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ABSTRACT

Given an origin, a destination, and a directed graph in which each
edge is associated with a pair of non-negative costs, the bi-objective
routing problem aims to find the set of all Pareto-optimal paths. This
problem is societally important due to several applications, such
as route finding that considers both vehicle travel time and energy
consumption. The problem is challenging due to the potentially
large number of candidate Pareto-optimal paths to be enumerated
during the search, making existing compute-on-demand methods
inefficient due to their high time complexity. One way forward is
the introduction of precomputation algorithms. However, the large
size of the Pareto-optimal set makes it infeasible to precompute
and store all-pair solutions. In addition, generalizing traditional
single-objective hierarchical algorithms to bi-objective cases is non-
trivial because of the non-comparability of candidate paths and
the need to accommodate multiple Pareto-optimal paths for each
node pair. To overcome these limitations, we propose Multi-Level
Bi-Objective Routing (MBOR) algorithms using three novel ideas:
boundary multigraph representation, Pareto frontier encoding, and
two-dimensional cost-interval based pruning. Computational exper-
iments using real road network data demonstrate that the proposed
methods significantly outperform baseline methods in terms of
online runtime and precomputation time.
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1 INTRODUCTION

Given a graph in which each edge has a pair of non-negative costs,
the bi-objective routing (BOR) problem aims to identify the set of
all Pareto-optimal paths (also known as the Pareto frontier, the non-
dominated set) between an origin and a destination. To compare
paths with two (conflicting) costs, the dominance relation between
the paths is defined as follows [6]: path p dominates another path p’
if both components of the cost of p are less than or equal to the cor-
responding components of the cost of p’, and their costs are not the
same. For example, consider the spatial network shown in Figure
1 and the origin ny and destination n7. Among the five paths con-
necting the origin and destination, the Pareto frontier contains two
non-dominated paths: [ng, n3, ns, n7] and [ng, n1, n3, ns, n7], with
costs (10, 17) and (11, 16), respectively. By comparison, a path like
[no, n2, n4, ne, n7] with cost (18, 20) is not Pareto-optimal, since it is
dominated by path [ng, n3, ns, n7] with cost (10, 17).

The computation of the complete Pareto frontier in BOR prob-
lems is crucial as it provides a comprehensive spectrum of optimal
solutions. Given that users’ preferences vary and are typically un-
known to the computing system, the most desirable solution can
differ. Thus, considering only a subset of the Pareto frontier risks
overlooking the solution that best aligns with a particular user’s
preferences. Drivers of electric vehicles, for example, are keenly
interested in routes that minimize battery drainage as well as travel
time. Different drivers (e.g., eco-conscious drivers, drivers in a hurry,
etc.) may be interested in different subsets of the Pareto-optimal
paths at different times. The BOR problem has other applications as
well. One example is collaborative path selection, where stakehold-
ers with differing objectives must negotiate a universally acceptable
path (e.g., municipal light rail routing through a University campus
[13]). Without the complete Pareto-optimal set, the negotiation
space would have been severely limited. In sum, computing the
complete Pareto-optimal set in BOR provides a holistic range of
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Figure 1: Example input bi-objective network. Paths
[no, n3, n5, ny] and [ng, n1, n3, n5, n7] form the Pareto frontier
between ny and ny.

alternatives that can be intelligently filtered to identify the most
desirable paths given a specific user profile and preference system
[18, 30]. This exhaustive approach ensures that solutions are robust,
flexible, and adaptable to various real-world scenarios [28].

The BOR problem is challenging due to the non-comparability of
candidate paths and the potentially large volume of Pareto-optimal
paths that need to be enumerated, which leads to the high time
complexity of the path search process. In fact, it is an NP-hard
problem and the number of solutions may be exponential in the
number of nodes in the worst case [20].

Current methods for bi-objective routing broadly include exact
methods [11, 14, 19, 20, 26] that compute the complete Pareto-
optimal set, as well as non-exact methods based on subset approxi-
mation [9, 21, 27] and constrained shortest path search [1, 16, 22,
23, 31, 32]. Of concern here are the exact methods for solving BOR
problems. An early work by Raith et al. [20] studied how tradi-
tional path enumeration strategies like ranking, label-correcting,
and label-setting (e.g., Dijkstra) could be applied to the BOR prob-
lem. These Dijkstra-like methods were later extended [26] to in-
clude a bi-directional search. A well-received method, NAMOA*dr
[19], shortens the search process using precise label setting to re-
duce the count of dominance checks. Hernandez et al.’s bi-objective
A* (BOA*) algorithm [11] further refines the dominance check op-
eration. However, since all these methods are pure compute-on-
demand methods, their time complexity remains unreasonably high
due to the enormous number of Pareto-optimal subpaths encoun-
tered during the online path search process.

One way forward is to rethink techniques used to facilitate single-
objective routing and adapt them for today’s online on-demand
BOR environment. A common approach in single-objective rout-
ing involves precomputing all-pair solutions and storing them
online, simplifying the routing process to merely retrieving re-
quested origin-destination pairs from the precomputed results [24].
Additionally, prior work on single-objective hierarchical routing
[2, 3, 10, 12, 15, 29] has explored graph partitioning and storing
only the shortest paths between specific nodes within subgraphs to
reduce precomputation time and storage requirements. These paths
are then concatenated across fragments over a summary graph to
generate the shortest paths throughout the entire graph.

However, generalizing traditional single-objective hierarchical
algorithms to bi-objective cases is non-trivial due to multiple factors.
First, traditional hierarchical algorithms rely on the assumption
that candidate paths can be sorted based on a single objective. This
assumption does not hold in bi-objective scenarios where paths may
be non-comparable (i.e., non-dominated) with each other. Second,
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whereas traditional hierarchical algorithms focus on maintaining
only the shortest path for each node pair, bi-objective scenarios
require the precomputation and retrieval of multiple Pareto-optimal
paths (i.e., the Pareto frontier) between node pairs. This complexity
further motivates the development of innovative pruning tech-
niques that efficiently reduce the search space for hierarchical al-
gorithms.

