with comments giving further explanations, 

https://github.com/benjaminbrueck/codim2_cohomology_SLnZ/blob/main/Connectivity%20Q%20complexes.ipynb
https://github.com/benjaminbrueck/codim2_cohomology_SLnZ/blob/main/Connectivity%20Q%20complexes.ipynb
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is contained in the files complex_constructor.py and simplex_constructor.py in the 
repository https://github .com /benjaminbrueck /codim2 _cohomology _SLnZ. Lastly, the 
computer calculates the homology of the 48 given complexes Q0

4("v1, "v2, "v3; "w) and counts 
their simplices in order to show that they are simply connected by Lemma 4.14. These 
homology calculations are performed with established software (the SimplicialComplex
class of SageMath [23]) and can also be verified with di%erent existing or self-written 
code. The efficiency of the used software here is not very important as the complexes are 
all comparably small (they each have between 62 and 1097 simplices).

5. Towards the connectivity of BAAm
n

In this section, we prepare for proving that the complexes BAAm
n are Cohen–Macaulay 

(Theorem 2.11). We study links and certain subcomplexes of the links. We prove the case 
n = 1, which will be our induction base case, and we show some auxiliary results that 
will be used in the induction step. Throughout this section, we assume that n ≥ 1 and 
n + m ≥ 3.

5.1. Description of Link, L̂ink and the Cohen–Macaulay property

In this subsection, we show that the complexes BAAm
n are Cohen–Macaulay, provided 

that they are highly-connected.

Definition 5.1. Let σ be 3-additive simplex of BAAm
n . We can write σ = {v0, v1, . . . , vk}, 

where {"v1, . . . , "vk, "e1, . . . , "em} is a partial basis and "v0 = "w1 + "w2 + "w3 for certain 
w1, w2, w3 ∈ {v1, . . . , vk, e1, . . . , em}. Let J(σ) be the set of vertices of BAAm

n that are 
lines spanned by a vector of the form {"w1 + "w2, "w1 + "w3, "w2 + "w3}.

Note that J(σ) might contain less than three elements (e.g. if "v0 = "v1 + "e1 + "e2, 
because {〈"e1 + "e2〉} )∈ BAAn

m), but it is always nonempty. Going through the definitions 
of di%erent simplex types, one obtains the following:

Lemma 5.2. Let σ be a simplex of BAAn
m.

i) If σ is a standard simplex of dimension k, there is an isomorphism L̂inkBAAm
n

(σ) ∼=
BAAm+k+1

n−k−1 .
ii) If σ is a 2-additive simplex, we can write σ = {v0, v1, . . . , vk} with {"v1, . . . ,"vk} a 

partial basis. We then have L̂inkBAAm
n

(σ) = L̂inkBAm
n

({v1, . . . , vk}).
iii) If σ is a 3-additive simplex, we can write σ = {v0, v1, . . . , vk} with {"v1, . . . ,"vk} a 

partial basis. We then have

L̂inkBAAm
n

(σ) = LinkBm
n

({v1, . . . , vk}) and
LinkBAAm

n
(σ) = LinkBm

n
({v1, . . . , vk}) ∗ J(σ),

https://github.com/benjaminbrueck/codim2_cohomology_SLnZ
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where J(σ) is seen as a 0-dimensional complex.
iv) If σ is a double-triple or double-double simplex, we can write σ = {v0, v1, . . . , vk}

with {"v2, . . . ,"vk} a partial basis. We then have

LinkBAAm
n

(σ) = L̂inkBAAm
n

(σ) = LinkBm
n

({v2, . . . , vk}).

The description of the links in the following lemma is easy to see and will both be 
used in Section 6 and in the proof of Proposition 5.5 below.

Lemma 5.3. Let σ be a simplex of BAAm
n and τ ∈ LinkBAAm

n
(σ) such that no vertex of τ

is in L̂inkBAAm
n

(σ). Then LinkLinkBAAm
n

(σ)(τ) ∩ L̂inkBAAm
n

(σ) = L̂inkBAAm
n

(σ ∪ τ).

Once we show connectivity of BAAm
n , Proposition 5.5 below implies that the complex 

is Cohen–Macaulay. To prove this proposition, we will use the following lemma.

Lemma 5.4 (Galatius–Randal-Williams [10, Proposition 2.5]). Let X be a simplicial com-
plex, and Y ⊆ X be a full subcomplex. Let N be an integer with the property that for each 
p-simplex τ in X having no vertex in Y , the complex Y ∩LkX(τ) is (N−p −1)-connected. 
Then the inclusion |Y | → |X| is N -connected.

Proposition 5.5. If BAAm
n is n-connected for all n ≥ 1 and m + n ≥ 3, then for every 

k-simplex σ, the link LinkBAAm
n

(σ) is (n − k − 1)-connected.

Proof. Case 1: σ is a 3-additive, double-double or double-triple simplex. By the work 
of Church–Putman, there is an isomorphism LinkBm

n
({v0, . . . , v)}) ∼= Bm+)+1

n−)−1 [6, Lemma 
4.3] and this complex is (n − / − 3)-connected for all n, m ≥ 0 and 0 ≤ / ≤ n − 1 [6, 
Theorem 4.2]. Combining this with Lemma 5.2, we obtain the claim if σ is a 3-additive, 
double-double or double-triple simplex.

Case 2: σ is a 2-additive simplex. Next assume that σ is 2-additive. If k = n, 
then we must check that LinkBAAm

n
(σ) is nonempty. First suppose σ has the form 

{〈"v1 + "v2〉, v1, . . . , vn}, where {"v1, . . . , "vn, "e1, . . ."em} is a basis for Zm+n. Since m +n ≥ 3, 
either m ≥ 1 or m = 0 and n ≥ 3. In these two cases, either 〈"v1 + "e1〉 or 〈"v1 + "v3〉, 
respectively, is an element of LinkBAAm

n
(σ). Alternatively suppose σ has the form 

{〈"v1 + "e1〉, v1, . . . , vn}, where {"v1, . . . , "vn, "e1, . . ."em} is a basis for Zm+n. Now m +n ≥ 3
implies either m ≥ 2 or n ≥ 2. But then at least one of 〈"v1 + "e2〉 or 〈"v1 + "v2〉 must be a 
vertex in LinkBAAm

n
(σ).

Now suppose that k )= n. By Lemma 5.2, we can write σ = {v0, v1, . . . , vk} with 
{"v1, . . . ,"vk} a partial basis and

L̂inkBAAm
n

(σ) = L̂inkBAm
n

({v1, . . . , vk}).

By [6, Lemma 4.12(b)], L̂inkBAm
n

({v1, . . . , vk}) is isomorphic to BAm+k
n−k and this 

complex is (n − k − 1)-connected by [6, Theorem C’]. We want to extend this to 
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LinkBAAm
n

(σ) ⊇ L̂inkBAAm
n

(σ). We will apply Lemma 5.4 with N = n −k−1. We need to 
show that for every τ ∈ LinkBAAm

n
(σ) that has no vertex in L̂inkBAAm

n
(σ), the intersection

LinkLinkBAAm
n

(σ)(τ) ∩ L̂inkBAAm
n

(σ)

is (n −k−dim(τ) −2))-connected. By Lemma 5.3, this complex is equal to L̂inkBAAm
n

(σ∪
τ). Every vertex v of τ satisfies "v ∈ 〈"v0, . . . , "vk, "e1, . . . , "em〉, so in particular, it is contained 
in the additive core of σ ∪ τ . Hence, σ ∪ τ is a double-double or double-triple simplex of 
dimension k+dim(τ) +1.11 As observed in Lemma 5.2, L̂inkBAAm

n
(σ∪τ) = LinkBAAm

n
(σ∪

τ) for such simplices. In Case 1 we showed that this link is (n −k−dim(τ) −2)-connected 
as claimed.

Case 3: σ is a standard simplex. If σ is a standard simplex, we apply the same 
argument in two steps. By Lemma 5.2, L̂inkBAAm

n
(σ) is isomorphic to BAAm+k+1

n−k−1
and this is (n − k − 1)-connected by our assumption. Furthermore, every vertex in 
LinkBAAm

n
(σ) \ L̂inkBAAm

n
(σ) is either of the form 〈"w1 + "w2〉 or 〈"w1 + "w2 + "w3〉 for some 

w1, w2, w3 ∈ {v0, . . . , vk, e1, . . . , em}. We will apply Lemma 5.4 twice to the chain sub-
complexes

L̂inkBAAm
n

(σ) ⊆ Z ⊆ LinkBAAm
n

(σ),

where Z is spanned by L̂inkBAAm
n

(σ) and all vertices of the form 〈"w1 + "w2〉 as above. 
We first consider the inclusion L̂inkBAAm

n
(σ) ↪→ Z and consider Lemma 5.4 with N =

n − k − 1. Let τ be a simplex of Z that has no vertex in L̂inkBAAm
n

(σ). Then using 
Lemma 5.3,

LinkZ(τ) ∩ L̂inkBAAm
n

(σ) = L̂inkBAAm
n

(σ ∪ τ).

Depending on the form of τ , the simplex σ ∪ τ is 2-additive, a double-triple simplex 
or a double-double simplex. For each possibility, we have already seen in Case 2 that 
L̂inkBAAm

n
(σ∪τ) is (n −k−dim(τ) −2)-connected. It follows that Z is (n −k−1)-connected.

Now we apply Lemma 5.4 to the inclusion Z ↪→ LinkBAAm
n

(σ) and again let N =
n − k − 1. Let τ be a simplex of LinkBAAm

n
(σ) that has no vertex in Z. Then τ has the 

form {〈w1 + w2 + w3〉} and σ ∪ τ is 3-additive. It follows from Lemma 5.3 that

LinkLinkBAAm
n

(σ)(τ) ∩ Z = LinkBAAm
n

(σ ∪ τ).

We already demonstrated in Case 1 that this 3-additive simplex’s link is (n −k−dim(τ) −
2)-connected. This implies that LinkBAAm

n
(σ) is (n −k−1)-connected, and concludes the 

final case in the proof. !

11 In fact, it follows that dim(τ) = 0 here.
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Remark 5.6. The preceding proof shows that for a standard, 2-additive, double-triple and 
double-double simplex σ, not only LinkBAAm

n
(σ), but also L̂inkBAAm

n
(σ) is (n −dim(σ) −1)-

connected. The latter is however not the case for 3-additive simplices.

