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Abstract

In this paper, we aim to generate text classifica-
tion data given arbitrary class definitions (i.e.,
user instruction), so one can train a text classi-
fier without any human annotation or raw cor-
pus. Recent advances in large language models
(LLMs) lead to pioneer attempts to individu-
ally generate texts for each class via prompting.
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In this paper, we propose Incubator, the first
framework that can handle complicated and
even mutually dependent classes (e.g., “TED
Talk given by Educator” and “Other”). Specif-
ically, our Incubator is a fine-tuned LLM that
takes the instruction of all class definitions as
input, and in each inference, it can jointly gen-
erate one sample for every class. First, we tune
Incubator on the instruction-to-data mappings
that we obtained from classification datasets
and descriptions on Hugging Face together with
in-context augmentation by GPT-4. To empha-
size the uniformity and diversity in generations,
we refine Incubator by fine-tuning with the clus-
ter centers of semantic textual embeddings of
the generated samples. We compare Incuba-
tor on various classification tasks with strong
baselines such as direct LLM-based inference
and training data generation by prompt engi-
neering. Experiments show Incubator is able to
(1) outperform previous methods on traditional
benchmarks, (2) take label interdependency and
user preference into consideration, and (3) en-
able logical text mining by incubating multiple
classifiers.

1 Introduction

Text classification is one of the most fundamen-
tal natural language processing (NLP) tasks and
plays a vital role in many NLP systems (Han and
Kamber, 2000). Traditional supervised text clas-
sification fine-tunes models on expensive human
annotation (Zhang et al., 2015), limiting its usage
for lower-source domains. Zero-shot text classifi-
cation reduces manual effort by building classifiers
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Figure 1: A comparison of Incubator with different
methods for zero-shot text classification.

with minimal inputs, such as label names (Wang
et al., 2021; Zhang et al., 2023b; Wang et al.,
2023a). These zero-shot methods are typically
based on mining pseudo-training data from massive
raw texts with precise filtering algorithms, which
unfortunately limits their application to simple la-
bels. For more complex labels, their distributions
are extremely scarce in raw texts and filtering al-
gorithms struggle to recall these examples while
maintaining their precision.

Large language models (LLMs) (Touvron et al.,
2023a,b; OpenAl, 2023), such as GPT-3 (Brown
et al., 2020), have been recently introduced to ad-
dress this problem with their proficient capability
to capture the nuance in complex labels. Specifi-
cally, people prompt LLMs to generate data based
on each label, and then fine-tune small classifiers
as the final production (Ye et al., 2022a,b).

Existing LLM-based zero-shot text classifica-
tion methods, while feasible, face two major chal-
lenges, (1) class definitions can go beyond a sim-
ple label name, such as “TED Talk given by Ed-
ucator” and (2) class definitions can depend on
each other. For example, the class “Other” is only
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Figure 2: An overview of our Incubator framework.

meaningful when seeing other classes; As shown
in Figure 1, the class “Optimistic” shall not con-
tain “Love” when “Love” itself presents as a class.
Therefore, the scope of the class with the same
textual definition can vary as other classes change.

We argue that the LLMs need further instruction-
tuning (Ouyang et al., 2022), particularly for classi-
fication data generation. Specifically, we leverage
public classification datasets with descriptions for
this tuning. This allows the user to control the LLM
to generate useful training data for small models
based on (1) label interdependency and (2) user
preferences described in the instructions. Conse-
quently, the LLM-based zero-shot text classifica-
tion can be formalized as model incubation that
“User requires a model by an instruction, the LLM
(Incubator) then generates useful training data to
incubate such a classifier.”

In this paper, we first collect pairs of dataset
descriptions and training data samples on Hug-
gingface (Wolf et al., 2019a), each formalized as
a dictionary with each label as a key and a sample
as the value. These data are beneficial for Incu-
bator to learn label interdependency as the exam-
ples from different classes are presented jointly.
Then the data descriptions are manually converted
to user instructions, which establishes a mapping
from the user instruction to training data. These

instructions are augmented by a relatively strong
LLM (e.g., GPT-4) using in-context learning (ICL)
(Dong et al., 2023b) and used to instruction-tune
an open-source LLM (e.g., LLaMA-2-7b-hf) as our
Incubator. Note that we can leverage GPT-4 with
ICL as Incubator too. We recommend open-source
LLMs as Incubator because of open parameters,
inference efficiency, and further fine-tuning.

