A NEW GRAM DETERMINANT FROM THE MOBIUS BAND

DIONNE IBARRA AND GABRIEL MONTOYA-VEGA

ABSTRACT. Gram determinants earned traction among knot theorists after E. Witten’s presumption about
the existence of a 3-manifold invariant connected to the Jones polynomial. Triggered by the creation of such
an invariant by N. Reshetikhin and V. Turaev, several mathematicians have explored this line of research
ever since. Gram determinants came into play by W. B. Raymond Lickorish’s skein theoretic approach to the
invariant. The construction of different bilinear forms is possible through changes in the ambient surface of
the Kauffman bracket skein module. Hence, different types of Gram determinants have arisen in knot theory
throughout the years; some of these determinants are discussed here. In this article, we introduce a new
version of such a determinant from the M6bius band and prove some important results about its structure. In
particular, we explore its connection to the annulus case and factors of its closed formula.
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1. INTRODUCTION

Gram determinants are named after the Danish mathematician Jergen Pedersen Gram and they appear
in several areas of mathematics including Riemannian geometry, the finite element method, and machine
learning. In knot theory, Gram determinants became of interest following Edward Witten’s contempla-
tion of a 3-manifold invariant connected to the Jones polynomial [Wit]. In 1991, a construction of such
an invariant was presented by Nicolai Reshetikhin and Vladimir Turaev [RT]. Shortly afterwards, W. B.
Raymond Lickorish announced a simpler approach to the construction of this invariant; this is considered
to be the first modern work on Gram determinants in relation to the mathematical theory of knots [Lic1].
The Gram determinant constructed by Lickorish is known as the Gram determinant of type A and has
been extensively studied; see for instance [KS, DiF, Cai, BIMP1]. It is important to remark that in knot
theory several matrices arise with a connection to Gram determinants. For instance, the Alexander matrix
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of a link L, introduced in 1919 by Alexander to his mentor Veblen, that is used to construct the Alexander
polynomial Ay (), for which t = —1 yields the determinant of the link. The Goeritz matrix is also based on
the link diagram and yields the determinant of the link; see Chapters 2 and 4 of [PBIMW] for an extensive
discussion on the matter and the relation of these two matrices.

By changing the ambient surface of the Kauffman bracket skein module, different bilinear forms can
be constructed. Rodica Simion investigated bilinear forms of type B while working on chromatic joins
[Sim, Sch]. Jozef H. Przytycki and Qi Chen carried on her work in [CP1, CP2]. Paul Martin and Hubert
Saleur were the first to consider Gram determinants of type B on their work which, among others, enjoys
applications to statistical mechanics [MS1, MS2]. In 2008, besides exploring the type B determinant, Przy-
tycki created the notion of Gram determinant of type Mb which results from defining a bilinear form on
the Mobius band [Prz2]. Although a conjecture was presented by Qi Chen during the same year, this line
of research was only rigorously pursued about ten years later; see for example [BIMP1, BIMP2, PBIMW]
where formal proofs are presented.

The article is organized as follows. In Section 2 we present the definition of the relative Kauffman
bracket skein module. Moreover, the Gram determinants of type B and type Mb are defined. We introduce
the Gram determinant of type (Mb);, which arises as a modification of the type Mb, in Section 3. There
we present the lollipop method, an innovative tool that helps to prove some important results about the
structure of this new Gram determinant. Lastly, an adaptation of Chen’s conjecture to this determinant is
proposed in Section 4.

2. GRAM DETERMINANTS IN KNOT THEORY

In order to study Gram determinants in knot theory, we need basis elements of a free module over a
commutative ring with unity to be described for a manifold with framed points on its boundary. That is, we
need the notion of a relative skein module. Arguably, the most extensively investigated skein module is the
Kauffman bracket skein module. In particular, its structure has shown connections between the module
and the geometry and topology of the 3-manifold [Prz1]. In this paper, the relative Kauffman bracket skein
module plays an important role and is given in Definition 2.1.

Definition 2.1. Let M be an oriented 3-manifold and {x;}3" be the set of 2n framed points on M. Let
I = [-1,1], and let £ (2n) be the set of all relative framed links (which consists of all framed links in M and
all framed arcs, I X I, where I X 9l is connected to framed points on the boundary of M) up to ambient isotopy
while keeping the boundary fixed in such a way that L N M = {x;}*". Let R be a commutative ring with
unity, A € R be invertible, and let Sg";{’,(Zn) be the submodule of RL (2n) that is generated by the Kauffman
bracket skein relations:

(i) Ly — ALy — A" 'L, and

(i) LUQ + (A2 + A?)L,
where O denotes the framed unknot and the skein triple (L., Lo, Lo) denotes the three framed links in M

that are identical except in a small 3-ball in M where the difference is shown in Figure 2.1. Then, the relative
Kauffman bracket skein module (RKBSM) of M is the quotient:

Saco(M, {x;}i"; R, A) = RLT (2n) /S5 (2n).
Theorem 2.2. [Prz1] Let F be a surface with oF + @. If F is orientable let M = F X I, otherwise let M = F X .
Let all the points in {x;}2" be marked framed points that lie on OF X {0}. Then Sy o (M, {x;}?"; R, A) is a free
R-module whose basis is composed of relative links in F without trivial components. When n = 0, the empty
link is also a generator.

