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SUMMARY

Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution.
However, aneuploidy will be maintained only if the benefit outweighs the cost, which remains incompletely
understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromo-
some duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation
to understand aneuploidy toxicity. We show that 74%-94% of the variance in aneuploid strains’ growth rates
is explained by the cumulative cost of genes on each chromosome, measured for single-gene duplications
using a genomic library, along with the deleterious contribution of small nucleolar RNAs (snoRNAs) and bene-
ficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no
support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best pre-
dictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for

disease biology and evolution.

INTRODUCTION

Aneuploidy, when cells carry an abnormal number of one or more
chromosomes, can produce different outcomes depending on
the environmental and cellular context. On the one hand, aneu-
ploidy is broadly considered deleterious. Whole autosome dupli-
cation in humans is generally lethal, with the primary exception of
trisomy of chromosome 21 that causes Down syndrome (DS).
The deleterious effects of chromosome duplication can also be
seen at the cellular level in most organisms.>® On the other
hand, aneuploidy is often beneficial during evolution. Chromo-
some amplifications are frequently selected in drug-resistant hu-
man pathogens and represent a major source of drug evasion.*°
Furthermore, aneuploidy is observed in ~20% of non-laboratory
S. cerevisiae isolates®® and is associated with adaptive traits in
natural and industrial environments.'®'® Aneuploidy is also
found in >88% of cancers: tumors with high levels of aneuploidy
display poorer patient prognosis, respond less well to treatment,
and have a higher rate of relapse.'®'” Recent studies show that
specific chromosome amplifications underlie these bene-
fits.’”~2" Thus, aneuploidy can be a fast route to adaptation in
a changing environment. Whether cells can use aneuploidy to
evolve to a new environment depends on the balance between
aneuploidy cost and potential benefit—if the benefit under the
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conditions at hand outweighs the cost, aneuploidy will be
maintained.

However, a major limitation in predicting the impact of aneu-
ploidy is that we lack a mechanistic understanding of why aneu-
ploidy is deleterious under optimal conditions, especially in the
case of chromosome amplifications. Previous studies showed
that large mammalian chromosomes transformed into yeast
and lacking coding potential do not incur the same fitness cost
as duplicating native chromosomes, strongly implicating pro-
tein-coding sequences as a major contributor.?~2* Two mutually
exclusive models have been proposed to explain the inherent
cost of duplicating chromosomes (herein referred to as aneu-
ploidy). On one end of the spectrum is what we refer to as the
genic load model, in which aneuploidy cost is driven by the
burden of making extra gene products, independent of their
functions or properties.?>*® Multiple studies, from yeast to mam-
mals, suggest that larger chromosomes with more genes incur a
larger cost.>® In yeast, chromosome length and gene number
negatively correlate with the growth defect of aneuploid
strains®’° and with the number of aneuploid strains found
outside of the lab, which presumably reflects the strength of
negative selection.®**° The magnitude of that correlation varies
for different studies, which analyze incomplete sets of strains
often isolated from multiple sources. In another study, the impact
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of large segmental duplications on yeast growth was partly
correlated with the number of genes in those segments, although
discrepancies were identified.>’

On the other end of the spectrum is the driver gene model that
predicts that aneuploidy toxicity is due to a handful of dosage-
sensitive genes encoded on each chromosome. This model pre-
vails in the study of DS, where research often focuses on one or a
few specific genes on human chromosome 21.%2*° In yeast, one
of the most striking examples of a driver gene is thought to be
beta-tubulin, TUB2, encoded on chromosome VI (chrVI, chr6):
chr6 duplication is viable only in the presence of other chromo-
some duplications that encode Tub2-interacting proteins; these
chromosome amplifications occur spontaneously when TUB2 is
duplicated on a plasmid.>**° In cancer cells, the frequency of
segmental gains and losses found in The Cancer Genome Atlas
database can be partially modeled by the number of tumor sup-
pressors and oncogenes amplified in those regions.**® These
models are based on <8% of genes scored at the time as tumor
suppressors and oncogenes, suggesting that only a subset of
human gene amplifications contributes a major impact. Other
recent studies provide evidence for a mixed model of aneuploidy
cost. For example, Keller et al. analyzed a suite of segmental
chromosome amplifications in yeast and showed that fitness
cost partially correlated with the length of the amplification; how-
ever, several outliers implicated that other effects must be at
play.®" A major limitation in distinguishing any of these models
is a lack of systematic study measuring the cost of each chromo-
some’s duplication in a controlled environment and then
modeling the mechanistic basis for that cost.

Both models above are compatible with a prominent view of
deleterious effects known as the balance hypothesis. This hy-
pothesis posits that duplication of genes encoding proteins
with many protein interactions or that participate in multi-subunit
protein complexes can produce stoichiometric imbalance, dis-
rupting protein interaction networks and causing downstream
stress on protein folding, degradation, and management known
as proteostasis stress.>>*' Proteostasis stress can be exacer-
bated by an increased burden produced by many gene amplifi-
cations, overloading cellular machineries.??****° Indeed, yeast
aneuploids are sensitive to conditions that interfere with proteo-
static functions, including protein translation, folding, and degra-
dation.??**?~** However, these models are heavily influenced by
results from a laboratory strain of yeast, W303, which is highly
sensitized to chromosome duplication. The genetic basis for
this sensitivity is a hypomorphic variant of an RNA-binding pro-
tein, Ssd1, that is required for yeast to tolerate extra chromo-
somes.*®> Most non-laboratory strains studied to date are signif-
icantly more tolerant of chromosome amplification, although a
detectible fitness cost remains, raising questions about the
cost and effect of aneuploidy in more representative non-labora-
tory strains.®"+°

In this study, we used comparative modeling and molecular
validation to distinguish and quantify models of aneuploidy
cost under optimal growth conditions in a natural oak-soil isolate
of S. cerevisiae YPS1009, with and without SSD7. In doing so,
we leveraged a pooled library of cloned genes to measure the
cost of duplicating each gene individually. Our results indicate
that a multi-factorial model incorporating the cumulative cost
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of individual gene duplications on each chromosome, plus the
impact of several non-coding RNA (ncRNA) classes, explains a
large proportion of aneuploid growth defects. Surprisingly, we
found no evidence for the balance hypothesis in aneuploidy
cost and propose that yeast cells have evolved to manage
mere duplication of most genes. We used machine learning ap-
proaches to identify other features associated with deleterious
single-gene duplication. Surprisingly, the most impactful feature
predicting the fitness effect of a gene’s duplication is its length,
since deleterious genes are on average significantly longer
than non-deleterious genes. Together, our results raise impor-
tant considerations regarding the effects of gene and chromo-
some amplification.

RESULTS

Fitness costs of chromosome duplication vary by
chromosome

We began by generating a panel of haploid strains in the oak-soil
YPS1009 background in which each chromosome is duplicated.
YPS1009 was selected because its response to aneuploidy is
representative of that of other strain backgrounds with similar
aneuploid content®***® and because of existing tool sets in
our lab. We used the method of Hill and Bloom*’ to generate
aneuploid cells by integrating a galactose-inducible promoter
facing each centromere. Cells were shifted to galactose medium
for one generation to induce transcription, which blocks kineto-
chore assembly and thus causes chromosome retention in the
mother cell during mitosis (see STAR Methods). We generated
aneuploid strains in which each of 15 of the 16 yeast chromo-
somes is duplicated. The exception was chr6, proposed previ-
ously to be lethal due to amplification of tubulin TUB2.3%:3°48:49
Most of the chromosome duplications were stable over many
generations (see STAR Methods). We generated a comparable
strain background that was sensitized to aneuploidy through
the deletion of SSD7.*> We were unable to isolate an ssd74
strain with chr16 duplicated, suggesting that this specific chro-
mosome duplication is not viable in this strain background
without Ssd1.