To alleviate the known negative impact of data
bias on text classification (Dixon et al., 2018; Li
et al., 2021b; Jin et al., 2022) and bias in contents
generated by LLMs (Gallegos et al., 2023; Fang
et al., 2023), we propose a novel self-diversification
technique to increase the data uniformity and diver-
sity, utilizing the text representations from a text
embedder (Wang et al., 2022). Specifically, we
instruct the Incubator many times (e.g., 1024), and
then use a clustering algorithm (e.g., K-means) to
get the sample nearest to each cluster center which
are semantically different from one another. These
samples are incorporated in the same batch to fur-
ther instruct-tune Incubator to increase the data
uniformity and diversity.

We conduct experiments to test the classifier in-
cubation ability of our Incubator on various tasks
to test its basic incubation ability, label interdepen-
dency awareness, and user instruction following
ability. These tasks involve incubating classifiers

3754



for (1) traditional benchmarks, (2) classification

tasks with “Other” as a label, and (3) classification

tasks with user customization for personal prefer-
ence. We include strong baselines such as directly
instructing the LLM to classify texts and prompting

LLMs to generate data for each label separately.
Experiment results verify our Incubator to be

able to (1) incubate strong text classifiers that out-

perform the baselines, (2) consider the label inter-
dependency and follow the user preference in the
instruction, (3) incubate multiple text classifiers
and use logical conjunctions to realize advanced
text mining systems.

Our contributions in this paper are three-fold.

* We propose an instruction-tuning framework for
LLMs, which incubates text classifiers following
user instructions for complicated and mutually
dependent classes.

* We propose a novel self-diversification technique,
which utilizes the cluster centers of generated
samples to increase the uniformity and diversity
in Incubator generation.

* We conduct extensive experiments on benchmark
datasets to demonstrate the superior accuracy of
the incubated text classifiers.

* We showcase how to apply Incubator to realize
advanced text mining systems by incubating mul-

tiple text classifiers with logical conjunctions'.

2 Related Works

2.1 Zero-shot Text Classification

Traditional zero-shot text classification methods
are based on text mining in massive raw texts with
label names for surface form matching (Wang et al.,
2021; Wang and Shang, 2022; Zhang et al., 2023b;
Wang et al., 2023a) or semantic matching (Han-
jie et al., 2022; Aggarwal et al., 2023; Zhao et al.,
2023). A related setup allows incorporating some
seed words for each class to strengthen the text
mining precision (Wang et al., 2023b; Dong et al.,
2023a). With the emergence of LLMs, many pio-
neer studies on LLM-based zero-shot text classifi-
cation propose to prompt LLMs with label names
to synthesize texts falling in target classes. These
texts are used to fine-tune small classifiers on those
generated results (Ye et al., 2022a,b). However,
these methods are substantially label-wise text gen-
eration, which fails to consider the whole classifi-
cation task, involving label interdependency and

!The datasets and models used in the experiments will be
released for reproducibility.

user preference. Our work aims to fill in this blank
by proposing a framework that builds customized
classifiers according to user instructions.

2.2 Instruction-tuning

Following instructions (Zhang et al., 2023a) is a
fundamental capability for Large Language Mod-
els (LLMs), crucial for understanding and acting
upon user commands, thus enhancing their appeal
to user-specific applications. InstructGPT (Ouyang
et al., 2022) represents an initial exploration into
LLMs tailored to follow instructions, revealing
their capacity to perform tasks as directed by users.
ChatGPT (OpenAl, 2023), with its superior ca-
pability to follow instructions, bolstered by rein-
forcement learning with human feedback (RLHF),
has enjoyed considerable acclaim both within and
beyond the language research community. Fur-
thermore, publicly available LLMs designed for
instruction-following, such as LLaMA (Touvron
et al., 2023a,b; Meta, 2024), offer a rich foundation
for investigating the ability of LLMs to execute in-
structions. Instruction-tuning not only contributes
to the success of LLMs in text-to-text tasks (Zhang
et al., 2023a), but is also able to customize image
generation (Chae et al., 2023) and text embeddings
(Peng et al., 2024). Our work follows this trend
to instruction-tune LLMs as Incubator, which cus-
tomize classifiers according to user instructions.

