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Abstract

In a previous paper, we defined an “elementary” alternative to the ECH
capacities of symplectic four-manifolds, using max-min energy of holomorphic
curves subject to point constraints, and avoiding the use of Seiberg-Witten
theory. In the present paper we use a variant of this construction to define an
alternative to the ECH spectrum of a contact three-manifold. The alternative
spectrum has applications to Reeb dynamics in three dimensions. In particular,
we adapt ideas from a previous joint paper with Edtmair to obtain quantitative
closing lemmas for Reeb vector fields in three dimensions. For the example of
an irrational ellipsoid, we obtain a sharp quantitative closing lemma.
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1 Introduction

1.1 Quantitative closing lemmas

Let Y be a closed oriented 3-manifold. Recall that a contact form on Y is a 1-form λ
with λ'dλ > 0 everywhere. Associated to λ is the Reeb vector field R characterized
by dλ(R, ·) = 0 and λ(R) = 1. A Reeb orbit is a periodic orbit of R, that is a map
γ : R/TZ → Y for some T > 0, modulo translations of the domain, such that
γ′(t) = R(γ(t)). The Reeb orbit γ is simple if γ is an embedding; otherwise γ
is the d-fold cover of a simple Reeb orbit for some integer d > 1. We define the
(symplectic) action A(γ) > 0 to be the period T .

Closing lemmas in this context are concerned with creating Reeb orbits via
suitable modifications of the contact form. A recent breakthrough in this topic
is due to Irie [17] who proved, in the language of his later paper [18], that every
contact form on a closed three-manifold has the following “strong closing property”:
If U ¢ Y is a nonempty open set, and if f : Y → R is a nonnegative smooth function
supported in U which does not vanish identically, then for some τ ∈ [0, 1], the contact
form eτf has a Reeb orbit intersecting U . A remarkable feature of this result is that,
unlike in the older C1 closing lemma of Pugh [21], no special care is required in the
choice of f to obtain a Reeb orbit. Note also that the statement implies that one
can find τ arbitrary small such that eτf has a Reeb orbit intersecting U , although
the action of such a Reeb orbit might be very large.

In this paper we prove quantitative refinements of the strong closing property.
Roughly speaking, these are answers to the following question: Given a nonempty
open set U ¢ Y and given L > 0, how much do we need to deform the contact form
λ in U in order to produce a Reeb orbit intersecting U with action at most L? To
make precise sense of this question, we need the following definitions.

Definition 1.1. Let (Y, λ) be a closed contact three-manifold and let U ¢ Y be
a nonempty open set. A positive deformation of λ supported in U is a smooth
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one-parameter family of contact forms

{

λτ = efτλ
}

τ∈[0,1]

with the following properties:

• f0 ≡ 0.

• fτ (y) = 0 for all τ ∈ [0, 1] and y ∈ Y \ U .

• f1 g 0, and f1 does not vanish identically.

We now introduce a notion of the “size” of a positive deformation. Recall that
the symplectization of (Y, λ) is the symplectic 4-manifold

(R× Y, ω = d (esλ))

where s denotes the R coordinate. Recall also that if (X,ω) is any symplectic
4-manifold, then its Gromov width

cGr(X,ω) ∈ (0,∞]

is defined to the supremum of a > 0 such that there exists a symplectic embedding

B4(a) −→ (X,ω).

Here B4(a) denotes the ball

B4(a) =
{

z ∈ C
2
∣

∣ π|z|2 f a
}

with the restriction of the standard symplectic form
∑2

i=1 dxi dyi on R
4 = C

2.

Definition 1.2. Let
{

λτ = efτλ
}

τ∈[0,1]
be a positive deformation as in Defini-

tion 1.1. Let
Mλ1 = {(s, y) ∈ R× Y | 0 < s < f1(y)}

with the symplectic form d (esλ) from the symplectization. Define the width of the
positive deformation by

width({λτ}) = cGr(Mλ1) ∈ (0,∞).

Definition 1.3. Let (Y, λ) be a closed contact 3-manifold and let L > 0. Define

CloseL(Y, λ) ∈ [0,∞]

to be the infimum of δ > 0 with the following property:
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• Let U ¢ Y be a nonempty set and let {λτ}τ∈[0,1] be a positive deformation of
λ supported in U with width({λτ}) g δ. Then for some τ ∈ [0, 1], the contact
from λτ has a Reeb orbit intersecting U with action at most L.

Remark 1.4. It is immediate from the definition that CloseL(Y, λ) is a nonincreas-
ing function of L.

If L is less than the minimum action of a Reeb orbit of (Y, λ), then CloseL(Y, λ) =
+∞. In this case, for any δ > 0, one can prove that CloseL(Y, λ) > δ by taking
U = Y and λτ = erτλ where r > 0 is sufficiently large with respect to δ.

It is also possible to have CloseL(Y, λ) = 0. This is equivalent to the statement
that every point in Y is contained in a Reeb orbit of action at most L.

Remark 1.5. If CloseL(Y, λ) is finite, then for any nonempty open set U , and any
positive deformation {λτ} supported in U with width at least CloseL(Y, λ), there
must exist τ ∈ [0, 1] such that the contact from λτ has a Reeb orbit intersecting U
with action at most L. This Reeb orbit could, for example, be obtained by “closing
up” a trajectory of the Reeb vector field in Y \ U from ∂U to itself, or a cycle of
such trajectories. If there is no such trajectory taking time less than CloseL(Y, λ),
then the Reeb orbit created must be entirely contained in U . Compare the proof of
Proposition 1.13 below.

The following theorem, proved in §6.4, asserts that for any (Y, λ), if L is suffi-
ciently large then CloseL(Y, λ) is finite, in fact O(L−1). This is what we mean by a
“quantitative closing lemma”. To state the theorem, recall that the contact volume
is defined by

vol(Y, λ) =

∫

Y
λ ' dλ.

Theorem* 1.6 (general quantitative closing lemma). Let (Y, λ) be a closed contact
three-manifold. Then

lim sup
L→∞

(

L · CloseL(Y, λ)
)

f vol(Y, λ).

Convention 1.7. In this paper we are avoiding using Seiberg-Witten theory when
we can. To keep track of this, results that currently require Seiberg-Witten theory
for their proof are marked with an asterisk. Results that currently also require
Seiberg-Witten theory to know that their statement makes sense are marked with
two asterisks.

Example 1.8. Theorem* 1.6 implies that in the setting of Irie’s strong closing
property above, given δ ∈ (0, 1], for some τ ∈ [0, δ], a Reeb orbit intersecting U
must appear with action O(δ−1). This is because one can show that if δ > 0 is
small then the positive deformation {eτδfλ} has width at least cδ, where c > 0 is a
constant depending on f . Compare [8, Prop. 6.2].
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Here is another general statement one can make. Let Y ¢ R
4 be a compact star-

shaped (i.e. transverse to the radial vector field) hypersurface. Then the standard
Liouville form

λ0 =
1

2

2
∑

i=1

(xi dyi − yi dxi)

restricts to a contact form on Y , which we omit from the notation.

Theorem 1.9 (proved in §5.1). Let Y be a compact star-shaped hypersurface in R
4

and suppose that Y ¢ B4(a). Then for every L > 0 we have

CloseL(Y ) f 2a

+La−1,+ 3
.

In specific examples one can say more if one can compute the alternative spectral
invariants introduced in §1.3 below. Here is an example where we can determine
CloseL(Y, λ) exactly. Let a > 1 be irrational and consider the ellipsoid

E(a, 1) =

{

z ∈ C
2

∣

∣

∣

∣

π|z1|2
a

+ π|z2|2 f 1

}

.

Then ∂E(a, 1) is a star-shaped hypersurface. The following result shows that
CloseL(∂E(a, 1)) is related to how well a can be approximated by rational num-
bers.

Fix L g a. Let m−, n− be relatively prime integers with m− > 0 such that
n−/m− is maximized subject to the constraints n−/m− < a and am− f L. Sim-
ilarly, let m+, n+ be relatively prime integers with m+ > 0 such that n+/m+ is
minimized subject to the constraints n+/m+ > a and n+ f L.

Theorem 1.10 (proved in §5.3). If a > 1 is irrational and L g a, then with the
notation as above, we have

CloseL(∂E(a, 1)) = min(am− − n−, n+ − am+).

Note that if a > 1 is rational and L g a, then every point in ∂E(a, 1) is on a
Reeb orbit of action f a, so it follows from Remark 1.4 that CloseL(∂E(a, 1)) = 0.

