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Abstract. We study statistical solutions of the incompressible Navier—Stokes equation and
their vanishing viscosity limit. We show that a formulation using correlation measures as in [U.
S. Fjordholm, S. Lanthaler, and S. Mishra, Arch. Ration. Mech. Anal., 226 (2017), pp. 809—
849] and moment equations is equivalent to statistical solutions in the Foiag-Prodi sense. Under
the assumption of weak scaling, a weaker version of Kolmogorov’s self-similarity at small scales
hypothesis that allows for intermittency corrections, we show that the limit is a statistical solution
of the incompressible Euler equations. To pass to the limit, we derive a Karmdn—Howarth—Monin
relation for statistical solutions and combine it with the weak scaling assumption and a compactness
theorem for correlation measures from [U. S. Fjordholm et al., Math. Models Methods Appl. Sci.,
30 (2020), pp. 539-609].
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1. Introduction. The motion of an incompressible viscous fluid can be de-
scribed by the Navier—Stokes equations

Oyu + div(u ® u) + Vp=¢eAu,
(1.1) divu =0,
“‘f;ozuo’

where u: [0,00)x D — U :=R% is the fluid velocity and p: [0,00)x D — R, the pressure,
acting as a Lagrange multiplier to enforce the divergence constraint divu =0, and ug
is the initial condition. Here, we take the spatial domain D to be the d-dimensional
torus D := T?, and we denote the phase space by U := R The divergence is
defined as divu := Zle Oyiu’ and Vp := (0,1p,...,0,4p) " is the spatial gradient. The
parameter € > 0 denotes the wiscosity and is proportional to the reciprocal of the
Reynolds number. It is well-known that many flows of interest are characterized by
very high Reynolds numbers. Therefore, one is interested in studying what happens
when the viscosity e shrinks to zero. In this formal limit ¢ — 0, one obtains the
incompressible Euler equations, which are the prototypical model for an ideal fluid.
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The question of whether the ¢ — 0 limit is a good approximation of (1.1) is of great
practical relevance and has received considerable attention, from both a physical and
a mathematical point of view. Furthermore, it plays an essential role in computational
fluid dynamics, as many numerical methods for the Euler equations, as well as large
eddy simulations for Navier—Stokes equations, can be viewed as discretizations of
(1.1), with e representing the discretization parameter.

While in two spatial dimensions the convergence of a sequence of solutions {u®}.q
of (1.1) to a solution of the Euler equations has been proved rigorously for many
settings (see, e.g., [14, 52, 13, 15]), it turns out to be very challenging in d > 3
dimensions. Leray [47] proved in 1934 the existence of “Leray—Hopf solutions” of (1.1),
which are weak solutions of (1.1), i.e., they satisfy (1.1) in the sense of distributions
and in addition an energy inequality of the form

t
(1.2) /|u(t,x)|2dx+a/ / |Vu(s,x)\2d:vds</ luo(x)Pdz, t=0.
D 0o JbD D

(Here and in the remainder, we suppress the dependence of u® on e for convenience
and write just u.) Hence, if the initial data ug lies in L2, (D;U), such solutions satisfy
u € LO"([O,T];LﬁiV(D;Rd)) N LQ([O,T};HéiV(D;]Rd)). (Here, L3, and L2, and HJ,,
are the weakly divergence-free functions in L? and H!, respectively.) However, as
e — 0, the L?-bound on the gradient of u, which stems from the energy inequality
(1.2), no longer suffices for deriving sufficient compactness of the sequence {u}.~¢ in
L2, which would be needed to pass to the limit in the nonlinear terms. It appears
that, at least as far as global solutions are concerned, there is currently no means of
gaining sufficient compactness through other conserved quantities or bootstrapping;
in fact, it is unclear if global solutions of higher regularity than the one given by
(1.2) exist in three dimensions. Closely related to this issue is the lack of stability
estimates, i.e., well-posedness of Leray—Hopf solutions [22, 45]. The main obstruction
to better regularity or stability estimates is caused by the nonlinear convective term
(u- V)u. The role of the nonlinear term and possible instabilities in the Leray—Hopf
solutions are often related to the issue of turbulence in fluid flows.

The mathematical theory of turbulence was initiated in the 1930s and 1940s
by Taylor, Richardson, Kolmogorov and others (see [32] and references therein),
whose works heavily influenced fluid mechanics, the atmospheric sciences, and plasma
physics. In his sequence of three papers [42, 41, 43], nowadays referred to as K41,
Kolmogorov took a probabilistic approach to turbulence. Based on his observations,
he formulated basic hypotheses about fluid flow at high Reynolds numbers and de-
rived predictions based on these. Many of these were later experimentally confirmed.
Using a probabilistic framework is natural, as turbulent experiments are not repeat-
able and so one can only hope to develop theories about their statistical behavior.
Moreover, the flows in isolated physical experiments appear very irregular, lacking
the symmetries inherent in (1.1). However, these symmetries seem to be restored in
a statistical sense: Time and ensemble averages of the flow appear much more regu-
lar than isolated experiments (see also [32]). Further indication that a probabilistic
framework may be more appropriate than a deterministic one comes from numerical
experiments in compressible turbulence: In [23, 25], numerical simulations for the com-
pressible Euler equations display irregular behavior and essentially no convergence as
the mesh is refined for single deterministic examples, whereas the statistics of approxi-
mations for randomized initial data appear regular and converge as the mesh is refined.
In [53] similar observations are made for the incompressible Euler equations in two
dimensions with low regularity initial data.
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The idea of studying (1.1) in a probabilistic setting has since been taken up
again in many works, in different frameworks, by adding stochastic forcing terms to
(1.1) (see, e.g., [26, 49, 10]) or taking uncertain or measure-valued initial data (see,
e.g., [17]). In the latter case, the solution of (1.1) may not be a function any more
but instead a time-parametrized probability measure on the phase space. Global
existence of such measure-valued solutions for incompressible flows has been shown
in three dimensions, and even the passage to the limit € — 0 can be made rigorous
in this case [17]. However, measure-valued solutions are generally not unique, which
can be shown by counterexample even in the case of Burgers’ equation [23]. Hence,
measure-valued solutions are too broad a solution concept to resolve the problem of
nonuniqueness, and more information or constraints need to be added.

To overcome this, in [24], it was suggested to take into account the (time) evolution
of all possible multipoint spatial correlations. Instead of a single probability measure
on the phase space U, such a statistical solution is a family of probability measures
on the phase space and products of the phase space U”, for k € N, corresponding
to the multipoint correlations. Hence, one can interpret the solution as a measure-
valued solution augmented with information about higher order spatial correlations.
From a practical point of view, this approach is very natural, as often only averaged
quantities of interest of the fluid flow can be observed. Moreover, it is also in line
with Kolmogorov’s turbulence theory, as this theory studies statistical properties of
the fluid and makes predictions about these. The system of equations that arises for
the higher order correlations is also known as the Friedman—Keller infinite chain of
moment equations [39, 59] and the finite closure relation for this infinite family of
equations has been studied for small and large Reynolds numbers in [34, 35, 36, 37].

An alternative point of view in this context is to consider instead probability
measures on a space of suitable initial conditions; in the case of (1.1) this would be
L3, (D;U). Equation (1.1) is then interpreted as a Liouville equation on an infinite
dimensional function space and the solution is a mapping, assigning to each time
t a probability measure on L3, (D;U). This setting was first considered by Prodi
[64] and later on extensively studied by Foiag and collaborators [27, 28, 30, 29]; see
also [38]. A closely related notion of statistical solutions was studied by Vishik and
Fursikov [59]. Foiag and his collaborators proved existence of such solutions in two
and three dimensions, uniqueness in two dimensions, and further properties related to
turbulence [29]. The relations between the Foiag—Prodi notion of statistical solutions
and the Vishik—Fursikov version were explored in [31, 8, 9]. The latter work extends
the notion of statistical solutions to other relevant PDEs in fluid mechanics.

Given this plurality of definitions of statistical solutions, it is natural to examine
if and under what conditions these solution concepts are equivalent. The first goal of
this paper is to prove that these concepts of statistical solutions of the incompressible
Navier—Stokes equations (1.1) are equivalent as long as a statistical version of the
energy inequality (1.2) holds.

The second and main goal of this paper is to investigate the vanishing viscosity
limit of the statistical solutions of incompressible Navier—Stokes equations. Under a
weak scaling assumption on the Navier—Stokes statistical solutions, we use the com-
pactness criteria presented recently in [25] to prove that vanishing viscosity limits of
the statistical solutions of the Navier—Stokes equations are statistical solutions of the
incompressible Euler equations.

Our weak scaling assumption is a significantly weaker version of the scaling hy-
pothesis of Kolmogorov’s 1941 theory and allows for intermittent corrections. Fur-
thermore, it is only an assumption on the statistics of the flow and not deterministic
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solutions of (1.1). As explained above, assuming a probabilistic setting is more natural
in the context of turbulence. Moreover, numerical simulations for compressible flows
[25] and two-dmensional incompressible flows [53] indicate that such an assumption
may be justified, whereas a similar deterministic assumption on single realizations
(e.g., weak solutions) could not be confirmed numerically.

Our main technical tool is a statisical version of the well-known Karman—Howarth—
Monin (KHM) relation [32, 16, 48], which relates the evolution of two-point correla-
tions to the longitudinal structure function Sﬁ’, which is, roughly speaking, defined
as

S3(e)) = <((u(x +0) —u(z)) -Z)3>, 7= Z

Here (-) denotes a suitable average of the flow.

Thus, by characterizing this vanishing viscosity limit, we establish a rigorous
relationship between the incompressible Navier—Stokes and Euler equations, while
accommodating physically observed facts about turbulent flows in this description.

The remainder of this article is organized as follows. In section 2, we introduce
the concept of correlation measures and in section 3 we show the equivalence of statis-
tical solutions as introduced by Foiag and Prodi with families of correlation measures
satisfying the Friedman—Keller chain of moment equations. Then in section 4, we
consider the passage to the limit € — 0. We conclude with an appendix with technical
results.

2. Correlation measures. In this section, we recall the definition of correla-
tion measures and some of their important properties from [24, 25]. We start by
introducing the necessary notation.

2.1. Notation. We let D C R? denote the spatial domain and U := R? the phase
space. Spatial points are usually denoted by x = (2!,...,2%) and phase space values

by €= (&1,...,&%). For k€ N we denote the Cartesian products

DY=Dx...xD, Ut=U®---@U.

k times k times

For =6 ® - ®& and (= ®---® (, in UF we denote the contraction of £ and ¢
by

E:¢=(&-C) (& - )

If X is a topological space, then we let (X)) denote the Borel o-algebra on X,
we let .4 (X) denote the set of signed Radon measures on (X, %(X)), and we let
P(X) C #(X) denote the set of all probability measures on (X, #(X)), i.e., all
0< pe #(X) with u(X) =1 (see, e.g., [3, 7, 40]). For k € N and a multi-index
a €{0,1}* we write |a|=a; +--+ap and a=1—a=(1—ay,...,1 —a;), and we
let x, be the vector of length || consisting of the elements x; of x for which «; is
nonzero. For a vector = (x1,...,z) we write Z; = (x1,...,%i—1,Ti+1,--.,2k). For a
vector € = (£1,...,&) we write [£%] =]&1]* -+ - |€k]|** with the convention 00 = 1.

2.1.1. Carathéodory functions. If F and V are Euclidean spaces, then a
measurable function g: F x V — R is called a Carathéodory function if £ — g(x,&) is
continuous for a.e. x € F and y — ¢(y,€) is measurable for every £ € V
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(see, e.g., [1, section 4.10]). Given k € N and a Carathéodory function g = g(x,&): D¥x
U* — R we define the functional L,: LP(D;U) — R by

(2.1) Ly(u):= /Dk g(x1,.. 2, u(zr),. .., u(zy)) de.

