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Abstract. Gram determinants earned traction among knot theorists a�er E. Wi�en’s presumption about

the existence of a 3-manifold invariant connected to the Jones polynomial. Triggered by the creation of such

an invariant by N. Reshetikhin and V. Turaev, several mathematicians have explored this line of research

ever since. Gram determinants came into play by W. B. Raymond Lickorish’s skein theoretic approach to the

invariant. �e construction of di�erent bilinear forms is possible through changes in the ambient surface of

the Kau�man bracket skein module. Hence, di�erent types of Gram determinants have arisen in knot theory

throughout the years; some of these determinants are discussed here. In this article, we introduce a new

version of such a determinant from the Möbius band and prove some important results about its structure. In

particular, we explore its connection to the annulus case and factors of its closed formula.
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1. Introduction

Gram determinants are named a�er the Danish mathematician Jørgen Pedersen Gram and they appear

in several areas of mathematics including Riemannian geometry, the �nite element method, and machine

learning. In knot theory, Gram determinants became of interest following Edward Wi�en’s contempla-

tion of a 3-manifold invariant connected to the Jones polynomial [Wit]. In 1991, a construction of such

an invariant was presented by Nicolai Reshetikhin and Vladimir Turaev [RT]. Shortly a�erwards, W. B.

Raymond Lickorish announced a simpler approach to the construction of this invariant; this is considered

to be the �rst modern work on Gram determinants in relation to the mathematical theory of knots [Lic1].

�e Gram determinant constructed by Lickorish is known as the Gram determinant of type � and has

been extensively studied; see for instance [KS, DiF, Cai, BIMP1]. It is important to remark that in knot

theory several matrices arise with a connection to Gram determinants. For instance, the Alexander matrix
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of a link !, introduced in 1919 by Alexander to his mentor Veblen, that is used to construct the Alexander

polynomial �Ĉ (C), for which C = −1 yields the determinant of the link. �e Goeritz matrix is also based on

the link diagram and yields the determinant of the link; see Chapters 2 and 4 of [PBIMW] for an extensive

discussion on the ma�er and the relation of these two matrices.

By changing the ambient surface of the Kau�man bracket skein module, di�erent bilinear forms can

be constructed. Rodica Simion investigated bilinear forms of type � while working on chromatic joins

[Sim, Sch]. Józef H. Przytycki and Qi Chen carried on her work in [CP1, CP2]. Paul Martin and Hubert

Saleur were the �rst to consider Gram determinants of type � on their work which, among others, enjoys

applications to statistical mechanics [MS1, MS2]. In 2008, besides exploring the type � determinant, Przy-

tycki created the notion of Gram determinant of type "1 which results from de�ning a bilinear form on

the Möbius band [Prz2]. Although a conjecture was presented by Qi Chen during the same year, this line

of research was only rigorously pursued about ten years later; see for example [BIMP1, BIMP2, PBIMW]

where formal proofs are presented.

�e article is organized as follows. In Section 2 we present the de�nition of the relative Kau�man

bracket skein module. Moreover, the Gram determinants of type � and type"1 are de�ned. We introduce

the Gram determinant of type ("1)1, which arises as a modi�cation of the type "1, in Section 3. �ere

we present the lollipop method, an innovative tool that helps to prove some important results about the

structure of this new Gram determinant. Lastly, an adaptation of Chen’s conjecture to this determinant is

proposed in Section 4.

2. Gram determinants in knot theory

In order to study Gram determinants in knot theory, we need basis elements of a free module over a

commutative ring with unity to be described for a manifold with framed points on its boundary. �at is, we

need the notion of a relative skein module. Arguably, the most extensively investigated skein module is the

Kau�man bracket skein module. In particular, its structure has shown connections between the module

and the geometry and topology of the 3-manifold [Prz1]. In this paper, the relative Kau�man bracket skein

module plays an important role and is given in De�nition 2.1.

De�nition 2.1. Let " be an oriented 3-manifold and {Gğ}
2Ĥ
1 be the set of 2= framed points on m" . Let

� = [−1, 1], and let Lfr (2=) be the set of all relative framed links (which consists of all framed links in" and

all framed arcs, � × � , where � × m� is connected to framed points on the boundary of") up to ambient isotopy

while keeping the boundary �xed in such a way that ! ∩ m" = {Gğ}
2Ĥ
1 . Let ' be a commutative ring with

unity, � ∈ ' be invertible, and let ( sub2,∞(2=) be the submodule of 'Lfr (2=) that is generated by the Kau�man

bracket skein relations:

(i) !+ −�!0 −�
−1!∞, and

(ii) ! ⊔⃝⃝⃝ + (�2 +�−2)!,

where ⃝⃝⃝ denotes the framed unknot and the skein triple (!+, !0, !∞) denotes the three framed links in "

that are identical except in a small 3-ball in" where the di�erence is shown in Figure 2.1. �en, the relative

Kau�man bracket skein module (RKBSM) of" is the quotient:

S2,∞(", {Gğ}
2Ĥ
1 ;',�) = 'Lfr (2=)/( sub2,∞(2=).

�eorem 2.2. [Prz1] Let � be a surface with m� ≠ ∅. If � is orientable let" = � × � , otherwise let" = � ×̂ � .

Let all the points in {Gğ}
2Ĥ
1 be marked framed points that lie on m� × {0}. �en S2,∞(", {Gğ}

2Ĥ
1 ;',�) is a free

'-module whose basis is composed of relative links in � without trivial components. When = = 0, the empty

link is also a generator.

�e following corollary to �eorem 2.2 uses the language of relative skein modules that are used in the

de�nition of Gram determinants in knot theory.
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(a) !+. (b) !0. (c) !∞.

Figure 2.1. �e skein triple.

Corollary 2.3. [Prz1]

(a) S2,∞(�2 × � , =) := S2,∞(�2 × � , {Gğ}
2Ĥ
1 ;',�) is a free '-module with �Ĥ =

1
Ĥ+1

(2Ĥ
Ĥ

)
basis elements.

(b) S2,∞(Ann × � , =) := S2,∞(Ann × � , {Gğ}
2Ĥ
1 ;',�), where {Gğ}

2Ĥ
1 are located in the outer boundary com-

ponent of the annulus, is a free ' [I]-module with �Ĥ =
(2Ĥ
Ĥ

)
basis elements, where I denotes the

homotopically nontrivial curve in the annulus and 3 = −�2 − �−2 denotes the homotopically trivial

curve in the annulus. �e basis, denoted by �Ĥ,0, is the set of all crossingless connections in the annulus

with no trivial components or boundary parallel curves.

