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SUMMARY 
Pangenome indexes are promising tools for many applications, including classification of nanopore 
sequencing reads. Move structure is a compressed-index data structure based on the Burrows-Wheeler 
Transform (BWT). It offers simultaneous O(1)-time queries and O(r) space, where r is the number of BWT 
runs (consecutive sequence of identical characters). We developed Movi based on the move structure for in-
dexing and querying pangenomes. Movi scales very well for repetitive text as its size grows strictly by r. Movi 
computes sophisticated matching queries for classification such as pseudo-matching lengths and backward 
search up to 30 times faster than existing methods by minimizing the number of cache misses and using 
memory prefetching to attain a degree of latency hiding. Movi’s fast constant-time query loop makes it 
well suited to real-time applications like adaptive sampling for nanopore sequencing, where decisions 
must be made in a small and predictable time interval. 
INTRODUCTION 

Pangenome indexes are promising tools for aligning and classi-
fying sequencing reads with respect to large sets of similar refer-
ence sequences. While many existing tools are k-mer based,1,2 

others use flexible indexes enabling arbitrary-length pattern 
matching queries, like the FM-index3,4 and r-index.5,6 The FM-

index7 and r-index8 are full-text indexes that facilitate matching 
via ‘‘backward search.’’ The r-index can also find maximal exact 
matches (MEMs) and matching statistics using the MONI algo-
rithm.9 Unlike the FM-index, the r-index is run-length com-

pressed, allowing the index to grow proportionally to the amount 
of distinct sequence (Table 1) in a pangenome reference, rather 
than its total length. 
In practice, the r-index comprises a collection of data 

structures such as bitvectors and wavelet tries. A single query 
such as a backward-search step involves memory accesses 
to many disparate memory addresses within these structures. 
The number and unpredictability of these accesses leads to 
cache misses, i.e., pauses during which the processor is 
stalled waiting for portions of the data structures to be moved 
from main memory to nearby cache memories. Even when the 
time required for an index query is theoretically constant, the 
latency incurred by cache misses can be large, making 
queries slow in practice. Variability in the number of cache 
misses incurred per query leads to fluctuating latency across 
queries. Overall, the effect is to make queries slow with high 
variability. 
The Move structure was introduced by Nishimoto and Tabei in 

2021.10 Like the FM-index and r-index, it is a full-text index 
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based on the Burrows-Wheeler Transform (BWT). It achieves 
both OðrÞ space usage and Oð1Þ (constant) time for matching 
queries, where r is the number of runs in the BWT of the text. 
This combination has not been achieved by other indexes; 
e.g., the r-index can achieve one or the other but not both. 
Another key advantage of the move structure is that it consists 
entirely of a single table as shown in STAR Methods (Figure 1). 
Move structure queries need only perform a limited number of 
accesses to this table, incurring few—usually just one or two— 
cache misses per query. That is, move structure queries have 
excellent locality of reference. This leads to faster queries with 
more predictable latency compared to alternatives like the r-in-
dex. Although past studies have shown some of the move struc-
ture’s computational trade-offs relative to r-index,11 no studies 
have investigated these advantages related to speed and locality 
of reference. 
Here, we introduce Movi, a pangenome full-text index based 

on the move structure. Movi is much faster than alternative pan-
genome indexes like the r-index. We measure Movi’s cache 
characteristics and show that queries achieve a small, nearly 
minimal number of cache misses. Further, we show that the la-
tency of the remaining cache misses can be ‘‘hidden’’ to a large 
degree by rearranging the computation and using memory pre-
fetch instructions, as explained in STAR Methods (Figure 2). 
We demonstrate that Movi can implement the same algorithms 
as alternative pangenome tools like r-index (backward search) 
and SPUMONI (pseudo-matching lengths and matching statis-
tics), while running drastically faster, e.g., 30 times faster than 
SPUMONI. Finally, we show that despite having a larger size 
compared to other pangenome indexes, Movi’s index grows 
ber 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 
CC BY license (http://creativecommons.org/licenses/by/4.0/). 
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Table 1. Total number of distinct k-mers and the number of BWT runs for an increasing number of bacteria genomes 

# of bacteria genomes Length ðnÞ # of k-mers # of BWT runs ðrÞ n=r 

7 58,161,474 28,574,428 40,406,317 1.44 
1 

(� of the genomes) 1,530 
5 

14,178,369,894 200,298,516 231,715,345 61.19 

2 
(� of the genomes) 3,060 

5 
28,453,355,796 277,080,392 319,250,083 89.13 

3 
(� of the genomes) 4,590 

5 
42,690,972,294 320,277,549 368,768,962 115.77 

4 
(� of the genomes) 6,120 

5 
56,878,399,936 360,992,370 415,457,305 136.91 

(All the genomes) 7,692 71,502,400,380 393,168,219 452,717,159 157.94 
The first row contains one genome from each of the seven bacterial species, with each subsequent row including approximately one-fifth more of the 
data. The BWT is built over the forward and reverse complement of genomes. Both the forward and reverse complement of each k-mer are represented 
by a single canonical k-mer (the lexicographically smaller k-mer). 
more slowly than other pangenome indexes as genomes are 
added. 

