iIScience

Movi: A fast and cache-efficient full-text pangenome
index

Graphical abstract Authors
Mohsen Zakeri, Nathaniel K. Brown,
Number of Nanopores : .
The pangenome processeclsimuitancously Omar Y. Ahmed, Travis Gagle,
& Movi Ben Langmead
Gz I I I
i - Correspondence
[} | [P
mzakeril@jhu.edu (M.Z.),
lfsrgmge e o 1500 22500 30000 langmea@cs.jhu.edu (B.L.)
BWT I e In brief
R N v Biocomputational method; Classification

Building the index of bioinformatical subject; Genomic
The Movi Index analySiS

Pseudo matching

Queries .
> = > lengths:
r1 = TAACT :
R
i = & 5:1010
r4 = AACGT R m:03210
Highlights

e Moviis a very fast and cache-efficient index for pangenomes

e The size of Movi’s index scales with the non-redundant
content in the pangenome

e A single Movi thread can handle output from 26,890
nanopores

e Movi builds on the move structure, a full-text compressed
index that uses the BWT

Zakeri et al., 2024, iScience 27, 111464
December 20, 2024 © 2024 The Author(s). Published by Elsevier Inc. S5
https://doi.org/10.1016/j.isci.2024.111464 ﬂ CellPress

mailto:mzakeri1@jhu.edu
mailto:langmea@cs.jhu.edu
https://doi.org/10.1016/j.isci.2024.111464
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.111464&domain=pdf

iIScience

¢? CellPress

OPEN ACCESS

Movi: A fast and cache-efficient

full-text pangenome index

Mohsen Zakeri,'* Nathaniel K. Brown,” Omar Y. Ahmed,' Travis Gagie,? and Ben Langmead’->*
1Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, US
2Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, Canada

3Lead contact

*Correspondence: mzakeri1@jhu.edu (M.Z.), langmea@cs.jhu.edu (B.L.)

https://doi.org/10.1016/j.isci.2024.111464

SUMMARY

Pangenome indexes are promising tools for many applications, including classification of nanopore
sequencing reads. Move structure is a compressed-index data structure based on the Burrows-Wheeler
Transform (BWT). It offers simultaneous O(1)-time queries and O(r) space, where r is the number of BWT
runs (consecutive sequence of identical characters). We developed Movi based on the move structure for in-
dexing and querying pangenomes. Movi scales very well for repetitive text as its size grows strictly by r. Movi
computes sophisticated matching queries for classification such as pseudo-matching lengths and backward
search up to 30 times faster than existing methods by minimizing the number of cache misses and using
memory prefetching to attain a degree of latency hiding. Movi’s fast constant-time query loop makes it
well suited to real-time applications like adaptive sampling for nanopore sequencing, where decisions

must be made in a small and predictable time interval.

INTRODUCTION

Pangenome indexes are promising tools for aligning and classi-
fying sequencing reads with respect to large sets of similar refer-
ence sequences. While many existing tools are k-mer based, '+
others use flexible indexes enabling arbitrary-length pattern
matching queries, like the FM-index®* and r-index.”® The FM-
index” and r-index® are full-text indexes that facilitate matching
via “backward search.” The r-index can also find maximal exact
matches (MEMs) and matching statistics using the MONI algo-
rithm.® Unlike the FM-index, the r-index is run-length com-
pressed, allowing the index to grow proportionally to the amount
of distinct sequence (Table 1) in a pangenome reference, rather
than its total length.

In practice, the r-index comprises a collection of data
structures such as bitvectors and wavelet tries. A single query
such as a backward-search step involves memory accesses
to many disparate memory addresses within these structures.
The number and unpredictability of these accesses leads to
cache misses, i.e., pauses during which the processor is
stalled waiting for portions of the data structures to be moved
from main memory to nearby cache memories. Even when the
time required for an index query is theoretically constant, the
latency incurred by cache misses can be large, making
queries slow in practice. Variability in the number of cache
misses incurred per query leads to fluctuating latency across
queries. Overall, the effect is to make queries slow with high
variability.

The Move structure was introduced by Nishimoto and Tabei in
2021."% Like the FM-index and r-index, it is a full-text index

aaaaaaa

based on the Burrows-Wheeler Transform (BWT). It achieves
both O(r) space usage and O(1) (constant) time for matching
queries, where r is the number of runs in the BWT of the text.
This combination has not been achieved by other indexes;
e.g., the r-index can achieve one or the other but not both.
Another key advantage of the move structure is that it consists
entirely of a single table as shown in STAR Methods (Figure 1).
Move structure queries need only perform a limited number of
accesses to this table, incurring few —usually just one or two—
cache misses per query. That is, move structure queries have
excellent locality of reference. This leads to faster queries with
more predictable latency compared to alternatives like the r-in-
dex. Although past studies have shown some of the move struc-
ture’s computational trade-offs relative to r-index,'" no studies
have investigated these advantages related to speed and locality
of reference.

Here, we introduce Movi, a pangenome full-text index based
on the move structure. Movi is much faster than alternative pan-
genome indexes like the r-index. We measure Movi’s cache
characteristics and show that queries achieve a small, nearly
minimal number of cache misses. Further, we show that the la-
tency of the remaining cache misses can be “hidden” to a large
degree by rearranging the computation and using memory pre-
fetch instructions, as explained in STAR Methods (Figure 2).
We demonstrate that Movi can implement the same algorithms
as alternative pangenome tools like r-index (backward search)
and SPUMONI (pseudo-matching lengths and matching statis-
tics), while running drastically faster, e.g., 30 times faster than
SPUMONI. Finally, we show that despite having a larger size
compared to other pangenome indexes, Movi’s index grows

1) iScience 27, 111464, December 20, 2024 © 2024 The Author(s). Published by Elsevier Inc. 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:mzakeri1@jhu.edu
mailto:langmea@cs.jhu.edu
https://doi.org/10.1016/j.isci.2024.111464
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.111464&domain=pdf
http://creativecommons.org/licenses/by/4.0/

¢? CellPress

OPEN ACCESS

iScience

Table 1. Total number of distinct k-mers and the number of BWT runs for an increasing number of bacteria genomes

of bacteria genomes Length (n) # of k-mers # of BWT runs (r) n/r

7 58,161,474 28,574,428 40,406,317 1.44
1 .

(~ . of the genomes) 1,530 14,178,369,894 200,298,516 231,715,345 61.19
2 .

(~ 2 of the geriomes) 3,060 28,453,355,796 277,080,392 319,250,083 89.13
(~ g of the genomes) 4,590 42,690,972,294 320,277,549 368,768,962 115.77
4 b
(~ . e ETEs) G20 56,878,399,936 360,992,370 415,457,305 136.91
(All the genomes) 7,692 71,502,400,380 393,168,219 452,717,159 157.94

The first row contains one genome from each of the seven bacterial species, with each subsequent row including approximately one-fifth more of the
data. The BWT is built over the forward and reverse complement of genomes. Both the forward and reverse complement of each k-mer are represented

by a single canonical k-mer (the lexicographically smaller k-mer).

more slowly than other pangenome indexes as genomes are
added.