Thus, we propose a Multi-level Bi-Objective Routing (MBOR) ap-
proach that incorporates three innovative concepts: boundary multi-
graph representation, Pareto frontier encoding, and two-dimensional
cost-interval based pruning. Our main contributions are as follows:

e We introduce the concept of a boundary multigraph to facil-
itate bi-objective searching across fragments and describe
a novel materialization representation named a Multi-level
Encoded Pareto Frontier View (MEPFV).

e We propose a basic multi-level bi-objective routing algorithm
(MBOR-Basic) to efficiently encode and retrieve Pareto fron-
tiers from an MEPFV.

e We introduce an advanced version of the algorithm to reduce
the search space, MBOR-Adv, which utilizes two novel prun-
ing techniques, one based on a two-dimensional cost-interval
and the second, a multi-edge pruning technique.

e We prove the correctness and completeness of our proposed
methods and validate them through extensive experiments
on real road network datasets. Results show methods with
precomputation have significantly faster online runtime than
the compute-on-demand methods. Further, MBOR-Adv can
significantly reduce the online runtime and precomputation
time compared with the baseline.

Compared with existing data structures for BOR-like problems
[4, 7, 8, 16, 33], our paper introduces novel data structures: the
boundary multigraph and the Multi-level Encoded Pareto Frontier
View, which facilitate bi-objective searching across fragments. In
contrast, [4, 7, 8, 33] utilize contraction hierarchies, a data structure
fundamentally different from the boundary multigraph proposed in
our paper. Working on a different problem that identifies one con-
strained shortest path in the multi-objective scenario, [16] employs
a traditional boundary graph data structure [29], whereas our work
advances this concept by proposing a boundary multigraph struc-
ture. By definition, the traditional boundary graph data structure
[16, 29] does not permit multiple edges between a given node pair,
whereas the boundary multigraph does. Our multigraph representa-
tion offers several advantages over the traditional boundary graph.
For instance, it facilitates min-cut partitioning in multi-level hier-
archical representations by naturally accounting for the number of
edges between each node pair. Furthermore, the known properties
of multigraphs can be leveraged to reason about the properties
of boundary multigraph data structures and their associated algo-
rithms. Moreover, our proposed multigraph representation provides
a natural way to model real-world transportation systems that in-
volve various modes, such as walking, cycling, buses, driving, and
trains.

Scope. This paper focuses on spatial networks where nodes
have specific locations on the surface of the Earth, and edges ge-
ographically connect nodes (e.g., road networks). Such networks
typically feature low density and large diameter. These properties
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Table 1: Table of notations

Symbol Explanation
G Graph
N,E Node set, edge set
c A bi-objective cost function
ct, ¢? The first/second cost component of ¢
Ps(o,d) The set of all origin-destination paths in G
PCg(o,d)  The set of costs for all origin-destination paths in G
POg(o,d) The set of all Pareto-optimal paths in G
POCg(o,d) The set of costs for all Pareto-optimal paths in G

might not hold in other types of graphs, such as social networks.
For simplicity, this paper starts with a two-level hierarchy of the
network for the examples and deployment. The proposed method
can be generalized to a multi-level hierarchy as shown in Sec. ??.
The updating issue is not considered. We use min-cut partitioning
to decompose the original graph into fragments [25].

2 PROBLEM FORMULATION

2.1 Notations and Definitions

Definition 2.1. A spatial network refers to a directed graph
G = (N, E,c), where N is a set of nodes (e.g., no in Figure 1), and
E is a set of edges connecting nodes (e.g., [no, n1] in Figure 1).
c: E - R" xR" is a cost function associating a pair of non-
negative costs with each edge (e.g., c([no, n1]) = (1, 3)). We denote
the first and second components of ¢ by ¢! and ¢?, respectively (e.g.,
c!([no, m)) = 1, ¢*([no, n1]) = 3).

Definition 2.2. A path p is a sequence of edges (e.g., [ns, ng, n7]
in Figure 1). A path cost is the sum of the costs on all the edges in a
path (e.g., ¢([ns, n6, n7]) = c([ns, ns])+c([ne, n7]) = (2+1,3+3) = (3,6)
in Figure 1). For a given origin node o and a destination node d, the
set of all origin-destination paths is denoted by P;(o,d) (e.g.,
Pg(ns,n7) = {[ns, n7], [ns, ne, n7]} in Figure 1). The set of costs
for all origin-destination paths is denoted by PC;(0,d) (e.g.,
PCg(ns, n7) = {(2,5),(3,6)} in Figure 1). The "®" symbol denotes the
Minkowski sum [17] between two sets: A®B = {a + bla € A,b € B}.
For example, with A = {(1,0),(0,1)} and B = {(0,0),(1,1)}, A® B =
{(1,0),(2,1),(0,1),(1,2)}

Definition 2.3. Let p,p’ € Pg(o0,d) be two paths leading from
node o to node d. Then, ¢(p) < c(p’) denotes that c!(p) < cl(p’),
A(p) < 2(p’), and c(p) # c(p’). The symbol "<" denotes the domi-
nance relationship between paths: p < p’ if ¢(p) < c(p’). Path p is
said to dominate p’ iff c(p) < c(p’). For example, in Figure 1, path
[n5, n7] with cost (2, 5) dominates [ns, ng, ny], whose cost is (3, 6).

Definition 2.4. Given an origin node o and a destination node d,
the Pareto-optimal set (also known as the Pareto frontier, the
non-dominated set), denoted by POg(0,d) C Pg(o, d), contains
all the origin-destination paths that are not dominated by another
path. The set of costs for all non-dominated paths is defined as a
Pareto-optimal cost set, denoted by POCg(0,d) C PCg(o, d). For
example, in Figure 1, POg(ns, n7) = {[ns, n7]} since path [ns, ng, n7]
is dominated by [ns, n7], and POCg(ns, n7) = {(2,5)}.

