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Abstract

This work aims to build a text embedder that
can capture characteristics of texts specified
by user instructions. Despite its tremendous
potential to deploy user-oriented embeddings,
none of previous approaches provides a con-
crete solution for it. This paper offers a new
viewpoint, which treats the instruction as a
question about the input text and encodes
the expected answers to obtain the represen-
tation accordingly. Intuitively, texts with the
same (implicit) semantics would share similar
answers following the instruction, thus lead-
ing to more similar embeddings. Specifically,
we propose INBEDDER that instantiates this
embed-via-answering idea by only fine-tuning
language models on abstractive question an-
swering tasks. INBEDDER demonstrates sig-
nificantly improved instruction-following ca-
pabilities according to our proposed instruc-
tion awareness tests and instruction robustness
tests, when applied to both large language mod-
els (LLMs) (e.g., llama-2-7b) and smaller
encoder-based LMs (e.g., roberta-large).
Additionally, our qualitative analysis of cluster-
ing outcomes, achieved by applying different
instructions to the same corpus, demonstrates a
high degree of interpretability.

1 Introduction

Text embedders play a crucial role in large-scale
textual data analysis and management. While ex-
isting models (Reimers and Gurevych, 2019a; Gao
et al., 2021; Ni et al., 2022a,b; Wang et al., 2022;
Xiao et al., 2023) demonstrate strong effectiveness
in representing texts in general, they lack the ability
to address user-specific objectives. This limitation
hinders their application in more intricate scenarios
where the embedding task requires the model to rep-
resent particular characteristics of the texts (Wang
et al., 2023; Zhang et al., 2023b). Consider Fig-
ure 1, where a single set of reviews is required to be

→The first two authors contributed equally to this work.
†Corresponding authors.

clustered in three distinct manners to derive mean-
ingful insights. In response, we attempt to equip
the text embedders with instruction-following ca-
pability in this paper.

One straightforward solution is to embed the
concatenated instruction and input. Nonetheless,
generic textual embeddings represent the texts in
a form that can be used in textual similarity tasks,
search and clustering, etc, rather than following
instructions. Even for those that are trained with
multi-task contrastive objective (Su et al., 2023),
there are no guarantee to generalize to new instruc-
tions due to the inevitably restricted diversity of
training instructions written by humans.

We offer a novel viewpoint, which treats the in-
struction as a question about the input text and
encodes the expected answers. Specifically, using
the instructed input as the prompt to generative lan-
guage models, we argue that the generated answers
can be natively utilized to model semantic similar-
ity under different instructions. For instance, given
the sentences “I love cats” and “I love dogs”, the
instruction “Do they love animals?” will lead to a
uniform response of “Yes/Certainly/...”; Conversely,
distinct answers would be generated in response
to “What animals do they love?”. Therefore, we
believe that the expectation of answer representa-
tions given the prompt can serve as an instruction-
following embedding. We support this hypothesis
by our empirical observations in Section 4.2 on ex-
isting instruction-tuned LLMs (Ouyang et al., 2022;
Chung et al., 2022; Zhang et al., 2023a; Touvron
et al., 2023a,b) 1 which have demonstrated that hid-
den states corresponding to the generated answers
show considerably better instruction-awareness
compared to those derived from the prompt.

Our observations indicate that function words
and phrases in the answers do not contribute to bet-
ter embedding quality. For instance, the introduc-

1For simplicity, we use LLMs to refer to instruction-tuned
LLMs for the rest of the paper.
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Figure 1: An example workflow of INBEDDER. INBEDDER takes in both user-provided dataset and user-specified
instructions to produce personalized clusterings from which the user can extract insights about the dataset.

tory phrase “Sure! Based on the input provided...”
is irrelevant to the answers and is commonly found
across various inputs. This redundancy can lead to
inefficiency due to an increased decoding length,
emphasizing the importance of answer brevity.

To effectively instantiate the embed-via-
answering idea, we propose an Instruction-
following Embedder framework (INBEDDER),
which is compatible with both large language
models (LLMs) and smaller encoder-based LMs
such as RoBERTa. Specifically, INBEDDER
fine-tunes the LM on a union of 11 abstractive
question answering (QA) datasets with → 200, 000
paragraph-question-answer triplets where the
answers are usually short and informative. To
facilitate the model to learn (implicit) semantics,
we choose abstractive QA in particular, as
the answers cannot be directly extracted. We
further simplify the answers by removing all the
stopwords, resulting in an average answer length
of 2.89 tokens.

Due to the scarcity of evaluations focusing on
instruction-following capabilities in the literature,
we introduce a suite of tasks aimed at testing the
ability of embedders to be instruction-aware, in-
cluding (1) a triplet task that selects the closer sen-
tence to the anchor sentence based on two different
instructions, (2) an instruction-following sentence
similarity task, and (3) a task for clustering the
same corpus under various instructions. Further-
more, we evaluate INBEDDER s’ robustness to the
instructions by testing it on clustering datasets with
either correct, implicit, or incorrect instructions.
Our model is compared with both traditional text
embedders as well as LLM-based embedders. The
results demonstrate that our model can effectively
process user instructions while generating high-
quality embeddings. Moreover, we empirically
observe that the hidden states corresponding to the

first generated token can already effectively follow
instructions, which makes it as efficient as tradi-
tional embedder methods by only requiring one
forward pass of the LM. Finally, we propose to in-
terpret the embedding clusters via post-processing
on the generations of INBEDDER, and we observe
that the clusters can reflect instruction-following
capability when applying multiple instructions to
the same corpus.

Our contributions are the following:
• We address a novel and challenging problem:

instruction following of text embeddings and pro-
pose a framework, INBEDDER, to handle it by
learning to answer user questions given inputs.

• We provide a comprehensive assessment for
instruction-following text embedders, including
instruction awareness tests and instruction robust-
ness tests, which intuitively reflect the models’
instruction-following capability.