1.2 Obstructions to thickened Reeb trajectories

We now discuss an application of quantitative closing lemmas, to show that long
Reeb trajectories must come close to self-intersecting; more precisely, there are
upper bounds on how much they can be “thickened” in the following sense.

Definition 1.11. Fix a closed contact three-manifold (Y, λ). Given A,L > 0, a
thickened Reeb trajectory in (Y, λ) of area A and length L is a smooth embedding

ϕ : [0, L]×D −→ Y,
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where D is a closed disk of area A, such that

ϕ∗λ = dt+
1

2
r2 dθ.

Here t denotes the [0, L] coordinate, and (r, θ) are polar coordinates on D.

Some remarks on this definition: The Reeb vector field on the image of ϕ is
given by ϕ∗∂t. In particular, a thickened Reeb trajectory is a special kind of “flow
box” for the Reeb vector field. Any embedded Reeb trajectory [0, L] → Y can
be extended to a thickened Reeb trajectory for some A > 0, by a Darboux-type
argument similar to the proof of [9, Thm. 2.5.1]. The image of a thickened Reeb
trajectory has contact volume AL, so necessarily

AL f vol(Y, λ).

We can now ask if there are stronger upper bounds on A in terms of L.

Definition 1.12. If (Y, λ) is a closed contact three-manifold and L > 0, define

BoxL(Y, λ) ∈ {−∞} ∪ (0, vol(Y, λ)/L]

to be the supremum of A > 0 such that there exists a thickened Reeb trajectory in
(Y, λ) of area A and length L.

We have the following relation between thickened Reeb trajectories and quanti-
tative closing lemmas, proved in §5.4 by a direct construction:

Proposition 1.13. BoxL(Y, λ) f CloseL(Y, λ).

Note that if CloseL(Y, λ) = 0, then by Remark 1.4, there does not exist any
embedded Reeb trajectory [0, L] → Y , so by definition BoxL(Y, λ) = −∞.

1.3 Alternative spectral invariants

In [15], we defined a sequence of symplectic capacities for four-dimensional symplec-
tic manifolds, which are an “elementary” alternative to ECH capacities, and which
have similar properties and applications to four-dimensional symplectic embedding
questions. We denote these alternative capacities here by cAlt

k . They are indexed
by a nonnegative integer k and take values in [0,∞].

In the present paper we use related ideas to define an elementary alternative to
the ECH spectrum of a contact three-manifold. For a closed contact three-manifold
(Y, λ) and a nonnegative integer k, we will define a number

ck(Y, λ) ∈ [0,∞].

These invariants have the basic following properties, most of which are analogous
to properties of cAlt

k described in [15, Thm. 6]. To state the properties, define an
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orbit set in (Y, λ) to be a finite set of pairs α = {(αi,mi)} where the αi are distinct
simple Reeb orbits, and the mi are positive integers. Define the symplectic action
of the orbit set α by

A(α) =
∑

i

miA(αi).

Theorem 1.14 (proved in §4.2). The invariants ck have the following properties:

(Conformality) If r > 0 then

ck(Y, rλ) = rck(Y, λ).

(Increasing)
0 = c0(Y, λ) < c1(Y, λ) f c2(Y, λ) f · · · f +∞.

(Disjoint Union) If (Yi, λi) is a closed contact three-manifold for i = 1, . . . ,m, then

ck

(

m
∐

i=1

(Yi, λi)

)

= max
k1+···+km=k

m
∑

i=1

cki(Yi, λi).

(Sublinearity)
ck+l(Y, λ) f ck(Y, λ) + cl(Y, λ).

(Monotonicity) If f : Y → R
g0 then

ck(Y, λ) f ck(Y, e
fλ).

(C0-Continuity) For fixed (Y, λ) and fixed k, the map C∞(Y ;R) → R sending
f 7→ ck

(

Y, efλ
)

is C0-continuous.

(Spectrality) For given (Y, λ) and k, if ck(Y, λ) is finite, then there exists an orbit
set α such that ck(Y, λ) = A(α).

(Liouville Domains) If (Y, λ) is the boundary of a Liouville domain (X,ω), see
Definition 2.2, then

ck(Y, λ) f cAlt
k (X,ω).

(Sphere)
ck
(

∂B4(a)
)

= da, (1.1)

where d is the unique nonnegative integer such that

d2 + d f 2k f d2 + 3d. (1.2)

(Asymptotic Lower Bound)

lim inf
k→∞

ck(Y, λ)
2

k
g 2 vol(Y, λ). (1.3)
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(Spectral Gap Closing Bound) If k > 0 and ck(Y, λ) f L <∞, then

CloseL(Y, λ) f ck(Y, λ)− ck−1(Y, λ).

Remark 1.15. It follows from Theorem* 1.19 below that in fact, ck(Y, λ) is always
finite. By the Spectrality property, an independent proof that c1(Y, λ) is always
finite without using Seiberg-Witten theory would constitute a new proof of the
Weinstein conjecture in three dimensions1.

Remark 1.16. One can use the properties in Theorem 1.14 to compute ck for many
more examples than just ∂B4(a). For example, if Y is the boundary of a “convex
toric domain” or “concave toric domain” X ¢ R

4, then combinatorial formulas for
cAlt
k (X) are given in [15, Thms. 9, 15]; and one can modify the proofs of these
theorems to show that ck(Y ) agrees with cAlt

k (X) in these cases.

To work with the Spectral Gap Closing Bound, the following definition is useful:

Definition 1.17. If L > 0, define the spectral gap by

GapL(Y, λ) = inf
k>0, ck(Y,λ)fL

(ck(Y, λ)− ck−1(Y, λ)) .

The Spectral Gap Closing Property can then be restated as

CloseL(Y, λ) f GapL(Y, λ). (1.4)

Example 1.18. If Y = ∂B4(a), then it follows from (1.1) that c1(Y ) = c2(Y ) = a.
Thus

GapL(Y ) =

{

+∞, L < a,
0, L g a.

In this case equality holds in (1.4), by Remark 1.4, since every point in ∂B4(a) is
on a simple Reeb orbit of action a.

See §5.1 for a simple application of the bound (1.4) to prove Theorem 1.9 re-
garding star-shaped hypersurfaces.

With the help of Seiberg-Witten theory, we will prove in §6.3 that the alternative
spectrum satisfies the following additional property:

Theorem* 1.19 (Asymptotics). Let (Y, λ) be any closed contact three-manifold.
Then

lim
k→∞

ck(Y, λ)
2

k
= 2vol(Y, λ).

From this and (1.4) one can deduce the general quantitative closing lemma,
Theorem* 1.6, by a bit of calculus; see §6.4.

1The Weinstein conjecture in three dimensions asserts that every contact form on a closed three-
manifold has a Reeb orbit. This was proved by Taubes [23] using Seiberg-Witten theory. Proofs
without using Seiberg-Witten theory are known in some cases; see e.g. the survey [12].
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1.4 Relation with other work

Alternative spectral invariants. As noted in §1.3, the definition of the alternate
ECH spectrum given here is a variant of the definition of alternative ECH capacities
of four-dimensional symplectic manifolds in [15]. The latter was inspired by a
max-min invariant defined by McDuff-Siegel [20] for symplectic manifolds of any
dimension as an alternative to Siegel’s rational SFT capacities [22]. Some similar
elementary spectral invariants are defined by Edtmair [7] in the context of area-
preserving diffeomorphisms of closed surfaces, with the slight difference that these
are “relative” invariants of a Hamiltonian isotopy, by contrast with our spectral
invariants which are absolute invariants of a single contact form. After the first
version of this paper appeared, a more general theory of elementary spectral gaps
was developed in [2].

Closing lemmas. As noted in §1.1, the quantitative closing lemma in Theo-
rem* 1.6 is a refinement of the “strong closing property” proved by Irie [17]. The
basic mechanism used here for obtaining quantitative closing lemmas from spectral
gaps is similar to the method used in [8] to obtain quantitative closing lemmas for
area-preserving diffeomorphisms of closed surfaces in “rational” Hamiltonian iso-
topy classes. An statement similar to the strong closing property in this case was
proved independently in [6].

Irie asked in [18] whether the strong closing property holds for at least one
higher dimensional contact manifold where the Reeb orbits are not already dense.
This was proved for boundaries of ellipsoids in [1] using spectral gaps in contact
homology. A different proof for this example was given using KAM theory by Xue
[27].

