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Abstract

Instruction-tuning language models has be-
come a crucial step in aligning them for general
use. Typically, this process involves extensive
training on large datasets, incurring high train-
ing costs. In this paper, we introduce a novel
training data selection based on the learning
percentage of the samples. We assert that cur-
rent language models possess the capability
to autonomously select high-quality training
data, leading to comparable or improved per-
formance compared to training on the entire
dataset. Our experiments span different-sized
models, revealing that this characteristic holds
for models ranging from 1B (small) to 13B
(large) in size. Moreover, we demonstrate an in-
teresting finding that the data hardness transfers
across model sizes, and a smaller 350M model
can effectively curate high-quality training data
with hard samples for a larger 13B model, re-
sulting in an equally or superior instruction-
tuned model compared to training on the com-
plete dataset. Utilizing open-sourced OPT and
Llama-2 models up to 13B in size, two publicly
available instruction-tuning training datasets
and evaluated by both automatic metrics & hu-
mans, our paper introduces a novel approach
to training data selection, showcasing a more
efficient alternative.

1 Introduction

Instruction tuning empowers large language mod-
els (LLMs) to generalize to novel tasks and instills
an instruction-following characteristic, marking
the initial stride towards aligning them for gen-
eral use (Sanh et al., 2022; Wei et al., 2022, 2021;
Chung et al., 2022; Wei et al., 2022). This process
involves fine-tuning language models with exten-
sive sets of real (Mishra et al., 2021; Wang et al.,
2022b) and/or synthetic instructions (Wang et al.,
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Figure 1: The win rate of OPT-13B model trained on
10% data sub-sampled by smaller OPT models (350M,
1.3B, 2.7B) from Alpaca Data, is compared against the
OPT-13B model trained on the full dataset. All win
rates exceed 50, indicating even a smaller 350M dataset
can curate high-quality data for a larger 13B model.

2022a; Honovich et al., 2023). Given that these
datasets are typically vast, encompassing thousands
of samples, the training costs associated with this
approach are notably high.

Past research into the memorization effects
of deep neural networks have revealed a ten-
dency to memorize easy instances first and gradu-
ally learn more challenging instances towards the
end (Arpit et al., 2017; Geifman et al., 2019; Zhang
et al., 2021; Mekala et al., 2022a). Additionally,
(Swayamdipta et al., 2020) show that ambiguous
and hard samples in training data are sufficient
for achieving good generalization. The process of
data selection, wherein subsets are chosen from
extensive training data to achieve superior perfor-
mance, has attracted significant attention among re-
searchers recently. Earlier studies involved manual
feature engineering of various indicators from the
data (Cao et al., 2023), training large custom mod-
els (Li et al., 2023a), or employing closed LLMs
like GPT-3.5 (Chen et al., 2024) for data selection.
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In this paper, we delve into the measurement
of sample difficulty from the model’s perspective.
Drawing inspiration from the learning order met-
ric in (Mekala et al., 2022a), we propose a novel
data selection method that utilizes the learning per-
centage as a difficulty metric that the model can
use to self-rank its training data. Essentially, the
more learning that occurs in earlier epochs, the
easier the sample is considered. We then select
the most difficult sample subsets based on this
ranking and instruction-tune a language model.
Our experiments involve two instruction-tuning
datasets, Alpaca-Data (Taori et al., 2023), and
Dolly (Conover et al., 2023), with performance
measured using automated metrics such as Al-
pacaEval (Li et al., 2023b) and human evaluation.

Our main findings indicate that language models
can autonomously select training data, achieving
performance equal to or better than training on
the entire dataset. Furthermore, this characteristic
scales across different model sizes, ranging from
smaller ones (1B) to larger ones (13B)1 in parame-
ters. As the size of the language model increases,
we observe a consistent reduction in the minimum
amount of data needed to surpass the performance
of a model trained on the entire dataset. Interest-
ingly, we observe that the data hardness also trans-
fers across models, meaning samples considered
difficult by smaller models are similarly challeng-
ing for larger models. Moreover, we note that this
transferability improves with the size of the smaller
model, eventually achieving comparable quality,
beyond a size threshold, to that attained by self-
selection conducted by larger models. Our study
employs open-sourced models such as OPT (Zhang
et al., 2022) and Llama-2 (Touvron et al., 2023) to
support these findings.