5.2. Description of Link<, L̂ink
<

We next describe the structure of certain links in BAAm
n . As before, we omit the 

proofs of a few statements that simply follow by spelling out the definitions.

Lemma 5.7. Let v ∈ BAAm
n be a vertex with nonzero last coordinate. Then

i) Link<BAAm
n

(v) = L̂ink
<

BAAm
n

(v), and
ii) Link<BAAm

n
({v, 〈"v ± "ei〉}) = L̂ink

<

BAAm
n

({v, 〈"v ± "ei〉}) for all 1 ≤ i ≤ m.

Later on, we will need to know that Link<BAAm
n

({v, 〈"v ± "ei〉}) = L̂ink
<

BAAm
n

({v, 〈"v ± "ei〉})
is highly-connected. To prepare for this, we compare this complex to L̂ink

<

BAm
n

(v):

Lemma 5.8. Let v ∈ BAAm
n be a vertex with nonzero last coordinate and 1 ≤ i ≤ m. Let 

σ be a set of vectors in Zm+n. Then the following hold.

i) The simplex σ is a standard simplex of L̂ink
<

BAm
n

(v) if and only if it is a 2-additive 

simplex of L̂ink
<

BAAm
n

({v, 〈"v ± "ei〉}).
ii) The simplex σ is a 2-additive simplex of L̂ink

<

BAm
n

(v) such that the additive core of 
{e1, . . . , em} ∪ {v} ∪ σ does not contain v or ei if and only if σ is a double-double 

simplex of L̂ink
<

BAAm
n

({v, 〈"v ± "ei〉}).
iii) If σ is a 2-additive simplex of L̂ink

<

BAm
n

(v) such that the additive core of {e1, . . . , em}∪
{v}∪σ contains v or ei, then σ is a double-triple simplex of L̂ink

<

BAAm
n

({v, 〈"v±"ei〉}).
iv) If σ is a double-triple simplex of L̂ink

<

BAAm
n

({v, 〈"v ± "ei〉}), then it is a simplex of 
L̂ink

<

BAm
n

(v) except if it is of the form σ = {w, 〈"v ± "ei + "w〉, v2, . . . , vk}.
v) No simplex of L̂ink

<

BAAm
n

({v, 〈"v ± "ei〉}) is 3-additive.

In particular, L̂ink
<

BAm
n

(v) is a subcomplex of L̂ink
<

BAAm
n

({v, 〈"v±"ei〉}) ⊆ LinkBAAm
n

({v, 〈"v±
"ei〉}) and every simplex of L̂ink

<

BAAm
n

({v, 〈"v ± "ei〉}) that is not contained in L̂ink
<

BAm
n

(v)
is of type double-triple.

Proof. Throughout this proof, we will use the observation that for 1 ≤ j, k ≤ m, the 
lines 〈"v ± "ej〉, 〈"v ± "ei ± "ej〉, 〈"ej ± "ek〉 or 〈"ei ± "ej ± "ek〉 are not vertices of L̂ink

<

BAm
n

(v) or 
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L̂ink
<

BAAm
n

(v). This follows because their last coordinate is equal to that of v or they lie 
in 〈"e1, . . . , "em〉.

Part i) is immediate. Part ii) follows because, if the additive core of {e1, . . . , em} ∪
{v}∪σ does not contain v or ei, then {e1, . . . , em}∪{v, 〈"v ± "ei〉 }∪σ contains two disjoint 
2-additive faces.

If σ is a 2-additive simplex of L̂ink
<

BAm
n

(v) such that the additive core of {e1, . . . , em}∪
{v} ∪ σ contains v or ei, then this additive core must be of the form {v, w, 〈"v + "w〉} or 
{ei, w, 〈"ei + "w〉} for some w ∈ σ. This implies Part iii).

For Part iv) note that if σ is a double-triple simplex of L̂ink
<

BAAm
n

({v, 〈"v ± "ei〉}), then 
the additive core of {e1, . . . , em} ∪ {v, 〈"v ± "ei〉 } ∪ σ is of the form

{ei, v, 〈"v ± "ei〉} ∪ τ,

where τ = {w, 〈"v + "w〉}, {w, 〈±"ei + "w〉} or {w, 〈"v ± "ei + "w〉} for some w ∈ σ. In the first 
two cases, σ = τ ∪ {v2, . . . , vk} is a simplex of L̂ink

<

BAm
n

(v). If however {w, 〈"v ± "ei + "w〉}, 
then {e1, . . . , em} ∪ {v} ∪ σ contains the 3-additive simplex {ei, v, w, 〈"v ± "ei + "w〉}, so σ

is not a simplex in L̂ink
<

BAm
n

(v).
Finally, Part v) follows because for any simplex σ in L̂ink

<

BAAm
n

({v, 〈"v ± "ei〉}), the 
simplex {e1, . . . , em} ∪ {v, 〈"v ± "ei〉 } ∪ σ contains the 2-additive face {ei, v, 〈"v ± "ei〉}. As 
every face of a 3-additive simplex is either standard or 3-additive (see Observation 4.11), 
this implies that σ cannot be 3-additive. !

The following will be used to describe the link of 3-additive simplices during the proof 
that BAAm

n is spherical.

Lemma 5.9. Let σ be a 3-additive simplex in BAAm
n and R > 0 the highest abso-

lute value of the last coordinates of all of its vertices. As in Definition 5.1, write 
σ = {v0, v1, . . . , vk}, where "v0 = "w1 + "w2 + "w3, let J(σ) be as in Definition 5.1 and 
let J< ⊆ J(σ) be the subset of all vertices with last coordinate smaller in absolute value 
than R.

Then J< is empty if and only if the last coordinate of v0 is ±R and there are 1 ≤ l ≤ k, 
1 ≤ i )= j ≤ m such that "v0 = "vl ± "ei ± "ej.

5.3. Induction beginning

The following is an adaptation of [6, Proof of Theorem C’, Base Case].

Lemma 5.10. Let m ≥ 2. The complex BAAm
1 is 1-connected.

Proof. We show this by successively describing the structures of Bm
1 , BAm

1 and BAAm
1 . 

All of these complexes have the same vertex set. Every vertex is a line v that is spanned 
by a vector "v of the form (a1, . . . , am, 1), which we will write as "v = ("a, 1) for "a ∈ Zm. 
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Fig. 10. We identify the 1-skeleton of BAAm
1 (left) with a graph obtained by gluing edges onto the Cayley 

graph of Zm (right). Here v is spanned by (v = ((a, 1).

This gives an identification of the vertex set with Zm. The complex Bm
1 has dimension 

zero, so it has no simplices other than these vertices.
The complex BAm

1 has dimension one. In [6, Proof of Theorem C’, Base Case], Church–
Putman show that it is isomorphic to the Cayley graph of Zm with respect to the 
generating set given by "e1, . . . , "em: Every edge in BAm

1 can be written in the form 
σ = {v, 〈"v + "ei〉} for some v ∈ Bm

1 and 1 ≤ i ≤ m; such an edge comes from the 
2-additive simplex {v, 〈"v + "ei〉} ∪ {e1, . . . , em} in BA1+m. For "v = ("a, 1), this edge gets 
identified with the edge {"a,"a + "ei} of the Cayley graph. (We slightly abuse notation here 
by writing "ei both for elements in Z1+m and in Zm.)

The complex BAAm
1 has dimension two. It is obtained from BAm

1 by attaching sim-
plices σ such that σ∪{e1, . . . , em} is either 3-additive or of type double-triple in BAA1+m. 
(No double-double simplices can occur in this low dimensional case.) Concretely, the 
double-triple simplices in BAAm

1 are all of the form

σ = {v, 〈"v ± "ei〉, 〈"v ± "ei ± "ej〉} , σ = {v, 〈"v ± "ej〉, 〈"v ± "ei ± "ej〉} ,

σ = {v, 〈"v ± "ei〉, 〈"v ± "ej〉} , or σ = {〈"v ± "ei〉, 〈"v ± "ej〉, 〈"v ± "ei ± "ej〉} ,

for some v ∈ Bm
1 and 1 ≤ i < j ≤ m. The 3-additive simplices arise as faces of these. 

Fig. 10 shows the 1-skeleton of BAAm
1 and its relationship to the Cayley graph of Zm

with respect to the standard generators. In fact, the 1-skeleton of BAAm
1 is isomorphic 

to the Cayley graph of Zm with respect to generators of the form "ei and "ei ± "ej .
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Fig. 11. The subcomplex spanned by {(a,(a + (ei,(a + (ej ,(a + (ei + (ej}.

It follows that BAAm
1 is isomorphic to a complex that is obtained as follows. Start with 

the Cayley graph of Zm with respect to the generating set "e1, . . . , "em. Every minimal 
cycle in this graph has length four and vertices "a, "a + "ei, "a + "ej , "a + "ei + "ej for some 
"a ∈ Zm and 1 ≤ i < j ≤ m.

Now attach to each such cycle two quadrilaterals along their boundaries. Both quadri-
laterals are composed of two triangles, the first one of

{"a,"a + "ei,"a + "ei + "ej} and {"a,"a + "ej ,"a + "ei + "ej} ,

the second one of

{"a,"a + "ei,"a + "ej} and {"a + "ei,"a + "ej ,"a + "ei + "ej} .

See Fig. 11. The fundamental group of this Cayley graph (with base point the identity) is 
generated by loops of the form p(a·l(a,i,j ·p−1

(a , where p(a is a path from the identity to "a, p(a is 
its inverse and l(a,i,j is the 4-edges loop around the square {"a,"a + "ei,"a + "ej ,"a + "ei + "ej}. 
Our complex is constructed by gluing a 2-disk (in fact, two 2-disks) to each such square, 
the resulting complex is 1-connected. We conclude BAAm

1 is 1-connected as claimed. !

6. Proof of Theorem 2.11

In this section, we will finish the proof of Theorem 2.11, which states that BAAm
n is 

Cohen–Macaulay of dimension (n +1) whenever n ≥ 1 and m +n ≥ 3. By Proposition 5.5, 
to prove this it suffices to show BAAm

n is n-connected whenever n ≥ 1 and m + n ≥ 3. 
Our proof roughly follows the strategy of Church–Putman [6, Proof of Theorem C’, Steps 
1-4]. The analogue of [6, Proof of Theorem C’, Step 2] does not work in our context but 
fortunately it is not essential here or in [6, Proof of Theorem C’]. Step 1 in our proof is 
roughly speaking a combination of Step 1 and Step 3 of the proof of Church–Putman 
while our Step 2 corresponds to their Step 4.
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Let n ≥ 1 and m + n ≥ 3. By Lemma 5.10, BAAm
1 is 1-connected for all m ≥ 2. 

