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Some of the most important tasks of visual and motor systems involve estimating the motion of
objects and tracking them over time. Such systems evolved to meet the behavioral needs of the
organism in its natural environment, and may therefore be adapted to the statistics of motion it is
likely to encounter. By tracking the movement of individual points in movies of natural scenes, we
begin to identify common properties of natural motion across scenes. As expected, objects in natural
scenes move in a persistent fashion, with velocity correlations lasting hundreds of milliseconds. More
subtly, but crucially, we find that the observed velocity distributions are heavy-tailed and can be
modeled as a Gaussian scale-mixture. Extending this model to the time domain leads to a dynamic
scale-mixture model, consisting of a Gaussian process multiplied by a positive scalar quantity with
its own independent dynamics. Dynamic scaling of velocity arises naturally as a consequence of
changes in object distance from the observer, and may approximate the effects of changes in other
parameters governing the motion in a given scene. This modeling and estimation framework has
implications for the neurobiology of sensory and motor systems, which need to cope with these
fluctuations in scale in order to represent motion efficiently and drive fast and accurate tracking

behavior.
INTRODUCTION

One of the great triumphs of theoretical neuroscience
has been the success of the efficient coding hypothesis [1],
which posits that sensory neural systems are adapted to
the statistics of the organism’s natural environment. The
importance of this hypothesis lies in its power to explain
structural features of the nervous system, such as the
shapes of nonlinear response functions [2] and receptive
fields of sensory neurons [3-7], in terms of its function
as an efficient information processing device. The suc-
cess of this theory, particularly in vision, has sparked
significant interest in measuring natural scene statistics
(for a review, see [8]), and has continued to yield impor-
tant results, like the ubiquity of non-Gaussian, heavy-
tailed statistics and related nonlinear forms of depen-
dency among scene features [9-12].

The observation of heavy-tailed distributions in the
natural world connects with the rich structure that the
external environment presents to an organism’s sensors,
across a variety of sensory modalities. In any of these
input streams, the brain has to pick out the relevant
features in this rich input space that are most impor-
tant for the organism’s survival-to select what matters.
Adapting to this kind of structure and maintaining an ef-
ficient representation of behaviorally-relevant features in
the world is a common feature of early sensory systems.
Understanding how this is achieved, mechanistically, re-
quires more than just the observation and quantification
of heavy tails in natural scenes. To be able to under-
stand how the brain represents this structure efficiently,
we need to model it to shed light on potential ways the
brain compresses this rich structure into an actionable
internal signal.

Organisms are not passive sensory processors; they

must also produce adaptive behavior in a complex and
dynamic natural environment, where tasks like capturing
prey [13-16], fleeing predators [17-19], and navigating
obstacles [20] are all critical to survival. These behaviors
inevitably involve prediction [21-24] in order to compen-
sate for substantial sensory and motor delays [25]. The
basis for such predictive behavior must be statistical reg-
ularities in the environment, but little is known about
the statistics of the inputs relevant to such behaviors.
As a step towards characterizing the statistics of be-
haviorally relevant quantities in natural scenes, we focus
on a feature fundamental to many essential sensation-
to-action programs, the motion of objects. Object mo-
tion relative to the observer drives oculomotor tracking
[26, 27] and is an essential part of many crucial behaviors,
like prey capture [28-30]. Specialized circuitry as early as
the retina distinguishes between object and background
motion [31, 32], while entire brain regions in the visual
cortex of primates specialize in processing motion [33],
with increasing complexity along the dorsal stream [34].
While previous work has characterized motion in cer-
tain cases, often focusing on optical flow due to ego-
motion [20, 35, 36], little is known about the statistics of
object motion in the natural world. To address this, we
analyze movies from the Chicago Motion Database[37],
which were shot and curated for the purposes of statis-
tical analysis and for use as stimuli for neural recordings
and visual psychophysics. Rather than trying to track
discrete objects (which may be difficult even to define for
some movies, like those of flowing water), we simplify the
problem by tracking individual points within the image
using classic techniques from computer vision [38, 39].
Given a point trajectory, the velocity along that tra-
jectory is a spatially local description of an object’s mo-
tion through three-dimensional space, projected onto the
two-dimensional surface of a sensor array, such as a retina
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or camera. We find that point velocity is highly corre-
lated on the sub-second timescale we measure, and there-
fore point trajectories are highly predictable. More sub-
tly, the distributions of velocity along trajectories exhibit
heavy-tails and nonlinear dependencies, both across hori-
zontal and vertical velocity components and across time.
This suggests the presence of an underlying scale vari-
able, or local standard deviation, so the local velocity
can be modeled as a Gaussian scale-mixture [40]. These
models were developed in previous work examining the
responses of filters applied to natural images and sounds
[10, 41]. We find that the scale fluctuates within indi-
vidual trajectories on a relatively short timescale, so it is
an essential part of our description of natural motion.
Despite considerable differences in the velocity statis-
tics across movies, the dynamic scale-mixture structure
is remarkably consistent. This has important implica-
tions both for the efficient encoding of motion signals
by neurons—which must adapt to the fluctuating scale to
make full use of their limited dynamic range [42-44]-and
for behaviors relying on predictive tracking—which must
take into account the highly non-Gaussian statistics of
natural motion [45].

RESULTS

In order to build up a statistical description of motion
in natural scenes, we analyze movies from the Chicago
Motion Database, which consists of a variety of movies
collected for statistical analysis and for use as visual stim-
uli in experiments. All movies were recorded using a fixed
camera, with scenes chosen to contain consistent, dense
motion within the field of view for minutes at a time.
Scenes include flowing water, plants moving in the wind,
and groups of animals such as insects and fish. While
natural visual input is dominated by the global optical
flow during eye and head movements [20], object motion
warrants specific attention because it is highly behav-
iorally relevant for essential behaviors like escape or prey
capture. Note that these global and local motion signals
are approximately additive, so one can combine them to
form a more complete description of motion for a given
organism. We analyze a total of 15 scenes, with a res-
olution of 512 x 512 pixels, each 2™ = 16,384 frames
long at a frame rate of 60 Hz (~ 4.5 minutes). The high
resolution, frame rate, and lack of compression of these
movies are essential for getting precise motion estimates.
We use lenses approximating the optics of animal eyes
and provide rich metadata for each movie.