In short, Movi is the fastest available tool for full-text pange-
nome indexing and querying, and our open source implementa-

tion enables its application in various classification and align-
ment scenarios, including in speed-critical scenarios like 
adaptive sampling for nanopore sequencing. 
A B

Figure 1. Top: T and BWTðTÞ 
(A) BWMðTÞ, consisting of T’s sorted rotations. The leftmost column is called F, a
distinct colors. The LF-mapping maps these runs to same-letter stretches in F. Thi
parallelograms connecting BWT characters to their counterparts in F. 
(B) Arrows at the top illustrate how a move-structure query for LF[10] results in one
the blue arrows illustrate how a threshold facilitates ‘‘repositioning.’’ A mismatch b
nearest offset above or below ending in ‘‘C.’’ The one above was chosen in this ca
original offset. The threshold (blue dotted line) denotes the point above which rows

a longer LCP with the next C-terminated row below (with ties broken arbitrarily). 
(C) Each BWTrun is a row in the move structure table; c is the run character, l is th
the run containing offset p. 
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RESULTS 

We measured Movi’s speed and cache characteristics relative to 
the related SPUMONI approach as well as to other approaches 
that use the FM index (Bowtie 2), a pangenome k-mer index (Ful-
gor), or other approaches that achieve compression (minimap2). 
We measure the predictability of Movi’s innermost loop, to 
 C  

nd the rightmost column is BWTðTÞ, also called L. Distinct BWT runs are given 
s is illustrated using matching colors and, in the case of multi-character runs, by 

 LF step (green arrows) followed by two fast forward steps (black arrow). Below, 
etween the BWT character (‘‘A’’) and a ‘‘C’’ from the query causes a jump to the 
se because it has a longer longest common prefix (LCP) with the rotation at the 
 have a longer LCP with the next C-terminated row above, but rows below have 

e length, p is the offset with respect to the BWT, p is LF½p�, and x is the index of 
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Figure 2. Schematic of PML computation 
with Movi 
The typical cost associated with each memory 
access is shown. Higher costs are incurred by 
accesses that move long distances to memory 
addresses that have not been used recently. 
assess its utility for real-time data processing applications. 
Finally, we explore how Movi’s index scales when applied to ge-
nomes from the Human Pangenome Reference Consortium 
(HPRC).12 Experiments were run on 3 GHz Intel Xeon Gold 
Cascade Lake 6248R CPU with 1.5TB DDR4 memory. 

Pseudo-matching lengths for a mock community 
We first measured the move structure’s efficiency for computing 
pseudo-matching lengths (PMLs), an approximation of matching 
statistics previously shown to be useful for classification tasks, 
including adaptive sampling.5,6 We compared Movi’s default 
and constant modes to SPUMONI in terms of index size and 
query time. We also included SPUMONI2 in our comparison, 
which applies a minimizer digestion on the sequences. This 
approach reduces the lengths of both queries and reference 
sequence, which results in faster queries and a smaller 
index size, even though the accuracy of the classification drops 
marginally.6 We ran the tools on the Zymo High Molecular Weight 
Mock Microbial Community (NCBI: SRR11071395) previously 
used to evaluate Uncalled.13 

For further context, we also evaluated the FM-index-based 
tool Bowtie2, the minimizer and Hashtable-based tool mini-

map2, and the colored compacted De Bruijn-graph-based tool 
Table 2. Indexes are built over all available complete genomes of seven bacteria from the
genomes 

Tool Index type Full-text Query type Color 

Movi-default Move structure Yes PML No 
Movi-constant Move structure Yes PML No 

SPUMONI r-index Yes PML No 
SPUMONI2 r-index + digestion Yes PML No 

Bowtie2 FM-index Yes Alignments Yes 
Minimap2 Minimizers No Alignments Yes 

Fulgor ccdbg (kmers) No Pseudo-alignments Yes 

The size of the FASTA file, including the reverse complement, is 67 GB, containing 71,502,400,380 ba
of the reference sequence. The number of long reads in the sample is 800K. 
aThe minimap2 is run with 16 threads unlike other tools that are run with a single thread. 
b12x2 shows the size of two FM-indexes in the Bowtie2’s index (the forward and reverse strand). 
cThe size of the Fulgor’s index is broken down into two parts; the size of the k-mer set is 0.65 GB, a
(color) information is 2.34 GB. 

iSc
Fulgor. Note that these tools differ in 
what they actually compute, with Bowtie2 
and minimap2 generating full read align-
ments and Fulgor producing pseudo-

alignments. The sample consists of about 
800K long reads sequenced by Oxford 
Nanopore Techonologies (ONT) with the 
average length of 15K bases. 
For all tools, the index consisted of all the complete reference 
genomes of seven bacteria species (Bacillus subtilis, Entero-
coccus faecalis, Escherichia coli, Listeria monocytogenes, Pseu-
domonas aeruginosa, Salmonella enterica, and Staphylococcus 
aureus). These were all obtained from RefSeq database.14 

Table 2 shows the size of the indexes built by all the tools as 
well as the time required for querying all the reads. We first 
compared the computational requirements of Movi-default 
to SPUMONI. We observed that Movi-default was 30 times 
faster than SPUMONI, but its index was 4.7 times larger than 
SPUMONI’s. We observe that the minimizer digestion improves 
the speed and index size of SPUMONI2 compared to SPUMONI; 
however, Movi-default is still 12 times faster than SPUMONI2. 
The minimizer digestion could be utilized in Movi (or in other 
tools) to achieve a similar speed and index-size improvement 
as well. Since we want to focus on evaluating the performance 
of different index types, rather than the specific modifications 
on the alphabet, we will only consider the SPUMONI version 
without the minimizer digestion for the rest of the experiments 
in this manuscript. Movi-constant was both slower and had 
a larger index compared to Movi-default; as we show later, 
however, the Movi-constant mode benefits from more predict-
able performance across inner-loop iterations. 
 RefSeq database, with a total of 7,692 