2.2 Problem Definition

We formally define the bi-objective routing problem as follows:
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Legend
) Q Localnode ~ —>  Local edge
Fragment |

Boundary node —> Boundary edge

Fragment 2 Fragment 3

Figure 2: Graph partitioning of the spatial network in Figure
1 with 3 fragments.

e Input: A spatial network G = (N, E, ¢) in which each edge
is associated with a pair of non-negative costs ¢, an origin
node o, and a destination node d.

e Output: A set of paths POg(0, d) between the origin and
destination.

e Objective: POg(o, d) is the complete Pareto-optimal set for
the pair of costs c.

e Constraints: The costs of the edges are non-negative. We
did not consider traffic flow variability.

Example. Consider the example network shown in Figure 1.
An instance of the bi-objective routing problem on this network
with origin ng and destination ny (i.e., PO(ng, n7)) contains two
paths: [ng, n3, ns,n7] and [no, n1, n3, ns, n7], whose cost (i.e., ele-
ments in POC(ng, n7)) is (10, 17) and (11, 16), respectively. Path
[no, n2, n4, ng, n7] whose cost is (18, 20), for example, is not Pareto-
optimal since it is dominated by [ng, n3, ns, n7].

3 PROPOSED APPROACH

First, we introduce the concept of a boundary multigraph and define
the Multi-level Encoded Pareto Frontier View (MEPFV). We then
present the basic Multi-level Bi-Objective Routing algorithm, which
is designed to efficiently encode and retrieve Pareto frontiers from
the MEPFYV, followed by an advanced version of the algorithm with
two novel pruning techniques.

3.1 Multi-level Encoded Pareto Frontier View

In the Multi-level Encoded Pareto Frontier View (MEPFV) model, we
partition the graph into non-overlapping partitions and encode the
Pareto-optimal path view within each fragment graph. To facilitate
bi-objective searching across these partitions, we introduce the
concept of a boundary multi-graph that encodes the Pareto frontiers
between boundary nodes. The MEPFV is then composed of a set
of Fragment Pareto-optimal Path Views (FPPV) and a Boundary
Pareto-optimal Path View (BPPV), as defined below.

Definition 3.1. Fragment graph. Given a graph G = (N, E, ¢),
a partition of the graph is a set of subgraphs S = {51, So, .. .,Sf}
where S; = (Nj, Ej, ¢;) includes node set N; where N; N N; = @ for
i#jand Uif:1 N; = N, and E; is a set of local edges (e.g., black edges
in Figure 2) connecting two nodes in N;. Each S; = (N}, Ej, ¢j) isa
fragment graph (e.g., 3 fragment graphs in Figure 2). Boundary
nodes N’ are defined as the set of nodes that have a neighbor in
more than one fragment (e.g., n3 in Figure 2), while the remaining
nodes are local nodes (e.g., nj in Figure 2). Edges connecting two
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nodes from different fragment graphs are called boundary edges,
while other edges are local edges.

Definition 3.2. Given a set of fragment graphs, the encoded
fragment Pareto-optimal path view (FPPV) stores the Pareto-
optimal sets between all node-to-boundary and boundary-to-node
pairs within each fragment. The encoded path view for each frag-
ment is defined as a set of tables of 4-tuples [destination, the next
hop, path cost 1, path cost 2] where each table is associated with
an origin node. Here, "next hop" refers to the direct successor node
within the Pareto-optimal path. For example, in Figure 3 (a), the
fragment encoded path view of node ng in fragment S; denoted by
the tuple [n3, n1, 4, 5], tells us that there is a Pareto-optimal path
from ng to n3 in S1, whose cost is (4, 5) and whose next-hop is n;.

Definition 3.3. Boundary Multigraph. Given a graph G parti-
tioned into fragments, along with each fragment graph’s Fragment
Pareto-optimal Path View (FPPV), a boundary multigraph is de-
fined as G? = (Nb, Eb, Ch), Here, Nb represents the set of boundary
nodes, E? consists of multi-edges! connecting nodes from N b and
cb.gb - P(R* x R*), where P denotes the power set, is a cost
function that associates each multi-edge with a set of pairs of non-
negative costs. The construction of E? and the corresponding cost
function depends on the relationship between its endpoints:

(1) If both endpoints are within the same fragment, for each
encoded fragment Pareto-optimal path between them, a local
Pareto edge is defined (refer to the brown dashed edges in
Figure 3 (b)). The presence of several Pareto-optimal paths
between a pair of boundary nodes classifies G? as a multi-
graph. In the implementation of G?, we use a multi-edge
connecting these nodes, associated with the set of Pareto-
optimal costs, to represent the set of local Pareto edges be-
tween the same node pairs. For example, two local Pareto
edges between ng and n3 in Figure 3 can be represented as a
multi-edge with cost set {(3, 6), (4,5)}.

(2) If two endpoint nodes belong to different fragments, there is
a corresponding multi-edge for each boundary edge in the
original graph G (refer to the green edges in Figure 3 (b)).
Each such multi-edge is associated with a single cost pair,
identical to the cost of the original edge in G.

Definition 3.4. Given a boundary multigraph, the encoded Bound-
ary Pareto-optimal Path View (BPPV) stores the Pareto frontiers
between all boundary-to-boundary node pairs within the boundary
multigraph. As shown in Figure 3 (b), the encoded boundary path
view is defined as a collection of tables, each consisting of 5-tuples:
[destination, the fragment ID of the next hop, the next hop, path
cost 1, path cost 2], where each table is associated with an origin
boundary node. In this context, "the next hop" in the boundary
multigraph refers to the successor boundary node along with the
corresponding cost to differentiate edges in a multigraph.

3.2 Basic Multi-level Bi-objective Routing
Our basic method for multi-level bi-objective routing has three

parts, an algorithm to precompute MEPFV, a helper function to

'In a multigraph, multiple edges connecting a pair of nodes can be represented by
separate edges with identifiers or by a multi-edge with a set of costs. Fig. 3 uses the first
notation for visualization, but the rest of this paper uses the second for implementation.
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(b) The encoded Pareto-optimal path view for the boundary multigraph in MEPFV

Figure 3: An example MEPFV with boundary multigraph
encoding based on the graph partitioning shown in Figure 2.

encode Pareto-optimal path views during precomputation, and
last, an algorithm to retrieve Pareto frontiers for a given origin-
destination query using MEPFV in online routing.