(It is not obvious that L, is continuous, or even well-defined; see [24].) We denote the
set of Carathéodory functions depending on space and time by HE([0,T),D;U) :=
LY([0,T) x D¥;Co(U*)) and its dual space by HE*([0,T),D;U) := L([0,T) x D¥;
A (U*)) (see, e.g., [5]).

In the following, we will focus on a specific type of Carathéodory functions. In
particular, for p > 1 we let H*?(]0,T], D;U) denote the space of Carathéodory func-
tions g: [0,T] x D¥ x U*¥ — R satisfying

(2.2) lg(t,z,8)| < Z ©la|(t,za)E*P for all x € D¥, ¢ €U,
ae{0,1}*

for nonnegative functions ; € L>([0,T]; L*(D%)), i = 0,1,...,k. We let H*?([0,T7,
D;U) ¢ H¥?([0,T),D;U) denote the subspace of functions g satisfying the local
Lipschitz condition

k

l9(t,2,¢) — g(t,.6)| < w(1) Y |G — &l max (|&], 1GI)" ™ h(t, 7:,6)

i=1

+0(|z —yh(t,z,€)

(2.3)

for every x € D, y € B,.(x) for some r > 0, for some nonnegative h € HE=LP([0,T),
D;U) and 0 < 9(t) € L>=([0,T]) and some h € H*P([0,T],D;U). (Note that the term
h was not present in [25, Definition 2.2], but one can generalize the results of that
paper to include such a term.)

We also denote for a parametrized probability measure v* € L°([0,T) x D¥;
A (U*)) and a Carathéodory function g the pairing

T
<Vk,g>Hk :/0 /Dk<l/f,z,g(t,$)>d(£dt

(where <Vﬁz, g(t, x)> = ka g(t,x,§) dyﬁm(f) is the usual duality pairing between Radon
measures . (U*) and continuous functions Co(U*)).

2.2. Definitions. We are now in a position to define time-dependent correlation
measures.

DEFINITION 2.1. An LP-integrable time-dependent correlation measure is a col-
lection v = (v',12,...) of functions v* € HE*([0,T), D;U) such that
() vf, € 2U*) for a.e. (t,x) € [0,T] x D*, and the map x — (vf,,f) is
measurable for every f € C,(U*) and almost every t € [0,T]. (In other words,
vF is a Young measure from D* to U*.)

(ii) LP integrability:

1/p
(2.4) esssup (/ <1/t17x, €17 dz) <ce< +oo.
D

tel0,T)
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(iii) Diagonal continuity:
(2.5) /OT w?(vf)dt —0 asr—0 for all T' € (0,T),
where
wp(vf) = / ][ (V|61 —&fP) dydo
D JB,(z)

1s called the modulus of continuity of v.
We denote the set of all time-dependent correlation measures by LP([0,T),D;U).

When p is unspecified or clear from the context, we will call LP-integrable time-
dependent correlation measures just time-dependent correlation measures.

In [25] (and see [24] for a time-independent version), the following equivalence
between time-dependent correlation measures and parametrized probability measures
on LP(D) was proved.

THEOREM 2.2. For every time-dependent correlation measure v € LP([0,T), D;U)
there is a unique (up to subsets of [0,T) of Lebesgue measure 0) map p: [0,T) —
P(LP(D;U)) such that

(i) the map

(2.6 to (ko) = [ [ o)) dedutw)

is measurable for all g € HE(D;U);
(i) p is LP-bounded,

(2.7) esssup/ lullf » dpe(u) < P < oo;
tel0,T) JLP

(iii) p is dual to v: the identity

(2.8) /Ijk<uﬁz,g(t,z)>dx:/Lp /Dkg(t,x,u(x))dxdut(u)

holds for a.e. t€[0,T), every g€ HE([0,T), D;U), and all k € N.
Conversely, for every p: [0,T) — P(LP(D;U)) satisfying (1) and (ii), there is a unique
correlation measure v € LP([0,T), D;U) satisfying (iii).

Remark 2.3. Using (2.7), one can show that (2.8) also holds for any function
g€ HZ([O,T),D; U) by approximating functions g € ’H’;([O,T),D; U) by functions in
H5([0,7), D;U).

We also have the following “compactness” theorem for time-dependent correlation
measures [25, Theorem 2.21].

THEOREM 2.4. Let v, € LP([0,T),D;U) forn=1,2,... be a sequence of correla-
tion measures such that

1/p
(2.9) sup ess sup (/ (Vhs o0 €1P) dx) <c< o0,
neN te[o,7) \Jp
T’ ,
(2.10) lim llriris,otip/o wP (v ;) dt=0
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for some ¢>0 and all T" € [0,T). Then there exists a subsequence (n;);2, and some
v e LP([0,T),D;U) such that
(i) vy, v oas j— oo, that is, <V’,§j,g>Hk — <1/k,g>Hk for every g € HE([0,T),
D;U) and every k € N;
(ii) [p (Ve lEP)dn <P for a.e. t€[0,T);
(iii) fOT/ wP (v}) dt <liminf, e fOT/ w?(v2,)dt for every >0 and T' €[0,T);
(iv) for k € N, let ¢ € L1 _([0,T) x D¥) and k € C(U*) be nonnegative, and let

loc

glt,,€) = p(t,)r(€). Then

(2.11) (V*,9),,. < njggf(yjjj,g)?{k.

Assume moreover that D C R is compact, T < oo, and that v, have uniformly
bounded support, in the sense that

(2.12) lullee SR forpy -a.e.u e LP(D;U) for everyn €N, a.et € (0,T),

for some R >0, where p": [0,T] — P(LP(D;U)) is dual to v,. Then the following
observables converge strongly:

(2.13) lim dr=0

J]—00 Dk

/OT ((vh a9(t,2)) = (W9t )) ) dt

for every g € HIP([0,T], D;U).

3. Statistical solutions. The goal of this section is to show that the statistical
solutions of Navier—Stokes as introduced by Foiag and Prodi [27, 28, 29, 30, 54] are
equivalent to families of correlation measures as introduced in [24] that satisfy the
Friedman—Keller system of moment equations. For the sake of simplicity we will
assume that the support of the initial measure y lies in a bounded set B C L?(D;U),
that is,

(3.1) supp(po) C B € L*(D;U).

3.1. The Leray projector. We recall first that the Helmholtz—Leray projec-
tor, or simply Leray projector, is the linear map P: L*(D;U) — L%, (D;U) := {v €
L*(D;U) : dive = 0, fvdx = 0} that projects a vector field f € L?*(D;U) to its
divergence-free component, that is, f =Pf + Vi; with div(Pf) =0 and Pf, Vyy €
L?*(D;U). One can show that Vi is orthogonal in L?(D;U) to any function u €
L3,,(D;U), that is,

/u-Vz/demzo.
D

For functions in the tensor product space L?(D¥;U*) we let P,, denote the Leray
projector in the ith component, i.e., ¢ =Py, ¢ + V1, ; where div,, (P, ) =0, and
Yy € L2(D*;URY) with Vv, ; € L*(D*;U").

3.2. Definitions. We will start by recalling the different definitions of statistical
solutions introduced in [29, 31, 24].
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DEFINITION 3.1 (see [24, Definition 3.2]). Lete > 0. The Friedman—Keller system
of moment equations, defined for time-dependent correlation measures v € L2([0,T),
D;U), is the hierarchy of equations

/ /m/Uk 18 @ &): (t z)dvf (&) d dt
+ /Dk/Uk(fl ® - ®&):p(0,2)dVf ,(€) da

(32 + Ek // @@ ERE&)® &) Va,p(t,z) dvf, (€) do dt
i i V. , L) avy . T
- ; . . 1 k i t,:

k T
:—2_)/ /D [ (@o 060 Arplt.x) dvy () de

for all k €N, for all ¢ € C%([0,T) x D¥;U*) with div,, ¢ =0 for alli=1,...,k, along
with the divergence constraint

(3-3) /m Uk&®~~®£z®az+1(€e+1)®~-~®ak(§k)du§z(§)~v117,,,7“<p(x)dm:0,

where Vi, zy = (Vs s Va,) ', 1< U< k€N, for all ¢ € HY(D*;U*Y), oy €
C(U;U), with aj(v) <C(1+ v|?) for all j=1,... k.

If v solves the Friedman—Keller system of moment equations and in addition
satisfies the enerqgy inequality

K
o [ [ 6l el wdi s
k=0
(3.4) ! 252% Z Z}g% 2 / /D/U+

=1 j=1

|§i—€k+1| €| dv H;m +he;) (&,&p41) dads
K
< a/ / &2 &P dud (&) da
];)kaUk|1| |€x|” dvg . ()

forall K eN and ax €R, k=0,..., K such that px(s) = Ef:o ais® is a nonnegative,
nondecreasing polynomial for s € [0, R] for R sufficiently large related to the support
of the correlation measure (see (2.12)), then we call v a Friedman—Keller statistical
solution of the Navier-Stokes (when € >0) or Euler (when € =0) equations.

Remark 3.2. Friedman—Keller statistical solutions are analogous to the definition
of statistical solutions for hyperbolic systems of conservation laws as introduced in
[24, 25] for compressible flows.

Remark 3.3. By a standard argument for weak solutions to continuity equations,
the map t — <1/f7.,§1 R R® §k> is weakly continuous for every k € N; see, e.g., [2,
Remark 2.2].

Remark 3.4 (formulation of (3.2) with non-divergence-free test functions). Denot-
ing Py, :=P,, ...P,, (cf. section 3.1), we can replace the divergence-free test function
© € C2([0,T] x D¥;U*) in (3.2) by Py for an arbitrary ¢ € C2([0,T] x D¥; U*). Using
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the fact that the Leray projection is self-adjoint and that, by (3.3),
div,, / (G @ @&)dv () =0 foralli=1,....k, ae. (t,2)€[0,T]x D",
Uk

we observe that

Pk/ljk(§1®--~®§k)dz/t’fx(§):/ (G @ @&)dv),(§), ae t€[0,T], z€D".

Uk
Therefore,
3 ] IPrp X
/0 /Dk,/[]k(gl ®--®&): D (t, ) th’x(f)dl'dt
T o
= k Oy
7/0 /kak (/Uk(fl ® ®fk)dl/tvr(f)> F (t,x)dxdt
T ”»
= k L Oe
f/o /Dk/Uk(ﬁ@ ®€k)dvt71(§). 5 (t,z) dx dt.
Similarly,

/ / (€ ® - 6) : Prp(0,2) i (€) do = / / (6@ &) p(0,2) i, (€) do,
DEJ UK DkJUFk

and

k T
Z/O /Dk/Uk(&@'“@fk)iAxiPkga(t,x)dz/t’fx(g) dx dt
=1

kT
:Z/o /Dk/Uk(&®...®§k):Amiw(t,z)duﬁz(g)dxdt,
i=1

the last one being true due to the fact that the Laplacian and the Leray projection
commute on the torus. Hence, the weak formulation (3.2) can be rewritten as

(3.5)
: 0P Nk (6 da
/O/Dk/Uk(&@ ® &) : t(t’ )dvf (&) dz dt

- /Dk/[]k@l ® - ® &) p(0,2) d”&w(f) dx

k T
+;/0 /Dk/Uk(fl®~~®(§i®§i)®~~5k):vzicp(t,a:)du&(g)dxdt

k T
:—g;/o /Dk/Uk(gl®-~-®fk):Axi<p(t,x)dyﬁm(§)dxdt

k T
+l_zl/0 /Dk/Uk(§1® ®(§z®€z)® gk)-vzivzi"/}go,z(t>m)dyt,m(g)dxdtv

where ¢ € C2([0,T] x D¥;U*). The terms

k T
(3.6) ;/0 /Dk/Uk(fl®...®(§i®§i)®...§k):Vﬂivxﬂ/}%i(t,x)dl/f;x(f)d:cdt

correspond to the pressure in the deterministic setting.
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To define statistical solutions in the sense of Foiag and Prodi, we need to introduce
some notation. We denote by L3, (D;U) the space of divergence-free L?(D;U)-vector
fields and by H}; (D;U) the space of divergence-free functions in H'(D;U). These

can be obtained as the closures of C*°(D;U)N{divu =0} in L?>(D;U) and H'(D;U),
respectively, with suitable integral conditions:

L%, (D;U) = {u € L3(T?) : divu=0, /T u(z) de = o} ,
HY (D;U) = {u € HY(T?) : divu=0, /w u(z) dr = 0} :
for periodic boundary conditions. We denote the L2-inner product by
(u,v) = /D u(z)v(x) de

and for € >0 the H'-inner product by

a(u,v 762/ Azt Gm’

Define the Stokes operator A by

Au=—PAu for all u€ D(A) = Hg,,(D;U) N H?*(D;U),
e(Au,v) = a(u,v) for all u,v € D(AY?),

where P is the Leray projector, and the skew-symmetric trilinear form b by

b(u,v,w) ::/ (u-V)v-wdr=(B(u,v),w), u,v,we D(AY?),
(3.7) D
B(u) := B(u,u).
We can then write the Navier—Stokes equations in the functional formulation: Let
T >0, up E L3 (D;U), and find w € L>=([0,T]; L2, (D;U)) N L*([0,T); Hi,, (D; U))
with v’ := 2w € L*([0,T]; D(A~'/2)) such that
(3.8) u +eAu+ B(u)=0

and u(0) =ug in a suitable sense. This corresponds to the weak formulation

d
—(u,v) + alu,v) +b(u,u,v) =0  for all ve Hy, (D;U).

(3.9) o

If we denote

(3.10) F(t,u) :== —cAu — B(u),
the functional formulation becomes

(3.11) o' (t) = F(t,u(t)).

We need the following class of test functions.
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NoOTATION 3.5 ([29]). Let e, denote the class of cylindrical test functions con-
sisting of the real-valued functionals ® = ®(u) that depend on a finite number k € N
of components of u, that is,

P(u)= 90((“791)’ R (uvgk))»

where p € CLR®) and g1,...,9x € H*(D;U). Let ﬂc%l denote the subset of such
functions which satisfy g1, ...,gx € HY,,(D;U). We denote by ®' the differential of ®
in L, (D;U), which can be expressed as

Mw

3 U ,91), (U»gk))gg»
j=1

where 0;p is the derivative of ¢ with respect to its jth component.

We can now define statistical solutions in the sense of Foiag and Prodi. We will
use the definition as stated in their newer work [31, Definition 3.2].

DEFINITION 3.6 (Foiag—Prodi [29, 27, 30, 31]). A family of probability measures
(ue)ost<r on L% (D;U) is a FoiagProdi statistical solution of the Navier-Stokes
equations on L3, (D;U) with initial data po if

(a) the function

(3.12) t— o(u) dp(u)
L2

div

is measurable on [0,T) for every ¢ € Cy(L3;,(D;U));
(b) w satisfies the weak formulation

(3.13)

/Law(p(u)dut(u) /L W) diolu / /L () s ) d

for all t € [0,T] and all cylindrical test functions ® € Zylf
n (3.10);

(c) p satisfies the strengthened mean energy inequality: for any ¢ € C1(R,R)
nonnegative, nondecreasing with bounded derivative and t € [0,T], the in-
equality

where F' is given

(3.14) / (1l ) dpn(u) + 22 / / ' (ullZ )l s ()
< / b (l[ull2 ) dpto(w)
L3,
holds;
(d) the function
(3.15) - / (Il py) diie ()

is continuous at t =0 from the right for any function ¢ € C*(R,R) nonnega-
tive, nondecreasing with bounded derivative.
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Remark 3.7. Note that, as a consequence of the energy inequality (3.14) for
¥ (s) = s, the function

0 [ Nl dista)
L2

div

belongs to L*°([0,7]) and the function
L3
belongs to L!([0,77]). Notice also that (3.13) implies that

t— D (u)dpg(u)
for ®(u) a cylindrical test function is continuous since

/ (F(s,u), ® (u)) dpuy ()

L(liv

is locally integrable. Combining this fact with condition (c), condition (d) follows
directly.

3.3. Equivalence between the solution concepts. Next, we show that the
Friedman—Keller statistical solutions in Definition 3.1 and the Foiag—Prodi statistical
solutions in Definition 3.6 are in fact the same.

THEOREM 3.8 (Foiag—Prodi statistical solutions satisfy the Friedman—Keller sys-
tem). Let p be a Foias—Prodi statistical solution such that the initial condition ug has
bounded support,

supp(po) C B C L, (D;U), BcC{ueL*(D;U) : |ullr2p) < R}

for some R > 0. Then p corresponds (cf. Theorem 2.2) to a correlation measure v
that is a statistical solution in the Friedman—Keller sense (cf. Definition 3.1).

Conversely, we have the following.

THEOREM 3.9 (Friedman—Keller solutions are Foiag—Prodi statistical solutions).
Let v be a Friedman—Keller statistical solution of Navier—Stokes (cf. Definition 3.1)
with bounded support, i.e.,

(3.17) /Dk /Uk €% [k dvf  (€) do < RF < o0,

for some 0 < R < oo, every k € N, and almost every t € [0,T]. Then v corresponds
to a probability measure u = (ut)o<t<r on a bounded set of L% (D;U) which is a
Foias—Prodi statistical solution of the Navier—Stokes equations (cf. Definition 3.6).

The proofs of these two results are given in Appendix A.

Foiag et al. have shown existence of Foiag—Prodi statistical solutions for the
(forced) Navier—Stokes equations; see, e.g., [27, 28, 29]. Using these equivalence the-
orems, this implies existence of statistical solutions via correlation measures as in
Definition 3.1.

Remark 3.10. The equivalence theorems, Theorems 3.8 and 3.9, are restricted to
probability measures with bounded support. It should be possible to extend these
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results to probability measures having sufficiently fast decay near infinity; however,
the proofs would become significantly more technical. We have therefore decided to
restrict ourselves to probability measures with bounded support.

4. Vanishing viscosity limit of statistical solutions of Navier—Stokes.
The goal of this section is to pass to the inviscid limit € — 0 under the assumption of
weak statistical scaling (cf. section 4.3, Assumption 1). We will first prove a rigorous
result on the longitudinal third order structure function

(A1) S = /OT/Liingg/D((u(x—l—rn)—u(m))~n)3dde(n)dut(u)dt,

and then relate it to the similarly defined second order structure function using the
weak scaling assumption. Together with weak statistical anisotropy, this yields diago-
nal continuity of the correlation measures v° that is needed to apply the compactness
theorem, Theorem 2.4, and pass to the limit. The proof of the scaling estimate for the
third order structure function (4.1) in Lemmas 4.2 and 4.3 largely follows the proof
of a similar result for martingale solutions of stochastic Navier—Stokes equations in
[6]. To simplify notation, we will omit writing the dependence of v and 4 on ¢ in the
following sections.

4.1. Karman—Howarth—Monin relation. The key to deriving an estimate
on the behavior of the third order structure function (4.1) is the KHM relation
[16] that describes the evolution of the second correlation marginal. Similar re-
lations have been derived before for various settings (stochastic, forced, etc.); see
[32, 50, 16, 48, 6, 21, 19]. For statistical solutions we derive the following.

PROPOSITION 4.1. Let v be a Friedman—Keller statistical solution of the Navier—
Stokes equations. Then the second correlation marginal v? satisfies the KHM relation
for correlation measures:

(4.2)
Z gieydv?, ,on(€)dz o (h)dh
ij /D/D U2 152 +h
7Z/I)/D/UZ§§§§- A3 (&) dx o™ (R) dh
j
1 T S “
+2;/0 /D/D/Uz(%*f”(@’5{)(55*ff)dyix,x+h(£)dxahww(h)dhdt
ij

> L[] ] €6 =6 - ) dtunen©)do drr ) dnae

for any T >0, where 0 = (Uij)?’jzl is any smooth, compactly supported, isotropic rank
2 tensor—that is, any o € C2(R? R¥*?) of the form

h/Ihl, h#0,

(4.3) o(h) = <w1(|h|)1+w2(\h|)h®h> ) where h = {0’ h=0,

for wi,ws € C2(R).
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Proof. We consider (3.5) for k = 2 with the test function ¢(t,x,y) = n(t,y—z) (for
simplicity replacing =1 and x5 by = and y and writing in component form n = (n");;),

T . Onid
3 Ji . 9
%:/// U2f152 ot (t,y x)th’myy(f)dxdydt
+Z// / flfj (0 y—x)dvgﬁw’y(f)dxdy

k/ / / / 6 80,n" (ty — v)dv, (€ dudydt
ij

(4.4) +Z//// ELEbeb 0, (ty — ) A2, (€) do dy dt

ijk

-2 [ ] [ et samsuy-naz, @da

+Z/T// /zﬁiﬁf 100,00 | (ty — ) dv?, (€ dr dy dt

+Z//// §8E50,00,01 5ty — ) dvt, (&) dz dydt.

ijk

Since 1y 1 solves Agapy, 1 = divyn and 1y, 2 solves Ay, o =divyn = —div, n, we have
V1= (Az)"tdivyn and ¢, 0 = —(A,) " tdivy n=—(A;) "' div,n and so ¢, =1, 1 =
—1y.2 (up to additive constants). Using this and changing the integration variables
to x and h:=y — x, we obtain

Z/ // U2§1§2 (t h)dv; , oo (€) dzdhdt
+Z// / SN (0.h) A, 4 (€) dacdh

_Z/ /// EErEoen (¢, h)thIw+h(§)dxdhdt

ijk

(4.5) +Z/ /// ELELEk D™ (8, h) v, o o p () da dhdt

ijk

:*252/ ///51 JAR (6, h) dv} o (€) du dhdt
+Z/ /// €18 €L O Ot (1, h) v, 1 (€) da dhrdt

ijk

—Z/ /// E1ELER O Dyl (t,h) AV, o1, (€) dardhdt,

ijk

where 9, = 9, 1. The cubic terms can be rewritten using the following simple fact
(which can also be found in Frisch [32, equation (6.13)] and in a similar, weak form
in [6]):
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(4.6)

'y L L] cieher = ehonenun) dvt s (€) dadna

T . . ..
=S [ ] - e - et — om0 ik (O dednar
ijk

The proof of this is postponed to the end of this proof. Using this, we can rewrite
(4.5) as

(4.7)

Z/T// Uﬁﬁfgf(tvh)dV§m,m+h(f)dxdhdt
+Z///£1£ (0, h) i .o 4 () dav dh
QEJ;/O /D/D/Uz(fi*fé)(f{*fé)(ﬁ’f*55)5hknij(t,h)dl/tZ,LHh(g)dxdhdt
T .
:_25%: /0 /D /D /U 2§§§%Ahnij(t,h)dyf%“h(f)dxdhdt
+§/OT/D/D /U G EFEL O O (8, ) AV}, (&) dadhdt
—Ejk: /0 T/D /D /U G000 U (1 D) A 4 () de dhd

Since

T
> / / / / G AT (L h)dv} oy, (€) dz dhdt
i Y0 JDJDJU?