Size (GB) Query time (hh:mm:ss) 

8.5 00:18:40 
14 00:24:01 

1.8 09:20:55 
0.82 03:45:08 

12x2 + 40b – 
68 21:31:28a 

0.65 + 2.34c 01:11:51 

se pairs. There are 452,717,159 runs in the BWT 

nd the size of the index related to the document 

ience 27, 111464, December 20, 2024 3 
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A B Figure 3. Comparisons of Movi-default and 
SPUMONI in terms of query speed and pre-
dictability 
(A) Index size and cache miss rate for Movi and 
SPUMONI. The better cache miss rate in Movi is the 
result of locality of the reference in move structure. 
(B) Time for computing PMLs per base. Boxes 
extend from 5th to 95th percentiles and whiskers 
extend from 1th to 99th. Thick horizontal line denotes 
median. 

 

Fulgor had both a smaller index and a relatively fast query time 
compared even to Movi, taking only about 3.8 times the amount 
of time as Movi-default. Fulgor’s full index takes about 3 GB, 
about one-third the size of Movi-default’s 8.5 GB index. On the 
other hand, the two tools output different results, with Movi 
outputting pseudo-matching lengths and Fulgor outputting 
pseudo-alignment information. Further, Fulgor is k-mer based 
and requires pre-selection of a set k-mer length, whereas Movi 
is a full-text index. Movi-default is the fastest overall and pro-
vides an advantageous trade for applications that benefit from 
the flexibility of a full-text index, e.g., adaptive sampling. 

Bowtie2 and minimap2 are not perfectly comparable to Movi 
since they produce full read alignments. Further Bowtie2 is de-
signed for use with short reads, not the long nanopore reads as-
sessed here. For that reason, we omitted Bowtie2 from the 
speed comparison. Minimap2 took about 69 times longer to align 
the reads, while also using 16 threads (compared to 1 thread 
for the other tools). Its index was also eight times larger than 
Movi-default’s. So although minimap2 is able to produce full 
and accurate alignments for the nanopore reads (Movi only com-

putes the pseudo matching lengths), Movi provides a useful 
combination of speed and memory efficiency for applications, 
such as classification, where pseudo-matching lengths provide 
sufficient power. 

Finally, we compared the PMLs generated by Movi (both 
modes) against those computed by SPUMONI. Using the diff 
tool, we found that Movi and SPUMONI generated identical 
PMLs, as expected. 

Speed and predictability of Movi queries 
Because of its simple tabular form, we hypothesized the move 
structure would exhibit superior cache characteristics compared 
to SPUMONI. We used the ‘‘Cachegrind’’ profiler to measure the 
cache misses incurred by Movi and SPUMONI when computing 
PMLs for the same Zymo sample used in the previous section. 
Specifically, we measured misses in the ‘‘last-level’’ cache, 
i.e., the final level of cache before main memory, since these 
are the misses that take the most time. 

Figure 3A shows the number of cache misses per base. We 
observed that SPUMONI incurred more than 14 times as many 
cache misses per base compared to Movi. The reduced cache 
miss rate of Movi came at the cost of a larger index. We also 
observed that the time required for each iteration of the inner 
iScience 27, 111464, December 20, 2024 4 
loop was both smaller and less variable 
for Movi compared to SPUMONI. 
To assess the latencies of LF-mapping 
executed by SPUMONI and Movi more precisely, we employed 
the chrono high-resolution clock in C++ to make nanosecond-
level latency measurements for their inner loops. The distribution 
of these latencies is visualized as boxplots in Figure 3B. We 
observed that iterations of the Movi inner loop were about 11.5 
times faster than those of SPUMONI (comparing means). The 
99th-percentile latency observed for Movi’s inner loop (650 ns) 
was smaller than the 1st-percentile latency observed for 
SPUMONI’s inner loop (942 ns). The median latency observed 
for Movi’s inner loop (91 ns) was also much smaller than 
SPUMONI’s (2,228 ns). Note that a single last-level cache miss 
is roughly thought to take 100 ns or 300 clock cycles on a 3 
GHz processor. 
Besides variability in inner loop performance due to cache 

misses, we measured the number of fast-forward iterations 
and repositioning scans in each of Movi’s modes. These were 
discussed in Sec. Computing pseudo matching lengths. As

expected, the number of operations was bounded by a small 
constant for Movi-constant. For Movi-default, the number of 
operations varied much more, as seen in Figure 4. Detailed sta-
tistics are presented in supplementary materials Table S4. 
Although earlier we observed that Movi-default was faster 
than Movi-constant on average, here we saw that Movi-con-

stant’s inner loop performed a smaller and more predictable 
number of operations, which is advantageous in situations 
where the algorithm must keep up with the output of an instru-
ment in real-time. However, the average number of fast-for-
wards performed in Movi-default’s loop compared to Movi-

constant’s was only about 1.2 times greater, and the average 
number of repositioning scans was only about 2.5 times 
greater. The fact that Movi-default is still faster than Movi-

constant despite this difference is likely because Movi-constant 
requires a larger index, which in turns incurs more cache mis-

ses overall. 

