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SUMMARY
Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution.
However, aneuploidy will be maintained only if the benefit outweighs the cost, which remains incompletely
understood. To quantify this cost and themolecular determinants behind it, we generated a panel of chromo-
some duplications in Saccharomyces cerevisiae and applied comparative modeling andmolecular validation
to understand aneuploidy toxicity. We show that 74%–94% of the variance in aneuploid strains’ growth rates
is explained by the cumulative cost of genes on each chromosome, measured for single-gene duplications
using a genomic library, alongwith the deleterious contribution of small nucleolar RNAs (snoRNAs) and bene-
ficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no
support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best pre-
dictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for
disease biology and evolution.
INTRODUCTION

Aneuploidy, when cells carry an abnormal number of one ormore

chromosomes, can produce different outcomes depending on

the environmental and cellular context. On the one hand, aneu-

ploidy is broadly considered deleterious. Whole autosome dupli-

cation in humans is generally lethal, with the primary exception of

trisomy of chromosome 21 that causes Down syndrome (DS).1

The deleterious effects of chromosome duplication can also be

seen at the cellular level in most organisms.2,3 On the other

hand, aneuploidy is often beneficial during evolution. Chromo-

some amplifications are frequently selected in drug-resistant hu-

man pathogens and represent a major source of drug evasion.4,5

Furthermore, aneuploidy is observed in�20% of non-laboratory

S. cerevisiae isolates6–9 and is associated with adaptive traits in

natural and industrial environments.10–15 Aneuploidy is also

found in >88% of cancers: tumors with high levels of aneuploidy

display poorer patient prognosis, respond less well to treatment,

and have a higher rate of relapse.16,17 Recent studies show that

specific chromosome amplifications underlie these bene-

fits.17–21 Thus, aneuploidy can be a fast route to adaptation in

a changing environment. Whether cells can use aneuploidy to

evolve to a new environment depends on the balance between

aneuploidy cost and potential benefit—if the benefit under the
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conditions at hand outweighs the cost, aneuploidy will be

maintained.

However, a major limitation in predicting the impact of aneu-

ploidy is that we lack a mechanistic understanding of why aneu-

ploidy is deleterious under optimal conditions, especially in the

case of chromosome amplifications. Previous studies showed

that large mammalian chromosomes transformed into yeast

and lacking coding potential do not incur the same fitness cost

as duplicating native chromosomes, strongly implicating pro-

tein-coding sequences as amajor contributor.22–24 Twomutually

exclusive models have been proposed to explain the inherent

cost of duplicating chromosomes (herein referred to as aneu-

ploidy). On one end of the spectrum is what we refer to as the

genic load model, in which aneuploidy cost is driven by the

burden of making extra gene products, independent of their

functions or properties.25,26 Multiple studies, from yeast tomam-

mals, suggest that larger chromosomes with more genes incur a

larger cost.2,6 In yeast, chromosome length and gene number

negatively correlate with the growth defect of aneuploid

strains27–29 and with the number of aneuploid strains found

outside of the lab, which presumably reflects the strength of

negative selection.6,9,30 The magnitude of that correlation varies

for different studies, which analyze incomplete sets of strains

often isolated frommultiple sources. In another study, the impact
ober 9, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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of large segmental duplications on yeast growth was partly

correlated with the number of genes in those segments, although

discrepancies were identified.31

On the other end of the spectrum is the driver gene model that

predicts that aneuploidy toxicity is due to a handful of dosage-

sensitive genes encoded on each chromosome. This model pre-

vails in the study of DS, where research often focuses on one or a

few specific genes on human chromosome 21.32,33 In yeast, one

of the most striking examples of a driver gene is thought to be

beta-tubulin, TUB2, encoded on chromosome VI (chrVI, chr6):

chr6 duplication is viable only in the presence of other chromo-

some duplications that encode Tub2-interacting proteins; these

chromosome amplifications occur spontaneously when TUB2 is

duplicated on a plasmid.34,35 In cancer cells, the frequency of

segmental gains and losses found in The Cancer Genome Atlas

database can be partially modeled by the number of tumor sup-

pressors and oncogenes amplified in those regions.36–38 These

models are based on <8% of genes scored at the time as tumor

suppressors and oncogenes, suggesting that only a subset of

human gene amplifications contributes a major impact. Other

recent studies provide evidence for a mixedmodel of aneuploidy

cost. For example, Keller et al. analyzed a suite of segmental

chromosome amplifications in yeast and showed that fitness

cost partially correlated with the length of the amplification; how-

ever, several outliers implicated that other effects must be at

play.31 A major limitation in distinguishing any of these models

is a lack of systematic studymeasuring the cost of each chromo-

some’s duplication in a controlled environment and then

modeling the mechanistic basis for that cost.

Both models above are compatible with a prominent view of

deleterious effects known as the balance hypothesis. This hy-

pothesis posits that duplication of genes encoding proteins

with many protein interactions or that participate in multi-subunit

protein complexes can produce stoichiometric imbalance, dis-

rupting protein interaction networks and causing downstream

stress on protein folding, degradation, and management known

as proteostasis stress.39–41 Proteostasis stress can be exacer-

bated by an increased burden produced by many gene amplifi-

cations, overloading cellular machineries.2,23,42,43 Indeed, yeast

aneuploids are sensitive to conditions that interfere with proteo-

static functions, including protein translation, folding, and degra-

dation.2,23,42–44 However, thesemodels are heavily influenced by

results from a laboratory strain of yeast, W303, which is highly

sensitized to chromosome duplication. The genetic basis for

this sensitivity is a hypomorphic variant of an RNA-binding pro-

tein, Ssd1, that is required for yeast to tolerate extra chromo-

somes.45 Most non-laboratory strains studied to date are signif-

icantly more tolerant of chromosome amplification, although a

detectible fitness cost remains, raising questions about the

cost and effect of aneuploidy in more representative non-labora-

tory strains.6,7,9

In this study, we used comparative modeling and molecular

validation to distinguish and quantify models of aneuploidy

cost under optimal growth conditions in a natural oak-soil isolate

of S. cerevisiae YPS1009, with and without SSD1. In doing so,

we leveraged a pooled library of cloned genes to measure the

cost of duplicating each gene individually. Our results indicate

that a multi-factorial model incorporating the cumulative cost
2 Cell Genomics 4, 100656, October 9, 2024
of individual gene duplications on each chromosome, plus the

impact of several non-coding RNA (ncRNA) classes, explains a

large proportion of aneuploid growth defects. Surprisingly, we

found no evidence for the balance hypothesis in aneuploidy

cost and propose that yeast cells have evolved to manage

mere duplication of most genes. We used machine learning ap-

proaches to identify other features associated with deleterious

single-gene duplication. Surprisingly, the most impactful feature

predicting the fitness effect of a gene’s duplication is its length,

since deleterious genes are on average significantly longer

than non-deleterious genes. Together, our results raise impor-

tant considerations regarding the effects of gene and chromo-

some amplification.

RESULTS

Fitness costs of chromosome duplication vary by
chromosome
We began by generating a panel of haploid strains in the oak-soil

YPS1009 background in which each chromosome is duplicated.

YPS1009 was selected because its response to aneuploidy is

representative of that of other strain backgrounds with similar

aneuploid content9,45,46 and because of existing tool sets in

our lab. We used the method of Hill and Bloom47 to generate

aneuploid cells by integrating a galactose-inducible promoter

facing each centromere. Cells were shifted to galactose medium

for one generation to induce transcription, which blocks kineto-

chore assembly and thus causes chromosome retention in the

mother cell during mitosis (see STAR Methods). We generated

aneuploid strains in which each of 15 of the 16 yeast chromo-

somes is duplicated. The exception was chr6, proposed previ-

ously to be lethal due to amplification of tubulin TUB2.34,35,48,49

Most of the chromosome duplications were stable over many

generations (see STAR Methods). We generated a comparable

strain background that was sensitized to aneuploidy through

the deletion of SSD1.45 We were unable to isolate an ssd1D

strain with chr16 duplicated, suggesting that this specific chro-

mosome duplication is not viable in this strain background

without Ssd1.

