

1 **Facilitators and Barriers of Global Water Reuse: A Systematic Literature Review**

2 Prakriti Sardana;^a Amy Javernick-Will;^a Sherri M. Cook^{a*}

3 ^aDepartment of Civil, Environmental, and Architectural Engineering, University of Colorado
4 Boulder, Boulder, CO 80309

5 *Corresponding author: Email: sherri.cook@colorado.edu, Phone: 303-735-7288, Fax: 303-492-
6 7317, Address: 4001 Discovery Drive, 607 UCB, Boulder CO 80309

7

8

9

10

11

12

13

14

15

16

17

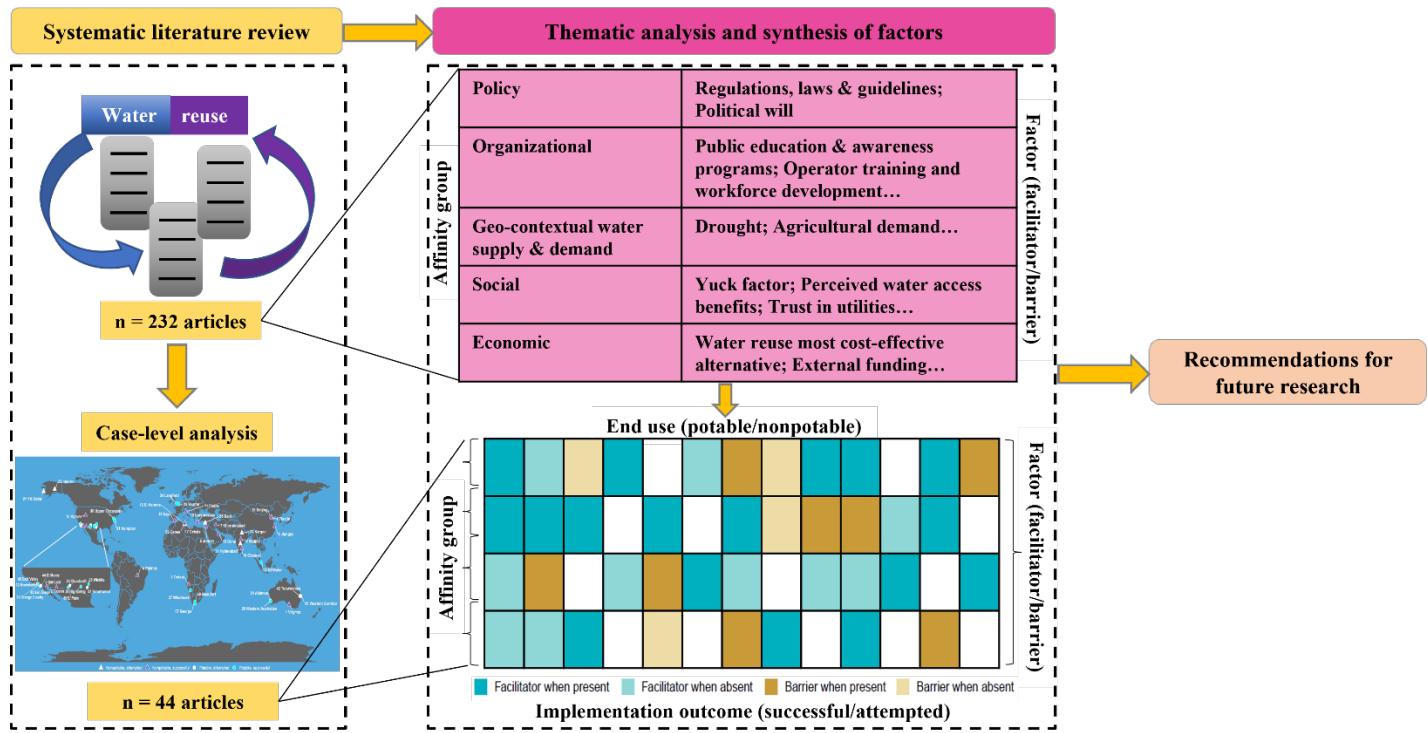
18

19

20

21

22


23

24

25 **Abstract**

26 Centralized municipal water reuse implementation, particularly potable reuse, remains slow
27 despite the need in many global locations to supplement conventional water supplies. Analyzing
28 factors associated with implementation can enhance our understanding of successful water reuse
29 design and implementation. We conducted a systematic analysis of 232 peer-reviewed journal
30 articles on water reuse implementation, identifying and classifying influential factors as facilitators
31 or barriers to success. The most cited facilitators included clearly defined and feasible regulations,
32 public education and awareness programs, and drought conditions. Next, we analyzed case-level
33 data by examining the relationships between factors, implementation outcome, and end use
34 (potable vs nonpotable). The literature enabled analysis of 47 cases with data from 44 articles.
35 When analyzing factor co-occurrence within similar cases (e.g., successful nonpotable cases),
36 several unique combinations of factors resulted in implementation success (e.g., fostering
37 partnerships with the industrial/agricultural sectors, and increasing organizational capacity by
38 improving existing infrastructure). Our analysis highlights preliminary recommendations for
39 implementation success, as well as for future research to systematically collect data across cases.
40 These recommendations will help to better understand the relative importance of each factor and
41 causal relationships between factors, to ultimately identify comprehensive strategies for successful
42 implementation.

43 Graphical abstract

44

45

46 **1. Introduction**

47 Water scarcity is a widespread global issue. Currently, 2.3 billion people reside in water-
48 stressed regions where freshwater consumption is at or above the available supply.^{1,2} The causes
49 of water scarcity are multifaceted, encompassing natural phenomena like drought and
50 anthropogenic factors such as uneven infrastructure development.³⁻⁵ These causes have been – and
51 are expected to continue to be – exacerbated by climate change and rapid urban densification.^{1,3,6-}

52 ¹¹ Mitigating water scarcity requires improving the sustainability of water management.^{1,3,12-17}

53 Water reuse is being increasingly recognized as a promising solution to global water scarcity.^{1,3}
54 Water reuse refers to the process of treating wastewater to high chemical and biological standards
55 to be used more than once before it is returned to the natural water cycle. The reuse water is
56 potentially used in different geographical locations and end uses, effectively extending the life
57 cycle of the water resource. It is distinct from water recycling, which typically refers to an internal
58 process where water is treated and reused on-site for the same purpose, creating a closed-loop
59 system.^{2,18} Nonpotable water reuse treats wastewater to augment water supplies for uses such as
60 industry processes and agriculture, while potable water reuse augments drinking water supplies
61 for human consumption.³

62 Regions that adopt potable reuse often have already implemented nonpotable reuse and can
63 work off existing infrastructure, public awareness, and policies.^{8,9,14,19-21} There have been
64 successful cases of nonpotable reuse implementation in diverse contexts around the world²² – from
65 water-rich urban Japan²³ to arid rural Tunisia.^{24,25} These cases have been able to supplement their
66 conventional water supplies, sometimes by up to 100%, particularly for agricultural and industrial
67 reuse.²⁶ Potable reuse has been less widely implemented but has still been successful in a variety

68 of contexts. For example, the arid city of George, South Africa supplements its drinking water
69 supply with 10,800 cubic meters of recycled water per day, or one-third of its daily demand.¹⁴

70 The successful implementation of water reuse has been realized largely due to
71 technological advancements in treatment processes. While technical barriers to reuse are limited,
72 numerous non-technical challenges can slow or obstruct implementation. These non-technical
73 challenges can include financing, constructing, operating, and maintaining infrastructure and
74 public water consumer perception and acceptance of reuse water.²⁷⁻³¹ Previous literature reviews
75 have examined these challenges to help identify opportunities for increasing implementation
76 success; however, important knowledge gaps remain due to limitations in the scope of these
77 reviews. First, most reviews have not comprehensively analyzed the non-technical factors that
78 contribute to and limit water reuse implementation, also known as facilitators and barriers. For
79 instance, some reviews only focus on one type of facilitator or barrier such as regulatory³² or public
80 acceptance³³ barriers; some of these reviews have also acknowledged the need for more holistic
81 evaluations to better capture the complex nature of reuse.^{29,34,35} Second, most reviews focus on
82 compiling a list of factors without considering the interdependence of factors and/or their influence
83 on implementation success.^{29,36,37} A more holistic understanding of these complex factor
84 combinations that facilitate or hinder implementation could significantly increase the likelihood
85 of success. Third, previous reviews typically focus on one end use^{29,36} and/or geographic
86 context.^{33,38} Despite the comprehensiveness of these reviews, researchers have noted the need for
87 comparisons, especially across end use, to tailor implementation strategies. While previous
88 reviews have contributed in multiple ways, addressing these limitations may advance the
89 development of integrated strategies for successful implementation.

90 This literature review aimed to address these knowledge gaps by examining facilitators and
91 barriers globally across end use contexts and implementation outcomes. First, we systematically
92 analyzed 232 peer-reviewed journal articles discussing at least one non-technical barrier or
93 facilitator to reuse implementation. We focused on centralized municipal reuse to address the
94 needs of cities and towns looking to implement reuse in their communities.^{3,39-41} Centralized
95 municipal reuse is defined as a large-scale, municipality-managed system where collected
96 wastewater is treated and redistributed for reuse across various sectors.⁴⁰⁻⁴² We used a hybrid
97 thematic analysis to compile a comprehensive list of factors organized into five affinity-grouped
98 categories. Second, we analyzed 47 individual reuse project case studies within the surveyed
99 literature to examine the relationships between factors, end use, and implementation success.
100 Based on our analyses, we offer preliminary suggestions for nonpotable and potable success
101 strategies. Finally, we conclude with recommendations for future research.

102 **2. Methods**

103 To identify non-technical facilitators and barriers to centralized municipal water reuse
104 implementation, we conducted a systematic analysis of the literature following the Preferred
105 Reporting Items for Systematic Literature Reviews and Meta-Analyses (PRISMA) guidelines.^{43,44}
106 A systematic literature review is a rigorous and methodical approach to identifying, evaluating,
107 and synthesizing available research relevant to a specific research question and follows a
108 predefined protocol to minimize bias and ensure the review is comprehensive and reproducible so
109 as to create evidence-based guidelines for practitioners.⁴⁵ We searched the Web of Science Core
110 Collection database by Topic, which searches a record's title, abstract, author keywords, and
111 KeyWords Plus®, using the following search terms that focused on identifying papers with water
112 reuse facilitators and barriers: water NEAR/1 (reus* OR recycl* OR reclaim* OR reclam* OR

114 "urban water management") AND (factor* OR facilitat* OR driver* OR enabl* OR promot* OR
115 barrier*). We then refined the search by selecting filters for the publication years of 2010 to 2022;
116 for document types of article and review article; and for the language of English. We chose the
117 timeframe of 2010 to 2022 to enhance the relevance of our review to current water reuse practices
118 that have shifted with the significant socio-technical and regulatory advancements in the last
119 decade.^{46,47} This search resulted in 3,038 articles. We reviewed the title and abstract of 10% of
120 those articles to identify exclusion terms that could reduce the number of articles that focused on:
121 technical factors (exclusion terms included: spectroscopy, concrete, materials science), industrial
122 water reuse (exclusion terms included: metallurgy, petroleum, aquaculture), waste management
123 (exclusion terms included: septic, solid waste, soil, incinerat*) and desalination (exclusion terms
124 included: desalt*, desalinat*). A comprehensive list of exclusion terms is provided in
125 Supplementary Information (SI) Table S1.

126 We then applied the updated topic search terms with the same three filters, which resulted
127 in 612 articles. We reviewed the full text of those articles to refine our list to only include articles
128 that discussed at least one non-technical factor of centralized municipal water reuse as a facilitator
129 or a barrier. Our final selection included 232 articles. We defined factors as variables discussed as
130 influencing water reuse implementation; and subsequently coded each factor as either a facilitator,
131 when it contributed to implementation success; and a barrier, when it hindered implementation
132 success. For example, the factor of public education and awareness programs was coded as a
133 facilitator for the following article, based on:

134 *"In the USA, over 230 reuse projects are operating and the reclaimed water being used for
135 irrigation, parks, school grounds, landscaping and industrial uses. Researchers have
136 attributed its success to public engagement and awareness campaigns, which were adopted*

137 by Orange County Water District from the start of the project in 2008.”³⁷

138 The factor of internal or private funding for capital costs was coded as a barrier in another
139 article, where its absence was associated with a case’s suspension, “...*the project was suspended*
140 *in September 2011 due to revenue shortfall...*”⁴⁸

141 Our intention was to develop a framework that would be relevant to water and wastewater
142 utilities, in its inclusion of internal and external factors influencing implementation. We performed
143 a hybrid deductive-inductive thematic analysis^{49,50} on the 232 articles. Hybrid deductive-inductive
144 thematic analysis is a qualitative research method that combines both deductive (theory-driven)
145 and inductive (data-driven) approaches to identify, analyze, and report patterns (themes) within
146 data.^{51,52} This flexible method allowed us to leverage existing frameworks while incorporating
147 emerging themes from the data to identify a comprehensive list of factors. This analysis was
148 conducted using qualitative data analysis software NVivo version 12. We imported all 232 articles
149 into NVivo, copying excerpts from the articles to code them into similar categories, or nodes as
150 NVivo calls them, for each factor. We began the analysis with a set of deductively coded factors
151 (e.g., funding sources, regulations, public perception) identified from our preliminary review of
152 the articles. As our analysis proceeded, we added new nodes to NVivo as new factors emerged
153 through inductive coding⁵³ and as our factor definitions were refined. After four iterations of
154 analysis and coding on the 232 articles, we reached interpretative saturation⁵⁴ and finalized our
155 coding dictionary (see Table 1 and SI Table S2). After reaching saturation in coding, we completed
156 a fifth and final iteration, where we analyzed all 232 articles to ensure that coding was consistently
157 applied according to our coding dictionary. Finally, we categorized these factors into five high-
158 level affinity groups (policy, organizational, geo-contextual water supply and demand, social, and
159 economic) that became the basis of our framework.

160 **Table 1. Coding dictionary for factors.** The table displays factor affinity groups, factor abbreviated names (as used
 161 in Figures 1 to 4) and factor definitions.

