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Abstract.—Maximum likelihood (ML) phylogenetic inference is widely used in phylogenomics. As heuristic searches 
most likely find suboptimal trees, it is recommended to conduct multiple (e.g., 10) tree searches in phylogenetic analyses. 
However, beyond its positive role, how and to what extent multiple tree searches aid ML phylogenetic inference remains 
poorly explored. Here, we found that a random starting tree was not as effective as the BioNJ and parsimony starting 
trees in inferring the ML gene tree and that RAxML-NG and PhyML were less sensitive to different starting trees than IQ-
TREE. We then examined the effect of the number of tree searches on ML tree inference with IQ-TREE and RAxML-NG, by 
running 100 tree searches on 19,414 gene alignments from 15 animal, plant, and fungal phylogenomic datasets. We found 
that the number of tree searches substantially impacted the recovery of the best-of-100 ML gene tree topology among 
100 searches for a given ML program. In addition, all of the concatenation-based trees were topologically identical if the 
number of tree searches was ≥10. Quartet-based ASTRAL trees inferred from 1 to 80 tree searches differed topologically 
from those inferred from 100 tree searches for 6/15 phylogenomic datasets. Finally, our simulations showed that gene 
alignments with lower difficulty scores had a higher chance of finding the best-of-100 gene tree topology and were more 
likely to yield the correct trees. [Heuristic tree search; hill-climbing; local optima; maximum likelihood; phylogenomics; 
species tree estimation.]

Reconstructing the evolutionary relationships among 
organisms is important for understanding the patterns 
and mechanisms of genetic and phenotypic diversity 
(Hillis et  al. 1996; Felsenstein 2003; Hamilton 2014; 
Yang 2014; Li et al. 2022). Because the number of possi-
ble trees grows exponentially with the number of taxa 
(Felsenstein 1978), modern phylogenetic inference relies 
on heuristic search algorithms (e.g., hill-climbing algo-
rithms) to infer a nearly optimal tree (Chor and Tuller 
2005) in the space that consists of all possible unrooted 
binary trees. Under the maximum likelihood (ML) 
framework (Felsenstein 1981, 2003), for instance, tree 
searching is typically an iterative process that begins 
with a starting tree (e.g., a tree inferred by parsimony or 
distance methods, or a random tree), from which a set 
of candidate trees is generated by rearrangement oper-
ations such as Nearest-Neighbor-Interchange (NNI) 
(Robinson 1971), Subtree-Pruning-and-Regrafting 
(SPR) (Swofford et  al. 1996), and Tree-Bisection-
and-Reconnection (TBR) (Allen and Steel 2001). If a 

candidate tree has a higher log-likelihood score than the 
starting tree, it will replace the starting tree to initiate 
a new iteration. The tree search process finishes when 
no tree with a higher log-likelihood score can be found 
and the tree with the highest score is deemed to be the 
nearly optimal or ML tree.

Popular programs for ML phylogenetic infer-
ence mainly differ in the rearrangement operations. 
For example, RAxML-NG implements a SPR-based 
hill-climbing search strategy; at each iteration of tree 
search, it identifies promising re-grafting positions 
within a certain radius from the pruning position and 
applies multiple SPR rearrangements simultaneously 
to speed up the inference. IQ-TREE initially maintains 
a pool of 20 best-candidate trees, determined from 1 
BioNJ starting tree (Gascuel 1997) and 99 parsimony 
starting trees. Each iteration starts with a tree that is 
selected at random from the pool, the tree topology is 
stochastically perturbed and used as the starting tree 
for a NNI-based hill-climbing tree search. The analysis 
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finishes if no better tree can be found for multiple iter-
ations. PhyML utilizes both types of rearrangement 
operations successively; it first performs an SPR-based 
hill-climbing tree search, and the resulting tree is fur-
ther improved by NNI-based hill-climbing. Because 
the search strategy is heuristic, it is not guaranteed that 
this ML tree is the one with the globally highest score. A 
standard solution to increasing the chance of finding a 
better ML tree is to conduct multiple independent tree 
searches, each from a different starting tree or a differ-
ent random seed, in current fast ML-based programs 
such as IQ-TREE (Nguyen et al. 2015; Minh et al. 2020), 
MEGA (Tamura et al. 2011; Kumar et al. 2016), PhyML 
(Guindon and Gascuel 2003; Guindon et al. 2010), and 
RAxML/RAxML-NG (Stamatakis 2014; Kozlov et  al. 
2019).

Several previous studies have extensively exam-
ined the efficacy of different rearrangement operations 
on ML tree inference (e.g., Vinh and Haeseler 2004; 
Morrison 2007; Money and Whelan 2012). For example, 
Money and Whelan (2012) found that NNI performed 
poorly in finding the nearly optimal tree compared 
to SPR. In light of this result, IQ-TREE (Nguyen et al. 
2015; Minh et  al. 2020), one of the state-of-the-art 
ML-based programs, overcomes the weakness of NNI-
based tree search by implementing a broad sampling 
of initial starting trees and random perturbation of 
current best trees. In addition, many previous studies 
have examined the efficacy of different fast ML-based 
programs on ML tree inference (Liu et al. 2011; Nguyen 
et  al. 2015; Zhou et  al. 2018; Kozlov et  al. 2019; Park 
et al. 2021). For example, a recent analysis (Zhou et al. 
2018) of 19 empirical phylogenomic datasets showed 
that IQ-TREE, PhyML, and RAxML had comparable 
performance when conducting 10 tree searches on each 
alignment.

A potential drawback of almost all of the previ-
ous studies is that they used no more than 20 tree 
searches, leaving the effect of varying the number of 
tree searches on ML phylogenetic inference under- 
investigated. To address this gap, we performed 100 
tree searches for each of the 19,414 single-gene align-
ments in 15 animal, plant, and fungal phylogenomic 
datasets and 20,000 simulated gene alignments (Shen 
et al. 2020; Höhler et al. 2022a). Then, we asked 2 ques-
tions: i) How does the number of tree searches affect 
the performance of finding the best ML tree? ii) Are 
extensive tree searches in ML phylogenetic inference 
necessary? Our results reveal that variation in num-
ber of tree searches can substantially influence ML tree 
inference and that the difficulty score (Haag et al. 2022) 
could be a useful predictor for roughly estimating the 
necessary number of tree searches for ML inference.