(c) S2,∞(�==Ĥ,1 × � ) := S2,∞(Ann× � , {~outğ }2Ĥ1 ∪ {~inn1 , ~inn2 };',�), where {~outğ }2Ĥ1 are located in the outer

boundary component of the annulus and {~inn1 , ~inn2 } are located in the inner boundary component of

the annulus, is a free '-module. �e standard basis is in�nite. It contains elements of the form 0Iğ for

8 g 0, where I denotes the boundary parallel curve of the annulus and 0 ∈ A. �e set A is a �nite

collection of crossingless connections with no trivial components or boundary parallel curves where

outer boundary component of the annulus and ~inn1 and ~inn2 are connected to each other by a relative

link. �ere are 2
(2Ĥ
Ĥ

)
such elements in the set. Let - be a �nite collection of crossingless connections

between 2=−2 points on the outer boundary such that there exists a path between the two points on the

inner boundary and the remaining two points on the outer boundary (i.e. the crossingless connections

do not isolate the remaining two points on the outer boundary from a path to the inner boundary

points). �e rest of the standard basis is from an in�nite family of crossingless connections obtained

from - , where the remaining outer boundary points are connected to the inner boundary points a�er

wrapping around the inner boundary by c: for : ∈ Z; an illustration of such connections can be found

in Figure 3.1 and Example 2.4.

(d) S2,∞("1 ×̂ � , 2=) := S2,∞("1 ×̂ � , {Gğ}
2Ĥ
1 ;',�) is a free '-module. �e standard basis contains an

in�nite number of elements of the form 1Iğ , 1GIğ for 8 g 0, where G denotes the simple closed curve

that intersects the crosscap once, I denotes the boundary parallel curve of the Möbius band, and 1 is

an element in the set of crossingless connections in the Möbius band with no trivial components or

boundary parallel curves for which the arcs do not intersect the crosscap. �e rest of the elements in

the standard basis are from a �nite number of crossingless connections consisting of a collection of

= − : arcs for 0 f : < = that non-trivially intersect the crosscap. Among the �nite collection there are(2Ĥ
ġ

)
crossingless connections that intersect the crosscap = − : times.

Example 2.4. An illustrative sample of the standard basis ofS2,∞(Ann2,1×� ), as described in Corollary 2.3(c),

is given below.

(1) Crossingless connections with no trivial components or boundary parallel curves where the outer

boundary component of the annulus and ~inn1 and ~inn2 are connected to each other by a relative link.
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We denote this set by �;

� =




, , , , , ,

, , , , ,



.

(2) Crossingless connections of the form 0Iğ , for 8 g 1, where 0 ∈ �;




8 , 8 ,

8

,

8

,

8

,

8



.

(3) Crossingless connections between two points on the outer boundary that do not isolate the remaining

two points on the outer boundary from a path to the inner boundary points where the remaining outer

boundary points are connected to the inner boundary points a�er wrapping around the inner boundary

by c: for : ∈ Z.




, , ,



.

Example 2.5. Consider the crosscap model of the Möbius band where denotes a crosscap. By Corollary

2.3(d) the standard basis of S2,∞("1×̂� , 2) consists of the following elements:

(1) Crossingless connections in the Möbius band with no trivial components or boundary parallel curves

for which the arcs do not intersect the crosscap. We will denote the set by �;

� =




,



.

(2) Crossingless connections of the form 1Iğ , for 8 g 1, where 1 ∈ �;


 8

,

8

ğg1

.
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(3) Crossingless connections of the form 1GIğ for 8 g 0, where 1 ∈ �;


 8

,

8

ğg0

.

(4) Crossingless connections consisting of a collection of 1 − : arcs for 0 f : < 1 that non-trivially

intersects the crosscap;

.

2.1. �e Gram determinant of type þ. �e origins of the Gram determinant of type � can be found

in [MS1]. �e creation of this type of Gram determinants comes from the blob algebra (see [MS2]) that

is associated to the transfer matrix formulation of statistical mechanics on arbitrary la�ices. �e knot

theoretic interest originated from the work of R. Simion [Sim] on chromatic joins when Q. Chen and J. H.

Przytycki in [CP1] showed a connection to the Gram matrix of the Temperley-Lieb algebra and the matrix

of chromatic joins. Furthermore, Q. Chen and J. H. Przytycki in [CP2, Che] used skein modules, the Jones-

Wenzl idempotents, and Chebyshev polynomials to prove a closed formula for type �. �e de�nition we

give will use the language of skein modules.

De�nition 2.6. Let �Ĥ,0 = {11, 12, . . . , 1(2ĤĤ )
} be the set of all diagrams of crossingless connections between

2= marked points on the outer boundary of Ann × {0} in Ann × � . De�ne the bilinear form ï , ðþ for type �

as follows:

ï , ðþ : S2,∞(Ann × � , {Gğ}
2Ĥ
1 ;',�) × S2,∞(Ann × � , {Gğ}

2Ĥ
1 ;',�) −→ ' [3, I] .

Given1ğ , 1 Ġ ∈ �Ĥ,0, we glue1ğ with the inversion of1 Ġ along themarked outer boundary, respecting the labels

of the marked points. �e result is an element in Ann × � containing only disjoint simple closed curves which

are either homotopically non-trivial (denoted by I), or null homotopic (denoted by 3). �en, ï1ğ , 1 Ġ ðþ := Iġ3ģ ,

where : and< denote the number of these curves, respectively.

�e Gram matrix of type � is de�ned as �þ
Ĥ = (ï1ğ , 1 Ġ ðþ)1fğ, Ġf(2ĤĤ )

, and its determinant �þ
Ĥ is called the

Gram determinant of type �.

Example 2.7. An example of the bilinear form on two elements in �5,0 is given below.

〈
,

〉

þ

= = 34.

�eorem 2.8. [CP2][MS1] Let ' = Z[�±1]. �en

�þ
Ĥ =

Ĥ∏
ğ=1

()ğ (3)
2 − I2) (

2Ĥ
Ĥ−ğ),

where )ğ (3) is the Chebyshev polynomial of the �rst kind recursively de�ned by )Ĥ+1(3) = 3)Ĥ (3) −)Ĥ−1(3),

with initial conditions )0(3) = 2 and )1(3) = 3 , where 3 = −�2 −�−2.
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Q. Chen and J. H. Przytycki’s proof of a closed formula for type � involves the creation of a linear

map on the basis �Ĥ,0 that uses the lollipop method to decorate the inner boundary component with the

Jones-Wenzl idempotent, then proving that the image of the linear map under the basis is a subspace of

dimension
(2Ĥ
Ĥ

)
−
( 2Ĥ
Ĥ−ġ

)
.

2.2. �e Gram determinant of type ĉĘ. Józef H. Przytycki constructed the notion of the Gram deter-

minant of type "1 in 2008. �is originates from the study of crossingless connections on a Möbius band.

Here the bilinear form is de�ned through the identi�cation of two Möbius bands along their boundaries.

�is determinant is given in De�nition 2.9.

De�nition 2.9. Let MbĤ = {<1, . . . ,<∑
Ĥ

ġ=0 (
2Ĥ
ġ )
} be the set of all diagrams of crossingless connections between

2= marked points on the boundary of the Möbius band Mb ×̂ {0} in Mb ×̂ � . De�ne a bilinear form ï , ðMb on

the elements of MbĤ as follows:

ï , ðMb : S2,∞(Mb ×̂ � , {Gğ}
2Ĥ
1 ) × S2,∞(Mb ×̂ � , {Gğ}

2Ĥ
1 ) −→ Z[3,F, G,~, I] .