3.2.1 MBOR-Basic: Precomputation. The precomputation algorithm
(Algorithm 1), begins by identifying boundary edges that connect

nodes from different fragments, designating the endpoints of these

edges as boundary nodes (lines 1 - 4). It then encodes the fragment

Pareto-optimal path view (FPPV) for each fragment by invoking the

paretoOptEncoding function (see Algorithm 2). Next, the boundary

multigraph is constructed (lines 6 - 12) following the procedure

outlined in Definition 3.3. In this process, the Succ function re-
trieves the set of successor nodes connected to a node, and the

insertMultiEdge function creates a multi-edge if one does not exist

and then appends a cost to the multi-edge’s cost set. The costs

are retrieved from FPPVE,qq(n)(n, n).costs, which holds the local

Pareto frontier costs between nodes n and n” within their fragment

stored in the FPPV. Finally, the boundary Pareto-optimal path view

(BPPV) is encoded by applying paretoOptEncoding (Algorithm 2) to

the boundary multigraph.

The paretoOptEncoding function (Algorithm 2), encodes the Pareto
frontiers for all boundary-related node pairs (node-to-boundary
and boundary-to-node) within a given multigraph. It enumerates
all nodes as potential starting points and utilizes a multigraph bi-
objective Dijkstra search to compute one-to-all Pareto frontiers
from each node. Each path explored from a starting node is repre-
sented by a label I, where node(l) indicates the current node, c(l)
specifies the path costs, and parent(l) points to the previous label
in the path (lines 1-3). Then, a Dijkstra-like search proceeds using
a priority queue that organizes labels by their cost vectors in lexi-
cographic order (line 5). The design of the priority queue ensures
that the Pareto frontier search progresses such that the first cost
component increases while the second decreases, thereby requiring
only the maintenance of the current minimum of the second cost
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Algorithm 1: MBOR-Basic: Precomputing MEPFV

Algorithm 2: MBOR-Basic: ParetoOptEncoding for Gy

Input: A graph G = (N, E, ¢), a partition of G: S = {Sl, So,..n, Sf}
Output: The MEPFV for G including FPPV and BPPV

1 Nb = {}

2 for eache € E do

3 if Frag(e.endpointU) # Frag(e.endpointV) then

4 L N? = N¥ U {e.endpointU, e.endpointV}

PPVs; = paretoOptEncoding(S;),VS; € S
6 for each (nf?, n? € Nb) A n? # n? do

7 if Frag(n?) # Frag(n?) then

8 L if n? € Succ(n?) then

@
My

L Gb.insertMultiEdge(n?, n]b.,c([nib,njb.]))

10 else
1 L for each cost € FPPVFmg(nb) Jb,).costs do

L GbAinsertMultiEdge(ni R n?, cost)

b
(ni,n

12

13 BPPV = paretoOptEncoding(G?)
14 return BPPV and FPPVs,,VS; € S

for each node to determine if a new label is dominated (lines 12 and
19). Whenever an edge cost is encountered in the multigraph, then a
corresponding new label is generated and inserted into the priority
queue if not dominated (see lines 15-21). The search continues until
all potential paths are evaluated. After each search from a start-
ing node, line 22 encodes the computed Pareto frontiers between
boundary-related node pairs into a Pareto-optimal path view to
reduce storage costs.

3.22 MBOR-Basic: Online Pareto Frontier Retrieval. With the MEPFV
precomputed, Algorithm 3 proceeds to retrieve the Pareto frontier
for a given o-d pair, including the following queries sent to MEPFV:

o Boundary(S;): Returns the set of boundary nodes for S;.

o Graph.ParetoOpi(o’, d’): Returns the Pareto-optimal path set
between o’ and d’ within Graph by iteratively looking up
MEPFV using (next-hop, ¢!, ¢?) as the keys.

o ExpandBoundaryPathSet(boundaryPathSet): Expands each
boundary path in the input set and return the set that con-
tains all corresponding paths in the original G by using the
ExpandBoundaryEdge(boundaryMultiedge) for each bound-
ary multi-edge of each boundary path.

o ExpandBoundaryEdge(boundaryMultiedge): If two endpoints
of the boundary multi-edge are within the same fragment,
expand it by iteratively looking up the MEPFV for this frag-
ment using (next-hop, ¢!, ) as the keys. Otherwise, returns
the input edge.

e DominanceCheck(pathSet): Returns the Pareto-optimal sub-
set from the given set.

The algorithm initially identifies a superset of the Pareto-optimal
solutions, POS“P | by enumerating all possible boundary node pairs
between the origin fragment and destination fragment and com-
bining the precomputed Pareto frontiers of origin-to-boundary,
boundary-to-boundary, and boundary-to-destination paths (lines
2-4). Note that since every combination of the Pareto-optimal sub-
paths needs to be considered as a candidate Pareto-optimal path, we

Input: A multigraph Gy = (N, Eo, Cp)
Output: The Pareto-optimal path view (PPV) of Gy
1 Function initializeNodeStates(Ny, nstart):
2 frontiers(n) = 0,Yn € Ny, ¢, (n):=00,Yn € Ny
3 return new label [y with node(ly) = nszart, c(ly) = (0, 0),
parent(ly) := null
4 Function initializePriorityQueue(ly):
5 Initialize a priority queue: Open, where labels are prioritized
by their c-vectors in lexicographic order and insert Iy to Open

6 return Open

7 for each ng;qrs € Ny in parallel do

8 Iy := initializeNodeStates(No, nsart)

9 Open := initializePriorityQueue(l)

10 while Open # 0 do

11 1 := Open.pop()

12 if ¢%(l) > cfnin(node(l)) then

13 L continue

14 cfnin(node(l)) = c(l), Add I to frontiers(node(l))
15 for each n’ € Succ(node(l)) do

16 for each edgeCost € Cy[node(l),n’] do

17 I’ := a new label with node(l’) = n’

18 c(l’) = c(I) + edgeCost, parent(l’) := 1
19 if 2(I') > cfnm(node(l’)) then

20 L continue

21 Add !’ to Open

22 PPV(nstqrt) := Create PPV from frontiers
23 return PPV

use a Minkawskin sum ("®") in line 4 to generate the full combina-
tion of the precomputed Pareto frontiers. If the origin and destina-
tion are within the same fragment, the local Pareto-optimal solution
set is also added to the superset (lines 5-6). Finally, the Pareto fron-
tier is generated with the non-dominated subset of POSP.