ECH spectrum. Theorem** 6.1 below gives a relation between the invariants
ck introduced here and the ECH spectrum originally introduced in [13]. The specific
applications in this paper, namely Theorem* 1.6, Theorem 1.9, and Theorem 1.10,
can also be proved directly from the ECH spectrum, although for the latter two
results this would require using Seiberg-Witten theory which we do not need here.
See §6.5 for a comparison of approaches.

1.5 Outline of the rest of the paper

In §2 we introduce some basic definitions that we need. In §3 we define a family of
“spectral invariants” bk of four-dimensional strong symplectic cobordisms, which is
a precursor to the definition of the spectral invariants ck of contact three-manifolds.
In §4 we define the invariants ck and prove Theorem 1.14 describing their basic
properties. In §5, we use various calculations to prove Theorem 1.9, Theorem 1.10,
and Proposition 1.13. Finally, in §6 we establish a relation between ck and the ECH
spectrum; we use this to prove Theorem* 1.19 on the asymptotics of ck and then
deduce the general quantitative closing lemma, Theorem* 1.6.
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2 Preliminaries

To prepare for the definition of alternative spectral invariants, we need the following
mostly standard preliminaries.

2.1 Symplectic cobordisms

Let (Y+, λ+) and (Y−, λ−) be closed contact three-manifolds.

Definition 2.1. A strong symplectic cobordism from (Y+, λ+) to (Y−, λ−) is a com-
pact symplectic four-manifold (X,ω) with boundary ∂X = Y+ − Y−, such that
ω|Y±

= dλ±.

Definition 2.2. An exact symplectic cobordism is a strong symplectic cobordism
(X,ω) as above, for which there exists a 1-form λ on X such that dλ = ω and
λ|Y±

= λ±. A Liouville domain is an exact symplectic cobordism for which Y− = ∅.
Example 2.3. If (Y, λ) is a closed contact three-manifold and a < b, then the trivial
cobordism

(X,ω) = ([a, b]× Y, d (esλ))

is an exact symplectic cobordism from (Y, ebλ) to (Y, eaλ). Here s denotes the [a, b]
coordinate. When there is no chance for confusion, we will drop the symplectic form
d(esλ) from the notation.

Given an exact symplectic cobordism and a choice of λ as in Definition 2.2, let
V denote the vector field on X characterized by ıV ω = λ. This is a Liouville vector
field, i.e. the Lie derivative LV ω = ω, and it is transverse to the boundary of X. It
follows that the flow of V defines an identification

N+ ≃ (−ε, 0]× Y+ (2.1)

where N+ is a neighborhood of Y+ in X, and λ is identified with esλ+, where s
denotes the (−ε, 0] coordinate. Likewise we have an identification

N− ≃ [0, ε)× Y− (2.2)

where N− is a neighborhood of Y− in X, and λ is identified with esλ−.
If (X,ω) is a strong symplectic cobordism which is not necessarily exact, we can

still find a (noncanonical) Liouville vector field in a neighborhood of the boundary
which is transverse to the boundary. This gives neighborhood identifications (2.1)
and (2.2) identifying ω with d(esλ±).

In various constructions below, we implicitly assume that neighborhood iden-
tifications (2.1) and (2.2) as above have been chosen, and in the exact case that
moreover λ has been chosen. The spectral invariants that we define will ultimately
be independent of these choices.
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Definition 2.4. If (X,ω) is a strong symplectic cobordism from (Y+, λ+) to (Y−, λ−),
define the symplectization completion

X = ((−∞, 0]× Y−) ∪Y−
X ∪Y+ ([0,∞)× Y+) .

This is glued to a smooth manifold using the identifications (2.1) and (2.2). There
is a natural symplectic form ω on X, which agrees with ω on X and with d(esλ±)
on the other two pieces.

Definition 2.5. If (X+, ω) is a strong symplectic cobordism from (Y+, λ+) to
(Y0, λ0), and if (X−, ω−) is a strong symplectic cobordism from (Y0, λ0) to (Y−, λ−),
define the composition

(X−, ω−) ◦ (X+, ω+) = X− ∪Y0 X+

with the symplectic form that restricts to ω± on X±.

Next let (X,ω) be a strong symplectic cobordism from (Y+, λ+) to (Y−, λ−), let
Σ be a compact oriented smooth surface with boundary, and let f : Σ → X be a
smooth map such that f(∂Σ) ¢ ∂X. Write ∂Σ = ∂+Σ − ∂−Σ where ∂±Σ denotes
the portion of ∂Σ that maps to Y±, oriented with the ± boundary orientation of Σ.
Let A ∈ H2(X, ∂X) denote the relative homology class represented by f .

Lemma 2.6. There is a homomorphism ρ : H2(X, ∂X) → R characterized by the
property that if f : Σ → X represents A ∈ H2(X, ∂X) as above, then

∫

Σ
ω −

∫

∂+Σ
λ+ +

∫

∂−Σ
λ− = ρ(A). (2.3)

Proof. We need to check that the left hand side of (2.3) depends only on A. This
is an exercise using Stokes’s theorem.

Examples 2.7. If (X,ω) is exact, then ρ ≡ 0, by Stokes’s theorem.
If Y+ = Y− = ∅, so that (X,ω) is a closed symplectic four-manifold, then ρ is

just the map ï[ω], ·ð : H2(X) → R.
The map ρ for a composition as in Definition 2.5 is given by

ρ(A) = ρ+(A−) + ρ−(A+) (2.4)

for A ∈ H2(X− ◦ X+, ∂(X− ◦ X+)), where A± denotes the restriction of A to
H2(X±, ∂X±).
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2.2 Almost complex structures

Definition 2.8. Let (Y, λ) be a closed contact three-manifold. An almost complex
structure J on R× Y is λ-compatible if:

• J(∂s) = R, where s denotes the R coordinate and R denotes the Reeb vector
field.

• J(ξ) = ξ, rotating positively with respect to dλ, where ξ = Ker(λ).

• J is invariant under translation of the R factor on R× Y .

Let J (Y, λ) denote the space of λ-compatible almost complex structures on R× Y .

Definition 2.9. Let (X,ω) be a strong symplectic cobordism from (Y+, λ+) to
(Y−, λ−). An almost complex structure J on the symplectization completion X is
cobordism-compatible if:

• J is ω-compatible on X.

• There are almost complex structures J± ∈ J (Y±, λ±) such that J agrees
with the restriction of J− on (−∞, 0]× Y− and with the restriction of J+ on
[0,∞)× Y+.

Let J (X) denote the set of cobordism-compatible almost complex structures on X.

2.3 Holomorphic curves

Let (X,ω) be a strong symplectic cobordism from (Y+, λ+) to (Y−, λ−). Assume
that the contact forms λ± are nondegenerate. Let J ∈ J (X).

Definition 2.10. Let MJ(X) denote the set of holomorphic maps

u : (Σ, j) −→ (X, J),

modulo reparametrization by biholomorphic maps (Σ′, j′)
≃→ (Σ, j), such that:

• The domain (Σ, j) is a punctured compact Riemann surface, possibly discon-
nected.

• The map u is nonconstant on each component of the domain Σ.

• For each puncture in Σ, either there is a Reeb orbit γ in Y+ and a neighborhood
of the puncture mapping asymptotically to [0,∞)× γ as s→ ∞ (we call this
a positive puncture), or there is a Reeb orbit γ in Y− and a neighborhood of
the puncture mapping asymptotically to (−∞, 0]×γ as s→ −∞ (we call this
a negative puncture).
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Given u ∈ MJ(X), the positive punctures determine an orbit set α+ in Y+ as
follows: A pair (γ,m) is an element of α+ when u has at least one positive puncture
asymptotic to a cover of γ, and m is the sum over such punctures of the covering
multiplicity of γ. Likewise, the negative punctures determine an orbit set α− in Y−.
We denote by MJ(X,α+, α−) the set of u ∈ MJ(X) with corresponding orbit sets
α+ and α−.

Note also that each u ∈ MJ(X) determines a well-defined relative homology
class

[u] ∈ H2(X, ∂X).

Definition 2.11. If u ∈ MJ(X,α+, α−), define the energy

E(u) = A(α+)−A(α−) + ρ([u]) ∈ R.

Also define the upper energy

E+(u) = E(u) +A(α−) = A(α+) + ρ([u]).

Lemma 2.12. If u ∈ MJ(X,α+, α−), then E(u) g 0, with equality if and only if u
is the empty holomorphic curve (for which the domain is the empty set).

Proof. By perturbing if necessary, we can assume without loss of generality that u
is transverse to ∂X. By Stokes’s theorem we have

A(α+)−
∫

u−1({0}×Y+)
λ+ =

∫

u−1([0,∞)×Y+)
dλ+.