RESULTS

Different ML phylogenetic programs could have 
different tree search algorithms, resulting in varying 

numbers of tree searches during a single default run. 
For example, RAxML-NG’s default run initiates with 
10 parsimony starting trees and 10 random starting 
trees, followed by conducting one tree search on each 
starting tree. Ultimately, it produces the best ML tree 
from a total of 20 tree searches. IQ-TREE’s default run 
begins with one BioNJ starting tree and 99 parsimony 
starting trees, followed by iteratively conducting tree 
searches on a pool of 20 best candidate trees throughout 
the analysis. In the end, it produces the best ML tree, 
determined from a stochastic number of tree searches. 
In this study, following the strategy of a recent study 
(Kozlov et al. 2019), we defined one tree search as using 
one starting tree for both RAxML-NG and PhyML and 
using one run for IQ-TREE. Note that the effect of vary-
ing the number of starting trees on ML phylogenetic 
inference is not directly comparable across different 
ML programs due to the variation in the number of 
tree searches performed by different ML programs. In 
addition, we had no intention of comparing likelihood 
scores or topological accuracies of different ML pro-
grams in this study. Therefore, our assessment solely 
focused on the effect of the number of tree searches on 
ML phylogenetic inference within a given ML program.

The Effect of Different Starting Trees on Single-Gene Tree 
Inference

As ML phylogenetic inference begins with a starting 
tree, we first investigated the effect of different starting 
trees on single-gene ML tree inferences. For each gene 
alignment, we conducted one independent tree search 
from a BioNJ tree, a parsimony tree, or a random tree 
using 1 CPU on a single compute node (AMD EPYC 
7662 @ 2.0 GHz processor with 128 threads). We sam-
pled 200 genes from each of 15 animal, plant, and fun-
gal phylogenomic datasets since executing all of the 
tree searches on the same node was computationally 
expensive (Table 1). Thus, for each of 3000 gene align-
ments, we used 3 different starting trees to infer 3 ML 
gene trees and denoted the ML gene tree with the high-
est log-likelihood score as the best-of-3 ML gene tree 
topology within a given ML program. We then exam-
ined the fractions of the 3000 single-gene alignments 
for which the best-of-3 gene tree topology was found, 
which we refer to as the “recovery rate.” Note that the 
recovery rate was not comparable between IQ-TREE, 
RAxML-NG, and PhyML, as the best-of-3 ML gene tree 
topology was determined independently for each ML 
program.

Overall, we found that in terms of recovery rates, 
the random starting tree was less efficient in finding 
the best-of-3 ML gene tree topology for IQ-TREE, as 
compared with the BioNJ starting tree and the parsi-
mony starting tree (Fig. 1a). RAxML-NG and PhyML 
were less sensitive to different starting trees (Fig. 1a). 
Among the 15 phylogenomic datasets, different starting 
trees exhibited varying recovery rates for a given ML 
program. Notably, IQ-TREE displayed greater variation 
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in recovery rate across the three different starting trees, 
especially for phylogenomic datasets with larger num-
bers of taxa (e.g., Bees, Birds, Butterflies, Green plants, 
and Budding yeasts) (see Supplementary Fig. S1). This 
observation is likely attributed to the fact that IQ-TREE 
employs an NNI-based hill-climbing tree search, which 
explores a less extensive tree searching space compared 
to the SPR-based hill-climbing tree search (Zhou et al. 
2018).

In addition, as we executed all tree searches using 1 
CPU on the same compute node, we can fairly compare 
the runtimes of inferring ML gene trees across differ-
ent starting trees and different ML programs. Overall, 
we found that the use of a random starting tree had 
slightly longer runtimes than the uses of BioNJ starting 
tree and parsimony starting tree within a given ML pro-
gram (Fig. 1b and Supplementary Fig. S2). RAxML-NG 
on average ran the fastest, followed by IQ-TREE and 
PhyML (Fig. 1b and Supplementary Fig. S2).

The Number of Tree Searches Substantially Influences the 
Identification of Single-Gene Trees With the Highest Log-

Likelihood Scores

We investigated the effect of varying the number of 
tree searches on ML phylogenetic inference through 
an extensive analysis of all 19,414 single-gene align-
ments from 15 animal, plant, and fungal phylogenomic 
datasets (Table 1). For each of 19,414 single-gene align-
ments, we conducted 100 tree searches using 100 runs 
for IQ-TREE (v1.6.12) and using 50 parsimony start-
ing trees and 50 random starting trees for RAxML-NG 

(v0.9.0), following the tree search strategy of a recent 
study (Kozlov et al. 2019). Because executing 100 tree 
searches from a single command line is computa-
tionally expensive, we chose to partition them into 5 
sets. Each set involved running 20 tree searches, with 
IQ-TREE utilizing the option “-runs 20 -seed ran-
dom number” and RAxML-NG utilizing the option 
“--tree pars{10},rand{10} --seed random number” (see 
Supplementary Text for details). In brief, RAxML-NG 
performs one tree search on each of the 20 starting trees 
using the SPR rearrangement operation. For each of 20 
runs in IQ-TREE, it starts with one BioNJ starting tree 
and 99 parsimony starting trees and then maintains 
a pool of 20 best candidate trees to conduct one tree 
search using the NNI rearrangement operation. Due to 
differences in tree search algorithms between IQ-TREE 
and RAxML-NG, it is important to note that the results 
regarding the impact of varying the number of tree 
searches on ML phylogenetic inference are not directly 
comparable between the two programs.

After obtaining 100 single-gene ML trees labeled with 
R1 to R100 for each of 19,414 gene alignments within 
a given ML program, we considered the ML gene tree 
with the highest log-likelihood score as the best-of-100 
ML gene tree topology and asked which runs achieved 
the best-of-100 ML gene tree topologies. Among the 
19,414 gene alignments, we observed that 938 (4.8%) 
for IQ-TREE and 781 (4.0%) for RAxML-NG produced 
the best-of-100 ML gene trees that had equal highest 
log-likelihood scores but different topologies. In the-
ory, distinct gene topologies should not share identical 
log-likelihood scores; however, it is well known that 

Table 1.  Summary of 15 phylogenomic datasets examined in this study.

Study ID Dataset Taxon level No. 
taxa

No 
loci

Sampling 
method

Data 
type

Study reference

Bee Animal: Bees Genus 190 753 UCE DNA Blaimer et al., Evolution, 2018 (Blaimer et 
al. 2018)

Bird Animal: Birds Class 200 259 AHE DNA Prum et al., Nature, 2015 (Prum et al. 2015)
Butterfly Animal: 

Butterflies
Order 207 352 AHE DNA Espeland et al., Current Biology, 2018 

(Espeland et al. 2018)
Lizard Animal: Lizards Genus 29 1361 Exon-Capture DNA Blom et al., Syst Biol, 2017 (Blom et al. 2017)
Marine-fish Animal: Marine 

fishes
Superorder 120 1001 UCE DNA Alfaro et al., Nat. Ecol. Evol. 2018 (Alfaro 

et al. 2018)
Rodent Animal: Rodents Family 37 1245 Exon-Capture DNA Roycroft et al., Syst Biol, 2019 (Roycroft et 

al. 2020)
Cardueae Plant: Cardueae Family 85 570 UCE DNA Herrando-Moraira et al., Mol Phyloge Evol, 

2018 (Herrando-Moraira et al. 2018)
Caryophyllales Plant: 

Caryophyllales
Order 95 1122 Transcriptome AA Yang et al., Mol Biol Evol, 2015 (Yang et al. 