In short, Movi is the fastest available tool for full-text pange-
nome indexing and querying, and our open source implementa-
tion enables its application in various classification and align-
ment scenarios, including in speed-critical scenarios like
adaptive sampling for nanopore sequencing.

RESULTS

We measured Movi’s speed and cache characteristics relative to
the related SPUMONI approach as well as to other approaches
that use the FM index (Bowtie 2), a pangenome k-mer index (Ful-
gor), or other approaches that achieve compression (minimap2).
We measure the predictability of Movi's innermost loop, to

T = AAACAAGTAAACAAGAAAGTAAACTAAACATS BWT(T) = TTSTTGAAAACCAAAAAAAACAAAAAAAAGCG

A B c
offset F L runindex
1s $:
2 a A T
3 a $ 2 A $? c|p |1l | =
4 A A T
s A A y " T Vv (2) fast-forward
c a a p)'—F mappmg\s induced by Tt 2|9
or the run head .
A s a - A LF-mapping 2 $ 3 1 1
a - a using z and § A onoffset 10
A - A A ofthe BWT: T|4]2 |3
a - A 2 LFH10=5
c 6 A ¢ N
c - A AGTAAAC c N G 6 ! 2 ?
A AGTAAAC 5 | A | 7 4 2
14 A 8
15 A a threshold for 6 | C |11 2 |22]| 9
16 A A 'c'inrun 7,
17 A A used to A |13 | 8 6
18 A L (3) reposition
A
;z 1; A in the case of 8 C |2 1 2419
21 4 c s 2 ¢ mismatch to 'c’ A | 22 8 14
22 ¢ A9 c A
23 C A - c A 10| G |30 | 1 |27
24 ¢ A - ¢ A
A - c A
2 c A - ¢ - C |31 | 1|25
27 6 A - G A
21 o A - g " 12| G |32 | 1 | 28
A - T A
G 10 T ¢
T c
G 12 T ¢

Figure 1. Top: T and BWT(T)

(A) BWM(T), consisting of T’s sorted rotations. The leftmost column is called F, and the rightmost column is BWT(T), also called L. Distinct BWT runs are given
distinct colors. The LF-mapping maps these runs to same-letter stretches in F. This is illustrated using matching colors and, in the case of multi-character runs, by
parallelograms connecting BWT characters to their counterparts in F.

(B) Arrows at the top illustrate how a move-structure query for LF[10] results in one LF step (green arrows) followed by two fast forward steps (black arrow). Below,
the blue arrows illustrate how a threshold facilitates “repositioning.” A mismatch between the BWT character (“A”) and a “C” from the query causes a jump to the
nearest offset above or below ending in “C.” The one above was chosen in this case because it has a longer longest common prefix (LCP) with the rotation at the
original offset. The threshold (blue dotted line) denotes the point above which rows have a longer LCP with the next C-terminated row above, but rows below have
a longer LCP with the next C-terminated row below (with ties broken arbitrarily).

(C) Each BWTrun is a row in the move structure table; ¢ is the run character, € is the length, p is the offset with respect to the BWT, is LF[p], and £ is the index of
the run containing offset =.

2 iScience 27, 111464, December 20, 2024

iScience

Do the characters on
the read and the run
match?

» Start - =

reposition

¢? CellPress

OPEN ACCESS

Figure 2. Schematic of PML computation
with Movi

The typical cost associated with each memory
access is shown. Higher costs are incurred by
accesses that move long distances to memory
addresses that have not been used recently.

reposition
up or down
based on the
thresholds

high cost I

update run
index and
offset

fast-foward?,

yes
[LF

assess its utility for real-time data processing applications.
Finally, we explore how Movi’s index scales when applied to ge-
nomes from the Human Pangenome Reference Consortium
(HPRC)."? Experiments were run on 3 GHz Intel Xeon Gold
Cascade Lake 6248R CPU with 1.5TB DDR4 memory.

Pseudo-matching lengths for a mock community
We first measured the move structure’s efficiency for computing
pseudo-matching lengths (PMLs), an approximation of matching
statistics previously shown to be useful for classification tasks,
including adaptive sampling.>® We compared Movi’s default
and constant modes to SPUMONI in terms of index size and
query time. We also included SPUMONI2 in our comparison,
which applies a minimizer digestion on the sequences. This
approach reduces the lengths of both queries and reference
sequence, which results in faster queries and a smaller
index size, even though the accuracy of the classification drops
marginally.® We ran the tools on the Zymo High Molecular Weight
Mock Microbial Community (NCBI: SRR11071395) previously
used to evaluate Uncalled.™®

For further context, we also evaluated the FM-index-based
tool Bowtie2, the minimizer and Hashtable-based tool mini-
map2, and the colored compacted De Bruijn-graph-based tool

fast-
increment the

Fulgor. Note that these tools differ in
what they actually compute, with Bowtie2
and minimap2 generating full read align-
ments and Fulgor producing pseudo-
alignments. The sample consists of about
800K long reads sequenced by Oxford
Nanopore Techonologies (ONT) with the
average length of 15K bases.

For all tools, the index consisted of all the complete reference
genomes of seven bacteria species (Bacillus subtilis, Entero-
coccus faecalis, Escherichia coli, Listeria monocytogenes, Pseu-
domonas aeruginosa, Salmonella enterica, and Staphylococcus
aureus). These were all obtained from RefSeq database.’*

Table 2 shows the size of the indexes built by all the tools as
well as the time required for querying all the reads. We first
compared the computational requirements of Movi-default
to SPUMONI. We observed that Movi-default was 30 times
faster than SPUMONI, but its index was 4.7 times larger than
SPUMONI’s. We observe that the minimizer digestion improves
the speed and index size of SPUMONI2 compared to SPUMONI;
however, Movi-default is still 12 times faster than SPUMONI2.
The minimizer digestion could be utilized in Movi (or in other
tools) to achieve a similar speed and index-size improvement
as well. Since we want to focus on evaluating the performance
of different index types, rather than the specific modifications
on the alphabet, we will only consider the SPUMONI version
without the minimizer digestion for the rest of the experiments
in this manuscript. Movi-constant was both slower and had
a larger index compared to Movi-default; as we show later,
however, the Movi-constant mode benefits from more predict-
able performance across inner-loop iterations.

Table 2. Indexes are built over all available complete genomes of seven bacteria from the RefSeq database, with a total of 7,692

genomes
Tool Index type Full-text Query type Color Size (GB) Query time (hh:mm:ss)
Movi-default Move structure Yes PML No 8.5 00:18:40
Movi-constant Move structure Yes PML No 14 00:24:01

SPUMONI r-index Yes PML No 1.8 09:20:55

SPUMONI2 r-index + digestion Yes PML No 0.82 03:45:08

Bowtie2 FM-index Yes Alignments Yes 12x2 + 40° -

Minimap2 Minimizers No Alignments Yes 68 21:31:28°

Fulgor ccdbg (kmers) No Pseudo-alignments Yes 0.65 + 2.34° 01:11:51

The size of the FASTA file, including the reverse complement, is 67 GB, containing 71,502,400,380 base pairs. There are 452,717,159 runs in the BWT
of the reference sequence. The number of long reads in the sample is 800K.