The strain panel affords an opportunity to sensitively measure
the fitness cost of aneuploidy under standardized conditions. We
measured the growth rate of wild-type and ssd74 strains in the
panel, in biological quadruplicate. Not surprisingly, different
chromosome duplications inflict different levels of fitness de-
fects (Figure 1A; Table S1). We observed a range of growth rates,
from 96% of the euploid growth rate for duplication of chr3 (the
second smallest chromosome) to 65% for duplication of chr15,
which falls among the larger chromosomes but is not the largest
in size or gene content. These results already highlight an imper-
fect relationship between chromosome size and its fitness cost.
Ssd1 was previously shown to be important for some chromo-
some duplications in multiple wild strains,”® but the breadth of
its impact on other chromosomal aneuploidies was not known.
We discovered that 8 of the 15 aneuploids (53%) incurred signif-
icantly greater growth defects in the ssd74 background (Fig-
ure 1A). Most of the other chromosomes were also more delete-
rious in the ssd74 strain but missed the threshold for statistical
significance. Thus, Ssd1 is important for tolerating most
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Figure 1. Chromosome duplications inflict variable fitness costs in wild-type and ssd714 cells
(A) Average and standard deviation (n = 4) of aneuploid growth rates relative to isogenic euploid. All SSD1* (“WT,” blue) aneuploids grew slower than the euploid
(p < 0.05, replicate-paired t test); ssd7 4 aneuploids that grew significantly slower than their wild-type aneuploid equivalent are indicated with an asterisk (o < 0.05,

t test).

(B) Mean relative growth rate of each aneuploid strain (numbered by duplicated chromosome) relative to the isogenic euploid plotted against the number of genes
per amplified chromosome. Ordinary least-squares regression with 95% confidence interval (shaded) and adjusted R? indicated in the box. See also Table S1 and

source data for Figures 1, 2, and 3 in S6.

chromosome duplications, with greater impacts for chromo-
somes that cause a greater defect in wild-type cells.

Genic load partly explains the fitness costs of
chromosome duplication

With the fitness costs of each chromosome duplication in hand,
we developed mathematical models to understand the determi-
nants of aneuploidy toxicity. For optimal modeling, we first
sequenced the YPS1009 genome (see STAR Methods). This pro-
duced a high-quality genome of 7,362 annotated genes and non-
genic features across 16 assembled chromosomes.

We began by calculating the linear relationship between the
relative fitness cost measured for each chromosome duplication
(taken as the aneuploid versus euploid growth rates) and the
number of genes per chromosome (model 1), which in yeast is
highly correlated with the chromosome length (R = 0.99).
Excluding chr6, which could not be generated, the fit for the re-
maining chromosomes explains 62% (adjusted [ad]] R® = 0.62) of
the variance in relative fitness costs. Thus, the number of genes
per chromosome alone explains a significant proportion of the
variance of aneuploid fitness cost (Figure 1B), confirming previ-
ous implications in various organisms.®®?"?® The fit was even
higher for ssd1 4 strains, explaining 76 % of the variance in fitness
costs of cultivatable chromosome duplications (Figure 1B). The
increased slope reflects the stronger fitness costs in ssd74 an-
euploids, suggesting that, in the absence of Ssdi, cells are
more sensitive to the genic load.

The cumulative effect of single-gene duplications
accurately models whole chromosome gain

An open question in the aneuploidy field is the degree to which
specific genes on each duplicated chromosome contribute to
the fitness cost of aneuploidy. We therefore set out to determine
the fitness impact of duplicating each gene individually in the

YPS1009 euploid strain using a single-copy gene duplication li-
brary. Each centromeric plasmid contains one yeast gene with
its native upstream and downstream regulatory sequence along
with a unique DNA barcode for tracking.”® To measure the
fitness cost of duplicating each gene individually, we trans-
formed euploid YPS1009 with the pooled library and grew it
competitively for 10 generations, taking the logs(fold change) in
barcode abundance after competitive outgrowth as the relative
fitness cost (see STAR Methods). Genes whose barcode abun-
dance significantly decreased during growth are considered
detrimental to fitness, while those whose frequency increased
are considered beneficial. Of the 4,369 YPS1009 yeast genes
for which fitness could be measured, 25.5% were beneficial
and 28% were detrimental (false discovery rate [FDR] < 0.05,
Figure 2A; Figure S1A), as validated for several representative
genes (Figure S1B and Source Table S6).

Because genes with noisy measurements are statistically insig-
nificant but can have artificially skewed mean measurements, we
replaced insignificant scores (FDR > 0.05) with the mean cost of all
measured genes (log, value of —0.33, see STAR Methods).
Hence, genes without a significant effect are considered to have
a mild negative impact. We then computed the fitness cost of
each chromosomal duplication (chr cost) as the sum of log, fitness
effects of all genes encoded on that chromosome.

The cumulative-effects model based on single-gene costs
(model 2) significantly improved the fit compared to model 1,
which considers only the number of genes per chromosome
(adj R® for wild type = 0.69, ssd14 = 0.84, Figure 2B).
The improvement in the fit was highly significant as assessed
in two ways. First, a nested model that includes both the number
of genes per chromosome and the cumulative gene cost
(normalized to chromosome gene number) improves the fit,
since both factors are significant (o < 3.9 x 102, likelihood-ratio
test, see STAR Methods). Second, the observed fit for model 2
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Figure 2. Considering gene-specific fitness costs improves the modeling

(A) Distribution of log, fitness scores for single-gene duplications for gene groups in the key.

(B) Linear fit of the mean relative growth rate as in Figure 1 plotted against the sum of the log, fitness costs for genes encoded on each chromosome (“Chr. Cost”).
(C) Distribution of R? values from 10,000 random permutations of gene fitness scores affiliated with each chromosome (whiskers — 1.5 times the interquartile
range). The observed adjusted-R? values for model 1 and model 2 are shown for each strain panel. See also Tables S1, S2, and S6.

was better than nearly all of the 10,000 random permutations of
gene fitness costs (preserving the number of genes per chromo-
some in each trial). Of 10,000 permutations, only 4 met the
observed model 2 fit for wild-type aneuploids (o = 0.0004) and
none for the ssd74 strains (p < 0.0001, Figure 2C). Together,
these results show that the identity of duplicated genes makes
an important contribution to the cost of aneuploidy and is predic-
tive of the fitness effect of whole-chromosome duplication. Inter-
estingly, the fit for model 1 that simply counts the number of
genes per chromosome was better than 88% and 82% of
random trials for the wild-type and ssd174 strains, respectively,
which were close to statistical significance (p = 0.17 for wild
type, p = 0.11 for ssd74). This raises the intriguing possibility
that fungal evolution has optimized gene content on each chro-
mosome to minimize the cost of chromosome duplication, which
is relatively frequent in yeast. Regardless, these results show
that the combination of single-gene fitness effects is predictive
of the fitness effect of whole-chromosome duplication.

We devised an independent experimental approach to test the
models using strains carrying two chromosome duplications.
These dual-chromosome duplications were not stable in ssd74
cells, and thus we focused on SSD17* strains. Those with multiple
chromosome duplications grew slower than corresponding sin-
gle-chromosome duplication strains, as expected (Figure S2A).
We assessed the variance in growth rates of dual-chromosome
duplications explained by the models trained on single-chromo-
some duplications. Indeed, model 2 was significantly better (adj
R2 = 0.54) than model 1 (adj R? = 0.34, Figures S2B and S2C).
Thus, the model does not overfit the training data and instead
shows that the cost of chromosome duplication is significantly
influenced by the genes encoded on each chromosome.
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Beneficial gene duplications alleviate the cost of
chromosome duplication

Studies in cancer cells suggested that beneficial oncogenes on
amplified chromosomes counteract tumor suppressors on the
same segments.*®>” We wondered if genes whose duplication
is beneficial to YPS1009 are important for aneuploidy fitness.
To test this, we excluded beneficial genes from the chr cost,
which decreased the model performance (adj R? of 0.67 for
wild type and 0.80 for ssd74 compared to 0.69 and 0.83,
respectively, for model 2). The contribution of beneficial genes
is statistically significant in a nested model in which their cumu-
lative effect was added as a separate feature (p = 4.7 x 1072,
likelihood test). Hence, genes scored as beneficial when dupli-
cated in isolation contribute to aneuploidy fitness, likely
because they collectively counter some of the aneuploidy
fitness cost.