The following corollary to Theorem 2.2 uses the language of relative skein modules that are used in the
definition of Gram determinants in knot theory.
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FIGURE 2.1. The skein triple.

Corollary 2.3. [Prz1]

(@) Sp00(D? X I,1) = Sp00(D? X I {x;}2"; R, A) is a free R-module with C,, = 1= (*") basis elements.

(b)) Sz2.00(Ann X I,n) = Sz (Ann X I, {x; f”;R, A), where {x,-}f” are located in the outer boundary com-
ponent of the annulus, is a free R[z]-module with D, = (2:) basis elements, where z denotes the
homotopically nontrivial curve in the annulus and d = —A® — A~? denotes the homotopically trivial
curve in the annulus. The basis, denoted by By, , is the set of all crossingless connections in the annulus
with no trivial components or boundary parallel curves.

(c) Sr.00(Anny 1 XI) = Sz 00(AnnxI, {yf“t}f” U_{yi"f’, yé””}; R, A), where {y;’”t}f" are located in the outer
boundary component of the annulus and {y;"", y;""} are located in the inner boundary component of
the annulus, is a free R-module. The standard basis is infinite. It contains elements of the form az" for
i > 0, where z denotes the boundary parallel curve of the annulus and a € A. The set A is a finite
collection of crossingless connections with no trivial components or boundary parallel curves where
outer boundary component of the annulus and y'™ and yI'™ are connected to each other by a relative
link. There are 2(2:) such elements in the set. Let X be a finite collection of crossingless connections
between 2n—2 points on the outer boundary such that there exists a path between the two points on the
inner boundary and the remaining two points on the outer boundary (i.e. the crossingless connections
do not isolate the remaining two points on the outer boundary from a path to the inner boundary
points). The rest of the standard basis is from an infinite family of crossingless connections obtained
from X, where the remaining outer boundary points are connected to the inner boundary points after
wrapping around the inner boundary by rk fork € Z; an illustration of such connections can be found

in Figure 3.1 and Example 2.4.

(d) Spc0(Mb X 1,2n) = Sp0(Mb X I {x;}3";R, A) is a free R-module. The standard basis contains an
infinite number of elements of the form bz', bxz' fori > 0, where x denotes the simple closed curve
that intersects the crosscap once, z denotes the boundary parallel curve of the Mébius band, and b is
an element in the set of crossingless connections in the Mobius band with no trivial components or
boundary parallel curves for which the arcs do not intersect the crosscap. The rest of the elements in
the standard basis are from a finite number of crossingless connections consisting of a collection of
n —k arcs for 0 < k < n that non-trivially intersect the crosscap. Among the finite collection there are

(zlf) crossingless connections that intersect the crosscap n — k times.

Example 2.4. An illustrative sample of the standard basis of Sz oo (Anng 1 XI), as described in Corollary 2.3(c),
is given below.

(1) Crossingless connections with no trivial components or boundary parallel curves where the outer
boundary component of the annulus and y"" and y,"" are connected to each other by a relative link.
3
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We denote this set by A;

(2) Crossingless connections of the form az', fori > 1, where a € A;

(3) Crossingless connections between two points on the outer boundary that do not isolate the remaining
two points on the outer boundary from a path to the inner boundary points where the remaining outer
boundary points are connected to the inner boundary points after wrapping around the inner boundary

by nk fork € Z.

EE@E)

Example 2.5. Consider the crosscap model of the Mobius band where @ denotes a crosscap. By Corollary
2.3(d) the standard basis of S, (MbXI, 2) consists of the following elements:

(1) Crossingless connections in the Mébius band with no trivial components or boundary parallel curves
for which the arcs do not intersect the crosscap. We will denote the set by B;

(2) Crossingless connections of the form bz', fori > 1, where b € B;




A new Gram determinant from the Mobius band

(3) Crossingless connections of the form bxz' fori > 0, where b € B;

i>0
(4) Crossingless connections consisting of a collection of 1 — k arcs for 0 < k < 1 that non-trivially
intersects the crosscap;

2.1. The Gram determinant of type B. The origins of the Gram determinant of type B can be found
in [MS1]. The creation of this type of Gram determinants comes from the blob algebra (see [MS2]) that
is associated to the transfer matrix formulation of statistical mechanics on arbitrary lattices. The knot
theoretic interest originated from the work of R. Simion [Sim] on chromatic joins when Q. Chen and J. H.
Przytycki in [CP1] showed a connection to the Gram matrix of the Temperley-Lieb algebra and the matrix
of chromatic joins. Furthermore, Q. Chen and J. H. Przytycki in [CP2, Che] used skein modules, the Jones-
Wenzl idempotents, and Chebyshev polynomials to prove a closed formula for type B. The definition we
give will use the language of skein modules.

Definition 2.6. Let B, o = {b1, by, ..., b(Zn)} be the set of all diagrams of crossingless connections between

2n marked points on the outer boundary o]?Ann x {0} in Ann X I. Define the bilinear form ( , )g for type B
as follows:

(. )B : Soeo(Ann X L{x;}3"; R, A) X Sp.0(Ann x I {x;}{"; R, A) — R[d. z].

