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Abstract—Maximum likelihood (ML) phylogenetic inference is widely used in phylogenomics. As heuristic searches
most likely find suboptimal trees, it is recommended to conduct multiple (e.g., 10) tree searches in phylogenetic analyses.
However, beyond its positive role, how and to what extent multiple tree searches aid ML phylogenetic inference remains
poorly explored. Here, we found that a random starting tree was not as effective as the BioN] and parsimony starting
trees in inferring the ML gene tree and that RAXML-NG and PhyML were less sensitive to different starting trees than IQ-
TREE. We then examined the effect of the number of tree searches on ML tree inference with IQ-TREE and RAXML-NG, by
running 100 tree searches on 19,414 gene alignments from 15 animal, plant, and fungal phylogenomic datasets. We found
that the number of tree searches substantially impacted the recovery of the best-of-100 ML gene tree topology among
100 searches for a given ML program. In addition, all of the concatenation-based trees were topologically identical if the
number of tree searches was >10. Quartet-based ASTRAL trees inferred from 1 to 80 tree searches differed topologically
from those inferred from 100 tree searches for 6/15 phylogenomic datasets. Finally, our simulations showed that gene
alignments with lower difficulty scores had a higher chance of finding the best-of-100 gene tree topology and were more
likely to yield the correct trees. [Heuristic tree search; hill-climbing; local optima; maximum likelihood; phylogenomics;

species tree estimation. ]

Reconstructing the evolutionary relationships among
organisms is important for understanding the patterns
and mechanisms of genetic and phenotypic diversity
(Hillis et al. 1996; Felsenstein 2003; Hamilton 2014;
Yang 2014; Li et al. 2022). Because the number of possi-
ble trees grows exponentially with the number of taxa
(Felsenstein 1978), modern phylogenetic inference relies
on heuristic search algorithms (e.g., hill-climbing algo-
rithms) to infer a nearly optimal tree (Chor and Tuller
2005) in the space that consists of all possible unrooted
binary trees. Under the maximum likelihood (ML)
framework (Felsenstein 1981, 2003), for instance, tree
searching is typically an iterative process that begins
with a starting tree (e.g., a tree inferred by parsimony or
distance methods, or a random tree), from which a set
of candidate trees is generated by rearrangement oper-
ations such as Nearest-Neighbor-Interchange (NNI)
(Robinson  1971),  Subtree-Pruning-and-Regrafting
(SPR) (Swofford et al. 1996), and Tree-Bisection-
and-Reconnection (TBR) (Allen and Steel 2001). If a

candidate tree has a higher log-likelihood score than the
starting tree, it will replace the starting tree to initiate
a new iteration. The tree search process finishes when
no tree with a higher log-likelihood score can be found
and the tree with the highest score is deemed to be the
nearly optimal or ML tree.

Popular programs for ML phylogenetic infer-
ence mainly differ in the rearrangement operations.
For example, RAXML-NG implements a SPR-based
hill-climbing search strategy; at each iteration of tree
search, it identifies promising re-grafting positions
within a certain radius from the pruning position and
applies multiple SPR rearrangements simultaneously
to speed up the inference. IQ-TREE initially maintains
a pool of 20 best-candidate trees, determined from 1
BioN] starting tree (Gascuel 1997) and 99 parsimony
starting trees. Each iteration starts with a tree that is
selected at random from the pool, the tree topology is
stochastically perturbed and used as the starting tree
for a NNI-based hill-climbing tree search. The analysis
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finishes if no better tree can be found for multiple iter-
ations. PhyML utilizes both types of rearrangement
operations successively; it first performs an SPR-based
hill-climbing tree search, and the resulting tree is fur-
ther improved by NNI-based hill-climbing. Because
the search strategy is heuristic, it is not guaranteed that
this ML tree is the one with the globally highest score. A
standard solution to increasing the chance of finding a
better ML tree is to conduct multiple independent tree
searches, each from a different starting tree or a differ-
ent random seed, in current fast ML-based programs
such as IQ-TREE (Nguyen et al. 2015; Minh et al. 2020),
MEGA (Tamura et al. 2011; Kumar et al. 2016), PhyML
(Guindon and Gascuel 2003; Guindon et al. 2010), and
RAXML/RAXML-NG (Stamatakis 2014; Kozlov et al.
2019).

Several previous studies have extensively exam-
ined the efficacy of different rearrangement operations
on ML tree inference (e.g., Vinh and Haeseler 2004;
Morrison 2007; Money and Whelan 2012). For example,
Money and Whelan (2012) found that NNI performed
poorly in finding the nearly optimal tree compared
to SPR. In light of this result, IQ-TREE (Nguyen et al.
2015; Minh et al. 2020), one of the state-of-the-art
ML-based programs, overcomes the weakness of NNI-
based tree search by implementing a broad sampling
of initial starting trees and random perturbation of
current best trees. In addition, many previous studies
have examined the efficacy of different fast ML-based
programs on ML tree inference (Liu et al. 2011; Nguyen
et al. 2015; Zhou et al. 2018; Kozlov et al. 2019; Park
et al. 2021). For example, a recent analysis (Zhou et al.
2018) of 19 empirical phylogenomic datasets showed
that IQ-TREE, PhyML, and RAxML had comparable
performance when conducting 10 tree searches on each
alignment.

A potential drawback of almost all of the previ-
ous studies is that they used no more than 20 tree
searches, leaving the effect of varying the number of
tree searches on ML phylogenetic inference under-
investigated. To address this gap, we performed 100
tree searches for each of the 19,414 single-gene align-
ments in 15 animal, plant, and fungal phylogenomic
datasets and 20,000 simulated gene alignments (Shen
et al. 2020; Hohler et al. 2022a). Then, we asked 2 ques-
tions: i) How does the number of tree searches affect
the performance of finding the best ML tree? ii) Are
extensive tree searches in ML phylogenetic inference
necessary? Our results reveal that variation in num-
ber of tree searches can substantially influence ML tree
inference and that the difficulty score (Haag et al. 2022)
could be a useful predictor for roughly estimating the
necessary number of tree searches for ML inference.