Non-coding features contribute to aneuploidy fitness
effects

While it is clear that gene fitness costs explain much of the cost
of chromosome duplication, non-coding features could also
contribute. We therefore compiled a set of non-genic features
per chromosome based on the YPS1009 genome sequence
and used lasso regression to identify additional features that
improve predictions. The input set included the numbers of small
nucleolar RNAs (snoRNAs), tRNAs, other ncRNAs, autonomous
replicating sequences (ARSs), retrotransposons, and long termi-
nal repeats (LTRs), all normalized by the total number of features
encoded on each chromosome (see STAR Methods). Aside from
LTR and retrotransposon numbers, most of the features were not
confounded by co-variation (Figure S3).
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Figure 3. A multi-factorial model best explains the costs of chromosome duplication
(A) Distribution of coefficients obtained from 1,000 lasso regression bootstrap iterations (whiskers — 1.5 times the interquartile range). Only features exhibiting
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(B) Linear fit of the mean relative growth rates as in Figure 1 against model 3 predictions (using significant features for each strain as shown in A). The adjusted R?

value is indicated in the lower right corner. See also Tables S1, S2, S5, and S6.

We used a bootstrap-lasso (Bolasso-S)°' approach to select
features that contribute significant explanatory power to the
modeling of measured aneuploidy growth defects, selecting
from non-genic features as well as model 2 chr costs. Features
selected by lasso regressionin 90% of 1,000 bootstrap trials (lasso
alphafactor=0.7, see STAR Methods) were retained and incorpo-
rated into multi-factorial model 3. For both wild-type and ssd74
models, lasso chose the chr costs from model 2 as the most im-
pactful factor but also the normalized number of snoRNAs per
chromosome as deleterious to fitness and the normalized number
of tRNAs per chromosome as beneficial (Figure 3A). The method
also chose the normalized number of retrotransposons as a dele-
terious predictor only for the ssd74 strain. All selected features
were significant (chi-squared test, Figure 3A). Remarkably, the
multi-factorial model 3 explains 74% of the growth rate variance
for wild-type and 94% for ssd74 aneuploids (Figure 3B). When
the trained models were assessed on dual-chromosome duplica-
tion strains, model 3 improved the predictions compared to model
2 (adj R? = 0.7 compared to 0.54 for model 2, Figure S2D).

Imbalanced duplication of snoRNAs is detrimental

The lasso predictions above improve the modeling, but is the
model correct? We set out to experimentally verify several of
the model predictions. We first tested the predicted deleterious
impact of duplicating snoRNAs. snoRNAs guide catalytic modifi-
cations of other RNAs, such as ribosomal RNAs (rRNAs) and

tRNAs. snoRNAs can be splitinto C/D box snoRNAs, which direct
2’-hydroxyl methylation of their RNA targets, and H/ACA box
snoRNAs involved in pseudouridylation.® The two groups were
combined into one for modeling given their relatively small
numbers in the genome (45 C/D and 29 H/ACA). To test predic-
tions, we cloned seven C/D snoRNAs present in an array on
chr13 or seven H/ACA snoRNAs from a single region on chr15
onto centromeric plasmids (see STAR Methods). Duplication of
either snoRNA cassette significantly reduced growth of the
euploid strain, validating that duplication of these cassettes is
indeed deleterious (Figure 4A). Furthermore, the growth rates of
haploid YPS1009 carrying duplications of chr4 (among the
most deleterious chromosomes, which also encodes fewer
snoRNAs than others) or chr15 were also reduced upon duplica-
tion of these snoRNAs (despite missing the significance threshold
in one case, Figure 4A).

Reciprocally, if snoRNAs contribute to aneuploidy toxicity,
then restoring them to euploid copy number should partially alle-
viate the aneuploidy fitness costs. With that aim, we deleted from
one of the chr13 copies a segment of six of its nine C/D snoRNAs
(see STAR Methods). Although there was no significant effect in
the wild type, deleting the extra C/D snoRNA copies from the
ssd14 chr13 aneuploid strain significantly improved its growth
rate (Figure 4B). The increased sensitivity of ssd74 aneuploids
may provide more power to detect improvements than in the
wild type, where snoRNA imbalance was also predicted to be
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deleterious. Nonetheless, together, these results confirm that
snoRNA duplication is deleterious to both euploid and aneuploid
cells and contributes to the cost of chromosome duplication in at
least the ssd74 background.

Increasing tRNA copy number benefits ssd14 aneuploid
cells

Model 3 above predicts that chromosomes with more tRNAs are
less deleterious than otherwise predicted. We tested this in
several ways. First, we introduced an available plasmid carrying
21 tRNAs encoded on chr12°® into the YPS1009 euploid and a
subset of aneuploid strains. The tRNA plasmid decreased prolif-
eration in the euploid and chr4 aneuploid wild-type cells, indi-
cating that an imbalanced set of these tRNAs is deleterious (Fig-
ure 4C). However, their duplication had a less detrimental effect
in the other aneuploids, especially strains lacking SSD17. In fact,
duplication of these tRNAs was beneficial to varying degrees in
ssd14 aneuploids with chr13 and chr15 duplications.

As an alternative approach, we assessed the effect of upregulat-
ing all tRNAs by deleting the RNA polymerase Ill repressor, Maf1.
MAF1 deletion leads to an accumulation of tRNAs,>* which we
confirmed (Figure S4). We found that MAF1 deletion improved
growth rates for chr7 and chr15 aneuploids in the ssd74 back-
ground (p < 0.05, Figure 4D). Although the effects were somewhat
mixed, these results suggest that several aneuploidy-sensitized
ssd14 strains benefited from extra tRNAs but that the effect could
be specific to certain chromosomes or tRNAs (see the discussion).

Machine learning implicates properties common to
duplication-sensitive genes

Although the cumulative cost of gene duplications explains a sig-
nificant proportion of the cost of aneuploidy, some gene dupli-
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B Figure 5. Gene length is the main predictor
of deleterious gene duplications

(A) Mean receiver operating characteristic (ROC)
curve for 5-fold cross validation of the logistic
regression model using the top 12 features (see
STAR Methods), applied to 1,177 deleterious and
3,028 neutral gene duplications (all genes) or the
restricted set of 613 substantially deleterious genes
and 1,472 clearly neutral genes (filtered genes).
Dashed, colored lines show the fit when only gene
length is considered in the model. The mean area
under the curve (AUC) is shown in the key.

(B) Error matrix shows the percentage recovery of
true labels by the predicted labels of the combined
5-fold cross-validation test sets.

(C) Boxplot of the mean feature importance (n =
10) for the 5-fold cross-validation measured with
respect to ROC-AUC gain (whiskers — 1.5 times
the interquartile range, see STAR Methods).
Features associated with or higher in the dele-
terious gene duplication group are labeled with a
“T”, while enrichment in the neutral group is
indicated with an “N”.

(D) Distribution of gene lengths for the 613
deleterious (“toxic™) and 1,472 neutral gene du-
plicates (p value, Wilcoxon rank-sum test). See
also Tables S2 and S3 as well as corresponding
source data in Table S6.
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cates are more deleterious than others. To further explore this,
we sought properties that can predict deleterious genes. We
focused on 1,177 genes scored as deleterious when duplicated
in euploid YPS1009 (FDR < 0.05), compared to 3,028 genes
whose duplication was neutral or beneficial (FDR > 0.05, herein
referred to as “neutral”). Consistent with other studies using
gene duplication libraries,**>° we found only a handful of func-
tional terms enriched in the deleterious group, including several
categories linked to cell-cycle regulation. We next compiled a list
of 120 gene and protein properties and selected those that differ-
entiated the deleterious gene duplications from the neutral set
(Wilcoxon rank-sum test, Figure S5A; Tables S2 and S3). The
group of deleterious genes displayed a slightly higher proportion
of intrinsically disordered regions, marginally more phosphory-
lated sites, a higher proportion of serine residues, lower transla-
tion rates as indicated by ribosome profiling,®° and longer length
(Figure S6); however, several of these features are correlated
with one another (Figure S5A), confounding interpretation.
Notably, the group of genes that are deleterious when duplicated
was not enriched for those encoding proteins involved in com-
plexes or with a high number of protein-protein interactions
(see the discussion).