• We propose an approach for extracting expla-
nations from embedding clusters. We show
that these explanations further reflect instruction-
following capability.

• We open source our code, datasets, and model
checkpoints to facilitate future research: https:
//github.com/zhang-yu-wei/InBedder.

2 Related Works

2.1 Text Embedder

Text embedders empower modern natural language
processing systems with a wide variety of abili-
ties like clustering (Aggarwal and Zhai, 2012) and
information retrieval (Karpukhin et al., 2020). In
the representation space of text embedders, simi-
lar texts are embedded close to each other. Thus,
Siamese networks (Reimers and Gurevych, 2019b)
and contrastive learning (Gao et al., 2021) are pro-
posed to learn the relative position of texts in the
latent embedding space. Text embedders are fur-
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ther strengthened by incorporating more weakly
supervised text similarity annotations (Wang et al.,
2022; Xiao et al., 2023) and architecture variants
(Ni et al., 2022b). However, these mainstream text
embedders only process general textual similar-
ity, ignoring the changing view on textual similar-
ity based on user demands. Instructor (Su et al.,
2023) explores an instruction-based text embed-
der by concatenating instructions before the in-
put texts. Our INBEDDER shows a substantially
stronger instruction-following text embedder in in-
struction following by using expected answer dis-
tributions instead of concatenated instruction-text
pairs as the representation.

2.2 Instruction Tuning

Instruction-following (Zhang et al., 2023a) of
LLMs is one of the core abilities for them to cap-
ture the user intents, which makes LLMs pop-
ular among users. InstructGPT (Ouyang et al.,
2022) is a first trial on instruction-following LLMs,
which unearths the potential of LLMs to complete
tasks under instructions from users. With an out-
standing instruction-following ability from rein-
forcement learning with human feedback (RLHF),
ChatGPT (OpenAI, 2023) achieves great success
inside or outside the natural language commu-
nity. The open-source instruction-following LLMs,
like LLaMA (Touvron et al., 2023a,b), also pro-
vide valuable resources for researchers to study
the instruction-following abilities of LLMs. Our
study extends the idea of instruction-following
from language modeling to text embeddings. Previ-
ously, it has been discovered that LLM can explore
and manipulate various attributes of texts (Peng
et al., 2023). Moreover, LLM hidden states can
effectively represent space and time (Gurnee and
Tegmark, 2023), an aspect of texts such as hon-
esty (Zou et al., 2023) or a task defined by input-
output pairs (Todd et al., 2023). Despite the poten-
tial, it is still unknown how to effectively aggregate
these hidden states to produce a high-quality repre-
sentation.

2.3 Goal-Driven Clustering

With the recent advancements of instruction-
following LLMs, goal-driven clustering has been
proposed to group text corpora according to a per-
sonalized goal (Wang et al., 2023). In order to ad-
dress such a challenging yet novel problem, Goal-
EX (Wang et al., 2023) applies a two-step pipeline
that first proposes cluster explanations with GPT-4

and then selects clustering assignments with an-
other LLM. A user-oriented goal is included in
the proposed step. Zhang et al. (2023b) proposes
another method that can incorporate user instruc-
tions to first determine sentence relationships via a
triplet selection task and then produce clusters via
fine-tuning. These produced clusters can be helpful
for multi-document summarization (Coavoux et al.,
2019; Fabbri et al., 2019; Lu et al., 2020), espe-
cially those that are personalized. Our paper on the
other hand directly produces embeddings that are
shaped according to different instructions applied
which does not require calling APIs of LLMs and
potentially saves costs.

3 Problem Formulation

3.1 Instruction-following Embedder

We introduce the definition of instruction-following
embedder in this section. A vanilla text em-
bedder (denoted Emb(·) : X ↑ Z) (Reimers
and Gurevych, 2019a; Gao et al., 2021; Ni et al.,
2022a,b; Wang et al., 2022; Xiao et al., 2023) em-
beds texts from token sequence space X into a
D-dimensional vector space Z ↓ RD, where sim-
ilarities between two pieces of texts can be mea-
sured by a certain metric Sim(·, ·) : Z ↔ Z ↗↑ R.
These embeddings are usually designed to gener-
ically represent texts, i.e., they aim to capture the
overall meaning. Such an approach, while versa-
tile, often fails to align with a specific downstream
application, e.g., grouping a corpus according to a
particular interest or customizing a search engine
with a targeted aspect. In this paper, we assume
these goals can be specified by a user instruction I
and then used to shape the embedding space with-
out any fine-tuning to the text embedder. Under this
circumstance, the similarity scores are conditional,
i.e., Sim(·, ·|I).

The most straightforward approach is to just em-
bed the concatenated instruction and input, which
we will hereafter refer to as prompt,

Sim(X,X ↑|I) = Sim(Emb(I →X),Emb(I →X ↑))

where X,X ↑ ↘ X and ≃ is concatenation. In order
to assess the instruction-following ability, we will
present a series of tasks in Section 3.2 and 3.3 that
require the model to understand the instructions.
Instructor (Su et al., 2023), a previous work, uti-
lized a contrastive objective alongside multi-task
learning to develop a more general text embed-
der. Our experiments in Section 3.2 demonstrate
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that Instructor does not adequately comprehend in-
structions. This is not surprising given the limited
instruction diversity and the lack of encouragement
to follow instructions during training.
Our hypothesis. We hypothesize the responses
of LLMs (Touvron et al., 2023a,b; OpenAI, 2023;
Chung et al., 2022) can be embedded to produce
instruction-following embedding. Specifically, the
LLMs are prompted to generate a response Y ,

Y = LLM(I →X)

where both X,Y ↘ X are from token sequence
space. LLM(·) : X ↑ X is a function that maps
prompts to responses. Usually, there could be mul-
tiple valid Y for a given prompt. In order to accom-
modate instruction-following embedding, we offer
a novel viewpoint, which treats the instruction I as
a question about the input text X and encodes the
expected answers (i.e. the responses to the ques-
tion). In this paper, we study how to effectively
embed expected answers.