We use this as a base case for an induction on n. Now assume that n ≥ 2 and that 
by induction, BAAm+1

n−1 is (n − 1)-connected. For d ≤ n, let f : Sd → BAAm
n be a map 

that is simplicial with respect to some simplicial structure on Sd. Here and from now 
on, we will assume that all simplicial structures on manifolds (possibly with boundary) 
are chosen to be combinatorial. This ensures that links of simplices are homeomorphic 
to spheres of the appropriate dimension. Let R be the maximum of the absolute value 
of the last coordinate of f(x) over all vertices x ∈ Sd. If R = 0, then f can be extended 
to a disk via coning its image with the vertex em+n. Thus, we are done if we can show 
that we can homotope f to lower R. A visual outline of the proof is shown in Fig. 12.

This homotopy is done in two steps: In Step 1, we isolate vertices in Sd that get 
mapped to vertices with last entry ±R, i.e. we homotope f such that if x, y form an 
edge in Sd and f(x), f(y) have last entry ±R, then f(x) = f(y). In Step 2, we then 
successively replace all of these “bad” vertices by vertices whose last coordinate has 
absolute value less than R. Only this second step uses our inductive hypothesis. In order 
to perform these two steps, we will perform a sequence of homotopies that step-by-step 
replace f by “better” maps. Before we start with these, we make some definitions that 
help us to keep track of the progress we make and describe a Procedure 1 that we will 
repeatedly use during Step 1.

Definition 6.1. A simplex σ of Sd is called edgy if f(σ) = {v0, v1} is an edge with the 
last coordinates of v0 and v1 equal to ±R.

If f : Sd → BAAm
n has no edgy simplices, then the bad vertices are isolated in the 

above sense. So removing all edgy simplices is the aim of Step 1.
Our method for removing edgy simplices only works if we can control the stars of such 

simplices. For this, we need to make sure that there are no simplices of the following 
type:

Definition 6.2. A simplex σ of Sd is called (a, b, c)-over-augmented, a, b, c ∈ N0, if

· f(σ) is a 3-additive, double-triple, or double-double simplex,
· every vertex of f(σ) either has last coordinate ±R or is contained in the additive 

core,
· σ contains exactly a ≥ 1 vertices x such that f(x) has last coordinate ±R,
· σ contains exactly b ≥ 0 vertices x such that f(x) is contained in the additive core 

of a 3-additive face of f(σ),
· dim(σ) = c, and
· if f(σ) is 3-additive, then for all v0 ∈ f(σ) with last coordinate ±R, there does not

exist v1 ∈ f(σ) and 1 ≤ i )= j ≤ m such that "v0 = "v1 ± "ei ± "ej .
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Fig. 12. A schematic of the proof of Theorem 2.11.
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We call a simplex overly augmented if it is (a, b, c)-over-augmented for some a ≥ 1 and 
b, c ≥ 0. Suppose σ is an (a, b, c)-over-augmented simplex and τ is a (a′, b′, c′)-over-
augmented simplex. We call τ better than σ if (a, b, c) < (a′, b′, c′) lexicographically.

Note that the last condition of the definition coincides with the one given in the 
last bullet point of Lemma 5.9. It excludes the case of edgy simplices σ whose image 
f(σ) = {〈"v1 ± "ei ± "ej〉, v1} is 3-additive. These are considered in detail later on (Step
1.2). For later reference, we record the following observation. It describes the stars of 
edgy simplices in the case where f has no overly augmented simplices.

Observation 6.3. If f has no overly augmented simplices, then the following is true: Let 
σ be a simplex of Sd such that f(σ) contains two vertices with last coordinate ±R. 
Then f(σ) is neither a double-triple nor a double-double simplex. If it is 3-additive, it 
can be written in the form f(σ) = {〈"v1 ± "ei ± "ej〉, v1, v2, . . . , vk}, where the last coordi-
nate of v1 is ±R; in particular, σ then contains an edgy simplex with 3-additive image 
{〈"v1 ± "ei ± "ej〉, v1}.

Procedure 1: Removing overly augmented simplices. We will now describe a procedure 
that allows us to remove overly augmented simplices from f . Let σ be an (a, b, c)-over-
augmented simplex with (a, b, c) as large as possible lexicographically. Our goal is to 
homotope f to have one less (a, b, c)-over-augmented simplex while only adding better 
simplices and no new edgy simplices. In order to do so, we will modify f |StarSd (σ) such 
that image of the result lies in f(,σ) ∗ K(σ), where K(σ) is a certain subcomplex of 
BAAm

n whose vertices have more desirable properties than those of f(σ). The same type 
of argument will be used several times in this article (Step 1.3, Step 2, Proposition 9.3). 
We spell it out in detail here and will use this as a blueprint for later occurrences. This 
is a standard procedure that has been used by many authors to prove various simplicial 
complexes are highly-connected. This proof strategy is often called a “bad simplex” 
argument.

We start by defining K(σ). If f(σ) is a double-triple or double-double simplex, we can 
write f(σ) = {v0, v1, . . . , vk}, where {"v2, . . . ,"vk} is a partial basis. We define

K(σ) := Link<Bm
n

({v2, . . . , vk}) [f(σ) double-triple or double-double].

If f(σ) is a 3-additive simplex, we can write f(σ) = {v0, v1, . . . , vk} as in Definition 5.1, 
i.e. such that {"v1, . . . ,"vk,"e1, . . . ,"em} is a partial basis and "v0 = "w1 + "w2 + "w3 for 
w1, w2, w3 ∈ {v1, . . . , vk, e1, . . . , em}. Let J(σ) be the set of vertices of BAAm

n that are 
lines spanned by a vector of the form {"w1 + "w2, "w1 + "w3, "w2 + "w3}, as in Definition 5.1
and J< ⊆ J(σ) the subset of all vertices with last coordinate smaller in absolute value 
than R. By the last assumption in the definition of overly augmented simplices and 
Lemma 5.9, the set J< is nonempty. We view J< as a 0-dimensional simplicial complex 
and define
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K(σ) := Link<Bm
n

({v1, . . . , vk}) ∗ J< [f(σ) 3-additive].

Claim 6.4. K(σ) is a subcomplex of LinkBAAm
n

(f(σ)) and f (LinkSd(σ)) ⊆ K(σ).

As f is simplicial, we have f(LinkSd(σ)) ⊆ StarBAAm
n

(f(σ)). Since σ is maximally over-
augmented, every x ∈ LinkSd(σ) gets mapped to a vertex f(x) ∈ LinkBAAm

n
(f(σ)) with 

last coordinate smaller in absolute value than R. Hence, we actually have f(LinkSd(σ)) ⊆
Link<BAAm

n
(f(σ)) and it suffices to show that K(σ) = Link<BAAm

n
(f(σ)). This follows im-

mediately from Lemma 5.2.

Claim 6.5. K(σ) is (dim LinkSd(σ))-connected.

By the work of Church–Putman, Link<Bm
n

({v0, . . . , v)}) is (n − / − 3)-connected [6, 
Theorem 4.2 and Lemma 4.5; see the first paragraph on p. 1016]. This implies that K(σ)
is (n − k − 1)-connected in all cases under consideration; note when σ is 3-additive, we 
know J< )= ∅ by Lemma 5.9. The claim follows because dim LinkSd(σ) = d −dim(σ) −1 ≤
n − k − 1.

These two claims allow us to modify f up to homotopy on Star(σ): By Claim 6.4, f
restricts to a map

LinkSd(σ) → K(σ)

whose domain LinkSd(σ) is isomorphic to a triangulated sphere. By Claim 6.5, this map 
can be extended to a map

g : Cone(LinkSd(σ)) → K(σ)

that is simplicial with respect to some simplicial structure on Cone(LinkSd(σ)). Again by 
Claim 6.4, K(σ) is a subcomplex of LinkBAAm

n
(f(σ)). This implies that g extends to

f |σ ∗ g : σ ∗ Cone(LinkSd(σ)) → f(σ) ∗K(σ) ⊂ BAAm
n .

Topologically, σ ∗ Cone(LinkSd(σ)) is a ball whose boundary can be decomposed as

,(σ ∗ Cone(LinkSd(σ))) = (,σ ∗ Cone(LinkSd(σ))) ∪ StarSd(σ).

Note that f |LinkSd (σ) = g|LinkSd (σ). It follows that the restriction of f to StarSd(σ) is 
homotopic to a simplicial map h : ,σ ∗ Cone(LinkSd(σ)) → f(σ) ∗K(σ) that agrees with 
f on ,σ ∗ LinkSd(σ).

Claim 6.6. The map h : ,σ ∗ Cone(LinkSd(σ)) → f(σ) ∗K(σ) has only simplices that are 
better than σ. Furthermore, every edgy simplex of h is contained in ,σ.
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Every simplex in ,σ ∗Cone(LinkSd(σ)) is of the form σ′ = σ̃∪ τ , where ∅ ⊆ σ̃ ⊂ σ is a 
proper face of σ. Such a simplex gets mapped to h(σ′) = f(σ̃) ∪g(τ), where g(τ) ⊆ K(σ). 
Observe that every vertex of K(σ) has last entry of absolute value smaller than R. This 
implies that every edgy simplex of h must be contained in ,σ. Now let σ′ = σ̃ ∪ τ be 
a simplex in the domain of h that is (a′, b′, c′)-over-augmented. We need to show that 
(a′, b′, c′) < (a, b, c) lexicographically. That a′ ≤ a follows immediately because every 
vertex of K(σ) has last entry of absolute value smaller than R.

Assume that f(σ) is a double-triple or double-double simplex. In this case, the def-
inition of K(σ) implies that no vertex of g(τ) can be contained in the additive core 
of h(σ′). This and the assumption that σ′ is overly augmented imply firstly that 
b′ ≤ b and secondly that τ is the empty simplex, i.e. σ′ = σ̃ ⊂ σ. But then, as 
c′ = dim(σ′) < dim(σ) = c, we have (a′, b′, c′) < (a, b, c).