RESULTS

Different ML phylogenetic programs could have
different tree search algorithms, resulting in varying

numbers of tree searches during a single default run.
For example, RAXML-NG’s default run initiates with
10 parsimony starting trees and 10 random starting
trees, followed by conducting one tree search on each
starting tree. Ultimately, it produces the best ML tree
from a total of 20 tree searches. IQ-TREE’s default run
begins with one BioN] starting tree and 99 parsimony
starting trees, followed by iteratively conducting tree
searches on a pool of 20 best candidate trees throughout
the analysis. In the end, it produces the best ML tree,
determined from a stochastic number of tree searches.
In this study, following the strategy of a recent study
(Kozlov et al. 2019), we defined one tree search as using
one starting tree for both RAXML-NG and PhyML and
using one run for IQ-TREE. Note that the effect of vary-
ing the number of starting trees on ML phylogenetic
inference is not directly comparable across different
ML programs due to the variation in the number of
tree searches performed by different ML programs. In
addition, we had no intention of comparing likelihood
scores or topological accuracies of different ML pro-
grams in this study. Therefore, our assessment solely
focused on the effect of the number of tree searches on
ML phylogenetic inference within a given ML program.

The Effect of Different Starting Trees on Single-Gene Tree
Inference

As ML phylogenetic inference begins with a starting
tree, we first investigated the effect of different starting
trees on single-gene ML tree inferences. For each gene
alignment, we conducted one independent tree search
from a BioN] tree, a parsimony tree, or a random tree
using 1 CPU on a single compute node (AMD EPYC
7662 @ 2.0 GHz processor with 128 threads). We sam-
pled 200 genes from each of 15 animal, plant, and fun-
gal phylogenomic datasets since executing all of the
tree searches on the same node was computationally
expensive (Table 1). Thus, for each of 3000 gene align-
ments, we used 3 different starting trees to infer 3 ML
gene trees and denoted the ML gene tree with the high-
est log-likelihood score as the best-of-3 ML gene tree
topology within a given ML program. We then exam-
ined the fractions of the 3000 single-gene alignments
for which the best-of-3 gene tree topology was found,
which we refer to as the “recovery rate.” Note that the
recovery rate was not comparable between IQ-TREE,
RAXML-NG, and PhyML, as the best-of-3 ML gene tree
topology was determined independently for each ML
program.

Overall, we found that in terms of recovery rates,
the random starting tree was less efficient in finding
the best-of-3 ML gene tree topology for IQ-TREE, as
compared with the BioN]J starting tree and the parsi-
mony starting tree (Fig. 1la). RAXML-NG and PhyML
were less sensitive to different starting trees (Fig. la).
Among the 15 phylogenomic datasets, different starting
trees exhibited varying recovery rates for a given ML
program. Notably, IQ-TREE displayed greater variation
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TaBLE 1. Summary of 15 phylogenomic datasets examined in this study.
Study ID Dataset Taxonlevel No. No Sampling Data  Study reference
taxa loci  method type
Bee Animal: Bees Genus 190 753 UCE DNA  Blaimer et al., Evolution, 2018 (Blaimer et
al. 2018)
Bird Animal: Birds Class 200 259 AHE DNA  Prum etal., Nature, 2015 (Prum et al. 2015)
Butterfly Animal: Order 207 352 AHE DNA  Espeland et al., Current Biology, 2018
Butterflies (Espeland et al. 2018)
Lizard Animal: Lizards ~ Genus 29 1361 Exon-Capture DNA  Blom et al., Syst Biol, 2017 (Blom et al. 2017)
Marine-fish Animal: Marine ~ Superorder 120 1001 UCE DNA  Alfaro et al., Nat. Ecol. Evol. 2018 (Alfaro
fishes et al. 2018)
Rodent Animal: Rodents ~ Family 37 1245 Exon-Capture DNA  Roycroft et al., Syst Biol, 2019 (Roycroft et
al. 2020)
Cardueae Plant: Cardueae =~ Family 85 570 UCE DNA  Herrando-Moraira et al., Mol Phyloge Evol,
2018 (Herrando-Moraira et al. 2018)
Caryophyllales Plant: Order 95 1122 Transcriptome AA Yang et al., Mol Biol Evol, 2015 (Yang et al.
Caryophyllales 2015)
Green-Plants Plant: Green Phylum 1178 410 Transcriptome AA 1KP Initiative, Nature, 2019 (One Thousand
plants Plant Transcriptomes Initiative 2019)
Jaltomata Plant: Jaltomata Genus 15 6431 Transcriptome DNA  Wuetal., Mol Ecol, 2018 (Wu et al. 2018)
Protea Plant: Protea Genus 65 498 AHE DNA  Mitchell et al., American Journal of Botany,
2017 (Mitchell et al. 2017)
Aspergillaceae Fungi: Order 93 1668 Genome DNA  Steenwyk et al., mBio, 2019 (Steenwyk et
Aspergillaceae al. 2019b)
Saccharomycotina-  Fungi: Budding Subphylum 343 2408 Genome AA Shen et al., Cell, 2018 (Shen et al. 2018)
Cell yeasts
Hanseniaspora Fungi: Family 29 1033 Genome AA Steenwyk et al., PloS Biol, 2019 (Steenwyk
Hanseniaspora et al. 2019a)
Rhizoplaca Fungi: Genus 31 303 Genome DNA  Leavitt et al., Sci Rep, 2016 (Leavitt et al.
Rhizoplaca 2016)

in recovery rate across the three different starting trees,
especially for phylogenomic datasets with larger num-
bers of taxa (e.g., Bees, Birds, Butterflies, Green plants,
and Budding yeasts) (see Supplementary Fig. S1). This
observation is likely attributed to the fact that IQ-TREE
employs an NNI-based hill-climbing tree search, which
explores a less extensive tree searching space compared
to the SPR-based hill-climbing tree search (Zhou et al.
2018).

In addition, as we executed all tree searches using 1
CPU on the same compute node, we can fairly compare
the runtimes of inferring ML gene trees across differ-
ent starting trees and different ML programs. Overall,
we found that the use of a random starting tree had
slightly longer runtimes than the uses of BioN]J starting
tree and parsimony starting tree within a given ML pro-
gram (Fig. 1b and Supplementary Fig. S2). RAXML-NG
on average ran the fastest, followed by IQ-TREE and
PhyML (Fig. 1b and Supplementary Fig. S2).