3.2 Instruction Awareness Tests

Traditional generic embedding evaluation bench-
marks, such as MTEB (Muennighoff et al., 2023)
and SentEval (Conneau and Kiela, 2018), lack the
ability to assess instruction awareness. In this work,
we propose a set of new tasks specifically designed
to comprehensively evaluate the capabilities of em-
bedding models in this regard. We discuss the task
formulations below and leave the detailed dataset
creation procedures in Appendix A.
IntentEmotion. Inspired by previous
works (Zhang et al., 2023b, 2024), we em-
ploy triplet tasks with two contrasting criteria,
i.e. the intent and emotion of an utterance. A
triplet task is composed of three different user
utterances {u1, u2, u3} where u1, u2 have the
same intent but different emotions while u1, u3
have the same emotion but different intents, or
vice versa. A success is defined under instruction
Iint if d(zint1 , zint2 ) < d(zint1 , zint3 ) where z
represents the embeddings. On the other hand,
it is said to be a success for instruction Iemo if
d(zemo

1 , zemo
2 ) > d(zemo

1 , zemo
3 ). Notice that the

rankings are always reverted under the two criteria.
We use the harmonic mean of two success rates as
our metric.
InstructSTSB. The original Semantic Textual Sim-
ilarity (STS) Benchmark (Cer et al., 2017) lacks a
definitive criterion for annotators to rely on, result-
ing in the subjectivity of the ratings. In contrast,

we create a STS task where the two sentences are
similar or dissimilar based on different instructions.
We measure the Spearman correlation from cosine
similarities. Notice that a similar dataset was first
proposed in Deshpande et al. (2023). The main dif-
ferences are that (1) our dataset is created directly
from the original test set of STSB 2 via brainstorm-
ing instructions; (2) our dataset only involves two
ratings 0 and 1 indicating same or different, un-
like the 1 → 5 rating scale in their case, reducing
subjectivity in the evaluation.
NYTClustering. We present the clustering results
for the New York Times (NYT) dataset (Sandhaus,
2008), which is categorized according to two an-
notations: topic and location of the news articles.
The results are reported using the harmonic mean
of the V-measure for both clustering types.

3.3 Instruction Robustness Tests

We further introduce an evaluation task specifi-
cally designed to assess the robustness of embed-
ding models to various instructions. We employ
clustering tasks to evaluate model performance in
response to correct, implicit, and incorrect instruc-
tions. For each clustering task, 10 correct instruc-
tions are generated by instructing GPT-4 to para-
phrase the original task instructions. Similarly, 10
implicit instructions and 10 incorrect instructions
are produced by GPT-4 through either rephrasing
of the instructions to convey the meanings implic-
itly or to diverge from the original task objective.
Examples of these instructions are illustrated in
Figure 9. The difference in average performance
between correct and incorrect instructions is de-
noted as !ci, and the difference in average perfor-
mance between implicit and incorrect instructions
is denoted as !ii. See Appendix B for details.

4 Methodology

In this section, we introduce INBEDDER that is
derived from observations on LLMs. We first de-
fine several ways to acquire sentence embeddings
from LLMs in Section 4.1. Subsequently, we illus-
trate early observations in Section 4.2. Finally, we
introduce a framework that fine-tunes an LLM to
an instruction-following embedder, INBEDDER, in
Section 4.4.

2
https://huggingface.co/datasets/mteb/

stsbenchmark-sts/viewer/default/test
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4.1 Encoding Methods

Contemporary LLMs are usually composed of one
(encoder-/decoder-only) or two (encoder-decoder)
transformer architectures with L layers. The input
of the transformer is a sequence of embeddings
[h10, · · · , hN0 ] where N is the length of prompt
(I ≃ X). Each layer will then produce an inter-
mediate hidden state hl until the last layer which
is used to predict the (N + 1)th output token. We
first introduce two strategies to acquire a single
aggregated embedding from an off-the-shelf LLM.
Direct Encoding directly utilizes LLM hidden
states. Since it is not obvious which hidden states
contain the most relevant information to the prompt,
we explore 5 aggregation methods for each layer:
1) The average of generation Y ’s hidden states with
generation length Ng,

Embavg-gen

l =
1

Ng + 1

Ng∑

j=0

h(N+j)
l ,

2) The average of prompt hidden states. This will
serve as a direct comparison to “avg-gen”.

Embavg-ppt

l =
1

N ⇐ 1

N↓1∑

i=1

hil,

3) The hidden states used to predict the first token
in generations,

Emb1st-gen

l = hNl ,

4) The last generation hidden states,

Emblast-gen

l = h
N+Ng

l ,

5) The average of all hidden states,

Embavg-all

l =
1

N +Ng
(

N∑

i=1

hil +

Ng∑

j=1

hN+j
l ),

In practice, we adjust the aggregation methods with
regard to the uniqueness of each architecture, for
example avg-all does not make sense in the con-
text of encoder-decoder models. We provide more
details on this issue in Appendix C. When Ng = 1
or |Y | = 1, all the above aggregation methods pos-
sess the same efficiency since we only have one
forward pass.