Next assume that f(σ) is 3-additive. Here, we defined K(σ) = Link<Bm
n

({v1, . . . , vk}) ∗
J<. The vertices of g(τ) that are contained in Link<Bm

n
({v1, . . . , vk}) can neither be in 

the additive core of h(σ′) nor do they have last coordinate of absolute value ±R. Hence, 
as σ′ = σ̃ ∪ τ is overly augmented, we have g(τ) ∩ Link<Bm

n
({v1, . . . , vk}) = ∅. In other 

words, either τ is the empty simplex and σ′ = σ̃ ⊂ σ or h(σ′) = f(σ̃) ∪ {j} for some 
j ∈ J< and σ̃ ⊂ σ. In the first case, we have (a′, b′, c′) < (a, b, c) for the same reasons 
as in the situation of double-triple or double-double simplices. For the second case, note 
that although j might be contained in the additive core of h(σ′), it cannot be contained 
in the additive core of a 3-additive face: We know that f(σ) ∪ {j} is a double-triple 
simplex containing h(σ′) and that f(σ) is a 3-additive face of it. But a double-triple 
simplex has exactly one 3-additive face (see Observation 4.11). Hence, b′ ≤ b. As σ is 
overly augmented, every vertex of it is either mapped to a vertex with last coordinate 
±R or to the additive core of the 3-additive simplex f(σ). This implies that every vertex 
contributes either to a or b (or to both). On the other hand, the vertices of τ are mapped 
to j, which neither has rank R nor is it contained in the additive core of a 3-additive face 
of h(σ′). It follows that these vertices neither contribute to a′ nor to b′. Consequently, 
we have a′ + b′ < a + b, which implies (a′, b′, c′) < (a, b, c).

We can now replace f by the homotopic map f ′ : Sd → BAAm
n that is obtained by 

replacing Star(σ) with ,σ∗Cone(LinkSd(σ)) and setting f ′ to be equal to h on this subset 
of Sd. By Claim 6.6, the map f ′ has one less (a, b, c)-over-augmented simplex than f , 
no worse simplices and no additional edgy simplices. Iterating this shows that we may 
replace f by a map that has no overly augmented simplices and no other edgy simplices 
than those of f .

We now proceed with the process of reducing R, the maximum of the absolute values 
of the last coordinate of vectors in the image of f .

Step 1: Separating bad vertices. In this first step, we will remove all edgy simplices. If σ
is edgy, then its image f(σ) = {v0, v1} is either a standard simplex (if {"v0,"v1,"e1, . . . ,"em}
is a partial basis) or a 2-additive simplex (if "v0 = "v1 ± "ei) or a 3-additive simplex (if 
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"v0 = "v1±"ei±"ej). We will now successively remove edgy simplices by first removing those 
with 3-additive image, then those with standard image and finally those with 2-additive 
image. While doing so, we will repeatedly apply Procedure 1.

Step 1.1 Removing edgy simplices with 3-additive image. Let σ be an edgy simplex such 
that f(σ) = {v0, v1} is 3-additive. We can find representatives "v0 and "v1 such that their 
last coordinates are equal to R and "v0 = "v1 ± "ei ± "ej for some 1 ≤ i )= j ≤ m. Define 
v = 〈"v1±"ei〉, where the sign ± of ei agrees with its sign in the sum "v0 = "v1±"ei±"ej . Our 
aim is to use v to replace f by a map f ′ that avoids the simplex σ and has no further 
edgy simplices with 3-additive image than those of f .

Consider a simplex τ ! σ of Sd that contains σ. Then its image f(τ) = {v0, v1, . . . , vk}
contains v0 and v1, which have last coordinates ±R. As f has no overly augmented 
simplices, this implies that f(τ) cannot be a double-triple or double-double simplex 
(see Observation 6.3). On the other hand, f(τ) contains the 3-additive edge f(σ), so 
it must be 3-additive itself, with additive core {v0, v1, ei, ej} (see Observation 4.11). 
Hence, f(τ) ∪ {v} = {〈"v1 ± "ei〉, 〈"v1 ± "ei ± "ej〉, v1, . . . , vk} is a double-triple simplex 
in BAAm

n with additive core {v, v0, v1, ei, ej}. This implies that f maps StarSd(σ) to 
StarBAAm

n
({v0, v1, v}).

Let (Sd)′ be the coarsest subdivision of Sd that subdivides σ by adding a new vertex 
t at its barycentre. Let f ′ : (Sd)′ → BAAm

n be the map that agrees with f on vertices 
of Sd and sends t to v. The previous paragraph proves that f ′ is simplicial, and f and 
f ′ are homotopic. The structure of f ′ can be described as follows: To obtain f ′ from 
f , subdivide every simplex τ ⊇ σ that contains σ into (dim(σ) + 1)-many simplices of 
the same dimension as τ . Each such new simplex is obtained by replacing one vertex of 
σ ⊆ τ with the newly added t. This vertex gets mapped to f ′(t) = v and f ′ agrees with 
f on the remaining vertices of τ ′. Every simplex of Sd that does not contain σ is also a 
simplex in (Sd)′ and the maps f and f ′ agree on these simplices.

Clearly, f ′ does not contain the edgy simplex σ anymore. We claim that furthermore, 
no new edgy simplices with 3-additive image were created when passing from f to f ′. 
To see this, assume that σ′ is an edgy simplex of f ′ that is not an edgy simplex of f . 
Then σ′ must contain the newly added vertex t and hence is a face of some τ ′ that was 
obtained by subdividing a simplex τ ⊇ σ. This implies that the image f(σ′) must be of 
one of the forms

{v, v0} = {〈"v1 ± "ei〉, 〈"v1 ± "ei ± "ej〉} , {v, v1} = {〈"v1 ± "ei〉, v1} , or
{v, vl} for some vl such that {"v,"vl,"e1, . . . ,"em} is a partial basis.

But f(σ′) is not 3-additive in any of these cases.12
The subdivision mentioned above might have introduced new overly augmented sim-

plices. Before we can remove another edgy simplex, we need to get rid of these simplices. 

12 The subdivision created new edgy simplices with 2-additive image though, e.g. of the form 
{〈(v1 ± (ei〉, v1}. These will be removed in the next Step 1.2.
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To do so, we apply Procedure 1 again. This removes all overly augmented simplices with-
out introducing new edgy simplices. Afterwards, we can remove another edgy simplex 
whose image is 3-additive. Iterating this procedure leads to a map in which the image 
of every edgy simplex is either standard or 2-additive.

Step 1.2: Removing edgy simplices with standard image. After the previous step, we can 
assume that f has no edgy simplices with 3-additive image and (after possibly applying 
Procedure 1 again) also has no overly augmented simplices. In this step, we will also 
remove all edgy simplices with standard image.

Let σ be an edgy simplex such that f(σ) = {v0, v1} is standard. We will use a 
procedure that is very similar to the one described in Step 1.1 in order to replace f by a 
map f ′ that avoids σ. Choose representatives "v0 and "v1 such that their last coordinates 
are equal to R and define "v := "v0 − "v1. Clearly, v is a vertex in BAAm

n and has last 
coordinate equal to 0.

Let τ ⊇ σ be a simplex of Sd that contains σ. Then its image f(τ) = {v0, v1, . . . , vk}
contains v0 and v1, which have last coordinates ±R. As f has no overly augmented 
simplices and no edgy simplices with 3-additive image, this implies that f(τ) cannot be 
a 3-additive, double-triple or double-double simplex (see Observation 6.3). Hence, it must 
be either standard or 2-additive. In either case, f(τ) ∪{v} = {〈"v0 − "v1〉, v0, v1, . . . , vk} is 
a simplex in BAAm

n . Here, we use the observation that v = 〈"v0 −"v1〉 might be contained 
in f(τ), but 〈"v0 +"v1〉 cannot: the last coordinate of "v0 +"v1 is 2R, which would contradict 
the definition of R. This implies that f maps StarSd(σ) to StarBAAm

n
({v0, v1, v}).

Let (Sd)′ be the coarsest subdivision of Sd that subdivides σ by adding a new vertex 
t at its barycentre. Let f ′ : (Sd)′ → BAAm

n be the map that agrees with f on vertices of 
Sd and sends t to v. By the observations of the previous paragraph, this map is simplicial 
and f and f ′ are homotopic. Just as in Step 1.1, every edgy simplex of f ′ is either also 
an edgy simplex of f or it contains the vertex t. However, the latter is impossible here 
as t gets mapped to the vertex v. This has last coordinate 0, whereas every vertex in the 
image of an edgy simplex must have last coordinate ±R.

It follows that f ′ has one less edgy simplex than f (namely σ, which got subdivided) 
and that every edgy simplex of f ′ also forms an edgy simplex of f . In particular, as f
does not have any edgy simplex with 3-additive image, neither does f ′. It might be that 
f ′ has overly augmented simplices.13 However, we can use Procedure 1 again to remove 
those without introducing new edgy simplices. Afterwards, we can remove another edgy 
simplex with standard image. After finitely many iterations, we obtain a map that has 
only edgy simplices with 2-additive image.

Step 1.3: Removing edgy simplices with 2-additive image. We can now assume that f has 
no edgy simplices whose image is standard or 3-additive. After performing Procedure

13 If σ is contained in τ and f(τ) is 2-additive, it might be that the image of f ′ contains a 3-additive 
simplex with a vertex that has last coordinate ±R. For example if f(τ) = {v0, v1, 〈(v1 + (v2〉, v2}, then there 
is a simplex τ ′ with f ′(τ ′) = {v0, 〈(v0 − (v1〉, 〈(v1 + (v2〉, v2}.
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1, we can also assume that is has no overly augmented simplices. What remains to be 
done for completing Step 1 is to remove edgy simplices with 2-additive image. Let σ be 
a maximal such simplex, i.e. f(σ) = {v0, v1} is a 2-additive simplex, the last coordinates 
of v0 and v1 are equal to ±R and if τ ⊃ σ, then f(τ) )= f(σ). As f(σ) = {v0, v1} is 
2-additive, we have "v0 = "v1 ± "ei for some 1 ≤ i ≤ m. Here, we cannot proceed as in 
the case of standard simplices (Step 1.2), because if "v0, "v1 have last coordinate R, then 
"v0−"v1 = ±"ei is a not vertex in BAAm

n . What we will do instead is to apply an argument 
similar to the one of Procedure 1: We will define a complex K(σ) and homotope f such 
that it maps StarSd(σ) to f(,σ) ∗K(σ).