2.3 Model Incubation

The area closest to model incubation is symbolic
distillation (West et al., 2022; Li et al., 2023),
which distills a teacher model into a different
type of student model. Those student models can
function very differently from the initial language
modeling teacher, such as commonsense reason-
ing (West et al., 2022) and information extraction
(Zhou et al., 2023). Another relevant domain is
training data generation including augmentation.
Besides classification data generation (Ye et al.,
2022a,b; Peng et al., 2023), there also exists gen-
eration pipelines for question answering (Do et al.,
2023; Gou et al., 2023) and natural language gen-
eration (Xu et al., 2021). Model incubation differs
from previous works as it takes user instruction as
the input, which allows a more user-oriented model
customization for personal usage.

3  Our Incubator Framework

Figure 2 offers an overview of our Incubator frame-
work, including two stages, (1) Instruction-tuning

3755



and (2) Self-diversification. The instruction-
tuning stage utilizes the existing resources on the
Huggingface platform to learn an LLM as Incu-
bator to generate training data based on user in-
structions. The self-diversification stage further
improves the uniformity and diversity in Incuba-
tor generation with an auxiliary text embedder and
clustering. We now elaborate on the details of these
two stages.

3.1 Instruction-tuning for Incubator

Instruction-to-data Dataset We select 25 text
classification datasets on the Huggingface plat-
form? to build the initial instruction-to-data dataset
for instruction-tuning, such as financial news, coun-
terfactual reviews, and toxic conversations. For
each dataset, we extract its description and sam-
ple a few (we select 10) samples per class from it,
which are formalized as Python dictionaries. The
keys in the dictionary are labels and each label
corresponds to one text data as the value. Conse-
quently, we get 250 instruction-to-data samples as
the initial dataset. We present a specific case inside
the dataset in the Appendix B.

ICL-based Augmentation Directly instruction-
tuning the LLM on the initial dataset will likely
introduce overfitting and bias to the Incubator due
to the limited number of instructions (Song et al.,
2023). Thus, we address these issues by data aug-
mentation (Ye et al., 2024) and use ICL (Dong
et al., 2023b) by GPT-4 (OpenAl, 2023) as the
implementation (Ho et al., 2023). We show the
specific prompt for in-context learning in Table 8
of Appendix C. We have two in-context examples
that map instructions to training data as Python
dictionaries, which are randomly sampled in each
query. Finally, we augment the instruction-to-data
dataset to 12K samples. This dataset is then used
to fine-tune the LLM as the Incubator.

3.2 Self-diversification for Incubator

Dataset uniformity and diversity are essential to
text classification (Dixon et al., 2018) while the
contents from LLMs are generally biased, espe-
cially when sampling from a single instruction
(Gallegos et al., 2023; Fang et al., 2023). Thus,
we propose a novel self-diversification technique to
improve the generation quality from our Incubator.
The main idea is to instruction-tune the LLLM on

The source datasets are shown in Appendix E.

the same instruction with several semantically dif-
ferent data samples. We refer to a pre-trained text
embedder, specifically ES (Wang et al., 2022), to
calculate the semantic similarity (Chandrasekaran
and Mago, 2022). In our implementation, we reuse
the instructions in the instruction-tuning dataset.
For each instruction, we generate many (We select
1024) training data® and encode the data into the
latent embedding space. As the data are formalized
as Python dictionaries, we concatenate the embed-
dings of the values (texts) corresponding to a fixed
order of keys.

E(d) = P E(d[l))
=1

where E(-), d, l; refer to the encoder, the data
(dictionary) and the i-th label. & represents the
concatenation operation and n represents the total
label number. After all data are encoded, we run a
K-means (We select K = 8) clustering algorithm
on the embeddings and find the K samples with
embeddings that are closest to the cluster centers.
These samples, together with the instruction, estab-
lish a one-to-many mapping that maps instruction
to very semantically diverse data samples. We in-
corporate these data in a batch of K and further
instruction-tune the LLM on it. Intuitively, this pro-
cedure will increase the appearance probability of
data with unique semantics to benefit the incubated
classifier.

4 Experiments

We conduct several experiments to evaluate the per-
formance of our Incubator. We include experiments
on traditional datasets, and revised datasets with
the label “Other”. We also evaluate the ability of
Incubator to handle complex personal labels and
even ones with conjunctive relationships.

4.1 Evaluations and Datasets

Towards a comprehensive evaluation of our Incuba-
tor, we organize the evaluation into three scenarios.