While direct encoding is commonly applied for
conventional encoders (Wang et al., 2022; Su et al.,
2023), using only the input information might not

Figure 2: Instruction awareness tests performance (aver-
aged over 3 datasets) for different encoding methods in-
troduced in Section 4.1 from the last layer. We show two
models here llama-2-7b-chat from Huggingface and
llama-2-7b-InBedder that is our fine-tuned model
from llama-2-7b. T is the decoding temperature while
SY is the sample size. Observations: (1) The genera-
tion/answer side (i.e., the checkerboard pattern) is more
informative than the prompt side (i.e., the dark blue
with dotted pattern); and (2) In llama-2-7b-InBedder,
1st-gen seems to significantly outperform others. See
analysis of model depth in Figure 7.

reveal the implicit features that can be inducted
by answering the prompt. Thus, we propose Re-

encoding, which is a two-step approach that first
produces the responses Y based on the prompts
and then re-encode them using another embedder
EmbR. Mathematically,

Embre-enc = EP (Y |I↔X)[EmbR(Y )]

We then re-write the above with an empirical esti-
mation,

Embre-enc =
1

|SY |
∑

Y↗SY

EmbR(Y )

where SY is sampled from response distribution
P (Y |I≃X). We choose EmbR to be a (relatively)
light-weight sentence transformer, thus the effi-
ciency of re-encoding is similar to that of avg-gen.

4.2 Answer Speaks Louder

In this section, we show some early observations
that guide us towards the design of INBEDDER.
With the definitions in the previous section, we
show the performance comparison among various
aggregation methods on an existing LLM in Fig-
ure 2 left. To assess performance, we use Instruc-
tion Awareness Tests introduced in Section 3.2 that
requires the embedders to comprehend not only the
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Figure 3: Filtered vs. not filtered (i.e., avg-gen on
the last layer of each LLM). Observations: filtering
hidden states associated with uninformative contents
can marginally improve performance.

raw texts but also the instructions. It is evident that
hidden states derived from generations (avg-gen)
consistently surpass those from prompts (avg-ppt).
Additionally, averaging all hidden states, denoted
as avg-all, does not enhance performance. Fi-
nally, an examination of three distinct models in
Figure 2 reveals that re-encoding consistently out-
performs all direct encoding methods, while in-
creasing the sample size |SY | will further boost per-
formance. These observations manifest our hypoth-
esis that answers are more important for instruction-
following embedder, in other words “answers speak
louder”.

4.3 Answer Brevity Matters

One notable issue for using LLMs as embedders
is their propensity to produce content that, while
enhancing readability for humans, may not be di-
rectly relevant to the task at hand. For instance,
llama-2-7b-chat frequently initiates responses
with introductory phrases such as “Based on the
input provided...” or “The topic of the news article
is...” which are common across various requests. It
is thus plausible to conjecture that the hidden states
responsible for generating these superfluous con-
tents contribute no useful information to the embed-
ding task. Following this intuition, we conducted a
simple experiment to validate the impact of filter-
ing out hidden states associated with such content.
Specifically, we compiled a list of candidate to-
kens for exclusion, which includes tokens present
in the instruction, stopwords, and common phrases
like “Based on”. While calculating “avg-gen”, we
disregard hidden states linked to the generation of
tokens from this list. The outcomes, depicted as yel-
low bars in Figure 3, indicate a marginal improve-
ment in the performance of the three evaluated
models upon the removal of non-informative con-
tent, thereby validating the assumption that these
hidden states are indeed redundant.

4.4 Our INBEDDER

In order to effectively instantiate the embed-
via-answering, we propose a novel fine-tuning
framework leveraging existing curated question-
answering (QA) datasets. Specifically, we collect a
set of 11 abstractive QA datasets 3, which sum up to
→ 200, 000 paragraph-question-answer triplets. As
discussed in Section 3.3, we treat the paragraph as
the input, the question as the instruction, and train
the model to generate the answers. Note that, we
pre-process the answers so that all the stopwords
are removed, which results in an average response
length of 2.89. As will be demonstrated in the ex-
periments, such a pre-processing step significantly
contributes to our method. We then fine-tune the
LM with an autoregressive objective.

We emphasize three inherent advantages of
INBEDDER: (1) QA datasets usually have concise
outputs that will promote the LLMs to respond
eagerly without considering too much about read-
ability. Refer to Figure 4 for an example. (2) Com-
pared to multi-task datasets introduced in Su et al.
(2023), our dataset offers significantly greater di-
versity in instructions, attributed to the variety of
questions associated with each input paragraph, un-
constrained by question format. And most impor-
tantly, the datasets are publicly available without
any extra costs. (3) The auto-regressive objective
induces better interpretability of generated embed-
dings via mining explanations from its generations.

Input: Did you know that vegetables can grow in the climates 
they are not used to? … What these engineers have been 
using is very simply cold sea water. How did they use it? …

Instruction: What is the report mainly about?

Output: use sea water

Figure 4: An example from our training data.

5 Experiments

We introduce experimental setup in Section 5.1 and
Section 5.2. We then present results on proposed
instruction awareness tests and instruction robust-
ness tests in Section 3.2 and Section 5.4. Finally,
we show a comparison of generic embedding tasks
in Section 5.5.

3We also include several multiple-choice QA datasets but
remove all the wrong choices.

464



Model I.STSB IntEmo NYT Avg

e5-large-v2(w/o instruction) 0.00 30.24 50.07 26.77
instructor-large -15.02 47.96 49.96 27.63

roberta-large-alpaca(avg-gen) 8.43 90.34 21.60 40.12
roberta-large-INBEDDER (avg-gen) 14.81 91.07 51.18 52.35

opt-1.3b-alpaca(avg-gen) -1.81 71.51 12.88 27.53
opt-1.3b-INBEDDER (1st-gen) 7.47 89.96 53.13 50.19

opt-2.7b-alpaca(avg-gen) 3.95 75.09 13.32 30.79
opt-2.7b-INBEDDER (1st-gen) 10.45 84.54 59.43 51.47

llama-2-7b-chat(re-enc) 16.56 79.32 29.41 41.76
llama-2-13b-chat(re-enc) 19.76 73.60 32.74 42.03
llama-2-7b-w/o-process(1st-gen) 21.10 83.64 52.72 52.49
llama-2-7b-INBEDDER (1st-gen) 22.07 89.68 64.65 58.80

Table 1: Instruction awareness tests results. The best
encoding methods are shown in parentheses for each
non-sentence-transformer model. We only consider the
last layer in this table. I.STSB is short for InstructSTSB.