Similarly, we have
∫

u−1({0}×Y−)
λ− −A(α−) =

∫

u−1((−∞,0]×Y−)
dλ−.

Finally, by (2.3) we have
∫

u−1({0}×Y+)
λ+ −

∫

u−1({0}×Y−)
λ− + ρ([u]) =

∫

u−1(X)
ω.

Adding the above three equations gives

E(u) =
∫

u−1([0,∞)×Y+)
dλ+ +

∫

u−1(X)
ω +

∫

u−1((−∞,0]×Y−)
dλ−

(which might be a more standard way to define “energy”). Each of the integrands
on the right hand side is pointwise nonnegative, by the definitions of λ±-compatible
and ω-compatible almost complex structure. Thus E(u) g 0.

If E(u) = 0, then u−1(X) = ∅ (because ω is pointwise positive on u−1(X) wher-
ever du ̸= 0), and u is everywhere tangent to the Reeb direction and the R direction
outside of X (by the definition of λ±-compatible almost complex structure). This
is impossible unless u is empty.

13



Definition 2.13. Let (X,ω) be a strong symplectic cobordism from (Y+, λ+) to
(Y−, λ−) where λ+ and λ− are nondegenerate, let J ∈ J (X), and let x1, . . . , xk ∈ X.
Define MJ(X;x1, . . . , xk) to be the set of u ∈ MJ(X) such that x1, . . . , xk ∈ im(u).
Likewise, if α± are orbit sets in Y±, define MJ(X,α+, α−;x1, . . . , xk) to be the set
of u ∈ MJ(X,α+, α−) such that x1, . . . , xk ∈ im(u).

3 Max-min invariants of cobordisms

As a precursor to the definition of the spectral invariant ck of contact three-manifolds,
we now define a kind of spectral invariant bk of strong symplectic cobordisms, as a
“max-min” of energy of holomorphic curves.

Definition 3.1. Let (X,ω) be a strong symplectic cobordism from (Y+, λ+) to
(Y−, λ−) with λ+ and λ− nondegenerate, and let k be a nonnegative integer. Define

bk(X,ω) = sup
J∈J (X)

x1, . . . , xk ∈ X distinct

inf
u∈MJ (X;x1,...,xk)

E+(u) ∈ [0,∞]. (3.1)

Lemma 3.2 (basic properties of bk). Suppose below that (X,ω) is a strong sym-
plectic cobordism from (Y+, λ+) to (Y−, λ−) with λ+ and λ− nondegenerate.

(Conformality) If r > 0 then

bk(X, rω) = r · bk(X,ω).

(Increasing)
0 = b0(X,ω) < b1(X,ω) f b2(X,ω) f · · · f +∞.

(Disjoint Union) If (Xi, ωi) is a strong symplectic cobordism between nondegenerate
contact three-manifolds for i = 1, . . . ,m, then

bk

(

m
∐

i=1

(Xi, ωi)

)

= max
k1+···+km=k

m
∑

i=1

bki(Xi, ωi).

(Sublinearity)
bk+l(X,ω) f bk(X,ω) + bl(X,ω).

(Spectrality) If ρ ≡ 0 on H2(X, ∂X), e.g. if (X,ω) is exact, and if bk(X,ω) is
finite, then there exists an orbit set α+ in Y+ with

bk(X,ω) = A(α+).

(Alternate Capacities) If (X,ω) is a Liouville domain, i.e. (X,ω) is exact and
Y− = ∅, then

bk(X,ω) = cAlt
k (X,ω).
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(Stripping2) If (X+, ω) is a strong symplectic cobordism from (Y+, λ+) to (Y0, λ0),
and if (X−, ω−) is a strong symplectic cobordism from (Y0, λ0) to (Y−, λ−),
with λ+, λ0, λ− nondegenerate, then

bk(X−, ω−) f bk ((X−, ω−) ◦ (X+, ω+)) . (3.2)

If in addition ρ ≡ 0 on H2(X−, ∂X−), e.g. the cobordism (X−, ω−) is exact,
then

bk(X+, ω+) f bk ((X−, ω−) ◦ (X+, ω+)) . (3.3)

Proof. The Conformality property is immediate from the definition.
The Increasing property is immediate from the definition except for the assertion

that b1(X,ω) > 0, which follows from Lemma 2.12.
The Disjoint Union and Sublinearity properties are immediate from the defini-

tion.
The Spectrality property holds because for any u that arises in (3.1), the upper

energy E+(u), if finite, is the action of some orbit set; and by the nondegeneracy
hypothesis on λ+, there are only finitely many orbit sets below any given action
level.

The Alternative Capacities property holds because in the special case when
(X,ω) is a Liouville domain (with the contact form on the boundary nondegenerate),
the definition of bk(X,ω) is identical to the definition of cAlt

k (X,ω) in [15].
The nontrivial part of this lemma is the Stripping property. We begin with the

first inequality (3.2). Let ε > 0; it is enough to show that

bk(X−) < bk(X− ◦X+) + ε.

Choose J− ∈ J (X−) and x1, . . . , xk ∈ X− distinct. It is enough to show that there
exists u− ∈ MJ−(X−;x1, . . . , xk) with

E+(u−) f bk(X− ◦X+) + ε. (3.4)

Since J− is cobordism-compatible, it agrees on [0,∞)×Y0 with the restriction of
an almost complex structure J0 ∈ J (Y0, λ0). Choose an almost complex structure
J+ ∈ J (X+) which agrees with J0 on (−∞, 0]× Y0, and also in a neighborhood N
of Y0 in X+ identified with ([0, δ)× Y0, d(e

sλ0)) for some δ > 0 as in (2.2).
For each positive integer n, we can choose an almost complex structure Jn ∈

J (X− ◦X+) such that:

• Jn agrees with J− on ((−∞, 0]× Y−) ∪Y−
X−.

• Jn agrees with J+ on (X+ \N) ∪Y+ ([0,∞)× Y+).

2The idea of this terminology is that we can “strip away” part of a cobordism without increasing
bk.

15



• There is a biholomorphism

(N, Jn)
≃−→ ([0, n)× Y0, J0). (3.5)

By the definition of bk, for each n we can find a holomorphic curve

un ∈ MJn(X− ◦X+, α+(n), α−(n);x1, . . . , xk)

for some orbit sets α±(n) in Y± such that

E+(un) f bk(X− ◦X+) + ε. (3.6)

It follows that we have an a priori energy bound

E(un) f bk(X− ◦X+) + ε.

By this energy bound and the Gromov compactness argument in [15, Lem. 3],
we can pass to a subsequence such that:

• [un] ∈ H2(X− ◦ X+, ∂(X− ◦ ∂X+)) is independent of n; denote this class by
A.

• The intersection of un with ((−∞, 0] × Y−) ∪Y−
X− ∪Y0 N , regarded via the

biholomorphism (3.5) as a curve in ((−∞, 0] × Y−) ∪Y−
X− ∪Y0 ([0, n) × Y0),

converges as a current on compact sets to a curve

u− ∈ MJ−(X−, α0−, α−;x1, . . . , xk),

where α0− is an orbit set in Y0, and α− is an orbit set in Y− with A(α−) g
A(α−(n)) for each n. Let A− = [u−] ∈ H2(X−, ∂X−).

• The intersection of un with X+∪Y+ ([0,∞)×Y+), regarded via the biholomor-
phism (3.5) as a curve in ((−n+δ, 0]×Y0)∪Y0X+∪Y+ ([0,∞)×Y+), converges
as a current on compact sets to a curve

u+ ∈ MJ+(X+, α+, α0+),

where α+ is an orbit set in Y+ with A(α+(n)) g A(α+) for each n, and α0+

is an orbit set in Y0 with A(α0+) g A(α0−). Let A+ = [u+] ∈ H2(X+, ∂X+).

• A = A− +A+.

Using Lemma 2.12 and equation (2.4), we now compute that for any n,

E+(u−) = ρ(A−) +A(α0−)

f ρ(A−) +A(α0+)

f ρ(A−) +A(α0+) + E(u+)
= ρ(A−) + ρ(A+) +A(α+)

= ρ(A) +A(α+)

f ρ(A) +A(α+(n))

= E+(un)
f bk(X− ◦X+) + ε.
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Thus u− satisfies the desired property (3.4).
Finally, to prove the inequality (3.3), let ε > 0, let J+ ∈ J (X+), and let

x1, . . . , xk ∈ X+ be distinct; it is enough to show that there exists u+ ∈ MJ+(X+)
with

E+(u+) f bk(X− ◦X+) + ε. (3.7)

As above, for a suitable sequence of almost complex structures Jn ∈ J (X− ◦X+),
we can find curves un ∈ MJn(X− ◦X+;x1, . . . , xk) satisfying (3.6), and we can pass
to a subsequence so that the analogues of the above four bullet points hold. Using
the hypothesis that ρ(A−) = 0, we then have

E+(u+) = ρ(A+) +A(α+)

= ρ(A) +A(α+)

f ρ(A) +A(α+(n))

= E+(un)
f bk(X− ◦X+) + ε.