2015)
Green-Plants Plant: Green 

plants
Phylum 1178 410 Transcriptome AA 1KP Initiative, Nature, 2019 (One Thousand 

Plant Transcriptomes Initiative 2019)
Jaltomata Plant: Jaltomata Genus 15 6431 Transcriptome DNA Wu et al., Mol Ecol, 2018 (Wu et al. 2018)
Protea Plant: Protea Genus 65 498 AHE DNA Mitchell et al., American Journal of Botany, 

2017 (Mitchell et al. 2017)
Aspergillaceae Fungi: 

Aspergillaceae
Order 93 1668 Genome DNA Steenwyk et al., mBio, 2019 (Steenwyk et 

al. 2019b)
Saccharomycotina-
Cell

Fungi: Budding 
yeasts

Subphylum 343 2408 Genome AA Shen et al., Cell, 2018 (Shen et al. 2018)

Hanseniaspora Fungi: 
Hanseniaspora

Family 29 1033 Genome AA Steenwyk et al., PloS Biol, 2019 (Steenwyk 
et al. 2019a)

Rhizoplaca Fungi: 
Rhizoplaca

Genus 31 303 Genome DNA Leavitt et al., Sci Rep, 2016 (Leavitt et al. 
2016)

https://dx.doi.org/10.5061/dryad.rv15dv4b7
https://dx.doi.org/10.5061/dryad.rv15dv4b7
https://dx.doi.org/10.5061/dryad.rv15dv4b7
https://dx.doi.org/10.5061/dryad.rv15dv4b7
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ML programs have limited numerical precision for log- 
likelihood score calculation. This could lead to different 
gene topologies having identical log-likelihood scores 
in the output files (Haag et  al. 2023). Given that the 
proportion of gene alignments with identical highest 
log-likelihood scores but different topologies was rela-
tively small, we included them in subsequent analyses.

Next, we examined the recovery rate, that is the frac-
tion of the 19,414 single-gene alignments for which the 
best-of-100 ML gene tree topologies were found for a 
given number of tree searches. Overall, the recovery 
rates were ~51% for the 19,414 IQ-TREE-inferred gene 
trees and ~42% for the 19,414 RAxML-NG-inferred 
gene trees when using one tree search (Fig. 2 and 
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Figure 1.  Effect of different starting trees on ML gene tree inferences. We conducted 1 independent ML tree search from BioNJ tree, 
parsimony tree, or random tree using 1 CPU on a single compute node (see “Methods” section for details). For each of 3000 gene alignments, 
we defined the ML gene tree with the highest log-likelihood score as the best-of-3 ML gene tree topology found by a given ML program. a) 
Percentage of genes that achieved the best-of-3 ML gene tree topologies within a given ML program. b) Runtime of one independent ML tree 
search using 1 CPU on the same node. The runtimes (in seconds) are shown in logarithm base 10. Horizontal bar in the boxplot denotes the 
median value. The individual results for each of 15 phylogenomic studies are given in Supplementary Figs. S1 and S2.
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Supplementary Table S1). The recovery rate increased 
to 69% for the 19,414 IQ-TREE-inferred gene trees and 
~64% for the 19,414 RAxML-NG-inferred gene trees 
when using ten tree searches, which is computationally 
tractable for most phylogenomic data matrices (Fig. 2). 
Among the 15 phylogenomic datasets examined, the 
recovery rates at ten tree searches varied between 10% 
and 99.5% with an average value of 54.7% for IQ-TREE 
and between 8% and 99% with an average value of 

49.5% for RAxML-NG (Fig. 2). In addition to the recov-
ery rate metric, we also calculated the probability (p) 
of finding the best-of-100 ML gene tree topology for a 
given number of tree searches (n) for each gene align-
ment. The probability (p) is 1− (1− f )n, where f is the 
fraction of the best-of-100 ML gene tree topologies 
observed out of 100 tree searches. It is important to 
note that the recovery rate metric (f) and the probabil-
ity (p) serve different purposes. The former is an actual 
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Figure 2.  Effect of varying numbers of tree searches on finding the best-of-100 ML gene tree topology. For each of the 19,414 gene alignments 
from 15 diverse phylogenomic datasets (Table 1), we used 100 extensive tree searches with 2 maximum likelihood (ML) programs IQ-TREE 
and RAxML-NG. The ML gene tree topology with the highest log-likelihood score was defined as the best-of-100 ML gene tree topology found 
among 100 tree searches for a given ML program. To assess the effect of varying numbers of tree searches on finding the best-of-100 ML gene 
tree topology, we asked whether the best-of-100 ML gene tree topology was encountered when using 1, 10, 20, 40, 60, 80, and 100 tree searches 
for a given ML program, respectively. The dot plot at the upper left is based on all 19,414 gene alignments from 15 phylogenomic data sets. The 
rest of the dot plots show the individual results for each of the 15 phylogenomic data sets. Horizontally dashed lines denote 95%. The number 
of taxa for each of 15 phylogenomic data sets was included on the top of each panel title.
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observed value and the latter is a predicted value based 
on the observed fraction. Among the 15 phylogenomic 
datasets, both the probability (p) and the recovery rate 
metric (f) demonstrated similar trends in evaluating 
the chance of finding the best-of-100 ML gene tree 
topologies (Supplementary Fig. S3), while they exhib-
ited variation in the chance of finding the best-of-100 
ML gene tree topologies at different numbers of tree 
searches.

As expected, we found that, with an increasing num-
ber of tree searches, both IQ-TREE- and RAxML-NG-
inferred gene trees increased log-likelihood scores and 
were topologically more similar to the best-of-100 ML 
gene tree topologies (Fig. 3a,b and Supplementary Figs. 
S4 and S5). To examine whether the best-observed gene 
tree topology found from 1 to 80 significantly differed 
from the best-of-100 gene tree topology, we used the 
approximately unbiased (AU) test (Shimodaira 2002) to 
evaluate whether the best-observed gene tree topology 
and the best-of-100 gene tree topology could equally 
explain the gene alignment (null hypothesis H0). We 
found that the number of the best-observed gene tree 
topologies that had significantly lower log-likelihood 
scores than the best-of-100 gene tree topologies (AU test; 
P value ≤ 0.05) decreased with an increasing number of 
tree searches for the 19,414 single-gene alignments (Fig. 
3c and Supplementary Fig. S6). When evaluating the 
changes in log-likelihood scores and gene tree topolog-
ical similarity across different numbers of tree searches, 
we observed the biggest improvement from R1 to R10 
(Fig. 3).