5.1 Implementations

We fine-tune INBEDDER from various kinds of
language models such as (1) roberta-large, (2)
opt-1.3b, (3) opt-2.7b, and (4) llama-2-7b

4.
For masked language modeling-based roberta-
large, we adapt our framework by appending mask
tokens behind prompts with the same length as
target tokens and then training with mask to-
ken prediction loss. During testing, we append
3 mask tokens to represent the answer. We
consistently train for 1 epoch with a learning
rate of 2 ↔ 10↓5. For INBEDDER, we always
employ the same pattern to feed the inputs to
the models, i.e. “### Input:\n{input}\n\n### In-
struction:\n{instruction}\n\n### Response:”. For
llama-2 chat models, we provide an extra prefix
to induce shorter answers: “Your task is to give
an answer according to the instruction and input.
Please keep your answer short.”.

At test time, we allow the maximum generation
length to be 40 for llama-2 chat models and 3
for our INBEDDER. We exclude hidden states cor-
responding to special tokens. We consistently use
e5-large-v2 (Wang et al., 2022) as our re-encoder.
Lastly, we set the maximum prompt length to be
512 (including instruction, input, and the tokens
in the pattern). We further show that increasing
prompt length in certain task can improve the per-
formance in Appendix D. We train and evaluate
these models with at most 4↔A100 (PCIe).

5.2 Compared Methods

We compare with generic sentence embedding mod-
els: E5 (Wang et al., 2022) and Instructor (Su

4huggingface ids: “roberta-large”, “facebook/opt-1.3b”,
“facebook/opt-2.7b”, “meta-llama/Llama-2-7b-hf”.

Model AskU. SciD. StackO. 20news Avg

e5-large-v2(w/o instruction) 59.01 83.84 50.60 47.94 60.35
instructor-large 63.48 81.83 50.50 53.51 62.33

roberta-large-alpaca(avg-gen) 56.29 73.02 41.66 40.61 52.90
roberta-large-INBEDDER (avg-gen) 55.50 73.80 41.00 41.93 53.06

opt-1.3b-alpaca(avg-gen) 55.89 69.68 42.43 38.49 51.62
opt-1.3b-INBEDDER (1st-gen) 59.09 71.33 43.08 46.45 54.99

opt-2.7b-alpaca(avg-gen) 55.65 76.26 42.45 32.11 51.62
opt-2.7b-INBEDDER (1st-gen) 59.94 75.33 41.93 49.07 56.57

llama-2-7b-chat(re-enc) 55.26 75.81 41.43 25.34 49.46
llama-2-13b-chat(re-enc) 53.69 77.64 38.84 30.77 50.24
llama-2-7b-w/o-process(1st-gen) 61.25 83.13 44.39 50.68 59.86
llama-2-7b-INBEDDER (1st-gen) 60.32 80.61 44.77 52.33 59.51

Table 2: Generic sentence embedding task performance.
The best encoding methods are shown in parentheses
for each non-sentence-transformer models. We only
consider the last layer in this table.

et al., 2023) 5. For E5, we diable the instruc-
tions since this model does support instructions
natively. For Instructor, we enable the instruc-
tions with the prompt pattern “instruction: in-
put”. We also compare with instruction-tuned mod-
els: llama-2 chat models (Touvron et al., 2023b)
that are fine-tuned with RLHF 6 with prompt pat-
tern “[INST] Your task is to give an answer ac-
cording to the instruction and input. Please keep
your answer short.\n\nInput: input\n\nInstruction:
instruction\n\n### Your Answer: [/INST]”. For
roberta-large and opt models we compare with
those checkpoints tuned on Alpaca (Taori et al.,
2023). For Alpaca fine-tuning, we follow the
dataset and hyperparameters of the original imple-
mentation 7, except that we simplified the prompt
pattern.

5.3 Instruction Awareness Tests Results

In Figure 2 right, quite unexpectedly, we observe
that using 1st-gen in INBEDDER achieves the best
performance and it outperforms the other encoding
methods by a significant amount. We hypothe-
size that although 1st-gen is utilized solely for
decoding the first token in the generations, it may
contain the most relevant information due to the
model being trained on concise outputs. Further
qualitative analysis in Table 6 shows that the first
generated tokens usually correspond to the answer.
We then present comparisons across various mod-
els in Table 1. Fine-tuning INBEDDER appears to
be effective across a range of model sizes, from

5huggingface ids: “intfloat/e5-large-v2”,
“hkunlp/instructor-large”

6huggingface id: “meta-llama/Llama-2-7b-chat-hf” and
“meta-llama/Llama-2-13b-chat-hf”

7
https://github.com/tatsu-lab/stanford_alpaca/

tree/main
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(a) instructor-large

FewNerd

(b) llama-2-7b-chat (re-enc) (c) llama-2-7b-INBEDDER (1st-gen)

Figure 5: Instruction robustness tests results. Three set of instructions are tested: correct, implicit and incorrect.
!ci denotes the separation between mean of correct and incorrect. !ii denotes the separation between mean of
implicit and incorrect. INBEDDER shows better robustness and performance overall. See more datasets in Figure 8

RateMyProf

cluster 1 (lowest entropy) 2 3 4 (highest entropy)

components

personal qualities:327
ease or difficulty:31
assessment-related:15
amount of work:10

amount of work:331
assessment-related:215
ease or difficulty:128
personal qualities:12

assessment-related:173
personal qualities:99
ease or difficulty:77
amount of work:62

ease or difficulty:338
amount of work:171
assessment-related:171
personal qualities:136

top words

teaching,personality,
classroom,quality,
good,teacher,
skills,student...

assignments,homework,
workload,expectations,
tests,difficulty,
professor,exams...

teaching,quality,
grade, ability,
style,grading,
lectures,enough...

difficulty,professor
level,coursework
lectures,tests
class,course...