Define K(σ) := L̂ink
<

BAm
n

(v0). In order to perform an argument similar to Procedure
1, we need to verify the analogues of Claim 6.4, Claim 6.5 and Claim 6.6.

That K(σ) is a subcomplex of LinkBAAm
n

(f(σ)) is a part of Lemma 5.8. Furthermore, 
f maps LinkSd(σ) to K(σ): As f is simplicial, we have f(LinkSd(σ)) ⊆ StarBAAm

n
(f(σ))

and because we assumed σ to be maximal with respect to inclusion, f(LinkSd(σ)) ⊆
LinkBAAm

n
(f(σ)). Next, we show that the image of every vertex of LinkSd(σ) has last 

coordinate of absolute value less than R. Assume for contradiction that there is a vertex 
x ∈ LinkSd(σ) such that the last coordinate of f(x) is ±R. As we assumed σ to be 
maximal, the image of the simplex σ ∪ {x} has three vertices. Its image f(σ ∪ {x})
contains vertices with last coordinate ±R and has the 2-additive simplex f(σ) as a 
(proper) face. As f has no overly augmented simplices, this implies that f(σ ∪ {x}) is 
2-additive as well (see Observation 6.3 and Observation 4.11). But then it has a face that 
is a standard edge. As all three vertices of f(σ∪{x}) have last coordinate ±R, this shows 
that f needs to have an edgy simplex whose image is standard. This is a contradiction 
to our assumption. Hence, we have f(LinkSd(σ)) ⊆ Link<BAAm

n
(f(σ)).

By Lemma 5.7, we know that

Link<BAAm
n

(f(σ)) = L̂ink
<

BAAm
n

(f(σ))

and by Lemma 5.8, every simplex of L̂ink
<

BAAm
n

(f(σ)) is either contained in L̂ink
<

BAm
n

(v0) =
K(σ) or is of type double-triple. However, as v0 has last coordinate ±R (as does 
v1) and there are no overly augmented simplices, there are no double-triple sim-
plices in f(LinkSd(σ)) (see Observation 6.3). This finishes the proof of our claim that 
f(LinkSd(σ)) ⊆ K(σ).

The analogue of Claim 6.5 is to show that K(σ) is (dim LinkSd(σ))-connected. Here, 
we can use again a result of Church–Putman. By [6, Section 4.5, third paragraph after 
Step 4 on p. 1029], K(σ) = L̂ink

<

BAm
n

(v0) is (n − 2)-connected. The claim follows because 
dim LinkSd(σ) = d − dim(σ) − 1 ≤ n − 1 − 1.

As in Procedure 1, it follows that the restriction of f to StarSd(σ) is homotopic to a 
simplicial map

h : ,σ ∗ Cone(LinkSd(σ)) → f(σ) ∗K(σ)
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that agrees with f on ,σ ∗ LinkSd(σ) and has the property that h(Cone(LinkSd(σ))) ⊆
K(σ). We next verify the analogue of Claim 6.6, namely that every edgy simplex of h is 
contained in ,σ. This is immediate here because every vertex of K(σ) has last coordinate 
of absolute value smaller than R. Hence, a simplex can only be edgy if h maps it to f(σ). 
This is only the case for simplices in ,σ.

We can now replace Star(σ) with ,σ ∗Cone(LinkSd(σ)) and replace f by a homotopic 
map f ′ that agrees with f outside Star(σ) and is equal to h on ,σ ∗ Cone(LinkSd(σ)). 
As every edgy simplex of h is contained in ,σ, every edgy simplex of f ′ is also an edgy 
simplex of f . Hence, no new edgy simplices are created when passing from f to f ′. In 
particular, f ′ still has only edgy simplices whose image is 2-additive. However, f ′ has 
one less of these simplices than f (namely σ).

After applying Procedure 1 again to remove overly augmented simplices, we can go 
on and remove another edgy simplex of the resulting map. Iterating this leads to a map 
that has no edgy simplices (with 2-additive, standard, or 3-additive image).

Step 2: Removing bad vertices. We can now assume that f has no edgy simplices. Call 
a simplex σ of Sd bad if f(σ) = {v} with the last coordinates of v equal to ±R. Recall 
that our aim is to the replace f by a map whose image has only vertices with last entries 
of absolute value less than R. Hence, we are done if we can remove all bad simplices. Let 
σ be a bad simplex that is maximal with respect to inclusion among all bad simplices. 
We define K(σ) := Link<BAAm

n
(v) and proceed as in Procedure 1 above, verifying in the 

following three paragraphs the analogues of Claim 6.4, Claim 6.5 and Claim 6.6.
First note that f maps LinkSd(σ) to K(σ): As f is simplicial and σ is maximal among 

bad simplices, we have f(LinkSd(σ)) ⊆ LinkBAAm
n

(f(σ)). Assume that there was x ∈
LinkSd(σ) that gets mapped to a line with last entry ±R. Then, as there are no edgy 
simplices, we have f(x) = v and σ ∪ {x} gets mapped to {v}. This contradicts σ being 
maximal. Consequently, we have f(LinkSd(σ)) ⊆ Link<BAAm

n
(f(σ)) = K(σ).

Next, we want to verify that K(σ) is (dim LinkSd(σ))-connected. For this, we finally 
use the inductive hypothesis and the retraction defined in Section 3: First note that by 
the first item of Lemma 5.7, K(σ) actually coincides with L̂ink

<

BAAm
n

(v). Hence, it suffices 
to show that this complex is (dim LinkSd(σ)) = (d − dim(σ) − 1)-connected. As noted in 
Lemma 5.2, there is an isomorphism

L̂inkBAAm
n

(v) ∼= BAAm+1
n−1 ,

so by induction, L̂inkBAAm
n

(v) is (n − 1)-connected. By Theorem 3.1, L̂ink
<

BAAm
n

(v) is 
as highly-connected as L̂inkBAAm

n
(v) and hence is also (n − 1)-connected. The claimed 

connectivity of K(σ) now follows because (n − 1) ≥ (d − dim(σ) − 1).
As in Procedure 1 and Step 1.3, it follows that the restriction of f to StarSd(σ) is 

homotopic to a simplicial map h : ,σ ∗ Cone(LinkSd(σ)) → f(σ) ∗K(σ) that agrees with 
f on ,σ ∗ LinkSd(σ) and such that h(Cone(LinkSd(σ))) ⊆ K(σ). For the analogue of 
Claim 6.6, observe that every bad simplex of h is contained in ,σ and that h does not 
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have any edgy simplices: This follows similarly to Step 1.3 because every vertex of K(σ)
has last coordinate of absolute value smaller than R.

We now replace Star(σ) with ,σ ∗ Cone(LinkSd(σ)) and f by the map f ′ that agrees 
with f outside Star(σ) and is equal to h on ,σ ∗ Cone(LinkSd(σ)). This removes the bad 
simplex σ without introducing any new bad or edgy simplices. Iterating this, we obtain 
a map that has no bad simplices and hence maps every vertex of Sd to a line with last 
entry of absolute value less than R. !

7. Maps of posets

In this section, we recall Quillen’s map of posets spectral sequence [20] and some of its 
corollaries. In this and the following sections, we use posets as they are closely related to 
simplicial complexes. In fact, to each poset A, we associate a simplicial complex of chains 
in A, i.e. its vertices are the elements of A and a set {a0, . . . , ap} forms a p-simplex if 
it is a chain a0 < · · · < ap in A. Vice versa, given a simplicial complex X, we denote 
by P (X) the poset of simplices of X. The associated simplicial complex to P (X) is the 
barycentric subdivision of X.

We begin by fixing some terminology concerning posets.

Definition 7.1. Let A be a poset and a ∈ A. Define

ht(a) := min({k |∃ a1 < a2 < · · · < ak < a}).

We call ht(a) the height of a.

Definition 7.2. Let A be a poset and let a ∈ A. Let A>a be the subposet of A of elements 
x with x > a.

Definition 7.3. Let φ : A → B be a map of posets and b ∈ B. Let φ≤b be the subposet of 
A of elements a with φ(a) ≤ b.

When we speak about the homology of a poset A, we mean the homology of the 
geometric realisation of its associated simplicial complex, which we will just refer to 
as the geometric realisation of A. Similarly, when we say that a poset is d-connected, 
d-dimensional, etc., we mean its geometric realisation has this property.

We now define a more general notion of homology of posets.

Definition 7.4. Let Ab denote the category of abelian groups. Let A be a poset (viewed as 
a category with objects the elements of A and exactly one morphism a1 → a2 if a1 ≤ a2
and none otherwise) and let T : A → Ab be a functor. For p ≥ 0, let

Cp(A;T ) :=
⊕

a0<···<ap

T (a0).
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Define maps

di : Cp(A;T ) → Cp−1(A;T ), (0 ≤ i ≤ p)

as follows. For i > 0 let di be given by the identity map T (a0) → T (a0) from the summand 
indexed by a0 < · · · < ap to the summand indexed by a0 < · · · < ai−1 < ai+1 < · · · < ap. 
Let d0 : Cp(A; T ) → Cp−1(A; T ) be given by T (a0 → a1) : T (a0) → T (a1) from the 
summand indexed by a0 < · · · < ap to the summand indexed by a1 < · · · < ap. Let

d =
∑

i

(−1)idi : Cp(A;T ) → Cp−1(A;T ).

Since d ◦ d = 0, these groups and maps form a chain complex which we denote by 
C∗(A; T ). Let

Hi(A;T ) = Hi(C∗(A;T )).

One of the most basic examples of a functor is the constant functor Zwhich sends every 
object to Z and every morphism to the identity map. Note that Hi(A; Z) is isomorphic 
to the homology of the geometric realisation of A. Another class of functors that we will 
consider is the following.

Definition 7.5. Let φ : A → B be a map of posets. Let Hi(φ) : B → Ab be the functor 
sending b ∈ B to Hi(φ≤b) and b1 ≤ b2 to Hi(φ≤b1) → Hi(φ≤b2) induced by the inclusion 
φ≤b1 ⊂ φ≤b2 .

The following spectral sequence is due to Quillen [20].

Theorem 7.6 (Quillen). Let φ : A → B be a map of posets. There is a homologically 
graded spectral sequence:

E2
pq = Hp(B;Hq(φ)) =⇒ Hp+q(A).

See Charney [5, Lemma 1.3] or [17, Lemma 3.2] for a proof of the following.