The strain panel affords an opportunity to sensitively measure

the fitness cost of aneuploidy under standardized conditions.We

measured the growth rate of wild-type and ssd1D strains in the

panel, in biological quadruplicate. Not surprisingly, different

chromosome duplications inflict different levels of fitness de-

fects (Figure 1A; Table S1). We observed a range of growth rates,

from 96% of the euploid growth rate for duplication of chr3 (the

second smallest chromosome) to 65% for duplication of chr15,

which falls among the larger chromosomes but is not the largest

in size or gene content. These results already highlight an imper-

fect relationship between chromosome size and its fitness cost.

Ssd1 was previously shown to be important for some chromo-

some duplications in multiple wild strains,45 but the breadth of

its impact on other chromosomal aneuploidies was not known.

We discovered that 8 of the 15 aneuploids (53%) incurred signif-

icantly greater growth defects in the ssd1D background (Fig-

ure 1A). Most of the other chromosomes were also more delete-

rious in the ssd1D strain but missed the threshold for statistical

significance. Thus, Ssd1 is important for tolerating most
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Figure 1. Chromosome duplications inflict variable fitness costs in wild-type and ssd1D cells

(A) Average and standard deviation (n = 4) of aneuploid growth rates relative to isogenic euploid. All SSD1+ (‘‘WT,’’ blue) aneuploids grew slower than the euploid

(p < 0.05, replicate-paired t test); ssd1D aneuploids that grew significantly slower than their wild-type aneuploid equivalent are indicated with an asterisk (p < 0.05,

t test).

(B) Mean relative growth rate of each aneuploid strain (numbered by duplicated chromosome) relative to the isogenic euploid plotted against the number of genes

per amplified chromosome. Ordinary least-squares regression with 95%confidence interval (shaded) and adjusted R2 indicated in the box. See also Table S1 and

source data for Figures 1, 2, and 3 in S6.
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chromosome duplications, with greater impacts for chromo-

somes that cause a greater defect in wild-type cells.

Genic load partly explains the fitness costs of
chromosome duplication
With the fitness costs of each chromosome duplication in hand,

we developed mathematical models to understand the determi-

nants of aneuploidy toxicity. For optimal modeling, we first

sequenced the YPS1009 genome (see STARMethods). This pro-

duced a high-quality genome of 7,362 annotated genes and non-

genic features across 16 assembled chromosomes.

We began by calculating the linear relationship between the

relative fitness cost measured for each chromosome duplication

(taken as the aneuploid versus euploid growth rates) and the

number of genes per chromosome (model 1), which in yeast is

highly correlated with the chromosome length (R2 = 0.99).

Excluding chr6, which could not be generated, the fit for the re-

maining chromosomes explains 62% (adjusted [adj] R2 = 0.62) of

the variance in relative fitness costs. Thus, the number of genes

per chromosome alone explains a significant proportion of the

variance of aneuploid fitness cost (Figure 1B), confirming previ-

ous implications in various organisms.6,9,27,28 The fit was even

higher for ssd1D strains, explaining 76%of the variance in fitness

costs of cultivatable chromosome duplications (Figure 1B). The

increased slope reflects the stronger fitness costs in ssd1D an-

euploids, suggesting that, in the absence of Ssd1, cells are

more sensitive to the genic load.

The cumulative effect of single-gene duplications
accurately models whole chromosome gain
An open question in the aneuploidy field is the degree to which

specific genes on each duplicated chromosome contribute to

the fitness cost of aneuploidy. We therefore set out to determine

the fitness impact of duplicating each gene individually in the
YPS1009 euploid strain using a single-copy gene duplication li-

brary. Each centromeric plasmid contains one yeast gene with

its native upstream and downstream regulatory sequence along

with a unique DNA barcode for tracking.50 To measure the

fitness cost of duplicating each gene individually, we trans-

formed euploid YPS1009 with the pooled library and grew it

competitively for 10 generations, taking the log2(fold change) in

barcode abundance after competitive outgrowth as the relative

fitness cost (see STAR Methods). Genes whose barcode abun-

dance significantly decreased during growth are considered

detrimental to fitness, while those whose frequency increased

are considered beneficial. Of the 4,369 YPS1009 yeast genes

for which fitness could be measured, 25.5% were beneficial

and 28% were detrimental (false discovery rate [FDR] < 0.05,

Figure 2A; Figure S1A), as validated for several representative

genes (Figure S1B and Source Table S6).

Because genes with noisy measurements are statistically insig-

nificant but can have artificially skewed mean measurements, we

replaced insignificant scores (FDR>0.05) with themean cost of all

measured genes (log2 value of �0.33, see STAR Methods).

Hence, genes without a significant effect are considered to have

a mild negative impact. We then computed the fitness cost of

eachchromosomal duplication (chr cost) as the sumof log2 fitness

effects of all genes encoded on that chromosome.

The cumulative-effects model based on single-gene costs

(model 2) significantly improved the fit compared to model 1,

which considers only the number of genes per chromosome

(adj R2 for wild type = 0.69, ssd1D = 0.84, Figure 2B).

The improvement in the fit was highly significant as assessed

in two ways. First, a nested model that includes both the number

of genes per chromosome and the cumulative gene cost

(normalized to chromosome gene number) improves the fit,

since both factors are significant (p < 3.93 10�2, likelihood-ratio

test, see STAR Methods). Second, the observed fit for model 2
Cell Genomics 4, 100656, October 9, 2024 3
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was better than nearly all of the 10,000 random permutations of

gene fitness costs (preserving the number of genes per chromo-

some in each trial). Of 10,000 permutations, only 4 met the

observed model 2 fit for wild-type aneuploids (p = 0.0004) and

none for the ssd1D strains (p < 0.0001, Figure 2C). Together,

these results show that the identity of duplicated genes makes

an important contribution to the cost of aneuploidy and is predic-

tive of the fitness effect of whole-chromosome duplication. Inter-

estingly, the fit for model 1 that simply counts the number of

genes per chromosome was better than 88% and 82% of

random trials for the wild-type and ssd1D strains, respectively,

which were close to statistical significance (p = 0.17 for wild

type, p = 0.11 for ssd1D). This raises the intriguing possibility

that fungal evolution has optimized gene content on each chro-

mosome tominimize the cost of chromosome duplication, which

is relatively frequent in yeast. Regardless, these results show

that the combination of single-gene fitness effects is predictive

of the fitness effect of whole-chromosome duplication.

We devised an independent experimental approach to test the

models using strains carrying two chromosome duplications.

These dual-chromosome duplications were not stable in ssd1D

cells, and thus we focused on SSD1+ strains. Those withmultiple

chromosome duplications grew slower than corresponding sin-

gle-chromosome duplication strains, as expected (Figure S2A).

We assessed the variance in growth rates of dual-chromosome

duplications explained by the models trained on single-chromo-

some duplications. Indeed, model 2 was significantly better (adj

R2 = 0.54) than model 1 (adj R2 = 0.34, Figures S2B and S2C).

Thus, the model does not overfit the training data and instead

shows that the cost of chromosome duplication is significantly

influenced by the genes encoded on each chromosome.
4 Cell Genomics 4, 100656, October 9, 2024
Beneficial gene duplications alleviate the cost of
chromosome duplication
Studies in cancer cells suggested that beneficial oncogenes on

amplified chromosomes counteract tumor suppressors on the

same segments.36,37 We wondered if genes whose duplication

is beneficial to YPS1009 are important for aneuploidy fitness.