Extrapolation to nanopore throughputs 
Using per-base speeds measured for the Zymo input data (pre-
sented in Table 2), we extrapolate to measure their ability to 
analyze nanopore sequencing data in a real-time adaptive sam-

pling context. We assume that the sequences are base-called 
immediately. Considering that the sequencing speed of each 
nanopore of an Oxford Nanopore (ONT) instrument is 420 
base pairs per second, SPUMONI’s speed is sufficient to 
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Figure 4. The number of fast-forwards and repositioning scans in 
each mode of Movi 
Movi-constant is guaranteed to use a constant number of memory accesses 
per LF-mapping. Boxes extend from 1st to 99th percentiles and whiskers 
extend from 0:1th to 99:9th. Horizontal line denotes mean. In all cases, the 
median is 0. 

 

Table 3. Time and index size required to execute the count query 
with Movi and the r-index 

Mode Index size (GB) Query time (mm:ss) Speedup 

r-index 1 44:05 1 3 
Movi-default 3.2 2:43 16.2 3 

Movi-constant 11 2:48 15.7 3 

Both default and constant modes of Movi are very fast, whereas the con-
stant mode uses more memory, because it stores the repositioning 
pointers in each row. 
simultaneously handle 904 channels (pores) at once. On the other 
hand, Movi can handle 26,890 simultaneous channels, surpassing 
the total number of channels in the largest flow cell available 
for the PromethION device: 2,675 channels (Accessed Octo-

ber 4, 2023. https://nanoporetech.com/products/specifications). 
Assuming perfect linear scaling, about five simultaneous Movi 
threads (each handling 16 reads concurrently) would be sufficient 
to handle the aggregate output of 48 PromethION flowcells. 

Backward search for count queries 
Besides pseudo-matching lengths, another full-text query is the 
‘‘count’’ query, which reports the number of distinct locations 
where the query occurs as a substring of T. A count query in-
volves a sequence of backward-search steps, each step using 
one additional character of the query. 
In Movi, backward search begins by finding the range of 

BWM rows that have the final (rightmost) query character as 
a prefix. In subsequent steps, LF-mapping-like steps are 
used to advance this range’s top and bottom pointers to addi-
tionally match the next query character to the left (i.e., a longer 
suffix of the query), obtaining an interval of BWM rows begin-
ning with the longer suffix. This repeats until the query is ex-
hausted or until the range becomes empty, indicating that the 
query does not occur. In Movi, updating the top and bottom 
pointers is exactly analogous to the repositioning procedure 
described in Methods Computing pseudo matching lengths, 
except that the choice of jup or jdn is determined by whether 
we are updating the top pointer (in which case we use jdn) or
the bottom pointer (in which case we use jup). 
To measure backward search performance, we used Mason15 

to simulate 10 million 150-bp unpaired reads from an FASTA file 
containing the complete genomes of the seven bacterial species 
in the Zymo community, which was also used for Results 
Sec. Pseudo matching lengths for a mock community. We 
generated error-free reads to ensure that backward search 
would iterate over all query characters. We compared Movi’s 
efficiency to that of r-index, which supports the same query. 
Note that SPUMONI does not support this same query. The re-
sults are presented in Table 3. We observed that r-index took 
44m:05s, whereas Movi took 2m:43s, a 16-fold improvement. 
On the other hand, the Movi-default index was about three times 
larger than the r-index, consistent with other results showing the 
move structure to be larger. 

Scaling to human pangenomes 
We next evaluated the scalability of Movi using human genome 
haplotype assemblies from the Human Pangenome Reference 
Consortium (HPRC).12 We selected various numbers of haplo-
types, ranging from 1 to 94, which includes all available haplo-
types. We measured the overall size and scalability of Movi’s 
indexes (based on the move structure) when compared to 
SPUMONI (based on r-index) and Fulgor (based on colored com-

pacted De Bruijn graph). Note that Fulgor’s index also stores 
‘‘color’’ information (associating k-mers with haplotypes), which 
is not a type of information stored in the Movi or SPUMONI 
indexes. We used k = 31 and m = 19 when building the Fulgor 
indexes. 
We measured each tools’ ability to scale to larger pange-

nomes in Table 4. As a baseline for measuring scalability, 
we reported the number of distinct k-mers in the input accord-
ing to Fulgor’s stats command (‘‘kmer-count’’ column). As a 
second baseline, we also reported the number of runs in the 
BWT according to Movi (‘‘r’’ column). As seen in Figure 5, 
the size of the 94-haplotype indexes was less than two times 
the size of the 5-haplotype indexes for all three tools. Movi ex-
hibited the best scaling factor, with its 94-haplotype index us-
ing about 1.2 times the space as its 5-haplotype index. The 
94-haplotype index for Fulgor and SPUMONI used 1.38 
and 1.86 times the space as their 5-haplotype indexes, 
respectively. This highlights the advantages of compressed 
indexes, including full-text indexes, when indexing large 
pangenomes. 
We also observed that the size of Fulgor’s index was consid-

erably smaller than both SPUMONI’s and Movi’s. Fulgor’s index 
includes both k-mer mapping and color class information, i.e., 
iScience 27, 111464, December 20, 2024 5 
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Table 4. Indexes are built over different number of HPRC assemblies: 1, 5, 10, 25, 50, 75, 94 (all) 

Reference FASTA (GB) kmer-count ðx109 Þ Fulgor(GB) r ðx109Þ SPUMONI (GB) Movi(GB) 