For each scene, we quantify local motion using a stan-
dard point tracking algorithm [38, 39]. A set of tracking
points are seeded randomly on each frame, then tracked
both forward and backward in time to generate trajecto-
ries (see Materials and Methods for details). Early visual
and sensorimotor systems operate on a timescale of tens
to hundreds of milliseconds, so we restrict our analysis
to short trajectories (64 frames, or ~ 1 s long) to reduce

the amount of inevitable slippage from the point tracking
algorithm. The resulting ensembles (213 = 8,192 trajec-
tories each) sparsely cover most of the moving objects in
each movie (Figure 1A).

The focus of our analysis is the point velocity, or dif-
ference in position between subsequent frames, measured
in raw units of pixels/frame (this is easily converted to
degrees of visual angle per unit of time, given a fixed
viewing distance). The key advantage of this analysis is
that the velocities are associated in time along a given
point trajectory, which cannot be achieved by looking at
the optical flow [46] or motion energy [47] alone. Note
that since tracking is a difficult problem, the distribu-
tion of velocity constrained to good trajectories differs
from the overall distribution, leading to underestimation
of variance and kurtosis (see Supporting Information).
This analysis is also distinct from previous work exam-
ining the spatiotemporal power spectra of natural scenes
[48, 49], since power spectra measure the globally aver-
aged pairwise correlations between pixels.

Our understanding of motion in natural scenes must be
grounded in what is perhaps the first scientific study of
motion in a natural setting: the diffusive motion of pollen
particles in water observed by Brown [50], later described
theoretically by Einstein [51] and Langevin [52]. See the
Supporting Information for a discussion of Brownian mo-
tion and its relation to our modeling framework. Briefly,
Brownian motion is characterized by a Gaussian velocity
distribution with an exponential correlation function.

Natural scenes are, by definition, as richly varied as
the natural world itself; each movie we analyze captures a
small slice of this immense diversity. Our selection can be
divided into three broad categories—animals, plants (ani-
mated by wind), and water—and we present summaries of
the raw data for a representative movie from each cate-
gory in Figure 1B-D. In contrast to the Gaussian velocity
distributions expected for Brownian motion, histograms
of the raw velocity data tend to be sharply peaked with
long tails. Furthermore, the velocity time series exhibit
correlation functions with diverse shapes, rather than a
simple exponential decay.

Heavy-tailed statistics of natural motion

To examine the heavy-tailed structure of the observed
point-trajectory velocity distributions, we pool horizon-
tal and vertical velocity components together for an ex-
ample movie, bees8-full, and compare this histogram
to a Gaussian distribution with the same variance (Fig-
ure 2A). Plotted on a log scale to highlight the tails, the
empirical frequency falls off nearly linearly away from
zero, while the Gaussian probability falls off quadrat-
ically. The same is true for the other movies in our
dataset, pooled by category and all together (Figure 4A-
C). Velocity distributions from animal and plant movies
tend to have heavier tails, while those of water movies
are closer to Gaussian.
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When multiple variables are involved, heavy tails may
be associated with a nonlinear form of dependency, as ob-
served in the spatial structure of natural images [41]. The
same is true for the two velocity components in our data.
We illustrate this for bees8-full, but results are similar
for all other movies. In Figure 2B we show a heat map of
the joint histogram of horizontal and vertical velocity, u
and v. It is nearly radially symmetric. (For other movies
with unequal variance in the two components, distribu-
tions are elliptic.) When we shuffle the data to break
any association between u and v, the resulting histogram
is no longer radially symmetric but is instead diamond-
shaped (Figure 2C). This is a consequence of the fact
that the Gaussian is the unique function which can be
both radially symmetric and separable. We demonstrate
this dependency more clearly by plotting the conditional
distribution of v for each value of u, normalizing by the
peak value at each w for visualization purposes (Figure
2D). The resulting “bow-tie” shape indicates that the
variance of v conditioned on u increases with the magni-
tude of wu.

The form of the velocity distributions observed above
suggests that they can be modeled as Gaussian scale-
mixture (GSM) distributions. As the name suggests, a
GSM distribution is obtained by combining (zero-mean)
Gaussian distributions of different scales, parameterized
by a positive scalar random variable S. Let Y be a Gaus-
sian random variable with mean zero and variance o%.
If S is a known quantity s, then X = Y's is simply a
Gaussian random variable with mean zero and variance

s20%. The conditional distribution is given by

p(z|s) = N(x;0, s%0% ).

When S is unknown, X = Y S follows a GSM distribution
given by

p(z) = / " p(als)p(s)ds,

where p(s) is a distribution with positive support. A con-
venient choice is to let S = exp(Z), where Z is Gaussian
random variable, which we will refer to as the scale gen-
erator, with mean zero and variance 0%. Then S follows
a log-normal distribution, which simplifies the inference
problem significantly, despite the fact that the result-
ing GSM distribution does not have a closed form. The
choice of a log-normal distribution can also be justified
by a maximum entropy argument [53]. See [41, 54] for a
discussion of the GSM model in the context of wavelet
analysis of natural images. Paremeters were estimated
using a variant of the Expectation-Maximization (EM)
algorithm [55] (see Materials and Methods).

For an individual velocity component as in Figure 2A,
the GSM model captures the shape of the distribution
well, with only two parameters: oy, controlling the over-
all scale, and oz, controlling the heaviness of the tail.
The variance of X is related to these parameters by

0% = 0% exp (20%).