<i>Affinity Group</i>	<i>Factor Abbreviated Name</i>	<i>Factor Definition</i>
<i>Policy</i>	Regulations, laws & guidelines	National, state, or local regulations, legislation, and guidelines that directly or indirectly govern implementing water reuse.
	Political will	Willingness of political actors to promulgate policies relevant to implementing water reuse.
	Public education & awareness programs	Education and awareness programs for public water consumers, typically conducted by drinking water, wastewater, and water reuse utilities considering implementing water reuse.
	Existing infrastructure	The need for or importance of development and availability of infrastructural resources for implementing water reuse, including existing drinking water, wastewater and water reuse facilities; storage and distribution systems; ease of permitting; ease of land acquisition.
<i>Organizational</i>	Public participation in decision-making	Involvement and participation of public water consumers in any decision-making related to implementing water reuse.
	Operator training and workforce development	The need for or importance of education and training opportunities for utility management making decisions on water reuse and for staff responsible for water reuse operations and maintenance.
	Framing, branding, marketing & terminology	Use of effective communication strategies (including framing, branding, marketing, and terminology used) to provide information on water reuse to public water consumers.
	Drought	Insufficiency of conventional water supply due to drought.
<i>Geo-contextual water supply & demand</i>	Demand due to population growth	Increased demand for water due to insufficiency of conventional supply to meet water demand due to population growth.
	Agricultural demand	Increased demand for water due to insufficiency of conventional supply to meet agricultural demand.
	Industrial demand	Increased demand for water due to insufficiency of conventional supply to meet industrial demand.
	Perceived health risks	Perceived health risks associated with reuse water among public water consumers.
<i>Social</i>	Yuck factor	Psychological disgust (“yuck” factor) associated with water reuse among public water consumers.
	Perceived water access benefits	Belief among public water consumers that water reuse increases water access for human consumption; sometimes expressed as water consumers’ moral obligation to the general public.
	Perceived environmental benefits	Belief among public water consumers that water reuse increases water availability for environmental protection and other benefits.
	Prior experience	Prior experiences among public water consumers with water reuse, including knowledge gathered and proximity to an existing water reuse project.
	Trust in utilities	Level of trust among public water consumers in authorities responsible for implementation, including drinking water, wastewater and water reuse utilities; water and sanitation districts.
	Trust in political actors	Level of trust among public water consumers in political actors such as policymakers involved in implementing water reuse.
	Trust in scientific professionals	Level of trust among public water consumer in the water reuse opinions of public-facing scientific professionals (other than utilities and political actors) such as, healthcare professionals, scientists, engineers.

Economic	Trust in media	Level of trust among public water consumers in the media (e.g., radio, newspapers, television, social media) providing information on water reuse.
	Most cost-effective alternative	Water reuse is the most cost-effective solution to address local water needs when compared to other alternatives as determined by a cost-benefit or similar analysis.
	Internal/private capital costs funding	Availability of internal or private funding for capital costs associated with implementing water reuse.
	External funding	Availability of public or philanthropic funding for (typically) capital costs and (sometimes) operations and maintenance (O&M) costs associated with implementing water reuse.
	Internal/private O&M funding	Availability of internal or private funding for operations and maintenance (O&M) costs associated with implementing water reuse.
	Public willingness to pay	Relationship between reuse water rates and public water consumers' willingness to pay for reuse water.
	Public pricing strategies	Pricing strategies (e.g., tax breaks for reuse consumers; using penetration or value-based pricing; setting water rates based on affordability metrics) to incentivize the public consumption of reuse water.

162

163 The influence of a factor further depended on whether it was present or absent. For example,
 164 the factor public participation in decision-making was discussed as a facilitator when present,
 165 based on:

166 “...*Developing a genuine partnership with the community such as to involve them in*
 167 *decision making process in order to build and maintain the trust among them is essential.*”¹³

168 It was coded as a barrier when absent, based on:

169 “...*The lack of public participation and supervision is another issue regarding reclaimed*
 170 *water management.*”⁵⁵

171 As a result, we also coded each factor under the factor influence classifications of
 172 “facilitator when present,” “facilitator when absent,” “barrier when present,” or “barrier when
 173 absent”, reflecting its impact as discussed in each article (see Table 1 for abbreviated factor names
 174 and factor definitions; see SI Table S2 for complete coding dictionary along with supporting
 175 excerpts and citations for each factor).

176 We also found that some of the seeming contradictions – namely, when a factor was both
177 a barrier and facilitator – could be explained by evaluating the implementation context. The
178 implementation context is an individual reuse project, which we define as our unit of analysis of
179 “project case study” or “case” for short. An example of a seeming contradiction can be seen with
180 the factor drought-driven water scarcity. The following quotation illustrates drought as a facilitator
181 for one case:

182 *“In the West Bank, the reuse of wastewater is motivated by need and economics. Freshwater supplies in the West Bank are limited, and water is relatively expensive, so alternative sources of irrigation water are sought in order to have a sufficient quantity of water for a home garden.”*²⁴

186 In contrast, the following quotation shows drought being discussed as a barrier:
187 *“...However, since the drought officially ended in 2012 significant government funding is no longer available in the Australian water sector and is unlikely to return in the near future....”*^{56(p127)}

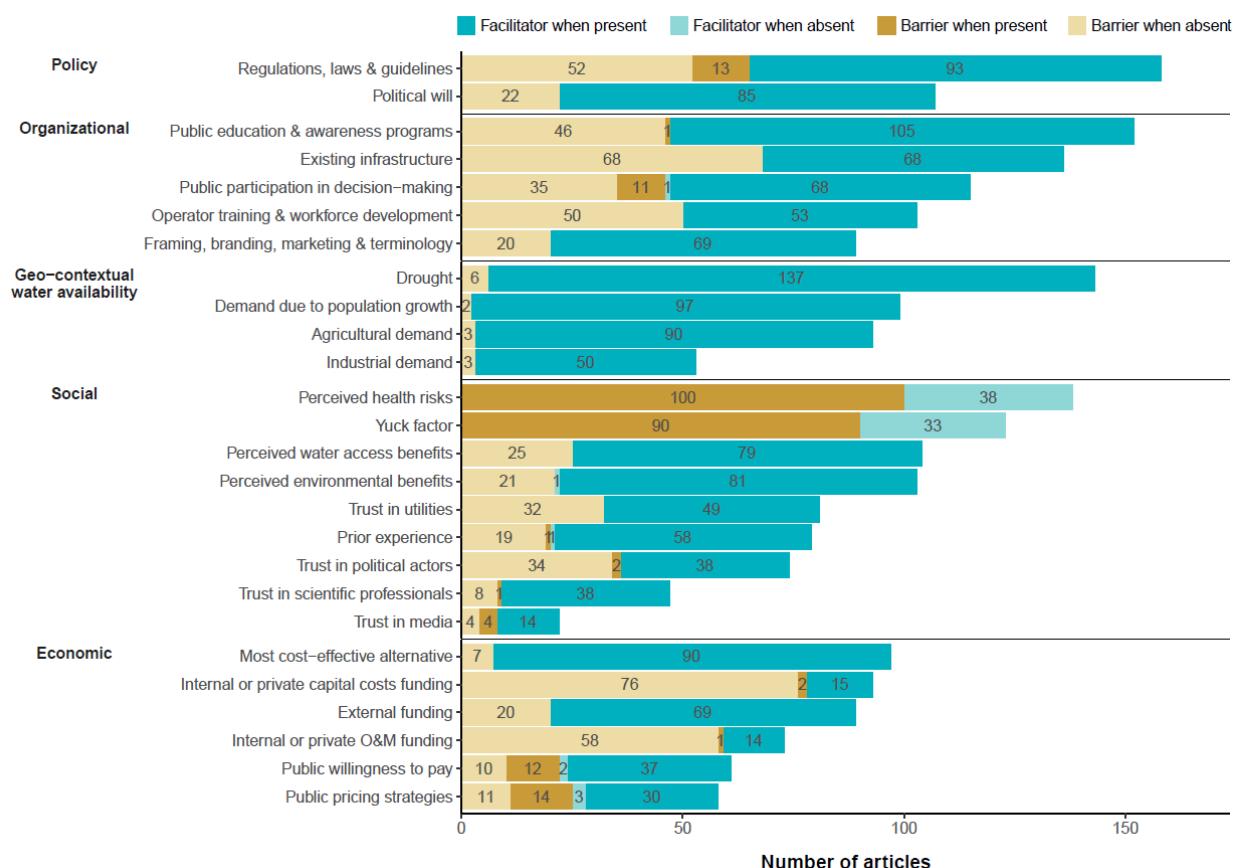
190 Coding by case allowed us to analyze the data specific to implemented cases, ultimately to
191 help identify strategies associated with successful centralized municipal reuse by: (i) examining
192 the potential relationships between factors, implementation outcome, and water end use; and (ii)
193 evaluating the co-occurrence of factors within a given case. We coded by case by creating separate
194 case files in NVivo and assigned factors to each case. We imported these case-specific data into
195 Excel for further organization and data visualization. All figures were created in RStudio⁵⁷ using
196 ggplot2⁵⁸ with the assistance of the grid,⁵⁹ cowplot,⁶⁰ ggh4x,⁶¹ ggpattern,⁶² and gtable⁶³ packages.

197 A case was included in this analysis if it could be classified with an implementation
198 outcome and water end use, and if at least one non-technical factor was discussed. Overall, non-

199 technical factors were discussed for 47 cases over 44 articles, out of the 232 that we included in
200 our comprehensive framework development. Some articles discussed multiple cases. Also, some
201 cases were discussed over multiple articles. Therefore, for a given case, we compiled all data on
202 factors to comprehensively evaluate each case across the 44 articles. For example, analyzing the
203 case of NEWater (Singapore) involved compiling factors across five articles, including geo-
204 contextual factors,^{9,13,64-66} organizational and economic factors,^{9,66} and policy and social
205 factors.^{13,64,65} Literature described some cases as having more than one factor influence
206 classification (e.g., as a facilitator when present and as a barrier when present). In these instances,
207 we coded the case's factor with each applicable influence classification. There were 10
208 occurrences when a case's factor was discussed across multiple influence classifications in the
209 same article and 14 occurrences when a case's factor was discussed across multiple influence
210 classifications across articles.

211 We then classified cases by outcome and water end use. For outcome, there were two
212 classifications. A successful case was defined as one that was implemented and operational to
213 reliably provide safe reuse water (e.g., Hyrum in Utah, USA⁶⁷ and Virginia Pipeline Scheme in
214 Adelaide, Australia).¹³ An attempted case was defined as one that was planned and may have had
215 initial construction efforts but was ultimately not operational (e.g., Brownwood in Texas, USA^{21,68}
216 and Toowoomba in Queensland, Australia),^{13,14,48,64,66,68-73} was temporarily operational but unable
217 to provide a long-term source of reliable and safe reuse water (e.g., Bani Zeid in West Bank²⁴ and
218 Hyderabad in Telangana, India),⁷⁴ or was decommissioned (e.g., East Valley Reclamation Project
219 in California, USA⁷⁵ and Western Corridor Recycled Water Project in Queensland,
220 Australia).^{14,48,72} We evaluated each article's discussion of a case's outcome individually (Table
221 S3). The outcomes for each were then compiled to conclude a single outcome; all articles explicitly

222 or implicitly stated the same outcome for each case. Forty-two cases had an explicit statement of
223 its outcome from at least one article. Five cases lacked an explicit statement on its outcome;
224 therefore, we used each article's implicit statement to deduce an outcome. For example, Bani Zeid
225 (West Bank) was classified as an attempted case since a 2017 article stated "*the treatment system*
226 *is not currently part of any wastewater reuse scheme*"²⁴ even though it was constructed in 2004.


227 For water end use, there were two classifications: (i) potable, if the water could be used for
228 human consumption; and (ii) nonpotable, if the water could only be used for nonpotable purposes,
229 such as irrigation. We evaluated each article's discussion of a case's water end use individually
230 (Table S3). We then compiled water end uses for each case to conclude a single end use; all articles
231 stated the same end use for each case. There were 21 potable and 26 nonpotable cases. Three of
232 the 26 nonpotable cases were noted as considering changing to potable reuse in the future; however,
233 we analyzed these as nonpotable based on the end use for which factors were discussed in each of
234 those articles. Overall, there were 20 successful nonpotable cases, 6 attempted nonpotable cases,
235 14 successful potable cases, and 7 attempted potable cases. These case classifications formed the
236 basis of our subsequent analysis of the relationships between factors, water end uses, and
237 implementation outcomes.

238 **3. Results and Discussion**

239 **3.1. Factors that Influence Successful Water Reuse Implementation**

240 The most discussed factor was regulations, laws, and/or guidelines (n = 158 articles)
241 (Figure 1A; see SI Table S2 for definitions, example excerpts, and corresponding articles). The
242 presence of regulations, laws, and/or guidelines was mostly discussed as a facilitator for successful
243 water reuse implementation, with 93 articles discussing it as a facilitator when present and 52
244 articles discussing it as a barrier when absent. The focus on – and potentially the importance of –

245 this factor has increased with time, with 37% of the associated articles published in 2021 and 2022
 246 (SI Figure S1). The heightened emphasis on regulations, legislation, and guidelines in recent years
 247 may reflect a significant political commitment to establishing unified standards for
 248 implementation.^{32,76} This trend may have important public health implications as the integration
 249 of reused water into drinking water supplies becomes more common worldwide.⁴⁸

250
 251 **Figure 1. Distribution of factors across published articles.** Number of articles in which factors were barriers when
 252 present, barriers when absent, facilitators when present, or facilitators when absent. The total number of articles
 253 discussing each factor is listed adjacent to each factor's distribution. Each row represents a factor as shown on the left
 254 y-axis and the bottom x-axis indicates the number of articles discussing that factor.

255 The presence of regulations, laws, and/or guidelines has helped to streamline
 256 processes,^{14,77,78} ensure compliance,^{15,79,80} and reduce uncertainties to promote investment in reuse
 257 infrastructure.^{21,81,82} For example, as expressed by Power (2010), “*The benefits of a national*

258 [Australian] approach to treatment validation include greater financial and supply certainty for
259 manufacturers and proponents in what is required by regulators.”⁸³ Some articles also discussed
260 the importance of regulatory frameworks in creating legitimacy.⁸⁴⁻⁸⁶ Regulations, laws, and/or
261 guidelines indirectly related to reuse such as wastewater discharge standards (e.g., in California
262 and Florida, USA)^{14,32} have also facilitated implementation. That this factor was also commonly a
263 barrier when absent (n = 52 articles) further highlights its role as a facilitator when present. The
264 absence of regulations, laws, and/or guidelines was discussed as a barrier in terms of the associated
265 inconsistencies in water quality standards^{35,87,88} and undermined the credibility of reuse.⁸⁹⁻⁹¹ For
266 example, Cruz-Ayala (2020) discussed how the absence of a regulatory framework has hindered
267 the implementation of managed aquifer recharge (MAR) in Mexico:

268 “*We found that beyond the technical issues that MAR projects normally address, the
269 regulatory framework is a barrier to increasing MAR facilities because there are no
270 provisions for the recovery of stored water...the Law of the Nation’s Waters does not
271 include a definition for reclaimed water and lacks procedures to define how reclaimed
272 water can be managed and allocated...Considering that reclaimed water can be used for
273 agricultural activities and MAR projects, the lack of a regulatory framework is hampering
274 the opportunities for reusing this water.*”⁹²

275 On the other hand, while less common, the presence of regulations, laws, and/or guidelines
276 has hindered implementation in some instances (n = 13 articles) because the standards were poorly
277 defined, overly restrictive,^{76,81} and/or inappropriate to the local context.^{32,74} For example,
278 nonpotable reuse implementation for industry was reported as being constrained in the state of
279 Minnesota (USA) because its policies were based on those developed for nonpotable systems in
280 another state. Minnesota developed its reuse policy based on the state of California’s stringent

281 requirement of advanced disinfection of closed-loop water systems that could not be feasibly
282 achieved due to an absence of existing infrastructure capabilities in wastewater plants in
283 Minnesota.³² Therefore, this policy hindered the implementation of reuse in Minnesota.