We used a machine-learning approach to identify the most im-
pactful gene properties and determine if their combination can
accurately differentiate deleterious gene duplications from those
that are neutral or beneficial (see STAR Methods). A logistic
regression classifier was trained on significant biophysical and
functional enrichment (Figure S5A). Five-fold cross validation re-
vealed that the model performed relatively poorly, with a mean
area under the curve (AUC) of 0.62 (Figure 5A). Restricting
the classification to the 613 most deleterious genes (bottom
15% quantile) and the 1,472 genes most confidently called
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Figure 6. Model predictions applied to 2-um
overexpression dataset

(A) As shown in Figure 5 but using the top 70 iden-
tified features applied to 400 commonly deleterious
genes versus 1,657 commonly neutral genes based
on data from Robinson et al.°" (blue curve). Rob-
inson data fitted only with gene length (dashed line).
Gene-duplication data from this study (“duplica-
tions,” purple curve) predicted using the 70 feature-
model trained on the Robinson data.

(B) Error matrix for the Robinson et al. model as
described in Figure 5.

(C) Boxplot of the mean feature importance (n = 10)
for the 5-fold cross-validation, measured with
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(3 K respect to ROC-AUC gain (whiskers — 1.5 times the
interquartile range, see STAR Methods) for Rob-
inson’s model with the top 25 features, as shown in
Figure 5. See the source data in Table S6. A com-
plete report of the permutation feature importance
for all 70 features of the model is available for this
figure in Table S6.

rious genes (Figures 6A and 6B). Thus, the
poor performance in predicting duplica-
tion-sensitive genes is not due to our
methods. In fact, the model trained on
the higher-copy 2-um library performed
relatively poorly when applied to the
gene-duplication datasets (Figure 6A),
with an AUC of 0.68 that was once again
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neutral/beneficial (upper 65% quantile) improved performance
(AUC = 0.713), correctly predicting 57% of deleterious gene du-
plications (Figures 5A and 5B). Surprisingly, by far the most im-
pactful feature in explaining deleterious genes was gene length;
deleterious genes were significantly longer than neutral genes
(Figures 5C and 5D). A model considering only gene length had
nearly equal predictive power as the more complex model (Fig-
ure 5A). In an attempt to identify other gene properties that could
in combination supplant gene length in the model, we trained a
classifier without considering gene length; but the classifier per-
formed worse (mean AUC = 0.66) than when fitted on gene
length alone, and the most impactful features selected (ratio of
buried residues and the presence of disordered regions) both
correlate with gene length (Figure S5A). Thus, gene length distin-
guishes the deleterious gene set better than any other combina-
tion of considered features.

These results were especially surprising because past work
from our lab using a higher-copy library identified shared fea-
tures among genes that are deleterious when overexpressed,
including genes encoding proteins with many protein interac-
tions, higher expression, intrinsic disorder, and other features.®"
We therefore applied our modeling approach to discriminate 400
genes whose higher-copy expression on a 2-um plasmid is dele-
terious to many strain backgrounds from genes that are neutral
or beneficial in most strains (1,657 genes).®' This classifier was
highly accurate (AUC = 0.92), correctly predicting 82% of delete-
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012 no better than considering gene length

alone. The only common predictor be-

tween the models trained on duplicated
genes versus the 2-um overexpression experiment®’ was gene
length, along with different measures of intrinsically disordered
regions, suggesting it as a common factor (Figure 6C). However,
the latter features made only a marginal contribution to explain-
ing deleterious gene duplicates while being very prominent fea-
tures for gene overexpression.

We conclude that most biological features that account for
deleterious effects when genes are overexpressed to higher
levels may not be relevant for mere gene duplications. In both
models, but especially in the case of gene duplication, gene
length is the single best predictor of whether a gene duplication
will be deleterious to strain fitness (see the discussion).

DISCUSSION

Through systematic experimental and mathematical analysis,
our results present a clarified view of the cost of chromosome
duplication and the molecular properties behind it. Under stan-
dard growth conditions, the cost of aneuploidy cannot be fully
explained by generic gene load nor by a handful of duplication-
sensitive genes. Instead, our results quantitatively confirm previ-
ous suppositions®'*°? that both the generalized burden of aneu-
ploidy load coupled with combinatorial effects of the specific
suite of genes and non-genic features on each chromosome
explain 74%-94% of the aneuploidy costs measured here.
Some duplicated genes are more deleterious than others, while
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beneficial genes help to counteract the burden of deleterious
genes on the same chromosomes. Thus, the cost of chromo-
some duplication is an emergent property of the affected genes
and the collective burden of amplifying coding and non-coding
genetic elements. Although not investigated here, it is likely
that genetic interactions among genes duplicated together
also contribute, albeit to a lesser extent than the simple cumula-
tive effects modeled here, perhaps explaining a portion of the
6%—-26% variance not explained by our models.

Although the cost of chromosome duplication is explained
by these combined effects, it is important to highlight that
duplication of single genes on a chromosome can have a
disproportional impact on specific phenotypes. This may
explain arsenic resistance contributed by amplification of
S. cerevisiae chr16, which encodes arsenic resistance genes,9
or fluconazole evasion by amplification of C. albicans chr5,
which encodes drug pumps and their regulators.” A similar
implication was made for trisomy 21, by correlating specific
DS phenotypes to genes amplified in subsets of people with
partial-chromosomal trisomies.®*®* These single-gene effects
almost certainly contribute to chromosome-specific impacts
observed for different karyotypes.®>® In terms of evolution, if
the benefit provided by the resulting phenotypes outweighs
the underlying cost of chromosome amplification, aneuploidy
will be maintained. Notably, this cost-benefit analysis is heavi-
ly dependent on the environmental context, and that balance
can shift with changing environments or genetic background.
Indeed, genes with detrimental or beneficial effects can
vary substantially across strain backgrounds and in a strain-
by-environment manner.c"%> Hence, while the principles
outlined here are likely generalizable across strains and
potentially other species, the impacts of specific genes and
chromosomal features, as well as their relationship with envi-
ronment or genetic background, are likely to differ across
systems.

The contribution of snoRNAs and tRNAs points to
aneuploidy impacts on translation

Our work implicates the contribution of ncRNAs to the cost of
chromosome duplication. The modeling predicted, and experi-
mental analysis confirmed, that imbalanced expression of tested
snoRNAs incurs a fitness cost in euploids and select aneuploids,
whereas restoration of their balance can alleviate toxicity in the
ssd14 chr13 aneuploid. The altered abundance of specific
snoRNAs can produce cellular phenotypes. For instance, over-
expression of snoRNA SNR517 in budding yeast increases bind-
ing to its target RNAs.°® RNA-mediated modifications can be
heterogeneous in the population of substrate molecules, such
that modifications could contribute to cellular heterogeneity,
including ribosome functions.®” Thus, aneuploidy-induced
imbalance could change the landscape of rRNA and tRNA mod-
ifications, leading to broader effects on translation.®® In cancer,
snoRNA dysregulation has been associated with both tumor-
suppressing and tumor-promoting effects (reviewed in Zhang
et al.?®). In one example, snoRNA overexpression was shown
to upregulate ribosome biogenesis, which interferes with the
p53 protective role,”° hence linking snoRNA misexpression to
the disruption of translation in humans. The adverse effect of
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snoRNA overexpression might therefore be generalizable to
other organisms.

In contrast, chromosomes with more tRNAs were less toxic
than the model otherwise predicted, in both wild-type and
ssd14 strains, pointing to a role for tRNAs in alleviating the
cost of aneuploidy. We confirmed this prediction experimentally
in several sensitized ssd74 aneuploids, albeit with mixed results
in the wild-type strain. We considered all tRNAs together in the
modeling, as our relatively small dataset does not have the sta-
tistical power to test individual tRNA contributions, but different
tRNA duplications may differentially benefit different chromo-
some amplifications. What could be the reason? The abundance
of specific tRNAs correlates with the frequency of their cognate
codons in the transcriptome, since higher abundance of those
tRNAs facilitates translational efficiency through their codons.
In fact, tRNA pools can shift composition to accommodate a
changing transcriptome.”" In recent years, tRNA overexpression
has emerged as an important feature of cancer,”?~"“ since upre-
gulation of specific tRNAs increases translation of transcripts
enriched for their cognate codons, thereby promoting metas-
tasis.”>"® Thus, the benefits of specific chromosome arm gains
could be partially linked to specific tRNA duplications.