The kurtosis, which is the standard measurement of tail
heaviness, depends only on oz:

Kx = 3exp (40%) .

The kurtosis of X thus grows exponentially with the vari-
ance of Z, and matches the Gaussian kurtosis of 3 if and
only if oz = 0.

To model the joint distribution, as in Figure 2B, clearly
we cannot use independent GSM models for each compo-
nent, since this corresponds to the shuffled distribution
in Figure 2C. Instead, we consider a model in which two
independent Gaussian random variables, Y7 and Y3, are
multiplied by a shared scale variable S:

X, = Y8,
Xy = YaS.

Note that we will maintain the general notation for the
model for clarity. Applied to the velocity data, we have

(X1, X2) = (U,V),

and (Y1,Y3) are the corresponding scale-normalized ve-
locity components. The model is depicted in Figure 3,
and it captures the radially symmetric (or more gener-
ally, when the variances are not equal, elliptic) shape of
the joint distribution. This model has only three pa-
rameters: oy,, oy,, and oz [56]. We observe a wide
range of scale generator standard deviations oz both
within and across categories (Figure 4D). The trend
across categories—namely that animal and plant movies
tend to have higher scale standard deviations than water
movies—agrees with the relative heaviness of the tails for
the pooled data (Figure 4C). On the other hand, oy, and
oy, need not be similar, and many movies had a larger
standard deviation of motion on the horizontal axis than
vertical (the ratio oy,/oy, tended to be less than one,
Figure 4E). The Akaike information criterion calculated
for the two-dimensional GSM model with a common scale
variable indicates that it is a better fit to the data than
a two-dimensional, independent Gaussian model (Figure
4F).

Coding implications of heavy tails

Heavy-tailed velocity distributions pose a particular
challenge for efficient coding via sensory neurons. Con-
sider the classic information theoretic problem of coding
a random variable X with an additive white Gaussian
noise (AWGN) channel [57] [58]. The channel capacity,
C, is a function of the signal-to-noise ratio

1
C= 3 log(1 +SNR),
where SNR = 0% /o3, is the ratio of the signal variance to

the noise variance. The mutual information, I, between
X and its decoded estimate X = X + N, for Gaussian
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noise N, is equal to C if and only if X is Gaussian. Oth-
erwise, I < C, and the coding efficiency E = I/C is less
than one.

We calculate the coding efficiency given the parameters
of a GSM model for X and the noise level 0% to explore
the effects of heavy tails. We have

I(X,X)=H(X)-H(X|X)=H(X)—- H(N),

where
e - [ " p(#) log pld)di
p() = / p(E]s)p(s)ds
p(Z]s) = N(Z;,0, 32032/ + 012\7) ,
and

H(N) = %log(%rea?v) .

To see the effect of heavy tails, we vary 0% and SNR,
keeping either o3 or 0% fixed (Figure 4F). Since I and
C have the same scaling behavior with SNR, £ — 1
as SNR — 400, so the heavy tails have no effect at
very high or low SNR. At intermediate SNR, the coding
efficiency decreases monotonically as 0% increases. The
efficiency reaches a minimum at log SNR = 3/2 for all
02 > 0.

The above calculation describes the loss of coding ef-
ficiency when X is sent through the channel with a con-
stant gain. There are several ways to manipulate X for
better efficiency. One is to ‘Gaussianize’ X, that is, to ap-
ply a compressive nonlinearity f such that f(X) is Gaus-
sian. Neurons have been shown to implement this kind of
efficient coding by matching their response nonlinearities
to natural scene statistics [2], although the mapping is to
a uniform distribution over a fixed interval rather than a
Gaussian[59]. This method can be applied to each chan-
nel (velocity component) and time step independently.
The downside of this strategy is that it introduces signal-
dependent noise, since X = f7[f(X)+N]# X+ N. In
particular, velocity values with high magnitude, which
may be the most relevant for behavior, will have high
noise.

Another strategy is to demodulate or normalize X by
estimating S and dividing X by it. If the estimate is
accurate, then X/S =Y ~ Y, a Gaussian, and channel
efficiency for Y will be high. In order to recover X, Z =
log S will need to be encoded in another channel, and the
two sources of additive noise will result in multiplicative
noise and heavy-tailed additive noise in the estimate:

Of course, this strategy fails for a single variable X
since the only reasonable estimate for the scale is S =
| X[, so that Y = +1. However, since two velocity com-
ponents share a common scale variable, the estimate can
be improved by making use of both components. Fur-
thermore, since the scale is correlated in time, as shown
in the next section, the history of X (¢) can also be used
to further improve the estimate S,

The dynamics of natural motion

While the time-independent statistics of velocity are
important, a full description of how objects move must
include how the velocity evolves over time along point
trajectories[60]. This motivates our point tracking anal-
ysis, which provides information that cannot be gleaned
from motion estimates at fixed locations alone. From
the raw data we know the velocity is highly correlated at
short time lags, but it is not clear how the scale variable
enters into play. We again inspect the joint velocity dis-
tribution for an example movie, now across neighboring
time points for one velocity component (Figure 5A). The
tilt indicates strong linear correlation across time in the
velocity, as expected, and we note that the overall shape
is elliptic, as in the uncorrelated GSM model. In Figure
5B we condition on the velocity at one time-step, and ob-
serve the same bow-tie shape as in the horizontal-vertical
joint distribution. Thus, two forms of dependence-linear
correlation and the nonlinear dependence due to the scale
variable—coexist.