284 The second most discussed factor was public education and awareness programs (n = 152
285 articles). As Zhu et al. (2018) discussed, "*It is important to improve public awareness and*
286 *receptivity towards reclaimed water.*"⁹³ These programs were mostly discussed as being crucial to
287 achieving positive perceptions of water reuse and therefore crucial to supporting successful
288 implementation. Most articles (n = 105) discussed public education and awareness programs as
289 facilitators when present, and the remaining (n = 47) discussed them as barriers when absent (n =
290 46) and present (n = 1), with the single article in this last category discussing the inadequacy and
291 untimely administration of these programs when present as a major barrier to reuse
292 implementation success. Water utilities typically administered public education and awareness
293 programs, which included the sharing of information⁹⁴⁻⁹⁶ and open dialoguing about water
294 reuse.^{25,97,98} The programs were designed to foster trust.^{13,33,99} As expressed by Price et al. (2015):

295 *"It has been suggested that provision of recycled water information may help to build*
296 *trust between communities and water suppliers...For communication to be effective,*
297 *however, the messengers need to be trusted, and the messages need to be accessible and*
298 *to address key concerns that people have about drinking recycled water."*⁷²

299 The components of effective public education and awareness programs have been
300 discussed extensively elsewhere.¹⁰⁰⁻¹⁰⁵ In general, effective programs have prioritized
301 communicating with the public in the early stages^{19,70,106} about water access benefits (n = 79
302 articles discussed it as a facilitator when present,^{67,75,107} n = 25 articles barrier when absent¹⁰⁸⁻¹¹⁰),

303 environmental benefits (n = 81 facilitator when present,^{111–113} n = 21 barrier when absent^{31,114,115}),
304 and examples of successful cases elsewhere (i.e., framing, branding, marketing, and terminology
305 factor; n = 69 facilitator when present,^{116–118} n = 20 barrier when absent^{68,106,119}). Positive framing
306 has helped increase utilities' legitimacy by increasing public trust (n = 49 facilitator when
307 present,^{13,120,121} n = 32 barrier when absent^{80,94,122}) and overcome common social barriers such as
308 perceived health risk (n = 100 barrier when present,^{115,123,124} n = 100 facilitator when absent^{125–127})
309 and disgust surrounding reused “toilet-to-tap” water (i.e., yuck factor; n = 90 barrier when
310 present,^{71,128,129} n = 33 facilitator when absent^{130–132}). Educating stakeholders and the public on the
311 relative severity and immediacy of risks and benefits may promote more sustainable integration of
312 reuse into long-term planning.

313 Programs have also considered providing the public with the opportunity to participate in
314 implementation decision-making. Allowing the public to participate in decisions such as site
315 selection and end use application^{90,98,126} was shown to further facilitate implementation (n = 68
316 articles facilitator when present,^{79,114,133} n = 35 articles barrier when absent^{16,134,135}), contingent
317 on other outreach efforts^{136–138} and public's trust in its utilities^{14,139,140} and government.^{106,121,141}
318 The one article that discussed public education and awareness programs as a barrier when
319 present referenced a case that offered an outreach program in its later stages and did not allow
320 the public to participate in decision-making.⁷⁰ Communication with the public in the early stages
321 of a case about water access and environmental benefits has helped improve positive public
322 perceptions of water reuse^{20,142,143} and overcome common social barriers such as perceived
323 health risks^{25,144,145} and disgust surrounding reused “toilet-to-tap” water (i.e., yuck
324 factor).^{127,146,147} As Lucas et al. (2021) discussed, “*Persistent explanations during community*

325 visits of the water reuse concept countered some initial negative reactions, and more dialogue
326 could continue to increase community support.”¹⁴⁸

327 The third most discussed factor was drought (n = 143 articles).^{149–151} We found that local
328 water scarcity due to drought was mostly discussed as a facilitator when present (n = 137
329 articles^{56,152,153}) and barrier when absent (n = 6 articles^{21,114,154}). The other factors in the geo-
330 contextual water supply and demand affinity group focused on increasing water demands due to
331 population growth,^{11,155,156} agricultural demand,^{20,157,158} and industrial demand;^{42,74,159} each factor
332 was mostly discussed as a facilitator when present since the increased demand could drive the need
333 for water reuse to supplement existing water supplies. For example, Aldaco-Manner et al. (2019)
334 discussed high water reuse potential for San Antonio (Texas, USA) based on projected demand
335 due to population growth:

336 “*With a rapidly growing population in the region, the TWDB's 2017 State Water Plan
337 indicates that water needed in this Region is expected to increase from 573,634 acre-feet
338 per year in 2020, to 995,247 acre-feet per year in 2070...water reuse is the third largest
339 expected supply and is anticipated to relieve nearly 18% of the region's water needs. If
340 water governing agencies in the region focus their efforts toward this state water goal,
341 then TWDB's water reuse strategy has large potential to help satisfy the region's water
342 needs.”⁹¹*

343 Water scarcity due to drought has been shown to prompt utilities to integrate water reuse
344 into their circular economy^{12,17,160} and long-term resource management plans to ensure resource
345 conservation and optimal utilization.^{86,161,162} These approaches may become more prevalent with
346 increasing climate-related drought risk.^{163–165} However, drought was not always a long-term or

347 continuous concern. For example, the city of Brownwood (Texas, USA) abandoned its water reuse
348 program after the drought which initiated it subsided. As Scruggs et al. (2020a) explained: “...*the*
349 *City Council never voted to approve the sale of bonds because it began to rain.*”⁶⁸ While the city
350 still acknowledged the need for a long-term plan (Scruggs et al. 2020, quoting the Brownwood
351 public works director: “...*we should not wait until we reach the ‘panic’ phase of the cycle to act;*
352 *there must be a plan beforehand.*”),⁶⁸ the absence of urgency seemed to moderate the facilitating
353 effect of water scarcity, despite the presence of other facilitators (e.g., perceived water access
354 benefits, trust in utilities; social affinity group, Figure 1A) and internal or private capital costs and
355 operations and maintenance (O&M) funding (economic affinity group, Figure 1A).

356 The relatively sustained attention to economic barriers (SI Figure S1), such as the absence
357 of internal or private capital costs and operations and maintenance funding (Figure 1A, n = 76
358 articles, n = 58 articles, respectively) may reflect the persistent need for economic solutions (i.e.,
359 more and diverse funding sources) to make reuse more accessible. Even when reuse was the most
360 cost-effective alternative, it was insufficient for guaranteeing implementation success.^{8,19,166} Water
361 reuse requires substantial infrastructure investments, from the construction of conveyance and
362 distribution networks to the O&M of advanced treatment processes.^{167–169} As Giannoccaro et al.
363 (2019) explained:

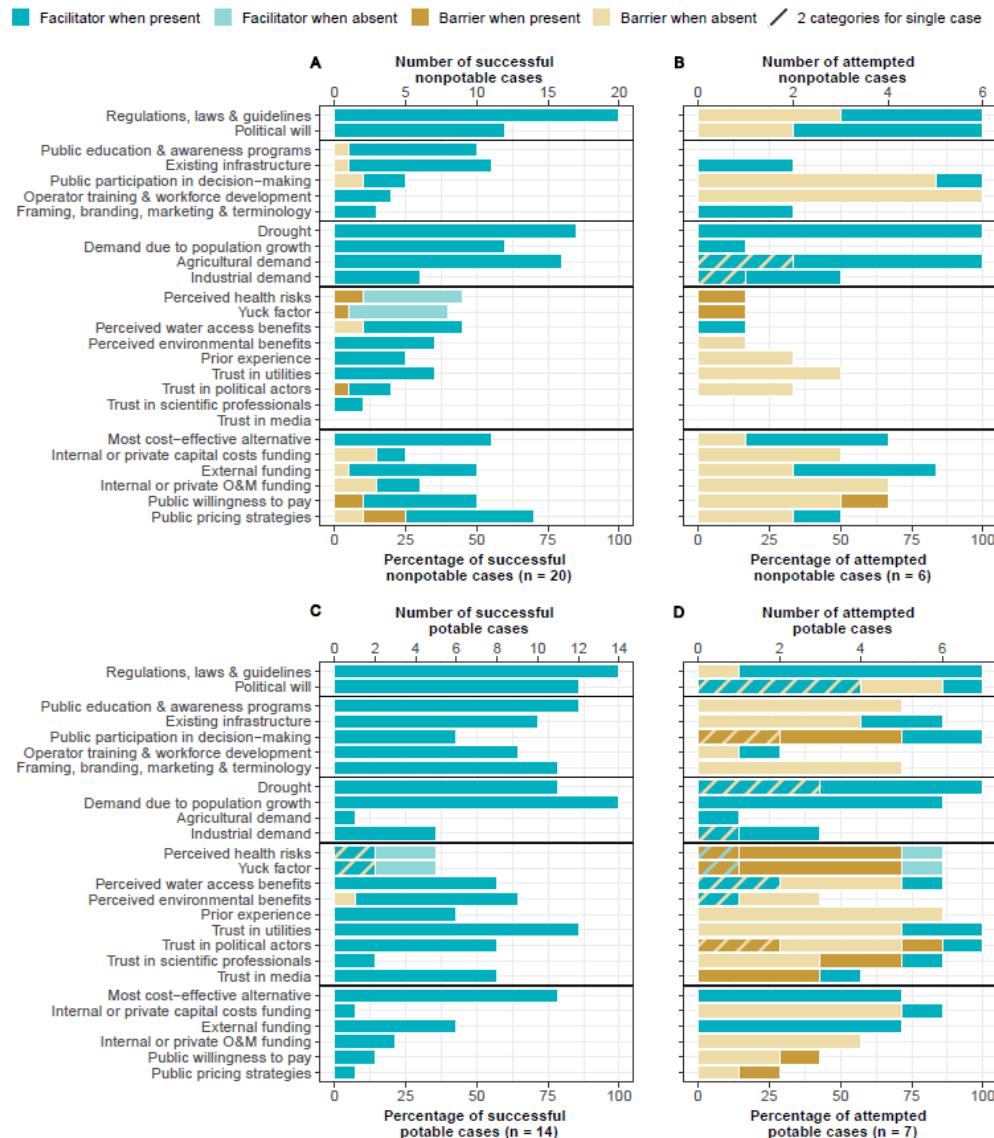
364 “*The main factor hampering the development of [wastewater treatment plants] for reuse*
365 *is related to the total costs of reclamation (plant construction, operation and*
366 *maintenance).*”¹⁷⁰

367 The evidence suggests that infrastructure costs have hindered implementation across both
368 urban and rural high- and low-resourced settings in states such as Alaska, California, Florida,

369 Georgia, Texas and New Mexico (USA)^{48,80,91,148,154,171} as well as in Asian countries^{11,74,172} and
370 Middle Eastern and North African (MENA) regions.^{24,88,173} Evidently, the absence of existing
371 infrastructure resources has also acted as a barrier to implementation (n = 68 articles, existing
372 infrastructure factor, organizational affinity group, Figure 1A). In the previously mentioned case
373 of Brownwood, the city's lack of existing infrastructure also contributed to the case's
374 termination.^{21,68} Operator training and workforce development was also another noteworthy
375 organizational factor. The increased focus on this factor in the literature post-2017 (over 30%, SI
376 Figure S1) potentially highlights the need for increased organizational capacity to manage and
377 operate reuse systems. Most articles reported the presence of operator training and workforce
378 development as a facilitator (n = 53 articles, Figure 1A)^{29,40,74,143,173,174} and absence as a barrier (n
379 = 50 articles).^{6,34,74,88,148,164,175} For example, Burgess et al. (2015) discussed:

380 “*Effective operations are critical for any treatment plant, and will be especially crucial for*
381 *the success of DPR [(direct potable reuse] due to its minimal response time...It is*
382 *important to work together to standardize and disseminate the O&M plans and ensure that*
383 *operators are well trained and certified.”*¹⁴

384 This analysis of facilitators and barriers to water reuse implementation across the globe
385 underscores the complexity and multifaceted nature of these initiatives. While relevant regulatory
386 frameworks, availability of existing infrastructure and need for additional development , operator
387 training and workforce development, public acceptance, and geo-contextual water supply and
388 demand factors emerged as key facilitators, understanding these factors and their relationships
389 with each other is essential for developing effective strategies to enhance the success of water
390 reuse cases.^{27,28,176} Analyzing facilitators and barriers based on their co-occurrence within reuse
391 cases can contribute to this understanding.


392 **3.2. Case Study Analysis**

393 **3.2.1. Nonpotable cases**

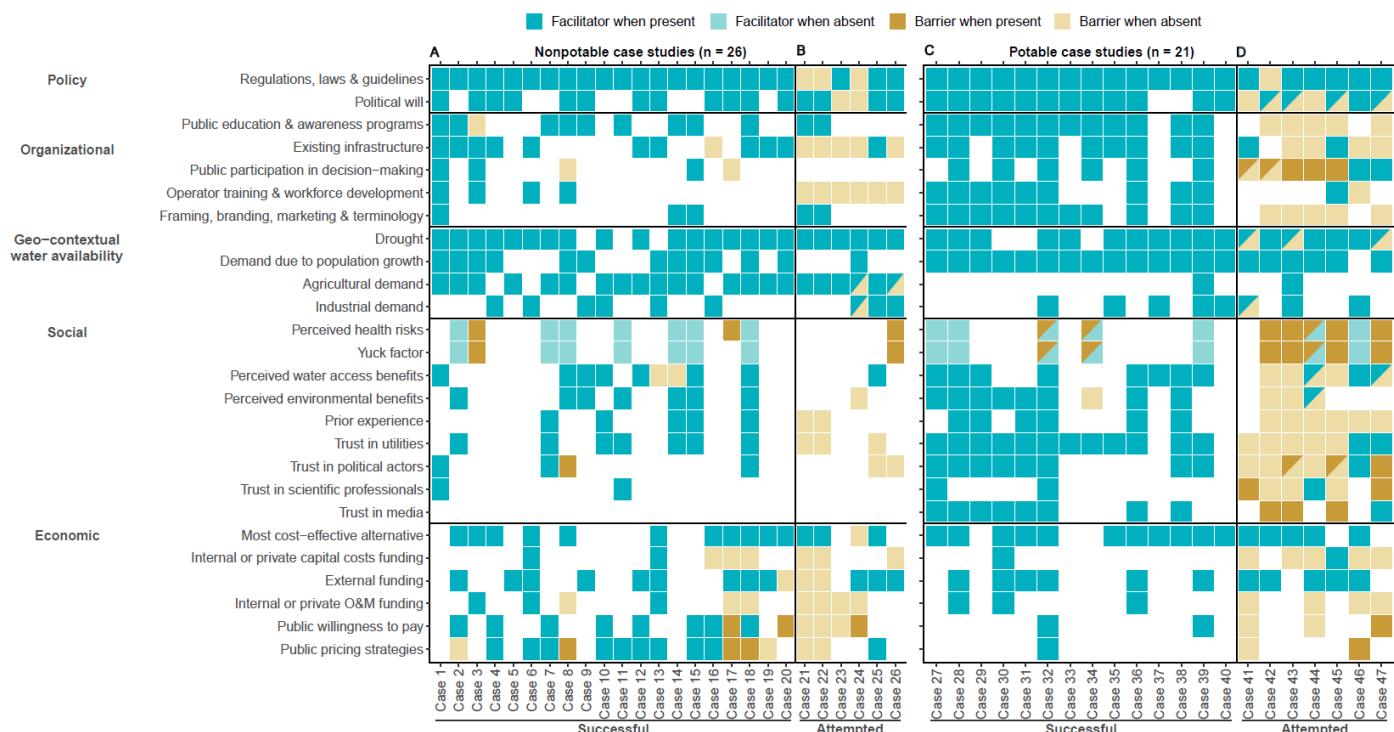
394 We found that factors in the policy, organizational, and geo-contextual water availability
395 affinity groups were the most frequently discussed factors for nonpotable cases. All the factors in
396 the policy and geo-contextual water availability affinity groups were always discussed as a
397 facilitator when present and a barrier when absent (Figures 2A and 2B). For the policy factor of
398 regulations, laws, and/or guidelines, all successful nonpotable cases discussed their presence as a
399 facilitator (Figure 2A). Regulations, laws, and/or guidelines have a critical role in ensuring safety
400 and consistency,^{177–179} and their absence has hindered the implementation of nonpotable reuse
401 (Figure 2B).^{32,74,148} For example, in the cases of two rural communities, Yukon–Kuskokwim
402 (YK) Delta and Interior (Alaska, USA; Figures 3 and 4B, cases 21 and 22, respectively), an
403 absence of regulations at any level (i.e., national, state, local, or tribal) hindered reuse
404 implementation.^{32,148} Political will can drive project commitment,^{7,13,93} resource allocation,^{25,74,92}
405 and public advocacy.^{6,25,180} The combined presence of the regulations, laws, and/or guidelines
406 and political will factors was facilitating for 60% of successful nonpotable cases. While the
407 presence of regulations, laws, and guidelines alone may be enough of a facilitator to lead to
408 success, the absence of both has hindered projects.⁷⁴ For example, the attempted cases of
409 Hyderabad (Telangana, India; Figures 3 and 4B, case 24) and Kanpur (Uttar Pradesh, India;
410 Figures 3 and 4B, case 23) were noted to have failed due to an absence of state-level regulations
411 and political will promoting reuse, despite the presence of national-level guidelines in the
412 Kanpur case that initially acted as a facilitator.⁷⁴