To explore the underlying causes of the varying chances 
of finding the best-of-100 ML gene tree topology, we 
divided the 19,414 single-gene alignments from 15 phy-
logenomic studies into 11 groups according to the num-
ber of the best-of-100 ML gene tree topologies observed 
out of 100 tree searches (Fig. 4a and Supplementary Fig. 
S7). Next, for each of the 11 groups of gene alignments, 
we examined 5 characteristics: difficulty score of the 
gene alignment predicted by Pythia (v1.1.2) (Haag et al. 
2022), which integrates 8 features such as parsimony 
trees, entropy, and alignment attributes to quantify the 
degree of difficulty for analyzing a gene alignment prior 
to initiating ML tree inference; parsimony-informative 
sites in gene alignment; average bootstrap support 
across the best-of-100 ML gene tree topology; percent-
age of internal branches with high bootstrap support 
values; and percentage of internal branches with near-
zero lengths. Overall, we found that gene alignments 
with lower chances of finding the best-of-100 ML gene 
tree topologies tended to have higher difficulty scores 
(Fig. 4b), lower numbers of parsimony-informative 
sites (Fig. 4c), lower average bootstrap support values 
(Fig. 4d), lower percentages of internal branches with 
high bootstrap support values (Fig. 4e), and higher per-
centages of internal branches with near-zero lengths 
(Fig. 4f). We observed similar trends within each of 15 
phylogenomic datasets (Supplementary Figs. S8–S12). 
Furthermore, we examined the correlation between the 
chance of finding the best-of-100 ML gene tree topology 

and each of the 5 characteristics and found that the dif-
ficulty score exhibited the strongest correlation with the 
chance of finding the best-of-100 ML gene tree topology 
(Supplementary Fig. S13 and Supplementary Table S2). 
Finally, we found that the majority (IQ-TREE: 67.44%; 
RAxML-NG: 62.77%) of gene alignments with a ≤10% 
chance of finding the best-of-100 ML gene tree topology 
were characterized as difficult datasets (Supplementary 
Fig. S14a). In contrast, the majority (IQ-TREE: 65.49%; 
RAxML-NG: 76.61%) of gene alignments with a ≥90% 
chance of finding the best-of-100 ML gene tree topology 
were characterized as easy datasets (Supplementary 
Fig. S14b). Although predicting the number of tree 
searches required to find the best-of-100 ML gene tree 
topology is quite challenging (Vinh and Haeseler 2004; 
Haag et al. 2022; Höhler et al. 2022a), our results along 
with a recent finding (Togkousidis et  al. 2023) sug-
gested that the difficulty score could be a useful predic-
tor for roughly estimating the necessary number of tree 
searches for ML inference.

The Effect of the Number of Tree Searches on Concatenation- 
and Quartet-Based Species Tree Inferences

We next assessed the effect of the number of tree 
searches on concatenation- and quartet-based spe-
cies tree inferences. Given the difference in algorithm 
between concatenation- and quartet-based approaches 
we used, we did not directly compare the concatenation- 
based species trees with the quartet-based species trees 
inferred with different numbers of tree searches.

We first assessed the effect of the number of tree 
searches on concatenation-based species tree estima-
tions. For each phylogenomic dataset, we used 100 tree 
searches to reconstruct concatenation-based ML trees 
with IQ-TREE and RAxML-NG (see Supplementary 
Text for details), respectively. The green plant phyloge-
nomic data set was left out due to its very large number 
of taxa (1178) because inferring concatenation-based 
ML tree searches for the green plant phylogenomic 
data set using IQ-TREE and RAxML-NG on a 48-CPU 
node failed to finish after 5 months. Overall, the recov-
ery rate of the best-of-100 concatenation-based ML tree 
topology was ~79% (11/14 datasets) for IQ-TREE and 
~71% (10/14 datasets) for RAxML-NG when using 1 
tree search (Fig. 5a), and 100% for both IQ-TREE and 
RAxML-NG when the number of tree searches was 
equal to or greater than 10 (Fig. 5a, Supplementary Fig. 
S15, and Supplementary Table S3). These results suggest 
that the use of 10 tree searches is sufficient to generate 
the best-of-100 concatenation-based ML tree topology.

We then examined the effect of varying numbers 
of tree searches on quartet-based species tree esti-
mations for each of the 15 phylogenomic datasets. 
For each phylogenomic dataset, we inferred the 
quartet-based species phylogeny on the set of all the 
best-observed gene tree topologies inferred from 1 to 
100 tree searches by weighting the branch support and 
branch length with the wASTRAL-h v1.3 (Zhang and 
Mirarab 2022). Here, we considered the ASTRAL tree 
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Figure 3.  Comparisons of the best-of-100 ML gene tree topologies and the best-observed ML gene tree topologies were found at varying 
numbers of tree searches. Here, we examined all 19,414 single-gene alignments when using varying numbers of tree searches. a) Difference in 
log-likelihood score between the best-of-100 ML gene tree topology found from R100 and the best-observed ML gene tree topology found from 
R1, R10, R20, R40, R60, or R80 for a given ML program. Each bar denotes the mean value with standard deviation. b) Topological difference 
between the best-of-100 ML gene tree topology and the best-observed ML gene tree topology. The topological difference was the normalized 
Robinson–Foulds (nRF) distance between the best-of-100 gene tree topology and the best-observed gene tree topology. Each bar denotes the 
mean value with standard deviation. c) Compositions of all 19,414 inferred ML gene trees when using varying numbers of tree searches for 
a given ML program. Comparing with the best-of-100 ML gene tree topology found from R100, we assigned the best-observed ML gene tree 
topology found from R1, R10, R20, R40, R60, or R80 into each of three categories: i) the best-observed ML gene tree has significantly lower 
log-likelihood score than the best-of-100 ML gene tree topology; ii) the best-observed ML gene tree topology does not have significantly lower 
log-likelihood score than the best-of-100 ML gene tree topology; iii) the best-observed ML gene tree topology is the best-of-100 ML gene tree 
topology. We used the AU test to evaluate whether the best-observed ML gene tree topology has a significantly lower log-likelihood score than 
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Figure 4.  Characteristics of gene alignments that had different chances to achieve the best-of-100 ML gene tree topologies. We assigned all 19,414 
single-gene alignments from 15 phylogenomic studies into eleven groups according to the number of the best-of-100 ML gene tree topologies observed 
out of 100 tree searches. a) Total number of genes that achieved the best-of-100 ML gene tree topologies in each of 11 groups. b) Difficulty score of gene 
alignment in each of 11 groups. c) Number of parsimony-informative sites in gene alignment in each of 11 groups. d) Average bootstrap support across 
the best-of-100 ML gene tree topologies in each of 11 groups. Note that IQ-TREE introduces an ultrafast bootstrap, while RAxML-NG introduces a 
standard nonparametric bootstrap. e) Percentage of internal branches with high bootstrap support values across the best-of-100 ML gene tree topology 
(IQ-TREE: > 90 ultrafast bootstrap value; RAxML-NG: > 70 standard bootstrap value) in each of 11 groups. f) Percentage of internal branches with near-
zero lengths (that is the internal branch length of <0.0001) in each of 11 groups. Each bar denotes the mean value with standard deviation in panels b–f.
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Figure 5.  Effect of varying numbers of tree searches on concatenation- and quartet-based species tree estimations. a) For concatenation-
based phylogenetic inference, we used 100 tree searches with IQ-TREE and RAxML-NG and compared the best-of-100 concatenation-based ML 
tree to the best-observed concatenation-based ML tree inferred from R1, R10, R20, R40, R60, or R80. b) For quartet-based phylogenetic inference, 
the quartet-based species tree was reconstructed from all the best-observed ML gene trees inferred using 1, 10, 20, 40, 60, 80, or 100 tree searches, 
respectively. We performed this analysis for each of 15 phylogenomic datasets with wASTRAL-h (Zhang and Mirarab 2022). To assess the 
effect of varying numbers of tree searches on the ASTRAL tree in terms of topology (panel b), mean branch support (panel c), and mean branch 
length in coalescent units (panel d), we compared the ASTRAL tree on the best-observed ML gene trees inferred from 1, 10, 20, 40, 60, or 80 tree 
searches to the ASTRAL tree on the best-of-100 ML gene trees inferred from 100 tree searches, respectively. In panels c and d, congruent internal 
branches denote bipartitions in ASTRAL trees on the best-observed ML gene trees inferred from a given number of tree searches that match 
those in ASTRAL trees on the best-of-100 ML gene trees inferred from 100 tree searches. Conflicting internal branches indicate bipartitions in 
ASTRAL trees on the best-observed ML gene trees inferred from a given number of tree searches that differ from those in ASTRAL trees on the 
best-of-100 ML gene trees inferred from 100 tree searches.
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reconstructed from the set of single-gene trees inferred 
by 100 tree searches as the ASTRAL reference tree 
for each dataset. Note that the ASTRAL phylogenies 
were not directly comparable between IQ-TREE and 
RAxML-NG. This is because the single-gene trees used 
as input for ASTRAL estimations were independently 
inferred by each respective ML program. Overall, 
ASTRAL trees inferred using R1, R10, R20, R40, R60, 
and R80 showed increasing topological similarities 
to the ASTRAL reference trees (from 96% to 99% for 
IQ-TREE and from 91% to 98% for RAxML-NG) (Fig. 
5b, Supplementary Fig. S16, and Supplementary Table 
S4). Notably, 6 of the 15 phylogenomic datasets (e.g., 
Bees and Green plants) had larger numbers of taxa 
than the remaining nine datasets (e.g., Rodents and 
Budding yeasts) (on average, the former has 327 taxa 
and the latter has 84 taxa), all ASTRAL trees inferred 
from 1 to 80 tree searches differed topologically from 
the ASTRAL reference trees inferred from 100 tree 
searches (Supplementary Fig. S16).