We next ask whether this scale variable is constant in
time (varying only from trajectory to trajectory) or dy-
namic (varying in time within a given trajectory). If it
is constant, the jointly heavy-tailed distribution of the
two components will not depend on the alignment of the
two components in time, so long as they are from the
same trajectory. In Figure 5D, we examine these joint
distributions after shifting one component relative to the
other by a time lag, for a range of lags. The distribu-
tions gradually shift from the radially symmetric zero-
lag distribution to a diamond shape similar to the shuf-
fled distribution. This is most clearly seen by comparing
the p = 0.01 isoprobability contours as the lag increases
(Figure 5C). In other words, the nonlinear dependence
induced by the shared scale variable decreases as the lag
increases. We conclude that the underlying scale vari-
able is dynamic. Notably, we can detect these changes
within the ~ 1 s long trajectories to which we limit our
analysis. This would not be the case if the scale were
to change only on a very long timescale or only across
different point trajectories within a scene.

X = (Y—}—Ny) exp (Z + NZ) = X exp(Nz)+Ny exp (2 4+ Nz ) We would like to capture this dynamic scale variable

The question of whether it is better to use a single chan-
nel inefficiently or to use two channels efficiently depends
on the cost associated with each channel and its SNR-
dependent energy consumption.

in our model of natural motion. It is straightforward to
make the GSM model dynamic by replacing each Gaus-
sian variable with an autoregressive Gaussian process,
and we call this new model the ARGSM model. We il-
lustrate it schematically in Figure 6 by generating exam-
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ple traces for one Gaussian velocity component Y and
the scale generator Z. Note that the autoregressive scale
generator variable is the temporal equivalent to the spa-
tial Markov random fields explored in the image domain
[41, 61, 62]. Given this model, we perform estimation
of the parameters using a stochastic approximation vari-
ant of the expectation-maximization (EM) algorithm (see
Materials and Methods). Example traces illustrating the
results of this model are shown in Figure 7TA-C. The es-
timated autoregression coefficients determine the corre-
lation functions of the underlying Gaussian velocity and
scale generator processes, which we plot for each movie
in Figures 7D and E, respectively. The fact that some
velocity correlation functions and many scale generator
correlation functions do not go to zero over length of
the trajectories could indicate a nonzero mean compo-
nent that varies from trajectory to trajectory, but this is
beyond the scope of the present analysis. Average cor-
relation functions across categories are shown in Figure
7TF-G. We also report the time to 0.5 correlation for each
movie for the velocity in Figure 7TH-I. Akaike information
criterion (AIC) scores (Figure 7K) indicate that the full
ARGSM is a better fit to the data compared to the AR
model. It is also a better fit compared to the ARGSM
model with a static Z value for each trajectory, indicating
that a dynamic scale variable is essential for describing
the data. In the context of visual tracking of moving
objects, the timescales of these correlations functions are
extremely important. On one hand, the velocity correla-
tion time determines how far into the future motion can
be extrapolated. On the other hand, the scale correlation
time determines the timescale on which adaptation must
take place in order to efficiently process motion signals
with limited dynamic range.

Finally, we ask whether the full ARGSM model is nec-
essary to carry out scale normalization in practice for our
trajectory data. Our model fitting provides an estimate
of the scale at each time point, which we use to normalize
the raw data. To quantify normalization performance, we
calculate the kurtosis, or fourth standardized moment,
which measures how heavy-tailed a distribution is. The
standard reference is a Gaussian random variable, which
has a kurtosis of 3. In Figure 8 we compare the kurtosis
of the velocity before and after dividing by a point esti-
mate of the scale under three models of increasing com-
plexity. If normalization is successful, the distribution
of the resulting normalized velocity should be approxi-
mately Gaussian. Under the time-independent model the
normalized velocity consistently has kurtosis less than 3,
indicating that the scale tends to be over-estimated (Fig-
ure 8A). In contrast, for a model with correlated velocity
and constant scale for each trajectory, the kurtosis is con-
sistently larger than 3, indicating that the scale tends to
be underestimated (Figure 8B). Only the full model, with
correlated velocity and a dynamic, correlated scale vari-
able yields a kurtosis around 3 for each movie, even with
highly kurtotic data (Figure 8C).

This exercise of using the ARGSM model to estimate

the scale at each time point, then dividing the velocity
by this scale, serves as a proxy for what the nervous sys-
tem can achieve through adaptation mechanisms. An
important caveat is that the model has access to the full
trajectory, while the nervous system must operate in an
online, causal setting.

Implications for prediction

Prediction is an important problem both for compres-
sion via predictive coding and for overcoming sensory
and motor delays during behavior. Prediction is built
into the ARGSM framework since the regression coeffi-
cients of the AR models are optimal for predicting the
next time step of Yy and Z; given their past values. Let
Y; and Z; denote the predicted values:

}/t:f/t'i_vta
Zt:Zt+<t'

The variance explained by a prediction X, is given by

x) - (%~ %))

= (x7)

For the Gaussian process Y; this simplifies to

2

2 2
2 9% Oy
Ry=—=5=1-—.
o o
Y Y

Assuming knowledge of the histories of both X; and Z;,
the prediction for X; is

Xt = th eXP<Zt) )
The associated variance explained is
R2 _ R2 9 1 2 ) 2
x|z = vy exp 50’( exXp UC .

This is an upper bound on the performance of any pre-
dictor with access only to X;.

Notably, R%Q 5 is independent of 0%: the variance ex-
plained under the ARGSM model for X is equal to the
variance explained for Y, multiplied by a function of the
variance of the innovation noise for Z that slowly de-
creases from one to zero. Since the innovation noise is
small for the estimated models, we expect it to have
little effect. In Figure 7J we compare the variance ex-
plained by applying naive autoregression to X;, R%, to
R% and R§(| , using the estimated model parameters.
The variance explained is close to one for all movies ex-
cept three depicting insects. Values of R% tend to be only
slightly smaller than R?X‘ 4+ We conclude that heavy-
tailed statistics have little effect on the predictability of
natural motion, although scale estimation is necessary


https://doi.org/10.1101/2023.10.19.563101

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.19.563101; this version posted June 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

for estimating the variance associated with the predic-
tion, that is, the variance of the posterior distribution
P K1) = N (4; 4, 02 exp(24)).