The Number of Tree Searches Substantially Influences the
Identification of Single-Gene Trees With the Highest Log-
Likelihood Scores

We investigated the effect of varying the number of
tree searches on ML phylogenetic inference through
an extensive analysis of all 19,414 single-gene align-
ments from 15 animal, plant, and fungal phylogenomic
datasets (Table 1). For each of 19,414 single-gene align-
ments, we conducted 100 tree searches using 100 runs
for IQ-TREE (v1.6.12) and using 50 parsimony start-
ing trees and 50 random starting trees for RAXML-NG

(v0.9.0), following the tree search strategy of a recent
study (Kozlov et al. 2019). Because executing 100 tree
searches from a single command line is computa-
tionally expensive, we chose to partition them into 5
sets. Each set involved running 20 tree searches, with
IQ-TREE utilizing the option “-runs 20 -seed ran-
dom number” and RAXML-NG utilizing the option
“—-tree pars{10},rand{10} --seed random number” (see
Supplementary Text for details). In brief, RAXML-NG
performs one tree search on each of the 20 starting trees
using the SPR rearrangement operation. For each of 20
runs in IQ-TREE, it starts with one BioN] starting tree
and 99 parsimony starting trees and then maintains
a pool of 20 best candidate trees to conduct one tree
search using the NNI rearrangement operation. Due to
differences in tree search algorithms between IQ-TREE
and RAXML-NG, it is important to note that the results
regarding the impact of varying the number of tree
searches on ML phylogenetic inference are not directly
comparable between the two programs.

After obtaining 100 single-gene ML trees labeled with
R1 to R100 for each of 19,414 gene alignments within
a given ML program, we considered the ML gene tree
with the highest log-likelihood score as the best-of-100
ML gene tree topology and asked which runs achieved
the best-of-100 ML gene tree topologies. Among the
19,414 gene alignments, we observed that 938 (4.8%)
for IQ-TREE and 781 (4.0%) for RAXML-NG produced
the best-of-100 ML gene trees that had equal highest
log-likelihood scores but different topologies. In the-
ory, distinct gene topologies should not share identical
log-likelihood scores; however, it is well known that
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FiGure 1.

Effect of different starting trees on ML gene tree inferences. We conducted 1 independent ML tree search from BioNJ tree,

parsimony tree, or random tree using 1 CPU on a single compute node (see “Methods” section for details). For each of 3000 gene alignments,
we defined the ML gene tree with the highest log-likelihood score as the best-of-3 ML gene tree topology found by a given ML program. a)
Percentage of genes that achieved the best-of-3 ML gene tree topologies within a given ML program. b) Runtime of one independent ML tree
search using 1 CPU on the same node. The runtimes (in seconds) are shown in logarithm base 10. Horizontal bar in the boxplot denotes the
median value. The individual results for each of 15 phylogenomic studies are given in Supplementary Figs. S1 and S2.

ML programs have limited numerical precision for log-
likelihood score calculation. This could lead to different
gene topologies having identical log-likelihood scores
in the output files (Haag et al. 2023). Given that the
proportion of gene alignments with identical highest
log-likelihood scores but different topologies was rela-
tively small, we included them in subsequent analyses.

Next, we examined the recovery rate, that is the frac-
tion of the 19,414 single-gene alignments for which the
best-0f-100 ML gene tree topologies were found for a
given number of tree searches. Overall, the recovery
rates were ~51% for the 19,414 1Q-TREE-inferred gene
trees and ~42% for the 19,414 RAXML-NG-inferred
gene trees when using one tree search (Fig. 2 and
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Supplementary Table S1). The recovery rate increased
to 69% for the 19,414 IQ-TREE-inferred gene trees and
~64% for the 19,414 RAXxML-NG-inferred gene trees
when using ten tree searches, which is computationally
tractable for most phylogenomic data matrices (Fig. 2).
Among the 15 phylogenomic datasets examined, the
recovery rates at ten tree searches varied between 10%
and 99.5% with an average value of 54.7% for IQ-TREE
and between 8% and 99% with an average value of

49.5% for RAXML-NG (Fig. 2). In addition to the recov-
ery rate metric, we also calculated the probability (p)
of finding the best-of-100 ML gene tree topology for a
given number of tree searches (1) for each gene align-
ment. The probability (p) is 1 — (1 —f)", where f is the
fraction of the best-of-100 ML gene tree topologies
observed out of 100 tree searches. It is important to
note that the recovery rate metric (f) and the probabil-
ity (p) serve different purposes. The former is an actual

All Animal: Bees (No.taxa: 190)

Animal: Birds (No.taxa: 200) Animal: Butterflies (No.taxa: 207)
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Number of tree searches

Ficure2. Effect of varying numbers of tree searches on finding the best-of-100 ML gene tree topology. For each of the 19,414 gene alignments
from 15 diverse phylogenomic datasets (Table 1), we used 100 extensive tree searches with 2 maximum likelihood (ML) programs IQ-TREE
and RAXML-NG. The ML gene tree topology with the highest log-likelihood score was defined as the best-of-100 ML gene tree topology found
among 100 tree searches for a given ML program. To assess the effect of varying numbers of tree searches on finding the best-of-100 ML gene
tree topology, we asked whether the best-of-100 ML gene tree topology was encountered when using 1, 10, 20, 40, 60, 80, and 100 tree searches
for a given ML program, respectively. The dot plot at the upper left is based on all 19,414 gene alignments from 15 phylogenomic data sets. The
rest of the dot plots show the individual results for each of the 15 phylogenomic data sets. Horizontally dashed lines denote 95%. The number
of taxa for each of 15 phylogenomic data sets was included on the top of each panel title.
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observed value and the latter is a predicted value based
on the observed fraction. Among the 15 phylogenomic
datasets, both the probability (p) and the recovery rate
metric (f) demonstrated similar trends in evaluating
the chance of finding the best-of-100 ML gene tree
topologies (Supplementary Fig. S3), while they exhib-
ited variation in the chance of finding the best-of-100
ML gene tree topologies at different numbers of tree
searches.

As expected, we found that, with an increasing num-
ber of tree searches, both IQ-TREE- and RAXML-NG-
inferred gene trees increased log-likelihood scores and
were topologically more similar to the best-of-100 ML
gene tree topologies (Fig. 3a,b and Supplementary Figs.
S4 and S5). To examine whether the best-observed gene
tree topology found from 1 to 80 significantly differed
from the best-of-100 gene tree topology, we used the
approximately unbiased (AU) test (Shimodaira 2002) to
evaluate whether the best-observed gene tree topology
and the best-of-100 gene tree topology could equally
explain the gene alignment (null hypothesis HO). We
found that the number of the best-observed gene tree
topologies that had significantly lower log-likelihood
scores than the best-of-100 gene tree topologies (AU test;
P value < 0.05) decreased with an increasing number of
tree searches for the 19,414 single-gene alignments (Fig.
3¢ and Supplementary Fig. 56). When evaluating the
changes in log-likelihood scores and gene tree topolog-
ical similarity across different numbers of tree searches,
we observed the biggest improvement from R1 to R10
(Fig. 3).