The implication of snoRNAs and tRNAs adds to a growing
body of evidence that aneuploids may have a liability related to
translation. First, Ssd1 is required to manage the stress of chro-
mosome duplication across strain backgrounds and amplified
chromosomes.*®> Ssd1 has been implicated in translational
repression and mRNA localization,*>””~"® among other pro-
cesses. Intriguingly, SSD1 deletion sensitizes euploid strains to
mutation of the elongator complex as well as Deg1 tRNA pseu-
douridine synthase, both of which modify tRNAs to promote
translational fidelity.®®®" These links connect Ssd1 to aneuploidy
and translation, but also to snoRNAs and tRNAs that are impli-
cated in our modeling. Recent work from our lab shows that
overexpression of genes involved in translation or translation
quality control can partly complement ssd74 aneuploid growth
defects during the exponential phase or SSD71* aneuploid de-
fects entering quiescence during the stationary phase.??:%®
Both SSD7* and, especially, ssd74 aneuploids are inherently
more sensitive to translation elongation inhibitors,?**> suggest-
ing that translational stress is likely at play in wild-type aneu-
ploids. We proposed that SSD7* strains can largely buffer the
cost of most chromosome duplications unless otherwise
compromised by translational stress.*® Evidence in aneuploid
yeast and trisomy 21 cells indicates that protein dosage control
is mostly post-translational at the level of protein turnover, sug-
gesting that overabundant mRNAs are indeed translated.?>%4°
It is possible that it is the translation of duplicated genes, rather
than the overabundance of encoded proteins, that contributes
significantly to the fitness defects in aneuploid cells.

Gene length is the strongest predictor of deleterious
gene duplications

The cost of chromosome duplication is well modeled by the cu-
mulative cost of duplicating individual genes on each chromo-
some; thus, considering the features of deleterious gene dupli-
cations can further our understanding of aneuploidy. We
expected that genes encoding multi-subunit complexes and
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with multiple protein-protein interactions would be among the
most deleterious, thus validating long-standing models of pro-
tein imbalance as a major cause of aneuploidy toxicity. However,
deleterious gene duplications were not enriched for either
feature. This recapitulates several other studies that also saw
no enrichment for components of protein complexes among
duplication-sensitive genes.*°?:#¢ The absence of these signa-
tures indicates that the balance hypothesis,*'®” often invoked to
explain aneuploidy toxicity, may well be true for high-level pro-
tein imbalance but not for mere duplication of genes and their
native regulatory sequences. The reason is likely to be dosage
control, which has been observed repeatedly for multi-subunit
proteins amplified in yeast and human cells.?>°>883-91 While
some dosage control can happen at the transcriptional level,’
much occurs post-translationally. For example, proteins en-
coded by human chromosome 21 show increased turnover
rates.®® Genes encoded by other aneuploid chromosomes in hu-
man cell lines also show increased degradation rates according
to their role in the complex.®” Hence, cells likely have evolved
mechanisms to manage stoichiometric balance of important
proteins, at least when their genes are merely duplicated.

We were surprised that modeling predicted a single major
feature—gene length—as the strongest predictor of deleterious
gene duplicates, with longer genes associated with dosage
sensitivity. This is unlikely due to DNA/plasmid burden, since
aneuploidy-sensitized yeast are susceptible to chromosome
duplications, but not large artificial chromosomes without cod-
ing potential.>*°*°* Furthermore, although deleterious genes
tend to be longer, many long genes are still scored as neutral,
which is not expected if DNA burden is the driving cause. Re-
analysis of previously published overexpression screens, in
both wild yeast isolates and the laboratory strain, indicates
that deleterious overexpressed genes identified in each study
are longer (p = 1 x 1077 to 4 x 107*, Wilcoxon rank
test).5%:57:5961 The patterns we observe may be conserved in
higher organisms. Indeed, Ni et al. found that a compiled list
of reliable dosage-sensitive genes is significantly longer than
one of genes reported as dosage insensitive.”® Thus, altered
copy number of longer genes is more likely to cause fitness
problems across organisms.

There are several possible reasons longer genes tend to be
more deleterious when duplicated. First, gene length is corre-
lated with multiple other biophysical features: larger proteins
are more likely to contain an intrinsically disordered region,
have more phosphorylated sites, and have a higher fraction
of buried residues. One possibility is that gene length is simply
a proxy for a multitude of other gene properties that are each
mildly deleterious. However, we did not find strong support
for this hypothesis: when gene length was omitted from the
model, several features correlated with gene length were
selected, but the model did not perform as well as using
gene length alone. It remains possible, however, that longer
protein primary sequences are more likely to capture some
deleterious features.

Another possibility is that longer genes and transcripts create
more chances for error during protein synthesis. Longer genes
typically display slower translation initiation and elongation rates,
a relationship conserved across organisms.”®~'%° This relation-
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ship could reflect higher-order RNA structure or other features
of long mRNAs'?"'%; indeed, of the subset measured, delete-
rious gene duplicates do have more structure (p = 0.0008)."%
Longer transcripts also increase the probability of translation er-
rors, including tRNA/amino acid misincorporation, ribosome fra-
meshifting, premature termination, and co-translational protein
folding errors, all of which are influenced by sequence but are
also proportional to transcript length.'°°4"1% On the one
hand, long coding sequences, independent of other problematic
sequences, are preferentially targeted by surveillance mecha-
nisms. This may be driven by the reduced translation rate of
long MRNAs, which could emerge from an increased probability
of translational errors as coding length increases.'®” On the other
hand, nonsense-mediated decay (NMD), a pathway that re-
sponds to translational errors including frameshifting and prema-
ture termination, is less efficient when NMD-triggering se-
quences are introduced into longer open reading frames.'®
Thus, long open reading frames could lead to more translational
errors, both probabilistically due to length and from increased
chance of escape of surveillance systems. Translational errors
in turn can lead to proteostasis stress and an energy burden to
manage that stress.”®'%? Indeed, managing proteostasis stress
through quality control pathways such as the ubiquitin protea-
some system is important in sensitized aneuploid strains'%%'"?;
however, the direct source of the proteostasis stress remains
unclear—our results suggest that translational errors could
contribute.

In all, our study presents a quantitative assessment of aneu-
ploidy cost, in a single strain, single growth phase, and
controlled environment. Given that many principles in yeast
are conserved in higher organisms, the principles reported
here are likely conserved; however, the details, including pre-
cise fitness costs of specific genes and non-genic features,
as well as the generalized sensitivity of strains to translational
and proteotoxic stress, could vary significantly across strains,
organisms, and conditions.®"®° It will be interesting to see if
the results observed here pertain to cancer cells, which often
benefit from amplified chromosomes.’” 2" Pioneering work by
Davoli et al. showed that the sum of oncogenes and tumor sup-
pressors can partially predict the gain and loss of that chromo-
some in cancer cells.*® Including our findings in predictive
models could improve accuracy in modeling specific copy-
number variants in cancer.

Limitations of the study

One limitation of our study is that we focused on fitness costs
during exponential growth and under standard, optimal condi-
tions—certainly, the fitness cost of aneuploidy varies under
alternate conditions, where amplification of specific genes
can be beneficial.*>*°" Other evidence from our lab shows
that the fitness cost is dramatically different in stationary phase,
when starved haploids enter quiescence.®® Thus, an important
area for future investigation is to quantify fitness costs under
the full range of natural growth phases and conditions, to
enable dynamic modeling of evolutionary patterns in real-world
situations. Another limitation is that our work is specific to one
S. cerevisiae strain. While the general principles observed here
may pertain to other strains and species, the cost of individual
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gene duplications—and thus the cost of specific chromosome
duplications—is likely different for other genetic backgrounds.
Finally, while machine learning implicated trends among delete-
rious genes, most notably the association with gene length, the
mechanistic basis behind that association will require molecular
dissection.
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REAGENT or RESOURCE SOURCE IDENTIFIER
Bacterial and virus strains

DH5 alpha + pJH1 Hose et al.*® AGB90

DH5 alpha + pJR1 This paper AGB350

DH5 alpha + pJR2 This paper AGB360

DHS5 alpha + pJR3 This paper AGB361
Chemicals, peptides, and recombinant proteins