Long correlation times and high values of R? indicate
that the velocity time series of natural motion are highly
predictable. One way to make use of this predictability
is through predictive coding, in which only prediction er-

rors (with variance 0% — a?z, as opposed to 0% for the

original signal) are sent through a channel. However, this
may be a challenge for the visual system, since motion
in encoded in spatial arrays of neurons rather than in-
dividual channels. A second use is actually carrying out
the prediction to compensate for delays in perception or
to drive motor output. Note that since the position g of
a point is the integral of its velocity, the prediction of
position by means of correlations in the velocity is given
by G(t + ) = q(t) + [y 9(t + 7)dr, where d(t + 7) is the
prediction of the velocity at time 7 given its history up
to time ¢.

DISCUSSION

The observed pattern of heavy-tailed velocity distri-
butions in natural movies, with a scale parameter that is
shared across velocity components and fluctuates in time,
is remarkably consistent across scenes and categories, de-
spite substantial variation in the content of those scenes,
velocity correlation functions, and the overall velocity
variance. Together with previous results showing similar
statistics in natural images and sounds [10], this suggest
that scale-mixing is a fundamental property of natural
stimuli, with deep implications for both neural coding
and behavior.

In the context of object motion, scale-mixing may arise
from two distinct mechanisms, as outlined in our discus-
sion of Brownian motion (see Supporting Information).
First, objects may appear at a variety of distances from
the observer, and those distances may change over time.
The velocity of a point on an object as it appears to
an image forming device, like a camera or eye, is an an-
gular velocity, which can be calculated as the tangen-
tial component of the physical velocity divided by the
distance. A fluctuating distance thus scales the overall
angular velocity over time: even an isolated point mov-
ing with Gaussian velocity statistics in three-dimensional
space will have a heavy-tailed angular velocity distribu-
tion from the perspective of the observer. Second, the
scale of the driving forces (either internal or external)
may fluctuate over time. In our scenes, this corresponds
to changes in the behavioral states of animals or to the
turbulent nature of water and the wind driving plant mo-
tion. Since heavy-tailed distributions and scale fluctua-
tions are observed in scenes with very little variance in
depth, such as bees8-full, we emphasize that this mech-
anism is also at play in natural scenes.

Regardless of the source of scale-mixing, strategies for
encoding and behaviorally compensating for it should

be similar. On the encoding side, the presence of lo-
cal scale variables suggests that sensory systems should
adapt their response properties to local statistics in or-
der to maximize information transmission. Given a fixed
distribution of external input values, the optimal neu-
ral response function is the one that produces a uniform
distribution over the neuron’s dynamic range [2]. The
logarithmic speed tuning observed in MT [63] is consis-
tent with this kind of static efficient coding. Here, we
demonstrate that the scale of the distribution changes
over time, so the gain of the response function should
also change to match it [64-66]. Such adaptation or gain
control is observed throughout the nervous system (see
[67] for a recent review), including in systems relevant
to object motion encoding[42-44, 68]. This adaptation
could be the result of subcellular mechanisms, such as
the molecular kinematics of synaptic vesicle release [69],
or nonlinear circuit-level mechanisms [70, 71]. By mea-
suring the timescale on which the scale variable fluctu-
ates in natural movies scenes, we have determined the
timescale on which adaptation mechanisms in the brain
should operate. Although the range is considerable, for
most movies the time to 0.5 correlation for the scale gen-
erator is less than one second (Figure 7I). Future experi-
ments could be targeted at probing adaptation timescales
in the retina and cortex of various model organisms that
occupy different environments. Our prediction is that
these adaptation variables will tightly match the motion
statistics in the organism’s ecological niche.

Beyond single-cell adaptation, our results are also rele-
vant to a population-level adaptation mechanisms known
as divisive normalization [72, 73], in which neighboring
neurons in a population are mutually inhibitory in a di-
visive fashion. In many systems, motion is represented
by a local population of neurons, each tuned to a narrow
band of directions. Our results show that the fluctuat-
ing scale is shared between horizontal and vertical ve-
locity components, and, hence, adaptation should ideally
be distributed throughout the local population. Divisive
normalization is a prime candidate for the implemen-
tation of this population-level adaptation, as has been
suggested for GSM models of filter responses [10, 74—
78]. Most models of divisive normalization only capture
steady-state responses to static or constant velocity stim-
uli, although some work has been done to describe the
dynamics of divisive normalization during change detec-
tion and decision making [79, 80]. Again, these dynamics
should be tuned to the timescale of the scale fluctuations
measured here.

These data suggest a previously unexplored challenge
for adaptation mechanisms in the context of object mo-
tion: an object may travel an appreciable distance before
local mechanisms have a chance to take effect. A solution
is to pool from a larger neighborhood, or, more intrigu-
ingly, for a local population to receive an adaptation sig-
nal selectively from those neurons in nearby populations
whose preferred directions point to it. To our knowledge,
these hypotheses have not yet been explored, either the-
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oretically or experimentally.

In terms of behavior, our results help refine our under-
standing of the object tracking problems animals must
solve in natural environments, which are crucial to sur-
vival. A commonly invoked framework for tracking is
sequential Bayesian inference under a state-space model
[45]. In this framework, the brain has a probabilistic
representation of the state of the object (that is, a prob-
ability distribution over its position and velocity). An
internal model of object motion is used to evolve this
distribution forward in time, and this prediction is com-
bined with incoming measurements to update the esti-
mated state distribution. Under Gaussian assumptions
this yields the famous Kalman filter solution [81]. Our
work has two important implications for the state-space
model framework of object tracking. First, the veloc-
ity distributions we observe are typically non-Gaussian,
so the Kalman filter solution is not strictly applicable.
While heavy tails have little impact on prediction, they
have a large effect on the uncertainty of the posterior
estimate. Second, state-space models usually model the
velocity as either an AR(1) or (discrete) diffusion pro-
cess (i.e., a nonstationary AR(1) process with coefficient
equal to one). The AR models we fit for the underlying
Gaussian components generally have more than one large
coefficient. The ARGSM model could naturally serve as a
predictive state-space model that incorporates these em-
pirical observations by including the recent history of the
velocity and scale in the state description (note that the
scale does not have a corresponding direct measurement,
but it can be estimated the incoming velocity measure-
ments). Flexible Bayesian methods like the particle filter
[82] can be used to implement such a model. The merg-
ing of the sort of adaptation mechanisms described above
with neuromorphic particle filtering [83] is an intriguing
avenue for future research.