:Z/ //Gg{dutlz(f)dm/ Ay (t,h) dhdt =0,
o Jo JpJu ' D
we can rewrite

—252/ ///51§ A (b B V2, 1 (€) dar dhdt
=¥ [ L] ] 6 - e - i am . .ooi@azana

Moreover, we have for symmetric, smooth, and compactly supported rank 2 tensors
71 of the form

(4.8) n(t, h) = wi(t, [T+ wa(t, [A])h
with 1/)7” = —(Ah)_l divy, 771','

Z/ /// G EFE OOl (t,h) dvy, oy, (€) dzdhdt =0,

ijk

3 / /D /D /U ELELER D Oy G (1, h) iRy (€) dudhdt =0,
ijk *0 2

(4.9)
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whose proof is postponed to the end of this proof. Using this, (4.7) becomes
(4.10)

| [ ge% emak @ drana
3 [, e on at. @ dran

—*Z/ /// (& — )€ - &) =)o (¢, h) dv}, oy, (€) dudhadt

ijk
> [ ] ] e -eamsun i, . wana

Let 65 be a sequence of smooth, uniformly bounded functions with the property that
05 — 1o, (t) for every t as § — 0. If we now use a test function

(4.11) n(t,h) =o(h)bs(t),

where o is of the form (4.3), then we can use the weak continuity in time of the
moments [, &1 ® -+ ® & dvf,(€) (cf. Remark 3.3) to obtain for any 7 >0, as § — 0,

(4.12)
- ; /D/D szi 32, in(€)dzo™ (h)dh
+Z///ﬁfgd’/g,x,wrh(ﬁ)dxoij(h)dh
_72/ /// (& —&)( 53 52)(51 62)dytxm+h(£)dxahk0' () dhdt

ijk

=<y [ L] [ 6= i€l - &) (€ dndno® () dne.

Proof of (4.6). We expand the right-hand side:

2};/ /// (& — &) ~ )& —E)wn" (. h) v}y o, (€) do dhdt
i
ZEJ; /0 /D /D /U (GEet GG Ay oy (€) dw Dy (8, 1) dhds
+§; /0 T/D /D /U (ST — EEleD)On” (th) v, 41, (€) da dhdt
—2}; /0 T/D /D /U (Gl — SEEDDn” (10 i 4, (6) dadhdt

_Z/O /D/D /(]2(€§E{§f — 1850 (8, h) dv} o iy (€) drdhdt.
ijk
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The first term on the right-hand side is zero since n is compactly supported (after
changing the integration variable from = to x — h in one of the terms). The second
term on the right-hand side vanishes using the divergence constraint (3.3). Using that
n and v are symmetric, the last two terms are identical and so

T . . ..
S L[ - - et - ehonnen) s ppn(© deanas
ik

-2 | L] | cisiet - iedehonen 0) i dadna,

which proves the claim. ]

Proof of (4.9). We consider only the second expression. Assume 7 is of the form
(4.8), where w;, i = 1,2, are compactly supported in the torus. Then using that
Yy = —(Ap)~tdivy 0™ (the first term is treated in a similar way)

T
By /0 /D /D /U b0 006 ) () d i
ijk
T o .
=y /0 /D /D U2g;ggg;duﬁmﬁh(g)dxahkahj&l (Onen™(t, b)) dhdt
ijk?

T . .
5[ [owons ([ [ ek ahones@) o vina
0 JD D JU?

ijke

We note that since w; have compact support, we can write in polar coordinates

i ’ ’ wa(t,|h X
S O (1.1) = (wlm 1K)+, ]) + 2<|h|')) i
YA

=:G(t,|h])
and so
T B . B
E=Y" / / Oy Ops A ( / / 515555duiz,ﬁh(s)ahm“(uh)dw)dhdt
ijke 0 D D JU?
T . . A .
S [ fawowa ([ [ deishat, @) Gle i and
nJ0 D pJu2

T poo . as
- Z/O /O /h| OprOpi A1 (/D . giglek dut27$7$+h(£) dm) h*dS(h) G(t,r)drdt
Jk =

T poo .
:Z// / i O Ops A1 (// f{g%ggduﬁx’ﬁh(g)dx)th(t,T)drdt
0 Jo |h|<T DJU?2

ijk

T proo )
:Z / / / Oy Opi A™Hdivy, ( / / glg;ggdy3“+h(g)dx>th(t,r)drdt
nJo Joo Jinisr pJu? w
:O7

where we used the divergence theorem in the second to last identity and the divergence
constraint (3.3) for the last identity. d
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4.2. Scaling of third order structure functions. Next, we use the KHM
relation (4.2) to derive a scaling relation for the averaged third order structure function
in terms of the measure i,

(4.13)
S3(r,r) / /L2 ]é2/ |u(z) —u x+rn)| (u(x 4+ rn) — u(x)) - ndxdS(n) du(u)dt,

which will be more convenient to work with for this purpose. We have the following
lemma.

LEMMA 4.2. Let pu; be a Foias—Prodi statistical solution of the Navier—Stokes
equations (cf. Definition 3.6) such that the initial measure py has bounded support.
Then

3
(4.14) ‘SO(TTT) < 2B,
where Ey is the initial energy,
(415) By [ @l duote)
div 5

Proof. We take a test function of the form o(h) = w(|h|)I in the KHM relation
(4.2) with w having compact support in [0,1/5). A little bit of algebra yields (denoting
hi=h*/|h])

Opeaw(|h]) =o' (|h)R,

and so (4.2) for this particular test function reads

(4.16)

// GGk, (O deu(h) dn - ///51 € AR, o o1 (€) dueo(|h]) dh
‘ / /D /| /U e~ &€ — &) B (€) du! () dhde
—c [ [ [ [ Jor— P vt doris() d .

In terms of the statistical solution (u¢)¢~o this is

(4.17)

/Lz // u(@ + h) dzw([hl) dhdpr (u)
/Lz // u( + h) dzw(|h) dhdpo(u)

+§/0 /L /D/DIU(JU)—u(Hh)I (u(x + h) —u(x)) - h dew' (|h]) dh dpg (u) dt

:—5/0T/L§WW/D/Du(m)—u(m+h)deAhw(|h|)dhdut(u)dt
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The last term can also be written as
E/OT/H /D/D|u(x)—u(a;+h)|2dxAhw(|h\)dhdut(u)dt
:257242 //th(x+h)-(u(x)—u(m+h))dxvhw(|h\)dhdut(u)dt
_25//Lz //v (@ + h) - () — u(@ + b)) deVaw(|h]) dhdpe (u) dt
) —25/ /L //v (@) - (u(e — h) — w(@)) deVpw(|h]) dh dyg (u) dt

=—26/O /Lgiv /D/Dvxu(:r):vhu(ac—h) dzw(|h|) dh dp(w) dt
:2€ATA31VLLVmu(x+h):VIu(m) daxw(|h|) dh dp(u) dt

Changing to spherical coordinates and using the definition of S5, (4.13), we obtain
1 o0
7/ S3 (7, )W’ (r)dr
2 Jo
= 725/ / / ][ / Vou(x) : Vou(e +rn) dedS(n) dug(u) dirw(r)dr
L3, Js?

/ /LQ ]éf w(z + ) dzdS (n) dpir (u)r2w(r)dr
/ /L2 ][szf u(x +rn) dzdS(n) duo(u)rw(r)dr.

We denote
(1,7) / ][ / (z +rn)dzdS(n) du, (u),
L‘Z S2

v(T,r) ::/0 /thv ]é2 /Dvxu(x) s Vau(x +rn) dedS(n) dpg(u) dt

Since (pt)t>o is supported on functions in L>([0,00); L3, (D;U)) N L2([0,00); HY;,
(D;U)), S§ is a continuous function. Moreover, notice that due to the a priori bounds
following from the energy inequality (3.14), both ms and v are uniformly bounded
and continuous in r and 7 (for the continuity in 7 of the first quantity, one needs weak
time continuity of the moments which follows the fact that they satisfy the equations
(4.2) where all the terms are integrable). We obtain

1 oo . oo
5/ S3(r,r)r2d! (r)dr = 725/ o(,r)rw(r)dr
0 0
— / my (7, 7)rw(r)dr + / ma(0,7)r%w(r)dr,
0 0
which is an ODE in the sense of distributions for S3(7,), and because the right-hand

side is uniformly bounded and continuous, we can consider it in the strong sense (note
that boundary terms when integrating the S§ term by parts vanish):

%287«(7“258’(7")) =dev(,r) + 2ma(7,7) — 2m2(0,r),
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or

3(p u
So( ):2/0 52(2611(7,3)4-7712(7,8)—m2(075)) ds.

r 73

The energy inequality (3.14) and the Cauchy—Schwarz inequality imply that 2ev(7, s)
and ma (7, s) are both bounded by Ey (defined in (4.15)), uniformly in 7,s. Hence,

(4.19) ’S o(r)

r

2 T s\ 2
S*/O (f) (2e|v(7, s)| + [ma(T, 5)| + |m2(0,s)]) ds < 2.

T r

(See also [6, Proposition 1.9] for a related result.) O

Using this lemma, we can derive a scaling relation for the averaged longitudinal
structure function S’ﬁ’, where

(4.20) S{(rr) / /L ][S/ w(z +rn) —u(x)) -n)" dedS(n) du(u) dt.

LEMMA 4.3. Let p; be a Foias—Prodi statistical solution of the Navier—Stokes
equations (cf. Definition 3.6). Then

Sﬁ)(T,T’)

r

(4.21) ‘ < 2E,

where C > 0 is some constant independent of € and Eqy is the initial energy,

(422) Boi= [ @)l duolu):
L2, (D;U)
Proof. Again, we start with the KHM relation (4.2). This time we use the test
function o(h) =w(|h|)h ® h where w € C°(R) is an even function. We have

Ok (W(RDRTRI) = o (B RFAI F ||(zkh o Syaht = 2H R ) ([

< (1)) - |h| )hlhjhk+|h|(1kﬁj+5jkﬁi>w(|h|).

Therefore, (4.2) becomes

(4.23)
] b s

+// Ufl'Ef2'W&Hh(f)dmw(Ihl)dh
“////U (&2 — &) - 1) dv?, oo (€) da (W (1)) — 2B] " w(|h])) dhdt

[ [ ]l =6 = ) hids (€ delhl (b dht

-3 L[] - - o desio () anae
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Again, in terms of (fit)¢>0, this means

(4.24)
/LQ et )btz o

/EZ // ) - hu(z + h) - hdzw(|h|) dhdpo(v)
_’/ //L/ u(e +h) —u(x)) - h)” de dpuy () (w (1)) = 21|~ w(|h])) dhdt

[ / X / ula) —ue + ) (u(e) — ula + ) - hde dyy(u) b|~ (b)) dh de
_gz/ /// ) = (o 1) (o7 () = (4 ) do dpa(w) g™ () dh
Similar to the computation in (4.18), we have

gz/ /// )~ ui(z + h)) (w (x) — ! (z + b)) da dpsy (u) Apo™ () dh dt
-2} / /| /L X / Vot (@ + ) Vo (2) do dps (w)o (1) dhd

—26/ S L (et By (Tt ) oo

0 (4.24) becomes (after switching to polar coordinates)

(4.25)

/ /L2 ]éz/ ) -nu(z +rn) -n dedS(n) du: (u)r’w(r) dr
/ /L2 ]éz/ ) -nu(x +rn) - ndedS(n) duo(u)r’w(r) dr
_7/ / /L ]é/ u(@ +rn) = u()) -n)” dedS(n) du(u) dt

2

(r2w/(r) = 2r

///Lw][S/Iu ) — u(z +rn)[?

(u(z) — u(z +rn)) - ndzdS(n) du(v) dtrw(r) dr
=2 i / /L2 ]éz/ (Vau(z+rn)-n) - (Vou(z) - n) dedS(n) du(u) dir*w(r) dr.

Denote

(1,7) /L2 ]£2/ ‘nu(z+rn)-n dxdS(n)du, (u),
o(r,T) ::/O /Lgiv]éz /D Veu(z +rn)-n) - (Vyu(z) - n) dedS(n) du(u) dt.
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Writing w’(r) — 2r~'w(r) = r?4 (w(r)r=2), (4.25) becomes

1 [ ; Ry
3 / T4Sﬁ(7, )0, (r~2w(r)) dr + S3(r,r)rw(r)dr

0 0

= 7/ Mo (1, 7)r2w(r) dr + / ma (0, 7)r2w(r) dr — 25/ (1, r)r2w(r) dr.