(1) Traditional Benchmarks We include 8 tradi-
tional text classification benchmarks, such as sen-
timent analysis classification (1) SST-2 (Socher
etal., 2013), (2) SST-5 (Socher et al., 2013), and (3)
Emotion (Saravia et al., 2018), topic classification
(4) AG News (Zhang et al., 2015), news location
classification (5) NYT-LOC (Mozzherina, 2013),
question type classification (6) TREC (Li and Roth,

3Generally, the data share the same label set.
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Method SST-2 SST-5 Emotion AGNews NYT-LOC TREC SNIPS Hillary Average
Prompting 91.43  39.95 46.65 77.65 71.07 60.80 42.29 63.46 61.66
Debiased Seed’ 84.38 25.48 18.67 81.31 76.79 34.86  87.96 48.29 57.22
SemSup—XC++T 85.67  37.87 39.45 72.26 81.46 19.80 66.86 45.32 56.09
ZeroGen++ 82.04 39.37 45.40 65.57 78.62 59.10  89.78 57.97 64.73
ProGen++ 84.07  41.49 46.00 67.72 79.64 59.80 90.21 57.42 65.79
Incubator (Ours) 90.01 46.06 46.55 69.46 81.86 71.40 93.57 67.31 70.78
-Diversification 85.45  45.29 46.80 69.91 83.58 63.60 91.07 64.01 68.71
Incubator w/ GPT-4  86.99  44.43 47.80 80.79 86.87 77.80  94.14 64.01 72.85

Table 1: Text Classification Benchmark Results. All methods are based on LLaMA except for Incubator w/ GPT-4.
1: Methods require more than label names. Debiased Seed requires a raw corpus for text mining. SemSup-XC++

requires a pre-trained text embedded for semantic similarity calculation

2002), intent classification (7) SNIPS (Coucke
et al., 2018), and (8) sentiment classification to-
wards a particular public figure Hillary (Barbieri
et al., 2020).

(2) Label “Other” We also test the ability of In-
cubator to handle stronger label interdependency by
datasets with “Other”. We convert several datasets
by grouping minor categories based on the propor-
tion as a single “Other” label, with details men-
tioned in the Appendix D. These datasets include
unbalanced datasets: Emotion, NYT-LOC, and
Massive (FitzGerald et al., 2022). These revised
datasets will be also released for reproducibility

(3) Complicated Class Definitions To further
showcase the usefulness of Incubator, we come
with several complicated instructions for Incubator
to incubate text classifiers that will be later used
to mine the desired texts from massive raw doc-
uments, such as TED Talk Summary*, Steam
Game Description®, and Text Message®.

Note that all the datasets in our evaluations are
excluded from the instruction-tuning data of Incu-
bator.

4.2 Implementation Details

We implement Incubator by fine-tuning the pa-
rameters of LLaMA-2 (LLaMA-2-7b-hf) (Touvron
et al., 2023b) on our constructed instruction-tuning
dataset with AdamW optimizer (Loshchilov and
Hutter, 2019) and cosine annealing learning rate
scheduler (Loshchilov and Hutter, 2017). The
specific hyperparameters for the optimization are
shown in Table 7 in Appendix A.

For all experiments, our Incubator is queried to
generate 1024 data dictionaries, each with one sam-

*Huggingface: chirunder/gigant/ted_descriptions
Huggingface: FronkonGames/steam-games-dataset
®Huggingface: chirunder/text_messages

ple per class, to incubate a small classifier, which is
selected as RoBERTa-Large (Liu et al., 2019). The
RoBERTa is fine-tuned with the same optimizer
and scheduler as for instruction-tuning and the hy-
perparameters for the incubation are also presented
in Table 7.

4.3 Compared Methods

One can directly prompt the LLM, LLaMA-2

(LLaMA-2-7b-hf), which is the same as the LLM

used in Incubator, with all the labels and the input

text in the prompt and ask it to categorize the text
into one of the labels (Sun et al., 2023). We name
this method as Prompting.

We first include some traditional zero-shot text
classifications for reference:

* Debiased Seed (Dong et al., 2023a): This is a
state-of-the-art text mining method for zero-shot
text classification. The method precisely assigns
pseudo-labels to texts by seed word (the same
as label name (Wang et al., 2023c)) matching
with label cleaning (Mekala et al., 2022). These
mined texts are then used to fine-tune a classifier.