Motion estimation itself can be framed as a Bayesian
inference problem, and the tracking algorithm we use cor-
responds to a Gaussian prior [84]. The ARGSM model
could thus serve as a better prior, motivating new mo-
tion estimation algorithms based on natural scene statis-
tics. Speed perception in humans and animals can also be
viewed through the lens of Bayesian inference, and exper-
imental results are consistent with a heavy-tailed prior,
specifically, a power law [85, 86]. The GSM model yields
a heavy-tailed distribution for speed compared to the
Rayleigh distribution expected under Gaussian assump-
tions, but it is not a true power law. Since power laws are
an idealization and are always subject to some cutoff, the
GSM model may be considered a more realistic (if less
tractable) alternative. The correlated scale fluctuations
also suggests that optimal Bayesian inference should be
history-dependent, which could be assessed psychophys-
ically using, e.g., a trial structure that is correlated in
time.

Finally, the significant diversity of velocity and scale
correlation functions and variances across scenes has im-
plications both for efficient coding and tracking. Namely,

an encoder or tracker which is optimized for the statistics
of one scene will be suboptimal for others. Indeed, there
is a general trade-off in adaptation to global versus lo-
cal statistics [87, 88]. The original efficient coding work
posited adaptation on evolutionary timescales to natu-
ral scene statistics. Here, we emphasize the subsecond
timescale of scale fluctuations in natural motion. Neural
systems should also have the flexibility to adapt on in-
termediate timescales to changes in the environment or
behavioral context [89].

MATERIALS AND METHODS
Point tracking

We compute short trajectories using the PointTracker
function in Matlab’s Computer Vision toolbox. The func-
tion employs a Kanade-Lucas-Tomasi [38, 39] feature
tracking algorithm, which uses multi-scale image regis-
tration under a translational motion model to track indi-
vidual points from frame to frame. Briefly, given an im-
age patch I(x,y,t) centered on some seeded initial posi-
tion, the algorithm finds the displacement (Az, Ay) that
minimizes the squared error,

& = [[ Uity = 10+ Aoy + Ayt -+ Do) dady,

and updates the seed position on the next frame. Our
strategy is to collect as many high-quality, short tra-
jectories (64 frames) as possible from each movie, then
subsample these down to a reasonable number of tra-
jectories (8,192) for statistical analysis. Initial points
are seeded using the detectMinEigenFeatures function,
which detects image features that can be tracked well
under the motion model [90]. From the initial seeds, we
run the tracking algorithm forward and backward for 32
frames each, rather than running it in one direction for
64 frames. This increases the chances of capturing short-
lived trajectories bounded by occlusion or image bound-
aries. Points are seeded on each frame, so the result-
ing set of trajectories is highly overlapping in time. On
most movies we employ the built-in forward-backward
error checking method [91], with a threshold of 0.25 pix-
els, to automatically detect tracking errors. The excep-
tions are three movies depicting water (water3, water5,
and water6) where the small threshold leads to rejecting
most trajectories, so we use a threshold of 8 pixels. In
these cases there are not well-defined objects, so relax-
ing this strict criterion is justified. The algorithm uses a
multi-resolution pyramid and computes gradients within
a neighborhood at each level. We use the default values
of 3 pyramid levels and a neighborhood size of 31 by 31
pixels for all movies except the 3 water movies, where
we find we can decrease the amount of erroneously large
jumps in trajectories by increasing the neighborhood size
to 129 by 129 pixels and using only 1 pyramid level (at
a cost of greater computation time).
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This method automatically tracks the stationary back-
ground points, which may be erroneously “picked up” by
a moving object as it traverses that location. To en-
sure that the trajectories we analyze are full of motion,
we define a speed (velocity magnitude) threshold of 0.1
pix/frame, and discard trajectories in which 16 or more
time steps are below this threshold.

The velocity time series is simply the first difference of
the point positions along each trajectory. Within each
ensemble, we subtract the ensemble mean from each ve-
locity component (this is typically very close to zero, ex-
cept for some water movies with a persistent flow). We
then slightly rotate the horizontal and vertical velocity
components to remove small correlations between them
(these arise if, for example, objects tended to move along
a slight diagonal relative to the camera’s sensor). All vi-
sualizations and calculations are carried out after these
minor preprocessing steps. Note that we do not subtract
the average velocity within each trajectory, as this intro-
duces an artificial anticorrelation at long lags.

Gaussian scale-mixture models

The basic one-dimensional Gaussian scale-mixture
model is described in the main text. Note that for some
choices of the distribution for S, the distribution for
X has a closed-form solution. For example, the well-
known Student’s t¢-distribution is formed when S fol-
lows an inverse y-distribution, and the Laplace distri-
bution is formed when S follows a Rayleigh distribu-
tion. In this work, we assume S follows a log-normal
distribution, which does not yield a closed-form distri-
bution for X. This choice makes modeling correlations
straightforward, as will be made clear below. In practice,
the lack of a closed-form p(x) is not a drawback, since
we do not need to normalize the posterior distribution,
p(s|z) < p(x]s)p(s), in order to sample from it.

When considering multiple variables, a shared scale
variable introduces a nonlinear form of dependence be-
tween them. Suppose X; = Y15 and Xy = Y55, If Y
and Y5 are uncorrelated, then X; and X5 are condition-
ally independent given S:

p(1, 22|8) = p(1]|s)p(w2ls) .