The remainder of the paper is structured as fol-
lows: initially, we describe the experimental setup
encompassing the language models, the datasets
employed, and the evaluation metrics utilized (sec-
tion 2). Subsequently, we present our learning
percentage-based difficulty metric and analyze it in
detail (section 3). Following this, we optimize the
proposed metric and introduce an equally effective,
approximate, and faster metric (section 4). Ulti-
mately, we analyze the challenging data identified
through this metric (section 5).

We publicly release the code here2.
1Due to limitations in our compute, the largest size we

were able to train is 13B.
2https://github.com/dheeraj7596/Small2Large

2 Experiment Setup

We design controlled experiments to empirically
validate our assertions. Our experimental setup
encompasses language models spanning various
families and sizes, alongside multiple datasets, the
specifics of which are detailed below.

2.1 Language Models & Evaluation
We use OPT (1.3B, 2.7B, 6.7B, 13B) and Llama-2
(7B, 13B) for experiments. We fine-tune all mod-
els for three epochs on three NVIDIA A100 GPUs.
For the comparison of language models, we employ
AlpacaEval—an automated evaluator that tasks a
larger language model with selecting the superior
response from two LMs. AlpacaEval offers an
evaluation set comprising 805 samples, designed
to assess general instruction-following capabilities
by combining data from various sources, includ-
ing self-instruct (Wang et al., 2022a), anthropic
helpfulness3, open assistant (Kopf et al., 2023),
Koala4, and Vicuna (Chiang et al., 2023) evaluation
sets. While AlpacaEval provides various options
for the judge language model, we opt for GPT-3.5
(gpt-3.5-turbo-16k-0613) (OpenAI, 2023) due to
its cost-effectiveness.

2.2 Data
We experiment on Alpaca-Data (Taori et al., 2023)
and Dolly (Conover et al., 2023) datasets. Alpaca-
Data comprises 52,000 samples generated through
the self-instruct method by prompting text-davinci-
003 with 175 human-written seed instruction-
output pairs (Wang et al., 2022a). Dolly, on the
other hand, consists of 15,000 human-generated
samples.

3 LP Learning Percentage as a Difficulty
Metric

The concept of learning order (Dong et al., 2021;
Mekala et al., 2022a) is designed to assess the
quality of a sample in the context of a weakly-
supervised classification problem (Mekala et al.,
2022b; Mekala and Shang, 2020). The learning
order of a data point is defined as the epoch at
which it is learned during training, precisely when
the model’s predicted label aligns with the given
ground truth. To adapt this concept to the text

3https://huggingface.co/datasets/Anthropic/
hh-rlhf/viewer/Anthropic--hh-rlhf/test

4https://github.com/arnav-gudibande/
koala-test-set
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Figure 2: We partition datasets into three equal-sized buckets based on their LP(1) scores. We train a model per
bucket and report its win rate against the one trained on the complete dataset. The model used to compute LP(1)
scores and trained is depicted on the X-axis and the win rate on the Y-axis. We observe the model trained on the
lowest LP(1) values (33% Low LP(1)) exhibits superior performance compared to the others.

generation problem, we introduce the notion of
learning percentage.

For a data point after epoch-i, the learning per-
centage is defined as the percentage drop in per-
plexity during epoch-i compared to the total drop
in perplexity by the end of training. Assuming a
language model is fine-tuned for n epochs, with Pi

denoting the perplexity of a sample at the end of
epoch-i and P0 indicating its perplexity at the be-
ginning of training, the learning percentage LP(i)
at the end of epoch-i is mathematically defined as
follows:

LP(i) = Pi⋌1 ⋌ Pi

P0 ⋌ Pn
(1)

A higher learning percentage at earlier epochs in-
dicates that majority of the learning occurs during
the initial epochs. Given the deep neural models
typically learn easier samples initially and progress
to more challenging samples later (Arpit et al.,
2017; Geifman et al., 2019; Zhang et al., 2021;

Mekala et al., 2022a), a higher learning percentage
in the early epochs implies easy-to-learn samples.
Since language models are known to learn most of
the information in just one epoch (Komatsuzaki,
2019; Hoffmann et al., 2022; Zhang et al., 2022;
Touvron et al., 2023), we consider LP(1) to rank
the training data.