Given<ğ ,< Ġ ∈ MbĤ , identify the boundary component of<ğ with that of the inversion of< Ġ , respecting the

labels of the marked points. �e result is an element in  1 ×̂ � containing only disjoint simple closed curves.

�e �ve homotopically distinct simple closed curves in the Klein bo�le, including the homotopically trivial

curve, are denoted by G,~, I,F, 3 as illustrated in Figure 2.2. �en, ï<ğ ,< Ġ ðMb := 3
ģGĤ~ġIĢFℎ where<,=, :, ;

and ℎ denote the number of these curves, respectively.

�e Gram matrix of type Mb is de�ned as �Mb
Ĥ = (ï<ğ ,< Ġ ðMb)1fğ, Ġf

∑
Ĥ

ġ=0 (
2Ĥ
ġ )

and its determinant �Mb
Ĥ is

called the Gram determinant of type Mb.

3
I

G

F

~

Figure 2.2. Klein bo�le and its �ve homotopically distinct simple closed curves.

�e following two examples illustrate this de�nition. In particular, Example 2.10 shows the basis "12,

the Gram matrix, and calculates the Gram determinant �Mb
2 .

Example 2.10. For = = 2, the set"1Ĥ is given by

{
, , , , , , , , , ,

}
,

and the Gram matrix is given in Table 1.

6



A new Gram determinant from the Möbius band

ï , ð

32 3I I2 I 3 I 3~ ~ ~I ~ I

3I 32 3I 3 I 3 3~ ~ 3~ ~ 3

I2 3I 32 I 3 I ~I ~ 3~ ~ I

I 3 I 32 3I I2 ~ ~I ~ 3~ I

3 I 3 3I 32 3I ~ 3~ ~ 3~ 3

I 3 I I2 3I 32 ~ 3~ ~ ~I I

3G 3G GI G G G 3F F G~ F G

G G G GI 3G 3G F 3F F G~ G

GI 3G 3G G G G G~ F 3F F G

G G G 3G 3G GI F G~ F 3F G

I 3 I I 3 I ~ ~ ~ ~ F2

Table 1. �e Gram matrix �Mb
2 .

�e determinant of the Gram matrix is:

�Mb
2 = (3 − I)4 [(3 + I)F − 2G~]4(32(32 − 4)) (32 − 2 + I)

[(32 − 2 − I) (F2 − 2) − 2(2 − I)]

= ()1(3) − I)
4 [()1(3) + I))1(F) − 2G~]4()4(3) − 2) ()2(3) + I)

[()2(3) − I))2(F) − 2(2 − I)] .

Example 2.11. An example of the bilinear form on two elements in "14 is given below, where denotes a

crosscap usually denoted by .

〈
,

〉

Mb

= = 34.

Q. Chen conjectured the following result for the Gram determinant of type Mb. Some work supporting

this conjecture can be found in [BIMP1, BIMP2, PBIMW].

Conjecture 2.12 (Chen).
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Let ' = Z[�±1,F, G,~, I] .�en the Gram determinant of type Mb for = g 1, denoted by �Mb
Ĥ , is:

�Mb
Ĥ (3,F, G,~, I) =

Ĥ∏
ġ=1

()ġ (3) + (−1)ġI) (
2Ĥ
Ĥ−ġ)

Ĥ∏
ġ=1
ġ odd

(
()ġ (3) − (−1)ġI))ġ (F) − 2G~

) ( 2Ĥ
Ĥ−ġ)

Ĥ∏
ġ=1

ġ even

(
()ġ (3) − (−1)ġI))ġ (F) − 2(2 − I)

) ( 2Ĥ
Ĥ−ġ)

Ĥ∏
ğ=1

�Ĥ,ğ ,

where �Ĥ,ğ =

Ĥ∏
ġ=1+ğ

()2ġ (3) − 2) (
2Ĥ
Ĥ−ġ) , and 8 represents the number of curves passing through the crosscap.

Proposition 2.13. [BIMP2] �Mb
Ĥ is divisible by (3 − I) (

2Ĥ
Ĥ−1) .

Proposition 2.14. [BIMP1] �Mb
Ĥ is divisible by (F (3 + I) − 2G~) (

2Ĥ
Ĥ−1) .

Proposition 2.15. [PBIMW] �Mb
Ĥ is divisible by ((32 − 2 − I) (F2 − 2) − 2(2 − I)) (

2Ĥ
Ĥ−2) .

3. The Gram determinant of type (ĉĘ)1

�e basis of the relative Kau�man bracket skein module of the twisted � -bundle of the Möbius band, as

described in Corollary 2.3, is in�nite. If we restrict to only basis elements with no I and G curves, then

we obtain a �nite sub-collection of this basis. �e Gram matrix of type Mb was created by this �nite sub-

collection. However, this construction carries a few disadvantages. First, the number of elements increases

exponentially as = increases. In particular, computing the determinant for = g 5 has not been achieved due

to the size of the matrices. Second, the lollipop technique of decorating the crosscap with the Jones-Wenzl

idempotent is no longer as straightforward as it was in the case of type �. In fact, a�empts to using this

technique have not yet been rigorously successful. In this section we propose a new Gram determinant

from a sub-collection of"1Ĥ , give direct connections to a new type �, and explain how the lollipop method

can be applied to this case and where it falls short for the case of type Mb.

De�nition 3.1. Let (MbĤ)1 = MbĤ,0 ∪ MbĤ,1 where MbĤ,0 = {<1, . . . ,<(2ĤĤ )
} is the set of all diagrams of

crossingless connections between 2= marked points on the boundary of Mb ×̂ {0} whose arcs do not intersect

the crosscap and MbĤ,1 = {<1, . . . ,<( 2Ĥ
Ĥ−1)

} is the set of all diagrams of crossingless connections between 2=

marked points on the boundary of Mb ×̂ {0} with exactly one curve intersecting the crosscap. De�ne a bilinear

form ï , ðMb on the elements of (MbĤ)1 by using the same bilinear form as type Mb, as follows:

ï , ðMb : S2,∞(Mb ×̂ � , {Gğ}
2Ĥ
1 ) × S2,∞(Mb ×̂ � , {Gğ}

2Ĥ
1 ) −→ Z[3,F, G,~, I] .

Given<ğ ,< Ġ ∈ (MbĤ)1, identify the boundary component of<ğ with that of the inversion of< Ġ , respecting

the labels of the marked points. �e result is an element in 1 ×̂ � containing only disjoint simple closed curves.

�en ï<ğ ,< Ġ ðMb := 3
ģGĤ~ġIĢFℎ where<,=, :, ; and ℎ denote the number of these curves, respectively.

�e Gram matrix of type (Mb)1 is de�ned as �
(Mb)1
Ĥ = (ï<ğ ,< Ġ ðMb)1fğ, Ġf( 2Ĥ

Ĥ−1)+(
2Ĥ
Ĥ )

and its determinant

�
(Mb)1
Ĥ is called the Gram determinant of type (Mb)1.

In Example 3.2 we show the smallest Gram matrix of type ("1)1 that di�ers from type "1 (compare

Example 2.10).
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Example 3.2. For = = 2, the set ("1Ĥ)1 is given by{
, , , , , , , , ,

}
,

and the Gram matrix is shown in Table 2.