Givenb;, bj € B, o, we glueb; with the inversion of b; along the marked outer boundary, respecting the labels
of the marked points. The result is an element in Ann X I containing only disjoint simple closed curves which
are either homotopically non-trivial (denoted by z), or null homotopic (denoted by d). Then, (b;, bj)p = Zkdm,
where k and m denote the number of these curves, respectively.

The Gram matrix of type B is defined as G2 = ((b;, bj>B)1§i,j§(2:)’ and its determinant D5 is called the
Gram determinant of type B.

Example 2.7. An example of the bilinear form on two elements in Bs is given below.

D)

Theorem 2.8. [CP2][MS1] LetR = Z[A*!]. Then
D =] [(m(a)? - 25,
i=1
where T;(d) is the Chebyshev polynomial of the first kind recursively defined by T,41(d) = dT,(d) — T,—1(d),

with initial conditions Ty(d) = 2 and Ty(d) = d, whered = —A% — A™2,
5
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Q. Chen and J. H. Przytycki’s proof of a closed formula for type B involves the creation of a linear
map on the basis B, o that uses the lollipop method to decorate the inner boundary component with the
Jones-Wenzl idempotent, then proving that the image of the linear map under the basis is a subspace of

. L2 2
dimension (%) - (7).
2.2. The Gram determinant of type Mb. Jozef H. Przytycki constructed the notion of the Gram deter-
minant of type Mb in 2008. This originates from the study of crossingless connections on a Mdbius band.
Here the bilinear form is defined through the identification of two M&bius bands along their boundaries.
This determinant is given in Definition 2.9.

Definition 2.9. Let Mb, = {m;, ..., Myn (2]:1)} be the set of all diagrams of crossingless connections between
=0

2n marked points on the boundary of the Mébius band Mb X {0} in Mb X I. Define a bilinear form {, )y on
the elements of Mb,, as follows:

(o Wb = Sz.00(Mb X I {x;}") X Spe0(Mb X I {x;}2") — Z[d, w, x, y, 2].

Givenm;, mj € Mby, identify the boundary component of m; with that of the inversion of m;, respecting the
labels of the marked points. The result is an element in Kb X I containing only disjoint simple closed curves.
The five homotopically distinct simple closed curves in the Klein bottle, including the homotopically trivial
curve, are denoted by x,y, z, w,d as illustrated in Figure 2.2. Then, {m;, mj)p = dmx"ykzlwh wherem, n, k, |
and h denote the number of these curves, respectively.

The Gram matrix of type Mb is defined as GM* = ((m;, mj)JVH,)KLKZ;Cl NGS and its determinant DM is
called the Gram determinant of type Mb.

Ficure 2.2. Klein bottle and its five homotopically distinct simple closed curves.

The following two examples illustrate this definition. In particular, Example 2.10 shows the basis Mb,,
the Gram matrix, and calculates the Gram determinant GQ’”’ )

Example 2.10. Forn = 2, the set Mb,, is given by

BEEOOEE®E@E)

and the Gram matrix is given in Table 1.
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=)
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T

TaBLE 1. The Gram matrix Gé‘/ﬂ’.

The determinant of the Gram matrix is:

DY (d - 2)*[(d +2)w — 2xy]*(d®(d® — 4))(d® — 2 + 2)
[(d>=2-2)(Ww?=2)—2(2-12)]
(Ti(d) - 2)*[(T1(d) + 2) Ty (w) — 2xy]*(Ty(d) — 2)(Ty(d) + 2)

[(T2(d) — 2)T2(w) — 2(2 - 2)].

Example 2.11. An example of the bilinear form on two elements in Mb, is given below, where @ denotes a

crosscap usually denoted by G .

QD)) -

Q. Chen conjectured the following result for the Gram determinant of type Mb. Some work supporting
this conjecture can be found in [BIMP1, BIMP2, PBIMW].

Conjecture 2.12 (Chen).
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LetR = 7[A*!, w, x, y, z|. Then the Gram determinant of type Mb for n > 1, denoted by DQ“’, is:

Dyb(d’ w, X, Y, Z) = H(Tk(d) + (—1)kz)(n2—nk)
k=1

n

[T (T = (=0*2)Te(w) - 2xy

k=1
k odd

)(nznk

n

[T (M@ - *aTw -22-2)

k=1
k even

n
| | Dn,i,
i=1

n n
where D, ; = [ (Tox(d) — 2)(n2—k), and i represents the number of curves passing through the crosscap.
k=1+i

) (nz—nk

Proposition 2.13. [BIMP2] Dan is divisible by (d — z)(nzfl).
Proposition 2.14. [BIMP1] DQ/H’ is divisible by (w(d + z) — ny)(nzfl).

Proposition 2.15. [PBIMW] Dan is divisible by ((d* — 2 — z)(w? = 2) — 2(2 - z))(nzfz).

