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Abstract: As the use of electrochemical batteries, especially lithium-ion (Li-Ion) batteries, increases
due to emerging applications and expanding markets, the accurate and fast estimation of their state
of health (SOH) is becoming increasingly important. The accuracy of the SOH estimation is highly
dependent on the correlation strength between the used indicator and SOH and the accuracy of the
SOH indicator measurement. This paper presents a new differential indicator which has a strong and
consistent correlation with the SOH of Li-Ion batteries, based on a new Electrochemical Impedance
Spectrum (EIS) Phase-Magnitude relationship. It is shown in this paper that the EIS Phase-Magnitude
relationship exhibits a phase-based differential impedance magnitude SOH indicator between a
first-phase peak point and a last-phase valley point. Because of the differential nature of this SOH
indicator and because the two impedance values are measured at a phase peak point and a valley
phase point regardless of the phase absolute values, the effect of impedance measurement shift/offset
(error) on SOH estimation is reduced. This supports the future development of more accurate and
faster online and offline SOH estimation algorithms and systems that have a higher immunity to
impedance measurement shift/offset (error). Furthermore, in this work, the EIS was measured
for a lithium—ion battery that was down to a ~15% SOH, which was not only used to support the
conclusions of this paper, but also helped in filling a gap in the literature for EIS data under deep /high
degradation levels.

Keywords: battery; lithium—ion; state of health; indicator; impedance; degradation; ageing; energy
storage

1. Introduction

Electrochemical batteries, such as lithium—ion (Li-Ion) batteries, are becoming increas-
ingly used in several applications. Examples of these applications include, but are not
limited to, Electric Vehicles and Hybrid Electric Vehicles (EVs and HEVs), power grid-
scale energy storage, homes” and buildings’ solar energy systems, aerospace systems, and
the growing market of consumer portable electronic devices (e.g., tablets, smartphones,
smartwatches, and fitness and health monitoring devices), among others [1-18].

Accurate and fast state-of-health (SOH) estimations or diagnoses and early fault
detections are critical for the reliability and safety of both these batteries and the demanding
applications they are being used in. In power-demanding applications, such as the EVs
application, Li-Ion batteries can usually only be used down to a 70-80% SOH (or initial
capacity) before they are replaced, due to increased failure and fire risks [19,20]. In other
words, EV batteries are retired when they still have 70-80% of their initial capacity. When
such batteries retire from their original power-demanding application, they can be used as
second-use or second-life batteries in less demanding applications, such as in backup power
for telecom and datacenter applications, behind-the-meter energy storage in residential
or commercial applications, and front-of-the-meter storage for utility scale services that
target applications for frequency regulation, voltage support, and excess renewable energy
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storage [7-10]. For second-use/-life applications, the importance of accurate and fast SOH
estimations increases due to the need for remaining life estimations with lower costs, the
need to optimize the utilization of these second-use/-life batteries as a function of their
degrading health to extend their life, and to reduce the potential early failure and fire
risks [19-21].

The methods that are used to estimate the SOH of batteries can be divided into
two main categories in terms of the required measurement time. Category #1 includes, but
isnot limited to, methods that require the information of the complete charging /discharging
cycle of the battery (or a large portion of it), such as the direct capacity measurement method
by Coulomb Counting, among others [4,5,11,22,23]. Category #2 includes methods that do
not require the charging/discharging of the battery and instead utilize the impedance of
the battery [6,24-27].

The direct capacity measurement method (the remaining capacity measurement) for
SOH estimation is one of the most straightforward and most accurate methods if the
battery’s current is measured accurately to count the columns and if the measurements
are performed under a controlled set of parameters, such as temperature. However, in
order to measure the remaining capacity, at least one complete charge/discharge cycle or a
predetermined large portion of the charge/discharge cycle is needed. Not only can this
take hours (based on the capacity of the battery), but it also requires completing the charge
and discharge cycle, which might not be possible/practical for online measurements and
SOH estimations. Therefore, it is a slow method and a method that has better accuracy
when used offline and in laboratory-controlled settings, even though it can be utilized for
online estimations of the state of charge (SOC) and the SOH. This method is usually used
to calibrate the accuracy of other methods, such as impedance-based methods.

Utilizing the EIS information for SOH estimation is drawing increasing attention due
to its speed, in addition to its ability to reflect the internal changes to the battery. Measuring
the EIS of a battery for a frequency range can be done in minutes or seconds, without the
need to wait for a complete charge/discharge cycle (or large portion of it). As is the case
for other methods, such as the direct capacity measurement method, the accuracy of SOH
estimation based on information obtained from the EIS of a battery is highly dependent
on the accuracy of the measurements. Measuring an accurate and consistent EIS across a
frequency range is challenging and usually requires expensive equipment and the frequent
calibration of the equipment. The small change in impedance values as a function of the
SOH makes the needed measurement accuracy (especially when there is shift or offset
in the measurements) even more challenging to achieve. Example algorithms that utilize
information from the EIS of a battery include, but are not limited to, DC impedance (or
the zero-phase impedance point), the EIS minimum impedance magnitude point, and the
1 kHz (or another frequency) impedance point, among others. Therefore, improving the
accuracy of the EIS measurement is critical to achieving a fast and accurate EIS-based
SOH estimation. Moreover, devising SOH indicators from the EIS of a battery that are less
sensitive to measurement shift/offset or error is desired. This is the main objective of the
research results presented in this article. Furthermore, in this work, the EIS was measured
for a lithium—ion battery that was down to a ~15% SOH (i.e., deeply aged to a highly
degraded condition), which was not only used to support the conclusions of this paper, but
also helped fill a gap in the literature for EIS data under deep/high degradation levels.