HPRC 1 2.9 2.50 3.1 3.33 6 62 
HPRC 5 15 2.70 3.7 3.53 8.6 66 

HPRC 10 29 2.79 3.9 3.65 9.8 68 
HPRC 25 74 2.94 4.3 3.84 13 72 

HPRC 50 174 3.06 4.7 4.02 14 75 
HPRC 75 214 3.13 4.9 4.14 15 78 

HPRC 94 268 3.19 5.1 4.24 16 79 
For Movi and SPUMONI, the index contains both the forward and reverse complement strands of the haplotypes. 
information about which k-mers occur in which haplotypes. In 
this experiment, there are relatively few colors, and so color-
class information makes up a smaller portion of the index. 
Running Fulgor’s ‘‘stats’’ command on indexes created in Table 
4 showed that between 1% and 5% of the index is dedicated to 
color information. 

We also evaluated query speed for each tool using a simulated 
long read sample and a ‘‘combined’’ sample, consisting of both 
simulated reads and real reads from a human gut microbiome 
sample.16 This allows us to measure performance in a scenario 
where many input reads do not have a long match to the refer-
ence pangenome. The results are shown in supplementary ma-

terials Table S5, and a similar trend as in Sec. Pseudo matching 
lengths for a mock community is observed, with Movi being the 
fastest followed by Fulgor and SPUMONI. Movi is 1.7x to 2.7x 
faster than Fulgor and 23x to 27x faster than SPUMONI in all 
Figure 5. The scaling factor is computed by dividing the size of each 
tool’s index by the size of the index of that tool built over five HPRC 
genomes 
All tools have small scaling factors for pangenomes. While Movi’s index is the 
largest compared to the other two, it has the best scaling factor for any number 
of hrpc genomes. 
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the experiments with either a single human genome or the hu-
man pangenome. 
DISCUSSION 

We introduced Movi, a cache-efficient, scalable tool for pange-
nomic indexing and read classification. Movi’s index is based 
on the move structure, which is a full-text index with a scaling 
factor superior to competing approaches like SPUMONI and Ful-
gor. Movi is extremely fast, due both to its excellent locality of 
reference that in turn minimizes cache misses and to our novel 
strategy for hiding the remaining cache-miss latency by process-
ing many reads concurrently. Movi’s rapid and predictable query 
speed makes it well suited to applications like nanopore adap-
tive sampling. Movi can process the base-called output of a fully 
loaded PromethION using 12 threads. 
The move structure’s simple tabular structure suggests simple 

ways to partition and distribute it across nodes of a computer 
cluster while minimizing inter-node communication. It can simply 
be divided into separate, contiguous chunks of rows, which can 
then be distributed. Execution of a pattern-matching query will 
require some jumps between nodes (i.e., a longer-distance LF 
query) but will frequently require only sequential or nearby jumps 
(fast-forwards and repositions) that do not require moving across 
nodes. This provides a much more favorable substrate for 
distributed computing compared to r-index, which is character-
ized by complex and unpredictable memory accesses. 
Another key advantage of our full-text indexing approach is 

that it does not require the user to select any key parameters 
ahead of time. This is in contrast to k-mer-based or minimizer-

based approaches, for which the user must be aware of the 
potential pitfalls of choosing suboptimal parameters. 
Limitations of the study 
A limitation of Movi is the fact that the M table is large compared 
to all the other tools assessed here (besides minimap2). Movi’s 
index uses a table with O(r) rows, where each row explicitly 
stores the LF-mapping result for the run head, requiring 
O(log(r)) bits to point to another row. This approach leads to a 
larger overall table size compared to the r-index, which uses bit-
vectors and other structures that, although they have poor local-
ity of reference, tend to reduce the number of bits stored per run. 
In the future, it will be important to reduce the footprint of Movi’s 
index. This could be accomplished, for instance, by adopting the 
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minimizer digestion strategy of SPUMONI 2.6 Another space-
saving measure could be to losslessly compress the move struc-
ture using, e.g., the columnar compression strategies investi-
gated by Brown et al. in 2022.11 

We also hope to expand Movi’s applicability to more query 
types. For instance, Movi could be adapted to handle multi-class 
classification by augmenting the index with suffix array or ‘‘docu-
ment’’ information.17 

Although Fulgor18 optimizes space and time by capitalizing on 
long unitigs and explicitly storing the corresponding strings, we 
can adopt a similar strategy by leveraging substructures within 
the BWT. One such approach is to enhance query efficiency 
by reordering the BWT rows. This technique can be seamlessly 
integrated into Movi, enabling further cache efficiency and 
greater speed. By incorporating reordering, Movi has the poten-
tial to achieve even greater query performance. 
RESOURCE AVAILABILITY 

Lead contact 
Further information and requests for resources should be directed to and will 
be fulfilled by the lead contact, Ben Langmead (langmea@cs.jhu.edu). 
Materials availability 
This study did not generate any new materials. 
Data and code availability 
d Data: For the Mock Community experiment, we used the SRA project 

under the accession number SRX7711546. We obtained bacterial refer-
ence genomes from NCBI. The list of the references are available at: 
https://github.com/mohsenzakeri/Movi-experiments/blob/main/zymo/ 
refs/bacteria.txt. 
The human pangenome was obtained from the Human Pangenome 
Reference Consortium website: https://humanpangenome.org/ 
The human gut microbiome sample was downloaded from the SRA un-
der the accession number SRR9847854. The simulated human reads 
were generated by PBSIM219 using the R9.4 chemistry. The CHM13 hu-
man genome20 was used for simulating the reads. 