Yeast extract Fisher/BD DF0127179 and 212750
Peptone Fisher/BD DF0118-17-0 and 211677
D Raffinose Fisher 10279780
Galactose Fisher BP656-500
Nourseothricin-dihydrogen sulfate (clonNAT) Werner BioAgents 5002000

G-418 disulfate Fisher bp673-1

Yeast Synthetic Drop-Out Media w/o Sigma Y2001-20G
Histidine (SC-His)

Zymolyase Zymo Research E1004 or E1005
Critical commercial assays

DNeasy Blood and Tissue Kit Qiagen 69581
NEBNext® Ultra™ Il DNA Library NEB E7103

Prep Kit for lllumina®

MiSeq lllumina

Zymoprep Yeast Plasmid Miniprep Il Zymo Research D2004-A
AxyPrep Mag PCR Clean-Up Kit Fisher nc9959336
Deposited data

YPS1009-derivative strain genome This paper PRJNA984736
assembly in NCBI, BioProject

gene duplication screen raw sequencing This paper GSE263221

and barcode counts, on GEO
Biogrid

STRING database

YPS1009 Euploid Proteomics data

Yeast ribosome profiling dataset
CYC2008_complex

Uniprot
A3D Database
DescribeProt database

Haploinsufficient genes

Oughtred et al."""

Szklarczyk et al.''?

Hose et al.*®

Diament et al.®°

Puetal.'™

The UniProt Consortium'™*

Badaczewska-Dawid et a

Zhao et al.’’®

Deutschbauer et al

|_117

http://thebiogrid.org/
https://string-db.org/

https://cdn.elifesciences.org/articles/52063/
elife-52063-supp3-v2.xIsx

https://doi.org/10.1371/journal.pcbi.1005951.s002

https://wodaklab.org/cyc2008/resources/
CYC2008_complex.tab

https://www.uniprot.org/
https://biocomp.chem.uw.edu.pl/A3D2/yeast
http://biomine.cs.vcu.edu/servers/
DESCRIBEPROT/main.php
https://yeastmine.yeastgenome.org/yeastmine/
report.do?id=996557687

Experimental models: Organisms/strains

S.cerevisiae, wild-type yeast strain YPS1009

All other YPS1009 strains used in this
paper are listed in Table S3

Hose et al., 2020*°
See Table S3

N/A
N/A

(Continued on next page)
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Continued
REAGENT or RESOURCE SOURCE IDENTIFIER
Yeast ORF library (MoBY 1.0) Ho et al.*® https://horizondiscovery.com/en/non-mammalian-

research-tools/products/molecular-barcoded-
yeast-moby-orf-library

Software and algorithms

MUMmer version 4.0.0 rc1
BUSCO version 5.4.4
Merqury and Meryl

Pilon version 1.23

Guppy version 6.2.1 (ONT)
Canu version 1.9

Liftoff

ReasonaTE

Python 3

GSAEpy version 1.0.6
EdgeR version 3.36.0
Statsmodels, version 0.13.5
Sklearn version 1.3.0

Kurtz et al.’'®
Manni et al.""®
Rhie et al.'°

Walker et al.’®’

Oxford Nanopore Technology
Koren et al.'*?

Shumate et al.'**
Riehl et al.'**
Python™

Fang et al.’®®

Robinson et al.'*®

N/A
Pedregosa et al.'*’

https://github.com/mummer4/mummer, RRID:SCR_018171
https://busco.ezlab.org/, RRID:SCR_015008
https://github.com/marbl/merqury, RRID:SCR_022964

https://github.com/broadinstitute/pilon/releases,
RRID:SCR_014731

https://nanoporetech.com/

https://github.com/marbl/canu
https://github.com/agshumate/Liftoff
https://github.com/DerKevinRiehl/TransposonUltimate
https://www.python.org/, RRID:SCR_008394
https://gseapy.readthedocs.io/

https://bioconductor.org/, RRID:SCR_012802
https://www.statsmodels.org/v0.13.5/, RRID:SCR_016074
https://scikit-learn.org/stable/index.html, RRID:SCR_019053

IUPRED3 Erdos et al.’*® https://iupred3.elte.hu/

AlphaFold Jumper et al.'*? https://alphafold.ebi.ac.uk/, RRID:SCR_023662
SnpEff version 5.0 Cingolani et al.”*° https://pcingola.github.io/SnpEff/

Other

131

Saccharomyces Genome Database (SGD) SGD community https://yeastgenome.org/

Code repository for aneuploidy model This paper https://doi.org/10.5281/zenodo.12701832

and gene machine learning model

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Strains and plasmid

Strains and plasmids used are listed in the Table S4. YPS1009 aneuploids were generated using the methods of Hill and Bloom*’
except Chr12 aneuploidy described in Hose et al.*® Briefly, a DNA cassette including the GAL7-70 promoter (GAL1 oriented toward
the centromere), HphMX6 gene for hygromycin resistance, and terminator Prpy3-GFP-Tcycs (except for Chr3, 9, and 16 where GFP
was omitted) was integrated at 60 bp from each centromere of interest and selected on hygromycin medium. Each resulting euploid
strain was grown for 16 hin YP (1% yeast extract and 2% peptone) medium with 2% raffinose and switched to YP with 2% galactose
for one doubling based on optical density, and then plated for single colonies. For transformants carrying the GFP cassette, colonies
were initially screened for 1X (euploid) versus 2X (aneuploid) GFP fluorescence on a flow cytometer, and colonies with 2X fluores-
cence were selected. Aneuploid colonies were selected via gPCR of genes on and off the amplified chromosome to confirm dupli-
cation of the amplified chromosome; selected colonies used in this study were confirmed by low-coverage whole genome
sequencing, confirming that genes spanning the entire chromosome were present on average 2X higher copy than genes on all other
chromosomes. ssd74 aneuploids were obtained by crossing aneuploids selected above to the euploid ssd74 and selecting resulting
ssd14 aneuploid clones. YPS1009 with a duplication of Chr6 could not be generated in YPS1009, and duplication of Chr16 in ssd74
produced very sick colonies that could not be cultivated. Genomic DNA was isolated with the DNeasy Blood and Tissue Kit modified
for yeast (Qiagen) and sequenced using the NEBNext Ultra Il DNA Library Prep Kit on the lllumina MiSeq. Nine of the aneuploids
(Chrt, 4, 5, 7, 10, 13, 14, 15 and 16) were backcrossed to remove the centromere-proximal cassette. Euploids and aneuploids
with the cassette had no difference in growth rate compared to an isogenic strain without the cassette, confirming that the cassette
does not influence fitness.

The pJR1 plasmid expressing 7 C/D box snoRNAs encoded on Chr13 (snr72, snr73, snr74, snr75, snr76, snr77, snr78) was ob-
tained by amplifying 2017 bp containing the polycistronic C/D snoRNAs region from Chr13 (coordinates 280,245-282,261 from
the YPS1009 genome assembly) and ligating it into pJH1 plasmid. The pJR2 plasmid containing 7 H/ACA snoRNAs was obtained
by ligating a fragment containing SNR36, SNR8, SNR31, SNR5, SNR81, SNR9I (synthesized by Twist Bioscience) and SNR35 (ampli-
fied from YPS1009) into pJH1. A fragment from the Yce1313 plasmid (shared by the Cai Lab) containing all Chr12 tRNAs was cloned
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into pJH1 to obtain the pJR3 plasmid. The amplified snoRNA and tRNA were picked for ease of cloning, all plasmids were verified by
Sanger sequencing. MAF1 was deleted by homologous recombination of the HphMX6 cassette and verified by diagnostic PCR;
aneuploid strains were generated by crossing the euploid maf7 4 to aneuploids.