The diversity of training data is a pivotal at-
tribute for achieving high quality and optimal per-
formance (Sorscher et al., 2022; Tirumala et al.,
2023). To enhance this diversity, we employ k-
means clustering on the sentence embeddings gen-
erated by the all-MiniLM-L6-v2 model5 on the
entire training dataset, ensuring that each cluster
contains a minimum average of 50 samples. As a
result, the Alpaca-Data yields 1000 clusters with
an average of 52 samples per cluster, while the
Dolly dataset yields 300 clusters with an average
of 50 samples per cluster. Subsequently, we rank

5https://www.sbert.net
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Figure 3: We partition Alpaca-Data into three equal-
sized buckets based on their LP(1) scores. The model
used to compute LP(1) scores and trained is on the
X-axis and the win rate on the Y-axis. We observe the
model trained on the lowest LP(1) values (33% Low
LP(1)) exhibits superior performance.

the training data using LP(1) in ascending order
and select the top-k% of samples from each cluster,
i.e., the samples that are learned the least in the first
epoch.

3.1 LP(1)based Data Selection

We calculate the LP(1) scores of the training
dataset and organize it in ascending order accord-
ing to these scores. Subsequently, we partition the
dataset into three equal buckets. To enhance the
diversity, this partitioning is done per cluster. The
bucket characterized by the lowest LP(1) values
(33% Low LP(1)) represents the most challeng-
ing data in each cluster, while the bucket with the
highest values corresponds to the least challenging
data (33% High LP(1)) in each cluster.

We train one model per bucket and calculate the
win rate against the model trained on the complete
training dataset. We also present the performance
of the model trained on randomly selected 33%
data from each cluster (33% Clust Rand) for ref-
erence. The AlpacaEval win rate scores of the
Llama-2 7B and 13B models trained on individ-
ual buckets in Alpaca-Data are plotted in Figure 3.
Similarly, the win rate scores of OPT 1.3B, 2.7B,
6.7B, and Llama-2 7B models on the Dolly dataset
are shown in Figure 2(a). We observe that mod-
els trained on the bucket associated with the low-
est LP(1) scores (33% Low LP(1)) consistently
achieve scores exceeding 50, indicating that train-
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Figure 4: We consider Alpaca-Data, vary the percentage
of data selected, and plot the win rate of OPT models,
trained on the selected data in comparison to models
trained on the complete dataset. The minimum percent-
age of data necessary for each model to surpass the 50%
threshold is highlighted with .

ing on challenging samples alone is adequate for a
robust instruction-tuning model. Furthermore, our
analysis reveals that the model trained on the lowest
LP(1) scores (33% Low LP(1)) consistently out-
performs those trained on mid and high buckets by
a significant margin. For example, in Figure 2(a),
OPT 2.7B trained on the low bucket outperforms
the mid bucket by 10 points and the high bucket by
23 points. This underscores a compelling argument
that leveraging difficult data yields more favorable
outcomes compared to training on easier datasets.
The 33% High bucket results in worse performance
than random selection for all models, highlighting
that easy samples alone are insufficient.

Performance vs Scale To investigate the varia-
tion of this trait with scale, we plot the win rate
scores of OPT (1.3B, 2.7B, 6.7B, 13B) models
trained on each bucket within the Alpaca-Data in
Figure 2(b). Remarkably, all models trained on
the low bucket consistently achieve win rates ex-
ceeding 50, surpassing those of the corresponding
mid and high buckets. This consistent trend across
different model scales underscores the robustness
of the observed pattern.