Thus u+ satisfies the desired property (3.7).

Remark 3.3. Although we do not need it in this paper, in the special case when
Y− = ∅, the Stripping property has the following implication. Writing X = X−

and X ′ = X− ◦X+, the inequality (3.2) in this case can be restated as follows: If
(X,ω) and (X ′, ω′) are strong symplectic cobordisms with no negative boundary,
and if there exists a symplectic embedding (X,ω) → (int(X ′), ω′), then bk(X,ω) f
bk(X

′, ω′). Thus bk can be used to define, for each k, a symplectic capacity3 for
strong symplectic cobordisms with no negative boundary. If X is not a Liouville
domain, then it follows from the definition of cAlt

k in [15] and Stripping that bk(X) g
cAlt
k (X).

4 Definition and properties of alternative spectral in-

variants

We are now in a position to define the alternative spectral invariants of contact
three-manifolds.

4.1 The definition

Definition 4.1. Let (Y, λ) be a closed contact three-manifold, and let k be a non-
negative integer. Define ck(Y, λ) ∈ [0,∞] as follows.

3We have not quite proved that bk is a symplectic capacity, because we do not know if it
monotone under symplectic embeddings X → X ′ that hit ∂X ′. We would also want to remove the
hypothesis that the contact form on the boundary is nondegenerate. One can fix these issues for
example by definining the capacity of X to be the supremum of bk(X

′) where X ′ symplectically
embeds into the interior of X and the contact form on the boundary of X ′ is nondegenerate.
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• If λ is nondegenerate, define

ck(Y, λ) = sup
R>0

bk([−R, 0]× Y ). (4.1)

• In the general case, define

ck(Y, λ) = inf
f :Y→R>0

ck

(

Y, efλ
)

= sup
f :Y→R<0

ck

(

Y, efλ
)

, (4.2)

where in the infimum and supremum we require that efλ is nondegenerate.
We will see in §4.2 that the two definitions in (4.2) agree, and also that they
agree with (4.1) in the nondegenerate case.

Remark 4.2. Note that bk([−R, 0] × Y ) is a nondecreasing function of R, since
increasing R enlarges the set of almost complex structures and points over which
we take the supremum in (3.1). Thus for any R0 g 0, instead of (4.1) we also have

ck(Y, λ) = sup
R>R0

bk([−R, 0]× Y ).

Remark 4.3. One might be tempted to define ck(Y, λ) more simply as a max-min
of positive energy of J-holomorphic curves in R × Y for J ∈ J (Y, λ). However it
is not clear if such a definition would satisfy some of the key properties of ck such
as the Spectral Gap Closing Bound. In particular, almost complex structures in
J (Y, λ) are not sufficiently flexible for the proof of Lemma 4.4 below to work. The
definition (4.1) allows more general almost complex structures on R× Y , which do
not satisfy the conditions for λ-compatibility in [−R, 0]× Y .

4.2 Proofs of properties

Lemma 4.4. Suppose f1, f2 : Y → R are smooth functions with f1 < f2 such that
the contact forms efiλ are nondegenerate. Let (X,ω) be a Liouville domain, and
suppose there exists a symplectic embedding

(X,ω) −→Mf1,f2 := {(s, y) ∈ R× Y | f1(y) < s < f2(y)}.

Then for any nonnegative integers k and l, we have

ck+l

(

Y, ef2λ
)

g ck

(

Y, ef1λ
)

+ cAlt
l (X,ω). (4.3)

Proof. By (4.2) and the C0-continuity of cAlt
k proved in [15], we can assume without

loss of generality that the contact form on the boundary of (X,ω) is nondegenerate.
Choose R0 > max(f2 − f1) and suppose that R > 0. By the Stripping property

(3.2), applied to X− =Mf2−R0−R,f1 ⊔X and X+ =Mf1,f2 \ int(X), we have

bk+l (Mf2−R0−R,f2) g bk+l (Mf2−R0−R,f1 ⊔X) .
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By the Disjoint Union property in Lemma 3.2, we have

bk+l (Mf2−R0−R,f1 ⊔X) g bk(Mf2−R0−R,f1) + bl(X).

By the Stripping property (3.3) applied toX− =Mf2−R0−R,f1−R andX+ =Mf1−R,f1 ,
we have

bk(Mf2−R0−R,f1) g bk(Mf1−R,f1).

By the Alternative Capacities property in Lemma 3.2, we have

bl(X) = cAlt
l (X).

Combining the above four lines gives

bk+l (Mf2−R0−R,f2) g bk(Mf1−R,f1) + cAlt
l (X).

Since R > 0 was arbitrary, taking the supremum over R > 0 and using Remark 4.2
proves (4.3).

Proof of Theorem 1.14. Suppose to start that all contact forms under discussion
are nondegenerate.

The Conformality, Increasing, Disjoint Union, Sublinearity, and Spectrality prop-
erties follow from the corresponding properties of bk in Lemma 3.2.

The Monotonicity property in the case f > 0 follows from Lemma 4.4 with
X = ∅ and l = 0.

To prove the Liouville Domains property, let V denote the Liouville vector field
on X. For any R > 0, the time R flow of V defines a symplectomorphism of a
neighborhood N of Y in X with (−R, 0] × Y . Then X can be regarded as the
composition of the exact cobordism [−R,R]× Y from (Y, λ) to (Y, e−Rλ), with the
exact cobordism X \N from (Y, e−Rλ) to the empty set. We now have

bk([−R, 0]× Y ) f bk(X,ω) = cAlt
k (X,ω),

by the Stripping and Alternate Capacities properties in Lemma 3.2. Taking the
supremum over R gives ck(Y, λ) f cAlt

k (X,ω).
It follows fromMonotonicity and Conformality in the cases proved above that the

definition (4.2) is valid and agrees with the definition (4.1) in the nondegenerate case,
and that the C0-Continuity property holds. This continuity then implies that all the
other properties we have proved so far also hold without assuming nondegeneracy,
and that Monotonicity extends to the case f g 0. In addition, Lemma 4.4 extends
to the case where f1 f f2 and efiλ may be degenerate.

To prove the Sphere property, recall from [15] that cAlt
k (B4(a)) = da, where d is

given by (1.2). Thus ck(∂B
4(a)) f da by the Liouville Domains property which we

just proved. The reverse inequality follows from a similar argument to the proof in
[15] that cAlt

k (B4(a)) g da.
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To prove the Asymptotic Lower Bound property, we apply Lemma 4.4 where
(f1, f2) = (−R, 0) for some R > 0; X is a disjoint union of balls; and k = 0. By the
calculation in [5, §3.2], we obtain

lim sup
l→∞

cl(Y, λ)
2

l
g 2

(

1− e−R
)

vol(Y, λ).

Since R > 0 can be taken arbitrarily large, the claim (1.3) follows.
Finally, let us prove the Spectral Gap Closing Bound. Let k > 0 and suppose

that ck(Y, λ) f L <∞. Suppose that CloseL(Y, λ) > δ. We need to show that

ck(Y, λ)− ck−1(Y, λ) g δ. (4.4)

Since CloseL(Y, λ) > δ, we can find a nonempty open set U ¢ Y , and a positive
deformation {λτ = efτλ}τ∈[0,1] of λ supported in U , such that width({λτ}) > δ,
and the contact form λτ does not have any Reeb orbit intersecting U with action at
most L for any τ ∈ [0, 1]. By C0-Continuity and Spectrality, the number ck(Y, λτ )
does not depend on τ . Here we use the fact that the set of actions of orbit sets has
measure zero, as explained in [17]. Thus

ck(Y, λ) = ck

(

Y, ef1λ
)

. (4.5)

Since width({λτ}) > δ, we can find a symplectic embedding B4(δ) →M0,f1 . It then
follows from Lemma 4.4 that

ck

(

Y, ef1λ
)

g ck−1(Y, λ) + cAlt
1 (B4(δ))

= ck−1(Y, λ) + δ.
(4.6)

Combining (4.5) and (4.6) proves the desired inequality (4.4).