d Code: Movi is implemented in C++. It is GPL3-licensed open-source 
software available from https://github.com/mohsenzakeri/movi. 
Movi uses the prefix-free parsing implementation from the pfp_thres-
holds repository at https://github.com/maxrossi91/pfp-thresholds for 
building the Burrows Wheeler Transform of the pangenome. 
Movi uses the run splitting implementation from the r-permute library at 
https://github.com/drnatebrown/r-permute. 

d Others: Cachegrind was used for evaluating the number of cache mis-

ses. It is part of Valgrind software and was obtained from: https:// 
valgrind.org/docs/manual/cg-manual.html. 
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Deposited data 
ZymoMC sequencing reads Kovaka et al.13 https://www.ncbi.nlm.nih.gov/sra/SRX7711546 
Human pangenome reference (HPRC) Liao et al.12 https://www.nature.com/articles/s41586-023-05896-x 

Human gut metagenome reads Moss et al.16 https://www.ncbi.nlm.nih.gov/sra/?term=SRR9847854 
Telomere-to-Telemere Consortium CHM13 v1.0 assembly Nurk et al.20 https://github.com/marbl/CHM13 

Software and algorithms 
Movi This paper https://github.com/mohsenzakeri/Movi 
PBSIM2 Onoet al.19 https://github.com/yukiteruono/pbsim2 
Mason Holtgrewe15 https://www.seqan.de/apps/mason.html 
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METHOD DETAILS 

Burrows Wheeler Transform, FM-index and r-index 
The Burrows Wheeler Transform (BWT) is a reversible permutation that reorders the characters of a string T according to the lexico-
graphical order of their right contexts in T. Beginning with T of length n, we append a terminal symbol $ that does not appear else-
where in T and is lexicographically smaller than T’s other characters. T½i denotes the character at 1-based offset i and T½i::n denotes 
a suffix starting at i. BWT(T) permutes T’s characters so that T½i comes before T½j in BWT order if and only if T½i + 1::n < T½j + 1::n . 
Repetitive portions of T yield long ‘‘runs’’ in BWT(T) where a run is a maximal-length substring consisting of a character repeated. 
Figure 1A illustrates BWT runs of length up to 8 in the last column of the matrix. 
Figures 1A and 1B show two copies of a Burrows-Wheeler Matrix or BWM. Rows of the BWMconsist of all distinct rotations of the 

string T ordered lexicographically. BWTðTÞ is the last column of BWMðTÞ. BWM’s first and last columns are related by the Last-to-First 
mapping (‘‘LF-mapping’’),7 which states that the ith occurrence of a character c in the last column of the BWM corresponds to the 
same text occurrence as the ith occurrence of c in the first column. Some LF-mapping relationships are illustrated with parallelograms 
in Figure 1A. The LF-mapping also gives a way to navigate through the text T. Note that if the BWT permutation maps T ½j to BWT ½i , 
then LF ½i gives the BWT index of T ½j 1 (or T ½n if j = 1). So the LF-mapping allows for right-to-left movements with respect to T, a 
fact used in pattern-matching queries. 
The FM-index is a data structure based on BWTðTÞ enabling fast and efficient computation of the LF-mapping and related queries. 

It consists of BWT(T) as well as succinct data structures for storing and querying character ranks within BWT(T). In typical implemen-

tations, it grows linearly with the text: OðnÞ. 
When T is repetitive, the number of BWT runs (r) is much smaller than the text length ðnÞ. The r-index8 exploits this by representing 

the BWT in a run-length-compressed fashion. This version is called the RLBWT. The ith run, denoted RLBWT[i], consists of the char-
acter repeated in the run (RLBWT[i].c), and the run’s length (RLBWT[i].n). Additional data structures enable efficient computation of 
the LF-mapping without having to decompress the RLBWT. The data structures making up the r-index fit in O(r) space total. 
As a brief demonstration of how r grows with a typical pangenome, we measured number of runs in the BWT for an increasing 

proportion of bacterial genomes in Table 1. The number of runs for an increasing number of complete Salmonella genomes from 
1 to 1550 is also displayed in supplementary materials Table S1. The number of runs ðrÞ increases at a slower rate compared to 
the total length of the reference ðnÞ. The value n represents a rough compression ratio. As a complementary measure, we also report r 
the number of distinct canonical k-mers (k = 31) present, which grows similarly to the number of BWT runs. 

TheMoveDataStructure 
LF mapping 
When T is a repetitive pangenome, the LF-mapping tends to map consecutive stretches of BWT characters to consecutive stretches 
in F (Figure 1A). The move structure exploits this to simplify computation of the LF-mapping. The move structure consists of a table 
ðMÞ with rows corresponding to BWT runs (Figure 1C). To aid LF-mapping, the column named p stores the LF-mapping of the run 
head, i.e., M½i :p = LF½M½i :p . To compute the LF-mapping at any offset in run index i, we begin by following M½i :p. This will either 
jump to the correct run, or to a run preceding the correct one. 
Given M, a BWToffset j, and a run index i, we compute LF½j by adding j’s offset into the current run ðj M½i :pÞ to the run head’s 

LF-mapping: 

LF½j = M½i :p + ðj M½i :pÞ 
iScience 27, 111464, December 20, 2024 e1 
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Note that this involves only arithmetic on i, j, M½i :p and M½i :p, and does not involve bitvectors or wavelet-tree queries. Only the 
accesses to M½i might require accessing main memory. An illustration of how memory accesses induced by move structure queries 
differ than those by r-index is shown in supplementary materials Figure S4. 