Larger models need fewer samples To further
analyze the required amount of difficult data nec-
essary for training high-quality instruction-tuned
models of varying sizes, we analyze OPT (1.3B,
2.7B, 6.7B, 13B) models by varying the percentage
of selected data in Alpaca-Data and plot their win
rates against the corresponding models trained on
the complete dataset in Figure 4. Strikingly, we
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observe a downward trend in the minimum percent-
age of difficult data required (denoted by ) for
achieving a win rate of at least 50 with an increase
in the model’s size. For example, the OPT-13B
model outperforms its full dataset counterpart with
only 3% of the training data. This suggests that as
the model’s size increases, the amount of challeng-
ing data required decreases, albeit the necessity for
such difficult data persists. This finding provides
additional insight into the exceptional performance
exhibited by the Llama-65B model when trained
with 1000 difficult samples in (Zhou et al., 2023).

3.2 Is Data Hardness transferable?
In the previous section, we observed challenging
training data yields high-performing instruction-
tuned models. In this section, we investigate trans-
ferability of data hardness, specifically whether
samples deemed difficult by a smaller model are
also considered difficult by a larger model.

To assess this, we consider a smaller and a larger
model. We obtain LP(1) scores using the smaller
model, following which we select the top-k% (in
ascending order) of training data based on these
scores. Subsequently, we train the larger model
using this selected dataset. For each experimen-
tal configuration, we calculate the win rate of the
larger model trained on the selected data against it
when trained on the complete dataset.

We consider Llama-2 7B as the smaller model
and Llama-2 13B as the larger model. We vary the
percentage data selected, and plot the win rate of
Llama-2 13B trained on selected data in compari-
son to the one fine-tuned on the entire Alpaca-Data
dataset in Figure 5(a) and for Dolly dataset in Fig-
ure 5(b) respectively. We find that the ranking of
the Llama-2 7B model transfers effectively to the
13B model, resulting in a model of comparable or
even improved quality in some instances. For exam-
ple, in Figure 5(a), the win rate of the Llama-2-13B
model trained on 10% of the Alpaca-Data, selected
by the 7B model, outperforms the self-ranking of
the 13B model by 4 points.

Similarly, we consider OPT (350M, 1.3B, 2.7B,
6.7B) models as smaller models and OPT 13B
as the larger model and plot the performance for
the Alpaca-Data dataset in Figure 5(c) and for the
Dolly dataset in Figure 5(d) respectively. From
Figure 5(c), 5(d), we observe that the performance
of the 13B model increases with the size of the
smaller model up to 2.7B and further plateaus
where it eventually matches the self-selection per-

formance of 13B model. With only a 1.4-point drop
in average win rate, even a small 350M model can
be leveraged for curating training data for a large
13B model. This demonstrates that the data hard-
ness transfers efficiently from a smaller model to a
larger one, improving with the size of the smaller
model and eventually matching self-selection per-
formance beyond a specific size threshold (2.7B).

LP(1) Ranking Analysis - Kendall-Tau scores:
We conduct a comparative analysis of rankings be-
tween smaller and larger models to gain deeper in-
sights into the transferability of data hardness. We
derive LP(1) scores from multiple smaller models
and a larger model, followed by the computation of
Kendall-tau correlation coefficients between rank-
ings based on their respective scores. The Kendall-
tau score ranges from -1 to +1, with a higher pos-
itive score indicating a stronger correlation. The
Kendall-tau scores of LP(1) derived from OPT-
models (350M, 1.3B, 2.7B, 6.7B) against OPT 13B
on both Alpaca-Data and Dolly datasets are pre-
sented in Table 1. We note that all scores are posi-
tive, indicating a positive correlation. Notably, we
observe a consistent increase in correlation with the
increase in size of the ranking source model. Fur-
thermore, we also compute the Kendall-tau scores
between rankings from the Llama-2 7B and 13B
models. For Alpaca-Data, the score is 0.782, and
for Dolly, it is 0.775, respectively. These scores
underscore the effective transferability of rankings
from smaller models to larger ones.