413 The most common geo-contextual water supply and demand factors for nonpotable cases
414 were drought and agricultural demand. The presence of these factors was discussed as a facilitator

415 in 88% and 85% of successful cases, respectively (Figure 2A) and as a facilitator in 100% and
 416 100% of attempted cases, respectively (Figure 2B). These findings indicate the importance of
 417 having enough supply to meet demand, especially in drier climates where most of the cases were
 418 located (Figure 3).

Figure

419
 420 **2. Distribution of factors across end use and implementation outcome.** (A) Successful, nonpotable (n = 20), (B)
 421 attempted, nonpotable (n = 6), (C) successful, potable (n = 14), and (D) attempted, potable (n = 7) case studies for
 422 which factors were coded categorically as facilitators when present, facilitators when absent, barriers when present,
 423 and/or barriers when absent. Striped bars indicate where factors were coded as two categories within a single case;
 424 the stripe and bar colors indicate which categories.


425 Conversely, high demand initially facilitated reuse implementation. A change in the
 426 presence of these factors can impact a case's long-term success, as a decrease in drought severity
 427 or agricultural demand can reduce the need for reuse water. For example, a decrease in the
 428 agricultural demand for water led to a loss in political will for reuse, subsequent funding deficits,
 429 and then failure for the case in Hyderabad (Figures 3 and 4B, case 24).⁷⁴ A similar trend was
 430 observed in the case of Bani Zeid (West Bank),²⁴ where a decrease in the agricultural demand for
 431 water led to the reuse project's funding deficits and subsequent failure (Figures 3 and 4B, case 26).

432 **Figure 3. Locations of water reuse cases included in the analysis.** All 47 cases are denoted by their case number
 433 and an abbreviated name in their location of implementation on the map. Different combinations of case marker colors
 434 and shapes represent the four case classifications of end use and implementation outcome, where a white triangle
 435 represents an attempted nonpotable case; a purple triangle represents a successful nonpotable case; a white circle
 436 represents an attempted potable case; and a turquoise circle represents a successful potable case. Additional
 437 information on cases is in SI Table S3.

438 Organizational, economic, and social factors were the most common barriers for attempted
 439 nonpotable cases (Figures 2B and 4B). Every attempted case cited an absence of operator training
 440 and workforce development and all but one mentioned the absence of existing infrastructure as
 441 organizational barriers (Figures 2B and 4B).^{24,74,148} Limitations to organizational capacity have

442 eroded the public's trust in utilities (33%, Figure 2B) and diminished public willingness to pay
 443 (50%, Figure 2B). For example, the cascading influence of these factors was observed in the
 444 aforementioned cases of two remote rural Alaskan communities (Figures 3 and 4B, cases 21 and
 445 22).¹⁴⁸ Other common economic barriers for both successful and attempted cases included the
 446 absence of internal or private capital costs and O&M funding (15% each, respectively, for
 447 successful cases, Figure 2A, and 67% and 50%, respectively, for attempted cases, Figure
 448 2B),^{6,93,148} even in situations where water reuse was the most cost-effective alternative (100% of
 449 such cases, Figures 2A and 2B).^{6,25,74,93,148,178}

450
 451 **Figure 4. Distribution of factors across all case studies.** The left panel displays factors for nonpotable cases
 452 organized by implementation outcome of (A) successful (n = 20) and (B) attempted (n = 6). The right panel displays
 453 factors for potable cases organized by implementation outcome of (C) successful (n = 14) and (D) attempted (n = 7)
 454 case studies. The left y-axis displays factors grouped by affinity groups. The bottom panel displays case IDs. Factors
 455 can be coded under more than one classification for a single case. Two-color cells indicate that the factor is coded
 456 under two classifications for a given case. Citations for articles discussing that case can be found in SI Table S3.

457 For example, in Beijing (China; Figures 3 and 4A, case 18), only the presence of external
 458 funding in the form of public funds has facilitated reuse implementation thus far; internal or

459 private capital costs funding would be needed to expand reuse in the city.^{6,93,178} Nonpotable reuse
460 requires substantial investments in new infrastructure systems since the water cannot be added to
461 existing potable distribution systems, and a case without the funding to build and maintain the
462 additional nonpotable distribution systems will fail.

463 The economic factors of public pricing strategies and willingness to pay were either
464 barriers or facilitators when present (Figures 4A and 4B) depending on their co-occurrence with
465 other factors. For example, in the successful cases of Hyrum (Utah, USA)⁶⁷ and El Hamma
466 (Tunisia),²⁴ setting water rates based on consumers' preferences benefited the projects by
467 increasing public acceptance (Figures 3 and 4A, cases 15 and 12, respectively), while in Cebala
468 (Tunisia; Figures 3 and 4A, case 17)²⁵ the same practice caused funding deficits even though the
469 project was successful. Social factors were only mentioned in less than 40% of successful cases
470 (e.g., in rural Emilia-Romagna, Italy; Figures 3 and 4A, case 11)¹²⁵ and were the only affinity
471 group with factors discussed as facilitators when absent (Figure 4A).^{6,7,40,67,124,152,181} The two social
472 factors that were facilitators when absent were perceived health risks and disgust with water reuse
473 (i.e., the yuck factor). These factors have been common misperceptions, which potentially caused
474 researchers to note their absence more frequently than other factors. They may not have been
475 potent enough to lead to a project's failure – especially since nonpotable water has fewer public
476 health issues than potable water – but cases benefited from their absence.^{7,67,93,125,152,178}

477 Attempted nonpotable cases that failed despite having mostly facilitators or succeeded
478 despite having excess barriers can largely be explained by the temporal ordering of certain factors
479 over others. The attempted case of Gabes City (Tunisia; Figures 3 and 4B, case 25) is a
480 representative example.²⁴ The case was initially implemented with the help of geo-contextual,
481 policy, and economic facilitators, but it could not be sustained due to social and organizational

482 barriers such as a paucity of skilled staff, evidenced by the absence of operator training and
483 workforce development; insufficient on-site water and electricity, evidenced by the absence of
484 existing infrastructure; and institutional distrust brought about by political unrest, evidenced by
485 the absence of trust in political actors. In this case, organizational factors created barriers later in
486 the implementation process that critically project success.

487 Another interesting example of nonpotable reuse is the successful case of Cebala (Tunisia;
488 Figures 3 and 4A, case 17).²⁵ While nonpotable reuse was successfully implemented in the region
489 in the 1980s, post-implementation organizational barriers such as the absence of public
490 participation in decision-making have hindered the expansion of reuse. While any factor could
491 have been a barrier or facilitator at any time in a project, organizational factors were typically
492 barriers after a project became operational, and geo-contextual factors had less direct influence
493 post-implementation but could still indirectly influence other factors,^{24,74} as discussed earlier.

494 Based on these findings, we offer the following preliminary suggestions for utilities
495 implementing nonpotable reuse. Utilities may benefit from fostering strong partnerships with the
496 industrial and agricultural sectors to ensure reliable demand for water reuse. Efforts may want to
497 focus on securing political support to assist with acquiring adequate external (i.e., public and/or
498 philanthropic) funding for capital and O&M costs. Nonpotable reuse may also benefit from high
499 organizational capacity that comes from sufficient infrastructure and operator training and
500 workforce development, which can help to establish public trust in utilities' management
501 capabilities.^{7,24} Higher public trust in utilities can also positively influence the factors of public
502 pricing strategies and willingness to pay among public water consumers by increasing cost-
503 recovery, thereby offsetting the frequently discussed barrier of funding deficits for these cases.

504 **3.2.2. Potable cases**

505 For potable cases, we found that factors in the geo-contextual water availability,
506 organizational, social, and policy affinity groups were the most frequently discussed (Figures 2C
507 and 2D). All factors in the policy and geo-contextual water availability affinity groups were
508 discussed as facilitators when present and barriers when absent, while the presence of
509 organizational and social factors was discussed as both a facilitator and a barrier depending on the
510 case (Figures 2C, 2D, 4C, and 4D). Demand due to population growth^{13,14,48} and water scarcity
511 due to drought^{30,32,183} were the most common geo-contextual water availability facilitators when
512 present, cited in 100% and 79% of successful cases (Figure 2C) and 86% and 100% of attempted
513 cases, respectively (Figure 2D). Demand due to population growth has been more closely linked
514 to potable reuse than nonpotable as it more directly affects utilities' management of water supply
515 and demand. For example, Western Corridor Recycled Water Project (Queensland, Australia;
516 Figures 3 and 4D, case 41) initially designed their indirect potable reuse program in 2007 based
517 on projected population growth in the region.^{14,48,184} As Meehan et al. (2013) discussed:

518 *“In an effort to “reduce dependence on imported water sources, or to correct the balance
519 between available water sources and projected growth” (Marks, 2006: 139), potable reuse
520 projects are typically planned in anticipation of population growth and subsequent water
521 shortages.”⁴⁸*

522 Water scarcity due to drought changed from a facilitator to a barrier for two cases in the
523 United States and one in Australia when the drought was mitigated by rainfall (Figure 4D, cases
524 41, 43, and 47, respectively); rainfall lessened the sense of urgency and contributed to the cases'
525 failure after weakening political will for two of the cases.^{13,14,48,68}

526 Other cases where there was a decline in political will reported its absence in response to
527 public backlash (Figure 4D, cases 42, 43, 45, and 47, respectively).^{13,68–70,75} For example, high

528 political will and a strong regulatory framework at the state level were both initially facilitators
529 when present in the case of East Valley, Los Angeles (USA; Figures 3 and 4D, case 45).⁷⁵ The
530 project ultimately failed when political will declined and became a barrier when absent due to
531 public criticism of the project. These concerns reportedly stemmed from a combination of factors,
532 including the absence of public education and awareness programs, the absence of supportive
533 framing, branding, marketing, and terminology used, and the absence of timely public participation
534 in decision-making.^{13,14,48,75,101} Except for public participation, the other organizational factors (i.e.,
535 public education and awareness programs, and framing, branding, marketing, and terminology)
536 were among the most frequently discussed facilitators when present across successful cases (86%
537 and 79%, respectively, Figure 2C),^{9,21,68,101,155,183} and their absence was discussed as a barrier
538 across attempted cases^{13,14,68,70,75} (71% and 71%, respectively, Figure 2D). Public participation in
539 decision-making was discussed as a facilitator when present in 43% of successful cases^{9,32,48} and
540 33% of attempted cases^{21,68} (Figures 2C and 2D), as a barrier when present in 50% of attempted
541 cases,^{13,68,75} and as a barrier both when present and absent in 29% of attempted cases (Figure
542 4D).^{69,70,116} Untimely or inadequate public participation was often a barrier when present because
543 it delayed implementation and increased costs by prolonging approval processes and creating
544 opportunities for public resistance (Figure 4D, cases 41-45).

545 Social factors were often discussed as barriers (e.g., presence of perceived health risks and
546 the yuck factor, absence of prior experience; discussed in over 70% of cases),^{48,65,75} as were
547 economic factors (e.g., absence of internal or private capital costs and O&M funding, public
548 willingness to pay, or public pricing strategies; discussed in 25% to 75% of cases).^{21,48,68} The two
549 social factors of perceived health risks and yuck factor were either barriers when present or
550 facilitators when absent, or both in a single case study (Figures 4C and 4D, two-color cells for

551 cases 32, 34, and 44). In cases where they were discussed as both, initial skepticism was overcome
552 with effective public education and awareness programs, such as in the case of NEWater
553 (Singapore; Figures 3 and 4C, case 32).^{9,64,116} Perceived health risks and yuck factor were only
554 barriers when present for potable attempted cases compared to nonpotable cases. This result is not
555 surprising given the public is more personally invested in the water they consume. Similarly, other
556 social factors and related organizational factors were more prevalent among potable than
557 nonpotable cases. The absence of social factors such as prior experience of reuse water (86% of
558 cases, Figure 2D), perceived water access benefits, trust in utilities, and trust in political actors was
559 consistently discussed as a barrier across attempted potable cases (71% of cases for the last three
560 factors, Figure 2D).^{14,71,73} The absence of these factors co-occurred with the absence of public-
561 opinion-related organizational factors such as public education and awareness programs and
562 negatively affected case outcomes. Illustratively, in the case of Jordan Valley (Jordan; Figures 3
563 and 4A, case 8), distrust in the government's ability to implement potable reuse safely was due in
564 part to its limited transparency and engagement with citizens,⁷ although these social and
565 organizational factors did not present as barriers to the region's successfully implemented
566 nonpotable program. Trust in political actors was both a barrier when absent (i.e., lack of trust in
567 government officials supporting a case)^{13,71,134} and when present (i.e., trust in government officials
568 opposing a case) (e.g., San Diego Water Repurification Project, USA; Figures 3 and 4D, case
569 43).^{21,68,134}

570 The absence of internal or private capital costs and O&M funding consistently emerged as
571 barriers among attempted cases (over 55% of cases, Figure 2D),^{13,68,73} even in the presence of
572 external public funding (Figure 4D).^{21,48,68} Successful potable reuse has required substantial
573 financial resources to support advanced treatment systems that comply with safety and reliability

574 standards, and the absence of financial resources has negatively influenced the sustainability of
575 these cases.