#The minimap?2 is run with 16 threads unlike other tools that are run with a single thread.

b12x2 shows the size of two FM-indexes in the Bowtie2’s index (the forward and reverse strand).

°The size of the Fulgor’s index is broken down into two parts; the size of the k-mer set is 0.65 GB, and the size of the index related to the document

(color) information is 2.34 GB.

iScience 27, 111464, December 20, 2024 3

¢? CellPress

OPEN ACCESS

iScience

Figure 3. Comparisons of Movi-default and

index size (GB)
cache misses per base 6000

20

- boxes extend from 5th to 95th percentiles.
- whiskers extend from 1st to 99th percentiles
- thick horizontal line denotes median

dictability

SPUMONI in terms of query speed and pre-

40004

2000

PML iteration cost per base (ns)

1.61

(A) Index size and cache miss rate for Movi and
SPUMONI. The better cache miss rate in Movi is the
result of locality of the reference in move structure.
(B) Time for computing PMLs per base. Boxes
extend from 5th to 95th percentiles and whiskers
extend from 1% to 99", Thick horizontal line denotes
median.

loop was both smaller and less variable

Movi-default SPUMONI Movi-default

Fulgor had both a smaller index and a relatively fast query time
compared even to Movi, taking only about 3.8 times the amount
of time as Movi-default. Fulgor’s full index takes about 3 GB,
about one-third the size of Movi-default’s 8.5 GB index. On the
other hand, the two tools output different results, with Movi
outputting pseudo-matching lengths and Fulgor outputting
pseudo-alignment information. Further, Fulgor is k-mer based
and requires pre-selection of a set k-mer length, whereas Movi
is a full-text index. Movi-default is the fastest overall and pro-
vides an advantageous trade for applications that benefit from
the flexibility of a full-text index, e.g., adaptive sampling.

Bowtie2 and minimap2 are not perfectly comparable to Movi
since they produce full read alignments. Further Bowtie2 is de-
signed for use with short reads, not the long nanopore reads as-
sessed here. For that reason, we omitted Bowtie2 from the
speed comparison. Minimap2 took about 69 times longer to align
the reads, while also using 16 threads (compared to 1 thread
for the other tools). Its index was also eight times larger than
Movi-default’s. So although minimap2 is able to produce full
and accurate alignments for the nanopore reads (Movi only com-
putes the pseudo matching lengths), Movi provides a useful
combination of speed and memory efficiency for applications,
such as classification, where pseudo-matching lengths provide
sufficient power.

Finally, we compared the PMLs generated by Movi (both
modes) against those computed by SPUMONI. Using the diff
tool, we found that Movi and SPUMONI generated identical
PMLs, as expected.

Speed and predictability of Movi queries

Because of its simple tabular form, we hypothesized the move
structure would exhibit superior cache characteristics compared
to SPUMONI. We used the “Cachegrind” profiler to measure the
cache misses incurred by Movi and SPUMONI when computing
PMLs for the same Zymo sample used in the previous section.
Specifically, we measured misses in the “last-level” cache,
i.e., the final level of cache before main memory, since these
are the misses that take the most time.

Figure 3A shows the number of cache misses per base. We
observed that SPUMONI incurred more than 14 times as many
cache misses per base compared to Movi. The reduced cache
miss rate of Movi came at the cost of a larger index. We also
observed that the time required for each iteration of the inner

4 iScience 27, 111464, December 20, 2024

SPUMONI

for Movi compared to SPUMONI.

To assess the latencies of LF-mapping
executed by SPUMONI and Movi more precisely, we employed
the chrono high-resolution clock in C++ to make nanosecond-
level latency measurements for their inner loops. The distribution
of these latencies is visualized as boxplots in Figure 3B. We
observed that iterations of the Movi inner loop were about 11.5
times faster than those of SPUMONI (comparing means). The
99th-percentile latency observed for Movi’s inner loop (650 ns)
was smaller than the 1st-percentile latency observed for
SPUMONI’s inner loop (942 ns). The median latency observed
for Movi’s inner loop (91 ns) was also much smaller than
SPUMONI’s (2,228 ns). Note that a single last-level cache miss
is roughly thought to take 100 ns or 300 clock cycles on a 3
GHz processor.

Besides variability in inner loop performance due to cache
misses, we measured the number of fast-forward iterations
and repositioning scans in each of Movi’s modes. These were
discussed in Sec. Computing pseudo matching lengths. As
expected, the number of operations was bounded by a small
constant for Movi-constant. For Movi-default, the number of
operations varied much more, as seen in Figure 4. Detailed sta-
tistics are presented in supplementary materials Table S4.
Although earlier we observed that Movi-default was faster
than Movi-constant on average, here we saw that Movi-con-
stant’s inner loop performed a smaller and more predictable
number of operations, which is advantageous in situations
where the algorithm must keep up with the output of an instru-
ment in real-time. However, the average number of fast-for-
wards performed in Movi-default’s loop compared to Movi-
constant’s was only about 1.2 times greater, and the average
number of repositioning scans was only about 2.5 times
greater. The fact that Movi-default is still faster than Movi-
constant despite this difference is likely because Movi-constant
requires a larger index, which in turns incurs more cache mis-
ses overall.

Extrapolation to nanopore throughputs

Using per-base speeds measured for the Zymo input data (pre-
sented in Table 2), we extrapolate to measure their ability to
analyze nanopore sequencing data in a real-time adaptive sam-
pling context. We assume that the sequences are base-called
immediately. Considering that the sequencing speed of each
nanopore of an Oxford Nanopore (ONT) instrument is 420
base pairs per second, SPUMONI's speed is sufficient to

iScience

¢? CellPress

OPEN ACCESS

E3 fast forward
E3 repositioning
- boxes extend from 1st to 99th percentiles
20 - |- whiskers extend from 0.1th to 99.9th percentiles
- thick horizontal line denotes median
0

Movi-constant Movi—default

Figure 4. The number of fast-forwards and repositioning scans in
each mode of Movi

Movi-constant is guaranteed to use a constant number of memory accesses
per LF-mapping. Boxes extend from 1st to 99th percentiles and whiskers
extend from 0.1 to 99.9™. Horizontal line denotes mean. In all cases, the
median is 0.

simultaneously handle 904 channels (pores) at once. On the other
hand, Movi can handle 26,890 simultaneous channels, surpassing
the total number of channels in the largest flow cell available
for the PromethlON device: 2,675 channels (Accessed Octo-
ber 4, 2023. https://nanoporetech.com/products/specifications).
Assuming perfect linear scaling, about five simultaneous Movi
threads (each handling 16 reads concurrently) would be sufficient
to handle the aggregate output of 48 PromethlON flowcells.

Backward search for count queries

Besides pseudo-matching lengths, another full-text query is the
“count” query, which reports the number of distinct locations
where the query occurs as a substring of T. A count query in-
volves a sequence of backward-search steps, each step using
one additional character of the query.