Toexploretheunderlying causesofthevarying chances
of finding the best-of-100 ML gene tree topology, we
divided the 19,414 single-gene alignments from 15 phy-
logenomic studies into 11 groups according to the num-
ber of the best-of-100 ML gene tree topologies observed
out of 100 tree searches (Fig. 4a and Supplementary Fig.
S7). Next, for each of the 11 groups of gene alignments,
we examined 5 characteristics: difficulty score of the
gene alignment predicted by Pythia (v1.1.2) (Haag et al.
2022), which integrates 8 features such as parsimony
trees, entropy, and alignment attributes to quantify the
degree of difficulty for analyzing a gene alignment prior
to initiating ML tree inference; parsimony—informative
sites in gene alignment; average bootstrap support
across the best-of-100 ML gene tree topology; percent-
age of internal branches with high bootstrap support
values; and percentage of internal branches with near-
zero lengths. Overall, we found that gene alignments
with lower chances of finding the best-of-100 ML gene
tree topologies tended to have higher difficulty scores
(Fig. 4b), lower numbers of parsimony-informative
sites (Fig. 4c), lower average bootstrap support values
(Fig. 4d), lower percentages of internal branches with
high bootstrap support values (Fig. 4e), and higher per-
centages of internal branches with near-zero lengths
(Fig. 4f). We observed similar trends within each of 15
phylogenomic datasets (Supplementary Figs. S8-512).
Furthermore, we examined the correlation between the
chance of finding the best-of-100 ML gene tree topology

and each of the 5 characteristics and found that the dif-
ficulty score exhibited the strongest correlation with the
chance of finding the best-of-100 ML gene tree topology
(Supplementary Fig. 513 and Supplementary Table S2).
Finally, we found that the majority (IQ-TREE: 67.44%;
RAXML-NG: 62.77%) of gene alignments with a <10%
chance of finding the best-of-100 ML gene tree topology
were characterized as difficult datasets (Supplementary
Fig. S14a). In contrast, the majority (IQ-TREE: 65.49%;
RAXML-NG: 76.61%) of gene alignments with a 290%
chance of finding the best-0f-100 ML gene tree topology
were characterized as easy datasets (Supplementary
Fig. S14b). Although predicting the number of tree
searches required to find the best-of-100 ML gene tree
topology is quite challenging (Vinh and Haeseler 2004;
Haag et al. 2022; Hohler et al. 2022a), our results along
with a recent finding (Togkousidis et al. 2023) sug-
gested that the difficulty score could be a useful predic-
tor for roughly estimating the necessary number of tree
searches for ML inference.

The Effect of the Number of Tree Searches on Concatenation-
and Quartet-Based Species Tree Inferences

We next assessed the effect of the number of tree
searches on concatenation- and quartet-based spe-
cies tree inferences. Given the difference in algorithm
between concatenation- and quartet-based approaches
we used, we did not directly compare the concatenation-
based species trees with the quartet-based species trees
inferred with different numbers of tree searches.

We first assessed the effect of the number of tree
searches on concatenation-based species tree estima-
tions. For each phylogenomic dataset, we used 100 tree
searches to reconstruct concatenation-based ML trees
with IQ-TREE and RAXML-NG (see Supplementary
Text for details), respectively. The green plant phyloge-
nomic data set was left out due to its very large number
of taxa (1178) because inferring concatenation-based
ML tree searches for the green plant phylogenomic
data set using IQ-TREE and RAXML-NG on a 48-CPU
node failed to finish after 5 months. Overall, the recov-
ery rate of the best-of-100 concatenation-based ML tree
topology was ~79% (11/14 datasets) for IQ-TREE and
~71% (10/14 datasets) for RAXML-NG when using 1
tree search (Fig. 5a), and 100% for both IQ-TREE and
RAXML-NG when the number of tree searches was
equal to or greater than 10 (Fig. 5a, Supplementary Fig.
515, and Supplementary Table S3). These results suggest
that the use of 10 tree searches is sufficient to generate
the best-of-100 concatenation-based ML tree topology.