LP(1) Ranking Analysis - Intersection over
union scores: We additionally calculate the
intersection-over-union (IOU) of data samples se-
lected by both smaller and larger models. We vary
the selected percentage of data and compute the
IOU of subsets chosen by the smaller OPT models
(350M, 1.3B, 2.7B, 6.7B) with the larger OPT 13B
model on Alpaca-Data, presenting the results in
Figure 6. Similarly, we plot the IOU of Llama-2 7B
with the Llama-2 13B model on the Alpaca-Data in
Figure 7. From Figure 6, for a given percentage of
data selected, we observe a consistent rise in IOU
score with the increasing size of the model until
2.7B, followed by a plateau, aligning with the per-
formance trend depicted in Figure 5(c). Moreover,
for a fixed model size in Figures 6 and 7, the IOU
score consistently increases with the rise in the se-
lected data percentage. This finding suggests that
for selecting a larger percentage of data, a smaller
350M model suffices. However, as the selected

10460



Llama-2 7B Llama-2 13B
(Self-Ranking)

54

56

58

LP(1) Ranking Source

W
in

ra
te

1% Low 3% Low 5% Low
10% Low 25% Low 33% Low

(a) Alpaca-Data, Llama models

Llama-2 7B Llama-2 13B
(Self-Ranking)

50

52

54

56

58

LP(1) Ranking Source

W
in

ra
te

3% Low 10% Low 33% Low

(b) Dolly dataset, Llama models

350M 1.3B 2.7B 6.7B 13B
(Self-Ranking)

51

52

53

54

55

LP(1) Ranking Source

W
in

ra
te

5% Low 10% Low
25% Low 33% Low

(c) Alpaca-Data, OPT models

350M 1.3B 2.7B 6.7B 13B
(Self-Ranking)

52

54

56

LP(1) Ranking Source

W
in

ra
te

10% Low 33% Low

(d) Dolly dataset, OPT models

Figure 5: We vary the percentage of selected data to train 13B model and conduct a comparison of win rates obtained
when data is self-selected by the 13B model vs selected by smaller models. The smaller model used is mentioned
on the X-axis and the win rate is on the Y-axis. We observe that the data hardness transfers from smaller models to
13B, leading to improved or comparable performance compared to 13B model trained on the self-selected data.

Dataset 350M 1.3B 2.7B 6.7B
Alpaca-Data 0.52 0.61 0.65 0.69
Dolly 0.52 0.61 0.67 0.75

Table 1: Kendall-Tau scores of rankings from different
smaller-sized OPT models(350M, 1.3B, 2.7B, 6.7B)
against the ranking from large OPT-13B model.

data percentage decreases, it is advisable to employ
a larger model i.e. ≜ 2.7B.

4 LPapp A Faster & Approximate
Learning Percentage Metric

It is worth noting that to compute LP(1), the
model needs to be trained twice—first to obtain
the perplexity scores and rank the data, and then to

Model 3% Low 10% Low 33% Low
LPapp LP LPapp LP LPapp LP

OPT 2.7B 49.4 47.1 53.7 50.4 52.9 54.9
OPT 6.7B 50.0 48.9 52.6 52.1 52.7 51.1
Llama-2 7B 59.7 57.6 57.9 56.7 55.7 56.5
Llama-2 13B 56.5 56.4 54.0 54.3 55.3 54.8

Table 2: We compare LPapp and LP on Alpaca-Data.
We present the win rates of the model trained on differ-
ent percentages of selected data using both LPapp and
LP against the one trained on the complete dataset.

select the data and train the model again. Recogniz-
ing this computational inefficiency, we present an
approximate version of the learning percentage, de-
noted as LPapp that is faster and equally effective
as LP .

Language models are known to typically learn
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Figure 6: IOU scores of Alpaca-Data data points se-
lected by smaller OPT models (350M, 1.3B, 2.7B, 6.7B)
with OPT 13B model for varying percentages.
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Figure 7: Intersection-over-union scores of Alpaca-Data
data points selected by Llama-2 7B with Llama-2 13B
model for varying percentages.

in 3 epochs and tend to memorize the data (Tiru-
mala et al., 2022). As a result, we assume that the
perplexity at the end of training Pn is constant for
all samples. Mathematically, LPapp is defined as:

LPapp(i) = Pi⋌1 ⋌ Pi

P0
(2)

To compute LPapp(1), we only need to train the
model once for 1 epoch, making it more efficient.