In Movi, backward search begins by finding the range of
BWM rows that have the final (rightmost) query character as
a prefix. In subsequent steps, LF-mapping-like steps are
used to advance this range’s top and bottom pointers to addi-
tionally match the next query character to the left (i.e., a longer
suffix of the query), obtaining an interval of BWM rows begin-
ning with the longer suffix. This repeats until the query is ex-
hausted or until the range becomes empty, indicating that the
query does not occur. In Movi, updating the top and bottom
pointers is exactly analogous to the repositioning procedure
described in Methods Computing pseudo matching lengths,
except that the choice of j** or jo" is determined by whether
we are updating the top pointer (in which case we use j°") or
the bottom pointer (in which case we use j'°).

Table 3. Time and index size required to execute the count query
with Movi and the r-index

Mode Index size (GB) Query time (mm:ss) Speedup
r-index 1 44:05 1%
Movi-default 3.2 2:43 16.2 x
Movi-constant 11 2:48 15.7 x

Both default and constant modes of Movi are very fast, whereas the con-
stant mode uses more memory, because it stores the repositioning
pointers in each row.

To measure backward search performance, we used Mason'®
to simulate 10 million 150-bp unpaired reads from an FASTA file
containing the complete genomes of the seven bacterial species
in the Zymo community, which was also used for Results
Sec. Pseudo matching lengths for a mock community. We
generated error-free reads to ensure that backward search
would iterate over all query characters. We compared Movi’s
efficiency to that of r-index, which supports the same query.
Note that SPUMONI does not support this same query. The re-
sults are presented in Table 3. We observed that r-index took
44m:05s, whereas Movi took 2m:43s, a 16-fold improvement.
On the other hand, the Movi-default index was about three times
larger than the r-index, consistent with other results showing the
move structure to be larger.

Scaling to human pangenomes

We next evaluated the scalability of Movi using human genome
haplotype assemblies from the Human Pangenome Reference
Consortium (HPRC)."> We selected various numbers of haplo-
types, ranging from 1 to 94, which includes all available haplo-
types. We measured the overall size and scalability of Movi’s
indexes (based on the move structure) when compared to
SPUMONI (based on r-index) and Fulgor (based on colored com-
pacted De Bruijn graph). Note that Fulgor’s index also stores
“color” information (associating k-mers with haplotypes), which
is not a type of information stored in the Movi or SPUMONI
indexes. We used k = 31 and m = 19 when building the Fulgor
indexes.

We measured each tools’ ability to scale to larger pange-
nomes in Table 4. As a baseline for measuring scalability,
we reported the number of distinct k-mers in the input accord-
ing to Fulgor’s stats command (“kmer-count” column). As a
second baseline, we also reported the number of runs in the
BWT according to Movi (“r” column). As seen in Figure 5,
the size of the 94-haplotype indexes was less than two times
the size of the 5-haplotype indexes for all three tools. Movi ex-
hibited the best scaling factor, with its 94-haplotype index us-
ing about 1.2 times the space as its 5-haplotype index. The
94-haplotype index for Fulgor and SPUMONI used 1.38
and 1.86 times the space as their 5-haplotype indexes,
respectively. This highlights the advantages of compressed
indexes, including full-text indexes, when indexing large
pangenomes.

We also observed that the size of Fulgor’s index was consid-
erably smaller than both SPUMONI’s and Movi’s. Fulgor’s index
includes both k-mer mapping and color class information, i.e.,

iScience 27, 111464, December 20, 2024 5

https://nanoporetech.com/products/specifications

¢? CellPress iScience
OPEN ACCESS
Table 4. Indexes are built over different number of HPRC assemblies: 1, 5, 10, 25, 50, 75, 94 (all)
Reference FASTA (GB) kmer-count (x10°) Fulgor(GB) r (x10°) SPUMONI (GB) Movi(GB)
HPRC 1 2.9 2.50 3.1 3.33 6 62
HPRC 5 15 2.70 3.7 3.53 8.6 66
HPRC 10 29 2.79 3.9 3.65 9.8 68
HPRC 25 74 2.94 4.3 3.84 13 72
HPRC 50 174 3.06 4.7 4.02 14 75
HPRC 75 214 3.13 4.9 4.14 15 78
HPRC 94 268 3.19 5.1 4.24 16 79

For Movi and SPUMONI, the index contains both the forward and reverse complement strands of the haplotypes.

information about which k-mers occur in which haplotypes. In
this experiment, there are relatively few colors, and so color-
class information makes up a smaller portion of the index.
Running Fulgor’s “stats” command on indexes created in Table
4 showed that between 1% and 5% of the index is dedicated to
color information.

We also evaluated query speed for each tool using a simulated
long read sample and a “combined” sample, consisting of both
simulated reads and real reads from a human gut microbiome
sample.'® This allows us to measure performance in a scenario
where many input reads do not have a long match to the refer-
ence pangenome. The results are shown in supplementary ma-
terials Table S5, and a similar trend as in Sec. Pseudo matching
lengths for a mock community is observed, with Movi being the
fastest followed by Fulgor and SPUMONI. Movi is 1.7x to 2.7x
faster than Fulgor and 23x to 27x faster than SPUMONI in all

2.00-
SPUMONI
Fulgor
Movi
1.75-
—
S
[$]
O
> 1.50
£
©
[6]
w
1.25+
1.00-
10 25 50 75 94

number of HPRC genomes

Figure 5. The scaling factor is computed by dividing the size of each
tool’s index by the size of the index of that tool built over five HPRC
genomes

All tools have small scaling factors for pangenomes. While Movi’s index is the
largest compared to the other two, it has the best scaling factor for any number
of hrpc genomes.

6 iScience 27, 111464, December 20, 2024

the experiments with either a single human genome or the hu-
man pangenome.

DISCUSSION

We introduced Movi, a cache-efficient, scalable tool for pange-
nomic indexing and read classification. Movi’s index is based
on the move structure, which is a full-text index with a scaling
factor superior to competing approaches like SPUMONI and Ful-
gor. Movi is extremely fast, due both to its excellent locality of
reference that in turn minimizes cache misses and to our novel
strategy for hiding the remaining cache-miss latency by process-
ing many reads concurrently. Movi’s rapid and predictable query
speed makes it well suited to applications like nanopore adap-
tive sampling. Movi can process the base-called output of a fully
loaded PromethlON using 12 threads.

The move structure’s simple tabular structure suggests simple
ways to partition and distribute it across nodes of a computer
cluster while minimizing inter-node communication. It can simply
be divided into separate, contiguous chunks of rows, which can
then be distributed. Execution of a pattern-matching query will
require some jumps between nodes (i.e., a longer-distance LF
query) but will frequently require only sequential or nearby jumps
(fast-forwards and repositions) that do not require moving across
nodes. This provides a much more favorable substrate for
distributed computing compared to r-index, which is character-
ized by complex and unpredictable memory accesses.

Another key advantage of our full-text indexing approach is
that it does not require the user to select any key parameters
ahead of time. This is in contrast to k-mer-based or minimizer-
based approaches, for which the user must be aware of the
potential pitfalls of choosing suboptimal parameters.