* SemSup-XC++ (Aggarwal et al., 2023):
This method uses semantic similarity (Chan-
drasekaran and Mago, 2022) between texts and
label descriptions to assign labels with the high-
est description similarity to texts. The original
SemSup-XC mines class descriptions and trains
a text embedding by contrastive learning (Gao
et al., 2021). We upgrade SemSup-XC to a
stronger SemSup-XC++ for LLMs and the
advancement in text embedding. We generate
the class descriptions by a state-of-the-art
LLM, GPT-4 (OpenAl, 2023), and produce the
embeddings by a strong text embedder (Wang
et al., 2022).

For the main comparison, we include strong
baselines that generate training data without re-
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quiring massive raw texts as follows.

e ZeroGen++ (Ye et al., 2022a): This method
prompts LLMs (LLaMA-2-7b-hf) to generate
texts based on label descriptions in generation
instructions. Different from our Incubator, Zero-
Gen handles each label separately, such as “Gen-
erate a negative movie review”. Towards a fair
comparison with our method, we formalize our
instruction-tuning dataset as the template used in
ZeroGen to further fine-tune the model. The base-
line upgraded by further fine-tuning is named
ZeroGen++.

* ProGen++ (Ye et al., 2022b): This method fur-
ther develops ZeroGen++ by an iterative ICL-
based augmentation. With the classifier obtained
from ZeroGen++, ProGen++ selects the most
helpful data with an influence function (Koh and
Liang, 2017) that measures the change in the
model’s loss on the test data point. The most
influential data points are selected as in-context
examples to prompt the LLM to generate more
helpful data to strengthen the classifier.
Incubator w/ GPT-4: This is a variant of our

Incubator that prompts GPT-4 with in-context ex-

amples from the Huggingface platform and the

instruction to sample the training data. We present
this not as a baseline but to showcase that the Incu-
bator idea also applies to propriety LLMs.

All data generation baselines generate the same
amount of data (1024 per class) towards a fair com-
parison. The reported results are the average of 5
runs, except for SemSup-XC++, which does not
have randomness in the method.

4.4 Traditional Benchmark Results

The experiment results on traditional benchmarks
are shown in Table 1. The comparison between
ZeroGen and ProGen baselines verifies our Incu-
bator has a significant advantage over those la-
bel interdependency-agnostic methods, which in-
dicates the advantage of Incubator to consider the
full label set in the instruction.

Moreover, the self-diversification procedure is
shown to highly contribute to the performance of In-
cubator, which boosts the performances on 5 out of
8 datasets and achieves comparable performances
on others. Thus, self-diversification is verified to
be a reliable and beneficial technique to strengthen
the Incubator.

In comparison with data generation methods, the
text mining and semantic similarity-based baselines
show significant limitations on some datasets. For

Method Emotion NYT-LOC Massive
Prompting 43.15 62.11 57.67
ZeroGen++ 52.65 69.27 56.46
ProGen++ 52.80 69.64 57.16
Incubator (Ours) 56.00 84.19 68.36

- Diversification 55.00 76.39 61.53
Incubator w/ GPT-4 53.40 78.36 73.84

Table 2: Results on datasets with the “Other” class.

instance, Debiased Seed shows a significantly weak
performance on Emotion and TREC (question clas-
sification) as the seed words are hard to propose for
these classes. SemSup-XC++ also shows a limita-
tion when texts are in a special domain for semantic
similarity calculation (e.g., questions in TREC).

We also present the performances of direct in-
ference based on LLaMA-2-7b-hf, which is gener-
ally outperformed by the small LMs fine-tuned on
datasets generated by LLMs. This result is con-
sistent with the discovery that LLMs are better
generators than discriminators (Dai et al., 2023).
However, this requires the LLM generator to be
aware of all labels to avoid the ignorance of label
interdependency. Otherwise, the generator might
underperform direct prompting LLM as shown in
the comparison between ZeroGen++ (ProGen++)
with direct prompting.

Finally, we evaluate the ICL-based Incubator
with GPT-4 as the backbone model. With a signifi-
cantly larger amount of parameters, Incubator with
GPT-4 outperforms the one based on LLaMA-2.
This indicates larger backbone models can further
scale up the performance of our Incubator. Also,
tunable models can benefit from self-diversification
to narrow the gap between the close-source GPT-
4, which can also be improved once it becomes
open-source for fine-tuning.