ï , ð

32 3I I2 I 3 I 3~ ~ ~I ~

3I 32 3I 3 I 3 3~ ~ 3~ ~

I2 3I 32 I 3 I ~I ~ 3~ ~

I 3 I 32 3I I2 ~ ~I ~ 3~

3 I 3 3I 32 3I ~ 3~ ~ 3~

I 3 I I2 3I 32 ~ 3~ ~ ~I

3G 3G GI G G G 3F F G~ F

G G G GI 3G 3G F 3F F G~

GI 3G 3G G G G G~ F 3F F

G G G 3G 3G GI F G~ F 3F

Table 2. �e Gram matrix �
(ĉĘ )1
2 .

�
(Mb)1
2 = (−2 + 3)32(2 + 3) (3 − I)4(−2 + 32 − I) (−2 + 32 + I) (−3F + 2G~ −FI)4

= (3 − I)4((32 − 2) + I) ((3 + I)F − 2G~)4((32 − 2) − I) (32(32 − 4) + 2 − 2)

= ()1(3) − I)
4()2(3)

2 − I2) ((3 + I)F − 2G~)4()4(3) − 2) .

Observe that �
(Mb)1
2 does not divide �Mb

2 . However, the following proposition is a direct result from a

proof given in [BIMP1] for type"1.

Proposition 3.3. [BIMP1] �
(Mb)1
Ĥ is divisible by (F (3 + I) − 2G~) (

2Ĥ
Ĥ−1) .

Consider an annulus with 2= points on the outer boundary and 2 points on the inner boundary. Fix a

crossingless connection between 2= − 2 points on the outer boundary that do not isolate the remaining

two points on the outer boundary from a path to the inner boundary points. �en there are an in�nite

number of ways to connect the remaining outer boundary points to the inner boundary points without

introducing a crossing. For example, if we start by connecting two arcs, each on the outer boundary, then

we may wrap the arcs around the annular boundary by c: where : ∈ Z before connecting to the inner

boundary points. An illustration is given in Figure 3.1.

9
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(a) : = 0. (b) : = −1. (c) : = −2. (d) : = 1.

Figure 3.1. Examples of distinct crossingless connections from an in�nite family where

two arcs a�ached to the inner and outer boundary wrap around the annular boundary

:/2 times for : ∈ Z.

Fix a line segment connected between the 1ĩĪ and 2=Īℎ marked point of the outer boundary and between

the two inner boundary points. Call this segment the lollipop. As before, consider a �xed crossingless

connection between 2=−2 points on the outer boundary that do not isolate the remaining four points. If the

two arcs bounding the remaining four marked points are not allowed to intersect the lollipop, then there

is only one way, up to isotopy, to connect the arcs from the outer boundary points to the inner boundary

points, without introducing crossings.

G1

G2

G3G4

G5

G6

~2 ~1

Figure 3.2. An illustration of a lollipop in an annulus with 6 marked points on the outer

boundary and two marked points on the inner boundary.

�e following lemma is a generalization of the children playing a game proof given in [Prz1] and ex-

plained in [PBIMW]. Also, one can �nd a detailed proof of the lemma in [Iba].

Lemma 3.4. [PBIMW, Prz1] Consider an annulus with 2= marked points in the outer boundary, 2 marked

points in the inner boundary, and suppose it contains a lollipop ( . Let �Ĥ,1 = {1′1, · · · , 1
′
Ċ } be the set of

crossingless connections, up to isotopy, with the following properties:

(1) �ere are = − 1 arcs connected to the marked points in the outer boundary.

(2) �ese =−1 arcs do not isolate the remaining two marked points in the outer boundary from the marked

points in the inner boundary.

(3) �e two remaining arcs are disjoint from the lollipop and

(4) each are connected to the inner and outer boundary components of the annulus, respectively.

�en # =
( 2Ĥ
Ĥ−1

)
and there is a one-to-one correspondence between �Ĥ,1 and ("1Ĥ)1.

10
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Example 3.5. �e set �2,1 consists of 4 elements as illustrated below:

�2,1 =




, , ,



.

De�nition 3.6. Consider S2,∞(Ann × � , {Gğ}
2Ĥ
1 ) · S2,∞(Ann, {~outğ }2Ĥ1 ∪ {~ğĤĤ1 , ~ğĤĤ2 }) and its submodule,

R((�Ĥ)1) = R(�Ĥ,0) · R(�Ĥ,1)
1, where R(�Ĥ,0) and R(�Ĥ,1) are submodules of S2,∞(Ann × � , {Gğ}

2Ĥ
1 ) and

S2,∞(Ann×� , {~outğ }2Ĥ1 ∪{~ğĤĤ1 , ~ğĤĤ2 }), generated by �Ĥ,0 and �Ĥ,1, respectively. In particular, (�Ĥ)1 = �Ĥ,0⊔�Ĥ,1.

Furthermore, let R(("1Ĥ)1) be a submodule of S2,∞(Mb ×̂ � , {Gğ}
2Ĥ
1 ) generated by the elements of ("1Ĥ)1.

De�ne a linear map i : R(("1Ĥ)1) → R((�Ĥ)1) on the basis as follows:

Recall (MbĤ)1 = MbĤ,0 ∪MbĤ,1,

(1) If< ∈ "1Ĥ,0, then there exists a unique element in �Ĥ,0, say 1Ĥ,0, obtained from< by replacing the

crosscap with a table. In this case i (<) = 1Ĥ,0 ∈ �Ĥ,0.

(2) If < ∈ "1Ĥ,1, then there exists a unique element in �Ĥ,1, say 1Ĥ,1, obtained from matching the arcs

whose boundary is disjoint from the inner boundary. In this case i (<) = 1Ĥ,1 ∈ �Ĥ,1.

�e next lemma gives a direct connection between type ("1)1 and a new Gram determinant of type �

constructed by the set (�Ĥ)1 and using the same bilinear form as type �. Type ("1)1 is a special case of it

when the distinction of the two curves a�ached to the inner boundary (or outer boundary) of the annulus

is ignored as shown in Figure 3.3.

Lemma 3.7. �e map i is a bijection between the bases ("1Ĥ)1 and (�Ĥ)1. Furthermore, the Gram determi-

nant is preserved up to an appropriate labelling of the elements.

Proof. By construction, i is a bijection between ("1Ĥ)1 and (�Ĥ)1. To show that i preserves the Gram

determinant it su�ces to prove that the bilinear form is preserved. Since ïi (<ğ), i (< Ġ )ðþ belongs to

S2,∞(Ann × � ) · S2,∞(Ann × � , {~ğĤĤ1 , ~inn2 })

· S2,∞(Ann × � , {~ĥīĪ1 , ~out2 }) · S2,∞(Ann × � , {~inn1 , ~ğĤĤ2 } ∪ {~out1 , ~out2 }),

then we only need to choose the following labelling illustrated in Figure 3.3. �at is, for example, if one

arc is a�ached to the inner and outer boundary then there exists a corresponding arc that also intersects

the inner and outer boundary; we label the element with these pair of arcs by F . �is corresponds to the

element in S2,∞(Kb ×̂ � ) that intersects the two crosscaps once, namely the F curve. Furthermore, if an

arc is a�ached to the outer boundary then we label it ~; this corresponds to the ~ curve in the Klein bo�le

that intersects the outer crosscap. If it is a�ached to only the inner boundary we label it G . In particular,

the element with two arcs, one only a�ached to the inner boundary and one only a�ached to the outer

boundary, is labeled G~.