Remark 4.5. Generalizing the Monotonicity property, one might ask if the ex-
istence of an exact symplectic cobordism from (Y+, λ+) to (Y−, λ−) implies that
ck(Y−, λ−) f ck(Y+, λ+). We do not know whether this is true.

5 Some calculations

5.1 Star-shaped domains

Proof of Theorem 1.9. Write d =
⌊

La−1
⌋

and let k = (d2+3d)/2. By Monotonicity
and equation (1.1), we have

ck(Y ) f ck(B
4(a)) = da f L.

By the Increasing property in Theorem 1.14, ci(Y ) f L whenever i f k. Then by
Definition 1.17,

GapL(Y ) f min
i=1,...,k

(ci(Y )− ci−1(Y )).
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Thus

GapL(Y ) f 1

k

k
∑

i=1

(ci(Y )− ci−1(Y )) =
ck(Y )

k
f da

k
=

2a

d+ 3
=

2a

+La−1,+ 3
.

We are now done by the inequality (1.4).

5.2 Preliminaries on toric domains

Consider the moment map µ : C2 → R
2
g0 defined by

µ(z) =
(

π|z1|2, π|z2|2
)

.

If Ω is a domain in R
2
g0, define the associated toric domain

XΩ = µ−1(Ω).

A basic example is when Ω is the triangle with vertices at (0, 0), (a, 0), and (0, b)
for some a, b > 0. In this case, XΩ is the ellipsoid

E(a, b) =

{

z ∈ C
2

∣

∣

∣

∣

π|z1|2
a

+
π|z2|2
b

f 1

}

.

More generally, suppose that the boundary of Ω consists of the line segment
from (0, 0) to (a, 0) for some a > 0, the line segment from (0, 0) to (0, b) for some
b > 0, and a smooth curve ∂+Ω from (0, b) to (a, 0) which is transverse to the axes.
Then XΩ is a smooth domain in R

4. If we further assume that ∂+Ω is transverse to
the radial vector field on R

2, then ∂XΩ is star-shaped. In this case the simple Reeb
orbits on ∂XΩ are described as follows:

• µ−1((a, 0)) is a simple Reeb orbit of action a.

• µ−1((0, b)) is a simple Reeb orbit of action b.

• Let (x, y) ∈ int(∂+Ω), and suppose that the outward normal vector to ∂+Ω
at (x, y) is a multiple of (m,n) where m,n are relatively prime nonnegative
integers. Then µ−1((x, y)) is foliated by simple Reeb orbits, each of which has
action

A = mx+ ny. (5.1)

See e.g. [11, §2.2] for detailed calculations.
One more fact we need: For any domain Ω ¢ R

2
g0, suppose that Ω contains

a triangle T which is equivalent, by the action of an element of SL2(Z) and/or a
translation, to the triangle with vertices (0, 0), (δ, 0), and (0, δ), for some δ > 0.
Then by the “Traynor trick” [26], there exists a symplectic embedding int(B4(δ)) →
int (XΩ). Hence the Gromov width cGr (int (XΩ)) g δ.
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5.3 Irrational ellipsoids

Proof of Theorem 1.10. By equation (1.4), we need to show that

GapL(∂E(a, 1)) f min(am− − n−, n+ − am+), (5.2)

CloseL(∂E(a, 1)) g min(am− − n−, n+ − am+). (5.3)

We begin with (5.2). An ellipsoid E(a, b) is an example of both a “convex toric
domain” and a “concave toric domain”; see e.g. [15] for definitions. By Remark 1.16,
ck(∂E(a, b)) agrees with cAlt

k (E(a, b)). By the combinatorial formula4 for cAlt
k of a

concave toric domain in [15, Thm. 15] and the calculation in [3, Ex. 1.23], it follows
that

ck(∂E(a, b)) = Nk(a, b), (5.4)

where (Nk(a, b))kg0 denotes the sequence of nonnegative integer linear combinations
of a and b, listed in nondecreasing order with repetitions5.

We are interested in the case when a is irrational and b = 1. Recall that
n−/m− < a, am− f L, n+/m+ > a, and n+ f L. It follows that the numbers
am−, am+, n−, n+ are all less than or equal to L; and by (5.4) they all appear in
the sequence (ck(∂E(a, 1))kg0. Hence any positive difference between two of these
numbers is greater than or equal to GapL(∂E(a, 1)). The inequality (5.2) follows.

We now prove (5.3). Let U denote the complement in ∂E(a, 1) of the two simple
Reeb orbits µ−1((a, 0)) and µ−1((0, 1)). It is enough to show that for any δ less
than the right hand side of (5.3), there is a positive deformation {λτ}τ∈[0,1] of the
contact form on E(a, 1) supported in U , of width at least δ, such that λτ does not
have any Reeb orbit of action f L intersecting U for any τ ∈ [0, 1].

Let Ω0 denote the triangle with vertices (0, 0), (a, 0), and (0, 1), so that XΩ0 =
E(a, 1). Let L1 be the line through (0, 1) with slope −m+/n+. Let L2 be the line
through (a, 0) with slope −m−/n−. Since L1 has slope greater than −1/a and L2

has slope less than −1/a, these lines intersect at a point p in the first quadrant of
the plane outside of Ω0. Let T denote the triangle bounded by L1, L2, and the line
segment from (0, 1) to (a, 0).

Consider a star-shaped toric domain XΩ such that:

(*) The curve ∂+Ω starts at (0, 1) and ends at (a, 0). Its slope starts at −1/a
and stays constant for a short time, then rapidly increases to an irrational
number less than −m+/n+, then stays constant, then rapidly decreases to
an irrational number larger than −m−/n− then stays constant, then near its
final endpoint rapidly increases back to −1/a and stays constant.

4Strictly speaking, the proof of [15, Thm. 15] uses a bit of Seiberg-Witten theory. To avoid
this, one can instead use the similar combinatorial formula for cAlt

k of a convex toric domain in [15,
Thm. 9] and a slight modification of the calculation in [3, Ex. 1.23].

5This is also the sequence of ECH capacities of E(a, b), see e.g. [13], but we are avoiding using
ECH here.
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Note that we necessarily have Ω0 ¢ Ω and Ω \Ω0 ¢ T . Also it is possible to choose
Ω so that Ω \ Ω0 is arbitrarily C0-close to T .

For Ω satisfying condition (*) above, it follows using equation (5.1) that ∂XΩ

does not have any simple Reeb orbit of action less than or equal to L, except
possibly for the two orbits µ−1((0, 1)) and µ−1((a, 0)). To show just one part of this
calculation: Consider a simple Reeb orbit on ∂XΩ arising from a point (x, y) on
the initial bend of ∂+Ω near (0, 1) where the outward normal vector is proportional
to (m,n), where m,n are relatively prime integers with n > 0. Then the slope of
∂+Ω at (x, y) is −m/n. Since this slope satisfies −1/a < −m/n < −m+/n+, the
minimality condition in the definition of (m+, n+) implies that n > L. Then the
action (5.1) is also greater than L provided that (x, y) is sufficiently close to (0, 1).

We can find a one-parameter family {Ωτ}τ∈[0,1] where Ω0 is the triangle specified
above, Ωτ satisfies condition (*) above for each τ > 0, and Ω1 \Ω0 is C0-close to T .
For each τ , there is a canonical contactomorphism

∂E(a, 1) = ∂XΩ0

≃−→ ∂XΩτ

defined by identifying pairs of points that are on the same ray in R
4. Thus the

family of contact manifolds {∂XΩτ } is identified with a positive deformation {λτ}
of ∂E(a, 1) supported in U . Moreover, there is a canonical symplectomorphism

Mλ1 ≃ int
(

XΩ1\Ω0

)

.

Since Ω1 \ Ω0 can be chosen arbitrarily C0-close to T , to complete the proof of the
theorem, we just need to show that the Gromov width

cGr(int(XT )) g min(am− − n−, n+ − am+). (5.5)

To prove (5.5), let B denote the rectangle in the plane defined by 0 f x f L/a
and 0 f y f L. By definition, the points (m−, n−) and (m+, n+) are in B, but there
are no lattice points in B above the line n−x = m−y and below the line n+x = m+y.
In particular, the triangle with vertices (0, 0), (m−, n−), and (m+, n+) has no lattice
points in its interior. Thus this triangle has area 1/2 by Pick’s theorem, so

m−n+ −m+n− = 1. (5.6)

This bit of number theoretic information is key for the rest of the calculation.
Using (5.6), we compute that the vertex p of the triangle T is given by

p = (n+(am− − n−),m−(n+ − am+)).