0 0 0

Again, we note that due to the estimates from the energy inequality (3.14), SH’ m,
and v are continuous and bounded quantities in 7 and r. And so we can consider this
ODE in the sense of distributions as an ODE in the strong sense,

3(r,r
O, (r'Sj(r,m)) =2r' (‘9(7,) +ma(7,7) — ma(0,7) + 2e0(r, 7’)) :
"t (S3(r,s) - ~ _
(4.26) Sﬁ(r,r) = 2/0 oy (SO (57 ) + ma(T,s) — ma(0,s) + 2ev(r, s)) ds.

By the energy bound and the Cauchy—Schwarz inequality, mo and v are uniformly
bounded in ¢ for all s,7 > 0. Moreover from Lemma 4.2, we have that s~153(s,7) is
uniformly bounded in € by 2E,. Hence,

Sﬁ(T, r)

(4.27) .

< 2E)

for some C > 0 independent of ¢. O

Remark 4.4. Combining (4.19) and (4.27), we also obtain a uniform bound on
r=153 (1,7), where S3 is the transversal structure function

(4.28)
.ndzr n +(u :3T,7‘—37ara
Si(rr): //L ]éz/\ém )Pormu(x) -ndedS(n) dus(u) dt = S3(r,r) = Sjj(7.7)

where

A ~ h
(4.29) Spu(z) =u(z +h) —u(z), Ofu=OA—-h@h)dyu, h:= 1k
None of these quantities has a sign and therefore the previously derived bounds do
not imply compactness without further assumptions.

4.3. Scaling assumption. In order to pass to the limit ¢ — 0, we need an
additional assumption about the behavior of structure functions. Specifically, we
need the following.

Assumption 1 (weak statistical scaling). For any € > 0, let u¢ be a Foiag-Prodi
statistical solution of the incompressible Navier—Stokes equations. We assume that for
r < 1, the second and third order longitudinal structure functions (4.20) are related
by

)

‘SH T,7)

where C' is a constant independent of £ and a > 0.
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Remark 4.5 (weak statistical scaling). Assumption 1 is inspired by the following
stronger scaling assumption often encountered in turbulence theory: For any p,q with
q>p > 1, the pth and gth order longitudinal structure functions (4.20) are related by

Ap

()
)

(4.31)

Sp(rr)| <€

St(r.r)

where C' is a constant independent of € and A(p) > 0 for p < pg where 3 < py €
R U {o0}. In Kolmogorov’s 1941 (“K41”) theory [42, 41, 43], A(p) = p. However, this
cannot be confirmed with physical experiments [4, 55]. Various physicists therefore
suggested intermittency corrections to account for the deviation from Kolmogorov’s
original theory: among others, Kolmogorov himself in 1962 [44] in his refined theory
of turbulence, Frisch, Sulem, and Nelkin with the S-model [33], as well as Novikov and
Stewart [51]. Assumption (4.31) can also accommodate the frequently used model by
She and Leveque [56], who suggested

(4.32) Alp) = g + 2(1 - (?)W).

Remark 4.6. Combining the bound on the third order structure function in
Lemma 4.3 with Assumption 1, we obtain

‘Sﬁ(r,r)‘ < Cr®.

We will combine Assumption 1 with the following lemma, which is Lemma 1 by
Drivas [18], translated to the setting of statistical solutions. The proof is given in
Appendix C.

LEMMA 4.7 (weak anisotropy). Let u; be a statistical solution of the Navier—
Stokes equation. Then u satisfies

L.

7[ (8ymt - n)%dS(n) da dp (u) dt
div(D?U) aBr(o)

T
:/ // ][ |Seu(x)|2dl da dpy (u) dt.
o JpJr2 (p;U)JB,.(0)

Under Assumption 1, we obtain

(4.34) / ' /],

div

(4.33)

][ |Seu(z)[2dl da dpy (u) dt < Or™.
(D;U) J Br(0)

Using the equivalence theorem, Theorem 2.2, we can write this as

T
(4.35) / / ][ / €1 — & duiw_w(é“) dydz dt < Cr®,
o JpJB,(0)JU2

and since this is uniform with respect to the viscosity coefficient e (by the weak scaling
assumption), it implies uniform diagonal continuity of the sequence {v}.~¢.

4.4. Passage to the limit e — 0. Now we are in a position to prove our main
result. We will keep track of the superscript € again in order to distinguish between
the approximating sequence {v°}.so and the limiting measure v for ¢ =0.
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THEOREM 4.8. Let {v°}es0 be a sequence of (either Foias—Prodi or Friedman—
Keller) statistical solutions to the Navier—Stokes equations with initial data po with
bounded support (cf. (3.1)). Assume that v° all satisfy Assumption 1. Then, ase — 0,
V¢ converges (along a subsequence) to a correlation measure v on L? with bounded

support (cf. (3.17))
(4.36) L] e ko de< R <ox.

for some 0 < R < o0, any k € N, and that satisfies the “inviscid Friedman—Keller
system”:

T
/0 /Dk/Uk(fl R &) : %—f(t,x) d’/tk,x(f)dl‘dt
(4.37) +/Dk/Uk(§l®"'®§k):cp(O,x) dy(’iz(é‘)dx

k T
3 [ L 60 e @e6e 8 Vaslta) ddy O drai=0

for all k €N, for all ¢ € C2([0,T] x D¥;U*) with div,, ¢(x) =0, a.e. x € D* for all
i=1,...,k and (corresponding to the divergence constraint)

(4.38)
/ R @@ (1) ® - @ ap(€e) dvf ,(€) - Vay,.. .z ¥0(z) dz =0,
Dk JUFk

where Vi, zy = (Vays- s Va,) ', 1 <L < k€N, for all p € HY(D*; U4, a; €
C(U;U), aj(v) <C(1+v|?), and j=1,...,k.

Proof. From the condition on the initially bounded support (3.1) and the energy
inequality (3.4), we obtain that the sequence v° satisfies (2.9) for p = 2 uniformly in
€ > 0. The reasoning of subsections 4.1, 4.2, and 4.3 resulting in (4.35) implies that v°
is uniformly diagonal continuous as in (2.10). Hence, using Theorem 2.4, we obtain,
up to subsequence, the existence of a limiting correlation measure v € £2([0,7T), D; U).
So it remains to check whether v satisfies (4.37) and (4.38). We note that the functions

g1(t,2,8) = (6 ®---@&): %—f(t,x%
k
(4.39) 92(t, 2, §) == Z(& ®---®@&): Ay, p(t, x),
i=1
k
g3(t,x,§) == 2(51 R @) Q&) Ve, 0(t, )
i=1

for p € C2([0,T] x D¥F;U*), 1 <L < k€N, are all functions in H¥?((0,T], D; U).

Hence, we can pass to the limit in all the terms in the Friedman—Keller system
(3.2). The term that is multiplied by e vanishes because it is a uniformly bounded in
€ > 0 quantity that is multiplied by e. For the divergence constraint (4.38), we note
that the function

ga(t,2,€):=0(1)61 @ @& @ apr1(&ry1) @ - @ ar(§k) - Va2, (2),
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lies in H2P([0,T],D;U) for any 6 € C°((0,T)), and ¢ € H'(D*;U**), and aj €
C(U;U) with |a;(v)| < C(1 + |v|?). Passing € — 0 in <1/€7k,g4>w€ and using that v*
satisfy the divergence constraint (3.3), we can conclude, by the arbitrariness of 0, that
(4.38) holds for a.e. t€[0,T]. d

Remark 4.9. By the equivalence Theorem 2.2, we know that the limiting cor-
relation measure v corresponds to a parametrized measure g = (u¢)iso: [0,7) —
P(L3,,(D;U)) that satisfies

o) [ o P () = / 0 o)

for all cylindrical test functions ® € 90(}),1 that satisfy g; € C%(D), and the energy
inequality

(4.41) / ||uH2Lz(D)d,ut(u)</ lul22 0 dito () for all £ [0, ],
L2?(D) L2?(D)

The proof of this fact follows along the lines of the proof of Theorem 3.9 while ignoring
the terms involving € and not attempting to recover B(u) as it may be unbounded.

5. Discussion. It is well-known that many incompressible fluid flows of interest
are characterized by very high Reynolds numbers. Hence, a precise characterization of
the vanishing viscosity (¢ — 0) limit of the Navier—Stokes equations (1.1) is of great in-
terest. Formally, one would expect that the vanishing viscosity limit of Navier—Stokes
equations is related to the incompressible Euler equations. However, as mentioned
in the introduction, rigorous results in this direction are only available in two space
dimensions, even in the case of periodic boundary conditions. The key aim of this
article was to investigate the vanishing viscosity limit of the Navier—Stokes equations,
including in three space dimensions.

It is well-known that fluid flows at high Reynolds numbers are characterized by
turbulence, loosely speaking, marked by the presence of energy containing eddies at
smaller and smaller scales. This phenomenon is clearly linked to the lack of com-
pactness in the Leray—Hopf Navier—Stokes solutions as well as their possible instabil-
ities/nonuniqueness.

Hence, one needs to make further assumptions on the Leray—Hopf solutions that
can yield additional information and facilitate passage to the limit. One avenue for
making such assumptions, which are realistic and possibly observed in experiments,
comes from physical theories of turbulence. In particular, Kolmogorov’s well-known
K41 theory is based on several verifiable assumptions on the underlying fluid flow
and results in a precise characterization of quantities such as structure functions and
enerqy spectra.

In [12], Chen and Glimm relate the K41 energy spectra to compactness results on
the Leray—Hopf solutions, in appropriate Sobolev and Hoélder spaces. Consequently,
under the assumption of the K41 energy spectrum, the authors prove that the un-
derlying Leray—Hopf solutions converge to weak solutions of the incompressible Euler
equations as € — 0. However, Kolmogorov’s derivation of the decay of energy spectra
is based on a probabilistic characterization of the underlying fluid flow. Turbulent
experiments are not repeatable, which makes a probabilistic description necessary. In
particular, assumptions such as (statistical) homogeneity, isotropy, and scaling, which
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form the foundation of Kolmogorov’s theory, are too stringent if imposed at the de-
terministic level, as done in [12]. Moreover, it is now well-established that the strong
scaling assumptions of Kolmogorov might not hold in real fluid flows and intermittent
corrections are necessary. Hence, the applicability of the assumptions and results of
[12] can be questioned from this perspective.

Nevertheless, the connection with Kolmogorov’s theories of turbulence and their
variants forms the basis of our work. We start with the realization that a proba-
bilistic description of the solutions of Navier—Stokes equations is necessary to relate
physical theories of turbulence to rigorous mathematical statements. To this end, we
focus on statistical solutions of Navier—Stokes equations. Two possible frameworks
of such statistical solutions are available, namely the Foias—Prodi statistical solutions
(see Definition 3.6) and the Friedman—Keller statistical solutions (see Definition 3.1),
which is based on the concept of correlation measures from [24]. We prove that these
solution concepts are equivalent as long as a statistical version of the energy inequal-
ity holds. This also allows us to prove the existence of Friedmann—Keller statistical
solutions of the incompressible Navier—Stokes equations.