= F, = G, = G, = ~, = ~.

Figure 3.3. A labeling of the curves a�ached to the boundary of the annulus.

□

Remark 3.8. Even though the bijection i can be extended to"1Ĥ it will no longer preserve the bilinear form.

Indeed this can be seen in Example 2.11; when two arcs intersect the crosscap you might obtain a 3 or I for the

Klein bo�le while for the annulus case it would just be G2.

1Note that R((�Ĥ)1) is not a skein module.

11
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3.1. White markers. We introduce elements whose closure remains unlinked from all simple closed

curves or arcs in Ann × � . �ese elements will be used to adapt Chen and Przytycki’s proof in [CP2]

to prove that a factor of the Gram determinant of type � divides the Gram determinant of type ("1)1.

De�nition 3.9. Let � = [−1, 1]," = Ann × � with 2= framed marked points a�ached to the outer boundary

of Ann × {0}, and let" be decorated with a lollipop ((( = ( × � . Consider L ⊔ {F Ġ }
ġ
Ġ=1 ¢ " ; a relative framed

link L and a pair of : labelled white marked framed points {F Ġ }
ġ
Ġ=1 disjoint from L ∪((( and distinct from the

2= marked points, called white markers.

White markers are either a�ached and �xed to the boundary of (Ann − () × {0} of" −((( , or a�ached to a

second white marker in the interior of" − ((( as illustrated in Figure 3.4.

21 1 2

(a) White Markers a�ached to the boundary.

1 2

2 1 3 3

(b) White Markers a�ached to each other.

Figure 3.4. Illustrations of white markers.

�e labelled white markers are identi�ed in" with framed arcs according to their labelling if, up to ambient

isotopy, there exists a collection of : pairwise disjoint curves {W Ġ }
ġ
Ġ=1 such that for each 9 , W Ġ is connected to the

core of the framed points ?C1, Ġ and ?C2, Ġ of the pair of white markers F Ġ = {?C1, Ġ , ?C2, Ġ } under the following

condition:

�ere exists a neighborhood of each arc W Ġ ,* (W Ġ ) ¢ Ann × {0}, such that (∪ġ
ğ=1* (W Ġ ) × � ) ∩ (L ∪ () = ∅.

If the condition is not satis�ed then the white markers remain as white marked framed points with a�aching

information intact but no arcs a�ached. Furthermore, the sign of each labelling assigned to a white marker

will change under an inversion operation.

Example 3.10.

(a) Let � = [−1, 1]," = Ann×� with 2= framedmarked points a�ached to the outer boundary of Ann×{0},

and let" be decorated with a lollipop ((( = ( × � . Suppose that L consists of only relative framed links

with no crossings and suppose L ∪ F1 ¢ " where the pair of white markers F1 = pt1,1 ∪ pt2,1 are

a�ached to each other in the interior of " . �en there exists a disk � ¢ Ann × {0} such thatF1 ¢ �

and (� × � ) ∩ (L ∪ () = ∅. In this case the pair of labelled white markers are identi�ed by W1 in � to

produce a simple closed curve. An illustration is given in Figure 3.5a.

(b) Now suppose L ∪ {F1,F2} ¢ " where each white marker from F1 is a�ached to a white marker

from F2 in the interior of " . �en there exists a disk � ¢ Ann × {0} such that {F1 ∪F2} ¢ � and

(�× � ) ∩ (L∪() = ∅. In this case the pair of white markers are identi�ed by arcs in� . An illustration

is given in Figure 3.5b.

So far this notion results in simple closed curves and the closure always exists. However, if we consider

white markers a�ached to the boundary of " , as shown in Figure 3.6, we �nd that there exist relative

framed links that obstruct the closure of the white markers. Furthermore, we �nd obstructions from the

position of the white markers regardless of the relative link.

12
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11

closure
y

= 3

(a) Closure of one set of white markers.

closure

1 2

1 2

= 3 =

y closure

1 2

2 1

y

(b) Closure with two sets of white markers.

Figure 3.5. A local illustration of the closure of arcs in � × {0} ¢ Ann × [−1, 1] obtained

by identifying arcs a�ached to white markers with the same label.

1 21 2

(a) An obstruction from the I

curve isolating the inner and

outer boundary points.

1 21 2

(b) An obstruction coming

from an arc isolating the inner

and outer boundary points.

1 12 2

(c) An obstruction coming

from the position of the white

markers.

Figure 3.6. Examples of obstructions to the closure of white markers.

De�nition 3.11. Let � = [−1, 1], : f =, " = Ann × � with 2= framed marked points a�ached to the outer

boundary of Ann × {0}, and let " be decorated with a lollipop ((( = ( × � . Let L Ĝ Ĩ (2=, :) be the set of all :

white markers �xed to the boundary of Ann × {0} along with all relative framed links L disjoint from the

white markers, L ⊔ {F Ġ }
ġ
Ġ=1, up to ambient isotopy, while keeping all marked points on the boundary �xed.

Furthermore, we restrict the : white markers to �nitely many possible placements in the inner boundary and

also restrict to allowing at most one white marker between framed points and also between the 1ĩĪ and 2=Īℎ

framed points and the lollipop on the outer boundary. Let ' be a commutative ring with unity, � ∈ ' be

invertible, and let (ĩīĘ2,∞ (2=, :) be the submodule of 'L Ĝ Ĩ (2=, :) that is generated by the Kau�man bracket

skein relations. �e relative Kau�man bracket skein module of ĉ with white markers is the quotient

S2,∞(Ann × � , {Gğ}
2Ĥ
1 ∪ {F Ġ }

ġ
Ġ=1;',�) = 'L

fr (2=, :)/( sub2,∞(2=, :).

For simplicity we will denote this skein module by S(AnnĤ
ġ
).

Example 3.12. Consider the following relative link with two white markers in Lfr (4, 2);

13
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1 21 2

�is link as an element in S2,∞(Ann × � , {Gğ}
2
1 ∪ {F Ġ }

2
Ġ=1;',�) is equal to

(1)
1 21 2

= (1 +�−4) +�2
1 21 2

.

Corollary 3.13. �e relative Kau�man bracket skein module of Ann × � with white markers, S(AnnĤ
ġ
), is a

free '-module. �e basis contains an in�nite number of elements described as follows.

(1) Crossingless connections between 2=+2: framed points in the outer boundary of Ann× � and 8 number

of boundary parallel curves where 8 g 0. In particular, the arcs connected to the 2: framed points do

not intersect the lollipop.

(2) Crossingless connections between 2= + 2: framed points in m(Ann × {0}) and 8 number of boundary

parallel curves where 8 g 0, 2; framed points are in the inner boundary for ; f : , and the arcs a�ached

to the 2; framed points are not connected to the outer boundary.