Note that an input to this computation is i, the current run index. To chain multiple LF-mapping queries together, as is needed for 
matching queries, we must update not only the BWT offset j but also the BWT run index i. As a step toward this goal, M½i :x stores 
the index of the run containing LF½M½i :p . However, the run containing LF½M½i :p may not also contain LF½j . I.e. it is possible that 
LF½j M½M½i :x p > M½M½i :x l. After jumping to M½M½i :x , we may additionally need to advance through the runs until finding the 
smallest run index i0 > i such that M½i0 :p % LF½j < M½i0 + 1 :p. We call this the ‘‘fast-forward’’ or ‘‘ff’’ procedure, illustrated in Figure 
1B (top) and detailed by Data S1 in supplementary materials. Using that algorithm, we update both i and j in each LF-mapping step: 

i0 ) ffðM; i; jÞ j0)M½i :p + ðj M½i :pÞ 

Constant-time LF 
�

� �
� �

� �
� � �

� � �

� �
� �

�
� � � �

� �

�

Nishimoto and Tabei gave a procedure for splitting some BWT runs into shorter sub-runs to achieve a constant upper bound on the 
fast-forwards required for any LF-mapping.10 The procedure works with a parameter d such that, after splitting runs, the number of 

rfast-forwards per LF-mapping query is less than 2d while adding at most d 1 additional runs to the table. The overall number of runs is 
still OðrÞ after splitting. In practice, the procedure splits only a fraction of the original runs.21 

With the exception of the jump induced by following M½i :x = LF½M½i p, all the memory accesses described here are sequential. The 
LF½M½i :p step is unpredictable, possibly needing to access a distant and not-recently-accessed location in memory, likely incurring a 
cache miss. That said, for a chain of several LF-mapping queries, only one expensive memory access is needed per query. 

Since information about exact BWT offsets of matches is not required for computing pseudo matching lengths, Movi avoids storing 
both p and p in the table. Instead, Movi collapses those fields into a single relative offset, as previously implemented by Brown et al.11 

Computing pseudo matching lengths 
Matching statistics and pseudo matching lengths 
Matching statistics (MS) are a summary of sequence similarity used in sequence classification tasks and for computing other sim-

ilarity features like Maximal Exact Matches (MEMs). Given a text T½1::n and pattern P½1::m , P’s matching statistics with respect 
to T are defined as an array MS½1::m where MS½i is the length of the longest prefix of P½i::m occurring in T. 

Bannai et al.22 described a 2-pass procedure for computing matching statistics using the r-index and an auxiliary thresholds struc-
ture. Rossi et al.9 gave an efficient procedure for computing the thresholds. Later, Ahmed et al.5 introduced a modified 1-pass version 
of the procedure that computes a vector of Pseudo Matching Lengths (PMLs), which roughly approximate the lengths in MS. While 
PMLs contain less information than MSs – e.g., they cannot be used to exactly compute MEMs – finding PMLs is much faster, can be 
performed in single pass over the query, and requires neither a suffix-array sample nor a random-access structure for T. In practice, 
PMLs are similar to MSs in their ability to classify sequences.5 

The MONI algorithm starts at an arbitrary offset in the BWT, then considers each character of the query sequence in right-to-left 
order. Say we are currently at offset j in BWT and are examining character P½i . The algorithm first tests if P½i = BWT½j . If they are 
equal, we call this ‘‘case 1.’’ For case 1, the algorithm performs an LF-mapping step and moves on to the next character: 

i0 ) i 1 j0)LF½j 
The LF-mapping uses the strategy we discussed above, which includes the fast-forward procedure. If P½i sBWT½j , we call this 

‘‘case 2.’’ For case 2, we cannot simply use LF½j as our next offset; rather we must ‘‘reposition’’ to a nearby offset jr such that 
P½i = BWT½jr . We let jr equal one of two choices: the greatest jup such that jup < j and BWT½jup = P½i , or the smallest jdn such 
that jdn > j and BWT½jdn = P½i . Whether we choose jup or jdn is determined by querying the thresholds structure of Bannai et al.22 

Movi stores the thresholds structure as additional columns in the move structure. If s is the number of characters in the alphabet, 
e.g., 4 for DNA sequences, s 1 thresholds are stored in each row of the table to be able to reposition based on the character 
observed in the query. Once we have repositioned, we proceed using the same update rule as above, substituting jr for j. 