By equation (5.6) again, the matrix

A =

(

−m− −n−
−m+ −n+

)

23



is in SL2(Z). Acting by A on the triangle T , and then translating by (am−, n+),
yields the triangle with vertices

(0, 0), (am− − n−, 0), (0, n+ − am+).

Now the inequality (5.5) follows by the Traynor trick, as reviewed in §5.2. (In fact
this is an equality by Gromov nonsqueezing [10].)

Remark 5.1. Although we have shown that the closing bound (1.4) is sharp for
the example of ∂E(a, 1), we do not expect that it is always sharp for contact three-
manifolds. In particular, for the family of toric domains XΩτ constructed in the
above proof, GapL(∂XΩτ ) is independent of τ , by the C0-Continuity and Spectrality
properties of ck, as in the proof of the Spectral Gap Closing Bound. However it
seems plausible that CloseL(∂XΩτ ) gets smaller for large τ .

5.4 More about thickened Reeb trajectories

Proof of Proposition 1.13. Let ϕ : [0, L]×D → Y be a thickened Reeb trajectory of
length L and area A. Let ε > 0. It is enough to show that CloseL(Y, λ) g A−ε. To
do so, let U be the interior of the image of ϕ. We will show that there is a positive
deformation {λτ}τ∈[0,1] of λ supported in U such that:

(i) For all τ ∈ [0, 1], the contact form λτ does not have any Reeb orbit intersecting
U with action f L.

(ii) width({λτ}) g A− ε.

To prepare for the construction of the positive deformation, fix a smooth function
β : [0, L] → [0, 1] such that β(t) = 0 for t close to 0 or L, and β(t) ≡ 1 on a closed
interval I ¢ (0, L) of length L′ ∈ (0, L).

Suppose that g : [0, A/π] → R
g0 is a smooth function which does not vanish

identically, such that g′(x) f 0 and g(x) = 0 for x close to A/π. Consider the
contact form λg on [0, L]×D defined by

λg = eβ(t)g(r
2)

(

dt+
1

2
r2 dθ

)

where t denotes the [0, L] coordinate, and (r, θ) are polar coordinates on D. By
construction, the contact form λg agrees with ϕ∗λ near the boundary of [0, L]×D.
We can now define a positive deformation {λτ} supported in U by defining λτ to
agree with λ outside of U and to satisfy ϕ∗(λτ ) = λτg. To complete the proof of the
proposition, we want to show that g can be chosen so that conditions (i) and (ii)
above are satisfied.

A computation shows that the Reeb vector field associated to λg is given by

Rg = e−β(t)g(r)

(

(

1 + r2β(t)g′(r2)
) ∂

∂t
− rβ′(t)g(r2)

2

∂

∂r
− 2β(t)g′(r2)

∂

∂θ

)

. (5.7)
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Here only the ∂/∂t term is important for the discussion. In particular, henceforth
let us require that g satisfy the additional condition

1 + xg′(x) > 0. (5.8)

Then by (5.7), the ∂t component of Rg is always positive and less than or equal to
1. Consequently:

• Rg has no periodic orbits in [0, L]×D, and:

• Any trajectory of Rg starting in {0}×D and ending in {L}×D has flow time
at least L.

Since τg also satisfies the requirements on g for τ ∈ (0, 1], it follows that condition
(i) above is satisfied.

We now need to choose g to also satisfy condition (ii) above. To maximize the
width of {λt}, we would like to choose g as large as possible. The “extreme case”
of (5.8) is where 1 + xg′(x) = 0, so that

eg(x) =
A

πx
.

Of course this is not allowed, since g(0) needs to be finite and we need a strict
equality in (5.8), as well as g(x) = 0 for x close to A/π. However for any δ > 0, we
can choose g satisfying the requirements such that

x > δ =⇒ eg(x) >
A− ε

πx
. (5.9)

We claim now that if δ > 0 is sufficiently small and (5.9) holds, then condition (ii)
is satisfied. More specifically we will show that if δ > 0 is sufficiently small and
(5.9) holds, then there is a symplectic embedding of B4(A− ε) into Mλg

.
The domain Mλg

contains a subset symplectomorphic to

S =
{

(s, t, r, θ) ∈ R× I ×D2
∣

∣ (s, ϕ(t, r, θ)) ∈Mλg

}

,

with the symplectization symplectic form

d

(

es
(

dt+
1

2
r2 dθ

))

= es
(

ds dt+
1

2
r2 ds dθ + r dr dθ

)

.

We will in fact show that if δ > 0 is sufficiently small and (5.9) holds, then there is
a symplectic embedding of B4(A− ε) into S.

There is a symplectic embedding

ψ : R× I ×D −→
(

C
2, r1 dr1 dθ1 + r2 dr2 dθ2

)

defined by

ψ (s, t, r, θ) =
(

res/2+iθ,
√

L/πes/2+2πit/L
)

.

The symplectomorphism ψ maps the set S to the set of (r1e
iθ1 , r2e

iθ2) ∈ C
2 such

that:
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• Lθ2/(2π) ∈ I.

• There exists x ∈ [0, A/π] and s ∈ (0, g(x)) such that

(πr21, πr
2
2) = es(πr2, L).

In particular, the set of possible values of (πr21, πr
2
2) is a union of line segments,

where the set of line segments is parametrized by x ∈ [0, A/π]. If (5.9) holds, then
this union of line segments includes all points in the rectangle

[0, A− ε]×
(

L,
L(A− ε)

πδ

)

.

Thus S contains a region symplectomorphic to the symplectic Cartesian product of
a closed disk of area A− ε and an open annulus of area

L

(

A− ε

πδ
− 1

)

.

If δ is small enough that the area of the annulus is greater than A−ε, then S contains
a region symplectomorphic to the polydisk P (A − ε,A − ε), i.e. the symplectic
Cartesian product of two disks of area A− ε, and the ball B4(A− ε) is a subset of
this polydisk.

6 Comparison with the ECH spectrum

We now describe a relation between the invariants ck and the ECH spectrum, and
we use this relation to prove Theorems* 1.19 and 1.6.

6.1 Review of the ECH spectrum

If the contact form λ is nondegenerate, then the embedded contact homology of
(Y, λ), denoted by ECH(Y, λ), is the homology of a chain complex over Z/2 freely
generated by orbit sets α = {(αi,mi)} which are “admissible”, meaning that mi =
1 whenever αi is hyperbolic. Here a Reeb orbit is called “hyperbolic” when its
linearized return map has real eigenvalues. The differential on the chain complex
counts J-holomorphic curves in R × Y with ECH index 1 for a generic almost
complex structure J on R× Y . See [14] for a detailed exposition.

Taubes [24] has shown that if Y is connected6, then there is a canonical iso-
morphism between ECH(Y, λ) and a version of Seiberg-Witten Floer homology
as defined by Kronheimer-Mrowka [19]. It follows from this isomorphism that

6If Y is disconnected, then the ECH of (Y, λ) is the tensor product of the ECH of its components.
It follows from Taubes’s isomorphism applied to each component that the ECH of (Y, λ) is still an
invariant of (Y, ξ).
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ECH(Y, λ) depends only7 on the contact structure ξ = Ker(λ), and so can be
denoted by ECH(Y, ξ).

If Y is connected, then there is a map

U : ECH(Y, ξ) −→ ECH(Y, ξ).

This is induced by a chain map which counts J-holomorphic currents of ECH index
2 passing through a base point in R × Y . It is shown in [25] that under Taubes’s
isomorphism, this agrees with a counterpart in Seiberg-Witten Floer theory.

For L ∈ R, the filtered ECH , denoted by ECHL(Y, λ), is defined to be the
homology of the subcomplex spanned by admissible orbit sets with symplectic action
less than L. It is shown in [16] that this does not depend on the choice of J , although
it does depend on the contact form λ and not just the contact structure ξ. Inclusion
of chain complexes induces a map

ıL : ECHL(Y, λ) −→ ECH(Y, λ) = ECH(Y, ξ), (6.1)

and it is shown in [16] that this map also does not depend on the choice of J .
Given a nonzero class σ ∈ ECH(Y, ξ), there is an associated ECH spectral

invariant
cECH
σ (Y, λ) ∈ R,

originally defined in [13], which is the infimum of L such that σ is in the image
of the map (6.1). So far we have been assuming that λ is nondegenerate, but
the spectral invariant cECH

σ is C0-continuous and so canonically extends in a C0-
continuous manner to the degenerate case.