2. Phase-Magnitude Relationship/Plot Principle

Commonly, researchers and designers utilize relationships/plots, such as Bode plots [28]
and/or Nyquist plots [26,29], to study and analyze the characteristics of a device or system.
This includes studying the Electrochemical Impedance Spectroscopy (EIS) [6,24-27] or, in
other words, the frequency response of the electrochemical impedance of the electrochemi-
cal batteries.

Bode plot, as illustrated in the example of Figure 1, consists of two separate plots/
graphs that show the magnitude (usually in decibels) on the y-axis of the plot/graph as a
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function of frequency on the x-axis of the plot/graph and the phase on the y-axis of the
plot/graph as a function of frequency on the x-axis of the plot/graph (expressing phase
shift). For an EIS of a battery, Bode plot shows the values of the complex impedance
magnitude (Zyag = Zy04 as given by Equation (1)) and phase (07 = Theta_Z as given by
Equation (1)), each as a function of frequency.

ZEis = Zyeal +jzimag = Zmugégz = Zoal Theta_Z
=/ Zrea® + Zimag? (€0 Ziiag/ Zreat) M
= Zmag X [cos Oz + jsin 7]
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Figure 1. Bode plot (magnitude plot and phase plot as a function of frequency) for the values of the
complex impedance (10 mHz-10 kHz) obtained from the measured EIS of a Tenergy ICR 18650-2600
Li-Ion battery cell [30] using the Gamry interface 5000E potentiostat [31].

Nyquist plots, as illustrated in the example of Figure 2, consist of a single plot/graph
that shows the imaginary part of the complex number (or its negative) on the y-axis and
the real part of the complex number on the x-axis. For an EIS of a battery, the Nyquist plot
shows the negative of the imaginary part of the complex impedance (—Z;;q4 as given by
Equation (1)) and the real part of the complex impedance (Z,,,; as given by Equation (1)).
Unlike the Bode plot, the Nyquist plot does not show the frequency information on one of
its two axes, even though each point corresponds to a frequency point/value.
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Figure 2. Nyquist Plot for the values of the complex impedance obtained from the measured EIS of a
Tenergy ICR 18650-2600 Li-Ion battery cell [30] using the Gamry interface 5000E potentiostat [31].

Researchers have studied the Bode plots and Nyquist plots of batteries” EISs and have
devised or utilized features from these plots that indicate the state of health (SOH) and
the state of charge (SOC), among other characteristics [13,26,27]. In this section, a new
relationship/plot is introduced which opens the door for new SOH-related features or
indicators that were devised from the EISs of lithium-ion batteries. One of these features is
discussed in the next section, and others are currently being investigated.

Figure 3 illustrates the presented Phase-Magnitude relationship/plot using the same
EIS data that were used for the Bode plot of Figure 1 and the Nyquist plot of Figure 2. The
EIS data are for a Tenergy ICR 18650-2600 lithium—ion battery cell [30] that was measured
using the Gamry interface 5000E potentiostat [31]. As discussed in the next section, this rela-
tionship/plot exhibits features that are related to the SOH of Li-Ion batteries and has several
advantages. Unlike the Bode plot, the presented Phase-Magnitude relationship/plot con-
sists of a single two-dimensional plot with no frequency axis. Unlike the Nyquist plot, the
presented Phase-Magnitude relationship/plot consists of a plot that shows the magnitude
and phase information instead of real and complex components/parts.

64.00 mohm

60.00 mohm
Zmod (Ohm)

Figure 3. The presented Phase-Magnitude relationship/plot for the values of the complex impedance
obtained from the measured EIS of a Tenergy ICR 18650-2600 Li-Ion battery cell [30] using the Gamry
interface 5000E potentiostat [31].

3. Differential Impedance SOH Indicator Based on the Phase-Magnitude Relationship

A Tenergy ICR 18650-2600 Li-Ion battery cell [30] was aged by performing charge/
discharge cycling at 2.6 A charge/discharge current (1 C rate). During each charging
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operation, the Constant Current (CC) charging mode, at 2.6 A, was performed until the
battery terminal voltage reached 4.2 V. Once this voltage was reached, the CC charging
mode was terminated, and the Constant Voltage (CV) charging mode was initiated. The
CV charging mode was terminated when the battery current reached 50 mA [32]. During
the discharging mode phase, the battery cell was discharged with a 2.6 A current (1 C rate)
until its terminal voltage reached 2.7 V. Before performing the measurements, such as the
remaining capacity measurements and the EIS measurements, the battery was put into a
rest state for 12 h to make sure it reached the thermal equilibrium state. In this work, the
battery was aged down to a ~15% SOH (i.e., deeply aged to a highly degraded condition).