4.1 LPapp(1)s LP(1) A Comparison
We conduct a comparative analysis between LPapp

and LP metrics on the Alpaca-Data. We consider
different-sized models including OPT 2.7B, 6.7B,
as well as Llama-2 7B and 13B. The training data is
ranked using LPapp and LP metrics, respectively,

Dataset OPT Llama-2
1.3B 2.7B 6.7B 13B 7B 13B

Alpaca-Data 0.53 0.55 0.60 0.61 0.64 0.62
Dolly 0.59 0.59 0.61 0.64 0.60 0.58

Table 3: Kendall-Tau scores between LP and LPapp.
We observe high positive scores indicating a positive
correlation.

and data selection is performed for varying percent-
ages of data. The win rate of the model trained
on selected data against the model trained on the
complete dataset is computed and presented in Ta-
ble 2. Notably, we observe that the model trained
on data selected via LPapp outperforms its coun-
terpart trained on data selected via LP across the
majority of models and various percentages. This
finding underscores the efficacy of LPapp as a data
selection metric, demonstrating its comparable or
even superior performance compared to LP .

We calculate kendall-tau correlation scores be-
tween LPapp and LP on both Alpaca-Data and
Dolly datasets, shown in Table 3. We observe high
positive scores, signifying a positive correlation
between the two metrics, highlighting the effective-
ness of LPapp in accurately approximating LP .

4.2 Comparison with Baselines

In this section, we compare LPapp with two base-
lines. The first baseline, denoted as Clust Rand,
randomly samples the same number of samples as
our method from each cluster of the training set.
Notably, this preserves the diversity of the subset
while removing the difficulty-aware ranking. We
also compare with Alpagasus (Alpa) (Chen et al.,
2024), which prompts GPT-3.5 to assign a diffi-
culty rating and selects training instances deemed
difficult. We select 10% of the training data using
each method and consider OPT 1.3B, 2.7B, 6.7B,
and Llama-2 7B models. These models are then
trained on the selected data using each method.
Subsequently, we compare the performance of the
instruction-tuned models using AlpacaEval and
present the win rates of our model over the com-
pared baselines. The win rates post-training on the
Alpaca-Data and Dolly are presented in Table 4.
Notably, we observe win rates exceeding 50 for
all models trained on both datasets, indicating the
superior quality of training data subsampled using
our method. The superior performance of smaller
OPT 1.3B and 2.7B models trained on self-selected
data over Alpagasus, where the data is selected
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Model Alpaca-Data Dolly
Clust Rand Alpa Clust Rand Alpa

OPT 1.3B 53.91 51.74 53.79 54.10
OPT 2.7B 56.89 52.11 56.21 52.61
OPT 6.7B 59.13 54.47 57.27 55.09
Llama-2 7B 55.60 53.17 58.76 54.66

Table 4: The win rates of models trained on data sub-
sampled from Alpaca-Data and Dolly datasets based
on LPapp are compared against other baselines (Clust
Rand & Alpagasus). We observe that all win rates
exceed 50, indicating superior performance and high-
quality selection by our method.

by a much larger GPT-3.5 model, underscores the
effectiveness of our method.

Additionally, we conduct another evaluation
wherein a smaller model is employed to curate
training data for a larger model utilizing the
LPapp(1) metric. Subsequently, we train the larger
model on the selected data and compare its perfor-
mance with that of the same model trained on data
selected using Alpagasus. The win rates of OPT
6.7B model trained on 10% data selected by OPT
350M, 1.3B and 2.7B models are 50.25, 51.24,
and 52.30 respectively. The win rates exceed 50%
across all scenarios, indicating that a smaller model
can effectively curate training data using our pro-
posed LPapp metric.

4.3 Human Evaluation

We compare the model trained on data selected
using our method with the model trained on com-
plete dataset. Specifically, we consider Llama-2 7B
model and Alpaca-Data, and subsample 5% of data
using LPapp(1) scores and train it. Additionally,
we train another Llama-2 7B model on full Alpaca-
Data. In this human evaluation, participants are
asked to provide an instruction, after which both
models generate a response. Participants are then
prompted to choose the better response, or if both
responses were perceived as equal. Importantly, the
models were hidden from the participants, ensuring
they were unaware of which model corresponded
to which response. We recruited 10 students with
minimal prior knowledge of the project for this eval-
uation. In total, we collected 151 evaluations. Of
these, 42 evaluations resulted in a tie. In 50 evalua-
tions, the model trained on the full dataset was pre-
ferred, while in 58 evaluations, participants found
the model trained on 5% data selected using our
method to be better. This indicates that responses
from the model trained on 5% of the data were

either better or of equal quality compared to those
from the model trained on the complete dataset
in 66.2% of instances. This outcome provides an-
other validation for the superior performance of our
method.