To test this, we excluded beneficial genes from the chr cost,

which decreased the model performance (adj R2 of 0.67 for

wild type and 0.80 for ssd1D compared to 0.69 and 0.83,

respectively, for model 2). The contribution of beneficial genes

is statistically significant in a nested model in which their cumu-

lative effect was added as a separate feature (p = 4.7 3 10�2,

likelihood test). Hence, genes scored as beneficial when dupli-

cated in isolation contribute to aneuploidy fitness, likely

because they collectively counter some of the aneuploidy

fitness cost.

Non-coding features contribute to aneuploidy fitness
effects
While it is clear that gene fitness costs explain much of the cost

of chromosome duplication, non-coding features could also

contribute. We therefore compiled a set of non-genic features

per chromosome based on the YPS1009 genome sequence

and used lasso regression to identify additional features that

improve predictions. The input set included the numbers of small

nucleolar RNAs (snoRNAs), tRNAs, other ncRNAs, autonomous

replicating sequences (ARSs), retrotransposons, and long termi-

nal repeats (LTRs), all normalized by the total number of features

encoded on each chromosome (see STARMethods). Aside from

LTR and retrotransposon numbers, most of the features were not

confounded by co-variation (Figure S3).
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We used a bootstrap-lasso (Bolasso-S)51 approach to select

features that contribute significant explanatory power to the

modeling of measured aneuploidy growth defects, selecting

from non-genic features as well as model 2 chr costs. Features

selectedby lasso regression in90%of1,000bootstrap trials (lasso

alpha factor = 0.7, seeSTARMethods)were retainedand incorpo-

rated into multi-factorial model 3. For both wild-type and ssd1D

models, lasso chose the chr costs from model 2 as the most im-

pactful factor but also the normalized number of snoRNAs per

chromosome as deleterious to fitness and the normalized number

of tRNAs per chromosome as beneficial (Figure 3A). The method

also chose the normalized number of retrotransposons as a dele-

terious predictor only for the ssd1D strain. All selected features

were significant (chi-squared test, Figure 3A). Remarkably, the

multi-factorial model 3 explains 74% of the growth rate variance

for wild-type and 94% for ssd1D aneuploids (Figure 3B). When

the trained models were assessed on dual-chromosome duplica-

tion strains,model 3 improved the predictions compared tomodel

2 (adj R2 = 0.7 compared to 0.54 for model 2, Figure S2D).

Imbalanced duplication of snoRNAs is detrimental
The lasso predictions above improve the modeling, but is the

model correct? We set out to experimentally verify several of

the model predictions. We first tested the predicted deleterious

impact of duplicating snoRNAs. snoRNAs guide catalytic modifi-

cations of other RNAs, such as ribosomal RNAs (rRNAs) and
tRNAs. snoRNAscanbesplit intoC/Dbox snoRNAs,whichdirect

20-hydroxyl methylation of their RNA targets, and H/ACA box

snoRNAs involved in pseudouridylation.52 The two groups were

combined into one for modeling given their relatively small

numbers in the genome (45 C/D and 29 H/ACA). To test predic-

tions, we cloned seven C/D snoRNAs present in an array on

chr13 or seven H/ACA snoRNAs from a single region on chr15

onto centromeric plasmids (see STAR Methods). Duplication of

either snoRNA cassette significantly reduced growth of the

euploid strain, validating that duplication of these cassettes is

indeed deleterious (Figure 4A). Furthermore, the growth rates of

haploid YPS1009 carrying duplications of chr4 (among the

most deleterious chromosomes, which also encodes fewer

snoRNAs than others) or chr15 were also reduced upon duplica-

tionof these snoRNAs (despitemissing the significance threshold

in one case, Figure 4A).

Reciprocally, if snoRNAs contribute to aneuploidy toxicity,

then restoring them to euploid copy number should partially alle-

viate the aneuploidy fitness costs.With that aim, we deleted from

one of the chr13 copies a segment of six of its nine C/D snoRNAs

(see STAR Methods). Although there was no significant effect in

the wild type, deleting the extra C/D snoRNA copies from the

ssd1D chr13 aneuploid strain significantly improved its growth

rate (Figure 4B). The increased sensitivity of ssd1D aneuploids

may provide more power to detect improvements than in the

wild type, where snoRNA imbalance was also predicted to be
Cell Genomics 4, 100656, October 9, 2024 5
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Figure 4. Duplication of select snoRNAs and tRNAs contributes to aneuploidy fitness

(A) Average and standard deviation of growth rates of strains containing the empty vector (EV) or plasmids encoding either seven C/D box snoRNAs or seven

H/ACA snoRNAs as described in the text (*p < 0.05, replicate-paired t test versus empty vector, n > 6).

(B) Average and standard deviation of growth rates of chr13 aneuploids with or without restoration of the seven C/D box snoRNAs’ copy number to euploid levels

(*p < 0.05, replicate-paired t tests, n > 7).

(C) Average and standard deviation of relative growth rates of strains harboring chr12 tRNA cassette versus strain with the empty vector (*p < 0.01, replicate

paired t tests, between each aneuploid and the corresponding euploid, n > 3).

(D) Average and standard deviation of relative growth rates of each strain in the maf1D versus MAF1+ background (*p < 0.05, replicate-paired t tests between

MAF1 and maf1D, n > 4). See source data in Table S6.
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Figure 5. Gene length is the main predictor

of deleterious gene duplications

(A) Mean receiver operating characteristic (ROC)

curve for 5-fold cross validation of the logistic

regression model using the top 12 features (see

STAR Methods), applied to 1,177 deleterious and

3,028 neutral gene duplications (all genes) or the

restricted set of 613 substantially deleterious genes

and 1,472 clearly neutral genes (filtered genes).

Dashed, colored lines show the fit when only gene

length is considered in the model. The mean area

under the curve (AUC) is shown in the key.

(B) Error matrix shows the percentage recovery of

true labels by the predicted labels of the combined

5-fold cross-validation test sets.

(C) Boxplot of the mean feature importance (n =

10) for the 5-fold cross-validation measured with

respect to ROC-AUC gain (whiskers – 1.5 times

the interquartile range, see STAR Methods).

Features associated with or higher in the dele-

terious gene duplication group are labeled with a

‘‘T’’, while enrichment in the neutral group is

indicated with an ‘‘N’’.

(D) Distribution of gene lengths for the 613

deleterious (‘‘toxic’’) and 1,472 neutral gene du-

plicates (p value, Wilcoxon rank-sum test). See

also Tables S2 and S3 as well as corresponding

source data in Table S6.
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deleterious. Nonetheless, together, these results confirm that

snoRNA duplication is deleterious to both euploid and aneuploid

cells and contributes to the cost of chromosome duplication in at

least the ssd1D background.

Increasing tRNA copy number benefits ssd1D aneuploid
cells
Model 3 above predicts that chromosomes with more tRNAs are

less deleterious than otherwise predicted. We tested this in

several ways. First, we introduced an available plasmid carrying

21 tRNAs encoded on chr1253 into the YPS1009 euploid and a

subset of aneuploid strains. The tRNA plasmid decreased prolif-

eration in the euploid and chr4 aneuploid wild-type cells, indi-

cating that an imbalanced set of these tRNAs is deleterious (Fig-

ure 4C). However, their duplication had a less detrimental effect

in the other aneuploids, especially strains lacking SSD1. In fact,

duplication of these tRNAs was beneficial to varying degrees in

ssd1D aneuploids with chr13 and chr15 duplications.

Asanalternativeapproach,weassessed theeffectofupregulat-

ing all tRNAs by deleting the RNA polymerase III repressor, Maf1.