Limitations of the study

A limitation of Movi is the fact that the M table is large compared
to all the other tools assessed here (besides minimap?2). Movi’s
index uses a table with O(r) rows, where each row explicitly
stores the LF-mapping result for the run head, requiring
O(log(r)) bits to point to another row. This approach leads to a
larger overall table size compared to the r-index, which uses bit-
vectors and other structures that, although they have poor local-
ity of reference, tend to reduce the number of bits stored per run.
In the future, it will be important to reduce the footprint of Movi’s
index. This could be accomplished, for instance, by adopting the

iScience

minimizer digestion strategy of SPUMONI 2.° Another space-
saving measure could be to losslessly compress the move struc-
ture using, e.g., the columnar compression strategies investi-
gated by Brown et al. in 2022.""

We also hope to expand Movi’'s applicability to more query
types. For instance, Movi could be adapted to handle multi-class
classification by augmenting the index with suffix array or “docu-
ment” information.'”

Although Fulgor'® optimizes space and time by capitalizing on
long unitigs and explicitly storing the corresponding strings, we
can adopt a similar strategy by leveraging substructures within
the BWT. One such approach is to enhance query efficiency
by reordering the BWT rows. This technique can be seamlessly
integrated into Movi, enabling further cache efficiency and
greater speed. By incorporating reordering, Movi has the poten-
tial to achieve even greater query performance.

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will
be fulfilled by the lead contact, Ben Langmead (langmea@cs.jhu.edu).

Materials availability
This study did not generate any new materials.

Data and code availability

e Data: For the Mock Community experiment, we used the SRA project
under the accession number SRX7711546. We obtained bacterial refer-
ence genomes from NCBI. The list of the references are available at:
https://github.com/mohsenzakeri/Movi-experiments/blob/main/zymo/
refs/bacteria.txt.
The human pangenome was obtained from the Human Pangenome
Reference Consortium website: https://humanpangenome.org/
The human gut microbiome sample was downloaded from the SRA un-
der the accession number SRR9847854. The simulated human reads
were generated by PBSIM2'° using the R9.4 chemistry. The CHM13 hu-
man genome®° was used for simulating the reads.

o Code: Movi is implemented in C++. It is GPL3-licensed open-source
software available from https://github.com/mohsenzakeri/movi.
Movi uses the prefix-free parsing implementation from the pfp_thres-
holds repository at https://github.com/maxrossi91/pfp-thresholds for
building the Burrows Wheeler Transform of the pangenome.
Movi uses the run splitting implementation from the r-permute library at
https://github.com/drnatebrown/r-permute.

e Others: Cachegrind was used for evaluating the number of cache mis-
ses. It is part of Valgrind software and was obtained from: https://
valgrind.org/docs/manual/cg-manual.html.

ACKNOWLEDGMENTS

This work was supported by NIH grants ROTHG011392 and R21HG013433,
and NSF-135491 awarded to B.L. N.K.B. and T.G. were supported by NSERC
grant RGPIN-07185-2020 to T.G. N.K.B. was also supported by a Johns Hop-
kins University Computer Science PhD Fellowship.

AUTHOR CONTRIBUTIONS

M.Z. and B.L. designed the method, with help from N.K.B., O.Y.A., and T.G.
M.Z. wrote the software with help from N.K.B. M.Z. performed the experi-
ments. All authors contributed to the manuscript.

¢? CellPress

OPEN ACCESS

DECLARATION OF INTERESTS

B.L. is the owner of InOrder Labs LLC.

STARX*METHODS

Detailed methods are provided in the online version of this paper and include
the following:

o KEY RESOURCES TABLE
e METHOD DETAILS
o Burrows Wheeler Transform, FM-index and r-index
o TheMoveDataStructure
o Computing pseudo matching lengths
o Cache-miss latency hiding
o The Movi software
o QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/].isci.
2024.111464.

Received: September 7, 2024
Revised: October 11, 2024
Accepted: November 20, 2024
Published: November 27, 2024

REFERENCES

1. Wood, D.E., and Salzberg, S.L. (2014). Kraken: ultrafast metagenomic
sequence classification using exact alignments. Genome Biol. 15, 1-12.
https://doi.org/10.1186/gb-2014-15-3-r46.

2. Wood, D.E., Lu, J., and Langmead, B. (2019). Improved metagenomic
analysis with Kraken 2. Genome Biol. 20, 257. https://doi.org/10.1186/
$13059-019-1891-0.

3. Kim, D., Song, L., Breitwieser, F.P., and Salzberg, S.L. (2016). Centrifuge:
rapid and sensitive classification of metagenomic sequences. Genome
Res. 26, 1721-1729. https://doi.org/10.1101/gr.210641.116.

4. Menzel, P., Ng, K.L., and Krogh, A. (2016). Fast and sensitive taxonomic
classification for metagenomics with Kaiju. Nat. Commun. 7, 11257.
https://doi.org/10.1038/ncomms11257.

5. Ahmed, O., Rossi, M., Kovaka, S., Schatz, M.C., Gagie, T., Boucher, C.,
and Langmead, B. (2021). Pan-genomic matching statistics for targeted
nanopore sequencing. iScience 24, 102696. https://doi.org/10.1016/j.
isci.2021.102696.

6. Ahmed, O.Y., Rossi, M., Gagie, T., Boucher, C., and Langmead, B. (2023).
Spumoni 2: improved classification using a pangenome index of minimizer
digests. Genome Biol. 24, 122. https://doi.org/10.1186/s13059-023-
02958-1.

7. Ferragina, P., and Manzini, G. (2005). Indexing compressed text. J. ACM
52, 552-581. https://doi.org/10.1145/1082036.1082039.

8. Gagie, T., Navarro, G., and Prezza, N. (2018). Optimal-time text indexing in
bwt-runs bounded space. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms (SIAM), pp. 1459-1477.
https://doi.org/10.1137/1.9781611975031.96.

9. Rossi, M., Oliva, M., Langmead, B., Gagie, T., and Boucher, C. (2022).
MONI: A Pangenomic Index for Finding Maximal Exact Matches.
J. Comput. Biol. 29, 169-187. https://doi.org/10.1089/cmb.2021.0290.

10. Nishimoto, T., and Tabei, Y. (2021). Optimal-time queries on bwt-runs
compressed indexes. In 48th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2021), 198, p. 101, (Schloss Dagstuhl—
Leibniz-Zentrum fur Informatik. https://doi.org/10.4230/LIPIcs.ICALP.
2021.101.

iScience 27, 111464, December 20, 2024 7

mailto:langmea@cs.jhu.edu
https://github.com/mohsenzakeri/Movi-experiments/blob/main/zymo/refs/bacteria.txt
https://github.com/mohsenzakeri/Movi-experiments/blob/main/zymo/refs/bacteria.txt
https://humanpangenome.org/
https://github.com/mohsenzakeri/movi
https://github.com/maxrossi91/pfp-thresholds
https://github.com/drnatebrown/r-permute
https://valgrind.org/docs/manual/cg-manual.html
https://valgrind.org/docs/manual/cg-manual.html
https://doi.org/10.1016/j.isci.2024.111464
https://doi.org/10.1016/j.isci.2024.111464
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1101/gr.210641.116
https://doi.org/10.1038/ncomms11257
https://doi.org/10.1016/j.isci.2021.102696
https://doi.org/10.1016/j.isci.2021.102696
https://doi.org/10.1186/s13059-023-02958-1
https://doi.org/10.1186/s13059-023-02958-1
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1137/1.9781611975031.96
https://doi.org/10.1089/cmb.2021.0290
https://doi.org/10.4230/LIPIcs.ICALP.2021.101
https://doi.org/10.4230/LIPIcs.ICALP.2021.101

¢? CellPress

1.