To further examine whether more tree searches 
would benefit the branch support and branch length 
estimations in quartet-based species phylogeny, we 
compared each inferred ASTRAL tree (using R1, R10, 
R20, R40, R60, or R80) with the ASTRAL reference tree 
(using R100) and examined the supports and lengths 
of congruent and conflicting internal branches, respec-
tively. We found that the mean support values and 
mean branch lengths of all congruent internal branches 
increased as the number of tree searches increased (Fig. 
5c,d and Supplementary Figs. S17 and S18), while the 
mean support values and mean branch lengths of all 
conflicting internal branches decreased as the number 
of tree searches increased. These results suggest that 
increasing the number of tree searches in single-gene 
tree inferences could benefit the branch support and 
branch length estimations in the ASTRAL species 
phylogeny.

Genes With Lower Difficulty Scores Had a Higher Chance 
of Finding the Best-of-100 ML Gene Tree Topologies and 

Were More Likely to Recover the Correct Trees

Since the true single-gene phylogenies for the 15 
empirical phylogenomic datasets are unknown, it is 
impossible to precisely assess whether the best-observed 
gene tree topologies achieved with increasing numbers 
of tree searches would be more accurate. To address this 
issue, we adopted 20,000 simulated deoxyribonucleic 
acid (DNA) sequence alignments from a previous study 
(Höhler et al. 2022a), in which each gene alignment was 
simulated on the empirical data-derived gene tree and 
the model parameters in the RAxMLGrove database 
(Höhler et al. 2022b). For each of 20,000 simulated DNA 
sequence alignments, we conducted 100 tree searches 
using 100 runs for IQ-TREE, 50 parsimony starting trees 
and 50 random starting trees for RAxML-NG, and 1 
BioNJ starting tree, 50 parsimony starting trees, and 49 
random starting trees for PhyML (see Supplementary 
Text for details), respectively.

Analysis of these 20,000 simulated DNA sequence 
alignments showed that the recovery rate (that is the 
fraction of the 20,000 simulated gene alignments that 
recovered their best-of-100 ML gene tree topologies for 
a given number of tree searches) increased with increas-
ing number of tree searches (Fig. 6a and Supplementary 
Table S5). Consistent with the findings from the 
19,414 empirical gene alignments, we also found that 
the difficulty score of the simulated sequence align-
ment also exhibited the strongest correlation with the 
chance of finding the best-of-100 ML gene tree topol-
ogy (Supplementary Fig. S19 and Supplementary Table 
S6). Therefore, following a previous study (Togkousidis 
et al. 2023), we divided the 20,000 simulated DNA gene 
alignments into 3 groups: the easy alignments (9560 
genes with difficulty scores below 0.3), the intermediate 
alignments (8926 genes with difficulty scores between 
0.3 and 0.7), and the difficult alignments (1514 genes 
with difficulty scores above 0.7). As expected, we found 
that the easy alignments tended to have the highest 
recovery rates of finding the best-of-100 ML gene tree 
topologies than the intermediate and difficult align-
ments (Fig. 6a).

Next, we examined the difference in log-likelihood 
scores between the best-observed gene tree topologies 
inferred from R1, R10, R20, R40, R60, R80, and R100 and 
the true gene trees, respectively. We found that the vast 
majority (83.9% for IQ-TREE, 83.7% for RAxML-NG, 
and 77.8% for PhyML) of 20,000 inferred gene trees had 
higher log-likelihood scores than the true gene trees 
(Fig. 6b). Furthermore, we noted a rise in the count of 
gene trees with higher log-likelihood scores than the 
true gene trees as the number of tree searches increased 
for RAxML-NG and PhyML. However, for IQ-TREE, the 
number of gene trees with higher log-likelihood scores 
than the true gene trees remained relatively constant 
across 100 tree searches (Fig. 6b). These results suggest 
that RAxML-NG and PhyML outperform IQ-TREE in 
terms of likelihood optimization. In addition, we used the 
AU test to evaluate whether the best-observed gene tree 
topology had a significantly higher log-likelihood score 
than the true tree or not. Our results show that among 
20,000 inferred gene trees, 3650 (18.25%) IQ-TREE-
inferred gene trees, 3346 (16.73%) RAxML-NG-inferred 
gene trees and 3040 (15.20%) PhyML-inferred gene 
trees had significantly higher log-likelihood scores than 
the true gene trees (AU test; P value ≤ 0.05) when using 
one tree search (Supplementary Fig. S20). As expected, 
with an increase in the number of tree searches, the per-
centage of the best-observed gene tree topologies that 
had significantly higher log-likelihood scores than the 
true gene trees increased, albeit weaker in magnitude 
(Supplementary Fig. S20).