MAF1 deletion leads to an accumulation of tRNAs,54 which we

confirmed (Figure S4). We found that MAF1 deletion improved

growth rates for chr7 and chr15 aneuploids in the ssd1D back-

ground (p < 0.05, Figure 4D). Although the effects were somewhat

mixed, these results suggest that several aneuploidy-sensitized

ssd1D strains benefited from extra tRNAs but that the effect could

bespecific tocertain chromosomesor tRNAs (see thediscussion).

Machine learning implicates properties common to
duplication-sensitive genes
Although the cumulative cost of gene duplications explains a sig-

nificant proportion of the cost of aneuploidy, some gene dupli-
cates are more deleterious than others. To further explore this,

we sought properties that can predict deleterious genes. We

focused on 1,177 genes scored as deleterious when duplicated

in euploid YPS1009 (FDR < 0.05), compared to 3,028 genes

whose duplication was neutral or beneficial (FDR > 0.05, herein

referred to as ‘‘neutral’’). Consistent with other studies using

gene duplication libraries,55–59 we found only a handful of func-

tional terms enriched in the deleterious group, including several

categories linked to cell-cycle regulation.We next compiled a list

of 120 gene and protein properties and selected those that differ-

entiated the deleterious gene duplications from the neutral set

(Wilcoxon rank-sum test, Figure S5A; Tables S2 and S3). The

group of deleterious genes displayed a slightly higher proportion

of intrinsically disordered regions, marginally more phosphory-

lated sites, a higher proportion of serine residues, lower transla-

tion rates as indicated by ribosome profiling,60 and longer length

(Figure S6); however, several of these features are correlated

with one another (Figure S5A), confounding interpretation.

Notably, the group of genes that are deleterious when duplicated

was not enriched for those encoding proteins involved in com-

plexes or with a high number of protein-protein interactions

(see the discussion).

We used amachine-learning approach to identify the most im-

pactful gene properties and determine if their combination can

accurately differentiate deleterious gene duplications from those

that are neutral or beneficial (see STAR Methods). A logistic

regression classifier was trained on significant biophysical and

functional enrichment (Figure S5A). Five-fold cross validation re-

vealed that the model performed relatively poorly, with a mean

area under the curve (AUC) of 0.62 (Figure 5A). Restricting

the classification to the 613 most deleterious genes (bottom

15% quantile) and the 1,472 genes most confidently called
Cell Genomics 4, 100656, October 9, 2024 7
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neutral/beneficial (upper 65% quantile) improved performance

(AUC = 0.713), correctly predicting 57% of deleterious gene du-

plications (Figures 5A and 5B). Surprisingly, by far the most im-

pactful feature in explaining deleterious genes was gene length;

deleterious genes were significantly longer than neutral genes

(Figures 5C and 5D). A model considering only gene length had

nearly equal predictive power as the more complex model (Fig-

ure 5A). In an attempt to identify other gene properties that could

in combination supplant gene length in the model, we trained a

classifier without considering gene length; but the classifier per-

formed worse (mean AUC = 0.66) than when fitted on gene

length alone, and the most impactful features selected (ratio of

buried residues and the presence of disordered regions) both

correlate with gene length (Figure S5A). Thus, gene length distin-

guishes the deleterious gene set better than any other combina-

tion of considered features.

These results were especially surprising because past work

from our lab using a higher-copy library identified shared fea-

tures among genes that are deleterious when overexpressed,

including genes encoding proteins with many protein interac-

tions, higher expression, intrinsic disorder, and other features.61

We therefore applied our modeling approach to discriminate 400

genes whose higher-copy expression on a 2-mmplasmid is dele-

terious to many strain backgrounds from genes that are neutral

or beneficial in most strains (1,657 genes).61 This classifier was

highly accurate (AUC = 0.92), correctly predicting 82%of delete-
8 Cell Genomics 4, 100656, October 9, 2024
rious genes (Figures 6A and 6B). Thus, the

poor performance in predicting duplica-

tion-sensitive genes is not due to our

methods. In fact, the model trained on

the higher-copy 2-mm library performed

relatively poorly when applied to the

gene-duplication datasets (Figure 6A),

with an AUC of 0.68 that was once again

no better than considering gene length

alone. The only common predictor be-

tween the models trained on duplicated
genes versus the 2-mm overexpression experiment61 was gene

length, along with different measures of intrinsically disordered

regions, suggesting it as a common factor (Figure 6C). However,

the latter features made only a marginal contribution to explain-

ing deleterious gene duplicates while being very prominent fea-

tures for gene overexpression.

We conclude that most biological features that account for

deleterious effects when genes are overexpressed to higher

levels may not be relevant for mere gene duplications. In both

models, but especially in the case of gene duplication, gene

length is the single best predictor of whether a gene duplication

will be deleterious to strain fitness (see the discussion).

DISCUSSION

Through systematic experimental and mathematical analysis,

our results present a clarified view of the cost of chromosome

duplication and the molecular properties behind it. Under stan-

dard growth conditions, the cost of aneuploidy cannot be fully

explained by generic gene load nor by a handful of duplication-

sensitive genes. Instead, our results quantitatively confirm previ-

ous suppositions31,62 that both the generalized burden of aneu-

ploidy load coupled with combinatorial effects of the specific

suite of genes and non-genic features on each chromosome

explain 74%–94% of the aneuploidy costs measured here.

Some duplicated genes are more deleterious than others, while
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beneficial genes help to counteract the burden of deleterious

genes on the same chromosomes. Thus, the cost of chromo-

some duplication is an emergent property of the affected genes

and the collective burden of amplifying coding and non-coding

genetic elements. Although not investigated here, it is likely

that genetic interactions among genes duplicated together

also contribute, albeit to a lesser extent than the simple cumula-

tive effects modeled here, perhaps explaining a portion of the

6%–26% variance not explained by our models.

Although the cost of chromosome duplication is explained

by these combined effects, it is important to highlight that

duplication of single genes on a chromosome can have a

disproportional impact on specific phenotypes. This may

explain arsenic resistance contributed by amplification of

S. cerevisiae chr16, which encodes arsenic resistance genes,9

or fluconazole evasion by amplification of C. albicans chr5,

which encodes drug pumps and their regulators.4 A similar

implication was made for trisomy 21, by correlating specific

DS phenotypes to genes amplified in subsets of people with

partial-chromosomal trisomies.63,64 These single-gene effects

almost certainly contribute to chromosome-specific impacts

observed for different karyotypes.3,6 In terms of evolution, if

the benefit provided by the resulting phenotypes outweighs

the underlying cost of chromosome amplification, aneuploidy

will be maintained. Notably, this cost-benefit analysis is heavi-

ly dependent on the environmental context, and that balance

can shift with changing environments or genetic background.

Indeed, genes with detrimental or beneficial effects can

vary substantially across strain backgrounds and in a strain-

by-environment manner.61,65 Hence, while the principles

outlined here are likely generalizable across strains and

potentially other species, the impacts of specific genes and

chromosomal features, as well as their relationship with envi-

ronment or genetic background, are likely to differ across

systems.

The contribution of snoRNAs and tRNAs points to
aneuploidy impacts on translation
Our work implicates the contribution of ncRNAs to the cost of

chromosome duplication. The modeling predicted, and experi-

mental analysis confirmed, that imbalanced expression of tested

snoRNAs incurs a fitness cost in euploids and select aneuploids,

whereas restoration of their balance can alleviate toxicity in the

ssd1D chr13 aneuploid. The altered abundance of specific

snoRNAs can produce cellular phenotypes. For instance, over-

expression of snoRNA SNR51 in budding yeast increases bind-

ing to its target RNAs.66 RNA-mediated modifications can be

heterogeneous in the population of substrate molecules, such

that modifications could contribute to cellular heterogeneity,

including ribosome functions.67 Thus, aneuploidy-induced

imbalance could change the landscape of rRNA and tRNA mod-

ifications, leading to broader effects on translation.68 In cancer,

snoRNA dysregulation has been associated with both tumor-

suppressing and tumor-promoting effects (reviewed in Zhang

et al.69). In one example, snoRNA overexpression was shown

to upregulate ribosome biogenesis, which interferes with the

p53 protective role,70 hence linking snoRNA misexpression to

the disruption of translation in humans. The adverse effect of
snoRNA overexpression might therefore be generalizable to

other organisms.