Instances where we can apply the simpler case 1 update rule correspond to instances where an existing match is being extended 
by 1 character, causing the matching statistic to increase by one. Instances where we apply case 2 might or might not correspond to 
an extension. The MS algorithm from MONI is capable of distinguishing these two subcases of case 2. The PML algorithm of 
SPUMONI is not capable of this, instead resetting the match length to 0 when it reaches an instance of case 2. Details about the 
PML computation procedure is shown by Data S2 in supplementary materials. 
Movi’s repositioning 
Movi uses two distinct strategies for finding and moving to the run containing jr. By default, Movi scans from run to run (either upward 
to jup or downward to jdn) until reaching a run with a matching character. This involves an unpredictable number of memory accesses, 
though they are sequential accesses. In its Movi-constant mode (discussed further in Methods 12.5), Movi instead stores explicit 
pointers to the jr-containing runs for each characters of the DNA alphabet. It stores two such sets of pointers, one for when the 
threshold points upward and one for when it points downward, leading to a total of six additional pointers being stored in each 
move structure run. 
e2 iScience 27, 111464, December 20, 2024 
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In short, there are three types of operations performed by Movi during the PML computation; (1) jump to the run potentially con-
taining the LF-mapping destination, (2) fast-forward to the run that contains the LF-mapping destination, and (3) reposition to the run 
containing a matching character in the case of a mismatch. These are illustrated in a state diagram in Figure 2 (with further detail in 
supplementary materials Figure S1). Operation (1) is used in each LF-mapping, once per base, and has the highest cost since it 
usually incurs a cache miss. Operations (2) and (3) are less expensive. 

Cache-miss latency hiding 
The once-per-iteration LF-mapping step is Movi’s single most expensive operation. Because it moves to a new, unpredictable 
address, it usually incurs a cache miss and thereby stalls the processor until the requested memory (and associated cache line) is 
retrieved and installed in the cache. AWFM-index,23 a lightweight FM index library optimized for genomic sequences, uses manual 
prefetching to improve memory access latency, but the authors reported that the strategy was not effective. 
We observed that Movi’s simple inner loop can be easily rearranged and augmented with memory ‘‘prefetch’’ instructions in a way 

that avoids the latency of stalling. To achieve this, a single thread of execution processes several reads concurrently. Say that Movi is 
computing PMLs for two reads named read_a and read_b concurrently in a single thread. Rather than compute all of read_a’s PMLs 
then all of read_b’s PMLs, Movi alternates repeatedly between the reads. It first advances the computation for read_an until reaching 
the first instruction that accesses memory in the LF-mapping step’s destination row. Instead of attempting the access immediately, 
Movi issues a memory prefetch instruction, which asynchronously requests that the needed memory be retrieved into the cache. 
Because this happens asynchronously, it does not immediately cause the processor to stall. Movi then switches to read_b and ad-
vances that computation in a similar way, ending with the prefetch of the destination row of read_b’s next LF-mapping step. Movi 
then switches back to read_a; in the meantime, the processor has at least begun (and has possibly completed) the process of 
installing the earlier-requested memory into the cache. We now resume the computation for read_a, expecting that accessing the 
destination row of the LF-mapping can now be done with little or no stalling. This process repeats until all the PMLs are computed 
for both reads. We give an illustration in supplementary materials Figure S2 for the strategy, the pseudocode is also provided in 
supplementary materials Data S3. Note that the pseudocode handles various special cases of interest, e.g., detecting when a read’s 
sequence has been exhausted and loading the next read. 
Based on the cache latency of the machine, this ‘‘latency hiding’’ strategy depends on a parameter: the number of reads handled 

concurrently. If too few reads are handled concurrently, only a fraction of the stalling time is avoided and the benefit is small. If too 
many reads are handled concurrently, the time between the prefetch and the actual use of the memory can become so long that 
competing threads and processes have caused the cache line to be erased (‘‘evicted’’) from the cache, and the stall occurs anyway. 
We measured the speed of Movi’s PML computation when using 2, 4, 8, 16, and 32 concurrent reads. Once reaching about 8 con-
current reads, the gain from prefetching began to plateau supplementary materials Figure S3. We therefore chose 16 as the default 
number of concurrent reads, and that setting is used in all results in the manuscript. Use of 16 concurrent reads improved throughput 
2.24-fold compared to when latency hiding was disabled. 

The Movi software 
Movi supports two modes of operation. The first mode, called Movi-default, is fast but lacks the constant-time LF-mapping query 
guarantee. The second mode, called Movi-constant, uses the splitting to create a move structure that has a constant-time LF-map-

ping guarantee. Further, Movi-constant uses a constant-time version of the repositioning step, allowing its inner loop to be fully con-
stant-time, regardless of whether it involves LF-mapping steps and/or repositioning. This comes at the cost of additional space, since 
(a) the move structure that results from the splitting procedure has more runs and is therefore somewhat larger than the unsplit move 
structure, and (b) the constant-time repositioning step requires that we pre-compute upward and downward jump distances and 
store them in the move structure table. 
To build the Burrows Wheeler Transform, Movi uses the prefix-free parsing (PFP) algorithm of Boucher et al.,24 which is particularly 

efficient for building the BWT of a highly repetitive text such as a pangenome. The algorithm also integrates Rossi et al.’s9 approach 
for computing thresholds for repositioning. 
Movi builds an index over both the forward and reverse complement of the reference sequences. This technique which was also 

used by SPUMONI5 as it enables querying the reads in both strands simultaneously. 
Movi is implemented in C++. It is GPL3-licensed open-source software available from https://github.com/mohsenzakeri/movi. It  

depends on both the prefix-free parsing implementation from the pfp_thresholds repository at https://github.com/maxrossi91/pfp-

thresholds and the run splitting implementation from the r-permute library at https://github.com/drnatebrown/r-permute. Results in 
this manuscript are based on the v1.0 tag of that repository. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

The details about the genomes used in the experiments can be found in the caption of Tables 2 and 4. More details about the ge-
nomes and the reads are also presented in the results sections ‘‘pseudo-matching lengths for a mock community’’ and ‘‘scaling 
to human pangenomes’’. 
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