5 Dissecting the difficult data

In this section, we analyze the characteristics of
samples identified as challenging by the LP met-
ric. We manually examine 250 samples selected
from the 1% subset characterized by low LP(1)
scores within the Alpaca-Data corpus, obtained
using Llama-2 7B.

We observe that these difficult samples are
longer than the average, maintaining coherence
throughout. Specifically, the average response
length within the 1% Low LP(1) subset of
Alpaca-Data is 547 characters, contrasting with the
dataset’s average of 270. This observation aligns
with intuition, suggesting that models encounter
difficulty in generating longer and coherent text,
thus deeming such instances as challenging.

We also found six noisy samples, shown in Ta-
ble 5, i.e. a noise rate of 2.4%. Notably, this
proportion is significantly higher compared to the
prevalence observed across the entire dataset. Al-
pacaDataCleaned6, a human-cleaned Alpaca-Data
has eliminated 0.47% of noisy samples from the
original dataset. This underscores that the subset
of most challenging samples identified by LP(1)
encompasses noisy instances as well. Addressing
this issue requires future investigation.

6 Skill-Chart Analysis

In this study, we consider the Vicuna-split of the
Alpaca-eval dataset, which is categorized into nine
distinct skill categories, and compare model perfor-
mances within each skill. The Alpaca-Data is used
as the training dataset for this evaluation.

Firstly, we compare the performance of the
Llama-2 13B model trained on 3% of the data self-
selected using our proposed LP(1) metric against
the same model trained on the complete dataset,
as illustrated in Figure 8(a). Our findings indi-
cate that performance either improves or remains
constant in the math, writing, generic, roleplay,
commonsense, and fermi skills when using the 3%
self-selected dataset. However, the model trained
on the full dataset outperforms in coding, knowl-
edge, and counterfactual skills. This suggests that

6https://github.com/gururise/AlpacaDataCleaned
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(a) Self-selection via LP(1) Analysis (b) Small-to-large generalization via
LP(1) (c) LPapp(1) vs Alpagasus

Figure 8: We compare models on different skills from the Vicuna split of the Alpaca-eval test set.

the data selected using the LP(1) metric is effec-
tive and high quality, although certain skills may
benefit from a larger data volume.

Secondly, we examine the performance of a
larger model trained on data selected by a smaller
model compared to the larger model trained on the
full dataset, as shown in Figure 8(b). In this sce-
nario, we use OPT-2.7B as the smaller model to
select 25% data and OPT-13B as the larger model,
plotting the win percentage per skill. We notice
similar performance trends as previously where the
performance either improves or is stable in math,
writing, generic, roleplay, and fermi skills with the
smaller model’s data selection. Conversely, the
larger model trained on the complete dataset per-
forms better in coding, knowledge, counterfactual,
and commonsense skills. This demonstrates that
the smaller model can effectively select data for
most skills similar to the larger model.

Finally, we compare the data selected using the
Alpagasus with data selected using our proposed
approximated LPapp(1) metric in Figure 8(c). We
use the OPT-6.7B model and select 10% of the data
using both methods. The results show a uniform
improvement across all skills with our proposed
method, highlighting its superior performance.

7 Related Work

7.1 Instruction Tuning
Instruction tuning involves training LLMs to fol-
low instructions (Sanh et al., 2022; Wei et al., 2022,
2021; Chung et al., 2022). Numerous datasets have
been curated for this purpose, comprising a multi-
tude of samples (Mishra et al., 2021; Wang et al.,

2022b). Notably, there is a recent surge in the
emergence of synthetic instructions and datasets
(Wang et al., 2022a; Honovich et al., 2023), each
containing a substantial number of samples. As the
datasets increase, we need to rethink data handling
strategies from an efficiency standpoint (Sorscher
et al., 2022), which we address in this paper.