Given Y, λ, σ, there exists an orbit set α such that cECH
σ (Y, λ) = A(α). This

follows from the definition when λ is nondegenerate, and by a compactness argument
when λ is degenerate.

6.2 The comparison theorem

Theorem** 6.1. Let (Y, λ) be a closed connected contact three-manifold and let
k > 0. Then

ck(Y, λ) f inf
{

cECH
σ (Y, λ) | Ukσ ̸= 0

}

. (6.2)

Note that for general Y , not all of the ECH spectral invariants appear on the
right hand side of (6.2); and the alternative spectral invariants ck(Y, λ) do not have
to agree with any ECH spectral invariants.

7In fact, at this level of description, ECH depends only on Y . However certain additional
structure on it, such as a direct sum decomposition ECH(Y, ξ) = ⊕Γ∈H1(Y )ECH(Y, ξ,Γ), depends
also on ξ.
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Proof of Theorem** 6.1. By C0 continuity of the ECH spectrum, we can assume
without loss of generality that λ is nondegenerate.

To start, we discuss the map on ECH induced by the cobordism [−R, 0] × Y

for R > 0. Let J ∈ J
(

[−R, 0]× Y
)

, and let J+ and J− denote the induced al-

most complex structures on the symplectizations of (Y, λ) and (Y, e−R, λ). Suppose
that J+ and J− are generic so that we have well-defined ECH chain complexes
ECC(Y, λ, J+) and ECC(Y, e

−R, J−). By [16, Thm. 1.9], if L > 0, then the cobor-
dism [−R, 0]× Y induces a map

Φ : ECHL(Y, λ) −→ ECHL(Y, e−R, λ)

such that
ıL ◦ Φ = ıL : ECHL(Y, λ) −→ ECH(Y, ξ). (6.3)

Furthermore, similarly to the proof of [15, Thm. 12], for any distinct points x1, . . . , xk ∈
[−R, 0]× Y , the map Φ ◦ Uk is induced by a (noncanonical) chain map

φ : ECCL(Y, λ, J+) −→ ECCL(Y, e−Rλ, J−)

with the following property:

(*) If α+ and α− are admissible orbit sets such that the coefficient ïφα+, α−ð ̸=
0, then there exists an orbit set α′

+ for λ with A(α+) g A(α′
+), an or-

bit set α′
− for e−Rλ with A(α′

−) g A(α−), and a holomorphic curve u ∈
MJ

(

[−R, 0]× Y , α′
+, α

′
−;x1, . . . , xk

)

.

We now apply this setup to the matter at hand. Let σ ∈ ECH(Y, ξ) and suppose
that Ukσ ̸= 0. We want to show that

ck(Y, λ) f cECH
σ (Y, λ). (6.4)

Suppose that cECH
σ (Y, λ) < L. Let J, x1, . . . , xk, φ be as above. Since cECH

σ (Y, λ) <
L, the class σ is represented by a cycle η in ECCL(Y, λ, J+). It follows from (6.3)
that φ(η) represents the nonzero class Ukσ. Consequently there must exist genera-
tors α+ of ECCL(Y, λ, J+) and α− of ECCL(Y, e−R, J−) with ïφα+, α−ð ̸= 0. By

the property (*), we deduce that there exists u ∈ MJ
(

[−R, 0]× Y , α′
+, α

′
−;x1, . . . , xk

)

with A(α′
+) < L. Since L > cECH

σ (Y, λ) was arbitrary, we deduce that

inf
u∈MJ([−R,0]×Y ;x1,...,xk)

E+(u) f cECH
σ (Y, λ).

Since we started from any J ∈ J
(

[−R, 0]× Y
)

with J± generic and any

x1, . . . , xk ∈ [−R, 0]× Y distinct, it follows that

sup
J ∈ J

(

[−R, 0]× Y
)

: J± generic

x1, . . . , xk ∈ [−R, 0]× Y distinct

inf
u∈MJ([−R,0]×Y ;x1,...,xk)

E+(u) f cECH
σ (Y, λ).
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The stipulation in the above inequality that J± are generic can be dropped by a
Gromov compactness argument. We conclude that

bk([−R, 0]× Y ) f cECH
σ (Y, λ).

Taking the supremum over R > 0 proves the desired inequality (6.4).

6.3 Asymptotics of ck

Proof of Theorem* 1.19. As in [13, Prop. 8.4], we can assume without loss of gen-
erality that Y is connected.

We recall that if Γ ∈ H1(Y ), then ECH(Y, ξ,Γ) is defined to be the homology
of the subcomplex of the ECH chain complex generated by admissible orbit sets
α = {(αi,mi)} with total homology class [α] =

∑

imi[αi] = Γ ∈ H1(Y ). One
can choose a class Γ such that c1(ξ) + 2PD(Γ) ∈ H2(Y ;Z) is torsion. For such a
class Γ, there is a relative Z-grading on ECH(Y, ξ,Γ); and it follows from results
of Kronheimer-Mrowka [19], as explained for example in [4, Lem. A.1], that in
sufficiently large grading, ECH(Y, ξ,Γ) is nonzero for gradings of at least one parity,
and the U -map is an isomorphism. Consequently we can choose a “U -sequence”,
namely a sequence of nonzero homogeneous classes σk ∈ ECH(Y, ξ,Γ) indexed by
k g 0 such that Uσk = σk−1 whenever k > 0.

By [5, Thm. 1.3], if {σk} is a U -sequence as above, then

lim
k→∞

cECH
σk

(Y, λ)2

k
= 2vol(Y, λ).

By Theorem** 6.1, we also know that

ck(Y, λ) f cECH
σk

(Y, λ).

The above two lines imply that

lim sup
k→∞

ck(Y, λ)
2

k
f 2 vol(Y, λ).

We are now done by the Asymptotic Lower Bound property of ck.

6.4 Proof of the general quantitative closing lemma

Proof of Theorem* 1.6. By scaling the contact form, we can assume without loss of
generality that vol(Y, λ) = 1. Below we write ck = ck(Y, λ) and GapL = GapL(Y, λ).

By the bound (1.4), it is enough to show that

lim sup
L→∞

(

L ·GapL
)

f 1. (6.5)
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By Theorem* 1.19, in proving (6.5), we can restrict attention to numbers L that are
values of ck. That is, it is enough to show that for every ε > 0, if m is sufficiently
large and L = cm, then

L ·GapL f 1 + ε. (6.6)

Let δ > 0. By Theorem 1.19, if m is sufficiently large, then

k g m/2 =⇒
∣

∣c2k − 2k
∣

∣ f δk. (6.7)

Fix such δ and m. Let n = am be an integer with 0 < a < 1/2. Then for L = cm,
we have

GapL f min
i=1,...,n

(cm−n+i − cm−n+i−1)

f 1

n
(cm − cm−n)

f 1

n

(

√

(2 + δ)m−
√

(2− δ)(m− n)
)

=
1

a
√
m

(√
2 + δ −

√

(2− δ)(1− a)
)

.

Since L f
√

(2 + δ)m, it follows that

L ·GapL f 2 + δ −
√

(4− δ2)(1− a)

a
.

Let f(a, δ) denote the right hand side of the above inequality. For fixed a > 0,
we have

lim
δ¸0

f(a, δ) =
2
(

1−
√
1− a

)

a
.

Let g(a) denote the right hand side of the above equation. Then we have

lim
a¸0

g(a) = 1.

Consequently, given ε > 0, to arrange (6.6), we can first choose a sufficiently small
that g(a) < 1 + ε/3, then choose δ sufficiently small that f(a, δ) < g(a) + ε/3, and
then require that m is sufficiently large that (6.7) holds. Note that when am is not
an integer, we can fix this by slightly increasing a, and the ε/3 of room that we
have left will suffice when m is sufficiently large.

6.5 Other quantitative closing bounds

Remark 6.2. A similar argument to the proof of Theorem** 6.1 can be used to
give a closing bound directly in terms of the ECH spectrum, namely

CloseL(Y, λ) f inf
{

cECH
σ (Y, λ)− cECH

Uσ (Y, λ)
∣

∣ Uσ ̸= 0, cECH
σ (Y, λ) f L

}

. (6.8)
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One can give alternate proofs of the general quantitative closing lemma in Theo-
rem* 1.6, as well as the more specific results in Theorem 1.9 and Theorem 1.10,
directly from the bound (6.8) together with known properties of the ECH spectrum.

In simple examples such as boundaries of convex or concave toric domains in R
4,

the bounds (1.4) and (6.8) are equivalent. In more general examples, in principle
either bound might be stronger than the other.
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