In contrast, chromosomes with more tRNAs were less toxic

than the model otherwise predicted, in both wild-type and

ssd1D strains, pointing to a role for tRNAs in alleviating the

cost of aneuploidy. We confirmed this prediction experimentally

in several sensitized ssd1D aneuploids, albeit with mixed results

in the wild-type strain. We considered all tRNAs together in the

modeling, as our relatively small dataset does not have the sta-

tistical power to test individual tRNA contributions, but different

tRNA duplications may differentially benefit different chromo-

some amplifications. What could be the reason? The abundance

of specific tRNAs correlates with the frequency of their cognate

codons in the transcriptome, since higher abundance of those

tRNAs facilitates translational efficiency through their codons.

In fact, tRNA pools can shift composition to accommodate a

changing transcriptome.71 In recent years, tRNA overexpression

has emerged as an important feature of cancer,72–74 since upre-

gulation of specific tRNAs increases translation of transcripts

enriched for their cognate codons, thereby promoting metas-

tasis.75,76 Thus, the benefits of specific chromosome arm gains

could be partially linked to specific tRNA duplications.

The implication of snoRNAs and tRNAs adds to a growing

body of evidence that aneuploids may have a liability related to

translation. First, Ssd1 is required to manage the stress of chro-

mosome duplication across strain backgrounds and amplified

chromosomes.45 Ssd1 has been implicated in translational

repression and mRNA localization,45,77–79 among other pro-

cesses. Intriguingly, SSD1 deletion sensitizes euploid strains to

mutation of the elongator complex as well as Deg1 tRNA pseu-

douridine synthase, both of which modify tRNAs to promote

translational fidelity.80,81 These links connect Ssd1 to aneuploidy

and translation, but also to snoRNAs and tRNAs that are impli-

cated in our modeling. Recent work from our lab shows that

overexpression of genes involved in translation or translation

quality control can partly complement ssd1D aneuploid growth

defects during the exponential phase or SSD1+ aneuploid de-

fects entering quiescence during the stationary phase.82,83

Both SSD1+ and, especially, ssd1D aneuploids are inherently

more sensitive to translation elongation inhibitors,24,45 suggest-

ing that translational stress is likely at play in wild-type aneu-

ploids. We proposed that SSD1+ strains can largely buffer the

cost of most chromosome duplications unless otherwise

compromised by translational stress.45 Evidence in aneuploid

yeast and trisomy 21 cells indicates that protein dosage control

is mostly post-translational at the level of protein turnover, sug-

gesting that overabundant mRNAs are indeed translated.22,84,85

It is possible that it is the translation of duplicated genes, rather

than the overabundance of encoded proteins, that contributes

significantly to the fitness defects in aneuploid cells.

Gene length is the strongest predictor of deleterious
gene duplications
The cost of chromosome duplication is well modeled by the cu-

mulative cost of duplicating individual genes on each chromo-

some; thus, considering the features of deleterious gene dupli-

cations can further our understanding of aneuploidy. We

expected that genes encoding multi-subunit complexes and
Cell Genomics 4, 100656, October 9, 2024 9
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with multiple protein-protein interactions would be among the

most deleterious, thus validating long-standing models of pro-

tein imbalance as amajor cause of aneuploidy toxicity. However,

deleterious gene duplications were not enriched for either

feature. This recapitulates several other studies that also saw

no enrichment for components of protein complexes among

duplication-sensitive genes.55,59,86 The absence of these signa-

tures indicates that the balance hypothesis,41,87 often invoked to

explain aneuploidy toxicity, may well be true for high-level pro-

tein imbalance but not for mere duplication of genes and their

native regulatory sequences. The reason is likely to be dosage

control, which has been observed repeatedly for multi-subunit

proteins amplified in yeast and human cells.22,55,85,88–91 While

some dosage control can happen at the transcriptional level,7

much occurs post-translationally. For example, proteins en-

coded by human chromosome 21 show increased turnover

rates.85 Genes encoded by other aneuploid chromosomes in hu-

man cell lines also show increased degradation rates according

to their role in the complex.92 Hence, cells likely have evolved

mechanisms to manage stoichiometric balance of important

proteins, at least when their genes are merely duplicated.

We were surprised that modeling predicted a single major

feature—gene length—as the strongest predictor of deleterious

gene duplicates, with longer genes associated with dosage

sensitivity. This is unlikely due to DNA/plasmid burden, since

aneuploidy-sensitized yeast are susceptible to chromosome

duplications, but not large artificial chromosomes without cod-

ing potential.24,93,94 Furthermore, although deleterious genes

tend to be longer, many long genes are still scored as neutral,

which is not expected if DNA burden is the driving cause. Re-

analysis of previously published overexpression screens, in

both wild yeast isolates and the laboratory strain, indicates

that deleterious overexpressed genes identified in each study

are longer (p = 1 3 10�7 to 4 3 10�43, Wilcoxon rank

test).56,57,59,61 The patterns we observe may be conserved in

higher organisms. Indeed, Ni et al. found that a compiled list

of reliable dosage-sensitive genes is significantly longer than

one of genes reported as dosage insensitive.95 Thus, altered

copy number of longer genes is more likely to cause fitness

problems across organisms.

There are several possible reasons longer genes tend to be

more deleterious when duplicated. First, gene length is corre-

lated with multiple other biophysical features: larger proteins

are more likely to contain an intrinsically disordered region,

have more phosphorylated sites, and have a higher fraction

of buried residues. One possibility is that gene length is simply

a proxy for a multitude of other gene properties that are each

mildly deleterious. However, we did not find strong support

for this hypothesis: when gene length was omitted from the

model, several features correlated with gene length were

selected, but the model did not perform as well as using

gene length alone. It remains possible, however, that longer

protein primary sequences are more likely to capture some

deleterious features.

Another possibility is that longer genes and transcripts create

more chances for error during protein synthesis. Longer genes

typically display slower translation initiation and elongation rates,

a relationship conserved across organisms.96–100 This relation-
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ship could reflect higher-order RNA structure or other features

of long mRNAs101,102; indeed, of the subset measured, delete-

rious gene duplicates do have more structure (p = 0.0008).103

Longer transcripts also increase the probability of translation er-

rors, including tRNA/amino acid misincorporation, ribosome fra-

meshifting, premature termination, and co-translational protein

folding errors, all of which are influenced by sequence but are

also proportional to transcript length.102,104–106 On the one

hand, long coding sequences, independent of other problematic

sequences, are preferentially targeted by surveillance mecha-

nisms. This may be driven by the reduced translation rate of

long mRNAs, which could emerge from an increased probability

of translational errors as coding length increases.107 On the other

hand, nonsense-mediated decay (NMD), a pathway that re-

sponds to translational errors including frameshifting and prema-

ture termination, is less efficient when NMD-triggering se-

quences are introduced into longer open reading frames.108

Thus, long open reading frames could lead to more translational

errors, both probabilistically due to length and from increased

chance of escape of surveillance systems. Translational errors

in turn can lead to proteostasis stress and an energy burden to

manage that stress.96,102 Indeed, managing proteostasis stress

through quality control pathways such as the ubiquitin protea-

some system is important in sensitized aneuploid strains109,110;

however, the direct source of the proteostasis stress remains

unclear—our results suggest that translational errors could

contribute.