We then examined the effect of varying numbers
of tree searches on quartet-based species tree esti-
mations for each of the 15 phylogenomic datasets.
For each phylogenomic dataset, we inferred the
quartet-based species phylogeny on the set of all the
best-observed gene tree topologies inferred from 1 to
100 tree searches by weighting the branch support and
branch length with the wASTRAL-h v1.3 (Zhang and
Mirarab 2022). Here, we considered the ASTRAL tree
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Ficure 3. Comparisons of the best-of-100 ML gene tree topologies and the best-observed ML gene tree topologies were found at varying
numbers of tree searches. Here, we examined all 19,414 single-gene alignments when using varying numbers of tree searches. a) Difference in
log-likelihood score between the best-of-100 ML gene tree topology found from R100 and the best-observed ML gene tree topology found from
R1, R10, R20, R40, R60, or R80 for a given ML program. Each bar denotes the mean value with standard deviation. b) Topological difference
between the best-of-100 ML gene tree topology and the best-observed ML gene tree topology. The topological difference was the normalized
Robinson-Foulds (nRF) distance between the best-of-100 gene tree topology and the best-observed gene tree topology. Each bar denotes the
mean value with standard deviation. c) Compositions of all 19,414 inferred ML gene trees when using varying numbers of tree searches for
a given ML program. Comparing with the best-of-100 ML gene tree topology found from R100, we assigned the best-observed ML gene tree
topology found from R1, R10, R20, R40, R60, or R80 into each of three categories: i) the best-observed ML gene tree has significantly lower
log-likelihood score than the best-of-100 ML gene tree topology; ii) the best-observed ML gene tree topology does not have significantly lower
log-likelihood score than the best-of-100 ML gene tree topologys; iii) the best-observed ML gene tree topology is the best-of-100 ML gene tree
topology. We used the AU test to evaluate whether the best-observed ML gene tree topology has a significantly lower log-likelihood score than
the best-of-100 ML gene tree topology or not.
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Ficure 5. Effect of varying numbers of tree searches on concatenation- and quartet-based species tree estimations. a) For concatenation-
based phylogenetic inference, we used 100 tree searches with IQ-TREE and RAXML-NG and compared the best-of-100 concatenation-based ML
tree to the best-observed concatenation-based ML tree inferred from R1, R10, R20, R40, R60, or R80. b) For quartet-based phylogenetic inference,
the quartet-based species tree was reconstructed from all the best-observed ML gene trees inferred using 1, 10, 20, 40, 60, 80, or 100 tree searches,
respectively. We performed this analysis for each of 15 phylogenomic datasets with wASTRAL-h (Zhang and Mirarab 2022). To assess the
effect of varying numbers of tree searches on the ASTRAL tree in terms of topology (panel b), mean branch support (panel c), and mean branch
length in coalescent units (panel d), we compared the ASTRAL tree on the best-observed ML gene trees inferred from 1, 10, 20, 40, 60, or 80 tree
searches to the ASTRAL tree on the best-of-100 ML gene trees inferred from 100 tree searches, respectively. In panels ¢ and d, congruent internal
branches denote bipartitions in ASTRAL trees on the best-observed ML gene trees inferred from a given number of tree searches that match
those in ASTRAL trees on the best-of-100 ML gene trees inferred from 100 tree searches. Conflicting internal branches indicate bipartitions in
ASTRAL trees on the best-observed ML gene trees inferred from a given number of tree searches that differ from those in ASTRAL trees on the
best-of-100 ML gene trees inferred from 100 tree searches.
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reconstructed from the set of single-gene trees inferred
by 100 tree searches as the ASTRAL reference tree
for each dataset. Note that the ASTRAL phylogenies
were not directly comparable between IQ-TREE and
RAXML-NG. This is because the single-gene trees used
as input for ASTRAL estimations were independently
inferred by each respective ML program. Overall,
ASTRAL trees inferred using R1, R10, R20, R40, R60,
and R80 showed increasing topological similarities
to the ASTRAL reference trees (from 96% to 99% for
IQ-TREE and from 91% to 98% for RAXML-NG) (Fig.
5b, Supplementary Fig. 516, and Supplementary Table
S4). Notably, 6 of the 15 phylogenomic datasets (e.g.,
Bees and Green plants) had larger numbers of taxa
than the remaining nine datasets (e.g., Rodents and
Budding yeasts) (on average, the former has 327 taxa
and the latter has 84 taxa), all ASTRAL trees inferred
from 1 to 80 tree searches differed topologically from
the ASTRAL reference trees inferred from 100 tree
searches (Supplementary Fig. S16).

To further examine whether more tree searches
would benefit the branch support and branch length
estimations in quartet-based species phylogeny, we
compared each inferred ASTRAL tree (using R1, R10,
R20, R40, R60, or R80) with the ASTRAL reference tree
(using R100) and examined the supports and lengths
of congruent and conflicting internal branches, respec-
tively. We found that the mean support values and
mean branch lengths of all congruent internal branches
increased as the number of tree searches increased (Fig.
5c¢,d and Supplementary Figs. S17 and S18), while the
mean support values and mean branch lengths of all
conflicting internal branches decreased as the number
of tree searches increased. These results suggest that
increasing the number of tree searches in single-gene
tree inferences could benefit the branch support and
branch length estimations in the ASTRAL species

phylogeny.

Genes With Lower Difficulty Scores Had a Higher Chance
of Finding the Best-of-100 ML Gene Tree Topologies and
Were More Likely to Recover the Correct Trees

Since the true single-gene phylogenies for the 15
empirical phylogenomic datasets are unknown, it is
impossible to precisely assess whether the best-observed
gene tree topologies achieved with increasing numbers
of tree searches would be more accurate. To address this
issue, we adopted 20,000 simulated deoxyribonucleic
acid (DNA) sequence alignments from a previous study
(Hohler et al. 2022a), in which each gene alignment was
simulated on the empirical data-derived gene tree and
the model parameters in the RAXMLGrove database
(Hohler et al. 2022b). For each of 20,000 simulated DNA
sequence alignments, we conducted 100 tree searches
using 100 runs for IQ-TREE, 50 parsimony starting trees
and 50 random starting trees for RAXML-NG, and 1
BioN] starting tree, 50 parsimony starting trees, and 49
random starting trees for PhyML (see Supplementary
Text for details), respectively.

Analysis of these 20,000 simulated DNA sequence
alignments showed that the recovery rate (that is the
fraction of the 20,000 simulated gene alignments that
recovered their best-of-100 ML gene tree topologies for
a given number of tree searches) increased with increas-
ing number of tree searches (Fig. 6a and Supplementary
Table S5). Consistent with the findings from the
19,414 empirical gene alignments, we also found that
the difficulty score of the simulated sequence align-
ment also exhibited the strongest correlation with the
chance of finding the best-of-100 ML gene tree topol-
ogy (Supplementary Fig. 519 and Supplementary Table
56). Therefore, following a previous study (Togkousidis
et al. 2023), we divided the 20,000 simulated DNA gene
alignments into 3 groups: the easy alignments (9560
genes with difficulty scores below 0.3), the intermediate
alignments (8926 genes with difficulty scores between
0.3 and 0.7), and the difficult alignments (1514 genes
with difficulty scores above 0.7). As expected, we found
that the easy alignments tended to have the highest
recovery rates of finding the best-of-100 ML gene tree
topologies than the intermediate and difficult align-
ments (Fig. 6a).

Next, we examined the difference in log-likelihood
scores between the best-observed gene tree topologies
inferred from R1, R10, R20, R40, R60, R80, and R100 and
the true gene trees, respectively. We found that the vast
majority (83.9% for IQ-TREE, 83.7% for RAXML-NG,
and 77.8% for PhyML) of 20,000 inferred gene trees had
higher log-likelihood scores than the true gene trees
(Fig. 6b). Furthermore, we noted a rise in the count of
gene trees with higher log-likelihood scores than the
true gene trees as the number of tree searches increased
for RAXML-NG and PhyML. However, for IQ-TREE, the
number of gene trees with higher log-likelihood scores
than the true gene trees remained relatively constant
across 100 tree searches (Fig. 6b). These results suggest
that RAXML-NG and PhyML outperform IQ-TREE in
terms of likelihood optimization. Inaddition, we used the
AU test to evaluate whether the best-observed gene tree
topology had a significantly higher log-likelihood score
than the true tree or not. Our results show that among
20,000 inferred gene trees, 3650 (18.25%) IQ-TREE-
inferred gene trees, 3346 (16.73%) RAXML-NG-inferred
gene trees and 3040 (15.20%) PhyML-inferred gene
trees had significantly higher log-likelihood scores than
the true gene trees (AU test; P value < 0.05) when using
one tree search (Supplementary Fig. S20). As expected,
with an increase in the number of tree searches, the per-
centage of the best-observed gene tree topologies that
had significantly higher log-likelihood scores than the
true gene trees increased, albeit weaker in magnitude
(Supplementary Fig. 520).