576 One notable potable case was that of Cloudcroft (New Mexico, USA; Figures 3 and 4D,
577 case 46).⁶⁸ This project initially had multiple geo-contextual water availability, policy, and
578 economic facilitators present (e.g., drought and industrial demand, political will, water reuse as
579 the most cost-effective alternative, and external public funding); however, organizational barriers
580 such as an absence of operator training and workforce development (i.e., a lack of skilled
581 management) and subsequent detrimental decisions (e.g., faulty construction) on unifying the
582 existing water supply infrastructure led to multiple delays in implementation. At the time of
583 publication, Cloudcroft planned to implement potable reuse in the future although the timeline for
584 project completion was unclear.

585 Based on these findings, potable reuse efforts may benefit from a focus on enhancing
586 timely public engagement by appealing to public water consumers' sensibilities, building trust in
587 water utilities, and securing robust policy and financial support to effect changes in existing
588 infrastructure required to implement these projects. These strategies may help overcome the
589 significant barriers related to public perception and organizational and regulatory compliance
590 while also ensuring greater buy-in, reflected in high political will and public acceptance. Potable
591 reuse is being increasingly acknowledged as the path forward for sustainable water management
592 practices,^{9,14,48,134,154,184} and while drought and demand due to population growth provide initial
593 motivation to consider potable reuse, focusing on operationalizable facilitators that lead to success
594 can help realize its full potential.

595 **3.2.3. Future research needs**

596 We now consider which factors were not discussed in the surveyed literature. Figure 4 is
597 especially suited to help us identify patterns in the data. Missing data are important to consider as
598 they can obfuscate the relationships between factors and implementation success, limiting progress
599 in developing effective water reuse strategies. Missing data may indicate that factors were either
600 entirely absent or not documented in cases. For nonpotable cases, social and organizational factors
601 had the most missing data (Figures 4A and 4B). The social factors of trust in political actors, trust
602 in scientific professionals, and trust in media were consistently sparse across successful and
603 attempted cases. Health risks, yuck factor, water access benefits, and environmental benefits were
604 also infrequently mentioned among attempted cases. The organizational factor of public
605 participation was entirely missing from attempted cases and was uncommon among successful
606 cases as well. Successful cases also rarely mentioned operator training and workforce development
607 and project branding and marketing. Potable cases show that economic factors, especially internal
608 or private funding for O&M, willingness to pay, and public pricing strategies, were more often
609 undocumented among potable than nonpotable cases (Figures 4C and 4D). Geo-contextual factors
610 of agricultural and industrial demand were noticeably absent from potable cases.

611 Missing data may indicate that a factor was unimportant and/or unmeasured. For example,
612 the high percentage of missingness among social factors in nonpotable cases may be the result of
613 the generally weak influence of social factors on case outcome combined with the fact that social
614 science methods are uncommon in water reuse research.^{29,38,84,185} The missingness among
615 economic factors may be in part due to the challenge of collecting data on project finances. Other
616 factors such as operator training and workforce development among successful nonpotable cases
617 may often go unmeasured because, as a type of infrastructure, they are noticed only on
618 breakdown.¹⁸⁶ We also recognize more generally that peer-reviewed literature and its findings are

619 subject to reporting bias. Journal aims and scope, length restrictions, and authors' conflicts of
620 interest can affect which cases and factors are published. That we identified nearly three times as
621 many successful cases as attempted cases may indicate that academic journals are less willing to
622 publish attempted cases (i.e., null results) than successful cases, or that it may be more difficult to
623 study attempted cases.¹⁸⁷ We also found some evidence to suggest a case published in peer-
624 reviewed journals was typically more selective in the factors it reported than the grey literature on
625 the same case.¹⁸⁸⁻¹⁹² For this reason, we recommend future literature reviews on reuse
626 implementation include grey literature to capture as much data on factors as possible to conduct
627 comprehensive case analyses.

628 The missing data highlight opportunities for future research that can help to uncover the
629 links between factors and implementation success across different end use contexts. We propose
630 three aims for future research based on our findings. First, we recommend water reuse research
631 strive for comprehensive factor identification and evaluation based on our identified list of
632 factors. To enhance the reliability and applicability of the findings, future studies should aim to
633 fill these data gaps by collecting primary data on factors and their influence in various end use
634 contexts. While this review analyzed peer-reviewed journal articles in English from a single
635 database, future reviews could synthesize data from multiple sources, including grey literature,
636 books, and sources in other languages. Such an approach would allow for more thorough
637 coverage of sector-specific factors, including technical factors and their interactions with non-
638 technical factors, the latter being the focus of this review. Further, our qualitative approach
639 consisted of identifying factors at the same level of granularity in the maximum number of
640 articles and condensing them into the most data-dense meta-factors. Therefore, we also
641 recommend future reviews aim to be systematic in their identification of factors. While a more

642 quantitatively informed approach may have yielded different factors and frequencies, we doubt
643 that our main takeaways would be substantively different, especially given our non-frequentist
644 presentation of the case study findings. Second, using a comprehensive dataset of factors we
645 recommend researchers identify the configurations of factors that lead to successful
646 implementation in potable versus nonpotable cases. We found that the relationships between
647 factors could change the influence of factors on a case's outcome, especially attempted cases'
648 outcomes. This result may indicate that factor interactions may be more determinative of their
649 influence on implementation than simply their presence or absence. Exploring pathways of
650 success could also involve examining the relative importance of factors. Cross-case comparison
651 techniques are well-suited for this task.^{176,193} Visualizing the co-occurrence of factors collected
652 using primary data methods would further enhance our understanding of these pathways of
653 success across end use contexts. Third, we suggest future research focus on the dynamic nature
654 of factors and examine their importance at different phases of implementation.^{53,194,195}

655 We found that understanding the dynamic nature and timing of factors in real-world cases
656 is crucial because these factors often interact in complex ways that change throughout different
657 phases of a project, thereby influencing the implementation outcome. We recommend future
658 studies consider using causal loop diagramming or other systems approaches to identify key causal
659 mechanisms.^{196,197} Overall, these research recommendations can assist water reuse researchers and
660 practitioners in developing a more complete and nuanced understanding of the factors necessary
661 for effective water reuse implementation globally.

662 **4. Conclusion**

663 Unpredictability in water supplies and growing water scarcity require long-term water
664 management strategies, including water reuse. Implementing water reuse has been challenging,

665 primarily due to a lack of comprehensive data on non-technical factors that utilities can use to
666 develop success strategies. To address these knowledge gaps, we first conducted a systematic
667 literature review and analysis of 232 peer-reviewed journal articles to examine the factors that
668 facilitate or hinder the implementation of water reuse projects globally. We identified a
669 comprehensive framework of facilitators and barriers. Key facilitators that emerged were clear and
670 specific regulations, laws, and/or guidelines, robust public education and awareness programs, and
671 drought. Major barriers that emerged were public reuse consumers' perceived health risks, a lack
672 of internal or private funding for capital costs, and a lack of existing infrastructure.

673 Second, we analyzed 47 cases discussed in 44 of the surveyed articles to identify factors
674 associated with implementation success in nonpotable versus potable cases. We found that, for
675 nonpotable reuse, fostering strong relationships with the industrial/agricultural sectors, and
676 investing in infrastructure development, were more often associated with implementation success.
677 Barriers including a lack of organizational capacity and funding deficits were discussed in most
678 attempted cases that failed. Facilitators for potable reuse included timely public engagement with
679 appropriate branding and marketing and securing robust policy and financial support. Major
680 barriers were negative public perception and regulatory uncertainty. This analysis based on case
681 classifications specific to end use context allowed us to highlight the unique challenges and
682 opportunities associated with each type of reuse.

683 Finally, we identified which factors were consistently not discussed in the surveyed
684 literature to highlight knowledge gaps that require further study. For instance, we found that social
685 and organizational factors had the most missing data for nonpotable cases, and the missingness
686 may be attributed to certain types of data not being collected in research on reuse implementation.
687 We recommend addressing these gaps by conducting rigorous, comprehensive case study analyses

688 to systematically capture all factors, their influence classifications as facilitators and barriers when
689 present or absent, and their combined influence on implementation outcomes based on end use
690 context. These recommendations for future research will help to better understand the complete
691 spectrum of factors, the relative importance of each factor, and the causal relationships between
692 factors to ultimately identify comprehensive strategies for successful water reuse implementation.

693 **Author Contributions**

694 Conceptualization: SC, AJW, PS; Methodology: SC, AJW, PS; Formal analysis: PS, SC, AJW;
695 Resources: SC, AJW; Writing - Original Draft: PS; Writing - Review & Editing: PS, SC, AJW;
696 Visualization: PS, SC, AJW; Supervision: SC, AJW; Project administration: SC, AJW, PS; Funding
697 acquisition: SC, AJW

698 **Acknowledgements**

699 We thank Leigh Mesikepp for her feedback on earlier drafts and assistance with the figures. This
700 publication was developed under Assistance Agreement No. CR-84046201-0 awarded by the U.S.
701 Environmental Protection Agency to The Water Research Foundation. It has not been formally
702 reviewed by EPA. The views expressed in this document are solely those of the authors and do not
703 necessarily reflect those of the Agency. EPA does not endorse any products or commercial services
704 mentioned in this publication. This material is based upon work supported by the National Science
705 Foundation under Award No. CBET-2048213. Any opinions, findings, and conclusions or
706 recommendations expressed in this material are those of the author(s) and do not necessarily reflect
707 the views of the National Science Foundation.

708 **Supporting Information**

709 The Supporting Information is available free of charge at <a href='http://pubs.acs.org.xn--
710 ivg/'><http://pubs.acs.org>..

711 •(Table S1) Overview of key search terms used in the literature retrieval process; (Table
712 S2) detailed framework coding dictionary divided based on factor affinity groups and
713 citations for all included articles; (Figure S1) distribution of factors by year of publication;
714 and (Table S3) summaries of all included case studies identifying each case's end use and
715 implementation outcome analyzed

716 **References**

- 717 1. UN Habitat and WHO. Progress on wastewater treatment – Global status and
718 acceleration needs for SDG indicator 6.3.1. 2021.
719 [https://unhabitat.org/sites/default/files/2021/08/sdg6_indicator_report_631_progress](https://unhabitat.org/sites/default/files/2021/08/sdg6_indicator_report_631_progress_on_wastewater_treatment_2021_english_pages.pdf)
720 [_on_wastewater_treatment_2021_english_pages.pdf](https://unhabitat.org/sites/default/files/2021/08/sdg6_indicator_report_631_progress_on_wastewater_treatment_2021_english_pages.pdf) (accessed 2024-08-15). United
721 Nations Human Settlements Programme (UN-Habitat) and World Health Organization
722 (WHO), Geneva.
- 723 2. US EPA Office of Water (OW). Water Reuse and Recycling.
724 <https://www.epa.gov/waterreuse> (accessed 2024-08-15).
- 725 3. US EPA. National Water Reuse Action Plan. 2020.
726 [https://www.epa.gov/sites/default/files/2020-02/documents/national-water-reuse-](https://www.epa.gov/sites/default/files/2020-02/documents/national-water-reuse-action-plan-collaborative-implementation-version-1.pdf)
727 [action-plan-collaborative-implementation-version-1.pdf](https://www.epa.gov/sites/default/files/2020-02/documents/national-water-reuse-action-plan-collaborative-implementation-version-1.pdf) (accessed 2023-02-15).
- 728 4. Araral E. Improving effectiveness and efficiency in the water sector: institutions,
729 infrastructure and indicators. *Water Policy*. 2010;12:1-7. doi:10.2166/wp.2010.010
- 730 5. Bloetscher F, Meeroff D, Heimlich B, Brown A, Bayler D, Loucraft M. Improving
731 resilience against the effects of climate change. *J Am Water Works Assoc.*
732 2010;102(11):36-46.
- 733 6. Yi L, Jiao W, Chen X, Chen W. An overview of reclaimed water reuse in China. *J Environ*
734 *Sci.* 2011;23(10):1585-1593. doi:10.1016/S1001-0742(10)60627-4
- 735 7. Carr G, Potter RB. Towards effective water reuse: drivers, challenges and strategies
736 shaping the organisational management of reclaimed water in Jordan: Towards
737 effective water reuse. *Geogr J.* 2013;179(1):61-73. doi:10.1111/j.1475-
738 4959.2012.00478.x
- 739 8. Woods GJ, Kang D, Quintanar DR, et al. Centralized versus Decentralized Wastewater
740 Reclamation in the Houghton Area of Tucson, Arizona. *J Water Resour Plan Manag.*
741 2013;139(3):313-324. doi:10.1061/(ASCE)WR.1943-5452.0000249
- 742 9. Kayhanian M, Tchobanoglous G. Water reuse in Iran with an emphasis on potable
743 reuse. *Sci Iran.* 2016;23(4):1594-1617. doi:10.24200/sci.2016.2231
- 744 10. Ashoori N, Dzombak D, Small M. Identifying water price and population criteria for
745 meeting future urban water demand targets. *J Hydrol.* 2017;555:547-556.
746 doi:10.1016/j.jhydrol.2017.10.047
- 747 11. Jalilov S, Kefi M, Kumar P, Masago Y, Mishra B. Sustainable Urban Water Management:
748 Application for Integrated Assessment in Southeast Asia. *Sustainability*. 2018;10(1).
749 doi:10.3390/su10010122

750 12. Vukovic Z, Halkjievic I. Orientation toward sustainable water supply. *Gradevinar*.
751 2012;64(5):361-371.

752 13. Mainali B, Ngo H, Guo W, Pham T, Wang X, Johnston A. SWOT analysis to assist
753 identification of the critical factors for the successful implementation of water reuse
754 schemes. *Desalination Water Treat*. 2011;32(1-3):297-306. doi:10.5004/dwt.2011.2714

755 14. Burgess J, Meeker M, Minton J, O'Donohue M. International research agency
756 perspectives on potable water reuse. *Environ Sci-Water Res Technol*. 2015;1(5):563-
757 580. doi:10.1039/c5ew00165j

758 15. Capodaglio AG, Ghilardi P, Boguniewicz-Zablocka J. New paradigms in urban water
759 management for conservation and sustainability. *Water Pract Technol*. 2016;11(1):176-
760 186. doi:10.2166/wpt.2016.022

761 16. Muller N, Marlow D, Moglia M. Business model in the context of Sustainable Urban
762 Water Management - A comparative assessment between two urban regions in
763 Australia and Germany. *Util Policy*. 2016;41:148-159. doi:10.1016/j.jup.2016.07.003

764 17. Maurya S, Singh P, Ohri A, Singh R. Identification of indicators for sustainable urban
765 water development planning. *Ecol Indic*. 2020;108. doi:10.1016/j.ecolind.2019.105691

766 18. Lazarova V, Asano T, Bahri A, Anderson J. Milestones in Water Reuse. 2013.
767 <https://library.oapen.org/handle/20.500.12657/43790> (accessed 2024-08-10). IWA
768 Publishing.