In all, our study presents a quantitative assessment of aneu-

ploidy cost, in a single strain, single growth phase, and

controlled environment. Given that many principles in yeast

are conserved in higher organisms, the principles reported

here are likely conserved; however, the details, including pre-

cise fitness costs of specific genes and non-genic features,

as well as the generalized sensitivity of strains to translational

and proteotoxic stress, could vary significantly across strains,

organisms, and conditions.61,65 It will be interesting to see if

the results observed here pertain to cancer cells, which often

benefit from amplified chromosomes.17–21 Pioneering work by

Davoli et al. showed that the sum of oncogenes and tumor sup-

pressors can partially predict the gain and loss of that chromo-

some in cancer cells.36 Including our findings in predictive

models could improve accuracy in modeling specific copy-

number variants in cancer.

Limitations of the study
One limitation of our study is that we focused on fitness costs

during exponential growth and under standard, optimal condi-

tions—certainly, the fitness cost of aneuploidy varies under

alternate conditions, where amplification of specific genes

can be beneficial.4,5,9,31 Other evidence from our lab shows

that the fitness cost is dramatically different in stationary phase,

when starved haploids enter quiescence.83 Thus, an important

area for future investigation is to quantify fitness costs under

the full range of natural growth phases and conditions, to

enable dynamic modeling of evolutionary patterns in real-world

situations. Another limitation is that our work is specific to one

S. cerevisiae strain. While the general principles observed here

may pertain to other strains and species, the cost of individual
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gene duplications—and thus the cost of specific chromosome

duplications—is likely different for other genetic backgrounds.

Finally, while machine learning implicated trends among delete-

rious genes, most notably the association with gene length, the

mechanistic basis behind that association will require molecular

dissection.
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BUSCO version 5.4.4 Manni et al.119 https://busco.ezlab.org/, RRID:SCR_015008
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Liftoff Shumate et al.123 https://github.com/agshumate/Liftoff
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GSAEpy version 1.0.6 Fang et al.125 https://gseapy.readthedocs.io/
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Statsmodels, version 0.13.5 N/A https://www.statsmodels.org/v0.13.5/, RRID:SCR_016074

Sklearn version 1.3.0 Pedregosa et al.127 https://scikit-learn.org/stable/index.html, RRID:SCR_019053

IUPRED3 Erdos et al.128 https://iupred3.elte.hu/

AlphaFold Jumper et al.129 https://alphafold.ebi.ac.uk/, RRID:SCR_023662

SnpEff version 5.0 Cingolani et al.130 https://pcingola.github.io/SnpEff/

Other

Saccharomyces Genome Database (SGD) SGD community131 https://yeastgenome.org/

Code repository for aneuploidy model

and gene machine learning model

This paper https://doi.org/10.5281/zenodo.12701832
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Strains and plasmid
Strains and plasmids used are listed in the Table S4. YPS1009 aneuploids were generated using the methods of Hill and Bloom47

except Chr12 aneuploidy described in Hose et al.45 Briefly, a DNA cassette including the GAL1-10 promoter (GAL1 oriented toward

the centromere), HphMX6 gene for hygromycin resistance, and terminator PTDH3-GFP-TCYC1 (except for Chr3, 9, and 16 where GFP

was omitted) was integrated at 60 bp from each centromere of interest and selected on hygromycin medium. Each resulting euploid

strain was grown for 16 h in YP (1% yeast extract and 2%peptone) mediumwith 2% raffinose and switched to YPwith 2% galactose

for one doubling based on optical density, and then plated for single colonies. For transformants carrying the GFP cassette, colonies

were initially screened for 1X (euploid) versus 2X (aneuploid) GFP fluorescence on a flow cytometer, and colonies with 2X fluores-

cence were selected. Aneuploid colonies were selected via qPCR of genes on and off the amplified chromosome to confirm dupli-

cation of the amplified chromosome; selected colonies used in this study were confirmed by low-coverage whole genome

sequencing, confirming that genes spanning the entire chromosomewere present on average 2X higher copy than genes on all other

chromosomes. ssd1D aneuploids were obtained by crossing aneuploids selected above to the euploid ssd1D and selecting resulting

ssd1D aneuploid clones. YPS1009 with a duplication of Chr6 could not be generated in YPS1009, and duplication of Chr16 in ssd1D

produced very sick colonies that could not be cultivated. Genomic DNA was isolated with the DNeasy Blood and Tissue Kit modified

for yeast (Qiagen) and sequenced using the NEBNext Ultra II DNA Library Prep Kit on the Illumina MiSeq. Nine of the aneuploids

(Chr1, 4, 5, 7, 10, 13, 14, 15 and 16) were backcrossed to remove the centromere-proximal cassette. Euploids and aneuploids

with the cassette had no difference in growth rate compared to an isogenic strain without the cassette, confirming that the cassette

does not influence fitness.

The pJR1 plasmid expressing 7 C/D box snoRNAs encoded on Chr13 (snr72, snr73, snr74, snr75, snr76, snr77, snr78) was ob-

tained by amplifying 2017 bp containing the polycistronic C/D snoRNAs region from Chr13 (coordinates 280,245–282,261 from

the YPS1009 genome assembly) and ligating it into pJH1 plasmid. The pJR2 plasmid containing 7 H/ACA snoRNAs was obtained

by ligating a fragment containing SNR36, SNR8, SNR31, SNR5, SNR81, SNR9 (synthesized by Twist Bioscience) and SNR35 (ampli-

fied from YPS1009) into pJH1. A fragment from the Yce1313 plasmid (shared by the Cai Lab) containing all Chr12 tRNAs was cloned
e2 Cell Genomics 4, 100656, October 9, 2024
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into pJH1 to obtain the pJR3 plasmid. The amplified snoRNA and tRNA were picked for ease of cloning, all plasmids were verified by

Sanger sequencing. MAF1 was deleted by homologous recombination of the HphMX6 cassette and verified by diagnostic PCR;

aneuploid strains were generated by crossing the euploid maf1D to aneuploids.

METHOD DETAILS

Growth conditions
Strain passaging was minimized to ensure maintenance of the aneuploidies. Freshly streaked colonies were used to inoculate liquid

YPD and cultured for�1 generation to allow cells to exit lag phase before changes in optical density (OD600) were scored every�15–

20 min for�140 min. Care was taken to ensure that strains did not pass OD600 of 0.8, ensuring they were far from the diauxic shift in

this media. An exponential curve was then fit to calculate growth rates; most R2 were above 99% (except for some slow-growing

strains that had a R2 �0.98) indicating exponential growth. The growth curves, growth rates and OD are available in Table S1.

The maintenance of aneuploidy was periodically checked through diagnostic qPCR of one or two genes on the amplified chromo-

some normalized to a single-copy gene elsewhere in the genome (ERV25 or ACT1), taking �2X higher copy of the amplified genes

to confirm aneuploidy. Detectable loss of the extra chromosome at the culture level was rarely observed, but cultures for which >20%

of final colonies reverted to euploidy were excluded from analysis. Significant differences in observed versus expected growth rate

were assessed with replicate-paired t tests. Unless otherwise noted, all studies used 4 biological replicates.

For strains transformed with plasmids (pJH1, pJR1, pJR2, pJR3), cells were cultured for 2 h in YPD +100ug/ml nourseothricin me-

dia then shifted to YPD without antibiotics and grown for another hour before OD600 measurements were collected for growth rates.

The biological replicates represent the growth of at least two different transformants, transformed on different days.