Table 3: Cluster explanation results using generations from llama-2-7b-INBEDDER on RateMyProf (we show other
datasets in Table 5). Clusters are ordered by increasing entropy, with entropy being determined by the distribution
of labels within each cluster. Lower entropy indicates that the cluster’s components are “pure” according to the
labels. The table delineates the label components associated with each cluster, as indicated in the "components" row.
Additionally, the top-8 words extracted by our interpretation method for each cluster are listed under "top words".
Notice that we simplify some label names for presentation.

the 355M model roberta-large to the 1.3/2.7b
OPT and the 7b llama-2. We can also observe that
without pre-processing, the performance will be
significantly degraded on instruction-awareness ac-
cording to llama-2-w/o-process, which further
validates that conciseness of outputs is important.

5.4 Instruction Robustness Tests Results

Figure 5 presents the results obtained across
three models, and see more datasets in Fig-
ure 8. Compared to instructor-large and
llama-2-7b-chat, our model demonstrates larger
values of !ci and !ii in general, as well as supe-
rior average performance when applying correct
instructions. This indicates that our model exhibits
a better understanding of correct or implicit in-
structions and possesses greater robustness against
incorrect instructions.

5.5 Generic Sentence Embedding Tasks

Finally, we also compare performances on generic
sentence embedding tasks. We choose a subset of
tasks from the original MTEB (Muennighoff et al.,
2023) benchmark, including: “TwentyNewsgroup-
sClustering”, “AskUbuntuDupQuestions”, “Sci-
DocsReranking” and “StackOverflowDupQues-
tions”. The first task is a clustering task with V-
measure as a metric. The last three tasks are rerank-
ing tasks that require the model to correctly identify
the ones that are close to the query with cosine sim-
ilarity metrics. We use the “mean average precision
(MAP)” as our metric which is reported in MTEB.
For each task, we design a task-level prompt that
describes the requirements. We observe in Table 2
that our INBEDDER has a close performance to
state-of-the-art embedders E5 (Wang et al., 2022)
and Instructor (Su et al., 2023) than other LLM-
based embedders, even though it was not trained
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“unstructured” Yelp Reviews

Instruction A: How does the 
customer like the product overall?

Instruction C: Is the review detailed 
with many evidences and supports?

Instruction B: What is the customer 
reviewing about?

Top words:
"good", "likes”, 
“great”…

Example:
Monta is definitely 
the best Ramen 
shop in Las 
Vegas…

Top words:
”bad", ”poor”, 
“used”…

Example:
Don't bother 
making an 
appointment...I 
did, 24 hours…

Top words:
" enough ", " 
average”, “ok”…

Example:
The pizza was 
good but I couldn’t 
tell the difference 
between this…

Top words:
"food", "quality", 
”price”, “menu” 
…

Example:
The food here is 
very delicious! I 
got camarones …

Top words:
”store", ”salon", 
"car”, “nails” …

Example:
Would not 
recommend this 
salon to minorities 
because…

Top words:
” hotel", ”room", 
”staying”…

Example:
This used to be a 
stunning hotel. 
Unfortunately, it 
hasn’t changed…

Top words:
"incorrect", 
”without”, “no”…

Example:
Chaos service. 
Pricey food. Not 
worth it.

Average 
Length: 
101.2

Top words:
”yes", ”many”, 
“detailed”, “lot…

Example:
I had been to The 
Improv about 20 
years ago when it 
was at The Riv…

Average 
Length: 
225.2

Top words:
”good”, “yes”…

Example:
This review is 
for the outside 
seating area 
since it was too 
nice a day…

Average 
Length: 
205.0

Figure 6: Instruction-following clustering with INBEDDER. The results are produced by simply instructing the
model. 3 clusters along with top words and examples are shown for each instruction where we can observe clear
accountability to the instructions.

with a contrastive objective as in the state-of-the-art
sentence transformers.

6 Embedder Clustering Interpretation

Interpreting neural embeddings has long been an as-
piration in numerous research endeavors (Panigrahi
et al., 2019; Trifonov et al., 2018). We show in this
section that INBEDDER naturally possesses inter-
pretability due to its instruction-following training
objective. Specifically, we propose a method to
“extract answers” from semantic clusters produced
by the embedder.

6.1 Interpretation Methods

We directly post-process the generated sequences
of INBEDDER to collect identifiable information
about a cluster. To differentiate clusters, we ini-
tially collect outputs from each cluster following
K-means clustering and concatenate these outputs
into a single document per cluster. Subsequently,
we employ Term Frequency-Inverse Document Fre-
quency (Tf-idf) to vectorize these K documents,
resulting in K feature vectors. The dimensions
of each vector denote the relative frequency of a
word’s occurrence in one document compared to
its occurrence in others. Hence, we rank feature
words according to the corresponding value in the
feature vector, which will then be designated as
cluster keywords.

6.2 Results

Table 3 presents explanations derived from
llama-2-7b-InBedder. When compared to the
label components of each cluster, the top words

collected effectively capture the unique character-
istics of each cluster. To showcase the instruction-
following capability of INBEDDER, cluster expla-
nations are further illustrated with three distinct
instructions in Figure 6 using the Yelp review
dataset (Zhang et al., 2015) (originally designed for
sentiment analysis). The top words distinctly delin-
eate the differences between clusters, in accordance
with the provided instructions. For example, under
“Instruction B” various different products that the
customers are reviewing about are produced from
clusters, while on the other hand, under “Instruc-
tion C”, variations in average sentence lengths are
observed, indicating the degree of detail present in
the review.