To further investigate the topological accuracies of 
the best-observed gene tree topologies inferred from 
R1, R10, R20, R40, R60, R80, and R100, we examined 
the accuracy as measured by the quartet similarity 
between the inferred best-observed tree topology and 
the true tree using the R package Quartet (v1.2.5) (Smith 
2019). Overall, we found that the mean topological 
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accuracy was 93.37% for the IQ-TREE-inferred gene 
trees, 93.29% for the RAxML-NG-inferred gene trees, 
and 93.23% for the PhyML-inferred gene trees when 
using one-tree search (Fig. 6c) for all 20,000 simulated 
alignments. As the number of tree searches increased, 
RAxML-NG and PhyML demonstrated an increase in 
mean topological accuracy, whereas IQ-TREE exhib-
ited a gradual decrease in mean topological accuracy 

(albeit with a weaker magnitude of change). This 
trend is consistent with observations in the easy data-
sets but not in the intermediate and difficult datasets 
(Fig. 6c). In the intermediate and difficult datasets, 
RAxML-NG and PhyML displayed an increase in 
mean topological accuracy from R1 to R10, but they 
gradually decreased their mean topological accura-
cies after R10. IQ-TREE gradually decreased the mean 
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Figure 6.  Gene alignments with lower difficulty scores had a higher chance of finding the best-of-100 ML gene tree topologies and are 
more likely to yield correct tree topologies. For each of 20,000 simulated DNA sequence alignments from the previous study (Höhler et al. 
2022a), we conducted 100 tree searches using 100 runs for IQ-TREE, 50 parsimony starting trees and 50 random starting trees for RAxML-NG, 
and one BioNJ starting tree, 50 parsimony starting trees and 49 random starting trees for PhyML, respectively. a) Percentage of genes that 
achieved the best-of-100 ML gene tree topologies when using varying numbers of tree searches. b) Percentage of the best-observed ML gene tree 
topologies found at varying numbers of tree searches that had higher log-likelihood scores than true gene tree topologies. c) Mean topological 
similarity between the best-observed ML gene tree topologies found at varying numbers of tree searches and the true gene tree topologies. The 
topological similarity was quantified by the quartet distance between the best-of-100 ML gene tree topology and the true gene tree topology 
using the R package Quartet (v1.2.5) (Smith 2019). Following the previous study (Togkousidis et al. 2023), we divided the 20,000 simulated gene 
alignments into three groups: the easy alignments (9560 genes with a difficulty score below 0.3), the intermediate alignments (8926 genes with 
a difficulty score between 0.3 and 0.7), and the difficult alignments (1514 genes with a difficulty score above 0.7).
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topological accuracies from R1 to R100, although it 
outperforms RAxML-NG and PhyML in terms of 
mean topological accuracy. Finally, we found that 
inferred gene trees on the easy alignments tended to 
be topologically more similar to the true trees than 
those on the intermediate alignments and the difficult 
alignments (Fig. 6c). Collectively, our findings indicate 
that: 1) easy gene alignments have a higher chance of 
finding the best-of-100 ML gene tree topology; 2) these 
alignments tend to generate more topologically accu-
rate gene trees; and 3) the accuracies of their inferred 
gene trees increase with increasing number of tree 
searches, although this improvement is program- 
dependent. For more difficult gene alignments, there 
is a noticeable pattern of overfitting, particularly with 
IQ-TREE at R1 and RAxML-NG and PhyML at R10, 
where these methods perform slightly better than at 
R100. The overfitting tendencies observed are rel-
atively small, with differences in mean topological 
accuracy being less than 1%.

Discussion

This study aimed to uncover the effect of the number 
of tree searches on ML phylogenetic inference in phy-
logenomics. To achieve this goal, we carried out com-
putationally extensive analyses of 19,414 single-gene 
alignments from 15 phylogenomic datasets. These 15 
phylogenomic datasets, with the number of taxa rang-
ing from 15 to 343, along with the green plant dataset 
containing 1178 taxa, represent different data types 
(non-coding DNA, coding DNA, and amino acid) and 
cover a broad taxonomic range from genus to phylum. 
In addition, we used 20,000 simulated DNA sequence 
alignments, with the number of taxa ranging from 4 
to 469 and an average of 69, to examine the effect of 
varying the number of tree searches on the accuracy of  
single-gene tree estimation. To the best of our knowl-
edge, our work represents the most comprehensive 
investigation on this topic to date in terms of both 
breadth and depth.

Do different starting trees affect ML phylogenetic 
inference? Modern ML phylogenetic inference typi-
cally begins with a starting tree and then executes an 
iterative, hill-climbing process using the rearrange-
ment operations, to infer a nearly optimal tree (Chor 
and Tuller 2005). Our results show that when one 
independent tree search was executed using 1 CPU for 
a given ML program, the random starting tree was less 
efficient in finding the best-of-3 ML gene tree than the 
BioNJ and parsimony starting trees. Furthermore, the 
use of random starting tree had slightly longer run-
times than the uses of BioNJ and parsimony starting 
trees. Finally, the random starting tree generally is 
more different from the ML tree than the BioNJ and 
parsimony starting trees. Therefore, we suggest that 
considering BioNJ as one of the starting trees in cur-
rent fast ML-based programs, such as RAxML-NG, 
would be helpful.

What is the general impact of the number of tree 
searches on ML phylogenetic inference? Our study 
found that ~69% of single-gene trees achieved their 
highest log-likelihood scores with ten tree searches 
(R10), which is computationally tractable for most phy-
logenomic studies. However, with R10, it is very rare for 
single-gene trees to reach their highest log-likelihood 
scores for 4 animal datasets (Bees, Birds, Butterflies, and 
Marine fishes), 1 plant dataset (Green plants), and 1 fun-
gal dataset (Budding yeasts), all of which contain > 100 
taxa. As single-gene trees are commonly used as input 
for species tree estimations, such as quartet-based 
ASTRAL species phylogeny (Mirarab et al. 2014; Zhang 
et al. 2018; Zhang and Mirarab 2022), we assessed the 
influence of the number of tree searches on the ASTRAL 
estimation. We found that all ASTRAL species phyloge-
nies reconstructed on single-gene trees inferred using 1, 
10, 20, 40, 60, or 80 tree searches differed topologically 
from the ASTRAL species phylogeny reconstructed on 
single-gene trees inferred using 100 tree searches for 
6/15 phylogenomic datasets, although the differences 
in topology were usually small. Given that quartet- 
based species tree estimation relies on the accuracy of 
single-gene tree estimations, our results suggest that 
quartet-based analyses could take into account the effect 
of varying numbers of tree searches on single-gene ML 
tree estimations. Specifically, conducting more tree 
searches would at least benefit the branch support and 
branch length estimations in quartet-based species phy-
logeny. In addition, our results suggest that the use of 
10 tree searches is sufficient to generate a robust ML tree 
for concatenation-based analysis.