3. THE GRAM DETERMINANT OF TYPE (Mb),

The basis of the relative Kauffman bracket skein module of the twisted I-bundle of the Mobius band, as
described in Corollary 2.3, is infinite. If we restrict to only basis elements with no z and x curves, then
we obtain a finite sub-collection of this basis. The Gram matrix of type Mb was created by this finite sub-
collection. However, this construction carries a few disadvantages. First, the number of elements increases
exponentially as n increases. In particular, computing the determinant for n > 5 has not been achieved due
to the size of the matrices. Second, the lollipop technique of decorating the crosscap with the Jones-Wenzl
idempotent is no longer as straightforward as it was in the case of type B. In fact, attempts to using this
technique have not yet been rigorously successful. In this section we propose a new Gram determinant
from a sub-collection of Mb,, give direct connections to a new type B, and explain how the lollipop method
can be applied to this case and where it falls short for the case of type Mb.

Definition 3.1. Let (Mby,); = Mby,o U Mb,; where Mb,y = {my,..., m(Zn)} is the set of all diagrams of

crossingless connections between 2n marked points on the boundary of Mb X {0} whose arcs do not intersect
the crosscap and Mby,; = {my, .. S 2n)} is the set of all diagrams of crossingless connections between 2n
n-1

marked points on the boundary of Mb X {0} with exactly one curve intersecting the crosscap. Define a bilinear
form {, Ypp on the elements of (Mb,,); by using the same bilinear form as type Mb, as follows:

(o Wb = Sz.00(Mb X I {x;}") X Spe0(Mb X I {x;}2") — Z[d, w, x,y, 2].

Givenm;, m; € (Mb,), identify the boundary component of m; with that of the inversion of m;, respecting
the labels of the marked points. The result is an element in Kb X I containing only disjoint simple closed curves.
Then {m;, mj)mp = dmx"ykzlwh where m,n, k, | and h denote the number of these curves, respectively.

The Gram matrix of type (Mb); is defined as G,(,Mb)l = ({m;, mj>Mb)1<,-j<( )+ (21) and its determinant
=2/ =\n-1 n
D,(le)l is called the Gram determinant of type (Mb);.

In Example 3.2 we show the smallest Gram matrix of type (Mb); that differs from type Mb (compare
Example 2.10).
8
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Example 3.2. Forn = 2, the set (Mb,); is given by

[OIQIOIGIOACA LTI

and the Gram matrix is shown in Table 2.

D@ @@= ]| )| ()

d> | dz | 2 z d z dy | vy | yz | vy
dz | d? dz d z d dy y dy y

z dz | d? z d z yz y dy y

dz | d* | dz y | dy | y | dy

z d z z dz | d? y dy y yz

dx | dx | xz x x x dw | w Xy w

x x X xz | dx | dx w | dw | w Xy

xz | dx | dx x x x Xy w | dw | w

X x x dx | dx | xz w Xy w | dw

EOE @@ E =)

TaBLE 2. The Gram matrix GéMb)l.

DM (—2+d)d*(2+d)(d - 2)* (=2 + d* — 2) (=2 + d* + 2) (—dw + 2xy — wz)*

(d-2)*((d* - 2) +2)((d + 2)w — 2xy)* ((d* = 2) — 2)(d*(d* —4) +2 - 2)
= (Ti(d) — 2 (Tz(d)* - 2°) ((d + 2)w — 2x1)*(Tu(d) - 2).

Observe that D;Mb)l does not divide Déw’ . However, the following proposition is a direct result from a
proof given in [BIMP1] for type Mb.

Proposition 3.3. [BIMP1] D,(le)1 is divisible by (w(d + z) — 2xy)(nzfl).

Consider an annulus with 2n points on the outer boundary and 2 points on the inner boundary. Fix a
crossingless connection between 2n — 2 points on the outer boundary that do not isolate the remaining
two points on the outer boundary from a path to the inner boundary points. Then there are an infinite
number of ways to connect the remaining outer boundary points to the inner boundary points without
introducing a crossing. For example, if we start by connecting two arcs, each on the outer boundary, then
we may wrap the arcs around the annular boundary by 7k where k € Z before connecting to the inner
boundary points. An illustration is given in Figure 3.1.

9
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) (2 @ &

(@) k=0. k=-1. (c) k=-2. d k=1

Ficure 3.1. Examples of distinct crossingless connections from an infinite family where
two arcs attached to the inner and outer boundary wrap around the annular boundary
k/2 times for k € Z.

Fix a line segment connected between the 15 and 2n*" marked point of the outer boundary and between
the two inner boundary points. Call this segment the lollipop. As before, consider a fixed crossingless
connection between 2n—2 points on the outer boundary that do not isolate the remaining four points. If the
two arcs bounding the remaining four marked points are not allowed to intersect the lollipop, then there

is only one way, up to isotopy, to connect the arcs from the outer boundary points to the inner boundary
points, without introducing crossings.

X6 X1

X5 X2
X4 X3

FIGURE 3.2. An illustration of a lollipop in an annulus with 6 marked points on the outer
boundary and two marked points on the inner boundary.

The following lemma is a generalization of the children playing a game proof given in [Prz1] and ex-
plained in [PBIMW]. Also, one can find a detailed proof of the lemma in [Iba].

Lemma 3.4. [PBIMW, Prz1] Consider an annulus with 2n marked points in the outer boundary, 2 marked
points in the inner boundary, and suppose it contains a lollipop S. Let By = {b},---,by} be the set of
crossingless connections, up to isotopy, with the following properties:

(1) There are n — 1 arcs connected to the marked points in the outer boundary.