7 Conclusions and Future Work

Our work addresses a novel problem, text em-
bedding with instruction-following. We propose
INBEDDER to produce desirable embeddings from
LLMs via generating expected answers. The
method is inspired by observations on existing
LLMs. Our text embedder model llama-2-7b-
INBEDDER outperforms both traditional sentence
transformers and aggregated embeddings from
LLMs on instruction-awareness tests, and instruc-
tion robustness tests and achieves close perfor-
mance on traditional generic tasks. We also show
that INBEDDER inherently is applicable for embed-
ding cluster explanation which will significantly
facilitate user-oriented dataset analysis. We en-
courage future works to investigate more efficient
solutions which is important in large-scale retrieval
systems.
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Limitations

Efficiency. Our model is not sufficiently efficient
for large-scale retrieval tasks. In retrieval, corpus is
usually encoded as vector embeddings beforehand,
the only operation conducted is to encode the query
and to compute the cosine similarities between the
query and corpus. However, INBEDDER requires
encoding the entire corpus w.r.t. each user query
which results in significant latency. However, one
possible solution is to first select the most similar
candidates and then use INBEDDER as a query-
dependent reranker.
Effectiveness on generic tasks. The results in Ta-
ble 2 show that INBEDDER does not surpass tradi-
tional sentence transformers on especially generic
reranking tasks. (1) Our ambition is to provide an
instruction following embedder that could poten-
tially facilitate user-oriented tasks rather than op-
timizing for high-performing sentence embedding
and we leave the exploration on that dimension in
future works. (2) INBEDDER might benefit from
better prompt design or task description which we
have discussed in Section 5.4.
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A Instruction Awareness Tests Creation

IntentEmotion We use BANKING77 (Casanueva
et al., 2020) test set as our base dataset to create
triplets. We prompt gpt-4-0613 to create utter-
ances that have the same intent but two different
emotions “optimistic” and “frustrating”, denoted
as u1opt and u1fru, with the following prompt.

Could you modify the emotion (one op-
timistic and one frustrating) of follow-
ing utterance without changing the intent
("[INTENT]")?
"[TEXT]"
Please output a JSON object containing
keys "optimistic" and "frustrating", and
no other things.

For each generated utterance, we then prompt the
same LLM again to modify the intent of the utter-
ance, denoted as u2opt and u2fru with the following
prompt.

Modify the intent of the above utterances
(i.e. from "[INTENT]" to another one
that you brainstormed. Usually by mod-
ifying the objects or actions) without
changing the emotions. Same as before,
output a JSON object containing keys
"optimistic" and "frustrating", and no
other things.

This will result in 4 generated utterances (disre-
garding the original utterance), then we group these
utterances into 4 triplets according to two criteria:

{u1opt, u2opt, u1fru}, {u1fru, u2fru, u1opt},
{u1opt, u1fru, u2opt}, {u1fru, u1opt, u2fru}

In each triplet, the first one is the anchor, the second
is the positive and the last is the negative. Thus the
first two triplets follow emotion criterion while the
last two follow intent criterion. As a result, there
are 12, 320 triplets in total, half for emotion and
half for intent. We calculate the triplet success rates
for both criteria separately, and then calculate the
harmonic mean.
InstructSTSB We use STSb (Cer et al., 2017) test
set as out base dataset to generate sentence pairs.
We generate two instructions, one that can discrim-
inate the sentence pair and the other that can not.
To achieve that, we prompt gpt-4-1106-preview
sequentially with the following two instructions.

The following two sentences have
similar surface forms:

1. [SENTENCE1]
2. [SENTENCE2]

In order to discriminate the two sen-
tences, what question would you ask?
(e.g. what is the subject of the sentence?)
Please output a JSON object that con-
tains the key "question".

Similar to the above, in order to make the
answers to the two sentences immune to
discrimination, what question would you
ask? (e.g. what is the subject of the
sentence?) Please output a JSON object
that contains the key "question".

As a result, there are 2758 sentence pairs in total.
We then set the ratings for discriminative pairs to 0
and 1 for non-discriminative pairs. Following previ-
ous implementation (Muennighoff et al., 2023), we
use spearman correlation as our metric and cosine
similarity as similarity measurement.
NYTClustering There are no further modifications
to this dataset since it already contains two sets of
annotations, one for location and one for topic.

B Instruction Robustness Tests Creation

We adopt clustering datasets FewNerd, FewRel
and FewEvent from Zhang et al. (2023b). We
adapt clustering datasets RateMyProf and Feed-
backs from Wang et al. (2023). All these datasets
are clustered under a complex task instruction such
as entity type or the aspect of the review or the
reason to (dis)like. Since the original paper (Wang
et al., 2023) does not provide the annotations, we
use gpt-4-1106-preview to select annotations for
them and then we post-process the dataset so that
the clusters are equal in size. As a result, Feed-
backs contains 3 clusters and 756 human feedbacks
to machine generated data. RateMyProf contains
4 clusters and 2, 296 reviews from RateMyProfes-
sor. Lastly, we provide various instructions that are
correct, implicit or incorrect by prompting GPT-4
(webpage) to generate similar, implicit, or dissimi-
lar instructions.

C Details on Direct Encoding

The direct encoding proposed in Section 4.1 are
all compatible with decoder-only transformers.
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For encoder-decoder models such as flan-t5, be-
cause of the two separated models, we remove
avg-all since the hidden states are not in the
same space. Besides, we extract avg-ppt from
encoder and avg-gen&1st-gen&last-gen from
decoder respectively. Notice that for 1st-gen,
we use the hidden states for the BOS token in
the decoder side. For encoder-only models, we
remove 1st-gen and last-gen. We implement
the sentence embedding function by generating to-
kens first 8 and then cache the intermediate hidden
states for further compute. Considering the effi-
ciency, avg-ppt&1st-gen only require single for-
ward pass while the others require iterative genera-
tions and thus depending on the generation length.

D Impact of Maximum Prompt Length

Our method is orthogonal to the maximum prompt
length being used. We test INBEDDER with maxi-
mum prompt length beyond 512 on NYTClustering.
From Table 4, we observe that the performance sig-
nificantly increases when using longer inputs. Thus
we argue that the model still has the potential to
work with a longer prompt, and we leave further
investigation to future work.