However, X; and X5 are not, in general, independent:

p(en,2) = / " p(a|s)p(a|s)p(s)ds # play)p(a2)

This nonlinear dependence manifests itself in the elliptic
level sets of p(x1, x2), in contrast to the diamond-shaped
level sets of p(z1)p(x2). Note that this nonlinear de-
pendence can coincide with the usual linear dependence
if Y7 and Y5 are correlated, and that a weaker form of
nonlinear dependence may be present if X; = Y757 and
X5 =Y55;, where S7 and Sy are not independent.

Autoregressive models

Autoregressive models [92, 93] are a well-established
and flexible way to capture correlations in time series
data by supposing a linear relationship between the cur-
rent value of a random variable with its previous values.
Given a time series, {X1,..., X7}, the kth order autore-
gressive, or AR(k), model is given by

k
X = Z P Xp—i + &
=1

where {¢1,...,¢r} are regression coefficients and & is
Gaussian innovation noise with variance o2.

The order k is typically chosen by cross-validation to
avoid over-fitting. This makes sense from the standpoint
of finding a model that generalizes well to new data.
However, our primary aim here is simply to measure
the autocovariances of the hidden variables, since their
timescales are relevant to prediction and adaptation in
the nervous system. For this reason, we choose k to be
as high as possible: k£ = 31 time steps, since k must be
less than T/2.

Typically, the model parameters are fit by standard lin-
ear regression (after organizing the data appropriately)
[94]. However, this method gives maximum likelihood
estimates only if the initial k time steps are considered
fixed. If the initial data are assumed to be drawn from
the stationary distribution defined by the parameters,
the problem becomes nonlinear. The EM algorithm de-
scribed below requires parameter estimates to be maxi-
mum likelihood, and since we would like the initial k& time
steps (where k is large) to be modeled by the stationary
distribution, we must pursue this more difficult course.
We calculate the maximum likelihood estimates numer-
ically, following [95]. See Supporting Information for a
full description of this method.

The ARGSM model

The dynamic scale-mixture model generalizes the two-
dimensional, shared scale variable GSM model described
above to time series, assuming the underlying Gaus-
sian random variables, Y7 and Y5, and the generator, Z,
of the scale variable are all AR(k) processes. Specifi-
cally, let X5, = Y1:5; and X9, = Y5.S5;. Written
as T-dimensional vectors, we have X; = Y; ® S and
Xo = Yo ®S, where ® is element-wise multiplication.
The AR process assumptions imply

p(y1) =N (y1;0,%y;)
p(y2) = N (y2;0,3y,)
p(z) =N (20,2z2)

where the covariance matrices are determined by the
parameters of independent AR(k) models as described
above. S is related to Z by element-wise application of
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the exponential function, S = exp(Z). When Z is known,
we have

p(X1|Z) = N(Xl;(),DSEYle)
p(x2|z) = N (x2;0, D%y, Ds)

where Dy is the matrix with the elements of s along the
diagonal and zeros elsewhere.

EM and stochastic approximation

The classic Expectation-Maximization, or EM, algo-
rithm is a useful tool for finding (local) maximum likeli-
hood estimates of parameters of hidden variable models
[55]. Let 0 = {¢y,, dy,, bz, 0%, ,0%,,0%} be the collec-
tion of parameters of the ARGSM model, where each ¢
is the vector of AR coefficients and each o2 is the in-
novation variance for each variable. The observed data,
D = {Xin, X2}, 1 < n < N, are the N pairs of T-
dimensional vectors corresponding here to the horizontal
and vertical velocity along each trajectory. The hidden
variables, H = {z,},1 <n < N, are the Gaussian gener-
ators of the time-varying scale associated with each tra-
jectory. The likelihood,

L = logp(D|#)
N
= Z IOg/ p(xl,n; X2,n
n=1 RT

is intractable to maximize due to the high-dimensional
integral. The EM algorithm finds a local maximum iter-
atively. Starting with an initial guess for the parameters,
0o, at each step one computes the expectation with re-
spect to the probability distribution of the hidden vari-
ables given the data and the current parameter estimate
0; of the complete data log-likelihood,

Q(016:) = Epip.0,) [log p(D, H|0)] ,

then updates the parameters to maximize this function,

z,0)p(z|0) Dz

011 = argmeaxQ(G\Gt) .

In our setting, we have

Q(010;) =
N
1 - - —
D) Z E [YIT,nEYll}’Ln + ygT,nEyzlyz,n + zzﬁzlzn] +K
n=1
1
= _itr (CY1 Z;ll + CYQE;; + CZE;) + K
where

and similarly for Cy, and Cy,. Note that in this context,
the y variables are merely shorthand for y; , = %1, @sy,,
and y2, = X2, © S, Where © is element-wise division.
Given the C matrices, the corresponding R matrices de-
fined above are easily computed, from which the maxi-
mum likelihood estimates of the AR parameters can be
calculated.

Unfortunately, the expectation values in the C matri-
ces are also intractable, but they can be approximated
through sampling methods. A variant of the EM al-
gorithm, called stochastic approximation EM, was de-
veloped to address this problem [96]. Given a sample
from the distribution p(H|D, 6;), one calculates the sam-
ple matrices C, then updates the stochastic approxima-
tions as

Ci=Ci1+m (Ct - Ct—l) .
The sequence of parameters 7, is given by

1 1<t<a
= t—a)™ t>a

We choose oo = 2500 or 5000, so that the algorithm runs
in a fully stochastic mode until the parameter estimates
are nearly stationary, and 8 = 1, so that after this ini-
tial period, the algorithm converges by simply taking a
running average of the samples of the C matrices. Impor-
tantly, the samples do not need to be independent across
iterations for the algorithm to converge [97]. This means
that, when performing the Gibbs sampling described be-
low, we only need to update each hidden variable ele-
ment once for each iteration, rather than updating many
times and throwing out samples to achieve independence.
Since each M-step (the AR model MLE algorithm de-
scribed above) is much faster than each E-step (calculat-
ing the C matrices through sampling), this results in a
more sample-efficient algorithm [98].