769 19. Voulvoulis N. Water reuse from a circular economy perspective and potential risks
770 from an unregulated approach. *Curr Opin Environ Sci Health*. 2018;2:32-45.
771 doi:10.1016/j.coesh.2018.01.005

772 20. Rice J, Stotts R, Wutich A, White D, Maupin J, Brewis A. Motivators for treated
773 wastewater acceptance across developed and developing contexts. *J Water Sanit Hyg
774 Dev*. 2019;9(1):1-6. doi:10.2166/washdev.2018.285

775 21. Wester J, Broad K. Direct potable water recycling in Texas: case studies and policy
776 implications. *J Environ Policy Plan*. 2021;23(1):66-83.
777 doi:10.1080/1523908X.2020.1798749

778 22. Angelakis AN, Asano T, Bahri A, Jimenez BE, Tchobanoglous G. Water Reuse: From
779 Ancient to Modern Times and the Future. *Front Environ Sci*. 2018;6:26.
780 doi:10.3389/fenvs.2018.00026

781 23. Takeuchi H, Tanaka H. Water reuse and recycling in Japan — History, current situation,
782 and future perspectives. *Water Cycle*. 2020;1:1-12. doi:10.1016/j.watcyc.2020.05.001

783 24. Dare A, Mohtar R, Jafvert C, et al. Opportunities and Challenges for Treated
784 Wastewater Reuse in the West Bank, Tunisia, and Qatar. *Trans ASABE*.
785 2017;60(5):1563-1574. doi:10.13031/trans.12109

786 25. Ben Brahim-Neji H, Ruiz-Villaverde A, Gonzalez-Gomez F. Decision aid supports for
787 evaluating agricultural water reuse practices in Tunisia: The Cebala perimeter. *Agric
788 WATER Manag.* 2014;143:113-121. doi:10.1016/j.agwat.2014.07.002

789 26. Coffey B, Bott C, Williams C, Pedersen D, Crespo E, Messner E, Steinle-Darling E,
790 Melsew G., Gray G., Dyer H., Adams H., Dobrowolski J., Safulko J., Garland J., Lewitt J.,
791 Kmiec J., Leiman J., Ashford K., Nagar K., Nemtzov S. 2023. From Water Stressed to
792 Water Secure: Lessons from Israel's Water Reuse Approach. *US EPA*.
793 doi:10.13140/RG.2.2.13282.40646.

794 27. Kunz NC, Fischer M, Ingold K, Hering JG. Drivers for and against municipal wastewater
795 recycling: a review. *Water Sci Technol.* 2016;73(2):251-259. doi:10.2166/wst.2015.496

796 28. Poskus M, Jovarauskaitė L, Balunde A. A Systematic Review of Drivers of Sustainable
797 Wastewater Treatment Technology Adoption. *Sustainability*. 2021;13(15).
798 doi:10.3390/su13158584

799 29. Hacker ME, Binz C. Institutional Barriers to On-Site Alternative Water Systems: A
800 Conceptual Framework and Systematic Analysis of the Literature. *Environ Sci Technol.*
801 2021;55(12):8267-8277. doi:10.1021/acs.est.0c07947

802 30. Van Houtte E, Verbauwheide J. Environmental benefits from water reuse combined with
803 managed aquifer recharge in the Flemish dunes (Belgium). *Int J Water Resour Dev.*
804 2021;37(6):1027-1034. doi:10.1080/07900627.2020.1858035

805 31. Ballesteros-Olza M, Blanco-Gutierrez I, Esteve P, Gomez-Ramos A, Bolinches A. Using
806 reclaimed water to cope with water scarcity: an alternative for agricultural irrigation in
807 Spain. *Environ Res Lett.* 2022;17(12). doi:10.1088/1748-9326/aca3bb

808 32. Sanchez-Flores R, Conner A, Kaiser RA. The regulatory framework of reclaimed
809 wastewater for potable reuse in the United States. *Int J Water Resour Dev.*
810 2016;32(4):536-558. doi:10.1080/07900627.2015.1129318

811 33. Ricart S, Rico AM. Assessing technical and social driving factors of water reuse in
812 agriculture: A review on risks, regulation and the yuck factor. *Agric Water Manag.*
813 2019;217:426-439. doi:10.1016/j.agwat.2019.03.017

814 34. Pasciucco F, Pecorini I, Iannelli R. Planning the centralization level in wastewater
815 collection and treatment: A review of assessment methods. *J Clean Prod.* 2022;375.
816 doi:10.1016/j.jclepro.2022.134092

817 35. Sauri D, Arahuete A. Water reuse: A review of recent international contributions and
818 an agenda for future research. *Doc Anal Geogr.* 2019;65(2):399-417.
819 doi:10.5565/rev/dag.534

820 36. Lee K, Jepson W. Drivers and barriers to urban water reuse: A systematic review. *Water*
821 *Secur.* 2020;11:100073. doi:10.1016/j.wasec.2020.100073

822 37. Gul S, Gani KM, Govender I, Bux F. Reclaimed wastewater as an ally to global
823 freshwater sources: a PESTEL evaluation of the barriers. *Aqua-Water Infrastruct*
824 *Ecosyst Soc.* 2021;70(2):123-137. doi:10.2166/aqua.2021.128

825 38. Morris JC, Georgiou I, Guenther E, Caucci S. Barriers in Implementation of Wastewater
826 Reuse: Identifying the Way Forward in Closing the Loop. *Circ Econ Sustain.*
827 2021;1(1):413-433. doi:10.1007/s43615-021-00018-z

828 39. Rogers P, Grigg N. Trends in dual water systems. *J Water Reuse Desalination.*
829 2015;5(2):132-141. doi:10.2166/wrd.2014.021

830 40. Chen Z, Wu Q, Wu G, Hu HY. Centralized water reuse system with multiple
831 applications in urban areas: Lessons from China's experience. *Resour Conserv Recycl.*
832 2017;117(B):125-136. doi:10.1016/j.resconrec.2016.11.008

833 41. Cole J, Sharvelle S, Fourness D, Grigg N, Roesner L, Haukaas J. Centralized and
834 Decentralized Strategies for Dual Water Supply: Case Study. *J Water Resour Plan*
835 *Manag.* 2018;144(1). doi:10.1061/(ASCE)WR.1943-5452.0000856

836 42. Alves D, do Monte H, Albuquerque A. Water reuse projects - technical and economic
837 sustainability. *E-Water.* 2011;(2).

838 43. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated
839 guideline for reporting systematic reviews. *BMJ.* Published online March 29, 2021:n71.
840 doi:10.1136/bmj.n71

841 44. Sarkis-Onofre R, Catalá-López F, Aromataris E, Lockwood C. How to properly use the
842 PRISMA Statement. *Syst Rev.* 2021;10(1):117, s13643-021-01671-z.
843 doi:10.1186/s13643-021-01671-z

844 45. Phillips M, Reed JB, Zwicky D, et al. Systematic Reviews in the Engineering Literature: A
845 Scoping Review. *IEEE Access.* 2024;12:62648-62663.
846 doi:10.1109/ACCESS.2024.3394755

847 46. Grevatt P, US EPA. Potable Reuse Compendium 2017.
848 https://www.epa.gov/sites/default/files/2018-01/documents/potablereusecompendium_3.pdf (accessed 2024-03-11).

850 47. World Health Organization. *Potable Reuse: Guidance for Producing Safe Drinking-*
851 *Water* 2017. <https://iris.who.int/handle/10665/258715> (accessed 2024-08-10).

852 48. Meehan K, Ormerod KJ, Moore SA. Remaking Waste as Water: The Governance of
853 Recycled Effluent for Potable Water Supply. *Water Altern- Interdiscip J Water Polit Dev.*
854 2013;6(1):67-85.

855 49. Saldaña J. The Coding Manual for Qualitative Researchers (4th Edition). SAGE
856 *Publications*. 2021.

857 50. Guest G, MacQueen K, Namey E. Applied Thematic Analysis. *SAGE Publications*. 2011.

858 51. Fereday J, Muir-Cochrane E. Demonstrating Rigor Using Thematic Analysis: A Hybrid
859 Approach of Inductive and Deductive Coding and Theme Development. *Int J Qual
860 Methods*. 2006;5(1):80-92. doi:10.1177/160940690600500107

861 52. Proudfoot K. Inductive/Deductive Hybrid Thematic Analysis in Mixed Methods
862 Research. *J Mix Methods Res*. 2023;17(3):308-326. doi:10.1177/15586898221126816

863 53. Glaser B. The Constant Comparative Method of Qualitative Analysis. *Soc Probl.*
864 1965;Vol. 12(No. 4):436-445.

865 54. Saunders B, Sim J, Kingstone T, et al. Saturation in qualitative research: exploring its
866 conceptualization and operationalization. *Qual Quant*. 2018;52(4):1893-1907.
867 doi:10.1007/s11135-017-0574-8

868 55. Liu S, Persson K. Situations of water reuse in China. *Water Policy*. 2013;15(5):705-727.
869 doi:10.2166/wp.2013.275

870 56. Turner A, Mukheibir P, Mitchell C, et al. Recycled water - lessons from Australia on
871 dealing with risk and uncertainty. *Water Pract Technol*. 2016;11(1):127-138.
872 doi:10.2166/wpt.2016.015

873 57. Team Rs. RStudio: Integrated Development Environment for R, 2023. <https://posit.co/>
874 (accessed 2024-08-15).

875 58. Wickham H. ggplot2. *WIREs Comput Stat*. 2011;3(2):180-185. doi:10.1002/wics.147

876 59. Murrell P. The gridGraphics Package. *R J*. 2015;7(1):151. doi:10.32614/RJ-2015-012

877 60. Wilke CO. cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.” *CRAN: Contributed Packages* 2015. doi:10.32614/CRAN.package.cowplot

879 61. Van Den Brand T. ggh4x: Hacks for “ggplot2.” *R package version 0.2, 6*. 2023.
880 doi:10.32614/CRAN.package.ggh4x

881 62. FC M, L Davis T. *ggpattern*: “ggplot2” Pattern Geoms. *R package version, 1(0)*.
882 <https://CRAN.R-project.org/package=ggpattern> (accessed 2024-08-15).

883 63. Wickham H, Pedersen TL. *gttable*: Arrange “Grobs” in Tables. *R package version 0.1, 2*,
884 157. 2012. doi:10.32614/CRAN.package.gtable

885 64. Ching L. A quantitative investigation of narratives: recycled drinking water. *Water*
886 *Policy*. 2015;17(5):831-847. doi:10.2166/wp.2015.125

887 65. Ching L. A lived-experience investigation of narratives: recycled drinking water. *Int J*
888 *Water Resour Dev*. 2016;32(4):637-649. doi:10.1080/07900627.2015.1126235

889 66. Ching L. Eliminating ‘Yuck’: A Simple Exposition of Media and Social Change in Water
890 *Reuse Policies*. *Int J Water Resour Dev*. 2010;26(1):111-124.
891 doi:10.1080/07900620903392174

892 67. Flint CG, Koci KR. Local resident perceptions of water reuse in Northern Utah. *Water*
893 *Environ Res*. 2021;93(1):123-135. doi:10.1002/wer.1367

894 68. Scruggs CE, Pratesi CB, Fleck JR. Direct potable water reuse in five arid inland
895 communities: an analysis of factors influencing public acceptance. *J Environ Plan*
896 *Manag*. 2020;63(8):1470-1500. doi:10.1080/09640568.2019.1671815

897 69. Bell S, Chilvers A, Hillier J. The socio-technology of engineering sustainability. *Proc Inst*
898 *Civ Eng-Eng Sustain*. 2011;164(3):177-184. doi:10.1680/ensu.900014

899 70. Hurlimann A, Dolnicar S. When public opposition defeats alternative water projects -
900 The case of Toowoomba Australia. *Water Res*. 2010;44(1):287-297.
901 doi:10.1016/j.watres.2009.09.020

902 71. Morgan EA, Grant-Smith DCC. Tales of science and defiance: the case for co-learning
903 and collaboration in bridging the science/emotion divide in water recycling debates. *J*
904 *Environ Plan Manag*. 2015;58(10):1770-1788. doi:10.1080/09640568.2014.954691

905 72. Price J, Fielding KS, Gardner J, Leviston Z, Green M. Developing effective messages
906 about potable recycled water: The importance of message structure and content.
907 *Water Resour Res*. 2015;51(4):2174-2187. doi:10.1002/2014WR016514

908 73. Ross VL, Fielding KS, Louis WR. Social trust, risk perceptions and public acceptance of
909 recycled water: Testing a social-psychological model. *J Environ Manage*. 2014;137:61-
910 68. doi:10.1016/j.jenvman.2014.01.039

911 74. Breitenmoser L, Cuadrado Quesada G, N A, et al. Perceived drivers and barriers in the
912 governance of wastewater treatment and reuse in India: Insights from a two-round
913 Delphi study. *Resour Conserv Recycl*. 2022;182:106285.
914 doi:10.1016/j.resconrec.2022.106285

915 75. Leong C. The Role of Emotions in Drinking Recycled Water. *Water*. 2016;8(11):548.
916 doi:10.3390/w8110548

917 76. Bischel HN, Simon GL, Frisby TM, Luthy RG. Management Experiences and Trends for
918 Water Reuse Implementation in Northern California. *Environ Sci Technol*.
919 2012;46(1):180-188. doi:10.1021/es202725e

920 77. Dillon P, Toze S, Page D, et al. Managed aquifer recharge: rediscovering nature as a
921 leading edge technology. *Water Sci Technol*. 2010;62(10):2338-2345.
922 doi:10.2166/wst.2010.444

923 78. Browning-Aiken A, Ormerod KJ, Scott CA. Testing the Climate for Non-Potable Water
924 Reuse: Opportunities and Challenges in Water-Scarce Urban Growth Corridors. *J
925 Environ Policy Plan*. 2011;13(3):253-275. doi:10.1080/1523908X.2011.594597

926 79. Stathatou PM, Kampragou E, Grigoropoulou H, Assimacopoulos D, Karavitis C, Gironás
927 J. Creating an enabling environment for WR&R implementation. *Water Sci Technol*.
928 2017;76(6):1555-1564. doi:10.2166/wst.2017.353

929 80. Hopson MN, Fowler L. An analysis of and recommendations for comprehensive state
930 water recycling policy strategies in the U.S. *Resour Conserv Recycl*. 2022;183:106356.
931 doi:10.1016/j.resconrec.2022.106356

932 81. Hastie A, Otrubina V, Stillwell A. Lack of Clarity Around Policies, Data Management,
933 and Infrastructure May Hinder the Efficient Use of Reclaimed Water Resources in the
934 United States. *ACS ES&T Water*. 2022;2(12):2289-2296.
935 doi:10.1021/acsestwater.2c00307

936 82. Cipolletta G, Ozbayram EG, Eusebi AL, et al. Policy and legislative barriers to close
937 water-related loops in innovative small water and wastewater systems in Europe: A
938 critical analysis. *J Clean Prod*. 2021;288. doi:10.1016/j.jclepro.2020.125604