METHOD DETAILS

Growth conditions
Strain passaging was minimized to ensure maintenance of the aneuploidies. Freshly streaked colonies were used to inoculate liquid
YPD and cultured for ~1 generation to allow cells to exit lag phase before changes in optical density (ODgqg) Were scored every ~15-
20 min for ~140 min. Care was taken to ensure that strains did not pass ODggq of 0.8, ensuring they were far from the diauxic shift in
this media. An exponential curve was then fit to calculate growth rates; most R, were above 99% (except for some slow-growing
strains that had a R, ~0.98) indicating exponential growth. The growth curves, growth rates and OD are available in Table S1.
The maintenance of aneuploidy was periodically checked through diagnostic gPCR of one or two genes on the amplified chromo-
some normalized to a single-copy gene elsewhere in the genome (ERV25 or ACT1), taking ~2X higher copy of the amplified genes
to confirm aneuploidy. Detectable loss of the extra chromosome at the culture level was rarely observed, but cultures for which >20%
of final colonies reverted to euploidy were excluded from analysis. Significant differences in observed versus expected growth rate
were assessed with replicate-paired t tests. Unless otherwise noted, all studies used 4 biological replicates.

For strains transformed with plasmids (pJH1, pJR1, pJR2, pJR3), cells were cultured for 2 h in YPD +100ug/ml nourseothricin me-
dia then shifted to YPD without antibiotics and grown for another hour before ODgoq measurements were collected for growth rates.
The biological replicates represent the growth of at least two different transformants, transformed on different days.

YPS1009 genome sequencing

A highly contiguous assembly of YPS1009 strain AGY731 was prepared through a hybrid approach of Oxford Nanopore (ONT, Ox-
ford, UK) and lllumina (San Diego, California) sequencing. High molecular weight DNA was prepared for ONT sequencing by harvest-
ing cells from an overnight YPD culture, spheroplasting, and gently lysing cells followed by phenol:chloroform extraction and ethanol
precipitation of DNA. The preparation was enriched for high molecular weight DNA >1.5 kb by bead cleanup using a custom buffer
(10mM Tris-HCI, 1mM EDTA pH 8.0, 1.6M NaCl, 11% PEG8000). DNA was prepared for sequencing using sequencing kit LSK-110
(ONT) and sequenced on a single flongle flow cell (ONT). ONT sequencing produced 175 Mb resulting in ~14x coverage of the yeast
reference genome. Initial base calling was done using guppy v.6.2.1 (ONT) retaining reads with Q > 7. The initial assembly was done
using ONT reads with Canu v.1.9."%? This assembly was polished using lllumina data pooled from 32,723,650 reads of all YPS1009
aneuploid strains (211X YPS1009 genome coverage) using pilon v.1.23 iteratively three times. '’

The assembly resulted in 23 contigs with sizes ranging from 1,061 to 1,482,091 bp of which 11,353,357 bp had homology to the
S288c genome. Each of the 23 contigs was aligned to the S288c chromosome to which it had shown maximal homology using
MUMmer,""® with -c parameter set for each chromosome based on aligning the S288c chromosome sequence to the S288c refer-
ence genome, to minimize short off-target alignments. Four chromosomes (Chr7,12,13,16) were spanned by two contigs and one
(Chr15) was spanned by 4 contigs. To evaluate alignment gaps on those chromosomes, we considered lllumina DNA read coverage
from the aneuploid YPS1009 strain in which that chromosome was duplicated. We did not find support for the S288c sequence being
present in YPS1009 at any of these gaps, strongly suggesting that the S288c sequence in those gaps is truly missing from YPS1009.
Contigs for these chromosomes were joined by {N},o representing those gaps. The final assembly resulted in 16 assembled
chromosomes.

We assessed the quality of the assembly in several ways. First, the median percent identity for MUMmer-aligned segments was
99.25%, showing high similarity to the S288c genome as expected. Second, we considered the coverage of known universal single-
copy orthologs from the OrthoDB database BUSCO.''® BUSCO analysis identified 99.2% (2119 out of 2137) of the universal single-
copy genes from the saccharomycetes_odb10 ortholog database, of which 2074 were in single copy and 45 were duplicated,
indicating high coverage of expected genes. Base-level accuracy and completeness were measured with Merqury.'?° An optimal
k-mer size (16) was generated using best_k.sh (provided by Merqury suite) and a k-mer database created with Meryl."*° This
k-mer database was used to evaluate the assembly, which returned a completeness score of 99.502%.

Finally, we annotated the gene content using Liftoff.'*® Multiple genes and other genomic elements with high level of homology
were annotated to the same region, we filtered out the annotation with the lowest homology. Liftoff identified 6,552 genes, 277 tRNAs,
77 snoRNAs, 21 ncRNA, and 354 ARS in the YPS1009 genome. For transposable elements (TE), we combined Liftoff identification
with ReasonaTE,'** and collapsed TEs that were mapped to the same region. There are 23 retrotransposons containing functional
GAG-POL open reading frames. Among the 6552 genes annotated by Liftoff, 57 are missing a start codon, 331 are missing a stop
codon, and 70 have an in-frame stop codon.

89 genes from S288C were missing in YPS1009: 48 of them were mapped to other ORFs and filtered out, which likely correspond to
genes present in multiple copies in S288C. The remaining 41 missed genes were used as BLAST queries to the YPS1009 assembly: 4
small genes aligned to multiple loci (>8) in the YPS1009 assembly while 38 genes were not identified by Liftoff or BLAST of the
YPS1009 contigs; the position of 19 of these genes in the S288C genome reside in 3 suspected gaps between YPS1009 contigs
that were supported by the absence of lllumina reads mapping to those YPS1009 regions as described above. 12 genes mapped
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to a gap on Chr12 that was corroborated by an absence of lllumina reads. Thus, the draft assembly of the YPS1009 genome is close
to complete, barring small-scale errors whose correction is beyond the scope of this study, and is available on BioProject (accession
number: PRINA984736).

Gene duplication fitness cost measurements

The euploid YPS1009 strain (AGY1611) was transformed with a pool of the molecular barcoded yeast ORF library (MoBY 1.0) con-
taining 5,037 barcoded CEN plasmids.*° At least 25,000 transformants were scraped from agar plates per transformation, and frozen
glycerol stocks were made. Three independent transformations of the pooled library were performed, for a total of ~52X coverage of
the library. Competitive growth was done in liquid synthetic media lacking histidine (SC-His) and with 100 mg/L nourseothricin and
200 mg/L G418 to maintain the plasmids. Competition experiments were performed as previously described.®%:":132:133 Briefly, 1 mL
frozen glycerol stocks of library-transformed cells were thawed into 100 mL of liquid medium at a starting ODggg 0of 0.05, then grown in
shake flasks at 30°C with shaking. The remaining cells from the frozen stocks were pelleted by centrifugation and represented the
starting pool (generation 0) for each strain. After five generations, each pooled culture was diluted to an ODggg of 0.05 in fresh media,
to maintain cells in log phase. Cells were harvested and stored at —80°C after 10 generations. 7 biological replicates from 3 indepen-
dent library transformations were collected and analyzed. Plasmids were recovered from each pool using Zymoprep Yeast Plasmid
Miniprep Il (Zymo Research D2004-A) with the following modifications: samples were incubated with 15 units zymolyase at 37°C for
1 h, with inversion every 15 min; incubation in cell lysis buffer was extended to 10 min; after neutralization, samples were put on ice for
30 min, then centrifuged at 4°C. Plasmid barcodes were amplified using primers containing lllumina multiplex adaptors as described
in."*® The number of PCR cycles was reduced to 20. Barcode amplicons were pooled and purified using AxyPrep Mag beads (1.8X
volume beads per sample volume) according to the manufacturer’s instructions. Pooled amplicons were sequenced on one lane of
an lllumina HiSeq 4000 to generate single-end 50 bp reads. The screen raw sequencing and barcode counts were deposited on GEO
(GSE263221). The data analysis was performed as follows: barcodes with no valid values and the bottom 5% of barcodes based on
read abundance at generation 0 were removed from the total counts. Generation 0 includes other strains not exploited in here but in
Dutcher et al.?? A pseudo-count of 1 was added to each gene in every sample in the dataset. Barcode counts were normalized using
the TMM method'®* and analyzed in EdgeR'?° version 3.36.0 using a gene-wise negative binomial generalized linear model with
quasi-likelihood tests. Results were similar when normalized by total reads per sample. Significant differences between experiment
endpoint and generation 0 were defined as those with FDR <0.05 using the Benjamini-Hochberg procedure for multiple test correc-
tion."®® Fitness scores of 4,462 genes were calculated as the log, of the ratio of normalized reads after 10 generations divided by
reads at generation 0 (Source data S6 for Figure 2; Table S2). Significant fitness scores are highly correlated with those from com-
parable YPS1009 Moby 1.0 library grown in YPD medium (R? = 0.8), but not with YPS1009 transformed with the Moby 2.0 library
grown under similar conditions as used here,®" confirming that media differences between this study and Robinson et al. do not
explain modeling differences.