4.5 Label “Other” Results

We present the experiment results on datasets with
miscellaneous (label “Other”) in Table 2. The
awareness of the miscellaneous category is im-
portant for classification (Li et al., 2021a), espe-
cially when limited labels are known in a large
corpus. For ZeroGen or ProGen, we use the label
name “Other than ... (other labels)” to prompt
for generation. We can observe a significantly
larger gap between the Incubator and the label
interdependency-agnostic methods, which shows
the advantage of Incubator on datasets with mis-
cellaneous. Furthermore, the self-diversification
shows a more prominent improvement in perfor-
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Target TED Summary  Target Steam Game  Target Text Message
“About AI” 100%/100%  “Action” 90%/90%  “Positive” 98%/98%
“About Climate”  100%/100%  “RTS” 74%/77%  “Request” 97%/98%
“By Educator” 94%/94% “Card” 100%/100%  “About Food” 98%,/98%
“Funny” 75%/80% “Relaxing” 100%/100%  “Work-related” 83%,/86%

Table 3: Precision@100 (GPT-4 Evaluation/Human Evaluation) of incubated retrievers on unannotated corpora.

Target ZeroGen ProGen Incubator
“About AI” 96%/96%  97%/97%  100%/100%
“About Climate”  98%/98%  98%/98%  100%/100%
“By Educator” 82%/85%  87%/88% 949194 %
“Funny” 63%/66% 68%/72%  15%/80%

Table 4: Performance comparison of incubated retriev-
ers on unannotated corpora.

mance. This phenomenon can be attributed to the
requirement for a more diverse generation by the
miscellaneous category.

4.6 Complicated Class Definition Results

We further showcase how Incubator can be applied
to satisfy personal demands, such as mining items
preferred by an individual. For each raw corpus,
we propose four attributes a user might be inter-
ested in, such as “About AI” for TED Talks. For
each attribute, we create an instruction to build a
text classifier with two labels: the target attribute
and the miscellaneous label “Other”. We use the
incubated classifier to score each raw text and se-
lect the texts with the top scores. For evaluation,
we ask GPT-4 and humans whether the mined texts
satisfy the demand with Precision@ 100 as the met-
ric. The human evaluation for each result is done
by 3 professional human annotators and keeps the
majority decision.

The text mining performance is presented in Ta-
ble 3. Incubator incubates strong text miners with
generally high precision on all setups. Remark-
ably, we achieve nearly or exactly 100% precision
on several targets. Moreover, our miners are vali-
dated to be able to handle different text domains,
enabling a broad application of our Incubator.

In Table 4, we further compare the incubation
performance on complicated classes between Incu-
bator and baselines. The presented result is con-
sistent with previous ones, which further verifies
the benefit of Incubator for personalized classifier
incubation.

4.7 Incubation with Logical Conjunction

We further showcase how to utilize Incubator to
satisfy more complicated user demands. We in-

crease the label complexity by adding logical con-
junctions into labels, that are “and” (M), “or” (V),
and “not” (—). The logical conjunctions represent
a finer-grained demand from the user. For instance,
one may want to search for texts that are “Positive
and about food”, as “Positive” A “About food”.
To realize such finer-grained text mining, we
utilize the maneuverability of Incubator to incubate
multiple text miners and combine their scores with
logical probabilistic calculations as follows,
e P(LANLp)=P(La)P(LB)

. P(LA \/LB) :P(LA)+P(LB) —P(LA/\LB)
e P(nLa)=1—P(La)

where L 4, L p are two labels used as the targets for
the incubation. Here we view the labels as indepen-
dent for simplification. We use the Text Message
corpus for text mining. For evaluation, we keep
the previous scenario unchanged. We compare two
types of incubation scenarios,

¢ Direct Incubation Incubator only incubates one
text miner with the full label name, such as “Pos-
itive and about food”.

* Conjunctive Incubation first decomposes the
label name into multiple ones with correspond-
ing conjunctions, like decomposing “Positive
and about food” into “Positive” A “About food”.
Then the score is calculated based on logical
probabilistic calculations.

The experiment results are presented in Table 5.
Conjunctive incubation generally outperforms di-
rect incubation, which shows the benefit of this
strategy. As conjunctive incubation also shows
strong capability on three logical variables, this
shows how Incubator can be customized to more
complex settings.