939 83. Power K. The adoption of the Australian Water Recycling Guidelines by regulators with
940 specific reference to treatment validation requirements. *Water Sci Technol*.
941 2010;62(8):1735-1744. doi:10.2166/wst.2010.380

942 84. Harris-Lovett SR, Binz C, Sedlak DL, Kiparsky M, Truffer B. Beyond User Acceptance: A
943 Legitimacy Framework for Potable Water Reuse in California. *Environ Sci Technol*.
944 2015;49(13):7552-7561. doi:10.1021/acs.est.5b00504

945 85. Ortega A, Neves R. Legal Aspects of Urban Water and Sanitation Regulatory Services:
946 An Analysis of How the Spanish Experience Positively Would Contribute to the Brazilian
947 New Regulation. *Water*. 2021;13(8). doi:10.3390/w13081023

948 86. Mesa-Perez E, Bethel J. Analysis of Barriers and Opportunities for Reclaimed
949 Wastewater Use for Agriculture in Europe. *Water*. 2020;12(8). doi:10.3390/w12082308

950 87. McClelland C, Linden K, Drewes J, Khan S, Raucher R, Smith J. Determining key factors
951 and challenges that affect the future of water reuse. *J Water Supply Res Technol-*
952 *AQUA*. 2012;61(8):518-528. doi:10.2166/aqua.2012.188

953 88. Moghaddam VK, Changani F, Mohammadi A, et al. Sustainable development of water
954 resources based on wastewater reuse and upgrading of treatment plants: a review in
955 the Middle East. *Desalination Water Treat*. 2017;65:463-473.
956 doi:10.5004/dwt.2017.20383

957 89. Thaher R, Mahmoud N, Al-Khatib I, Hung YT. Reasons of Acceptance and Barriers of
958 House Onsite Greywater Treatment and Reuse in Palestinian Rural Areas. *Water*.
959 2020;12(6):1679. doi:10.3390/w12061679

960 90. Neha, Kansal A. Acceptability of reclaimed municipal wastewater in cities: evidence
961 from India's National Capital Region. *Water Policy*. 2022;24(1):212-228.
962 doi:10.2166/wp.2021.197

963 91. Aldaco-Manner L, Mohtar R, Portney K. Analysis of four governance factors on efforts of
964 water governing agencies to increase water reuse in the San Antonio Region. *Sci Total
965 Environ*. 2019;647:1498-1507. doi:10.1016/j.scitotenv.2018.07.366

966 92. Cruz-Ayala MB, Megdal SB. An Overview of Managed Aquifer Recharge in Mexico and Its
967 Legal Framework. *Water*. 2020;12(2). doi:10.3390/w12020474

968 93. Zhu Z, Dou J. Current status of reclaimed water in China: an overview. *J Water Reuse
969 Desalination*. 2018;8(3):293-307. doi:10.2166/wrd.2018.070

970 94. Hughes S, Pincetl S, Boone C. Triple exposure: Regulatory, climatic, and political
971 drivers of water management changes in the city of Los Angeles. *Cities*. 2013;32:51-59.
972 doi:10.1016/j.cities.2013.02.007

973 95. Adapa S. Factors influencing consumption and anti-consumption of recycled water:
974 Evidence from Australia. *J Clean Prod*. 2018;201:624-635.
975 doi:10.1016/j.jclepro.2018.08.083

976 96. Glick DM, Goldfarb JL, Heiger-Bernays W, Kriner DL. Public knowledge, contaminant
977 concerns, and support for recycled Water in the United States. *Resour Conserv Recycl*.
978 2019;150:104419. doi:10.1016/j.resconrec.2019.104419

979 97. Fielding KS, Dolnicar S, Schultz T. Public acceptance of recycled water. *Int J Water
980 Resour Dev*. 2019;35(4):551-586. doi:10.1080/07900627.2017.1419125

981 98. Al-Saidi M. From Acceptance Snapshots to the Social Acceptability Process:
982 Structuring Knowledge on Attitudes Towards Water Reuse. *Front Environ Sci*.
983 2021;9:633841. doi:10.3389/fenvs.2021.633841

984 99. Nkhoma PR, Alsharif K, Ananga E, Eduful M, Acheampong M. Recycled water reuse:
985 what factors affect public acceptance? *Environ Conserv.* 2021;48(4):278-286.
986 doi:10.1017/S037689292100031X

987 100. Papadopoulou A, Stefanakou G, Fougias EG. Promotion of environmental projects to
988 conform with UWWTD and integrated water management. *Water Pract Technol.*
989 doi:10.2166/wpt.2022.067

990 101. Posetti B, Hurlimann A, Tkaczynski A, Randle M, Dolnicar S. Delivery or desirability of
991 benefits? Predicting the effectiveness of egoistic and altruistic message appeals for
992 recycled water use. *Australas J Environ Manag.* 2022;29(2):200-217.
993 doi:10.1080/14486563.2022.2028686

994 102. Suman A, Toscano A. Public Acceptance of Water Reuse for Agriculture in the Wake
995 of the New EU Regulation: Early Reflections. *J Eur Environ Plan Law.* 2021;18(3):225-
996 255. doi:10.1163/18760104-18030001

997 103. Mahmoud-Elhaj D, Tanner B, Sabatini D, Feltz A. Measuring objective knowledge of
998 potable recycled water. *J Community Psychol.* 2020;48(6):2033-2052.
999 doi:10.1002/jcop.22402

1000 104. Hou C, Fu H, Liu X, Wen Y. The effect of recycled water information disclosure on
1001 public acceptance of recycled water—Evidence from residents of Xi'an, China.
1002 *Sustain Cities Soc.* 2020;61:102351. doi:10.1016/j.scs.2020.102351

1003 105. Stotts R, Rice J, Wutich A, Brewis A, White D, Maupin J. Cross-cultural Knowledge and
1004 Acceptance of Wastewater Reclamation and Reuse Processes across Select Sites.
1005 *Hum Organ.* 2019;78(4):311-324. doi:10.17730/0018-7259.78.4.311

1006 106. Gerdes ME, Suri MR, Rosenberg Goldstein RE. Traditional approaches for educating
1007 farmers about nontraditional water: Evaluating preferred outreach, education, and
1008 methods for alleviating concerns. *J Environ Manage.* 2020;275:111265.
1009 doi:10.1016/j.jenvman.2020.111265

1010 107. Greenaway T, Fielding KS. Positive Affective Framing of Information Reduces Risk
1011 Perceptions and Increases Acceptance of Recycled Water. *Environ Commun.*
1012 2020;14(3):391-402. doi:10.1080/17524032.2019.1680408

1013 108. Ormerod KJ. Illuminating elimination: public perception and the production of
1014 potable water reuse. *WIREs Water.* 2016;3(4):537-547. doi:10.1002/wat2.1149

1015 109. Kim H, Son J, Lee S, et al. Assessing Urban Water Management Sustainability of a
1016 Megacity: Case Study of Seoul, South Korea. *Water.* 2018;10(6).
1017 doi:10.3390/w10060682

1018 110. Liu X, Chen S, Guo X, Fu H. Can Social Norms Promote Recycled Water Use on
1019 Campus? The Evidence From Event-Related Potentials. *Front Psychol.*
1020 2022;13:818292. doi:10.3389/fpsyg.2022.818292

1021 111. Faria DC, Naval LP. Wastewater reuse: Perception and social acceptance. *Water*
1022 *Environ J.* 2022;36(3):433-447. doi:10.1111/wej.12776

1023 112. Massoud MA, Terkawi M, Nakkash R. Water reuse as an incentive to promote
1024 sustainable agriculture in Lebanon: Stakeholders' perspectives. *Integr Environ*
1025 *Assess Manag.* 2019;15(3):412-421. doi:10.1002/team.4131

1026 113. Ricart S, Rico A, Ribas A. Risk-Yuck Factor Nexus in Reclaimed Wastewater for
1027 Irrigation: Comparing Farmers' Attitudes and Public Perception. *Water.*
1028 2019;11(2):187. doi:10.3390/w11020187

1029 114. Beveridge R, Moss T, Naumann M. Sociospatial Understanding of Water Politics:
1030 Tracing the Multidimensionality of Water Reuse. 2017;10(1):19. *Water Alternatives*,
1031 10(1), 22-40.

1032 115. Zhu Z, Wang H, Li A. On the factors influencing public knowledge and acceptance of
1033 reclaimed water from a survey of three cities in northern China. *J Water Reuse*
1034 *Desalination.* 2019;9(2):193-202. doi:10.2166/wrd.2018.049

1035 116. Ching L, Yu DJH. Turning the tide: informal institutional change in water reuse. *Water*
1036 *Policy.* 2010;12(S1):121-134. doi:10.2166/wp.2010.117

1037 117. Priadi CR, Suleeman E, Darmajanti L, et al. Water Recycling Opportunity in the
1038 Business Sectors of Greater Jakarta, Indonesia. *Int J Technol.* 2017;8(6):1031-1039.
1039 doi:10.14716/ijtech.v8i6.743

1040 118. Nemeroff C, Rozin P, Haddad B, Slovic P. Psychological barriers to urban recycled
1041 water acceptance: a review of relevant principles in decision psychology. *Int J Water*
1042 *Resour Dev.* 2020;36(6):956-971. doi:10.1080/07900627.2020.1804841

1043 119. Tsagarakis K, Menegaki A, Siarapi K, Zacharopoulou F. Safety alerts reduce
1044 willingness to visit parks irrigated with recycled water. *J Risk Res.* 2013;16(2):133-
1045 144. doi:10.1080/13669877.2012.726246

1046 120. Fu H, Liu Z, Wang M, Wang Z. Big Data Digging of the Public's Cognition about
1047 Recycled Water Reuse Based on the BP Neural Network. *Complexity.* 2018;2018:1-
1048 11. doi:10.1155/2018/1876861

1049 121. Wade M, Peppler R, Person A. Community education and perceptions of water reuse:
1050 a case study in Norman, Oklahoma. *J Environ Stud Sci.* 2021;11(2):266-273.
1051 doi:10.1007/s13412-021-00667-4

1052 122. Garin P, Montginoul M, Noury B. Waste water reuse in France - social perception of
1053 an unfamiliar practice. *Water Supply*. 2021;21(5):1913-1926.
1054 doi:10.2166/ws.2020.242

1055 123. Esfandiari S, Dourandish A, Firoozzare A, Taghvaeian S. Strategic planning for
1056 exchanging treated urban wastewater for agricultural water with the approach of
1057 supplying sustainable urban water: a case study of Mashhad, Iran. *Water Supply*.
1058 2022;22(12):8483-8499. doi:10.2166/ws.2022.359

1059 124. Ahmadi P, Rahimian M, Movahed R. Theory of planned behavior to predict
1060 consumer behavior in using products irrigated with purified wastewater in Iran
1061 consumer. *J Clean Prod*. 2021;296. doi:10.1016/j.jclepro.2021.126359

1062 125. Michetti M, Raggi M, Guerra E, Viaggi D. Interpreting Farmers' Perceptions of Risks
1063 and Benefits Concerning Wastewater Reuse for Irrigation: A Case Study in Emilia-
1064 Romagna (Italy). *Water*. 2019;11(1):108. doi:10.3390/w11010108

1065 126. Kordani H, Chaplot B, Dehkharghani P, Azamathulla H. People's participation in
1066 using treated wastewater as an approach for sustainability of ecosystem services,
1067 Green spaces, and farmlands in peri-urban areas: the case study of Kalak-e Bala,
1068 Karaj, Iran. *Water Supply*. 2022;22(4):4571-4583. doi:10.2166/ws.2022.118

1069 127. Lopez-Serrano MariaJ, Velasco-Munoz JF, Aznar-Sanchez JA, Roman-Sanchez IM.
1070 Farmers' Attitudes towards Irrigating Crops with Reclaimed Water in the Framework
1071 of a Circular Economy. *Agron-Basel*. 2022;12(2). doi:10.3390/agronomy12020435

1072 128. MacDonald DH, Rose JM, Lease HJ, Cox DN. Recycled wastewater and product
1073 choice: Does it make a difference if and when you taste it? *Food Qual Prefer*.
1074 2016;48(A):283-292. doi:10.1016/j.foodqual.2015.10.004

1075 129. Redman S, Ormerod KJ, Kelley S. Reclaiming Suburbia: Differences in Local Identity
1076 and Public Perceptions of Potable Water Reuse. *Sustainability*. 2019;11(3):564.
1077 doi:10.3390/su11030564

1078 130. Aitken V, Bell S, Hills S, Rees L. Public acceptability of indirect potable water reuse in
1079 the south-east of England. *Water Supply*. 2014;14(5):875-885.
1080 doi:10.2166/ws.2014.051

1081 131. Bouzit M, Das S, Cary L. Valuing Treated Wastewater and Reuse: Preliminary
1082 Implications From a Meta-Analysis. *Water Econ Policy*. 2018;4(2).
1083 doi:10.1142/S2382624X16500442

1084 132. Ding Y, Liu X, Li L. The Gap between Willingness and Behavior: The Use of Recycled
1085 Water for Toilet Flushing in Beijing, China. *Water*. 2022;14(8):1287.
1086 doi:10.3390/w14081287

1087 133. Elbana M, Puig-Bargues J, Pujol J, Ramirez de Cartagena F. Preliminary planning for
1088 reclaimed water reuse for agricultural irrigation in the province of Girona, Catalonia
1089 (Spain). *Desalination Water Treat.* 2010;22(1-3):47-55. doi:10.5004/dwt.2010.1523

1090 134. Price J, Fielding K, Leviston Z. Supporters and Opponents of Potable Recycled Water:
1091 Culture and Cognition in the Toowoomba Referendum. *Soc Nat Resour.*
1092 2012;25(10):980-995. doi:10.1080/08941920.2012.656185

1093 135. Farrelly MA, Brown RR. Making the implicit, explicit: time for renegotiating the urban
1094 water supply hydrosocial contract? *Urban Water J.* 2014;11(5):392-404.
1095 doi:10.1080/1573062X.2013.793729

1096 136. Riazi F, Fidelis T, Teles F. Governance Arrangements for Water Reuse: Assessing
1097 Emerging Trends for Inter-Municipal Cooperation through a Literature Review. *Water.*
1098 2022;14(18). doi:10.3390/w14182789

1099 137. Srivastava RR, Singh PK. Selection of factors affecting integrated municipal
1100 wastewater treatment and reuse network: an interpretive structural modelling (ISM)
1101 approach. *Environ Dev Sustain.* 2022. doi:10.1007/s10668-022-02428-x

1102 138. Jensen O, Nair S. Integrated Urban Water Management and Water Security: A
1103 Comparison of Singapore and Hong Kong. *Water.* 2019;11(4).
1104 doi:10.3390/w11040785

1105 139. Qian N, Leong C. A game theoretic approach to implementation of recycled drinking
1106 water. *Desalination Water Treat.* 2016;57(1):24231-24239.
1107 doi:10.1080/19443994.2016.1141325