Then, we investigated the vanishing viscosity limit of the statistical solutions of
the incompressible Navier—Stokes equations. To this end, we derived a suitable statis-
tical version of the well-known KHM relation and used it to prove precise rates for the
asymptotic decay of an averaged third order structure function in Lemma 4.2. How-
ever, these estimates do not suffice to pass to the e — 0 limit. To this end, we assumed
a weak statistical scaling of the Navier—Stokes statistical solutions (see Assumption 1).
This assumption is a weaker version of Kolmogorov’s scaling assumptions in his K41
theory. Moreover, it is consistent with and incorporates different variants of scaling
that are proposed in the physics literature to explain intermittent corrections to Kol-
mogorov’s theory. Under this assumption, we proved a weak anisotropy result and
invoked compactness results of [25] to rigorously prove that the statistical solutions of
the Navier—Stokes equations converge, in a suitable sense, to a statistical solution of
the incompressible Euler equations. Thus, we were able to characterize the vanishing
viscosity limit of the Navier—Stokes equations in a relevant regime.

At this juncture, it is essential to point out that no assumption—other than
weak statistical scaling—is made in our results, and all other estimates are derived
rigorously. This should be contrasted with the results of [12], where the authors
directly assume a decay of the energy spectrum for the weak solutions of the Navier—
Stokes equations. It is currently unclear if one can relax the weak statistical scaling
assumption or even if it holds for all incompressible fluid flows. Experimental evidence
strongly suggests that this assumption is verified in practice; see, e.g., [4, 56, 55].

To the best of our knowledge, the only rigorous study of the vanishing viscosity
limit of the (Foiag—Prodi) statistical solutions was carried out by Chae in [11], where
he proved that these statistical solutions converge to a measure-valued solution of
the incompressible Euler equations. In contrast, we prove convergence to statistical
solutions of the incompressible Euler equations and recall that statistical solutions
are much more informative than measure-valued solutions as they also incorporate
knowledge of all multipoint correlations.

Finally, our characterization of the vanishing viscosity limit can be viewed in
connection to recent results in [46], where the authors proved convergence of numerical
spectral viscosity approximations to the statistical solutions of the Euler equations
under very similar weak scaling assumptions.
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Appendix A. Equivalence of different definitions of statistical solutions
for the incompressible Navier—Stokes equations. This appendix is devoted to
the proof of Theorems 3.8 and 3.9. For convenience, we restate the result.

THEOREM A.1 (Foiag—Prodi statistical solutions are Friedman—Keller solutions).
Let p be a Foias—Prodi statistical solution such that the initial condition pog has
bounded support,

supp(po) C B C L2, (D;U), BcC{ueL*(D;U) : |ulr2p) < R}

for some R > 0. Then p corresponds (cf. Theorem 2.2) to a correlation measure v
that is a statistical solution in the Friedman—Keller sense (cf. Definition 3.1).

Proof. Tt is shown in [27, Theorem 2, section 3] that Foiag—Prodi statistical so-
lutions with initial measure o having bounded support in Bz (p.n(R) = {u €
L3, (D;U) : |Jull2(py < R} have bounded support for all times, i.e., supp(p) C
B £2..( D;U)(R). Therefore, we can assume that p; has uniformly bounded support.
This implies in particular that p; have bounded moments:

(A1) / Hu||2L’§(D) du(u) < R?**  for ae. t€0,T].
L3 (D

Moreover, by [27, Lemma 5, section 3], we have that statistical solutions of Navier—
Stokes satisfy

T
(A.2) / / —0,®(t, ) + alu, ud(t,u)) + blu, w, DuD(, ) de () dt
o Jrz_ (o)

[, 0w dun(
L?ﬁv(D;U)

for any test function ®(¢,u) that is Fréchet differentiable on [0,7] x L3, (D;U) with
®(t,-) =0 mnear t =T and [0, P(t,u)| < C and [0;®(t,u)| < C1 + Col|ul|r2(py for all
u and ¢, for constants C,C1,Cy > 0 (equation (3.13;) and condition (3.8) in [27]).
Therefore, we can choose test functions

(I)(u):q((u7901)7"'7(u790k))9(t)
for ¢ a polynomial on R* and ¢; € H} (D;U) N C*(D,U) and § € CX([0,T)),

j=1,...,k, in (A.2), so that we get

/ / OO a((sr)- . (s ) e (w)t
0J12, (D;U)

I

div

:/L 0(0)q((t, 1), - -, (1, 01)) dpro (w).

(D;U)

k
[9(75) Z aiQ((uv 501)’ Tt (ua ka)) [a(u7 @i) + b(ua U, 901)] d,ut(u) dt
(D;U) i=1

2
div
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Note that we can integrate by parts in the terms involving a(u,¢;) and b(u,u,@;),

1=1,...,k, so that all the derivatives are on the test functions ¢;, i=1,...,k, and 6:
o=/ a(t.01). . (.05)) e )
L2, (D; U)

/ 0(0)((tr 01 .- (tr 1)) o)
L3, (D;U)

+Z//dWDU Bl ) (1)

« / lew(s) A, 05(2) + (u(s) @ u(z:)) : Vi, 03(w:)] das dp(w) dt.
D

Now take q(s1,...,85) = s1---Sk, so that the last identity becomes (denote
de=dxq ... dzy)

// 0" (t)u(zy) - o1 (w1) - - u(z) - i () do dpg (u) dt
L2,.(D;U)

* Z/ /L2 (D;U) J D¥ 0 801(1'1) SU(xl)

d\v

A pil@) k) - or(@r)) dadpy (u) dt

+Z/ /L2 - /Dkﬁ u(z1) - p1(x1) - (u(@;) @ u(z;))

div

Ve, pi(ai) - u(ar) - or(ar)) do dpg (u) dt
+ / Oulmn) - pa() o) o) de drio(u),
2..(DsU)

which is, denoting = = (1, ...,x) and @(t,z) :=0(t)p1(21) @ - ® vk (zk), equivalent

[,

div

-‘rEZ/ /L2 (DU/ u(ry) ® - Qu(wy)) : Ag, 0(t, ) do dpg (u) dt

+z/42

/ w(@) ® - @ (u(z;) @u(z;)) ® -+ Qu(zy))
3 (D)

: Vi, p(t, x) do iy (u) dt

+/2 (D_U)/D (u(z1) @+ @u(zy)) : (0,2) dz dpo(u).

/ w(1) ® - @ u(zy)) : Orsplt, x) da dise () dt
(D;U)

Since we assume that the support of ug is bounded (and therefore also the support
of u; for almost all ¢ € [0,T]), we can use a density argument to conclude that the
above identity holds for all ¢ € L2([0,T); (HZ,, (D;U))¥) N C2([0,T] x D*;U*), that
is, all ¢ € C2([0,T] x D*;U*) with div,, ¢ = 0 for all i = 1,...,k. Observe next
that all the terms in the above identity have the form required to apply Theorem 2.2
(recall that p; has bounded support). Therefore, by the same theorem, there exists
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a unique correlation measure v = (vy)o<i<r = (U}, V7, ...

{1} satisfying

))ogth corresponding to

T
:// (fl@-..@ﬁk):3t¢(t,$)dy£z(§)dxdt
0 Dk JUk
kT
+5§/{; /Dk Uk(€1® ®§k> 190( .’,U) Z/t, (5) -

k T
+Z;/ /m Uk(gl®~~-®(§i®&)®m®§k):vxiw(t,z)dut’fm(g)dxdt
t [ @e o6 o0k, dn

Dk JUk

which is (3.2).

To prove the energy inequality (3.4), we let px (s) be a nonnegative, nondecreasing
polynomial for s € [0, R] of degree K € N, where R > 0 is sufficiently large such that
the support of y; is contained inside the ball of radius R. Then we let px s be a
smooth, nondecreasing (on [0,00)) function with bounded derivative, such that

prm(s) =pr(s), |[s|<M,

and [p 5/ ()] < O where Oy is a constant depending on M (that may go to infinity
as M goes to infinity). Then pg s is a valid test function in the strengthened energy
inequality (3.14). We let M > R. Then we can replace px a in the strengthened
energy inequality by px and obtain an identical result since p; has no support where
|lul| ;2 > R. Thus, we have

/ pic([ull22 ) dyue () + 2 / / e (12 () [0l s (1) ds
L2(D)

(A.3)
< / prc(lul2 ) o)
L2(D)

for a.e. t € ]0,T]. Thanks to the bounded support of y;, all the moment terms have the
form required to apply Theorem 2.2 (cf. also Remark 2.3 for p = 2). Moreover, with
Lemma B.3, we can rewrite the gradient term such that we obtain for a.e. ¢t € [0,T]
the energy inequality (3.4). Indeed, we have with Theorem 2.2

/ prc(lul 20y dpe() = 3 a / 25 e ()
L2(D) L2(D

“/Lz(m/m (1) [u(we) [P dyua ()

o [ ] PP

- 107

k

0

=

ES
Il

0
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Similarly, with Lemma B.3, (via Lemma B.1)

A Pl ) s
—Zakk / / S el o) s

:kz_oakk/o /sz)/m @) Ju(ze) V() de dus (u) ds
:iaki/ /2@ /D ()2 V(@) ? .. Ju(ee) Pde dus (u) ds
:Zakzzmﬁ/ L] er

N §k+1|2 ‘.- |§k|2d falzl+hej)(€7£k+l)d‘rds

and a similar computation for the term involving pg yields (3.4). The bounded support
of pp implies, using the equivalence theorem [24, Theorem 2.7],

/Dk/m 6?1k dvg . (€) d < o0

for any k € N and thus the boundedness of all terms in (3.4). It remains to show
that each v* satisfies (3.3). We let ¢ € CL(D*;U*), 1 < ¢ <k, o € C(U;U),
with a;(v) < C(1 4 [v|?), j =¢,...,k, and compute using the equivalence theorem,
Theorem 2.2,

/Dk' - HR - ® gé ® Oé€+1(§é+1) (SO Oék(fk) dVﬁw(f) . Vzl,...,zg@(x) dx

= / / w(xy) @ @u(ry) @ apgr (U(xe41)) ® - @ ap(u(zr))
L2(D) J Dk

. Vil?17...,:ljg(‘0<x) dx d,ut(u)

since p; is supported on divergence-free functions. This concludes the proof. ]

Let us show the reverse direction now, that is, that any correlation measure that
solves the Friedman—Keller system and satisfies in addition an energy inequality is a
statistical solution of the Navier—Stokes equations in the sense of Foias—Prodi.

THEOREM A.2 (Friedman—Keller solutions are Foiag—Prodi solutions). Let v =
(v1)ogesr be a Friedman—Keller statistical solution of Navier—Stokes (cf. Definition 3.1)
with bounded support, i.e.,

(A.4) L] el vk de< R* < .

for some 0 < R < oo, every k € N, and almost every t € [0,T]. Then v corresponds
to a probability measure u = (u)o<e<r on a bounded set of L3, (D;U) which is a
Foias—Prodi statistical solution of the Navier—Stokes equations (cf. Definition 3.6).

Proof. From the equivalence theorem, Theorem 2.2, we obtain that (v;)ogi<r
corresponds to a family of measures (ut)o<t<r C Z(L?*(D;U)) with bounded support,
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that is, supp(u:) C {u € L*(D;U) : |lullp2(p,uy < R} for almost every ¢ € [0,T].
Property (a) of Definition 3.6—the fact that (3.12) is measurable for all ¢ € Cj,(L?)—
follows from a monotone class argument, which we include here. By property (i) of
Theorem 2.2, the function

oo L) dyu(u) = | o | fa @) dedu )

L2(D;U)

is measurable for every f € L'(D* Cy(U¥)). Let M be the collection of sets

M =1 E € B(L*(D;U)) such that ¢+
L2(D;U)

1g(u)dp(u) is measurable} .