Lemma 7.7. Let A be a poset, let T : A → Ab be a functor, and m ∈ N. Suppose T (a) ∼= 0
if ht(a) )= m. Then there is a natural isomorphism:

Hi(A;T ) ∼=
⊕

ht(a)=m

H̃i−1(A>a;T (a)).

Here H̃i−1(A>a; T (a)) means the reduced homology of the geometric realisation with 
(untwisted) coefficients T (a). This lemma gives the following corollary (see e.g. [18, 
Lemma 3.7]).
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Proposition 7.8. Let φ : A → B be a map of posets and let Er
p,q denote the map of posets 

spectral sequence. Assume for some fixed d, e, r ≥ 0, the following holds for all V ∈ B:

· H̃i(φ≤V ) ∼= 0 for all i )∈ [ht(V ) + d − r, ht(V ) + d].
· H̃i(B>V ) ∼= 0 for all i )= e − ht(V ) − 1.

Then for all a ≥ 0 and b ≥ 1 satisfying a + b )∈ [d + e − r, d + e], we have that E2
a,b

∼= 0.

A poset is called Cohen–Macaulay of dimension d if its associated simplicial complex 
is Cohen–Macaulay. A map f : A → B is called k-acyclic if it induces an isomorphism 
on Hi for i < k and a surjection for k = i.

Proposition 7.9 ([6, Proposition 2.3]). Fix m ≥ 0 and let φ : A → B be a map of posets. 
Assume that B is Cohen–Macaulay of dimension d and that for all b ∈ B and q )=
ht(b) + m, we have H̃q(φ≤b) = 0. Then φ is (d + m)-acyclic.

8. Proof of Theorem A and Theorem B

The goal of this section is to prove Theorem A, which describes the relations among 
the relations in Steinberg modules and use this to prove Theorem B, which states that 
the codimension-2 rational homology of SLn(Z) vanishes for n ≥ 3. Throughout this 
section, we will assume that n ≥ 3.

For a field F , we write Tn(F) for the poset of proper nonzero subspaces of Fn. As in 
the introduction, the geometric realisation of this poset is the Tits building associated 
to SLn(F), denoted by Tn(F). It is elementary to see that Tn(Q) is isomorphic to the 
following poset.

Definition 8.1. We write Tn(Z) (or simply Tn) for the poset of proper nonzero direct 
summands of Zn under inclusion. We write its geometric realisation as Tn(Z).

We prove Theorem A and Theorem B using n-connectivity of BAAn. The proof here 
works very similarly to [6, Proof of Theorem A and B]; we largely follow [6, Section 3].

Definition 8.2. For Λ = Z or Λ = Fp, let BAA±
n (Λ)′ be the subcomplex of BAA±

n (Λ)
consisting of all simplices {v0, . . . , vk} such that 〈"v0, . . . , "vk〉Λ is a proper subgroup of 
Λn. Let BAA′

n = BAA±
n (Z)′.

In other words, the simplices of BAA±
n (Λ) that are not contained in BAA±

n (Λ)′ are 
precisely

· the standard simplices of dimension n − 1,
· the 2-additive and 3-additive simplices of dimension n, and
· the double-triple and double-double simplices of dimension n + 1.
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In particular,

Ck(BAAn,BAA′
n) vanishes for k ≤ (n− 2),

Cn−1(BAAn,BAA′
n) is spanned by standard simplices,

Cn(BAAn,BAA′
n) is spanned by 2-additive and 3-additive simplices,

Cn+1(BAAn,BAA′
n) is spanned by double-triple and double-double simplices.

(Note that in the case n = 3, the complex BAAn contains no double-double simplices. 
So in this case, Cn+1(BAAn, BAA′

n) is spanned by double-triple simplices.)
The connectivity of BAAn gives us isomorphisms between the homology of these 

relative chains and the homology of BAA′
n:

Lemma 8.3. Let n ≥ 3. There are isomorphisms

Hn−2(BAA′
n) ∼= Hn−1(BAAn,BAA′

n) and Hn−1(BAA′
n) ∼= Hn(BAAn,BAA′

n).

Proof. This follows immediately from the long exact sequence of the pair (BAAn, BAA′
n)

because BAAn is n-connected (Theorem 2.10). !

We use Proposition 7.9 to get an explicit description of the homology of BAA′
n in 

high degrees.

Lemma 8.4. Let n ≥ 3. There are isomorphisms

Hn−2(BAA′
n) ∼= Stn(Q) and Hn−1(BAA′

n) ∼= 0.

Proof. Let P (BAA′
n) denote the poset of simplices of BAA′

n under inclusion, and con-
sider the map of posets

φ : P (BAA′
n) −→ Tn

{v0, . . . , vk} *−→ 〈"v0, . . . ,"vk〉.

We want to apply Proposition 7.9 with m = 2. As Tn is Cohen–Macaulay of dimension 
(n −2), we have to verify that for every proper direct summand {0} )= V ⊂ Zn, the fibre 
φ≤V has vanishing reduced homology in all degrees except (ht(V ) + 2) = (rank(V ) + 1). 
But we have

φ≤V = {σ ∈ P (BAA′
n) | φ(σ) ≤ V } ∼= P (BAA(V )).

The complex BAA(V ) has dimension at most14 rank(V ) + 1 and is rank(V )-connected 
by Theorem 2.10.

14 In fact, its dimension is equal to rank(V ) + 1 if rank(V ) ≥ 3, see the comments after Theorem 2.10.
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It follows that the map φ induces isomorphisms

Hn−2(|P (BAA′
n)|) → Hn−2(Tn) ∼= Stn(Q) and Hn−1(|P (BAA′

n)|) → Hn−1(Tn) ∼= 0.

The claim follows because |P (BAA′
n)| is the geometric realisation of the barycentric 

subdivision of | BAA′
n |. !

Proposition 8.5. Let n ≥ 3. The sequence

Cn+1(BAAn,BAA′
n) ∂n+1−→ Cn(BAAn,BAA′

n) ∂n−→ Cn−1(BAAn,BAA′
n) q−→

q−→ Hn−1(BAAn,BAA′
n) ∼= Stn(Q) −→ 0

is exact.

Proof. Firstly, the map q is surjective by the definition of homology, so we have exactness 
at Hn−1(BAAn, BAA′

n). Secondly, we noted above that Cn−2(BAAn, BAA′
n) is trivial. 

Hence,

Hn−1(BAAn,BAA′
n) ∼= Cn−1(BAAn,BAA′

n)/ im(,n),

which shows that the sequence is exact at Cn−1(BAAn, BAA′
n). Lastly, exactness at 

Cn(BAAn, BAA′
n) is equivalent to the vanishing of the homology group Hn(BAAn,

BAA′
n). By Lemma 8.3, this group is isomorphic to Hn−1(BAA′

n), which vanishes by 
Lemma 8.4.

The isomorphism Hn−1(BAAn, BAA′
n) ∼= Stn(Q) is also an immediate consequence 

of Lemma 8.3 and Lemma 8.4. !

This proposition implies Theorem A, our partial resolution of Stn(Q).

Proof of Theorem A. If n = 2, the group M2 is trivial and the result was shown by 
Church–Putman [6, Theorem B]. If n ≥ 3, for i = 0, 1 or 2, the groups Mi in the state-
ment of Theorem A are isomorphic to the relative chain groups Cn−1+i(BAAn, BAA′

n). 
The claim now follows from Proposition 8.5. !

To deduce Theorem B from this, we need the following well-known lemma. The proof 
is adapted from Church–Putman [6, Lemma 3.2] using Putman–Studenmund [19, Lemma 
2.2]. Also see Putman–Studenmund [19, Lemma 2.3].

Lemma 8.6. Let G be a group and let Y ↪→ X be an inclusion of G-simplicial complexes. 
Assume that the setwise stabiliser subgroup of every k-simplex of X that is not contained 
in the image of Y is finite. Let R be a ring such that the orders of all stabiliser groups 
of such simplices are invertible in R. Then Ck(X, Y ) is a projective R[G]-module.
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Proof. Let σ be a k-simplex of X not contained in Y and pick an orientation on σ. 
Let Gσ ⊂ G be the stabiliser of σ. By abuse of notation, also view σ as an element of 
Ck(X, Y ; R). Let Mσ ⊂ Ck(X, Y ; R) be the R[G]-submodule generated by σ. Let Rσ be 
the R[Gσ]-module whose underlying R-module is just R but an element of G acts by ±1
depending on whether it reverses the orientation on σ or not. As in Church–Putman [6, 
Lemma 3.2], we have that

Mσ
∼= IndG

Gσ
Rσ.

Putman–Studenmund [19, Lemma 2.2] states that Rσ is a projective R[Gσ]-module and 
hence a summand of a free R[Gσ]-module. Since

IndG
Gσ

R[Gσ] ∼= R[G],

it follows that Mσ is a summand of a free R[G]-module and hence Mσ is projective. Since 
Ck(X, Y ; R) is a direct sum of modules of the form Mσ, the module Ck(X, Y ; R) is also 
projective. !

Lemma 8.7. Let R be a ring and let ! be a subgroup of SLn(Z). Assume that for any 
g ∈ ! of finite order j < ∞, the element j is a unit in R. Then Ck(BAAn, BAA′

n; R) is 
projective as an R[!]-module.

Proof. Note that the groups Ck(BAAn, BAA′
n; R) vanish unless k ∈ {n− 1, n, n + 1}, 

so we shall restrict attention to those cases.
In order to apply Lemma 8.6, we will first show that for every k ∈ {n− 1, n, n + 1}

and for every k-simplex σ of BAAn that is not contained in BAA′
n, the setwise stabiliser 

SLn(Z)σ of σ under the action of SLn(Z) is finite. Let σ = {v0, . . . , vk} be such a simplex. 
Then by definition, we have 〈"v0, . . . , "vk〉 = Zn and we can assume that {"v0, . . . ,"vn−1}
is a basis. An element φ ∈ SLn(Z) that stabilises σ induces a signed permutation of 
the set {"v0, . . . ,"vk}. Furthermore, any such φ is uniquely determined by the images of 
"v0, . . . , "vn−1 because these form a basis of Zn. It follows that SLn(Z)σ is a subgroup of 
the group of signed permutations of a set with k+1 elements. This is the Coxeter group 
of type Bk+1, a finite group of order 2k+1 · (k + 1)!.

This implies that the stabiliser !σ is finite and by assumption, the orders of all its 
elements are invertible in R. It follows from Cauchy’s Theorem that the order of !σ is 
invertible in R as well, so we can apply Lemma 8.6. !