(2) Thesen—1 arcs do not isolate the remaining two marked points in the outer boundary from the marked
points in the inner boundary.

(3) The two remaining arcs are disjoint from the lollipop and
(4) each are connected to the inner and outer boundary components of the annulus, respectively.

Then N = ( 2n ) and there is a one-to-one correspondence between B, ; and (Mb,,);.
10
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Example 3.5. The set By consists of 4 elements as illustrated below:

el

Definition 3.6. Consider Sz (Ann X I, {xi}f”) ® S0 (Ann, {yf’”}f" U {yi"",yé""}) and its submodule,
R((Bn)1) = R(Bno) ® R(Bn1)", where R(By) and R(By1) are submodules of Syc(Ann X I, {x;}*") and
Ss.00(AnnxI, {y?}2nU{yi"™, yinm}), generated by By, and By, 1, respectively. In particular, (B,)1 = BpoUBy, 1.
Furthermore, let R((Mby,)1) be a submodule of Sy.oo(Mb X 1, {xi}f") generated by the elements of (Mb,,);.
Define a linear map ¢ : R((Mb,)1) — R((B,)1) on the basis as follows:

Recall (Mbn)l = Mbn,o U Mbn,l:
(1) If m € Mb,,,, then there exists a unique element in B, say b, o, obtained from m by replacing the
crosscap with a table. In this case ¢(m) = b, € By, .
(2) If m € Mb,,,, then there exists a unique element in B,, 1, say b, 1, obtained from matching the arcs
whose boundary is disjoint from the inner boundary. In this case ¢(m) = b, 1 € B, 1.

The next lemma gives a direct connection between type (Mb); and a new Gram determinant of type B
constructed by the set (B,,); and using the same bilinear form as type B. Type (Mb); is a special case of it
when the distinction of the two curves attached to the inner boundary (or outer boundary) of the annulus
is ignored as shown in Figure 3.3.

Lemma 3.7. The map ¢ is a bijection between the bases (Mb,,), and (By,),. Furthermore, the Gram determi-
nant is preserved up to an appropriate labelling of the elements.

Proof. By construction, ¢ is a bijection between (Mb,); and (B,);. To show that ¢ preserves the Gram
determinant it suffices to prove that the bilinear form is preserved. Since {(¢(m;), ¢(m;))p belongs to

SZ,oo (Ann X I) (4>) SZ,oo (Ann X I, {yinn’ yénn})
& Soeo(Ann X L{y?, ys"}) & Saoo(Annx I {y!™, yi"} U {yo, y3'}),

then we only need to choose the following labelling illustrated in Figure 3.3. That is, for example, if one
arc is attached to the inner and outer boundary then there exists a corresponding arc that also intersects
the inner and outer boundary; we label the element with these pair of arcs by w. This corresponds to the
element in Sy . (Kb X I) that intersects the two crosscaps once, namely the w curve. Furthermore, if an
arc is attached to the outer boundary then we label it y; this corresponds to the y curve in the Klein bottle
that intersects the outer crosscap. If it is attached to only the inner boundary we label it x. In particular,
the element with two arcs, one only attached to the inner boundary and one only attached to the outer
boundary, is labeled xy.

@ :W’ ‘ :x’ ‘ :x, @ :y’ @ :y'

F1GURE 3.3. A labeling of the curves attached to the boundary of the annulus.

O

Remark 3.8. Even though the bijection ¢ can be extended to Mb,, it will no longer preserve the bilinear form.
Indeed this can be seen in Example 2.11; when two arcs intersect the crosscap you might obtain a d or z for the
Klein bottle while for the annulus case it would just be x*.

INote that R((Bp)1) is not a skein module.
11
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3.1. White markers. We introduce elements whose closure remains unlinked from all simple closed
curves or arcs in Ann X I. These elements will be used to adapt Chen and Przytycki’s proof in [CP2]
to prove that a factor of the Gram determinant of type B divides the Gram determinant of type (Mb);.

Definition 3.9. LetI = [-1,1], M = Ann X I with 2n framed marked points attached to the outer boundary
of Ann x {0}, and let M be decorated with a lollipop S = S X I. Consider L L {wj}le C M; a relative framed

link £ and a pair of k labelled white marked framed points {wj}le disjoint from L US and distinct from the
2n marked points, called white markers.

White markers are either attached and fixed to the boundary of (Ann—S) x {0} of M — S, or attached to a
second white marker in the interior of M — S as illustrated in Figure 3.4.

33

21
Da

(a) White Markers attached to the boundary. (b) White Markers attached to each other.

F1GURE 3.4. Illustrations of white markers.

The labelled white markers are identified in M with framed arcs according to their labelling if, up to ambient
isotopy, there exists a collection of k pairwise disjoint curves {y; }le such that for each j, y; is connected to the
core of the framed points pt, j and pt, ; of the pair of white markers w; = {pt, j, pta j} under the following
condition:

There exists a neighborhood of each arcy;, U(y;) C Ann x {0}, such that (UleU(yj) x)N(LUS) =2.

Ifthe condition is not satisfied then the white markers remain as white marked framed points with attaching
information intact but no arcs attached. Furthermore, the sign of each labelling assigned to a white marker
will change under an inversion operation.