By the monotone convergence theorem, M is a monotone class, that is, it is closed
under (countable) unions of increasing sequences of sets and intersections of decreasing
sequences of sets. By the same argument as in the proof of [24, Proposition 2.12],
M contains the collection of cylinder sets Cyl(L?) = {all cylinder sets on L*(D;U)},
that is, all sets of the form E = {u €L?: (<301,u>, ce <<pn,u>) € F} for some n € N,
a Borel set FF C R", and ¢1,...,p, € L?(D;U). Since Cyl(L?) is an algebra which
generates ZB(L?) (cf., e.g., [24, Appendix]), it follows from the monotone class lemma
that M = o(Cyl(L?)) = #(L?). Approximating an arbitrary ¢ € Cy(L?*(D;U)) by
simple functions now gives the desired conclusion.

We claim that p; is supported on Lﬁiv(D;U). This follows from Lemma B.5:
Since p has bounded support on L?(D) we may take ¢(£) = [£|? in that lemma, which
is continuous and bounded on any compact subset of R and satisfies ¢(0) = 0. Then
by the lemma, for any g € H!(D),

/ / u-Vgdz
2(p) |JD

Hence, by Chebyshev’s inequality,

i ({ueLQ(D) :/jju-ngm#O}) =0.

Since g € H*(D;U) was arbitrary and H'(D;U) is separable, this implies that s is
supported on L2-functions that are weakly divergence free, which is exactly the space
L3 (D;U) (see, e.g., [58, Chapter 1, section 1]).

Next we claim that p satisfies condition (c¢) in Definition 3.6. As v is assumed to
satisfy (3.4), we can apply [24, Theorem 2.7] combined with Lemma B.4 to each of the
terms and obtain that u,; satisfies (A.3) for any nonnegative and nondecreasing poly-
nomial pg(s) = ZkK:o ars® on [0, R]. This implies in particular that p; is supported
on HY(D;U), for a.e. t € [0,T), and (3.16). Now any differentiable nondecreasing
function 1 on a bounded interval can be approximated by nondecreasing polynomials
[57], from which (3.14) follows after passing to the limit in a suitable polynomial ap-
proximation. Specifically, for a given v, let {pxk, }nen be a sequence of nonnegative,
nondecreasing polynomials (K,, — co) satisfying

2
dpg(u) =0.

1
Pk, — TPHCI([O,R]) < n

Then, for t > 0, by the compact support property of u on B,

1
[ otulamdnt) = [ b, (ullFeg)die(w)] < o, = Plesgom <
L2(D) L2(D) "
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and

|// & ([l et oy e ()

/lQ e )l ()

<[ [ ) =5

t
<llpk, — 1/’”@([0,12])/0 /L2(D) [l pydpee (u)dss

C
gi
n

[l 32 )|l oy (w) s

)

where the last inequality follows from (3.16).

It remains to show that the correlation measures satisfy the evolution equation
(3.13) for all ® € ﬂcg,l. From this also part (d) of the definition will follow (see
Remark 3.7). Let ®(u) = ¢((u,91), ..., (u,gx)) be an arbitrary function in .7? y1 with
g; € H'(D;U) and let R = maxi<j<k([lgjll,2)- Since ¢ is continuously differentiable

and bounded on B :=[~RR—1,RR + 1]*, we can approximate it arbitrarily well by
polynomials thanks to the Weierstrass approximation theorem. Let

=3 B gi=00 j=0ndk)s lil=an e+ e
|7]=0

for some N, € N large enough, be approximations of ¢ that satisfy

1
I = pullcr () < i eN.

Let 6 € C1((0,T)) be an arbitrary compactly supported test function. Since by the
equivalence theorem, for any j = (ji,...,Jx), Ji =0, |j| =41 + -+ jr,

/OTQ’(t)/Djl ( il §1@ @ dVl;(f))

<g1 (1)@ Qaq(ry,)®-- ®gk(x|]| Jk+1)® ®gk(mm)) dz dt

/9’ / (u,g1) .. (u, gi)* dpe(u) dt,
L2(D)

and if j = ji + -+ ji_1, then

z§1AT9<t)Lj (/U \51 ®- ®£|]|dyt]z|(§))
:( \(z

) "®g ( ]+1)® ®Axegz(x€)® ®g7( T34, )® ®gk(zm)> dx dt
= / u 91 ~(U,gi)ji_1(u,Agi)~--(U,gk)j’“ dﬂt(u) dt

L2(D;U)

/ (g0 g () gu P )
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where the last equality follows because g; is divergence free because u; is supported
on H'(D;U)-functions by the energy inequality (3.14). Furthermore, we have

T+ T 1]
Z/oa(t)/rﬂj(/(ﬂjl L® 08, ®'”®(££®€Z)®”'®£}‘+ji®'”®£|j|dl/t?z(§)>

0=j+1

: (gl(xl) ® - ® Va,9:(z0) ®...®gk(a:|l‘)> dzx dt

T
:ji/ 9(75)/ (u, 1) (0,95 (w@u, V) (u, g)7* dpy (u) dt
L2(D)

0
= _ji/ 9(t)/ (u91)7" - (u, 90)" " H(B(u), g0) - (w, gi )™ dpag () dit,
0 L2(D)
again, the last equality following because g; is divergence free and p; is supported on

H'(D;U)-functions for almost every t € [0,T]. We obtain, by combining the terms to
the Friedman—Keller system, that if

(Dn(u) ::pn((u,gl)7~- © (uagk))7

then p satisfies the equation

(A.5)
T T
/ / 0 (8)®,, (u) dus(u) der/ 9(5)/ (F(s,u),0u,Pp(u)) dps(u)ds=0
0o JrL*(D) 0 L2(D)
for every test function 6 € C}((0,T)). Next, note that

[y et [ o)t

L*(D)

/ (B () — B(u)) dps (u)
L2(D)

s oy P (0 (0:00) = (00 (.90 i)

< s, 222 (O = plO dite)

ceB
1
=l = pnllcop) < o

because ji; has support on {u.€ L*(D) : ||u||12(py < R}. Moreover,

T
[ 06 [ @utatw) o) dis ) ds
0 L2(D)
T
—/ 9(5)/ (0u®(u), F(s,u)) dps(u)ds
0 L2(D)
T
(A7) <10l | (0u(®() — B (), F (s, )| dps () ds
o Jr2(D)

k T
<[10] 1~ / / 9i0((urg1), .. (u,
101 ; ; L2(D)’ o ((u, 91) (u, gk))

- jpn((uvgl)a R (u’gk)) ||(gij(Svu))’ dps(u)ds
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||9||L°°ZSUP|3 ol [ [ 01 P a2 s

<110l llp - pn\|01<B)Z / / (g5, F s, )| dise(w) ds
2 2

<510l 3 (ngjnHl(D) T / / sy Tl (0 ds> ,

where we used Young’s inequality for the last inequality. Thanks to (A.6) and (A.7),
we can pass to the limit n — oo in (A.5) and obtain

T
/ 0'(s / w) dpia )ds+/ 9(3)/ (F(s, 1), 0u®(u)) dyts (u) ds = 0
L2(D) 0 L2(D)
for every 6 € CL((0,T)). It follows that the distributional derivative of ¢(s) :=
fL2(D) D (u) dus(u) is
d
o= [ (Fls).00(s,0) dia ),
S L2(D)

and since the right-hand side lies in L'((0,7)) we see that ¢ is absolutely continuous.
Consequently, we can (through a standard approximation procedure) insert 6 = 1
n (A.8) and conclude that (3.13) is true.

Appendix B. Auxiliary lemmas.

LEMMA B.1 (representation of the gradient). Let (p)o<i<r be a measure on
L?(D) satisfying

T
(B.1) // IVl dpae(w) dt < C < o,
o Jrz(p)

Define for h € R the finite difference gradient Vj, by

Vinf(x) = (DI f(x),....Dhf(x)), Dif(x)= f<w+heé> f(@).

where e; € R? is the jth unit vector. Then we have for any V € D (or in the case
that D is the torus also for V.=D)

T
L] 19l =g [ Ly Il da)
o Jr2(D)

Proof. Consider a compact V € D and a smooth u € C’OO(D). Then, since we can
write

1
(B.3) D;Lu(ac) = / Opiu(x + the;) dt,
0

and hence

d
(B4) Vil Z / Ol -+ they)|dt < 3 0,51l ey < OV 1
j=1
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for all z € V and [, C [Vull o vy dz < 00, we can use the dominated convergence

theorem to obtain that
/ |Vu|? de = lim / |V yul? dz.
\% h—0 %4

Moreover, by [20, section 5.8.2, Theorem 3], we have for any u € H'(D),
(B.5) IVhull 2y < Cv VUl 12y

for some constants 0 < ¢y, Cy < 0o and any V € D. Since C*°(D) is dense in H*(D),
we can find a sequence of functions (up)neny C C*°(D) such that

S {ln = ull gy =0

for any V C D bounded. So fix V € D and an arbitrary € > 0 and pick N, € N large
enough such that for all n > N,

1

g,

Cv

1
flu— unHHl(V) < 21+
n>N;

where Cy is the constant in (B.5). Then for
IV = Vaull g2 S V(= v 20y + IVU" = Vau"|| o) + [ VA" = u)l 12y
< ||V(U =) 2y + VU™ = Vau®|| oy + Cv V(U™ =) 2y,
S 5 VU = Ve gy -
Now pick hg with |hg| small enough that
[Vu" = Vpu"|| 2 <

| ™

for all h with || < |hol|. Then
IVu = Viul g2y <e

for all h with |h| <|ho|. Since e >0 was arbitrary, we obtain

(B.6) lim/ \th|2dx:/ |Vul? dz.
h—0 Jy, \

Combining (B.5) with (B.1), we can apply the dominated convergence theorem and
use (B.6) to pass to the limit:

I [, Il dpuCy = [ L i ) i)

=i Vaull22 d dt.
oy o Tty diat

COROLLARY B.2. Let (p1)o<i<r be a measure on LU(D). If uy satisfies

T
/ / IVull L py die(u) dt < C < oo,
o Jra(p)

then for any V€@ D (or if D is the torus also for V.=D)

T
[ vt awar=pn [l
o JLup) La(D)
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LEMMA B.3 (more representation of gradients). Let (u:)o<i<r be a measure on
L4(D), where D is the d-dimensional torus satisfying

(B.7) // IVl ) dpie()dt < C < .
La(D)

Then we can represent the integral of the gradient in terms of correlation measures as

T
/0 /Lq(D) ”VUH%Q(D) dpg(u) dt = ll_r%ﬁ/ / Z/ &1 — &1 dv? othe, (€) dzdt.

Proof. From Lemma B.1, we know that we can represent the left-hand side of
(B.8) as the limit as h goes to zero of

;/OT/Lq(D)/D|u(x—|—h)—u(m)|qudut(u)dt

Note that for arbitrary nonnegative functions ¢ € L'(D) with ¢ () := e ~%p(x/e),
we have that

[ [ 116 ra=ito.ts) dyar =50,
DJD

for any f € L1(D), since shifts are continuous in LP for LP-functions. In particular,
choosing ¢(z) = mﬂBl(o)(l’) this yields

(B.9) / ][ )|qdydxﬂ>)0
B.(z)

and
L4 i@ fltdydn =Y [ (@)~ fo o+ he)rd
D J B.(z+hej)

for any fixed h >0 and e; is the jth unit vector. We have for any € > 0,

= ( / T/L o) =t e o dt> v
-5 ( Lo oo o) sty dt) "
(/1. /fmj SN E——
o)

by (B.9) and the Lebesgue dominated convergence theorem. Hence,

// /|u —u(x+ he;)|?dx dp(u) dt

Lq(D)
- q
[ o T eane )~y dp .
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Now we can apply [24, Theorem 2.7] to rewrite the last expression in terms of the
unique correlation measure v; to which p; corresponds:

o / / / f — u(y)|" dy do dpy () dt
e— Li(D) Be(z+hej)
q
T ha El_%//][gﬁhej /U2 €1 — &2 dyzy( ) dy dz dt.