(3) Crossingless connections between 2= + 2: framed points in m(Ann× {0}) where ; framed points are in

the inner boundary for ; < 2: and at least one arc that is connected to one of the ; framed points is

also connected to one of the 2: − ; framed points lying in the outer boundary.

(4) Crossingless connections between 2= framed points in the outer boundary of Ann × {0}, 8 boundary

parallel curves where 8 > 0, and : white markers {F Ġ }
ġ
Ġ=1 in m(Ann × {0}), where at least one white

marker, say ?C1,Ģ ofFĢ = {?C1,Ģ , ?C2,Ģ }, lies in the inner boundary of Ann× {0} and ?C2,Ģ lies in the outer

boundary.

(5) Crossingless connections between 2= framed points on the outer boundary m(Ann × {0}) and : white

markers {F Ġ }
ġ
1 in m(Ann× {0}), where for at least one white marker a path connecting it is obstructed

by an arc connected to one pair of framed points or by the lollipop; see Figure 3.6. For each element,

say 1, in this set of crossingless connections with white markers we also have 1Iğ where 8 > 0.

Example 3.14. Examples of the basis elements ofS(Ann12) as described in Corollary 3.13 are illustrated below.

(1) Crossingless connections between 6 framed points in the outer boundary of Ann × � and 8 number of

boundary parallel curves where 8 g 0.


 ğ

,

ğ

,
ğ

,

ğ

,
ğ

,

ğ

, ğ ,

ğ

, ...




(2) Crossingless connections between 6 framed points in m(Ann× {0}) and 8 number of boundary parallel

curves where 8 g 0, 2; framed points are in the inner boundary for ; f 2, and the arcs a�ached to the

2; framed points are not connected to the outer boundary.
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
 ğ

,

ğ

,

ğ

,

ğ

,

ğ

,

ğ

,

ğ

,

ğ

, ...




(3) Crossingless connections between 6 framed points in m(Ann × {0}) where ; framed points are in the

inner boundary for ; < 4 and at least one arc that is connected to one of the ; framed points is also

connected to one of the 4 − ; framed points lying in the outer boundary.




, , , , , , , , ...




(4) Crossingless connections between 2 framed points in the outer boundary of Ann × {0}, 8 boundary

parallel curves where 8 > 0, and 2 white markers {F Ġ }
2
Ġ=1 in m(Ann × {0}), where at least one white

marker, say ?C1,Ģ ofFĢ = {?C1,Ģ , ?C2,Ģ }, lies in the inner boundary of Ann× {0} and ?C2,Ģ lies in the outer

boundary.


 1

2
2

1
,

1

2
2

1
,

1

1
2

2 ,
1

2
1

2 ,
1

1

2

2

,
1

2

2

1

, ...




(5) Crossingless connections between 2 framed points on the outer boundary m(Ann × {0}) and 2 white

markers {F Ġ }
ġ
1 in m(Ann× {0}), where for at least one white marker a path connecting it is obstructed

by an arc connected to one pair of framed points or by the lollipop. For each element, say 1, in this

set of crossingless connections with white markers we also have 1Iğ where 8 > 0. Notice that some

elements of the form 1Iğ , for 8 > 0, are also described in (4).


 1 2

1

2

,

1

2
2

1
,

1

2
1

2 ,
2

2
1

1 ,
1

1

2

2

,
1

2

2

1

, ...




3.2. Lollipop method. In this section we use the lollipop method discussed in [CP2]. In the same spirit

as Chen and Przytycki, in this section we de�ne several maps. In particular, we de�ne the mapskġ and Vġ
that involve the use of a lollipop, and the bilinear map � on the Hopf link with zero framing. �ese maps

are modi�ed by using white markers so that the inner boundary is le� intact and the G,~, and F curves

remain unchanged under the maps and the bilinear form. Furthermore, bġ is a modi�cation of qġ in [CP2]

where we decorate the I curve in the Klein bo�le instead of the annulus.

De�nition 3.15. De�ne a linear mapkġ : R((�Ĥ)1) → R((�Ĥ+ġ )1) on the basis as follows. For 1 ∈ (�Ĥ)1:

(1) Decorate 1 with a lollipop ( and let !!! denote the arcs whose minimum intersection points with the

lollipop is equal to one.

(2) Include : marked points, denoted by ℓġ , between the 2=Īℎ marked point and the lollipop.

(3) Include : marked points, denoted by Aġ , between the lollipop and the 1ĩĪ marked point.

(4) Add parallel curves denoted by *Ę,ġ that connects ℓġ to Aġ in such a way that each curve crosses over

!!! on the le� of the lollipop, intersects the lollipop once, and crosses under !!! on the right of the lollipop.
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An illustration is shown in Figure 3.7.

kġ

y
:

(a)kġ under an element in �5,1.

kġ

y
:

(b)kġ under an element in �5,0.

Figure 3.7. An illustration of the mapkġ under two basis elements of R((�5)1).

De�nition 3.16. De�ne a linear map Vġ : R((�Ĥ+ġ )1) → R(�Ĥ+ġ,0) · S(AnnĤ+ġ2 ) on the basis as follows.

For 1 ∈ (�Ĥ+ġ )1:

(1) If 1 ∈ �Ĥ+ġ,0, then

(a) decorate 1 with a lollipop ( and let !!! denote the arcs whose minimum intersection points with the

lollipop is equal to one. Denote by ℓġ the �rst : marked points from the le� of the lollipop and Aġ
by the �rst : points from the right of the lollipop.

(b) Push !!! to the other side of the inner boundary of Ann × {0}.

(c) Insert a copy of the :Īℎ Jones-Wenzl idempotent, 5ġ , close to ℓġ , into the arcs connected to ℓġ , and

another copy close to AĤ into the arcs connected to Aġ .

(2) If 1 ∈ �Ĥ+ġ,1, then

(a) Decorate the arc a�ached to ~1 with a white marker labelled 1.

(b) Decorate the arc a�ached to ~2 with a white marker labelled 2.

(c) Push !!! ∪*Ę,ġ to the other side of the inner boundary of Ann × {0}.

(d) Insert two copies of the :Īℎ Jones-Wenzl idempotent, 5ġ , into*Ę,ġ , one close to ℓĤ and another close

to AĤ .

An illustration is shown in Figure 3.8.

�e next lemma is a direct result of the previous de�nition.

Lemma 3.17. Let 1ğ , 1 Ġ ∈ (�Ĥ)1. If ï1ğ , 1 Ġ ðþ = GĦ~ģFℎ3ĤIĨ for ?,<,ℎ, =, A g 0, then

ïV0 ◦k0(1ğ), V0 ◦k0(1 Ġ )ðþ = GĦ~ģFℎ3Ĥ+Ĩ .

�at is, all I curves become homotopically trivial.
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Vġ

:

y
ġ ġ

11 2 2

(a) Vġ under an element in �5+ġ,1.

Vġ

:

y
ġ ġ

(b) Vġ under an element in �5+ġ,0.