YPS1009 genome sequencing
A highly contiguous assembly of YPS1009 strain AGY731 was prepared through a hybrid approach of Oxford Nanopore (ONT, Ox-

ford, UK) and Illumina (San Diego, California) sequencing. High molecular weight DNAwas prepared for ONT sequencing by harvest-

ing cells from an overnight YPD culture, spheroplasting, and gently lysing cells followed by phenol:chloroform extraction and ethanol

precipitation of DNA. The preparation was enriched for high molecular weight DNA >1.5 kb by bead cleanup using a custom buffer

(10mM Tris-HCl, 1mM EDTA pH 8.0, 1.6M NaCl, 11% PEG8000). DNA was prepared for sequencing using sequencing kit LSK-110

(ONT) and sequenced on a single flongle flow cell (ONT). ONT sequencing produced 175 Mb resulting in�14x coverage of the yeast

reference genome. Initial base calling was done using guppy v.6.2.1 (ONT) retaining reads with Q > 7. The initial assembly was done

using ONT reads with Canu v.1.9.122 This assembly was polished using Illumina data pooled from 32,723,650 reads of all YPS1009

aneuploid strains (211X YPS1009 genome coverage) using pilon v.1.23 iteratively three times.121

The assembly resulted in 23 contigs with sizes ranging from 1,061 to 1,482,091 bp of which 11,353,357 bp had homology to the

S288c genome. Each of the 23 contigs was aligned to the S288c chromosome to which it had shown maximal homology using

MUMmer,118 with -c parameter set for each chromosome based on aligning the S288c chromosome sequence to the S288c refer-

ence genome, to minimize short off-target alignments. Four chromosomes (Chr7,12,13,16) were spanned by two contigs and one

(Chr15) was spanned by 4 contigs. To evaluate alignment gaps on those chromosomes, we considered Illumina DNA read coverage

from the aneuploid YPS1009 strain in which that chromosomewas duplicated. We did not find support for the S288c sequence being

present in YPS1009 at any of these gaps, strongly suggesting that the S288c sequence in those gaps is truly missing from YPS1009.

Contigs for these chromosomes were joined by {N}10 representing those gaps. The final assembly resulted in 16 assembled

chromosomes.

We assessed the quality of the assembly in several ways. First, the median percent identity for MUMmer-aligned segments was

99.25%, showing high similarity to the S288c genome as expected. Second, we considered the coverage of known universal single-

copy orthologs from the OrthoDB database BUSCO.119 BUSCO analysis identified 99.2% (2119 out of 2137) of the universal single-

copy genes from the saccharomycetes_odb10 ortholog database, of which 2074 were in single copy and 45 were duplicated,

indicating high coverage of expected genes. Base-level accuracy and completeness were measured with Merqury.120 An optimal

k-mer size (16) was generated using best_k.sh (provided by Merqury suite) and a k-mer database created with Meryl.120 This

k-mer database was used to evaluate the assembly, which returned a completeness score of 99.502%.

Finally, we annotated the gene content using Liftoff.123 Multiple genes and other genomic elements with high level of homology

were annotated to the same region, we filtered out the annotation with the lowest homology. Liftoff identified 6,552 genes, 277 tRNAs,

77 snoRNAs, 21 ncRNA, and 354 ARS in the YPS1009 genome. For transposable elements (TE), we combined Liftoff identification

with ReasonaTE,124 and collapsed TEs that were mapped to the same region. There are 23 retrotransposons containing functional

GAG-POL open reading frames. Among the 6552 genes annotated by Liftoff, 57 are missing a start codon, 331 are missing a stop

codon, and 70 have an in-frame stop codon.

89 genes fromS288Cweremissing in YPS1009: 48 of themweremapped to other ORFs and filtered out, which likely correspond to

genes present in multiple copies in S288C. The remaining 41missed genes were used as BLAST queries to the YPS1009 assembly: 4

small genes aligned to multiple loci (>8) in the YPS1009 assembly while 38 genes were not identified by Liftoff or BLAST of the

YPS1009 contigs; the position of 19 of these genes in the S288C genome reside in 3 suspected gaps between YPS1009 contigs

that were supported by the absence of Illumina reads mapping to those YPS1009 regions as described above. 12 genes mapped
Cell Genomics 4, 100656, October 9, 2024 e3
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to a gap on Chr12 that was corroborated by an absence of Illumina reads. Thus, the draft assembly of the YPS1009 genome is close

to complete, barring small-scale errors whose correction is beyond the scope of this study, and is available on BioProject (accession

number: PRJNA984736).

Gene duplication fitness cost measurements
The euploid YPS1009 strain (AGY1611) was transformed with a pool of the molecular barcoded yeast ORF library (MoBY 1.0) con-

taining 5,037 barcoded CEN plasmids.50 At least 25,000 transformants were scraped from agar plates per transformation, and frozen

glycerol stocks were made. Three independent transformations of the pooled library were performed, for a total of�52X coverage of

the library. Competitive growth was done in liquid synthetic media lacking histidine (SC-His) and with 100 mg/L nourseothricin and

200mg/L G418 tomaintain the plasmids. Competition experiments were performed as previously described.50,61,132,133 Briefly, 1mL

frozen glycerol stocks of library-transformed cells were thawed into 100mL of liquidmedium at a startingOD600 of 0.05, then grown in

shake flasks at 30�C with shaking. The remaining cells from the frozen stocks were pelleted by centrifugation and represented the

starting pool (generation 0) for each strain. After five generations, each pooled culture was diluted to an OD600 of 0.05 in fresh media,

to maintain cells in log phase. Cells were harvested and stored at�80�C after 10 generations. 7 biological replicates from 3 indepen-

dent library transformations were collected and analyzed. Plasmids were recovered from each pool using Zymoprep Yeast Plasmid

Miniprep II (Zymo Research D2004-A) with the following modifications: samples were incubated with 15 units zymolyase at 37�C for

1 h, with inversion every 15min; incubation in cell lysis buffer was extended to 10min; after neutralization, samples were put on ice for

30 min, then centrifuged at 4�C. Plasmid barcodes were amplified using primers containing Illumina multiplex adaptors as described

in.133 The number of PCR cycles was reduced to 20. Barcode amplicons were pooled and purified using AxyPrep Mag beads (1.8X

volume beads per sample volume) according to the manufacturer’s instructions. Pooled amplicons were sequenced on one lane of

an Illumina HiSeq 4000 to generate single-end 50 bp reads. The screen raw sequencing and barcode counts were deposited on GEO

(GSE263221). The data analysis was performed as follows: barcodes with no valid values and the bottom 5% of barcodes based on

read abundance at generation 0 were removed from the total counts. Generation 0 includes other strains not exploited in here but in

Dutcher et al.82 A pseudo-count of 1 was added to each gene in every sample in the dataset. Barcode counts were normalized using

the TMM method134 and analyzed in EdgeR126 version 3.36.0 using a gene-wise negative binomial generalized linear model with

quasi-likelihood tests. Results were similar when normalized by total reads per sample. Significant differences between experiment

endpoint and generation 0 were defined as those with FDR <0.05 using the Benjamini-Hochberg procedure for multiple test correc-

tion.135 Fitness scores of 4,462 genes were calculated as the log2 of the ratio of normalized reads after 10 generations divided by

reads at generation 0 (Source data S6 for Figure 2; Table S2). Significant fitness scores are highly correlated with those from com-

parable YPS1009 Moby 1.0 library grown in YPD medium (R2 = 0.8), but not with YPS1009 transformed with the Moby 2.0 library

grown under similar conditions as used here,61 confirming that media differences between this study and Robinson et al. do not

explain modeling differences.