12.

13.

14.

15.

16.

8

OPEN ACCESS

Brown, N.K., Gagie, T., and Rossi, M. (2022). RLBWT Tricks. In 20th Inter-
national Symposium on Experimental Algorithms (SEA 2022), Vol. 233 of
Leibniz International Proceedings in Informatics (LIPIcs), 76, C. Schulz
and B. Ucar, eds., pp. 1-16:16, (Schloss Dagstuhl - Leibniz-Zentrum fir
Informatik, Dagstuhl, Germany, 2022). https://doi.org/10.4230/LIPIcs.
SEA.2022.16.

Liao, W.-W., Asri, M., Ebler, J., Doerr, D., Haukness, M., Hickey, G., Lu, S.,
Lucas, J.K., Monlong, J., Abel, H.J., et al. (2023). A draft human pange-
nome reference. Nature 617, 312-324. https://doi.org/10.1038/s41586-
023-05896-x.

Kovaka, S., Fan, Y., Ni, B., Timp, W., and Schatz, M.C. (2021). Targeted
nanopore sequencing by real-time mapping of raw electrical signal with
uncalled. Nat. Biotechnol. 39, 431-441. https://doi.org/10.1038/s41587-
020-0731-9.

O’Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh,
R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., et al. (2016).
Reference sequence (refseq) database at ncbi: current status, taxonomic
expansion, and functional annotation. Nucleic Acids Res. 44, D733-D745.
https://doi.org/10.1093/nar/gkv1189.

Holtgrewe, M. (2010). Mason-a read simulator for second generation
sequencing data. Technical Report FU Berlin. http://publications.imp.fu-
berlin.de/962/.

Moss, E.L., Maghini, D.G., and Bhatt, A.S. (2020). Complete, closed
bacterial genomes from microbiomes using nanopore sequencing. Nat.
Biotechnol. 38, 701-707. https://doi.org/10.1038/s41587-020-0422-6.

iScience 27, 111464, December 20, 2024

17.

18.

19.

20.

21.

22.

23.

24,

iScience

Ahmed, O., Rossi, M., Boucher, C., and Langmead, B. (2023). Efficient
taxa identification using a pangenome index. Genome Res. 33, 1069-
1077. https://doi.org/10.1101/gr.277642.123.

Fan, J., Khan, J., Singh, N.P., Pibiri, G.E., and Patro, R. (2024). Fulgor:
a fast and compact k-mer index for large-scale matching and color
queries. Algorithm Mol. Biol. 19, 3. https://doi.org/10.1186/s13015-
024-00251-9.

Ono, Y., Asai, K., and Hamada, M. (2021). Pbsim2: a simulator for long-
read sequencers with a novel generative model of quality scores. Bioinfor-
matics 37, 589-595. https://doi.org/10.1093/bioinformatics/btaa835.

Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A.V., Mikheenko,
A., Vollger, M.R., Altemose, N., Uralsky, L., Gershman, A., et al. (2022).
The complete sequence of a human genome. Science 376, 44-53.
https://doi.org/10.1126/science.abj6987.

Brown, N. (2023). Bwt-runs compressed data structures for pan-genomics
text indexing. http://hdl.handle.net/10222/82419.

Bannai, H., Gagie, T., and Tomohiro, I. (2020). Refining the r-index. Theor.
Comput. Sci. 872, 96-108. https://doi.org/10.1016/j.tcs.2019.08.005.

Anderson, T., and Wheeler, T.J. (2021). An optimized fm-index library for
nucleotide and amino acid search. Algorithm Mol. Biol. 16, 25. https://
doi.org/10.1186/s13015-021-00204-6.

Boucher, C., Gagie, T., Kuhnle, A., Langmead, B., Manzini, G., and Mun, T.
(2019). Prefix-free parsing for building big bwts. Algorithm Mol. Biol. 74,
13-15. https://doi.org/10.1186/s13015-019-0148-5.

https://doi.org/10.4230/LIPIcs.SEA.2022.16
https://doi.org/10.4230/LIPIcs.SEA.2022.16
https://doi.org/10.1038/s41586-023-05896-x
https://doi.org/10.1038/s41586-023-05896-x
https://doi.org/10.1038/s41587-020-0731-9
https://doi.org/10.1038/s41587-020-0731-9
https://doi.org/10.1093/nar/gkv1189
http://publications.imp.fu-berlin.de/962/
http://publications.imp.fu-berlin.de/962/
https://doi.org/10.1038/s41587-020-0422-6
https://doi.org/10.1101/gr.277642.123
https://doi.org/10.1186/s13015-024-00251-9
https://doi.org/10.1186/s13015-024-00251-9
https://doi.org/10.1093/bioinformatics/btaa835
https://doi.org/10.1126/science.abj6987
http://hdl.handle.net/10222/82419
https://doi.org/10.1016/j.tcs.2019.08.005
https://doi.org/10.1186/s13015-021-00204-6
https://doi.org/10.1186/s13015-021-00204-6
https://doi.org/10.1186/s13015-019-0148-5

iScience ¢? CellPress
OPEN ACCESS

STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

ZymoMC sequencing reads Kovaka et al."® https://www.ncbi.nlm.nih.gov/sra/SRX7711546
Human pangenome reference (HPRC) Liao et al.’? https://www.nature.com/articles/s41586-023-05896-x
Human gut metagenome reads Moss et al.’® https://www.ncbi.nlm.nih.gov/sra/?term=SRR9847854
Telomere-to-Telemere Consortium CHM13 v1.0 assembly Nurk et al.*° https://github.com/marbl/CHM13

Software and algorithms

Movi This paper https://github.com/mohsenzakeri/Movi

PBSIM2 Onoet al."® https://github.com/yukiteruono/pbsim?2

Mason Holtgrewe'® https://www.segan.de/apps/mason.html

METHOD DETAILS

Burrows Wheeler Transform, FM-index and r-index
The Burrows Wheeler Transform (BWT) is a reversible permutation that reorders the characters of a string T according to the lexico-
graphical order of their right contexts in T. Beginning with T of length n, we append a terminal symbol $ that does not appear else-
where in T and is lexicographically smaller than T’s other characters. T[i denotes the character at 1-based offsetiand T[i..n denotes
a suffix starting at i. BWT(T) permutes T’s characters so that T[i comes before T[j in BWT order if and only if T[i +1..n <T[j +1..n.
Repetitive portions of T yield long “runs” in BWT(T) where a run is a maximal-length substring consisting of a character repeated.
Figure 1A illustrates BWT runs of length up to 8 in the last column of the matrix.