Example execution trace: Consider the example MEPFV shown
in Figure 3, and a BOR query from ng to n7. As shown in Table
2, MBOR-Basic generates the cost of Pareto superset (POS“P) by
retrieving the encoded Pareto-optimal path costs (POC) from the ori-
gin to the origin boundary node, from the origin boundary node to
the destination boundary node, and from the destination boundary
node to the destination node for all possible pairs of origin bound-
ary nodes (i.e., ng, n3) and destination boundary nodes (i.e., ns,
ne). Then DominanceCheck({(12,17), (11, 18),(11,16),(10,17)}) =
{(11,16), (10, 17)}, and the corresponding Pareto-optimal paths can
be expanded by querying the next-hop in MEPFV.

3.3 Advanced Multi-level Bi-objective Routing

We developed an advanced version of the MBOR algorithm, MBOR-
Adv, that reduces the search space through novel pruning tech-
niques, namely two-dimensional cost-interval based pruning and
multi-edge pruning.

3.3.1 Two-dimensional Cost-interval based Pruning in Online Rout-
ing. During the online Pareto frontier retrieval phase in MBOR, the
Pareto-optimal superset (POS“? in Algorithm 3) is constructed by
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Algorithm 3: MBOR-Basic: Pareto Frontier Retrieval

Input: MEPFV of a graph G, o: origin, d: destination
Output: Pareto-optimal path set PO (o, d)
1 POSYP = {}
2 for each oBN’ € Boundary(Frag(o)) do
for each dBN’ € Boundary(Fragment(d)) do
4 POS¥P = POS“P U
DominanceCheck(Frag(o).ParetoOpt(o,0BN’) &
ExpandBoundaryPathSet(G? .ParetoOpt(oBN’, dBN’))®
Frag(d).ParetoOpt(dBN’, d))

w

o

if Fragment(o) == Fragment(d) then
6 L PO’"P = POS“P U Frag(o).ParetoOpt(o, d)

7 PO := DominancCheck(PO%“P)
8 return PO

Table 2: Pareto frontier retrieval using MEPFV in Fig. 3.

POC(0,0BN)

(no, no) = {(0,0)}
(no, no) = {(0,0)}
(no, n3) = {(3,6), (4,5)}
(no, n3) = {(3,6), (4,5)}

POC(0BN, dBN) POC(dBN, d)

(no,ns) = {(8,12),(9,11)}  (ns,n7) = {(2.5)}  {(10,17),(11,16)}
(no,m6) = {(10,15),(11,14)}  (ng,m7) = {(1,3)}  {(11,18),(12,17)}
(n3,ns5) = {(5,6)} (ns,n7) = {(2,5)}  {(10,17),(11,16)}
(n3,n¢) = {(7,9)} (ng,n7) ={(1,3)}  {(11,18),(12,17)}

Cost of POS"P

retrieving and combining the encoded Pareto frontiers from the
origin to origin boundary nodes, between pairs of boundary nodes,
and from destination boundary nodes to the destination. This pro-
cess involves all feasible combinations of boundary node pairs that
facilitate transitions from the origin fragment to the destination
fragment, ensuring the algorithm’s completeness. However, this
combination of Pareto frontiers can significantly increase the size
of POS“P due to the combinatorial nature of the Minkowski sum.
For instance, the Minkowski sum of two sets with sizes m and n
can produce a result set with a size of up to mn. This expansion
makes it time-consuming to generate POS“? and to perform dom-
inance checks on it during the online routing phase. To address
these challenges while preserving the correctness and completeness
of the algorithm, we propose a novel pruning technique based on
two-dimensional cost-intervals. This method efficiently prunes the
search space of candidate boundary nodes without generating the
entire combined Pareto frontiers. A two-dimensional cost-interval
for the Pareto frontier between any node pair is defined as follows:

Definition 3.5. For a given node pair (n,n"), let p}, p; € Pg(n,n’)
be the shortest paths minimizing the first and second cost compo-
nents, respectively. We define the two-dimensional cost-interval
(2DCI) of the Pareto frontier between n and n’ as ([cl(pf), cl(p;)],

[*®3), (P

The 2DCI, as defined in Definition 3.5, effectively represents a
minimum bounding rectangle of the corresponding Pareto frontier
in the objective space, based on the shortest paths that minimize
each cost component. Specifically, for any path p within the Pareto-
optimal set POg(n,n’), the following conditions hold: c!(p}) <
clp) < cl(p;‘) and cz(p;) < Ap) < cz(pT). These conditions
confirm that the 2DCI captures the full range of Pareto-optimal costs
between the nodes n and n’. Furthermore, the optimal substructure
property of shortest paths ensures that combining the 2D cost-
intervals for sequential node pairs is straightforward, involving
just the addition of corresponding cost components.
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Figure 4: An example two-dimensional cost-interval based
pruning in online Pareto frontier retrieval in MBOR-Adv.