Modeling aneuploidy fithess costs

Model 1 fits the measured growth rates (4 per strain) for each aneuploid relative to euploid cells as a function of the sum number of
verified and uncharacterized genes per chromosome, according to the YPS1009 genome annotation. A total of 4,369 measured
genes are mapped to the YPS1009 genome and included for further analyses. We did not consider dubious genes. Linear regression
was performed using the ordinary least square (OLS) method (Statsmodels, version 0.13.5). All codes and models were written in
Python 3 and are available (https://doi.org/10.5281/zenodo.12701832).

Model 2 fit measured growth rates described above as a function of the measured fitness costs for genes duplicated on each chro-
mosome as follows. For measured genes that were statistically significant (FDR <0.05), the fitness cost was taken as the fitness
scores described above. Genes with missing values (848 genes) or that were not statistically different from neutral (FDR >0.05)
were scored with the mean logs, fitness score across all measured genes = —0.33. For 624 genes that are in the collection but
were not detected in our experiment, we assumed their fithess cost was too toxic to make it to the starting pool in this strain back-
ground and thus imputed values with the 2.5% lower quantile value of all genes = —3.2. Each chromosome cost was estimated based
on the sum of these log, values for genes on that chromosome. The linear fit was calculated as described for Model 1. The improve-
ment of Model 2 compared to Model 1 was estimated in two ways. First, we used a nested model and Chi-square test, considering
the contribution of Model 1 (gene number) plus the contribution of Model 2 costs normalized to each chromosome’s gene number,
then fitted in an OLS model. We then perform a likelihood-ratio test (Chi-Square test, degree of freedom = 1) to show that both fea-
tures are significant (number of genes/Chromosome p value: 1.2x10~ '3, normalized Chr. cost p value: 0.045). Second, we performed
10,000 random permutations of gene fitness cost labels across chromosomes, while preserving the number of genes per chromo-
some in each trial and summed the permuted Chr. costs. We then fitted the aneuploid relative growth rate against every permuted
Chr. cost iteration and compared the R? values to Model 2 R%. Out of 10,000 permutations, only 4 met the observed Model2 fit for
wild-type aneuploids (p = 0.0004) and none for the ssd74 strains. The importance of beneficial genes was estimated by summing
detrimental/neutral genes and beneficial genes separately and fitting a multifactorial linear regression. A Chi-square test showed
that both features are significantly contributing to the fit.

Model 3 was assessed by first compiling a list of non-genic features from the YPS1009 Liftoff feature detection (Table S5) and
normalized to the total number of features per chromosome to prevent high correlations in between features. Features were
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selected using a bootstrap-Lasso approach'®: 10000 random subsets of 60 relative growth measurements were fitted using Lasso
(alpha = 0.7), and features that had a non-zero coefficient for 90% or more iteration were incorporated into a multi-linear regression
model (OLS) to get model performance.

Deleterious gene duplications classifier

Gene biophysical features considered in the modeling are described in Table S3 and are available together with the gene duplication
fitness costs in Table S2. These features regroup datasets from several publications,*>:6%113115:117.137 5 plic databases (SGD, Uni-
prot, Biogrid, STRING, A3D, Gene Ontology and DescribeProt),!"!112:114-116.131.138.139 ang prediction software (IUPREDS3,
AlphaFold, SnpEff).'*®~'% Functional enrichments using GSAEpy python library'?® (version 1.0.6) and the ontologies from Yeast
modEnriChr'“? were performed in 2 ways. First, we performed a hypergeometric test to compare genes whose duplication was dele-
terious (FDR <0.05) versus the background genes set (all barcoded genes with a measured logFC). Second, we used a GSEA rank
test: genes were ranked on their logs fithess scores * log1o(FDR) values. Enrichments with an adjusted p value <0.05 were included as
categorical features for the modeling and are available in Table S3. For numerical features, a Wilcoxon rank test was performed with
Benjamini-Hochberg correction.®® To train the gene classifier to predict deleterious genes, we reduced the number of features to
only those that were significant (adjusted p value <0.05) and removed features that were highly correlated (Spearman correlation
>0.70, see Figure S5A), keeping the feature most strongly distinguishing detrimental genes (Figure S5A). All models were trained
and tested using a stratified 5-fold cross-validation approach: for 5 iterations, the dataset was randomly split into training and
test sets while maintaining the proportion of deleterious and neutral genes. We then computed the mean and standard deviation
receiver-operator curves and area under the curve (AUC-ROC) for analysis of the test set. Confusion matrices also were computed
from the aggregated test set predictions. We used a seed of 17 for the k-fold splitting and all models. The following model and pa-
rameters from Sklearn'?’ (version 1.3.0) were used: Logistic regression with 12 penalty (maximum iteration = 500, solver = newton-
cholesky, and balanced class weight), Random Forest classifier (n estimators = 100, minimum sample per leaf = 24, max depth = 8,
minimum impurity decrease = 0.01), XGBoost Classifier (number of estimators = 100, minimum child weight = 250, subsample = 0.8,
maximum depth = 4, balanced weight (0.7)), Gradient Boosting Classifier (number of estimators = 100, subsample = 0.8, minimum
impurity decrease = 4, maximum depth = 6). Parameters were manually selected to reduce overfitting; Overfitting was assessed by
comparing the ROC-AUC for the training and testing sets.

Models were first trained on the whole gene fitness screen from which genes with more than 6 missing biophysical features were
removed (1,177 detrimental genes and 3,028 neutral/beneficial genes remaining). Due to poor predictions on the whole dataset, we
focused on training binary classifiers to distinguish between medium-highly detrimental genes (log. fitness score < —1.54 (quantile =
0.15) and FDR <0.05 = 613 genes (29%)) and neutral genes (log, fitness score >0.27 (quantile 0.65), 1,472 genes). The logistic regres-
sion classifier performed better than tree classifiers or Neural networks. Features were sorted by their mean coefficients (Figure S5B)
and we observed that the 12 top features were sufficient to maintain maximal model performance with an AUC-ROC of 0.713. Fea-
tures importance was assessed using a permutation feature importance strategy (Sklearn version 1.3.0, permutation_importance)'*’:
each feature is randomly shuffled and the resulting degradation of the model’s score is used to compare features. Values were shuf-
fled 10 times for each 5-fold validation dataset splitting. Feature coefficients were analyzed to assess if a feature was associated with
detrimental genes or with the neutral group.

A similar classifier (Logistic regression with 12 penalty, maximum iteration = 500, solver = newton-cholesky, balanced class weight)
was trained on Robinson et al. data to discriminate the commonly deleterious gene overexpression (400 genes, detrimental at FDR
<0.05 in at least 10 yeast isolates) from commonly neutral or beneficial gene overexpression (1,657 genes, not detrimental (FDR
>0.05) in at least 12 yeast isolates) measured in our lab under slightly different growth conditions.®" In that case, no features were
filtered out based on correlation.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses are described in the result section and figure legends. In Figure 1A significant difference of growth rates be-
tween euploid versus aneuploid and WT versus ssd74 for each aneuploid was tested using a replicate-paired, 2-sided, t test. The
significance threshold was p value <0.05. The original OD measurements used to compute the growth rates, growth rates and R,
are available in Table S1. All linear regressions were fitted from the datasets available in the supplemental source table (Source
data S6 - Figures 1, 2, and 3). For aneuploids with more than 4 measured growth rates, we randomly selected 4 relative growth values
(seed =0, see code) so that all aneuploids have the same weight. All linear regression reports the adjusted r-square in the figures. The
effect of gene duplications measured using MoBy 1.0 plasmid library was tested using gene-wise negative binomial generalized
linear model with quasi-likelihood tests (as described in the methods above). Beneficial genes are defined as genes with an FDR
<0.05 and a positive log(fold-change) between generation 0 and 10 while detrimental genes have a negative logFC and FDR
<0.05. Comparisons between linear regression models were tested using a Chi-square test as specified in the result section.
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