4.8 Case Studies on Generated Training Data

To more concretely demonstrate the intermediate
processes in the incubation, we launch a study on
the generated texts from the Incubator for classifier
incubation. We demonstrate the generated training
data for data mining in the text message corpus in
Table 6. For each column, there is a piece of text
generated with the target value and the other one in
the same Python dictionary with the miscellaneous
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Logic Target Direct Incubation ~ Conjuctive Incubation
Li AL “Positive and about food” 85%/85% 88% /88%
L1V Lo “Positive or negative” 99%/99% 100% /100 %
Li A=Ls “Positive but not excited” 74%/72% 89% /86%
LiANLx A Lsz “Positive, about food, and with dish name” 40%/43% 84% /85%
Table 5: The performance of incubated retrievers with logical conjunctions.
Target Generated data with target label Generated data with misc label
Hey! I love the new update. It’s awesome! Just checking in on the progress of the project.
“Positive” Wow, you got the tickets for our dream holiday!  I've booked the flights for next week.
I absolutely love the new design of the app. I’m having trouble logging into my account.
Can you send me the report by end of today? What did you do during the weekend?
“Request” Could you please bring me a coffee? How was your day?
Can you pass me the salt? Hey, did you catch the game last night?
The pizza at Mario’s is the best in town! I have an important meeting at 10am tomorrow.
“About food” I’'m craving for a burger and fries! I might go for a run later.

I just tried that new sushi place. Totally worth it!

Hey, what time does the movie start?

We need to finalize the report by tomorrow.
The meeting is scheduled at 3 PM tomorrow.

“Work-related”
The project deadline has been extended.

Hey, do you want to catch a movie tonight?
Do you want to catch up for dinner tonight?
Hey! What are you up to this weekend?

Table 6: The performance of incubated retrievers with logical conjunctions.

label “Other”.

The most straightforward observation is the gen-
erated data correctly follows the label, which guar-
antees the foundational precision of the incubated
classifiers. Also, the generated texts incorporate
a wide range of syntactic structures and semantic
contents for the training data diversity. For the
miscellaneous label, we can observe the Incubator
to cover various potential negative labels. For in-
stance, the miscellaneous category for “About food”
includes labels such as “About meeting”, “About
sports”, “About movie”, which broadens the nega-
tive set understood by the incubated classifier.

Finally, we can view some attribute correlations
between the data in the same generated Python
dictionary. In the “Positive” example, the three
samples have the same topic “Project”, “Travel”,
and “App”. With these data different in the target
attribute but same in other attributes, the incubated
classifier can better focus on the target attribute and
eliminate spurious correlations.

5 Analyses of Incubator

5.1 Incubation Dataset Size

We first adjust the number of data generated from
Incubator to investigate how the incubated classifier
will be affected. We conduct experiments on TREC
and SNIPS datasets with incubation data size from
4 to 1024. The results are illustrated in Figure 3.
From the shown scaling-up trend, there is a clear
threshold (64) on the dataset size, after which the
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Figure 3: Incubation dataset size analysis.
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Figure 4: Analysis of Incubator instruction robustness.

60

performance gained from generating more training
data becomes limited. Thus, we recommend Incu-
bator users generate at least 64 data samples for the
classifier incubation.

5.2 Instruction Robustness

We then check the robustness of Incubator to in-
structions by testing with different but semantically
equal instructions. We rephrase each instruction
for TREC and SNIPS into 10 different versions and
then run the incubation pipeline for evaluation. The
robustness evaluation is presented in Figure 4. We
can observe the lexical and syntactical attributes,
which are changed in the rephrasing, have limited
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impact on the incubated result. Thus, we conclude
our Incubator is robust against the variations of the
same instruction.

5.3 Efficiency Analysis

We analyze the time efficiency of the Incubator to
explore its efficiency in deployment. For dataset
generation, we run the LLaMA model with the ac-
celeration by the v11m package (Kwon et al., 2023).
For the small classifier incubation, we fine-tune the
model with the trainer in the transformers pack-
age (Wolf et al., 2019b). We evaluate the time for
dataset generation and classifier incubation (fine-
tuning). The time is obtained by averaging the
results in experiments on the 8 traditional bench-
marks, which is illustrated in Figure 5. All experi-
ments are run on a single A100 device.

For dataset generation, the average time is
67.53s. The generation times for all benchmarks
are distributed around this average since v11m has
a fixed max length limitation for decoding. For
classifier incubation, the time is almost linearly de-
pendent on the number of labels, which shows an
average of 15.16s time cost per class.

Thus, the time efficiency of our Incubator is fea-
sible to incubate personal classifiers. Also, the
main time cost happens in classifier incubation
rather than calling the LLM for dataset generation,
especially when the label number is large.