We also estimate the expectation of the hidden vari-
ables {z,} in an identical fashion. This is equivalent to
a Bayesian point estimate where the estimated param-
eters form a forward model and prior. These estimates
are then used to remove the scale from the velocity, in
order to examine the kurtosis under different model as-
sumptions (Figure 4).

The EM algorithm, and its stochastic approximation
variant, converges to a local maximum of the likelihood
function that depends on the initial conditions. We find
that, in practice, it is important to introduce the scale
variable gradually to the model. We initialize the model
with AR parameters fit to the raw data for the Y; and Y5
components, and let Z be uncorrelated with very small
variance (regression coefficients ¢, = 0 and innovation
variance 0% = 0.052(Yy,.0 + 7v2.0)/2)-
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Sampling methods

We use a combination of Gibbs and rejection sam-
pling to sample from the posterior of the hidden variables
given the data and the current parameter estimates [99].
In Gibbs sampling, an initial vector z is used to gen-
erate a new sample by sampling each element individu-
ally, conditioned on the remaining elements. Since the
conditional distribution is intractable, we use rejection
sampling, which allows us to sample from an arbitrary,
unnormalized distribution by sampling from a proposal
distribution (in this case a Gaussian with parameters
chosen to envelope the conditional distribution) and re-
jecting some draws in order to shape it into the target
distribution. See Supporting Information for a detailed
description of the sampling algorithm.
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FIG. 1: Automated point tracking reveals a diversity of motion statistics across natural scenes. A.
Natural movie data analyzed via point tracking yields an ensemble of ~ 1 s long point trajectories. B-D. Raw data
summaries for three example movies, (B) bees8-full, (C) treesi14-1, and (D) water3. i. Joint and marginal dis-
tributions for horizontal (u) and vertical (v) velocity components. Overlaid isoprobability contours for the joint dis-
tributions are p(u,v) = 107!, 1072, and 10~3 for B and C and p(u,v) = 1072, 102, and 10~* for D. ii. Seven
example horizontal velocity component time series. iii. Horizontal and vertical velocity correlation functions.
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FIG. 2: Velocity distributions are jointly heavy-tailed. A-D. Velocity distributions for a single example
movie, bees8-full. The marginal distribution for horizontal velocity (A) has much heavier tails than a Gaussian
with the same variance, and is well fit by a Gaussian scale-mixture model. The joint velocity distribution (B) is
roughly radially symmetric, which differs substantially from the shuffled distribution (C) and indicates a nonlinear
dependence between the two velocity components. This dependence is alternatively revealed by the conditional dis-
tribution of the vertical velocity given the horizontal velocity (D), showing a characteristic bow-tie shape.
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For the joint distributions, probabilities less than 10~2 were set to zero to facilitate comparison with empirical his-
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izontal velocity components, grouped by category. B. Legend of individual movie names for A and all subsequent
plots. C. Marginal distributions for the combined data across categories. Each velocity component of each movie
was normalized by its standard deviation before combining. D. Estimated standard deviations for the scale gen-
erator variable, Z, varied across movies, corresponding to different amounts of kurtosis. E. The ratio of estimated
standard deviations of the underlying Gaussian variables, Y7 and Ys, showing the the degree of anisotropy. F. AIC
values for the two-dimensional, shared scale GSM model versus the two-dimensional, independent Gaussian model.
G. Coding efficiency as a function of signal-to-noise ratio for different values of o.
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izontal velocity across two adjacent frames for an example movie (bees8-full). The tilt indicates a strong linear
correlation, while the elliptic shape in (A) and bow-tie shape in (B) indicate the coexistence of a nonlinear depen-
dence due to an underlying scale variable. C-D. Isoprobability contours at p = 0.01 of the joint distributions of
the two components separated by 7 frames (D) show a gradual transformation from the original circle (Figure 2B)
towards the diamond shape of the shuffled distribution (Figure 2C), indicating that the nonlinear dependence de-
cays slowly over time. Isoprobability contours are overlaid in C for clarity.
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the observed process with fluctuating scale (D). Only one component is depicted. In the full model, two inde-
pendent Gaussian processes share a common scale process. E. Dependency graph for the variables in the one-
dimensional model.
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FIG. 7: Quantifying velocity and scale correlations. A-C. Example traces of the raw velocity (A), scale-
normalized velocity (B), and estimated scale variable (C). D. Temporal correlation functions for the underlying
Gaussian processes of each movie, grouped by category. Horizontal and vertical components were averaged be-
fore normalizing (equivalently, each component was weighted by its variance). E. As in D, for the scale-generating
Gaussian process, Z. F. The Gaussian process correlation functions in D averaged within categories. G. As in F,
for the scale-generating Gaussian process correlation functions in E. H. Lag time to reach a correlation of 0.5 for
the underlying velocity Gaussian processes for each movie (components were weighted by variance as in D). I. As
in H, for the scale-generating Gaussian process. J. Variance explained for each movie. Variances were averaged

across horizontal and vertical components before calculating R?. K. AIC values for for different models for each
movie. Lower values indicate better model fit.
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FIG. 8: A dynamic scale-mixture model is necessary for effective normalization. A. Kurtosis of the ve-
locity before and after dividing by a point estimate of the scale (bottom) under the time-independent model (top).
Kurtosis was computed by pooling the two components after normalizing by each standard deviation, so that differ-
ences in the variance across components do not contribute additional kurtosis. A Gaussian distribution has a kurto-
sis of 3 (dashed lines). B. As in A, but for a model with autocorrelated Gaussian processes and a constant scale for
each trajectory. C. Asin A, but for the fully dynamic model.
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