Modeling aneuploidy fitness costs
Model 1 fits the measured growth rates (4 per strain) for each aneuploid relative to euploid cells as a function of the sum number of

verified and uncharacterized genes per chromosome, according to the YPS1009 genome annotation. A total of 4,369 measured

genes are mapped to the YPS1009 genome and included for further analyses. We did not consider dubious genes. Linear regression

was performed using the ordinary least square (OLS) method (Statsmodels, version 0.13.5). All codes and models were written in

Python 3 and are available (https://doi.org/10.5281/zenodo.12701832).

Model 2 fit measured growth rates described above as a function of themeasured fitness costs for genes duplicated on each chro-

mosome as follows. For measured genes that were statistically significant (FDR <0.05), the fitness cost was taken as the fitness

scores described above. Genes with missing values (848 genes) or that were not statistically different from neutral (FDR >0.05)

were scored with the mean log2 fitness score across all measured genes = �0.33. For 624 genes that are in the collection but

were not detected in our experiment, we assumed their fitness cost was too toxic to make it to the starting pool in this strain back-

ground and thus imputed values with the 2.5% lower quantile value of all genes =�3.2. Each chromosome cost was estimated based

on the sum of these log2 values for genes on that chromosome. The linear fit was calculated as described for Model 1. The improve-

ment of Model 2 compared to Model 1 was estimated in two ways. First, we used a nested model and Chi-square test, considering

the contribution of Model 1 (gene number) plus the contribution of Model 2 costs normalized to each chromosome’s gene number,

then fitted in an OLS model. We then perform a likelihood-ratio test (Chi-Square test, degree of freedom = 1) to show that both fea-

tures are significant (number of genes/Chromosome p value: 1.2x10�13, normalized Chr. cost p value: 0.045). Second, we performed

10,000 random permutations of gene fitness cost labels across chromosomes, while preserving the number of genes per chromo-

some in each trial and summed the permuted Chr. costs. We then fitted the aneuploid relative growth rate against every permuted

Chr. cost iteration and compared the R2 values to Model 2 R2. Out of 10,000 permutations, only 4 met the observed Model2 fit for

wild-type aneuploids (p = 0.0004) and none for the ssd1D strains. The importance of beneficial genes was estimated by summing

detrimental/neutral genes and beneficial genes separately and fitting a multifactorial linear regression. A Chi-square test showed

that both features are significantly contributing to the fit.

Model 3 was assessed by first compiling a list of non-genic features from the YPS1009 Liftoff feature detection (Table S5) and

normalized to the total number of features per chromosome to prevent high correlations in between features. Features were
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selected using a bootstrap-Lasso approach136: 10000 random subsets of 60 relative growth measurements were fitted using Lasso

(alpha = 0.7), and features that had a non-zero coefficient for 90% or more iteration were incorporated into a multi-linear regression

model (OLS) to get model performance.

Deleterious gene duplications classifier
Gene biophysical features considered in the modeling are described in Table S3 and are available together with the gene duplication

fitness costs in Table S2. These features regroup datasets from several publications,45,60,113,115,117,137 public databases (SGD, Uni-

prot, Biogrid, STRING, A3D, Gene Ontology and DescribeProt),111,112,114–116,131,138,139 and prediction software (IUPRED3,

AlphaFold, SnpEff).128–130 Functional enrichments using GSAEpy python library125 (version 1.0.6) and the ontologies from Yeast

modEnriChr140 were performed in 2 ways. First, we performed a hypergeometric test to compare genes whose duplication was dele-

terious (FDR <0.05) versus the background genes set (all barcoded genes with a measured logFC). Second, we used a GSEA rank

test: genes were ranked on their log2 fitness scores * log10(FDR) values. Enrichments with an adjusted p value <0.05 were included as

categorical features for the modeling and are available in Table S3. For numerical features, a Wilcoxon rank test was performed with

Benjamini-Hochberg correction.135 To train the gene classifier to predict deleterious genes, we reduced the number of features to

only those that were significant (adjusted p value <0.05) and removed features that were highly correlated (Spearman correlation

>0.70, see Figure S5A), keeping the feature most strongly distinguishing detrimental genes (Figure S5A). All models were trained

and tested using a stratified 5-fold cross-validation approach: for 5 iterations, the dataset was randomly split into training and

test sets while maintaining the proportion of deleterious and neutral genes. We then computed the mean and standard deviation

receiver-operator curves and area under the curve (AUC-ROC) for analysis of the test set. Confusion matrices also were computed

from the aggregated test set predictions. We used a seed of 17 for the k-fold splitting and all models. The following model and pa-

rameters from Sklearn127 (version 1.3.0) were used: Logistic regression with l2 penalty (maximum iteration = 500, solver = newton-

cholesky, and balanced class weight), Random Forest classifier (n estimators = 100, minimum sample per leaf = 24, max depth = 8,

minimum impurity decrease = 0.01), XGBoost Classifier (number of estimators = 100, minimum child weight = 250, subsample = 0.8,

maximum depth = 4, balanced weight (0.7)), Gradient Boosting Classifier (number of estimators = 100, subsample = 0.8, minimum

impurity decrease = 4, maximum depth = 6). Parameters were manually selected to reduce overfitting; Overfitting was assessed by

comparing the ROC-AUC for the training and testing sets.

Models were first trained on the whole gene fitness screen from which genes with more than 6 missing biophysical features were

removed (1,177 detrimental genes and 3,028 neutral/beneficial genes remaining). Due to poor predictions on the whole dataset, we

focused on training binary classifiers to distinguish between medium-highly detrimental genes (log2 fitness score <�1.54 (quantile =

0.15) and FDR <0.05 = 613 genes (29%)) and neutral genes (log2 fitness score >0.27 (quantile 0.65), 1,472 genes). The logistic regres-

sion classifier performed better than tree classifiers or Neural networks. Features were sorted by their mean coefficients (Figure S5B)

and we observed that the 12 top features were sufficient to maintain maximal model performance with an AUC-ROC of 0.713. Fea-

tures importancewas assessed using a permutation feature importance strategy (Sklearn version 1.3.0, permutation_importance)127:

each feature is randomly shuffled and the resulting degradation of the model’s score is used to compare features. Values were shuf-

fled 10 times for each 5-fold validation dataset splitting. Feature coefficients were analyzed to assess if a feature was associated with

detrimental genes or with the neutral group.

A similar classifier (Logistic regression with l2 penalty, maximum iteration = 500, solver = newton-cholesky, balanced class weight)

was trained on Robinson et al. data to discriminate the commonly deleterious gene overexpression (400 genes, detrimental at FDR

<0.05 in at least 10 yeast isolates) from commonly neutral or beneficial gene overexpression (1,657 genes, not detrimental (FDR

>0.05) in at least 12 yeast isolates) measured in our lab under slightly different growth conditions.61 In that case, no features were

filtered out based on correlation.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses are described in the result section and figure legends. In Figure 1A significant difference of growth rates be-

tween euploid versus aneuploid and WT versus ssd1D for each aneuploid was tested using a replicate-paired, 2-sided, t test. The

significance threshold was p value <0.05. The original OD measurements used to compute the growth rates, growth rates and R2

are available in Table S1. All linear regressions were fitted from the datasets available in the supplemental source table (Source

data S6 - Figures 1, 2, and 3). For aneuploids with more than 4measured growth rates, we randomly selected 4 relative growth values

(seed = 0, see code) so that all aneuploids have the sameweight. All linear regression reports the adjusted r-square in the figures. The

effect of gene duplications measured using MoBy 1.0 plasmid library was tested using gene-wise negative binomial generalized

linear model with quasi-likelihood tests (as described in the methods above). Beneficial genes are defined as genes with an FDR

<0.05 and a positive log(fold-change) between generation 0 and 10 while detrimental genes have a negative logFC and FDR

<0.05. Comparisons between linear regression models were tested using a Chi-square test as specified in the result section.
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