Example 3.10.

(a) Letl = [-1,1], M = AnnxI with 2n framed marked points attached to the outer boundary of Annx{0},
and let M be decorated with a lollipop S = S X I. Suppose that L consists of only relative framed links
with no crossings and suppose L U wy C M where the pair of white markers wy; = pt, | U pt, | are
attached to each other in the interior of M. Then there exists a disk D C Ann X {0} such that w; C D
and (DXI)N (L US) = @. In this case the pair of labelled white markers are identified by y; in D to
produce a simple closed curve. An illustration is given in Figure 3.5a.

(b) Now suppose L U {wy, wy} C M where each white marker from wy is attached to a white marker
from w, in the interior of M. Then there exists a disk D C Ann X {0} such that {w; U wy} C D and
(DXI)N(LUS) = @. In this case the pair of white markers are identified by arcs in D. An illustration
is given in Figure 3.5b.

So far this notion results in simple closed curves and the closure always exists. However, if we consider
white markers attached to the boundary of M, as shown in Figure 3.6, we find that there exist relative
framed links that obstruct the closure of the white markers. Furthermore, we find obstructions from the
position of the white markers regardless of the relative link.

12
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(a) Closure of one set of white markers. (b) Closure with two sets of white markers.

F1GURE 3.5. A local illustration of the closure of arcs in D X {0} € Ann X [—1, 1] obtained
by identifying arcs attached to white markers with the same label.

(a) An obstruction from the z (b) An obstruction coming (c) An obstruction coming
curve isolating the inner and from an arc isolating the inner from the position of the white
outer boundary points. and outer boundary points. markers.

FiGURre 3.6. Examples of obstructions to the closure of white markers.

Definition 3.11. LetI = [-1,1], k < n, M = Ann X I with 2n framed marked points attached to the outer
boundary of Ann x {0}, and let M be decorated with a lollipop S = S x I. Let L7 (2n,k) be the set of all k
white markers fixed to the boundary of Ann X {0} along with all relative framed links L disjoint from the
white markers, L LI {w] j=1> up to ambient isotopy, while keeping all marked points on the boundary fixed.
Furthermore, we restrict the k white markers to finitely many possible placements in the inner boundary and
also restrict to allowing at most one white marker between framed points and also between the 15 and 2n*"
framed points and the lollipop on the outer boundary. Let R be a commutative ring with unity, A € R be
invertible, and let Sg,’fﬁ(Zn, k) be the submodule of RLS"(2n, k) that is generated by the Kauffman bracket
skein relations. The relative Kauffman bracket skein module of M with white markers is the quotient

Soco(Ann X I {x; 13" U {w;}*_ ;R A) = RLF (2n, k) /S5 (2n, k).

Jj=1
For simplicity we will denote this skein module by S(Ann;)).

Example 3.12. Consider the following relative link with two white markers in £ (4,2);
13
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This link as an element in S o (Ann x I, {x;}* U {wj}izlgR, A) is equal to

Corollary 3.13. The relative Kauffman bracket skein module of Ann X I with white markers, S(Ann}), is a
free R-module. The basis contains an infinite number of elements described as follows.

(1) Crossingless connections between 2n+ 2k framed points in the outer boundary of AnnxI and i number
of boundary parallel curves wherei > 0. In particular, the arcs connected to the 2k framed points do
not intersect the lollipop.

(2) Crossingless connections between 2n + 2k framed points in d(Ann X {0}) and i number of boundary
parallel curves wherei > 0, 21 framed points are in the inner boundary forl < k, and the arcs attached
to the 21 framed points are not connected to the outer boundary.

(3) Crossingless connections between 2n + 2k framed points in d(Ann X {0}) where | framed points are in
the inner boundary forl < 2k and at least one arc that is connected to one of the | framed points is
also connected to one of the 2k — | framed points lying in the outer boundary.

(4) Crossingless connections between 2n framed points in the outer boundary of Ann X {0}, i boundary
parallel curves where i > 0, and k white markers {w; le in d(Ann x {0}), where at least one white
marker, say pty; of wy = {pty11, pta1}, lies in the inner boundary of Annx {0} and pt, lies in the outer
boundary.

(5) Crossingless connections between 2n framed points on the outer boundary d(Ann x {0}) and k white
markers {wj}ll< in d(Annx{0}), where for at least one white marker a path connecting it is obstructed
by an arc connected to one pair of framed points or by the lollipop; see Figure 3.6. For each element,
say b, in this set of crossingless connections with white markers we also have bz' where i > 0.

Example 3.14. Examples of the basis elements of S(Anny) as described in Corollary 3.13 are illustrated below.

(1) Crossingless connections between 6 framed points in the outer boundary of Ann X I and i number of
boundary parallel curves wherei > 0.

Glelolololotelol

(2) Crossingless connections between 6 framed points in d(Annx {0}) and i number of boundary parallel
curves where i > 0, 21 framed points are in the inner boundary forl < 2, and the arcs attached to the
21 framed points are not connected to the outer boundary.
14



A new Gram determinant from the Mobius band

DOOOOODE

(3) Crossingless connections between 6 framed points in d(Ann X {0}) where | framed points are in the
inner boundary forl < 4 and at least one arc that is connected to one of the | framed points is also
connected to one of the 4 — | framed points lying in the outer boundary.