Figures 1A and 1B show two copies of a Burrows-Wheeler Matrix or BWM. Rows of the BWMconsist of all distinct rotations of the
string T ordered lexicographically. BWT(T) is the last column of BWM(T). BWM'’s first and last columns are related by the Last-to-First
mapping (“LF-mapping”),” which states that the i occurrence of a character c in the last column of the BWM corresponds to the

same text occurrence as the i occurrence of ¢ in the first column. Some LF-mapping relationships are illustrated with parallelograms
in Figure 1A. The LF-mapping also gives a way to navigate through the text T. Note that if the BWT permutation maps T [j to BWT |i,
then LF [i givesthe BWTindexof T[] 1 (orT[n ifj = 1). So the LF-mapping allows for right-to-left movements with respectto T, a
fact used in pattern-matching queries.

The FM-index is a data structure based on BWT(T) enabling fast and efficient computation of the LF-mapping and related queries.
It consists of BWT(T) as well as succinct data structures for storing and querying character ranks within BWT(T). In typical implemen-
tations, it grows linearly with the text: O(n).

When T is repetitive, the number of BWT runs (r) is much smaller than the text length (n). The r-index® exploits this by representing
the BWT in a run-length-compressed fashion. This version is called the RLBWT. The i" run, denoted RLBWT]i], consists of the char-
acter repeated in the run (RLBWTTi].c), and the run’s length (RLBWT]i].n). Additional data structures enable efficient computation of
the LF-mapping without having to decompress the RLBWT. The data structures making up the r-index fit in O(r) space total.

As a brief demonstration of how r grows with a typical pangenome, we measured number of runs in the BWT for an increasing
proportion of bacterial genomes in Table 1. The number of runs for an increasing number of complete Salmonella genomes from
1 to 1550 is also displayed in supplementary materials Table S1. The number of runs (r) increases at a slower rate compared to
the total length of the reference (n). The value ? represents a rough compression ratio. As a complementary measure, we also report
the number of distinct canonical k-mers (k = 31) present, which grows similarly to the number of BWT runs.

TheMoveDataStructure
LF mapping
When T is a repetitive pangenome, the LF-mapping tends to map consecutive stretches of BWT characters to consecutive stretches
in F (Figure 1A). The move structure exploits this to simplify computation of the LF-mapping. The move structure consists of a table
(M) with rows corresponding to BWT runs (Figure 1C). To aid LF-mapping, the column named = stores the LF-mapping of the run
head, i.e., M[i .m# = LF[M[i .p . To compute the LF-mapping at any offset in run index i, we begin by following Mi .7r. This will either
jump to the correct run, or to a run preceding the correct one.

Given M, a BWToffset j, and a run index i, we compute LF[j by adding j’s offset into the current run (j M][i .p) to the run head’s
LF-mapping:

LFj = Mli.x+(M[i.p)

iScience 27, 111464, December 20, 2024 el

https://www.ncbi.nlm.nih.gov/sra/SRX7711546
https://www.nature.com/articles/s41586-023-05896-x
https://www.ncbi.nlm.nih.gov/sra/?term=SRR9847854
https://github.com/marbl/CHM13
https://github.com/mohsenzakeri/Movi
https://github.com/yukiteruono/pbsim2
https://www.seqan.de/apps/mason.html

¢? CellPress iScience
OPEN ACCESS

Note that this involves only arithmetic on i, j, M[i .= and MJi .p, and does not involve bitvectors or wavelet-tree queries. Only the
accesses to M[i might require accessing main memory. An illustration of how memory accesses induced by move structure queries
differ than those by r-index is shown in supplementary materials Figure S4.

Note that an input to this computation is i, the current run index. To chain multiple LF-mapping queries together, as is needed for
matching queries, we must update not only the BWT offset j but also the BWT run index i. As a step toward this goal, M[i .£ stores
the index of the run containing LF[M[i .p . However, the run containing LF[M[i .p may not also contain LF[j . l.e. it is possible that
LF[j M[M(i .£ p>M[M]i .£ ¢. After jumping to M[M[i ., we may additionally need to advance through the runs until finding the
smallest run index i >i such that M[i' .p < LF[j <M[i’ +1 .p. We call this the “fast-forward” or “ff” procedure, illustrated in Figure
1B (top) and detailed by Data S1 in supplementary materials. Using that algorithm, we update both i and j in each LF-mapping step:

i f(M,1,)) J <Mli.c+(M[i.p)

Constant-time LF

Nishimoto and Tabei gave a procedure for splitting some BWT runs into shorter sub-runs to achieve a constant upper bound on the
fast-forwards required for any LF-mapping.'® The procedure works with a parameter d such that, after splitting runs, the number of
fast-forwards per LF-mapping query is less than 2d while adding at most ;' additional runs to the table. The overall number of runs is
still O(r) after splitting. In practice, the procedure splits only a fraction of the original runs.?’

With the exception of the jump induced by following M[i .6 = LF[M]i p, all the memory accesses described here are sequential. The
LF[MJi .p stepis unpredictable, possibly needing to access a distant and not-recently-accessed location in memory, likely incurring a
cache miss. That said, for a chain of several LF-mapping queries, only one expensive memory access is needed per query.

Since information about exact BWT offsets of matches is not required for computing pseudo matching lengths, Movi avoids storing
both p and in the table. Instead, Movi collapses those fields into a single relative offset, as previously implemented by Brown et al."

Computing pseudo matching lengths

Matching statistics and pseudo matching lengths

Matching statistics (MS) are a summary of sequence similarity used in sequence classification tasks and for computing other sim-
ilarity features like Maximal Exact Matches (MEMs). Given a text T[1..n and pattern P[1..m, P’s matching statistics with respect
to T are defined as an array MS[1..m where MS]i is the length of the longest prefix of P[i..m occurring in T.

Bannai et al.?® described a 2-pass procedure for computing matching statistics using the r-index and an auxiliary thresholds struc-
ture. Rossi et al.” gave an efficient procedure for computing the thresholds. Later, Ahmed et al.” introduced a modified 1-pass version
of the procedure that computes a vector of Pseudo Matching Lengths (PMLs), which roughly approximate the lengths in MS. While
PMLs contain less information than MSs - e.g., they cannot be used to exactly compute MEMs - finding PMLs is much faster, can be
performed in single pass over the query, and requires neither a suffix-array sample nor a random-access structure for T. In practice,
PMLs are similar to MSs in their ability to classify sequences.®

The MONI algorithm starts at an arbitrary offset in the BWT, then considers each character of the query sequence in right-to-left

order. Say we are currently at offset j in BWT and are examining character P[i . The algorithm first tests if Pi = BWT]j. If they are
equal, we call this “case 1.” For case 1, the algorithm performs an LF-mapping step and moves on to the next character:
i—i 1j<LF]j

The LF-mapping uses the strategy we discussed above, which includes the fast-forward procedure. If P[i #BWT][j , we call this
“case 2.” For case 2, we cannot simply use LF[j as our next offset; rather we must “reposition” to a nearby offset |" such that
Pli = BWT][j". We let |" equal one of two choices: the greatest j*P such that |"* <j and BWT[}* = PJi, or the smallest j" such
that j°" >j and BWT[j® = P[i. Whether we choose j* or | is determined by querying the thresholds structure of Bannai et al.”?
Movi stores the thresholds structure as additional columns in the move structure. If ¢ is the number of characters in the alphabet,
e.g., 4 for DNA sequences, ¢ 1 thresholds are stored in each row of the table to be able to reposition based on the character
observed in the query. Once we have repositioned, we proceed using the same update rule as above, substituting | for j.