Max Prompt Length NYTClustering

512 58.80
1024 66.69
2048 63.38
3072 64.06
4096 66.23

Table 4: Performance on NYTClustering vs. max
prompt length.

8Notice that, in huggingface (Wolf et al., 2019), both
decoder-only and encoder-decoder model can use “generation”
function: https://huggingface.co/docs/transformers/
main_classes/text_generation. For encoder-only, we
simply concatenate the “[MASK]” tokens after the prompts
for generation.
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(a) llama-2-7b-chat (b) llama-2-7b-InBedder

Figure 7: Instruction awareness tests results vs. model depth.
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Feedbacks

cluster 1 (lowest entropy) 2 3 (highest entropy)

compoents
Structure, Coherence:229
Inclusion of Main Points:9
Content Accuracy:7

Content Accuracy:148
Inclusion of Main Points:134
Structure, Coherence:10

Inclusion of Main Points:109
Content Accuracy:97
Structure, Coherence:13

top words

sentence,better,
structure,written,
improved,flow,
unclear,read...

dislike,accurate,
author,generated,
mention,machine,
accuracy,inaccurate...

like,feedback,
post,likes,
good,human,
advice,relationship...

FewRel

cluster 1 (lowest entropy) 2 3 63 64 (highest entropy)

compoents taxon rank:24
heritage designation:70
located in the administrative...:1
location:1

taxon rank:46
instance of:1
said to be the same as:1
country of citizenship:1

movement:9
religion:6
work location:6
said to be the same as:5

language of work or name:23
said to be the same as:16
followed by: =10
applies to jurisdiction:7

top words

family,species,
gastropod,marine,
sea,urothoidae,
psolidae,feed...

historic,registe,
places,listed,
national,historical,
house,significance...

family,subfamily,
order,genus,
families,tribe,
sent,orders...

friends,beowulf→,
personalities,jewish,
slave,personality,
independence,owner...

language,minor,
wikipedia,candela,
french,translation,
flag,major...

FewNerd

cluster 1 (lowest entropy) 2 3 56 57 58 (highest entropy)

components

Geo-Political:139
film:1
car:1
education: 1

Geo-Political:92
company:1
government:1
sports team:1

award:35
living thing:1
broadcast program:1

language:33
Geo-Political:8
written art:4
software:4

artist, author:47
scholar:25
actor:9
Geo-Political:9
...

film:25
broadcast program:12
Geo-Political:9
written art:6
...

top words

city,america,
europe,continent
usa,state,
north,county...

country,europe,
jordan,ireland,
india,america,
uk,germany...

award,prize,
awards,best,
given,show,
film,category...

language,spoken
dialect,sentence
languages,skerry,
dialects,french...

person,artist
dan,name
paris,well,
professor, etc...

film,movie
comedy,actor
series,tv,
directed,play...

FewEvent

cluster 1 (lowest entropy) 2 3 33 34 (highest entropy)

compoents Military Service:150
Marry:162
Leadership:2
Place Lived:1

Olympic Medal Honor:189
Education:3
Olympic Athlete Affiliation:3

Leadership:19
Employment Tenure:9
Education:8
Place Lived:6

Sentence:14
Transfer Money:13
Charge Indict:13
Transport person:9

top words

soldier,medal,
war,honor,
received,sailor,
vietnam,killed...

wife,birth,
died,maria,
child,king,
marriage,queen...

olympics,medal,
gold,summer,
winner,relay,
competition,race...

event,speech,
triggered,words,
talk,rallies,
raise,appended...

sentence,trigger,
charged,penalty,
crime,event,
prison,guilty...

Table 5: Cluster explanations on other datasets. → Beowulf is the protagonist of an Old English epic poem of the
same name, which is one of the most important works of Anglo-Saxon literature.
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Feedbacks

RateMyProf

FewRel

(a) instructor-large

FewEvent

(b) llama-2-7b-chat (re-enc) (c) llama-2-7b-INBEDDER (fst-gen)

Figure 8: Instruction robustness more results.
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Prompt top-10 first decoding GPT-4 answer

### Input:
The Justice Department filed suit Thursday against the state of Mississippi
for failing to end what federal officials call "disturbing" abuse of juveniles
and "unconscionable" conditions at two state-run facilities.

### Instruction:
What specific language or descriptors does the first sentence use to describe
the abuse and conditions at the juvenile facilities?

### Response:

[’Dist’, ’dist’, ’des’, ’D’, ’Des’, ’un’, ’Un’, ’use’, ’uses’, ’specific’] "disturbing," "unconscionable"

### Input:
"Further testing is still under way, but at this stage, given the early detection,
the outlook in such instances would be positive," the specialist said yesterday.

### Instruction:
What additional information is provided in the first sentence that is not
present in the second sentence?

### Response:

[’fur’, ’ear’, ’testing’, ’out’, ’stage’, ’first’, ’F’, ’d’, ’special’, ’information’] Further testing, early detection

### Input:
Frank Quattrone, the former Credit Suisse First Boston technology
investment-banking guru, reportedly pleaded not guilty Tuesday to charges of
obstruction of justice and witness tampering.

### Instruction:
Who pleaded not guilty to charges of obstruction of justice and witness
tampering?

### Response:

[’Fran’, ’former’, ’Form’, ’F’, ’Cred’, ’f’, ’Qu’, ’Mr’, ’cred’, ’ex’] Frank Quattrone

Table 6: Qualitative analysis on the top-10 tokens decoded at the first position. We also present the answers from
GPT-4 (webpage) by prompting it to “answer this question within 5 words”.
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Original: What is the topic of news?

Correct: Could you summarize the key topic of the article?

Implicit: What's making the headlines in today's paper?

Incorrect: Are there any significant data or statistics 
mentioned in the article?

Figure 9: An example from our prompt robustness tests.
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