DOOORDOE

(4) Crossingless connections between 2 framed points in the outer boundary of Ann x {0}, i boundary
parallel curves where i > 0, and 2 white markers {wj}iz1 in d(Ann x {0}), where at least one white
marker, say pty; of wy = {pt11, pta1}, lies in the inner boundary of Annx {0} and pt, lies in the outer
boundary.

(5) Crossingless connections between 2 framed points on the outer boundary d(Ann x {0}) and 2 white
markers {w; '1‘ in d(Annx{0}), where for at least one white marker a path connecting it is obstructed
by an arc connected to one pair of framed points or by the lollipop. For each element, say b, in this
set of crossingless connections with white markers we also have bz’ where i > 0. Notice that some
elements of the form bz', fori > 0, are also described in (4).

3.2. Lollipop method. In this section we use the lollipop method discussed in [CP2]. In the same spirit
as Chen and Przytycki, in this section we define several maps. In particular, we define the maps ;. and S
that involve the use of a lollipop, and the bilinear map H on the Hopf link with zero framing. These maps
are modified by using white markers so that the inner boundary is left intact and the x, y, and w curves
remain unchanged under the maps and the bilinear form. Furthermore, & is a modification of ¢y in [CP2]
where we decorate the z curve in the Klein bottle instead of the annulus.

Definition 3.15. Define a linear map Y. : R((Bn)1) — R((Bn+k)1) on the basis as follows. For b € (By,):

(1) Decorate b with a lollipop S and let L denote the arcs whose minimum intersection points with the
lollipop is equal to one.
(2) Include k marked points, denoted by t, between the 2n'" marked point and the lollipop.
(3) Include k marked points, denoted by ry, between the lollipop and the 15' marked point.
(4) Add parallel curves denoted by Uy, . that connects {y to ry in such a way that each curve crosses over
L on the left of the lollipop, intersects the lollipop once, and crosses under L on the right of the lollipop.
15
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An illustration is shown in Figure 3.7.

)
O 9 C

Yk Yk
k
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—
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(a) Y under an element in Bs ;. (b) Y1 under an element in Bs .

FIGURE 3.7. An illustration of the map 1. under two basis elements of R((Bs)1).

Definition 3.16. Define a linear map P : R((Bp+k)1) — R(Bpiko) ® S(Anng+k) on the basis as follows.
Forb € (Bpik)1:

(1) Ifb € Byyk, then
(a) decorate b with a lollipop S and let L denote the arcs whose minimum intersection points with the
lollipop is equal to one. Denote by & the first k marked points from the left of the lollipop and ry.
by the first k points from the right of the lollipop.
(b) Push L to the other side of the inner boundary of Ann x {0}.
(c) Insert a copy of the k'" Jones-Wenzl idempotent, fi, close to f, into the arcs connected to £, and
another copy close to r, into the arcs connected to ry.
(2) If b € Byyk.1, then
(a) Decorate the arc attached to y; with a white marker labelled 1.
(b) Decorate the arc attached to y, with a white marker labelled 2.
(c) Push L U Uy to the other side of the inner boundary of Ann x {0}.
(d) Insert two copies of the k" Jones-Wenzl idempotent, fi, into Uy, one close to £, and another close
to ry.

An illustration is shown in Figure 3.8.
The next lemma is a direct result of the previous definition.
Lemma 3.17. Let b;,b; € (By)1. If (bi,bj)p = xpymwhd”z’ forp,m,h,n,r > 0, then
(Bo o Yo(bi), Po o Yo (bj))p = xpymwhdn+r-

That is, all z curves become homotopically trivial.
16
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’W‘

(@) Pr under an element in Bs,y 1. (b) B under an element in Bs. .

FIGURE 3.8. An illustration of the map fj under two elements of (Bs.x);.

Definition 3.18. Let H be a bilinear map associated to the Hopf link with zero framing and ordered compo-
nents {K{,K>},

H:Syo0(Ky X LZ[A®]) X Sp.0 (K2 X [ Z[AT']) = S5.00(S; Z[AFY)),

defined on the basis as follows:

Foreach 1 < i < 2, if the i component is equal to z" for h > 0 then replace K; with h parallel copies,

and if the i component is equal to 1 then remove K; from the diagram. Evaluate the resulting link in
S2.00 (8% Z[A*]).

We define a linear map & : Sy (Kb X I) — Z[A*, x,y, w] such that & is the identity on x,y, w, and d,
d=-A>-A"2 and
&k (z) == H(z, Sn(2)),

where S,,(2) is the n'" Chebyshev polynomial of the second kind in the variable z. In particular, S, (z) =
trann(fn) (See [Lic2, PBIMW] for more details about the connections to the Jones-Wenzl idempotents and
Chebyshev polynomials).

Informally, & (z) is defined by decorating the first component of the Hopf link with one parallel curve and
decorating the second component with the k*" Jones-Wenzl idempotent fi.