6 Conclusion and Future Work

In summary, this paper proposes a new framework
for model incubation by querying an instruction-
tuned LLM. Our model, Incubator, is pre-trained
on Huggingface resources and ICL-based augmen-
tation. The Incubator is further strengthened by
a novel self-diversification technique. We show
that Incubator can incubate strong classifiers for
traditional benchmarks and customized text min-
ing, following instructions. We also include com-
prehensive analysis to explore the properties of the
Incubator for deeper insight and better application.

Limitation and Future Work

While Incubator shows strong performance in pro-
ducing reliable and customized classifiers, it has
some limitations that can be further improved in
future works.

Instruction Effort: Current Incubator requires
the user to include all label names in the instruction,
which adds effort for the user to create instructions,
especially when the label number is large or the
user is unclear about the label names. A combina-
tion with existing work (Wang et al., 2023a) might
be a direction to reduce user efforts further.

LLM Knowledge Dependence: As an LLM-
only methods, the Incubator is only able to generate
text within its knowledge scope. For emerging la-
bels, the

Future work will concentrate on two tracks. 1)
Improve the incubation quality: We can incor-
porate existing or new methods to improve data
generation quality like higher diversity and harder
negative samples. 2) Broaden the scope of incu-
bated models: The incubated model can be more
than classifiers, such as question responder and
text summarizer. These models might require more
complicated instruction understanding and other
techniques for model enhancement. Incubator still
has to rely on delicate explanations or in-context
examples to handle them.
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A Hyperparameter

Hyperparameter Instruction-tuning Incubation
Initial LR 2x107° 1x107°
Batch Size 16 32
Epoch 3 8

Table 7: The hyperparameter setups in our experiments.

B Instruction-tuning Dataset Processing

Dataset: app_reviews

Description: It is a large dataset of Android applications belonging to
23 different apps categories, which provides an overview of the types
of feedback users report on the apps and documents the evolution of
the related code metrics. The dataset contains about 395 applications of
the F-Droid repository, including around 600 versions, 280,000 user
reviews (extracted with specific text mining approaches)

Instruction: Please create a model to anticipate the star rating to
Android application reviews.

Data: {“1 star™: ..., “2 star™: ..., “3 star™: ..., “4 star”™: ..., “Sstar”: ..., }

Figure 6: A case in our instruction-tuning dataset for
Incubator.

C Dataset Generation Prompt

Role Message

User Generate an imaginative instruction to
build a text classifier and its correspond-

ing samples.

GPT-4 “Input”: “Instruction 17
“Output”: {“Label 1,1”: “Data 1,17,

“Label 1,2”: “Data 1,27, ...}

User Generate an imaginative instruction to
build a text classifier and its correspond-

ing samples.

GPT-4 “Input”: “Instruction 2”
“Output”: {“Label 2,1”: “Data 2,17,

“Label 2,2”: “Data 2,27, ...}

User Generate an imaginative instruction to
build a text classifier and its correspond-

ing samples.

Table 8: The prompt used in ICL-based augmentation.

D Revised Dataset with Miscellaneous

Dataset Label Other
Emotion Joy, Sadness Love, Anger, Fear, Surprise
America, Iraq, Britain, German, Canada,
NYT-LOC Japan, China France, Russia, Italy
Calendar, Play, Lists, News, Recommendation,
Massive QA, Email, IoT, Datetime, Social, Alarm, Music,

Weather, Transport

Audio, Takeaway, Cooking

Table 9: The revision on datasets for the label “Other”.

As shown in Table 9, the minor categories with

low proportion are merged together to an “Other’

class.

’

E Source of Metadata

The datasets used to create instruction-tuning meta-
data are listed in Table 10.

Dataset Label

YELP (P) Review Sentiment
YELP (S) Review Star
IMDB Review Sentiment

Rotten Tomatoes
Twitter Financial News (S)
Twitter Financial News (T)
Yahoo

Subj

Student Question
Financial Benchmark
Amazon (C)
Amazon (S)

APP Review

Toxic Conversation
ETHOS

HATE

MASSIVE (T)
MASSIVE (1)

SNLI

MNLI

QNLI

WNLI

RTE

QQP

MRPC

Review Sentiment

News Sentiment

News Topic

Question Category
Subjectiveness

Question Category

News Sentiment
Counterfactual

Review Sentiment

Review Sentiment

Toxicity

Toxicity

Toxicity

Request Topic

Request Intent

Natural Language Inference
Natural Language Inference
Natural Language Inference
Natural Language Inference
Natural Language Inference
Semantic Similarity
Semantic Similarity

Table 10: The revision on datasets for the label “Other”.
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