Figure 4 shows an example of the generation of a 2DCI for the
combined Pareto frontier corresponding to a boundary node pair
(0BNj, dBN;) between an origin and a destination. Assume the costs
in the precomputed Pareto-optimal path views (POC, bins in Fig. 4)
are sorted in lexicographic order, then the summation of the first
element in each bin produces ¢! (p}), c*(p?) for the 2D cost-interval,
while the summation of the last element yields ¢! (p}), c?(p}). After
generating the 2DCIs for all candidate boundary node pairs, the
dominant relationship between 2DCls is then defined as follows:

Definition 3.6. A 2D cost-interval 2DCI is said to dominate
another 2DCT’ if any of the following conditions holds:

1) 2DCI. min(ct), 2DCI. max(c?)) < (2DCI’. min(ct), 2DCI’. min(c?))
or 2) (2DCI. max(c!), 2DCI. min(c?)) < (2DCI’. min(c!), 2DCI’. min(c?))

As shown in Figure 4, the benchmark 2DCI dominates any 2DCIs
whose lower-left corner (min(c!), min(c?)) is positioned within the
shaded area (e.g., the 2DCI corresponding to (0BNj;, dBN;)). The
following lemma then facilitates the effective pruning of boundary
node pairs, such as (0BNj, dBN;) in Fig. 4, during online routing:

LEmMMA 3.7. Ifa 2D cost-interval is dominated, then all correspond-
ing paths associated with it are dominated paths.

Algorithm 4 outlines the pseudocode for online Pareto frontier
retrieval in MBOR-Adv using 2DCI-based pruning. The algorithm
starts by constructing the combined 2DCI for each potential bound-
ary node pair from the MEPFV (see line 2), as shown in Figure
4. For brevity, we omit explicit mention of the origin and desti-
nation nodes in the combined representation. Thus, the 2DCI en-
compassing transitions from o to an origin boundary node (0BN),
from 0BN to a destination boundary node (dBN), and from dBN
to d is collectively referred to as 2DCI(0BN, dBN). Given that the
Pareto-optimal paths are explored in lexicographic order when
precomputing the MEPFV, the costs in the precomputed POC are
inherently sorted in lexicographic order, thus allowing for a con-
stant time complexity for the generation of the combined 2DCI for
each boundary node pair. Subsequently, we select the 2DCI with the
minimum (min(c!), min(c?)) in lexicographic order (i.e., the most
leftward rectangle in the objective space) as the benchmark 2DCI
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(see lines 3-4). Then, a 2DCI-based pruning check is performed in
lines 7-9 to directly prune boundary node pairs before performing
the Minkowski sum to reduce the search space.

Algorithm 4: MBOR-Adv: Online Pareto Frontier Retrieval
using 2D Cost-interval based Pruning

Input: MEPFV of a graph G, o: origin, d: destination
Output: Pareto-optimal path set POg (o, d)
1 POSUP = {}
2DCI(0BN;, dBN;) =
2DClgeneration(MEPFV,0BN;, dBN;), VoBN; €
Boundary(Frag(o)), dBN; € Boundary(Frag(d))
3 Find the benchmark 2DCI with the minimum (cl(pi‘), cz(p; )) in
lexicographic order
4 Denote the bounds of 2DCI as cl(}J;‘), cl(})g), cz(}yg), cz(}J;‘)
5 for each oBN € Boundary(Frag(o)) do
6 for each dBN € Boundary(Frag(d)) do

)

7 2DCI’ := 2DCI(0BN, dBN)

5 if (c1(p?), 2(p?)) < (2DCT .min(c'), 2DCI’ .min(c)) v
(). ¢2(p})) < (2DCI’.min(c"), 2DCT’ .min(c?)) then

9 L continue

10 POSYP = POS“P U
DominanceCheck(Frag(o).ParetoOpt(o, 0BN) &
ExpandBoundaryPathSet(G?.ParetoOpt(oBN’,dBN")®
Frag(d).ParetoOpt(dBN, d))

11 if Fragment(o) == Fragment(d) then

12 L POS“P = POS“P U Frag(o).ParetoOpt(o, d)
13 PO := DominancCheck(POS¥P)

14 return PO

Example execution trace: Consider the MEPFV shown in Fig-
ure 3, and a BOR query from ng to n7. The candidate boundary node
pairs include (ng, ns), (no, ne), (n3, ns), and (n3, ng). MBOR-Adv ini-
tially computes the combined 2DClIs corresponding to these bound-
ary node pairs: 2DCI(ng, ns) = ([10, 11], [16, 17]), 2DCI(ng, ne) =
([11, 12], [17, 18]), 2DCI(n3, n5) = ([10, 11], [16, 17]), and 2DCI(n3, ng) =
([11,12], [17, 18]). The algorithm selects 2DCI(ng, ns) as the bench-
mark and prunes the boundary node pairs (ng, ng) and (ns, ng) due
to their dominance ((10,17)<(11,17)). Then, the Pareto-optimal su-
perset (POS"P) construction is documented in Table 3. It is worth
noting that, in this example, each boundary node pair generates
two combined Pareto-optimal paths, yielding a complexity for gen-
erating 2DCI equivalent to directly generating PO"?. However, in
practical scenarios, generating 2DCI is executed in constant time
with exactly two operations (heads combination and tails combina-
tion), while the complexity of generating PO“? is influenced by
the number of Pareto-optimal subpaths due to the combinatorial
nature in the Minkowski sum operation. More details are discussed
in Sec. 5.

Table 3: Advanced Pareto frontier retrieval using MEPFV in
Fig. 3. Boundary node pairs (no, n¢), (13, ng) are 2DCI-pruned.

POC(0,0BN) POC(0BN, dBN) POC(dBN, d) Cost of POS“P

(n0, n0) = {(0,0)} (no,n5) = {(8,12),(9, 1)} (ms,n7) = {(2,5)}  {(10,17),(11,16)}
(no, n3) = {(3,6).(4,5)} (n3,n5) = {(5,6)} (ns,n7) = {(2,5)}  {(10,17),(11,16)}
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3.3.2  Multi-edge Pruning for Bounday Multigraph Encoding in Pre-
computation. In the precomputation phase, the boundary multi-
graph can become dense due to multiple local Pareto edges between
boundary nodes from the same fragment. This density significantly
contributes to the encoding time of the boundary multigraph (line
13 in Algorithm 1). To address this, we introduce two multi-edge
pruning techniques that reduce the search space for encoding the
boundary multigraph, detailed in Algorithm 5. The first pruning
criterion (lines 10-11), is supported by the following lemma:

LEmMA 3.8. Bi-objective Triangle Inequality: In a bi-objective
scenario, combining the Pareto-optimal paths between nodes n and
n’, and nodes n’ and n’’, results in paths that are either dominated
by or belong to the Pareto frontier fromn ton’’.