Recall from W. B. R. Lickorish in [Lic2] that

@ ®‘< —ATE) - 2<k+1>)'"Ak—<< D Tesr ()™ A
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é;rk(zm) — H(Zm,ﬁc) — @] — (_AZ(k+1) —A_z(k+1))mAk.
m k

Example 3.19. Letd = —A%> — A™%. Then

Therefore,

&k

and

Definition 3.20. Define the matrix F, . using & as follows. For m;, m; € (Mby)1,
Foie = (e (mi mj)am)) 1< j (2 )4 ()
Remark 3.21. By the definition, ifd = —A%? — A7, then

_ 1
G (g (=1)* 1T (d), x, y, w) = Fu

Furthermore, if we define Fr’l’k on Mby, in a similar way, Fr’l,k = (&1 ({m, m;)Mb))lsi,ngM, then

GMP(d, (~1)F VT (d), %,y w) = ——F" .
AV

The following lemma is a direct result of the construction of the maps S, ¥k, and ¢. Notice that ¢ is
a bijection between the sets (Mb,); and (B,); which preserves the bilinear form, i} introduces k trivial
link components linked to the z curves under the bilinear form of type B, and Sk o ik, under the bilinear
form of type B, inserts the k*" Jones-Wenzl idempotent into the k trivial link components. Additionally,
Br © Y pushes all boundary parallel curves through the inner boundary of the annulus while preserving
the number of x, y, and w curves.

Lemma 3.22. Let ni = P o Yy o ¢. For my, mj € (Mby)1,
& ((my, mj)Mb) = (nk(m;), ’Yk(mj)>B-
The next theorem is our main result regarding the structure of the closed formula for the Gram deter-
minant of type (Mb);.
Theorem 3.23.

]_I(Tk(d) + (—1)kz)(n2—nk) divides D,gMb)l (d,z,x,y,w).
k=1
18
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Proof. We modify and build upon Chen and Przytycki’s proof in [CP2] by showing that for k > 1, the
nullity of G,(le)l (d, (~1)* i (d), x,y, w) for d = —A? — A~2 is at least (nz_"k).

Recall that for Fy, ;. = (&—1({m;, m]>Mb))1si,js( ) (2m) We have

GM (d, (~)F T (d), x, g, w) =

! F
Ary nk-

Furthermore, by Lemma 3.22, we have &_; ({m;, m;)ap) = (Nk—1(mi), n—1(m;))p where ni = froyp 0.
Since ¢ is a bijection between (Mb,); and (B,)1, then it suffices to show that fr_;ox_1((By,)1) is contained
in a subspace of dimension (,*") + (%) = (%) in Sz (AN 1) ® S50 (D? X I n + k — 1). As in [CP2], it
suffices to show that

dim(Im(fk-1)) < ( an )+ (Zn) —( an )
n-—1 n n—k

Recall that R((B,)1) = R(Bno) ® R(Bp,1) where R(B,) and R(B,,) are free R-modules generated by
B0 and By, 1, respectively. Since B, N By, ; = @, then

Br—1° Yk—1(Bno ® Bn1) = Pr—1 0 Y—1(Bno ® {0}) & Pr—1 © Yx_1({0} & Bp1).

Furthermore, |B, | = (nz_nl). Therefore,

dim(Br—1 © Yr—1((Bn)1)) < dim(Br_1 © Yx—1(Bno ® {0})) + (nz_nl).

The set Sx—1 © Yx—1(Bpno ® {0}) can be viewed as a set of crossingless connections between 2(n + k — 1)
points in the disc by cutting along the lollipop. Therefore, it suffices to prove that fi_; o Yx_1(Bno @ {0})
is contained in a subspace of dimension (") = ( *") in Sy (D X I, n + k — 1) which was already proven in

[CP2]. O

4. FUTURE DIRECTIONS
We present a conjectured formula for type (Mb),. This conjecture has been verified for n < 3.

Conjecture 4.1.
LetR = Z[A*!, w, x, y, z]. Then, the Gram determinant of type (Mb); forn > 1, is:

DM = [(d—z)<<d+z>w—zxy>]<ffl>ﬁ(n(d)z—zZ)(ffk)ﬁ(TZk(@—z)(fi’k),

k=2 k=2
where Ti.(d) is the k*" Chebyshev polynomial of the first kind and d = —A% — A72,

The lollipop method was verbally proposed by J. H. Przytycki, and first explicitly stated in writing in
[PBIMW], to be a suitable method to apply to type Mb for a proof of the same factor given in our main
theorem. In fact, the concluding arguments of the proof of Theorem 3.23 suggest that the new techniques
given in this paper along with the lollipop method can be modified and applied to type Mb; albeit in a not
so straightforward way.

Lemma 3.7 gives insight into direct connections between type (Mb); and a Gram determinant from a
matrix created by using the set (B,); and the bilinear form of type B. We will call this determinant type
(B)1. As shown in the proof of the lemma, type (Mb); is a special case of type (B); where no distinction
is made between arcs whose boundary components are both connected to the inner boundary (or outer
boundary). Another future direction is to focus on the Gram determinant of type (B); and obtain a closed
formula.

19
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Furthermore, potential connections to statistical mechanics are suggested, by investigating the blob
algebra discussed in [MS2], when the y and x variables are made equal as to obtain a determinant from a
symmetric matrix.
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