Because of the equivalence theorem [24, Theorem 2.7] and assumption (B.7) combined
with Corollary B.2, we have

— q
ii%hq/ /]{B(Hhej /U2 &1 — &l dvy (&) dy da dt < oo,

uniformly in 0 < h < hg for a small enough hg. Since

/D ]fsg(xmej) /Uz &1 — & dv; () dy da
gO/D]ée(owhej)/U (€] +[€2]7) dv (f)dydx

:20/ / |&1|TdvL(€1)de < C < oo
DJU

for a.e. t, we can apply the dominated convergence theorem and pass the limit in ¢

inside:
— q
ilﬁ% hq/ / ][5 z+heJ)/U2 |61 — &2 dey( )dy dx dt

=— lim/][ / — &1 dv? dydzdt.
y / i [ f o el e,

Now fix € >0, a “good” ¢t € [0,7T], and note that for almost every x € D,

1/q
e a2
‘(/D ][Bs(w-l-hej) /Ug ‘51 €2| dym,y(g) dydx)
1/4q
B (/ / 61— &|TdV] , pe, (€) da:)
D Ju?

(consistency)

1/q
N </[)][B (z+he;) /l]3 €1 _§2‘qdl/2;y7w+hej &) dydx)
1/q

(triangle inequality)

1/q
< (/ ][ / |§3 _§2|qdyg,y,x+hej (g) dydx>
D J B.(z+hej) JU3

(consistency)

1/q
= (/D]i i )/U2 €2 — &1 dz/iﬂhej (f)dydx> _
e (z+ €;

(consistency)

(B.10)
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The last term goes to zero by the diagonal continuity property of v (cf. [24, Definition
2.5]). Hence, for almost every ¢ € [0,T7],

(B.11)

hm/][ / |&1 — §2|qdz/ dydz*// |€1 — &) dumz+he()d
=0 < (z+he;) JU?

Thus, combining (B.11) and (B.10),

o Jrab)
= lim —/ / / ][ —u(y)|? dy dz du(u) dt
e—0 h4 La(D) Be(z+he;)
= lim — q
ELI}(I) ha / / 7@ (”£+hej)/[]2 |€1 £2| dyxu dyd.’l?dt
= *{/ / / 61— &l V3 e, (€) d di.
ht Jo JpJu:

Since this last identity holds for any h > 0, and the limit is bounded by assumption
(B.7), we can pass to the limit A — 0 and obtain, using Lemma B.1,

T j—
/ / / |0;u|? dz dpg (u dt—hm/ / / u(@) = u(@ + he,)|* dx dpg(u) dt
0 Li(D)JD h—0 L4(D) ha
_}llli}%)ﬁ/ / / |§1 §2| dl/x 1+he ( )dﬂfdt

Summing over j=1,...,d, we obtain the claim. ]

LEMMA B.4 (reverse direction of Lemma B.3). Let v = (vi)o<e<r = ((vf,
vi...))ogt<r be a correlation measure as in 25, Definition 2.5] that satisfies

(B.12) ;;gm/ /Z/ 61— E2J1dV2 4, (€) dadit < 0.

Let D be the d-dimensional torus. Then v corresponds to a family of probability
measures p = (pt)o<e<r on LY(D) that satisfy

(B.13)

T
/O/M)nwnm dp () tfhg})*q// Z/ 61— E17dV2 4, (€) dodt < o0,

Proof. The proof follows from the proof of Lemma B.3 by going in the reverse
direction and checking that all the steps are equivalences. 0

LEMMA B.5. Let ®: H'(D) — R be a function of the form

CI)(u) =@ ((uav91)a R (U,ng)),

where @: R¥ — R is bounded and continuous with ¢(0) =0 and g; € H*(D). Then

/ B (u) dpg () =0
L2(D)
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for any u supported on a bounded set of L>(D) corresponding to a family of correlation
measures Vv = (v1,Va,...) satisfying (3.3), i.e

[ [ o otnamen) o o) dre) - Va...aplz) di=0,
pr Ju

where Vg, 4, = (VIN...,VW)T, 1<l<keN, for all p € HY(DF; U, aj €
C(U;U), with aj(v) <C(1+ |v|?) for all j=1,... k.

Proof. Since ¢ is bounded and continuous, we can approximate it on every com-
pact subset B C R* by polynomials p,, such that

1

_ < =
I anc(B) S

n € N. Since ¢(0) =0, we may assume that p,(0) =0 and hence the constant term of
the polynomial is zero. It is therefore of the form

Zﬁj.,

l71=1

where N, € N large enough, ¢ = (¢1,...,C), J = (J1,---,Jk), Ji = 0, and |j| =
J1+ -+ Jjx. Hence

Ny,
Ly TV i) = D08 [ (T (0, V) )
L2(D

gl=1 )

Consider one of the terms in the sum:
s (3T 0 T daf)
L
/ / w(r) - Voygn(@r) das - / u(z;,) Ve, 125, dij,
L2(D)
[ @) Vo i) don [ ) Vo) dino)

= foo foy 2 08 O 1) Ve i) e =0,

where the last equality follows from (3.3). Hence

/ pn((u, Va1),..., (u, Vgg)) dus(u) = 0.

L2(D)

By the approximation property of the p,,, after passing n — oo, we obtain the result
for arbitrary continuous ¢. O

Appendix C. An identity by T. Drivas for second order structure func-
tions. We present the proof of the following lemma discovered by Theo Drivas [18,
Lemma 1] (Lemma 4.7).
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LEMMA C.1 (weak anisotropy). Let p: be a statistical solution of the Navier—
Stokes equation. Then u satisfies

f L

][ (6rnu-n)2dS(n) da dp (u) dt
(Cl) i (D;U) J0B(0)

gt

div

][ (Gou(w) |20 da dpy(u) dit,
(D;U)

where the increment dpu(x) is defined in (4.29).

Proof. We let w € C2°(R?), w > 0, compactly supported in B;(0) and wy(y) :=
n~%w(y/n) for n > 0 its rescaled version. For some fixed £ € R? and x € D, we let
o(t,y) = bwy(xz —y). We use this as a test function in (3.5) for k£ = 1. Using the
Einstein summation convention we then have

/ /Lz L(D5U) / y) - lon(@ —y)8' (t) dy dpe (u) dt
/ / 2 (DU) / )uj(ywjay’“n(f —y)0(t) dy dps(u) dt
i 6/ /Lz (D) / () Aywy(x —y)0(t) dy dpy(u) dt

. o O 0Dyt = 00 dy ) e =0,

where the last term comes from the fact that the test function is not divergence free;
cf. Remark 3.4. We define u,(z) := [, u pu(y)wy(r—y) dy and rewrite the above in terms
of Uy,

/ / )+ 00/ () dpy(u dt+/ / Dyotad ()9 dpn()B(2) dt
L3, (DU) L2 (D;U)

le

—1—5// (DU) (2)0°0(t) dpug (v) dt

<11v

d,v(DU)/ (W)u (y) By Byi oo (& = y)O(t) dy dpsy (u) dt

/ /. )0 ) = B () ) 89 iy ()0 .

div (D5 U)

We subtract this identity from the same identity at = + ¢ (and use the notation
opu=u(z+£) —u(x)):

/ / Sown (z) - 00" (t) dpe () dt
(Ds;U)

d.lV

/ [ bt 0o 0 - )0l (@6 (o) e
L2 DU
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T
+e / / Amégu;(x)éiﬁ(t) dpg(u) dt
L2, (D;U)

/ / / ()26 (), By tho (2 + £ — )0(t) dy dpte () dt

12, (D)

/ / / (0)? (4)0,: By (2 — 1)O(E) dy dp(ur) it
12 (D;U)

div

/ / (14 00y (1 -+ £) — Dy (i) + )]0 dpiy()6(2) it
L?hv(D U)
/ / )yt () — D () ()87 dpr (w)O(E) .
L?hv(D U
Denote the above terms as FEj, Fs, ..., E7, which are all functions of z. We now

integrate (C. 4) over z € D and consider each term separately. As we will see, all of
the terms in (C.4) vanish. We obtain

(C.5) /Eld:v—/ /dw(D U)/ Sown () - £ dat (t) dpg(u) dt =0

after changing the integration from = to x + ¢ in one of the integrals. Next,

T
(C.6) /Egdxze/ / /A,Tui,(z)éidw(t)dut(u)dt:O,
D o JL2, (D;U)JD

again because of periodic boundary conditions. We also get

/E4dx—/ /L Dm//m )0y By5thu (4 £ — y)0(t) dy e dpy(w) dt

/ /[,2 (D) / /DQ Y)0ni 00i Vo (x + £ — y)0(t) dy d dpsy () dt

div

= W) (y) | 0y100s o ( + £ — ) dz6(t) dy dpse (u) dt =0,
/0 /Liiv(D;U)/Du W (y)/D i O Yoo (2 + € = y) dab(t) dy dpe (w) dt =0

and similarly, [, E5dz=0. We also have
(C.8)

/ Eﬁdéﬂ

/ / / (@ 0)Dyetad (24 £) — Dy (w4 O dr g (u)O(E)
L2 (D;U)

=/ / /311 @+ Oud (x4 0)) = (u'e? )y (x4 0)] 0 da dpg (w)0(t) dt
o Jrz, (D;v)

from the fact that u is divergence free and the identity f pOzivdr = 0 for every
v € C1(D), which follows from the periodic boundary conditions. In the same manner
we obtain [, E7dx=0. Since Ej is the only remaining term in (C.4), we obtain also

(C.9) /DE2 dz = 0.
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We next rewrite Fo as

Ey = / / s (DT x—l—f)@zlu (JH-E)—u ($)3zzu (z )]fjd,ut( )0(t) dt

/ / )0y Ouy, () + 6guf7 (95)(3%@&?7 (z+0)] 67 dpy (w)0(t) dt
L(in(D U)
/ / x)0yi Spus) () + 5gui](:c)3@:uz] (z+0)]¢ dpe(w)0(t) dt
L2 (D;U)
o / /L oy @S () + Bgu ()0 g ()] 09 dpae (w)O(E)

/ / )0y Sgud ()69
L2 (D;U)

dlv

+ 5gu x)0yi (6gu]( ) — (5gu;($c)6guf,(ac)8gi€j} dpg(u)0(t) dt
/ / 8zL5[’UJJ ( )fj + 5[11,2] (I)agz (&ui,(:z:)ﬂj)
L2, (D;U)

— | G ( :U)| | dpe(w)6(t) dt
=Fy1+ B0+ Eos.

Integrating these terms, we have

/ By du = / / s oo / ()0 S0l ()07 dax dpy (w)0(t) dt

/ /L2 (D; U)/azl 2)dgus (@)0) da dpuy (w)0(t) dt = 0,

div

(C.11)

where the first equation follows because p is supported on divergence-free functions.
Again using the divergence-free property we can write

T
(C.12) /Eggdx:/ // Ggi(dgu;(x)égu%(x)ﬁj) dpg(w)0(t) de dt.
D o JpJr2 (D)

Now we integrate in £ over a ball of radius r, take 6(t) = 1, and use Gauss’s divergence
theorem,

(C.13)
T
][ E272d€:/ // ][ Opi (6@11?7(x)égu{,(m)fj)dfdut(u)dm@(t)dt
B,.(0) L3, (D;U) J Br(0)

_ / /L DU/faB . Syt ()28 yytid () dS () s dpy () it

dw

:3/ / /][ ((5mun~n)2d5(n)dxdut(u)dt,
o J12, (o;u) /D JoaB,(0)

the factor 3 coming from the relation |B,.(0)| = 37r|0B,.(0)|. Since p has bounded
support in L2, we can let n — 0 in (C.9) and obtain
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L.

][ (6rnu-n)2dS(n) da dp (u) dt
(D§U) 8Br(0)

div
(C.14) .
- / / / ][ (o) 20 da dpey (u) i,
0 JDJLZ (D;U)J B, (0)
which is (C.1). d
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