Remark 8.8. In particular, this implies that Ck(BAAn, BAA′
n; Q) is projective as a 

Q[SLn(Z)]-module and Ck(BAAn, BAA′
n; Z) is projective as a Z[!]-module if ! is 

torsion-free.

We use the concrete description of Cn+1(BAAn, BAA′
n) in terms of double-double and 

double-triple simplices to show the following.
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Lemma 8.9. The group Cn+1(BAAn, BAA′
n; Q) ⊗SLn(Z) Q vanishes for all n ≥ 3.

Proof. The group Cn+1(BAAn, BAA′
n; Q) is generated by all oriented (n +1)-dimensional 

double-triple and double-double simplices of BAAn. (As noted above, the double-double 
simplices only occur if n ≥ 4.) Let σ = {v0, . . . , vn+1} be such an (n + 1)-simplex, where 
"v2, . . . , "vn+1 is a basis of Zn. We need to show that for any q ∈ Q, the element σ ⊗ q is 
trivial in Cn+1(BAAn, BAA′

n; Q) ⊗SLn(Z) Q. There are two cases to consider.
First suppose that σ is a double-double simplex. Then for suitable choices of signs, 

we have "v0 = "v2 + "v3 and "v1 = "v4 + "v5. Let φ : Zn → Zn be the automorphism defined 
by

φ("v2) = "v4, φ("v4) = "v2, φ("v3) = "v5, φ("v5) = "v3, φ("vi) = "vi for i > 5.

The automorphism φ is contained in SLn(Z) because it acts as an even permutation on 
the basis "v2, . . . , "vn+1. On the other hand, it acts as an odd permutation on the vertices 
of σ, as

φ((v0, . . . , vn+1)) = (v1, v0, v4, v5, v2, v3, v6, . . . , vn+1).

Hence, in Cn+1(BAAn, BAA′
n; Q) ⊗SLn(Z) Q, we have σ⊗ q = φ(σ) ⊗ q = −σ⊗ q for any 

q ∈ Q. This implies that σ ⊗ q is trivial.
Next suppose that σ is a double-triple simplex. In this case, we can choose signs such 

that "v0 = "v2 + "v3 and "v1 = "v2 + "v4. We define ψ : Zn → Zn as the automorphism given 
by

ψ("v2) = −"v2, ψ("v3) = "v2 + "v3, ψ("v4) = −"v4, ψ("vi) = "vi for i > 4.

It is easy to see that ψ has determinant 1 and hence is contained in SLn(Z). Noting that 
ψ("v0) = ψ("v2 + "v3) = "v3 and ψ("v1) = ψ("v2 + "v4) = −"v1, one sees that ψ acts as an odd 
permutation on the vertices of σ, namely

ψ((v0, . . . , vn+1)) = (v3, v1, v2, v0, v4, v5, . . . , vn+1).

As before, it follows that σ ⊗ q is trivial. !

That the codimension-2 rational cohomology of SLn(Z) vanishes for n ≥ 3 is an easy 
consequence of the previous results:

Proof of Theorem B. Because of Borel–Serre duality (see Equation (1)), it is sufficient 
to show that H2(SLn(Z); Stn(Q) ⊗Q) is trivial. Proposition 8.5 and Lemma 8.7 give us 
a partial projective resolution of Stn(Q) ⊗Q as follows:
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Cn+1(BAAn,BAA′
n;Q) −→ Cn(BAAn,BAA′

n;Q) −→ Cn−1(BAAn,BAA′
n;Q)

−→ Stn(Q) ⊗Q −→ 0.

As this partial resolution can be extended to a projective resolution, it suffices to show 
that the second homology of the chain complex

· · · −→ Cn+1(BAAn,BAA′
n;Q) ⊗SLn(Z) Q −→ Cn(BAAn,BAA′

n;Q) ⊗SLn(Z) Q −→

−→ Cn−1(BAAn,BAA′
n;Q) ⊗SLn(Z) Q −→ 0

vanishes. This is an immediate consequence of Lemma 8.9. !

Remark 8.10. Church–Putman [6, Theorem A] also proved a vanishing result for the 
codimension-1 cohomology of SLn(Z) with coefficients in rational representations of 
GLn(Q). The analogous result is true for the codimension-2 cohomology.

9. Proof of Theorem C

We now shift attention to the codimension-1 cohomology congruence subgroups and 
prove Theorem C.

9.1. Relevant simplicial complexes and connectivity results

We will deduce our results about congruence subgroups by studying connectivity 
properties of BAA±

n (Fp). To prove the following result, it is not difficult to adapt the 
proofs of [18, Lemmas 2.35 and 2.43].

Proposition 9.1. For p an odd prime, BAAn /!n(p) ∼= BAA±
n (Fp) and BAA′

n /!n(p) ∼=
BAA±

n (Fp)′.

An argument identical to [18, Lemma 3.23] gives the following corollary.

Proposition 9.2. Let p be an odd prime. There is a natural isomorphism

H1(!n(p); Stn(Q)) ∼= Hn(BAA±
n (Fp),BAA±

n (Fp)′).

Proof. Proposition 8.5 states that

Cn+1(BAAn,BAA′
n) ∂n+1−−−→ Cn(BAAn,BAA′

n) ∂n−→ Cn−1(BAAn,BAA′
n) → Stn(Q) → 0

is exact. Note that for p odd !n(p) is torsion-free. Thus Lemma 8.7 implies that the 
groups Ck(BAAn, BAA′

n) are projective Z[!n(p)]-modules and hence that this is a partial 
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projective resolution of Z[!n(p)]-modules. Therefore, H1(!n(p); Stn(Q)) is the homology 
of the sequence

Cn+1(BAAn,BAA′
n)Γn(p) → Cn(BAAn,BAA′

n)Γn(p) → Cn−1(BAAn,BAA′
n)Γn(p).

This sequence agrees with

Cn+1(BAAn /!n(p),BAA′
n /!n(p)) → Cn(BAAn /!n(p),BAA′

n /!n(p)) →

→ Cn−1(BAAn /!n(p),BAA′
n /!n(p)).

Using Proposition 9.1, this is exactly

Cn+1(BAA±
n (Fp)′,BAA±

n (Fp)′) → Cn(BAA±
n (Fp)′,BAA±

n (Fp)′)

→ Cn−1(BAA±
n (Fp)′,BAA±

n (Fp)′).

Thus, the homology of this sequence is Hn(BAA±
n (Fp), BAA±

n (Fp)′). !

Proposition 9.3. For all p, the inclusion BA±
n (Fp) → BAA±

n (Fp) induces a surjective 
map on .d, d ≤ n.

Proof. Fix d ≤ n and let f : Sd → BAA±
n (Fp) be a map that is simplicial with respect 

to some simplicial structure on Sd. It suffices to show that f is homotopic to a map 
f̃ : Sd → BAA±

n (Fp) that factors through the inclusion BA±
n (Fp) ↪→ BAA±

n (Fp).
This can be shown similarly to Procedure 1, which was used in Section 6 to show 

that BAAm
n is highly-connected. We will follow this procedure very closely and keep 

the notation as similar as possible to make it easier to follow. We first define the “bad” 
simplices that we want to remove: A simplex σ of Sd is called (b, c)-over-augmented, 
b, c ∈ N0, if

· f(σ) is a 3-additive, double-triple, or double-double simplex,
· every vertex of f(σ) is contained in the additive core,
· σ has exactly b ≥ 0 vertices x such that f(x) is contained in the additive core of a 

3-additive face of f(σ),
· dim(σ) = c.

We call a simplex overly augmented if it is (b, c)-over-augmented for some b, c ≥ 0. We say 
that a (b, c)-over-augmented simplex σ is better than a (b′, c′)-over-augmented simplex τ
if (b, c) < (b′, c′) lexicographically. If f has no overly augmented simplices, then its image 
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lies in BA±
n (Fp). To obtain such a map, we will successively replace f with homotopic 

maps that have less such simplices that are maximally over-augmented.
Let σ be a (b, c)-over-augmented simplex with (b, c) as large as possible lexicograph-

ically. We want to remove σ from f . To do so, we first define, just as in Procedure
1, a complex K(σ) and then verify adapted versions of Claim 6.4, Claim 6.5 and 
Claim 6.6.

If f(σ) is a double-triple or double-double simplex, it can be written as {v0, v1, . . . vk}, 
where {"v2, . . . ,"vk} is a partial basis. As we assumed that every vertex of f(σ) is 
contained in the additive core, we here have k = 4 for a double-triple and k = 5
for a double-double simplex. Define K(σ) := LinkB±

n (Fp)({v2, . . . , vk}). If f(σ) is 3-
additive, we can write f(σ) = {〈"v1 + "v2 + "v3〉, v1, v2, v3}, where {"v1,"v2,"v3} is a par-
tial basis. Let J := {〈"v1 + "v2〉, 〈"v1 + "v3〉, 〈"v2 + "v3〉}. Note that all elements of J are 
vertices of BAA±

n (Fp). We view J as a 0-dimensional simplicial complex and define 
K(σ) := LinkB±

n (Fp)({v1, v2, v3}) ∗ J .
As f is simplicial and σ is maximally over-augmented, we have f(LinkSd(σ)) ⊆

LinkBAA±
n (Fp)(f(σ)). So to prove the analogue of Claim 6.4, it suffices to see that 

K(σ) = LinkBAA±
n (Fp)(f(σ)). This can be checked easily just as in Procedure 1. In 

Proposition 5.5, we describe the links of simplices in BAAn and an analogous statement 
is true for BAA±

n (Fp).
To see that K(σ) is dim LinkSd(σ)-connected, note that by a result of Miller–

Patzt–Putman the complex LinkB±
n (Fp)({v0, . . . , vl}) is (n − l− 3)-connected [18, Propo-

sition 2.45]. Hence, K(σ) is (n − 5)-connected if f(σ) is a double-triple simplex, 
(n − 6)-connected if f(σ) is a double-double simplex and (n − 5 + 1) = (n − 4)-
connected if f(σ) is 3-additive. We have dim LinkSd(σ) ≤ n − dim(f(σ)) − 1. The 
claim follows because f(σ) is a double-triple, double-double or 3-additive simplex with 
all vertices contained in the additive core and hence has dimension 4, 5 or 3, respec-
tively.