To further investigate the topological accuracies of
the best-observed gene tree topologies inferred from
R1, R10, R20, R40, R60, R80, and R100, we examined
the accuracy as measured by the quartet similarity
between the inferred best-observed tree topology and
the true tree using the Rpackage Quartet (v1.2.5) (Smith
2019). Overall, we found that the mean topological
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FiGURE 6. Gene alignments with lower difficulty scores had a higher chance of finding the best-of-100 ML gene tree topologies and are
more likely to yield correct tree topologies. For each of 20,000 simulated DNA sequence alignments from the previous study (Hohler et al.
2022a), we conducted 100 tree searches using 100 runs for IQ-TREE, 50 parsimony starting trees and 50 random starting trees for RAXML-NG,
and one BioN]J starting tree, 50 parsimony starting trees and 49 random starting trees for PhyML, respectively. a) Percentage of genes that
achieved the best-of-100 ML gene tree topologies when using varying numbers of tree searches. b) Percentage of the best-observed ML gene tree
topologies found at varying numbers of tree searches that had higher log-likelihood scores than true gene tree topologies. ¢) Mean topological
similarity between the best-observed ML gene tree topologies found at varying numbers of tree searches and the true gene tree topologies. The
topological similarity was quantified by the quartet distance between the best-of-100 ML gene tree topology and the true gene tree topology
using the R package Quartet (v1.2.5) (Smith 2019). Following the previous study (Togkousidis et al. 2023), we divided the 20,000 simulated gene
alignments into three groups: the easy alignments (9560 genes with a difficulty score below 0.3), the intermediate alignments (8926 genes with
a difficulty score between 0.3 and 0.7), and the difficult alignments (1514 genes with a difficulty score above 0.7).

accuracy was 93.37% for the IQ-TREE-inferred gene
trees, 93.29% for the RAXML-NG-inferred gene trees,
and 93.23% for the PhyML-inferred gene trees when
using one-tree search (Fig. 6¢) for all 20,000 simulated
alignments. As the number of tree searches increased,
RAXML-NG and PhyML demonstrated an increase in
mean topological accuracy, whereas IQ-TREE exhib-
ited a gradual decrease in mean topological accuracy

(albeit with a weaker magnitude of change). This
trend is consistent with observations in the easy data-
sets but not in the intermediate and difficult datasets
(Fig. 6¢). In the intermediate and difficult datasets,
RAXML-NG and PhyML displayed an increase in
mean topological accuracy from R1 to R10, but they
gradually decreased their mean topological accura-
cies after R10. IQ-TREE gradually decreased the mean
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topological accuracies from R1 to R100, although it
outperforms RAXxML-NG and PhyML in terms of
mean topological accuracy. Finally, we found that
inferred gene trees on the easy alignments tended to
be topologically more similar to the true trees than
those on the intermediate alignments and the difficult
alignments (Fig. 6¢). Collectively, our findings indicate
that: 1) easy gene alignments have a higher chance of
finding the best-of-100 ML gene tree topology; 2) these
alignments tend to generate more topologically accu-
rate gene trees; and 3) the accuracies of their inferred
gene trees increase with increasing number of tree
searches, although this improvement is program-
dependent. For more difficult gene alignments, there
is a noticeable pattern of overfitting, particularly with
IQ-TREE at R1 and RAXML-NG and PhyML at R10,
where these methods perform slightly better than at
R100. The overfitting tendencies observed are rel-
atively small, with differences in mean topological
accuracy being less than 1%.

Discussion

This study aimed to uncover the effect of the number
of tree searches on ML phylogenetic inference in phy-
logenomics. To achieve this goal, we carried out com-
putationally extensive analyses of 19,414 single-gene
alignments from 15 phylogenomic datasets. These 15
phylogenomic datasets, with the number of taxa rang-
ing from 15 to 343, along with the green plant dataset
containing 1178 taxa, represent different data types
(non-coding DNA, coding DNA, and amino acid) and
cover a broad taxonomic range from genus to phylum.
In addition, we used 20,000 simulated DNA sequence
alignments, with the number of taxa ranging from 4
to 469 and an average of 69, to examine the effect of
varying the number of tree searches on the accuracy of
single-gene tree estimation. To the best of our knowl-
edge, our work represents the most comprehensive
investigation on this topic to date in terms of both
breadth and depth.

Do different starting trees affect ML phylogenetic
inference? Modern ML phylogenetic inference typi-
cally begins with a starting tree and then executes an
iterative, hill-climbing process using the rearrange-
ment operations, to infer a nearly optimal tree (Chor
and Tuller 2005). Our results show that when one
independent tree search was executed using 1 CPU for
a given ML program, the random starting tree was less
efficient in finding the best-of-3 ML gene tree than the
BioN] and parsimony starting trees. Furthermore, the
use of random starting tree had slightly longer run-
times than the uses of BioN] and parsimony starting
trees. Finally, the random starting tree generally is
more different from the ML tree than the BioNJ and
parsimony starting trees. Therefore, we suggest that
considering BioN] as one of the starting trees in cur-
rent fast ML-based programs, such as RAXML-NG,
would be helpful.

What is the general impact of the number of tree
searches on ML phylogenetic inference? Our study
found that ~69% of single-gene trees achieved their
highest log-likelihood scores with ten tree searches
(R10), which is computationally tractable for most phy-
logenomic studies. However, with R10, itis very rare for
single-gene trees to reach their highest log-likelihood
scores for 4 animal datasets (Bees, Birds, Butterflies, and
Marine fishes), 1 plant dataset (Green plants), and 1 fun-
gal dataset (Budding yeasts), all of which contain > 100
taxa. As single-gene trees are commonly used as input
for species tree estimations, such as quartet-based
ASTRAL species phylogeny (Mirarab et al. 2014; Zhang
et al. 2018; Zhang and Mirarab 2022), we assessed the
influence of the number of tree searches on the ASTRAL
estimation. We found that all ASTRAL species phyloge-
nies reconstructed on single-gene trees inferred using 1,
10, 20, 40, 60, or 80 tree searches differed topologically
from the ASTRAL species phylogeny reconstructed on
single-gene trees inferred using 100 tree searches for
6/15 phylogenomic datasets, although the differences
in topology were usually small. Given that quartet-
based species tree estimation relies on the accuracy of
single-gene tree estimations, our results suggest that
quartet-based analyses could take into account the effect
of varying numbers of tree searches on single-gene ML
tree estimations. Specifically, conducting more tree
searches would at least benefit the branch support and
branch length estimations in quartet-based species phy-
logeny. In addition, our results suggest that the use of
10 tree searches is sufficient to generate a robust ML tree
for concatenation-based analysis.