The validity of this lemma is established by integrating the def-
initions of Pareto-optimality and the triangle inequality. When
encoding the boundary multigraph, if a label has already reached
node n from another local node ny within the same fragment, fur-
ther searches from this label to another local node n’ can be pruned
(line 10). This is because any path generated from ng to n’ would
either be dominated by or already explored through direct labels
from ng to n’.

The second pruning technique leverages the fact that costs within
boundary multi-edges are stored in lexicographic order. When gen-
erating new labels, we enumerate current edge costs in reverse
order (line 12 in Algorithm 5), prioritizing an increase in the second
cost component. If the current edge cost already exceeds the mini-
mum possible second cost (lines 15-16), we can prune subsequent
edge costs in the multi-edge.

4 THEORETICAL EVALUATION

We analyzed the proposed algorithms theoretically for correctness
and completeness. An algorithm for the BOR problem is considered
to be correct and complete if its output path set is both a subset
and a superset of the Pareto-optimal set.

THEOREM 4.1. Correctness and completeness: At the termina-
tion of MBOR-Basic and MBOR-Adv, the solution set produced is the
complete Pareto frontier from the origin to the destination.

ProoOF SKETCH. In a given origin-destination pair, the origin
and destination nodes may be located either in the same fragment
or in different fragments. The correctness and completeness of
MBOR are guaranteed by the following lemmas for these two cases,
respectively. (1) The Pareto frontier from origin o to destination d
from different fragments corresponds to the Pareto-optimal subset
of all possible concatenated Pareto-optimal paths composed of three
parts: from o to a local boundary node n;, from n; to another local
boundary node n; of d, and from n; to d. (2) If both the origin and
destination are within the same fragment, then the Pareto frontier
is the Pareto-optimal subset of the union of the two, that is: the local
Pareto frontier within the fragment, and all possible concatenated
Pareto-optimal paths composed of three parts: from origin o to a
local boundary node n;, from n; to another local boundary node n 2
and from n; to d. O
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Algorithm 5: MBOR-Adyv: ParetoOptEncoding for Bound-
ary Multigraph

Input: A boundary multigraph Gy = (Np, Eo, Cp)
Output: The boundary Pareto-optimal path view (BPPV) of Gy
1 for each nstqrs € Ny in parallel do

2 Ilp := initializeNodeStates(Ny, nstart)
3 Open := initializePriorityQueue(l)
4 while Open # 0 do
5 1 := Open.pop()
6 if c2(l) > cfm.n(node(l)) then
7 L continue
8 cfnin(node(l)) = c(l), Add I to frontiers(node(l))
9 for each n’ € Succ(node(l)) do
10 if isLocal(l) A Frag(n’) == Frag(node(l)) then
11 L continue
// costs are saved in lexicographic order
12 for each edgeCost € reverse(CP[node(l),n’]) do
13 I’ := a new label with node(l’) = n’
14 c(l') = c(l) + edgeCost, parent(l') := 1
15 if c2(I") > cfnin(node(l/)) then
16 L break
17 isLocal(l’) := Frag(n’) == Frag(node(l))
18 Add !’ to Open

19 BPPV(nstart) := Creat PPV from frontiers
20 return BPPV

5 EXPERIMENTAL EVALUATION

5.1 Experiment Design

We validated the proposed methods with two types of analysis:

1) Comparative Analysis: To demonstrate the benefits of pre-
computation, we compared the online runtimes of our proposed
methods against two compute-on-demand methods that we con-
sider state-of-the-art. Additionally, we compared the precomputa-
tion times and online runtimes between MBOR-Basic and MBOR-
Adv to evaluate the effectiveness of our pruning techniques.

2) Sensitivity Analysis: We assessed the sensitivity of the pro-
posed methods to changes in the number of fragments.

Dataset: The dataset used was the 9th DIMACS Implementation
Challenge: Shortest Path [5], provided by the Center for Discrete
Mathematics and Theoretical Computer Science. This dataset com-
prises various real-world road network scenarios and is commonly
used as a benchmark dataset in related work (e.g., [11, 19]). We used
the San Francisco Bay Area (BAY) road network. The dataset pro-
vided two cost components: travel distance and time. To evaluate
the methods on different network sizes, we partitioned the entire
Bay Area into 5 fragments and randomly selected one fragment
to generate a 1/5 Bay Area road network. We generated 1/10, and
1/20 BAY Area networks similarly. Then, we randomly generated
50 queries on each network. Table 4 lists key statistics of networks
and the average number of solutions for the queries (i.e., the aver-
age size of the Pareto frontiers). The distribution of these queries
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and their impact on performance is analyzed in Section 5.2. The
implementation of our methods is online available 2.

Table 4: Statistics of the road networks. The number of bound-
ary nodes was calculated with a 50-fragment partitioning,.

Road Network 1/20 BAY 1/10 BAY 1/5BAY BAY
# nodes 15,366 32,205 64,684 321,270
# edges 41,180 76,230 156,682 800,172
# boundary nodes 876 696 873 1322
# boundary multi-graph edges 39,728 12,302 35,104 277,242
real size 804K 1.5M 3.2M 18M
# average solutions 15 13 47 119

5.2 Comparative Analysis

Baseline Methods: In order to make the evaluation results com-
parable, we only compared our proposed methods against other
exact algorithms of the bi-objective problem, i.e., those that, given
enough computational space and time, can find the set of all Pareto-
optimal paths. Thus, the two state-of-the-art methods tested were:
1) NAMOA*dr [19] and 2) Bi-objective A* (BOA*) [11]. Both meth-
ods are best-first bi-objective search algorithms inspired by the
A~ search and have outperformed many other bi-objective routing
methods [11] (e.g. bi-objective Dijkstra [14, 20] and bi-directional
bi-objective Dijkstra [26]). We used the C implementations of these
algorithms provided in [11], after fixing memory leak issues.