Figure 3.8. An illustration of the map Vġ under two elements of (�5+ġ )1.

De�nition 3.18. Let � be a bilinear map associated to the Hopf link with zero framing and ordered compo-

nents {   1,   2},

� : S2,∞(   1 × � ;Z[�±1]) × S2,∞(   2 × � ;Z[�±1]) → S2,∞((3;Z[�±1]),

de�ned on the basis as follows:

For each 1 f 8 f 2, if the 8 th component is equal to Iℎ for ℎ > 0 then replace  ğ with ℎ parallel copies,

and if the 8 th component is equal to 1 then remove  ğ from the diagram. Evaluate the resulting link in

S2,∞((3;Z[�±1]).

We de�ne a linear map bġ : S2,∞(Kb ×̂ � ) → Z[�±1, G,~,F] such that bġ is the identity on G,~,F, and 3 ,

3 = −�2 −�−2, and

bġ (I) := � (I, (Ĥ (I)),

where (Ĥ (I) is the =
Īℎ Chebyshev polynomial of the second kind in the variable I. In particular, (Ĥ (I) =

CAýĤĤ (5Ĥ) (See [Lic2, PBIMW] for more details about the connections to the Jones-Wenzl idempotents and

Chebyshev polynomials).

Informally, bġ (I) is de�ned by decorating the �rst component of the Hopf link with one parallel curve and

decorating the second component with the :Īℎ Jones-Wenzl idempotent 5ġ .

Recall from W. B. R. Lickorish in [Lic2] that

(2)
< :

= (−�2(ġ+1) −�−2(ġ+1) )ģ�ġ = ((−1)ġ)ġ+1(3))
ģ
�ġ .
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�erefore,

bġ (I
ģ) = � (Iģ, 5ġ ) =

< :

= (−�2(ġ+1) −�−2(ġ+1) )ģ�ġ .

Example 3.19. Let 3 = −�2 −�−2. �en

bġ

©­­­­­
«

ª®®®®®
¬
= 3� (I3, 5ġ ) = 3 (−�

2(ġ+1) −�−2(ġ+1) )3�ġ = 3 ((−1)ġ)ġ+1(3))
3
�ġ ,

bġ

©­­­­­«

ª®®®®®¬
= bġ (~I

2) = ~� (I2, 5ġ ) = ~ ((−1)
ġ)ġ+1(3))

2
�ġ ,

and

bġ

©­­­­­«

ª®®®®®¬
= bġ (3G~I

3) = 3G~ ((−1)ġ)ġ+1(3))
3
�ġ .

De�nition 3.20. De�ne the matrix �Ĥ,ġ using bġ as follows. For<ğ ,< Ġ ∈ (MbĤ)1,

�Ĥ,ġ = (bġ−1(ï<ğ ,< Ġ ðMb))1fğ, Ġf( 2Ĥ
Ĥ−1)+(

2Ĥ
Ĥ )
.

Remark 3.21. By the de�nition, if 3 = −�2 −�−2, then

�
(Mb)1
Ĥ (3, (−1)ġ−1)ġ (3), G,~,F) =

1

�ġ−1
�Ĥ,ġ .

Furthermore, if we de�ne � ′
Ĥ,ġ

on MbĤ in a similar way, � ′
Ĥ,ġ

= (bġ−1(ï<
′
ğ ,<

′
Ġ ðMb))1fğ, Ġf |MbĤ | , then

�Mb
Ĥ (3, (−1)ġ−1)ġ (3), G,~,F) =

1

�ġ−1
� ′Ĥ,ġ .

�e following lemma is a direct result of the construction of the maps Vġ , kġ , and i . Notice that i is

a bijection between the sets ("1Ĥ)1 and (�Ĥ)1 which preserves the bilinear form, kġ introduces : trivial

link components linked to the I curves under the bilinear form of type �, and Vġ ◦kġ , under the bilinear

form of type �, inserts the :Īℎ Jones-Wenzl idempotent into the : trivial link components. Additionally,

Vġ ◦kġ pushes all boundary parallel curves through the inner boundary of the annulus while preserving

the number of G,~, andF curves.

Lemma 3.22. Let [ġ = Vġ ◦kġ ◦ i . For<ğ ,< Ġ ∈ (MbĤ)1,

bġ (ï<ğ ,< Ġ ðMb) = ï[ġ (<ğ), [ġ (< Ġ )ðþ .

�e next theorem is our main result regarding the structure of the closed formula for the Gram deter-

minant of type ("1)1.

�eorem 3.23.
Ĥ∏

ġ=1

()ġ (3) + (−1)ġI) (
2Ĥ
Ĥ−ġ) divides �

(Mb)1
Ĥ (3, I, G,~,F) .

18
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Proof. We modify and build upon Chen and Przytycki’s proof in [CP2] by showing that for : g 1, the

nullity of �
(Mb)1
Ĥ (3, (−1)ġ−1)ġ (3), G,~,F) for 3 = −�2 −�−2 is at least

( 2Ĥ
Ĥ−ġ

)
.

Recall that for �Ĥ,ġ = (bġ−1(ï<ğ ,< Ġ ðMb))1fğ, Ġf( 2Ĥ
Ĥ−1)+(

2Ĥ
Ĥ )

we have

�
(Mb)1
Ĥ (3, (−1)ġ−1)ġ (3), G,~,F) =

1

�ġ−1
�Ĥ,ġ .

Furthermore, by Lemma 3.22, we have bġ−1(ï<ğ ,< Ġ ðMb) = ï[ġ−1(<ğ), [ġ−1(< Ġ )ðþ where [ġ = Vġ ◦kġ ◦i .

Sincei is a bijection between ("1Ĥ)1 and (�Ĥ)1, then it su�ces to show that Vġ−1◦kġ−1((�Ĥ)1) is contained

in a subspace of dimension
( 2Ĥ
Ĥ−1

)
+
(2Ĥ
Ĥ

)
−
( 2Ĥ
Ĥ−ġ

)
in S2,∞(AnnĤ+ġ−14 ) · S2,∞(�2 × � , = + : − 1). As in [CP2], it

su�ces to show that

dim(Im(Vġ−1)) f

(
2=

= − 1

)
+

(
2=

=

)
−

(
2=

= − :

)
.

Recall that R((�Ĥ)1) = R(�Ĥ,0) · R(�Ĥ,1) where R(�Ĥ,0) and R(�Ĥ,1) are free '-modules generated by

�Ĥ,0 and �Ĥ,1, respectively. Since �Ĥ,0 ∩ �Ĥ,1 = ∅, then

Vġ−1 ◦kġ−1(�Ĥ,0 · �Ĥ,1) = Vġ−1 ◦kġ−1(�Ĥ,0 · {0}) · Vġ−1 ◦kġ−1({0} · �Ĥ,1) .

Furthermore, |�Ĥ,1 | =
( 2Ĥ
Ĥ−1

)
. �erefore,

dim(Vġ−1 ◦kġ−1((�Ĥ)1)) f dim(Vġ−1 ◦kġ−1(�Ĥ,0 · {0})) +

(
2=

= − 1

)
.