1108 140. Distler LN, Scruggs CE, Rumsey KN. Arid Inland Community Survey on Water
1109 Knowledge, Trust, and Potable Reuse. II: Predictive Modeling. *J Water Resour Plan
1110 Manag.* 2020;146(7):04020046. doi:10.1061/(ASCE)WR.1943-5452.0001219

1111 141. Opher T, Shapira A, Friedler E. A comparative social life cycle assessment of urban
1112 domestic water reuse alternatives. *Int J Life Cycle Assess.* 2018;23(6):1315-1330.
1113 doi:10.1007/s11367-017-1356-1

1114 142. Harmon D, Gauvain M, Z Reisz, Arthur I, Story SD. Preference for tap, bottled, and
1115 recycled water: Relations to PTC taste sensitivity and personality. *Appetite.*
1116 2018;121:119-128. doi:10.1016/j.appet.2017.10.040

1117 143. Mosleh L, Negahban-Azar M. Role of Models in the Decision-Making Process in
1118 Integrated Urban Water Management: A Review. *Water.* 2021;13(9).
1119 doi:10.3390/w13091252

1120 144. Sgroi M, Vagliasindi FGA, Roccaro P. Feasibility, sustainability and circular economy
1121 concepts in water reuse. *Curr Opin Environ Sci Health.* 2018;2:20-25.
1122 doi:10.1016/j.coesh.2018.01.004

1123 145. Yerznkyan B, Fontana K. Managing the Innovative Water Supply in Urban Economy. *J
1124 Complement Med Res.* 2020;11(1):392-400. doi:10.5455/jcmr.2020.11.01.45

1125 146. Fu H, Li Z, Liu Z, Wang Z. Research on Big Data Digging of Hot Topics about Recycled
1126 Water Use on Micro-Blog Based on Particle Swarm Optimization. *Sustainability.*
1127 2018;10(7):2488. doi:10.3390/su10072488

1128 147. Winker M, Fischer M, Bliedung A, et al. Water reuse in hydroponic systems: a realistic
1129 future scenario for Germany? Facts and evidence gained during a transdisciplinary
1130 research project. *J Water Reuse Desalination.* 2020;10(4):363-379.
1131 doi:10.2166/wrd.2020.020

1132 148. Lucas C, Johnson B, Snyder E, Aggarwal S, Dotson A. A Tale of Two Communities:
1133 Adopting and Paying for an In-Home Non-Potable Water Reuse System in Rural
1134 Alaska. *ACS ES&T Water.* 2021;1(8):1807-1815. doi:10.1021/acsestwater.1c00113

1135 149. Schreurs E, Koop S, van Leeuwen K. Application of the City Blueprint Approach to
1136 assess the challenges of water management and governance in Quito (Ecuador).
1137 *Environ Dev Sustain.* 2018;20(2):509-525. doi:10.1007/s10668-017-9916-x

1138 150. Bell E, Henry A, Pivo G. Assessing sectoral heterogeneity and leadership in urban
1139 water management networks. *Water Policy.* 2020;22(5):867-886.
1140 doi:10.2166/wp.2020.153

1141 151. Urquijo J, De Stefano L. Perception of Drought and Local Responses by Farmers: A
1142 Perspective from the Jucar River Basin, Spain. *Water Resour Manag.* 2016;30(2):577-
1143 591. doi:10.1007/s11269-015-1178-5

1144 152. Campbell AC, Scott CA. Water reuse: policy implications of a decade of residential
1145 reclaimed water use in Tucson, Arizona. *Water Int.* 2011;36(7, SI):908-923.
1146 doi:10.1080/02508060.2011.621588

1147 153. Almeida G, Vieira J, Marques AS, Kiperstok A, Cardoso A. Estimating the potential
1148 water reuse based on fuzzy reasoning. *J Environ Manage.* 2013;128:883-892.
1149 doi:10.1016/j.jenvman.2013.06.048

1150 154. Scruggs C, Lawler D, Tchobanoglous G, et al. Potable Water Reuse in Small Inland
1151 Communities: Oasis or Mirage? *J Am Water Works Assoc.* 2020;112(4):10-17.
1152 doi:10.1002/awwa.1476

1153 155. van Rensburg P. Overcoming global water reuse barriers: the Windhoek experience.
1154 *Int J Water Resour Dev.* 2016;32(4):622-636. doi:10.1080/07900627.2015.1129319

1155 156. Lahmouri M, Drewes JE, Gondhalekar D. Analysis of Greenhouse Gas Emissions in
1156 Centralized and Decentralized Water Reclamation with Resource Recovery
1157 Strategies in Leh Town, Ladakh, India, and Potential for Their Reduction in Context of
1158 the Water–Energy–Food Nexus. *Water*. 2019;11(5):906. doi:10.3390/w11050906

1159 157. Gondhalekar D, Drewes J. Infrastructure Shaming and Consequences for
1160 Management of Urban WEF Security Nexus in China and India. *Water*. 2021;13(3).
1161 doi:10.3390/w13030267

1162 158. Oral H, Radinja M, Rizzo A, et al. Management of Urban Waters with Nature-Based
1163 Solutions in Circular Cities-Exemplified through Seven Urban Circularity Challenges.
1164 *Water*. 2021;13(23). doi:10.3390/w13233334

1165 159. Rivero N, Morais D, Pereira L. Assessment of actions to tackle the shortages of water
1166 in La Paz, Bolivia. *Water Policy*. 2020;22(2):177-192. doi:10.2166/wp.2020.087

1167 160. Ramirez-Agudelo N, de Pablo J, Roca E. Exploring alternative practices in urban water
1168 management through the lens of circular economy-A case study in the Barcelona
1169 metropolitan area. *J Clean Prod*. 2021;329. doi:10.1016/j.jclepro.2021.129565

1170 161. Ye M. Constraints and Solutions for Harnessing and Revitalizing Water Resources in
1171 Hubei Province of China. *J Coast Res*. Published online WIN 2020:115-118.
1172 doi:10.2112/JCR-SI105-024.1

1173 162. Vila-Tojo S, Sabucedo JM, Andrade E, Gómez-Román C, Alzate M, Seoane G. From
1174 scarcity problem diagnosis to recycled water acceptance: A perceptive-axiological
1175 model (PAM) of low and high contact uses. *Water Res*. 2022;217:118380.
1176 doi:10.1016/j.watres.2022.118380

1177 163. Pardo M, Perez-Montes A, Moya-Llamas M. Using reclaimed water in dual
1178 pressurized water distribution networks. Cost analysis. *J Water Process Eng*.
1179 2021;40. doi:10.1016/j.jwpe.2020.101766

1180 164. Rodriguez C, Garcia B, Pinto C, Sanchez R, Serrano J, Leiva E. Water Context in Latin
1181 America and the Caribbean: Distribution, Regulations and Prospects for Water Reuse
1182 and Reclamation. *Water*. 2022;14(21). doi:10.3390/w14213589

1183 165. Zheng J, Liu J, Ma T, Peng A, Deng X. An SEM-REM-Based Study on the Driving and
1184 Restraining Mechanisms and Potential of Reclaimed Water Utilization in China.
1185 *Water*. 2022;14(1). doi:10.3390/w14010052

1186 166. Listowski A, Ngo HH, Guo WS. Establishment of an economic evaluation model for
1187 urban recycled water. *Resour Conserv Recycl*. 2013;72:67-75.
1188 doi:10.1016/j.resconrec.2012.12.011

1189 167. Cagno E, Garrone P, Negri M, Rizzuni A. Adoption of water reuse technologies: An
1190 assessment under different regulatory and operational scenarios. *J Environ Manage.*
1191 2022;317:115389. doi:10.1016/j.jenvman.2022.115389

1192 168. Liao Z, Chen Z, Wu Y, Xu A, Liu J, Hu HY. Identification of development potentials and
1193 routes of wastewater treatment and reuse for Asian countries by key influential
1194 factors and prediction models. *Resour Conserv Recycl.* 2021;168:105259.
1195 doi:10.1016/j.resconrec.2020.105259

1196 169. Tran QK, Schwabe KA, Jassby D. Wastewater Reuse for Agriculture: Development of a
1197 Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation
1198 Sources. *Environ Sci Technol.* 2016;50(17):9390-9399. doi:10.1021/acs.est.6b02073

1199 170. Giannoccaro G, Arborea S, de Gennaro B, Iacobellis V, Piccinni A. Assessing
1200 Reclaimed Urban Wastewater for Reuse in Agriculture: Technical and Economic
1201 Concerns for Mediterranean Regions. *Water.* 2019;11(7). doi:10.3390/w11071511

1202 171. Parsons LR, Sheikh B, Holden R, York DW. Reclaimed Water as an Alternative Water
1203 Source for Crop Irrigation. *Hortscience.* 2010;45(11):1626-1629.
1204 doi:10.21273/HORTSCI.45.11.1626

1205 172. Liao Z, Chen Z, Xu A, et al. Wastewater treatment and reuse situations and influential
1206 factors in major Asian countries. *J Environ Manage.* 2021;282.
1207 doi:10.1016/j.jenvman.2021.111976

1208 173. Oertle E, Mueller SR, Choukr-Allah R, Jaouani A. Decision Support Tool for Water
1209 Reclamation Beyond Technical Considerations-Egyptian, Moroccan, and Tunisian
1210 Case Studies. *Integr Environ Assess Manag.* 2020;16(6):885-897.
1211 doi:10.1002/ieam.4303

1212 174. van de Meene S, Brown R, Farrelly M. Towards understanding governance for
1213 sustainable urban water management. *Glob Environ Change-Hum Policy Dimens.*
1214 2011;21(3):1117-1127. doi:10.1016/j.gloenvcha.2011.04.003

1215 175. Haldar K, Kujawa-Roeleveld K, Schoenmakers M, Datta D, Rijnaarts H, Vos J.
1216 Institutional challenges and stakeholder perception towards planned water reuse in
1217 peri-urban agriculture of the Bengal delta. *J Environ Manage.* 2021;283.
1218 doi:10.1016/j.jenvman.2021.111974

1219 176. Jiang D, Fischer M, Huang Z, Kunz N. Identifying Drivers of China's Provincial
1220 Wastewater Reuse Outcomes Using Qualitative Comparative Analysis. *J Ind Ecol.*
1221 2018;22(2):369-376. doi:10.1111/jiec.12584

1222 177. Bancroft M, Gardner A. Opportunities and obligations for residential developers to
1223 undertake wastewater recycling and stormwater capture: A Western Australian
1224 perspective. *Environ Plan Law J.* 2015;32(4):372-391.

1225 178. Wu S, Hu Y, Yang L. Case study on reclaimed water system planning. 2012. *Advanced*
1226 *Materials Research*, 361, 1117-112. doi:10.4028/www.scientific.net/AMR.361-
1227 363.1117

1228 179. Petousi I, Fountoulakis MS, Stentiford EI, Manios T. Farmers' Experience, Concerns
1229 and Perspectives in Using Reclaimed Water for Irrigation in a Semi-Arid Region of
1230 Crete, Greece: Acceptance of Reclaimed Water for Crop Irrigation. *Irrig Drain*.
1231 2015;64(5):647-654. doi:10.1002/ird.1936

1232 180. Zimmermann M, Neu F. Social-Ecological Impact Assessment and Success Factors
1233 of a Water Reuse System for Irrigation Purposes in Central Northern Namibia. *Water*.
1234 2022;14(15). doi:10.3390/w14152381

1235 181. Deh-Haghi Z, Bagheri A, Damalas C, Fotourehchi Z. Horticultural products irrigated
1236 with treated sewage: are they acceptable? *Environ Sci Pollut Res*.
1237 2021;28(38):54057-54068. doi:10.1007/s11356-021-14552-8

1238 182. Giamar DE, Greene DM, Mishrra A, et al. Cost and Energy Metrics for Municipal
1239 Water Reuse. *ACS ES&T Eng*. 2022;2(3):489-507. doi:10.1021/acsestengg.1c00351

1240 183. Price J, Fielding K, Gardner J, Leviston Z, Green M. Developing effective messages
1241 about potable recycled water: The importance of message structure and content.
1242 *Water Resour Res*. 2015;51(4):2174-2187. doi:10.1002/2014WR016514

1243 184. Asano T. Wastewater reclamation, recycling and reuse: past, present, and future.
1244 *Water Sci Technol*. 1996;33(10-11). doi:10.1016/0273-1223(96)00401-5

1245 185. Star, S. L. The ethnography of infrastructure. 1999. *American behavioral scientist*,
1246 43(3), 377-391.

1247 186. Fanelli D. Negative results are disappearing from most disciplines and countries.
1248 *Scientometrics*. 2012;90(3):891-904. doi:10.1007/s11192-011-0494-7

1249 187. Crook J, WateReuse Association. Innovative Applications in Water Reuse: Ten Case
1250 Studies. 2004. <https://watereuse.org/wp-content/uploads/2015/10/WRA-101.pdf>
1251 (accessed 2023-06-22).

1252 188. US EPA Office of Water. Case Studies that Demonstrate the Benefits of Water Reuse.
1253 October 17, 2023. <https://www.epa.gov/waterreuse/case-studies-demonstrate-benefits-water-reuse> (accessed 2023-06-10).

1255 189. Crook J, WateReuse Association. Innovative Applications in Water Reuse and
1256 Desalination: Case Studies 2. 2007. <https://watereuse.org/wp-content/uploads/2015/10/WRA-103.pdf> (accessed 2023-06-22).

1258 190. Water Reuse Case Studies. Maryland Department of the Environment.
1259 https://mde.maryland.gov/programs/Water/waterconservation/Pages/case_studies.aspx (accessed 2024-08-11).

1261 191. Welhouse Z. LibGuides: Gray Literature: Beyond Peer Review: Introduction.
1262 <https://guides.library.oregonstate.edu/c.php?g=1118911&p=8160166> (accessed
1263 2024-08-15).

1264 192. Kunz NC, Fischer M, Ingold K, Hering JG. Why Do Some Water Utilities Recycle More
1265 than Others? A Qualitative Comparative Analysis in New South Wales, Australia.
1266 *Environ Sci Technol.* 2015;49(14):8287-8296. doi:10.1021/acs.est.5b01827

1267 193. Marks SJ, Kumpel E, Guo J, Bartram J, Davis J. Pathways to sustainability: A fuzzy-set
1268 qualitative comparative analysis of rural water supply programs. *J Clean Prod.*
1269 2018;205:789-798. doi:10.1016/j.jclepro.2018.09.029

1270 194. Rihoux B. Qualitative Comparative Analysis (QCA) and Related Systematic
1271 Comparative Methods: Recent Advances and Remaining Challenges for Social
1272 Science Research. *Int Sociol.* 2006;21(5):679-706. doi:10.1177/0268580906067836

1273 195. Hanger-Kopp S, Lemke LKG, Beier J. What qualitative systems mapping is and what it
1274 could be: integrating and visualizing diverse knowledge of complex problems. *Sustain*
1275 *Sci.* 2024;19(3):1065-1078. doi:10.1007/s11625-024-01497-3

1276 196. Eker S, Ilmola-Sheppard L. Systems Thinking to Understand National Well-Being from
1277 a Human Capital Perspective. *Sustainability.* 2020;12(5):1931.
1278 doi:10.3390/su12051931