Table 5: Average and median online runtime (in milliseconds)
on 50 instances of various BAY networks.

1/20 BAY 1/10 BAY 1/5 BAY Entire BAY

Method Avg Med Avg Med | Avg Med | Avg Med

NAMOA*dr 4.47 413 8.34 817 | 39.69 31.93 | 482.83 360.20
BOA* 4.34 4.02 8.56 831 | 27.99 2043 | 343.05 221.69

Methods with Precomputation
MBOR-Basic | 0.64 0.53 033 032 2.61 1.20 | 13531  29.54
MBOR-Adv | 0.38 0.30 0.19 0.18 | 1.93 0.70 | 86.84 4.56

Table 5 presents the average and median runtimes (in millisec-
onds) for 50 queries on various BAY network sizes. MBOR-Basic and
MBOR-Adv are under a 50-fragment partition. All four methods,
being exact algorithms, produced the same solutions. Table 5 shows
that the proposed methods with precomputation significantly out-
perform compute-on-demand methods in terms of online runtime,
achieving more than a 10X improvement for most metrics. Further
analysis sorted the queries by their average Pareto-optimal path
length, with the cumulative runtime visualized on the left y-axis
and the distribution of queries on the right y-axis in Figure 5. Simi-
larly, Figure 6 plots the cumulative runtime against the number of
candidate origin-destination boundary node pairs. One observation
is that, unlike compute-on-demand methods—whose performance
largely depends on the average Pareto-optimal path lengths—the
performance of MBORs is heavily influenced by the number of
candidate boundary node pairs enumerated during the online rout-
ing phase. Additionally, the network graph’s architecture impacts
the performance of MBORs. For instance, the 1/10 BAY network,
despite having approximately twice the size compared to the 1/20
BAY network, exhibited significantly faster average online runtimes

20ur code: https://github.com/yang-mingzhou/MBOR
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retrieved for online routing in MBOR-Basic and MBOR-Adv.

in MBOR. This improvement is attributed to its more hierarchical
structure with fewer boundary nodes (696 compared to 876).
Table 5 shows that HBOR-Adv’s pruning technique significantly
reduced the online runtime compared to MBOR-Basic, achieving a
35.8% reduction in the average time across the entire BAY network.
This efficiency gain is corroborated by Figure 7, which shows a
much smaller Pareto-optimal superset retrieved for online routing
in MBOR-Adv. Finally, Figure 8 presents the precomputation times
for MBOR-Basic and MBOR-Adv. It is evident that the encoding
time for the boundary multigraph significantly contributes to the
precomputation time, and the proposed multi-edge pruning tech-
niques effectively reduce the precomputation time in MBOR-Adv.

5.3 Sensitivity Analysis

In the second phase of our experiments, we explored how the num-
ber of fragments affects the performance of the proposed methods.
We varied the number of fragments on the Entire BAY network

=1 HBOR-Basic Precomputation
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Figure 8: Precompuation time of MBOR-Basic and MBOR-
Adv on various BAY networks.

"
N

IMBOR:Basic (1) = MBOR-Adv (1) —— MBOR-Adv
—m- MBOR-Basic

150 Fragments,

.
)

®

BQR-Basic (50)

Average Online Run Time (ms)

§-Basic (100)  mpoR-Basic (150

MI

MBORMdv (100)

MBOR-Adv (150)

o 2500 5000 7500 10000 12500 15000 17500 0
Precomputation Time (s)

Number of Encoded Boundary Paths (in Millions)
o

°

500 1000 1500 2000 2500 3000 3500
Number of Boundary Nodes

(a) Precomp. time vs. online run- (b) # Boundary nodes vs. # En-
time (# fragments in parathesis). coded boundary paths in MEPFV.
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from 50 to 150 and computed the precomputation and average
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online routing time. The results are shown in Figure 9a. This fig-
ure demonstrates that the proposed methods achieve an effective
balance between all-pair precomputation and purely compute-on-
demand approaches. Specifically, with only one fragment, all nodes
in the network are contained within the same fragment without
any boundary nodes, making MBOR equivalent to a compute-on-
demand method, as indicated by the y-intercept in Figure 9a. Al-
though precomputation time increases as the number of fragments
increases, the average online runtime decreases due to the larger
volume of information being precomputed and encoded. Also, the
precomputation time for MBOR-Adv increases more slowly than
for MBOR-Basic, thanks to its multi-edge pruning. If the number of
fragments equals the number of nodes in the network, our method
behaves similarly to an all-pair precomputation approach, where ev-
ery node becomes a boundary node. This scenario is hypothetically
represented at the x-intercepts. The increased precomputation time
with a higher number of fragments is attributable to the significant
rise in the number of encoded boundary Pareto-optimal paths in the
MEPFV. When the number of fragments was increased from 50 to
150 in the entire BAY network, the boundary node count (Figure 9b)
grew from 1,322 to 3,444, while the number of encoded boundary
Pareto-optimal paths surged from 1,747,684 to 11,861,136. Consid-
ering that the network comprises 321,270 nodes, this substantial
increase reinforces the impracticality of all-pair precomputation
due to the large number of Pareto-optimal paths to be precomputed.

6 CONCLUSION AND FUTURE WORK

The bi-objective routing problem aims to find the full Pareto-optimal
path sets for given origin-destination queries. In this work, we pro-
pose Multi-Level Bi-Objective Routing (MBOR) algorithms that
incorporate three novel ideas: boundary multigraph representation,
Pareto frontier encoding, and two-dimensional cost-interval based
pruning. Our experiments on real-world road network data show
that the proposed methods can significantly reduce the online run-
time compared to state-of-the-art methods. In future work, we aim
to extend our framework to multi-criteria routing scenarios. We
also plan to investigate efficient strategies for updating the MEPFV
in response to minor changes within the network.
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