�e set Vġ−1 ◦kġ−1(�Ĥ,0 · {0}) can be viewed as a set of crossingless connections between 2(= + : − 1)

points in the disc by cu�ing along the lollipop. �erefore, it su�ces to prove that Vġ−1 ◦kġ−1(�Ĥ,0 · {0})

is contained in a subspace of dimension
(2Ĥ
Ĥ

)
−
( 2Ĥ
Ĥ−ġ

)
in S2,∞(� × � , = + : − 1) which was already proven in

[CP2]. □

4. Future directions

We present a conjectured formula for type (Mb)1. �is conjecture has been veri�ed for = f 3.

Conjecture 4.1.

Let ' = Z[�±1,F, G,~, I] .�en, the Gram determinant of type ("1)1 for = g 1, is:

�
(ĉĘ )1
Ĥ = [(3 − I) ((3 + I)F − 2G~)] (

2Ĥ
Ĥ−1)

Ĥ∏
ġ=2

()ġ (3)
2 − I2) (

2Ĥ
Ĥ−ġ)

Ĥ∏
ġ=2

()2ġ (3) − 2) (
2Ĥ
Ĥ−ġ),

where )ġ (3) is the :
Īℎ Chebyshev polynomial of the �rst kind and 3 = −�2 −�−2.

�e lollipop method was verbally proposed by J. H. Przytycki, and �rst explicitly stated in writing in

[PBIMW], to be a suitable method to apply to type "1 for a proof of the same factor given in our main

theorem. In fact, the concluding arguments of the proof of �eorem 3.23 suggest that the new techniques

given in this paper along with the lollipop method can be modi�ed and applied to type"1; albeit in a not

so straightforward way.

Lemma 3.7 gives insight into direct connections between type ("1)1 and a Gram determinant from a

matrix created by using the set (�Ĥ)1 and the bilinear form of type �. We will call this determinant type

(�)1. As shown in the proof of the lemma, type ("1)1 is a special case of type (�)1 where no distinction

is made between arcs whose boundary components are both connected to the inner boundary (or outer

boundary). Another future direction is to focus on the Gram determinant of type (�)1 and obtain a closed

formula.
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Furthermore, potential connections to statistical mechanics are suggested, by investigating the blob

algebra discussed in [MS2], when the ~ and G variables are made equal as to obtain a determinant from a

symmetric matrix.

References

[BIMP1] R. P. Bakshi, D. Ibarra, S. Mukherjee, J. H. Przytycki, A generalization of the Gram determinant of type �, Topology

Appl. 295 (2021), Paper No. 107663, 15 pp. e-print: arXiv:1905.07834 [math.GT].

[BIMP2] R. P. Bakshi, D. Ibarra, S. Mukherjee, J. H. Przytycki, A Note on the Gram Determinant of Type Mb, (to appear in AMS

Contemporary Mathematics series.)

[Cai] X. Cai, A Gram determinant of Lickorish’s bilinear form, Math. Proc. Cambridge Philos. Soc. 151 (2011), no. 1, 83–94.

e-print: arXiv:1006.1297v3 [math.GT].

[Che] Q. Chen, Personal communication (email) with J. H. Przytycki, April 3, 2009.

[CP1] Q. Chen, J. H. Przytycki, �e Gram matrix of the Temperley-Lieb algebra is similar to the matrix of chromatic joins,

Communications in Contemporary Mathematics (CCM), 10, 2008, 849-855; e-print: arxiv:0806.0878 [math.GT].

[CP2] Q. Chen, J. H. Przytycki, �e Gram determinant of the type � Temperley-Lieb algebra, Adv. in Appl. Math., 43(2), 2009,

156-161. arXiv:0802.1083v2 [math.GT].

[DiF] P. Di Francesco, Meander determinants. Comm. Math. Phys. 191 (1998), no. 3, 543–583. arXiv:hep-th/9612026

[math.GT].

[Iba] D. Ibarra, Framed Links in 3-Manifolds, Its Applications, and Algebraic Approaches to Knot�eory.�esis (Ph.D.)–�e

George Washington University. 2022. 163 pp. ISBN: 979-8802-71109-5, Pro�est LLC.

[KS] K. H. Ko, L. A. Smolinsky, Combinatorial matrix in 3-manifold theory. Paci�c J. Math. 149 (1991), no. 2, 319–336.

[Lic1] W. B. R. Lickorish, Invariants for 3-manifolds from the combinatorics of the Jones polynomial, Paci�c Journ.

Math.,149(2), 1991, 337-347.

[Lic2] W. B. R. Lickorish, An introduction to knot theory. Graduate Texts in Mathematics, 175. Springer-Verlag, New York,

1997.

[MS1] P. Martin, H. Saleur, On an algebraic approach to higher dimensional statistical mechanics. Commun. Math. Phys., 158,

1993, 155-190.

[MS2] P. Martin, H. Saleur, �e blob algebra and the periodic Temperley-Lieb algebra. Le�. Math. Phys. 30 (1994), no. 3,

189–206. arXiv:hep-th/9302094.

[Prz1] J. H. Przytycki, Fundamentals of Kau�man bracket skeinmodules.KobeMath. J., 16(1), 1999, 45-66. arXiv:math/9809113

[math.GT].

[Prz2] J. H. Przytycki, Personal communication (email) with Q. Chen, November 21, 2008.

[PBIMW] J. H. Przytycki, R. P. Bakshi, D. Ibarra, G. Montoya-Vega, D. E. Weeks, Lectures in Knot �eory: An Exploration of

Contemporary Topics, Springer Universitext, Springer International Publishing. 2024 March. DOI 10.1007/978-3-031-

40044-5.

[RT] N. Yu. Reshetikhin and V. G Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, inv. math,

103(1991), 547-597.

[Sch] F. Schmidt, Problems related to type-A and type-B matrices of chromatic joins. Special issue on the Tu�e polynomial,

Adv. in Appl. Math. 32 (2004), no. 1-2, 380-390.

[Sim] R. Simion, A type-B associahedron. Formal power series and algebraic combinatorics (Sco�sdale, AZ, 2001). Adv. in

Appl. Math. 30 (2003), no. 1-2, 2-25.

[Wit] E. Wi�en, �antum �eld theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351.

School of Mathematics, Monash University, VIC 3800, Australia.

Email address: dionne.ibarra@monash.edu

Department of Mathematics, The Graduate Center CUNY, NY, USA, and

Department of Mathematics, University of Puerto Rico-Río Piedras, San Juan, PR

Email address: gabrielmontoyavega@gmail.com

20


	Acknowledgments
	1. Introduction
	2. Gram determinants in knot theory
	2.1. The Gram determinant of type bold0mu mumu BB2005/06/28 ver: 1.3 subfig packageBBBB
	2.2. The Gram determinant of type bold0mu mumu MbMb2005/06/28 ver: 1.3 subfig packageMbMbMbMb

	3. The Gram determinant of type bold0mu mumu (Mb)1(Mb)12005/06/28 ver: 1.3 subfig package(Mb)1(Mb)1(Mb)1(Mb)1
	3.1. White markers
	3.2. Lollipop method

	4. Future directions
	References