Consequently, the restriction f |StarSd (σ) is homotopic to a simplicial map h : ,σ ∗
Cone(LinkSd(σ)) → f(σ) ∗ K(σ) that agrees with f on ,σ ∗ LinkSd(σ) and such that 
h(Cone(LinkSd(σ))) ⊆ K(σ). We will now verify that h has only simplices that are better 
than σ. This is very similar to the proof of Claim 6.6 in Procedure 1, so we will be 
slightly briefer here:

Every simplex in ,σ ∗ Cone(LinkSd(σ)) is of the form σ̃ ∪ τ , where ∅ ⊆ σ̃ ⊂ σ is 
a proper face of σ. It gets mapped to h(σ′) = f(σ̃) ∪ g(τ), where g(τ) ⊆ K(σ). Let 
σ′ = σ̃ ∪ τ be a simplex in the domain of h that is (b′, c′)-over-augmented. We need to 
show that (b′, c′) < (b, c) lexicographically. If f(σ) is a double-triple or double-double 
simplex, no vertex of g(τ) ⊆ K(σ) can be contained in the additive core of h(σ′). As σ′ is 
overly augmented, this implies that b′ ≤ b and that τ is the empty simplex. Hence, c′ =
dim(σ′) < dim(σ) = c and we have (b′, c′) < (b, c). Next assume that f(σ) is 3-additive. 
In this case, K(σ) := LinkB±

n (Fp)({v1, v2, v3}) ∗J . As σ′ is overly augmented and no vertex 
of LinkB±

n (Fp)({v1, v2, v3}) can be contained in the additive core of h(σ′), all vertices of 
τ get mapped to J . This means that either τ is the empty simplex and σ′ = σ̃ ⊂ σ or 
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h(σ′) = f(σ̃) ∪{j} for some j ∈ J and σ̃ ⊂ σ. In the first case, we have (b′, c′) < (b, c) with 
the same argument as in the situation of double-triple or double-double simplices. In the 
second case, f(σ) ∪ {j} is a double-triple simplex that contains h(σ′) and has f(σ) as its 
unique 3-additive face. Hence, j cannot be contained in the additive core of a 3-additive 
face of h(σ′). It follows that b′ ≤ dim(σ̃) < dim(σ) = b. In particular, (b′, c′) < (b, c).

We now replace Star(σ) with ,σ ∗ Cone(LinkSd(σ)) and f by the map f ′ that agrees 
with f outside Star(σ) and is equal to h on ,σ∗Cone(LinkSd(σ)). This removes σ without 
introducing any other simplices that are (b, c)-over-augmented or worse. Iterating this 
procedure, we obtain a map that has no overly augmented simplices and hence factors 
through BA±

n (Fp). !

Corollary 9.4. For p = 3 or 5, the complex BAA±
n (Fp) is (n − 1)-connected.

Proof. By Proposition 9.3, there is a surjection .d(BA±
n (Fp)) ! .d(BAA±

n (Fp)) for d ≤
n. The claim follows because by [18, Proposition 2.50], the complex BA±

n (Fp) is (n − 1)-
connected for p = 3 or 5. !

Corollary 9.5. For p = 3 or 5, there is a surjection H1(!n(p); Stn(Q)) →
Hn−1(BAA±

n (Fp)′).

Proof. This follows from the long exact sequence of the pair (BAA±
n (Fp), BAA±

n (Fp)′), 
Proposition 9.2 and Corollary 9.4. !

Proposition 9.6. For p an odd prime, H2(BAA±
2 (Fp)) ∼= Z.

Proof. Note that the inclusion BA±
2 (Fp) → BAA±

2 (Fp) is an isomorphism. The claim 
follows from [18, Lemma 2.44] which identifies BA±

2 (Fp) with the compactified modular 
curve of level p, a compact surface of genus (p + 2)(p − 3)(p − 5)/24. !

Remark 9.7. Proposition 9.6 shows that BAA±
n (Fp) is not always n-connected. This may 

come as a surprise. This fact is not just due to our restriction that the determinant of 
bases be equal to ±1 as this condition is vacuous for p = 3. If the reader is interested in 
defining a complex BAAn(F) to determine the relations among the relations in Stn(F)
for F an arbitrary field, we expect that extra types of additive simplices will be needed. 
For example, simplices of the form {v1, v2, 〈a"v1 + b"v2〉, 〈c"v1 + d"v2〉} with ad − bc )= ±1
might be needed in the n = 2 case.

We now describe a model for Tn(Q)/!n(p).

Definition 9.8. A ±-orientation on a rank k submodule V ⊂ Fn
p is an equivalence class 

of generators of ∧kV ∼= Fp up to sign.
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Let Grnk (Fp)± denote the set of ±-oriented summands of rank k in Fn
p . We let T±

n (Fp)
denote the poset whose elements are all proper nonzero ±-oriented summands of Fn

p with 
order induced by proper inclusion. Let T ±

n (Fp) denote its geometric realisation.

Note that the ±-orientations play no role in deciding if summands of di%erent ranks 
are comparable and di%erently oriented subspaces of the same rank are never comparable. 
The following results are due to Miller–Patzt–Putman [18].

Proposition 9.9 ([18, Proposition 3.16]). For p an odd prime, the natural map Tn(Z)/
!n(p) → T ±

n (Fp) is an isomorphism.

Proposition 9.10 ([18, Lemma 3.15]). For all p, the complex T ±
n (Fp) is Cohen–Macaulay 

of dimension n − 2.

9.2. Lower bounds on the codimension-1 cohomology of certain congruence subgroups

In this subsection, we use the map-of-poset spectral sequence and the fact that 
BAA±

2 (Fp) is not 2-connected to produce cohomology classes in the codimension-1 co-
homology of level 3 and 5 congruence subgroups.

The following is a categorified version of Theorem C.

Theorem 9.11. For p = 3 or 5 and n ≥ 3, H(n2)−1(!n(p)) surjects onto

Z[Grn2 (Fp)±] ⊗ H̃n−4(T ±
n−2(Fp)).

Proof. Since !n(p) is torsion-free for p an odd prime, Borel–Serre duality holds with 
integral coefficients. In particular,

H(n2)−1(!n(p)) ∼= H1(!n(p); Stn(Q)).

Thus, by Corollary 9.5, it suffices to produce a surjection

Hn−1(BAA±
n (Fp)′) → Z[Grn2 (Fp)±] ⊗ H̃n−4(T ±

n−2(Fp)).

Let φ : P (BAA±
n (Fp)′) → T±

n (Fp) be the map sending a simplex σ = {v0, . . . , vk} to 
〈"v0, . . . , "vk〉Fp

with the orientation given by "vi0 ∧"vi1 ∧ . . .∧"vim , where {"vi0 ,"vi1 , . . . ,"vim}
is any maximal partial basis contained in σ. Observe that this orientation does 
not depend on the choice of the maximal partial basis in σ: For example, if σ =
{"v1 + "v2,"v1,"v2, . . . ,"vk} is 2-additive, then

"v1 ∧ "v2 ∧ . . . ∧ "vk = ("v1 + "v2) ∧ "v2 ∧ "v3 ∧ . . . ∧ "vk = ("v1 + "v2) ∧ "v1 ∧ "v3 ∧ . . . ∧ "vk.

Reordering the vectors of the partial basis introduces a sign but does not change the 
equivalence class of the orientation.
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Fig. 13. The page E2
a,b when n = 7. The domains of all subsequent differentials into E2

n−3,2 are 0, as are 
the codomains of all subsequent differentials out of E2

n−3,2. Thus E2
n−3,2

∼= E∞
n−3,2.

Let Er
a,b denote the associated map-of-poset spectral sequence associated to φ de-

scribed in Theorem 7.6. For V a proper nonzero rank k ±-summand of Fn
p , note 

that ht(V ) = k − 1, φ≤V ∼= P (BAA±
k (Fp)), and T±

n (Fp)>V
∼= T±

n−k(Fp). Applying 
Proposition 7.8 with e = n − 2, d = 2, and r = 1, we find that for b ≥ 1, E2

a,b
∼= 0 unless 

a + b = n − 1 or a + b = n. See Fig. 13.
Since T ±

n (Fn
p ) is (n −2)-dimensional, E2

a,b
∼= 0 for a > n −2. This region is shaded grey 

in Fig. 13. Thus E2
n−3,2

∼= E∞
n−3,2 as all higher di%erentials to or from E∗

n−3,2 vanish, as 
in Fig. 13.

Observe that the group E∞
n−2,1 (marked by ♣ in Fig. 13) must vanish, since 

H1(BAA±
1 (Fp)) = H1(BA±

1 (Fp)) ∼= 0. Thus the abutment of the spectral sequence 
surjects onto E∞

n−3,2. All that remains is to identify E2
n−3,2 with [Z[Grn2 (Fp)±] ⊗

H̃n−4(T ±
n−2(Fp)). We will apply Lemma 7.7. Observe that the functor V *→ H2(φ≤V )

is supported on vector spaces V of dimension 2, equivalently, of height 1 in the poset 
T±
n (Fp). By Lemma 7.7,

E2
n−3,2

∼= Hn−3(T±
n (Fp);H2(φ)) ∼=

⊕

ht(V )=1
H̃n−4(T±

n−2(Fp);H2(BAA±
2 (Fp)).

The set of height-1 elements of T±
n (Fp) is isomorphic to Grn2 (Fp)±, and H2(BAA±

2 (Fp)) ∼=
Z by Proposition 9.6. Thus E2

n−3,2
∼= Z[Grn2 (Fp)±] ⊗ H̃n−4(T ±

n−2(Fp)) and the result 
follows. !

We now prove Theorem C which gives a numerical lower bound for H(n2)−1(!n(p)); Q).
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Proof of Theorem C. We must show that if p = 3 or 5, then

dimQH(n2)−1(!n(p);Q) ≥ p(
n−2

2 )|Grn2 (Fp)|
(
p− 1

2

)n−2
.

When n = 2, both sides of the inequality are equal to 1. Assume n ≥ 3. By Theorem 9.11,

dimQH(n2)−1(!n(p);Q) ≥ |Grn2 (Fp)±|dimQ H̃n−4(T ±
n−2(Fp);Q).

Observe that the order of Grn2 (Fp)± is p−1
2 times the order of Grn2 (Fp). Furthermore, 

[18, Page 5] contains a proof that H̃n−4(T ±
n−2(Fp)) is a free abelian group of rank at least 

p(n−2
2 ) (p−1

2
)n−3. We deduce Theorem C. !
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