Is conducting extensive tree searches in ML phy-
logenetic inference necessary? Our results suggest 
that increasing the number of tree searches improves 
log-likelihood score. At the same time, the marginal 
return of conducting more than 10 tree searches var-
ied substantially among 15 phylogenomic data sets. 
Furthermore, both empirical and simulated datasets 
showed that the difficulty score of gene alignments 
exhibited the strongest correlation with the chance 
of finding the best-of-100 ML gene tree topologies. 
Easy gene alignments are more likely to discover the 
best-of-100 ML gene tree topologies and produce more 
accurate phylogenies compared to intermediate and 
difficult gene alignments. A recent phylogenetic study 
demonstrated that the difficulty score can directly 
reflect the amount of phylogenetic signal in the input 
gene alignment (Togkousidis et al. 2023). Based on the 
results from simulation datasets, for easy gene align-
ments (e.g., difficulty score ≤ 0.3) increasing the number 
of tree searches is beneficial for ML phylogenetic infer-
ence in terms of likelihood optimization and topologi-
cal accuracy. Conversely, for intermediate and difficult 
gene alignments, extensive tree searches may be unnec-
essary or detrimental.

In summary, our study solely investigated how the 
number of tree searches influences ML phylogenetic 
inference within each program, rather than compar-
ing across different ML programs. Since different ML 
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phylogenetic programs involve varying numbers of tree 
searches during a single default run, fairly comparing 
the effects of the number of tree searches on ML phy-
logenetic inference across different programs would 
require ensuring an equal amount of running time. In 
addition, we found that difficulty score could serve as a 
useful predictor for estimating the necessary number of 
tree searches (Togkousidis et al. 2023). If computational 
resources permit, conducting at least 20 tree searches is 
recommended for IQ-TREE, and at least 10 tree searches 
for RAxML-NG and PhyML.

MATERIAL AND METHODS

Empirical Phylogenomic Datasets

We downloaded all 19,414 gene alignments from 15 
phylogenomic studies in animals (6), plants (5), and 
fungi (4) as of 10 March 2021 (https://figshare.com/
articles/dataset/Irreproducibility_of_maximum_likeli-
hood_phylogenetic_inference/11917770?file=24764333) 
from a recent phylogenomic study (Shen et  al. 2020) 
(Table 1). These 15 phylogenomic datasets were con-
structed using 5 different gene sampling approaches, 
namely Ultraconserved Element (UCE) capture, 
Anchored Hybrid Enriched (AHE) capture, conserved 
exon capture, transcriptome sequencing, and whole 
genome sequencing. They also represented a wide range 
of data types (non-coding DNA (DNA), exon (DNA), 
and amino acid (AA)) and a broad taxonomic range 
from genus to phylum. All 19,414 gene alignments in 
FASTA form can be found on the figshare repository 
(http://dx.doi.org/10.6084/m9.figshare.17086259).

Assessment of Effect of Different Starting Trees on 
Maximum Likelihood Gene Tree Inferences

To investigate the effect of different starting trees 
on the single-gene ML tree inferences, we conducted 
one independent tree search from BioNJ tree, par-
simony tree, or random tree for IQ-TREE (version 
1.6.12) (Nguyen et al. 2015), RAxML-NG (version 0.9.0) 
(Kozlov et al. 2019), and PhyML (version 3.3.20220408) 
(Guindon et  al. 2010), each using 1 CPU on the same 
compute node (AMD EPYC 7662 @ 2.0 GHz processor 
with 128 threads). Since executing all tree searches on a 
single node was computationally expensive, we sam-
pled 200 genes from each of 15 animal, plant, and fun-
gal phylogenomic datasets (Table 1). The total number 
of gene alignments is 3000.

For each gene alignment, we first generated 3 differ-
ent starting trees including BioNJ tree, parsimony tree, 
and random tree. Next, for each of the 3 different start-
ing trees, we executed one independent ML tree search 
using IQ-TREE, RAxML-NG, and PhyML, respec-
tively. Thereby we obtained 3 ML trees inferred from 
three starting trees for each of 3000 gene alignments. 
Last, for a given gene alignment and a given ML pro-
gram, we denoted the ML gene tree with the highest 

log-likelihood score as the best-of-3 ML gene tree topol-
ogy within a given ML program. The specific command 
line instructions and parameter settings for generating 
3 different starting trees and executing ML gene tree 
inferences are given in the Supplementary text.

Assessment of Effect of Varying Numbers of Tree Searches 
on the Performance of Finding Gene Tree with the Highest 

Log-Likelihood Score

To take into account variation that may stem from dif-
ferent tree rearrangement algorithms used in heuristic 
search, we used both the NNI-based IQ-TREE and the 
SPR-based RAxML-NG to assess the effect of varying 
numbers of tree searches on the performance of finding 
gene tree with the highest log-likelihood score.

Given that the true highest likelihood score is 
unknown and that increasing the number of tree 
searches in heuristic searches is computationally very 
expensive, we limited the number of tree searches to 
100, which is much higher than the number of tree 
searches used in all 15 original phylogenomic studies. 
To conduct 100 tree searches for all 19,414 alignments, 
we divided them into 5 sets, with each set running 20 
tree searches. Following the tree search strategy of a 
recent study (Kozlov et al. 2019), we ran 20 tree searches 
with IQ-TREE utilizing the option “-runs 20 -seed ran-
dom number” and RAxML-NG utilizing the option 
“--tree pars{10},rand{10} --seed random number.” Two 
examples of the specific command line instructions 
and parameter settings for running 100 tree searches in 
IQ-TREE and RAxML-NG for a DNA sequence align-
ment and an amino acid alignment are given in the 
Supplementary text.