Is conducting extensive tree searches in ML phy-
logenetic inference necessary? Our results suggest
that increasing the number of tree searches improves
log-likelihood score. At the same time, the marginal
return of conducting more than 10 tree searches var-
ied substantially among 15 phylogenomic data sets.
Furthermore, both empirical and simulated datasets
showed that the difficulty score of gene alignments
exhibited the strongest correlation with the chance
of finding the best-of-100 ML gene tree topologies.
Easy gene alignments are more likely to discover the
best-0f-100 ML gene tree topologies and produce more
accurate phylogenies compared to intermediate and
difficult gene alignments. A recent phylogenetic study
demonstrated that the difficulty score can directly
reflect the amount of phylogenetic signal in the input
gene alignment (Togkousidis et al. 2023). Based on the
results from simulation datasets, for easy gene align-
ments (e.g., difficulty score < 0.3) increasing the number
of tree searches is beneficial for ML phylogenetic infer-
ence in terms of likelihood optimization and topologi-
cal accuracy. Conversely, for intermediate and difficult
gene alignments, extensive tree searches may be unnec-
essary or detrimental.

In summary, our study solely investigated how the
number of tree searches influences ML phylogenetic
inference within each program, rather than compar-
ing across different ML programs. Since different ML
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phylogenetic programs involve varying numbers of tree
searches during a single default run, fairly comparing
the effects of the number of tree searches on ML phy-
logenetic inference across different programs would
require ensuring an equal amount of running time. In
addition, we found that difficulty score could serve as a
useful predictor for estimating the necessary number of
tree searches (Togkousidis et al. 2023). If computational
resources permit, conducting at least 20 tree searches is
recommended for IQ-TREE, and at least 10 tree searches
for RAXML-NG and PhyML.

MATERIAL AND METHODS

Empirical Phylogenomic Datasets

We downloaded all 19,414 gene alignments from 15
phylogenomic studies in animals (6), plants (5), and
fungi (4) as of 10 March 2021 (https://figshare.com/
articles/dataset/Irreproducibility_of maximum_likeli-
hood_phylogenetic_inference/11917770?file=24764333)
from a recent phylogenomic study (Shen et al. 2020)
(Table 1). These 15 phylogenomic datasets were con-
structed using 5 different gene sampling approaches,
namely Ultraconserved Element (UCE) -capture,
Anchored Hybrid Enriched (AHE) capture, conserved
exon capture, transcriptome sequencing, and whole
genome sequencing. They also represented a wide range
of data types (non-coding DNA (DNA), exon (DNA),
and amino acid (AA)) and a broad taxonomic range
from genus to phylum. All 19,414 gene alignments in
FASTA form can be found on the figshare repository
(http:/ /dx.doi.org/10.6084/m9.figshare.17086259).

Assessment of Effect of Different Starting Trees on
Maximum Likelihood Gene Tree Inferences

To investigate the effect of different starting trees
on the single-gene ML tree inferences, we conducted
one independent tree search from BioN] tree, par-
simony tree, or random tree for IQ-TREE (version
1.6.12) (Nguyen et al. 2015), RAXML-NG (version 0.9.0)
(Kozlov et al. 2019), and PhyML (version 3.3.20220408)
(Guindon et al. 2010), each using 1 CPU on the same
compute node (AMD EPYC 7662 @ 2.0 GHz processor
with 128 threads). Since executing all tree searches on a
single node was computationally expensive, we sam-
pled 200 genes from each of 15 animal, plant, and fun-
gal phylogenomic datasets (Table 1). The total number
of gene alignments is 3000.

For each gene alignment, we first generated 3 differ-
ent starting trees including BioN] tree, parsimony tree,
and random tree. Next, for each of the 3 different start-
ing trees, we executed one independent ML tree search
using IQ-TREE, RAXML-NG, and PhyML, respec-
tively. Thereby we obtained 3 ML trees inferred from
three starting trees for each of 3000 gene alignments.
Last, for a given gene alignment and a given ML pro-
gram, we denoted the ML gene tree with the highest

log-likelihood score as the best-of-3 ML gene tree topol-
ogy within a given ML program. The specific command
line instructions and parameter settings for generating
3 different starting trees and executing ML gene tree
inferences are given in the Supplementary text.

Assessment of Effect of Varying Numbers of Tree Searches
on the Performance of Finding Gene Tree with the Highest
Log-Likelihood Score

To take into account variation that may stem from dif-
ferent tree rearrangement algorithms used in heuristic
search, we used both the NNI-based IQ-TREE and the
SPR-based RAXML-NG to assess the effect of varying
numbers of tree searches on the performance of finding
gene tree with the highest log-likelihood score.

Given that the true highest likelihood score is
unknown and that increasing the number of tree
searches in heuristic searches is computationally very
expensive, we limited the number of tree searches to
100, which is much higher than the number of tree
searches used in all 15 original phylogenomic studies.
To conduct 100 tree searches for all 19,414 alignments,
we divided them into 5 sets, with each set running 20
tree searches. Following the tree search strategy of a
recent study (Kozlov et al. 2019), we ran 20 tree searches
with IQ-TREE utilizing the option “-runs 20 -seed ran-
dom number” and RAXML-NG utilizing the option
“—-tree pars{10},rand{10} --seed random number.” Two
examples of the specific command line instructions
and parameter settings for running 100 tree searches in
IQ-TREE and RAXML-NG for a DNA sequence align-
ment and an amino acid alignment are given in the
Supplementary text.