Instances where we can apply the simpler case 1 update rule correspond to instances where an existing match is being extended
by 1 character, causing the matching statistic to increase by one. Instances where we apply case 2 might or might not correspond to
an extension. The MS algorithm from MONI is capable of distinguishing these two subcases of case 2. The PML algorithm of
SPUMONI is not capable of this, instead resetting the match length to 0 when it reaches an instance of case 2. Details about the
PML computation procedure is shown by Data S2 in supplementary materials.

Movi’s repositioning

Movi uses two distinct strategies for finding and moving to the run containing . By default, Movi scans from run to run (either upward
to |*? or downward to j%") until reaching a run with a matching character. This involves an unpredictable number of memory accesses,
though they are sequential accesses. In its Movi-constant mode (discussed further in Methods 12.5), Movi instead stores explicit
pointers to the j’-containing runs for each characters of the DNA alphabet. It stores two such sets of pointers, one for when the
threshold points upward and one for when it points downward, leading to a total of six additional pointers being stored in each
move structure run.

e2 iScience 27, 111464, December 20, 2024

iScience ¢? CellPress
OPEN ACCESS

In short, there are three types of operations performed by Movi during the PML computation; (1) jump to the run potentially con-
taining the LF-mapping destination, (2) fast-forward to the run that contains the LF-mapping destination, and (3) reposition to the run
containing a matching character in the case of a mismatch. These are illustrated in a state diagram in Figure 2 (with further detail in
supplementary materials Figure S1). Operation (1) is used in each LF-mapping, once per base, and has the highest cost since it
usually incurs a cache miss. Operations (2) and (3) are less expensive.

Cache-miss latency hiding

The once-per-iteration LF-mapping step is Movi’s single most expensive operation. Because it moves to a new, unpredictable
address, it usually incurs a cache miss and thereby stalls the processor until the requested memory (and associated cache line) is
retrieved and installed in the cache. AWFM-index,*® a lightweight FM index library optimized for genomic sequences, uses manual
prefetching to improve memory access latency, but the authors reported that the strategy was not effective.

We observed that Movi’s simple inner loop can be easily rearranged and augmented with memory “prefetch” instructions in a way
that avoids the latency of stalling. To achieve this, a single thread of execution processes several reads concurrently. Say that Movi is
computing PMLs for two reads named read_a and read_b concurrently in a single thread. Rather than compute all of read_a’s PMLs
then all of read_b’s PMLs, Movi alternates repeatedly between the reads. It first advances the computation for read_an until reaching
the first instruction that accesses memory in the LF-mapping step’s destination row. Instead of attempting the access immediately,
Movi issues a memory prefetch instruction, which asynchronously requests that the needed memory be retrieved into the cache.
Because this happens asynchronously, it does not immediately cause the processor to stall. Movi then switches to read_b and ad-
vances that computation in a similar way, ending with the prefetch of the destination row of read_b’s next LF-mapping step. Movi
then switches back to read_a; in the meantime, the processor has at least begun (and has possibly completed) the process of
installing the earlier-requested memory into the cache. We now resume the computation for read_a, expecting that accessing the
destination row of the LF-mapping can now be done with little or no stalling. This process repeats until all the PMLs are computed
for both reads. We give an illustration in supplementary materials Figure S2 for the strategy, the pseudocode is also provided in
supplementary materials Data S3. Note that the pseudocode handles various special cases of interest, e.g., detecting when aread’s
sequence has been exhausted and loading the next read.

Based on the cache latency of the machine, this “latency hiding” strategy depends on a parameter: the number of reads handled
concurrently. If too few reads are handled concurrently, only a fraction of the stalling time is avoided and the benefit is small. If too
many reads are handled concurrently, the time between the prefetch and the actual use of the memory can become so long that
competing threads and processes have caused the cache line to be erased (“evicted”) from the cache, and the stall occurs anyway.
We measured the speed of Movi’s PML computation when using 2, 4, 8, 16, and 32 concurrent reads. Once reaching about 8 con-
current reads, the gain from prefetching began to plateau supplementary materials Figure S3. We therefore chose 16 as the default
number of concurrent reads, and that setting is used in all results in the manuscript. Use of 16 concurrent reads improved throughput
2.24-fold compared to when latency hiding was disabled.

The Movi software

Movi supports two modes of operation. The first mode, called Movi-default, is fast but lacks the constant-time LF-mapping query
guarantee. The second mode, called Movi-constant, uses the splitting to create a move structure that has a constant-time LF-map-
ping guarantee. Further, Movi-constant uses a constant-time version of the repositioning step, allowing its inner loop to be fully con-
stant-time, regardless of whether it involves LF-mapping steps and/or repositioning. This comes at the cost of additional space, since
(a) the move structure that results from the splitting procedure has more runs and is therefore somewhat larger than the unsplit move
structure, and (b) the constant-time repositioning step requires that we pre-compute upward and downward jump distances and
store them in the move structure table.

To build the Burrows Wheeler Transform, Movi uses the prefix-free parsing (PFP) algorithm of Boucher et al.,“” which is particularly
efficient for building the BWT of a highly repetitive text such as a pangenome. The algorithm also integrates Rossi et al.’s® approach
for computing thresholds for repositioning.

Movi builds an index over both the forward and reverse complement of the reference sequences. This technique which was also
used by SPUMONI® as it enables querying the reads in both strands simultaneously.

Movi is implemented in C++. It is GPL3-licensed open-source software available from https://github.com/mohsenzakeri/movi. It
depends on both the prefix-free parsing implementation from the pfp_thresholds repository at https://github.com/maxrossi91/pfp-
thresholds and the run splitting implementation from the r-permute library at https://github.com/drnatebrown/r-permute. Results in
this manuscript are based on the v1.0 tag of that repository.

I.,24

QUANTIFICATION AND STATISTICAL ANALYSIS
The details about the genomes used in the experiments can be found in the caption of Tables 2 and 4. More details about the ge-

nomes and the reads are also presented in the results sections “pseudo-matching lengths for a mock community” and “scaling
to human pangenomes”.

iScience 27, 111464, December 20, 2024 e3

https://github.com/mohsenzakeri/movi
https://github.com/maxrossi91/pfp-thresholds
https://github.com/maxrossi91/pfp-thresholds
https://github.com/drnatebrown/r-permute

	Movi: A fast and cache-efficient full-text pangenome index
	Introduction
	Results
	Pseudo-matching lengths for a mock community
	Speed and predictability of Movi queries
	Extrapolation to nanopore throughputs
	Backward search for count queries
	Scaling to human pangenomes

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Method details
	Burrows Wheeler Transform, FM-index and r-index
	TheMoveDataStructure
	LF mapping
	Constant-time LF

	Computing pseudo matching lengths
	Matching statistics and pseudo matching lengths
	Movi’s repositioning

	Cache-miss latency hiding
	The Movi software

	Quantification and statistical analysis