Overall, we executed 194,140 jobs (19,414 align-
ments × 5 times × 2 ML programs). Each job was run 
on a single node with 2 threads and 2 GB RAM on the 
Center for High Throughput Computing (CHTC) at 
the University of Wisconsin-Madison and the Center 
for Engineering and Scientific Computation (CESC) at 
Zhejiang University

Note that, the log-likelihood scores typically dif-
fer among distinct ML inference tools due to differ-
ent round-off error propagation or subtle differences 
in the numerical implementation of model parame-
ter optimization routines. In order to avoid a possible 
bias, we chose to reevaluate log-likelihood scores of 
100 IQ-TREE-inferred gene trees and 100 RAxML-
NG-inferred gene trees for each gene alignment with 
IQ-TREE. For a given gene alignment, once 100 exten-
sive tree searches were completed, their log-likelihood 
scores were re-calculated using iqtree (iqtree -safe -nt 2 
-seed 369284957 -quiet -me 0.0001 -m $model -s $fas_id.
fasta -te $in.tre -pre $pre_id; note that the “-me” option 
specifies that the log-likelihood scores are calculated 
from a precision of 4 decimal places) on a laboratory 
server. We then labeled the 100 runs with R1 to R100 
and recorded which runs achieved the highest log- 
likelihood scores (we referred them as best-of-100 ML 
gene tree). Specifically, we compared each of the gene 

https://figshare.com/articles/dataset/Irreproducibility_of_maximum_likelihood_phylogenetic_inference/11917770?file=24764333
https://figshare.com/articles/dataset/Irreproducibility_of_maximum_likelihood_phylogenetic_inference/11917770?file=24764333
https://figshare.com/articles/dataset/Irreproducibility_of_maximum_likelihood_phylogenetic_inference/11917770?file=24764333
http://dx.doi.org/10.6084/m9.figshare.17086259
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trees (R1 to R100) against the best-of-100 ML tree topol-
ogy in terms of topology and log-likelihood score. For a 
given run, we considered the gene tree as the best-of-100 
tree topology if i) its topology was identical to that of the 
best-of-100 ML tree topology; or ii) if its log-likelihood  
score was identical to the highest log-likelihood score, 
despite of any topological differences. Note that ML 
programs have limited numerical precision for log- 
likelihood score calculation, which could lead to 
different gene topologies having identical log-likelihood  
scores in output files (Haag et al. 2023).

Assessment of Effect of Varying Numbers of Tree Searches 
on Concatenation- and Quartet-Based Species Tree 

Estimations

Since running 100 tree searches for the concatenation- 
based ML inference is computationally very expensive, 
we sampled the first 200 genes from each of the 15 phy-
logenomic datasets. For each of the 15 phylogenomic 
studies, we first concatenated each study’s 200 genes 
into a supermatrix and then ran 100 tree searches for 
inferring concatenation-based species phylogeny using 
IQ-TREE and RAxML-NG.

The command line instructions and parameter set-
tings for running 100 tree searches for a supermatrix 
in IQ-TREE and RAxML-NG are exactly same to those 
used for a single-gene alignment, except for the number 
of threads. Running 100 tree searches for a supermatrix 
used 16 threads (“-nt 16” in IQ-TREE; “--threads 16” 
in RAxML-NG) instead of 2 threads as for single-gene 
alignment analyses (“-nt 2” in IQ-TREE; “--threads 2” 
in RAxML-NG). Two examples of the specific com-
mand line instructions and parameter settings for run-
ning 100 tree searches in IQ-TREE and RAxML-NG for 
DNA and amino acid supermatrices are given in the 
Supplementary text.

Note that only 14 concatenation-based species phy-
logenies were successfully used to investigate the effect 
of varying numbers of tree searches on concatenation- 
based species tree estimations, because inferring 100 
concatenation-based ML tree searches for the green 
plant phylogenomic data set (200 genes and 1178 taxa—
by far the largest in its number of taxa) using IQ-TREE 
and RAxML-NG on a 48-CPU node failed to finish after 
5 months. All analyses of concatenation-based species 
trees were executed on four laboratory servers. All 14 
supermatrices and their concatenation-based species 
trees are available on the figshare repository.

For each of the 15 phylogenomic studies, we also 
reconstructed their quartet-based species trees from all 
individual gene trees with wASTRAL-h v1.3 (Zhang 
and Mirarab 2022), a weighted ASTRAL (Mirarab 
et al. 2014; Zhang et al. 2018) program that takes into 
account phylogenetic uncertainty by integrating sig-
nals from branch length and branch support in the set 
of input gene trees to improve quartet-based species 
tree inference (Zhang and Mirarab 2022). To investi-
gate the effect of varying numbers of tree searches on 
quartet-based species tree estimations, we created 7 

sets of the best-observed gene tree topologies inferred 
using 1, 10, 20, 40, 60, 80, or 100 tree searches and then 
reconstructed their quartet-based species trees with 
wASTRAL-h. All 105 sets of gene trees (15 studies ×7 
sets) and their quartet-based species trees are available 
on the figshare repository. The specific command line 
instructions and parameter settings for inferring their 
quartet-based ASTRAL species trees are given in the 
Supplementary text.

Using simulated data to examine the accuracy of gene tree 
estimation in relation to the number of tree searches

To examine the difference between the best-of-100 tree 
topologies that had different chances to be found among 
100 tree searches, we used 20,000 simulated DNA sequence 
alignments from a previous study (Höhler et al. 2022a), in 
which each gene alignment was simulated on the empir-
ical data-derived gene tree and the model parameters in 
the RAxMLGrove database (Höhler et al. 2022b), which 
contains RAxML and RAxML-NG users’ phylogenetic 
data on 2 web-servers (https://github.com/angtft/
RAxMLGrove and https://www.phylo.org/index.php). 
Note that all taxon names in the simulation data sets were 
changed to artificial taxon IDs (e.g., taxon1).

For each of 20,000 simulated DNA sequence align-
ments, we conducted 100 tree searches using 100 runs 
for IQ-TREE, 50 parsimony starting trees, and 50 ran-
dom starting trees for RAxML-NG, and 1 BioNJ start-
ing tree, 50 parsimony starting trees, and 49 random 
starting trees for PhyML (see Supplementary text for 
details). For a given number of tree searches, the accu-
racy of gene tree estimation was calculated as the topo-
logical similarity between its single-gene tree and the 
reference true tree using the quartet distance (topolog-
ical similarity = 1 − quartet distance) in the R package 
Quartet (v1.2.5) (Smith 2019).

Topological hypothesis testing

We used the AU test (Shimodaira 2002) in IQ-TREE 
to determine whether 2 gene trees were significantly 
different or not. Specifically, i) for each of 19,414 empir-
ical gene alignments, we assessed whether the best- 
observed gene tree topology inferred from using R1, 
R10, R20, R40, R60, or R80 had significantly lower log- 
likelihood score than the best-of-100 gene tree topol-
ogy found among 100 runs; ii) for each of 20,000 
simulated gene alignments, we assessed whether the best- 
observed gene tree topology inferred from using R1, 
R10, R20, R40, R60, R80, or R100 had significantly 
higher log-likelihood score than the true gene tree (i.e., 
reference tree). The specific command line instructions 
and parameter settings for running AU tests are given 
in the Supplementary text.

Statistical analyses

All statistical analyses were performed in R (v. 3.6.3). 
Pearson’s correlation coefficient was used to test for cor-
relations among different variables. All bar or dot plots 
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were generated using the ggplot2 package (Wickham 
2009) in R.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository: 
https://dx.doi.org/10.5061/dryad.rv15dv4b7.
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