Overall, we executed 194,140 jobs (19,414 align-
ments x 5 times x 2 ML programs). Each job was run
on a single node with 2 threads and 2 GB RAM on the
Center for High Throughput Computing (CHTC) at
the University of Wisconsin-Madison and the Center
for Engineering and Scientific Computation (CESC) at
Zhejiang University

Note that, the log-likelihood scores typically dif-
fer among distinct ML inference tools due to differ-
ent round-off error propagation or subtle differences
in the numerical implementation of model parame-
ter optimization routines. In order to avoid a possible
bias, we chose to reevaluate log-likelihood scores of
100 IQ-TREE-inferred gene trees and 100 RAxML-
NG-inferred gene trees for each gene alignment with
IQ-TREE. For a given gene alignment, once 100 exten-
sive tree searches were completed, their log-likelihood
scores were re-calculated using iqtree (igtree -safe -nt 2
-seed 369284957 -quiet -me 0.0001 -m $model -s $fas_id.
fasta -te $in.tre -pre $pre_id; note that the “-me” option
specifies that the log-likelihood scores are calculated
from a precision of 4 decimal places) on a laboratory
server. We then labeled the 100 runs with R1 to R100
and recorded which runs achieved the highest log-
likelihood scores (we referred them as best-of-100 ML
gene tree). Specifically, we compared each of the gene
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trees (R1 to R100) against the best-of-100 ML tree topol-
ogy in terms of topology and log-likelihood score. For a
given run, we considered the gene tree as the best-of-100
tree topology if i) its topology was identical to that of the
best-of-100 ML tree topology; or ii) if its log-likelihood
score was identical to the highest log-likelihood score,
despite of any topological differences. Note that ML
programs have limited numerical precision for log-
likelihood score calculation, which could lead to
different gene topologies having identical log-likelihood
scores in output files (Haag et al. 2023).

Assessment of Effect of Varying Numbers of Tree Searches
on Concatenation- and Quartet-Based Species Tree
Estimations

Since running 100 tree searches for the concatenation-
based ML inference is computationally very expensive,
we sampled the first 200 genes from each of the 15 phy-
logenomic datasets. For each of the 15 phylogenomic
studies, we first concatenated each study’s 200 genes
into a supermatrix and then ran 100 tree searches for
inferring concatenation-based species phylogeny using
IQ-TREE and RAXML-NG.

The command line instructions and parameter set-
tings for running 100 tree searches for a supermatrix
in IQ-TREE and RAXML-NG are exactly same to those
used for a single-gene alignment, except for the number
of threads. Running 100 tree searches for a supermatrix
used 16 threads (“-nt 16” in IQ-TREE; “--threads 16”
in RAXML-NG) instead of 2 threads as for single-gene
alignment analyses (“-nt 2” in IQ-TREE; “--threads 2”
in RAXML-NG). Two examples of the specific com-
mand line instructions and parameter settings for run-
ning 100 tree searches in IQ-TREE and RAXML-NG for
DNA and amino acid supermatrices are given in the
Supplementary text.

Note that only 14 concatenation-based species phy-
logenies were successfully used to investigate the effect
of varying numbers of tree searches on concatenation-
based species tree estimations, because inferring 100
concatenation-based ML tree searches for the green
plant phylogenomic data set (200 genes and 1178 taxa—
by far the largest in its number of taxa) using IQ-TREE
and RAXML-NG on a 48-CPU node failed to finish after
5 months. All analyses of concatenation-based species
trees were executed on four laboratory servers. All 14
supermatrices and their concatenation-based species
trees are available on the figshare repository.

For each of the 15 phylogenomic studies, we also
reconstructed their quartet-based species trees from all
individual gene trees with wASTRAL-h v1.3 (Zhang
and Mirarab 2022), a weighted ASTRAL (Mirarab
et al. 2014; Zhang et al. 2018) program that takes into
account phylogenetic uncertainty by integrating sig-
nals from branch length and branch support in the set
of input gene trees to improve quartet-based species
tree inference (Zhang and Mirarab 2022). To investi-
gate the effect of varying numbers of tree searches on
quartet-based species tree estimations, we created 7

sets of the best-observed gene tree topologies inferred
using 1, 10, 20, 40, 60, 80, or 100 tree searches and then
reconstructed their quartet-based species trees with
WASTRAL-h. All 105 sets of gene trees (15 studies x7
sets) and their quartet-based species trees are available
on the figshare repository. The specific command line
instructions and parameter settings for inferring their
quartet-based ASTRAL species trees are given in the
Supplementary text.

Using simulated data to examine the accuracy of gene tree
estimation in relation to the number of tree searches

To examine the difference between the best-of-100 tree
topologies that had different chances to be found among
100 tree searches, we used 20,000 simulated DNA sequence
alignments from a previous study (Hohler et al. 2022a), in
which each gene alignment was simulated on the empir-
ical data-derived gene tree and the model parameters in
the RAXMLGrove database (Hohler et al. 2022b), which
contains RAXML and RAXML-NG users’ phylogenetic
data on 2 web-servers (https://github.com/angtft/
RAXMLGrove and https://www.phylo.org/index.php).
Note that all taxon names in the simulation data sets were
changed to artificial taxon IDs (e.g., taxonl).

For each of 20,000 simulated DNA sequence align-
ments, we conducted 100 tree searches using 100 runs
for IQ-TREE, 50 parsimony starting trees, and 50 ran-
dom starting trees for RAXML-NG, and 1 BioN]J start-
ing tree, 50 parsimony starting trees, and 49 random
starting trees for PhyML (see Supplementary text for
details). For a given number of tree searches, the accu-
racy of gene tree estimation was calculated as the topo-
logical similarity between its single-gene tree and the
reference true tree using the quartet distance (topolog-
ical similarity = 1 — quartet distance) in the R package
Quartet (v1.2.5) (Smith 2019).

Topological hypothesis testing

We used the AU test (Shimodaira 2002) in IQ-TREE
to determine whether 2 gene trees were significantly
different or not. Specifically, i) for each of 19,414 empir-
ical gene alignments, we assessed whether the best-
observed gene tree topology inferred from using R1,
R10, R20, R40, R60, or R80 had significantly lower log-
likelihood score than the best-of-100 gene tree topol-
ogy found among 100 runs; ii) for each of 20,000
simulated genealignments, weassessed whetherthebest-
observed gene tree topology inferred from using R1,
R10, R20, R40, R60, R80, or R100 had significantly
higher log-likelihood score than the true gene tree (i.e.,
reference tree). The specific command line instructions
and parameter settings for running AU tests are given
in the Supplementary text.

Statistical analyses

All statistical analyses were performed in R (v. 3.6.3).
Pearson’s correlation coefficient was used to test for cor-
relations among different variables. All bar or dot plots
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were generated using the ggplot2 package (Wickham
2009) in R.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https:/ /dx.doi.org/10.5061/dryad.rv15dv4b?7.
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