7.2 Data Selection

Prior data selection works in pre-training include
(Tirumala et al., 2023), emphasizing the importance
of diversity in sub-sampled data and advocating for
the selection of prototypes from each cluster. (Ab-
bas et al., 2023) extend this by removing semantic
deduplicates in the training data. In the domain
of instruction-tuning, (Cao et al., 2023) evaluate
various indicators and apply a regression model for
data selection. (Chen et al., 2024) leverage GPT-
3.5 to derive difficulty ratings for individual data
samples. (Li et al., 2023a) propose an instruction-
following difficulty metric for selection.

8 Conclusion

In this paper, we introduce a learning percentage-
based metric for assessing the difficulty of sam-
ples. We demonstrate that LMs ranging from 1B
to 13B sizes can self-select high-quality training
data by employing this metric. Additionally, we
empirically validate the transferability of data hard-
ness across different model sizes, showcasing the
efficient curation of high-quality training data by
smaller models. Furthermore, we propose an op-
timized version of the metric that offers increased
speed while maintaining equal efficacy.
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9 Limitations

Our examination reveals prevalence of noisy sam-
ples within the LP(1) and LPapp(1) subsets of
data. The detection and mitigation of noisy sam-
ples are imperative to mitigate their influence on
the dataset. We leave this for future work.

10 Ethical Considerations

This paper proposes a data selection method for
instruction-tuning. The paper aims to detect the
difficult-to-learn samples and we don’t intend to
introduce any biased selection. Based on our ex-
periments, we manually inspected some filtered
samples and we didn’t find any underlying pattern.
Hence, we do not anticipate any major concerns.
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A Appendix

A.1 Win rate of different size subsets against
full Alpaca-Data dataset

In Figure 9, we illustrate the win rates of Llama-2
7B and 13B models trained on subsets of vary-
ing sizes from the Alpaca-data corpus, contrasting
them with the performance of models trained on
the complete dataset. Remarkably, our analysis
reveals that using subsets comprising as little as
1% of the data is adequate to attain performance
levels comparable to those achieved with the entire
dataset.
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Figure 9: We consider Alpaca-Data, vary the percent-
age of data selected, and plot the win rate of Llama-2
models, trained on the selected data in comparison to
models trained on the complete dataset.

A.2 Human Evaluation Interface

Figure 10: We built a simple human evaluation interface
that allows the user to generate responses from two mod-
els with an input prompt and choose their preference.
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Instruction Input Output Reason
Create a fea-
ture vector for
the following
sentence:

"Today marks a special mile-
stone for us."

[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

Output doesn’t
make sense.

Calculate the
value of sin(8)

sin(8) = -0.132351750097773 Computation
is incorrect.

Given a para-
graph, summa-
rize it in three
sentences.

The year 2020 has been an in-
credibly difficult one for many
people around the world. With
an unprecedented global pan-
demic upending daily life, peo-
ple have had to adapt to a new
normal. Businesses, schools,
and even the way we interact
with family and friends have all
changed.

Output is miss-
ing.

Post a funny
meme about
cats.

![Image of funny cats
meme](https://i.imgflip.com/
1vyhr.jpg)

Output con-
tains a link
which has
nothing to
do with the
prompt.

Multiply the
following
two complex
numbers

(3 + 2i) * (2 + 4i) (3 + 2i) * (2 + 4i) = 4 + 14i + 8iˆ2
= 4 - 6i.

Computation
is incorrect.

Categorize
the following
objects into
two different
groups, and
explain why
you chose
them.

A computer, a car, a shoe, a chair I would categorize the objects
into two groups: man-made ob-
jects and natural objects. The
computer, car, shoe, and chair
are all man-made objects, items
that have been created, designed,
and assembled by people. On
the other hand, a natural object
would be something that is found
in nature and has no human inter-
vention.

Instruction im-
plies that each
group should
have at least
one item.

Table 5: We present the noisy samples found as well as the reason we found them noisy.
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