Figure 4 shows the Phase-Magnitude plots for the measured battery cell’s EIS as
the number of ageing cycles increased and, therefore, as the battery cell aged (the SOH
decreased). Figure 5 shows the capacity-based measured SOH value (which required at least
one charge/discharge cycle over several hours to measure) for each EIS Phase-Magnitude
plot (which required up to few minutes to measure), shown in Figure 4. The SOH value
was calculated by using Equations (2) and (3).

SOH = Qavuiluble « 100% (2)
Qnominul
Qavailable = idischarge X (tfull - tempty) 3)

where SOH is the remaining capacity-based state of health, Q,,y/in is the nominal capacity
of the battery (i.e., the amount of charges the battery can supply to a load or discharge
before it reaches the minimum voltage) when it is new or not aged in a Coulomb unit,
Quoailable 1s the actual available capacity or total amount of charges the battery can supply to
a load (discharge) in a Coulomb (C) unit, igjscnarge i the constant discharge current used to
measure Qgugilaple (2.6 A in this paper), ¢, is the time instant (in seconds) at the beginning
of the discharge operation when the battery cell is fully charged, and teyty is the time
instant when the battery voltage reaches the end of discharge voltage, which is 2.7 V in
this paper.
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Figure 4. Experimentally measured Phase-Magnitude plots of the EIS as a function of ageing cycles
(charge/discharge cycles) for a Tenergy ICR 18650-2600 Li-Ion battery cell [30] using the Gamry
interface 5000E potentiostat [31].

One of the characteristics of the presented EIS Phase-Magnitude plot/relationship
can be described as follows: as the frequency increases, starting from near zero, there is a
first-phase peak (6).q¢) point followed by a last-phase valley (6,411¢) point (on the y-axis or
phase axis). These two points are marked on Figure 5 for the sample EIS Phase-Magnitude
curve, selected from Figure 4.

The AZpypiff = |Z phase—peak — Z phase—valley| mostly represents the charge transfer
ability of the battery cell. The decrease in charge transfer [33] leads to the reduction of the
battery’s effective capacity, i.e., the total amount of charges that can be released from the battery
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to the load. In other words, when the battery cell’s charge transfer ability decreases as it ages
(when the SOH degrades), the value of AZpy;_piff = |Z Z phase—valley| Increases.
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Figure 5. Selected curve from Figure 4 for Experimentally Measured Phase-Magnitude plots of EIS of
Tenergy ICR 18650-2600 Li-Ion battery cell [30] marking selected data points of interest.

As can be seen from Figure 6, and as expected, the SOH decreases as the number
of charge/discharge cycles that the battery goes through increases. There are several
corresponding changes to the EIS Phase-Magnitude relationship/plot that can be observed
from Figure 4 as the SOH decreases. One of the changes that can be strongly correlated to
the SOH can be described as follows: as the battery’s SOH decreases, the distance on the
x-axis (impedance magnitude axis) between the first-phase peak point and the last-phase
valley point increases.

100
920
80
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60
40
30
20 I
10 I
0
30 120 300 420 510 600 630

Number of Charge/Discharge Cycles

Measured SOH (%)
(from remaining capacity)
%)

[=]

Figure 6. The percentage SOH of a Tenergy ICR 18650-2600 Li-Ion battery cell [30] as a function of the
number of charge/discharge (ageing) cycles.

Based on the above, the phase-based differential impedance magnitude (AZpps—pify)
of the first-phase peak point and last-phase valley point of the Phase-Magnitude relation-
ship is defined as given by Equation (4), where Z 50 peqr is the impedance magnitude
value at the first-phase peak value (0peqk), and Zpjgse—vairey is the impedance magnitude
value at the last-phase valley value (64, ). Figure 7 shows the SOH as a function of the
phase-based differential impedance magnitude for the results shown in Figure 4 through
Figure 6. The strong and consistent correlation between the SOH and the AZpy;_p; ff can
clearly be observed.

AZPM—Diff = |thase—peuk - thuse—zmlley|

(4)
:|(Z phase—peak + Zoffset) - (thasefvalley + Zuffset) |
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Figure 7. The percentage SOH as a function of the phase-based differential impedance magnitude of
the first-phase peak point and the last-phase valley point of the Phase-Magnitude relationship for a
Tenergy ICR 18650-2600 Li-Ion battery cell [30].

While there are also some correlations between the SOH and other individual points
on the Phase-Magnitude relationship plot, such as the impedance magnitude at the first-
phase peak point (Zgse—peak at Opeqr) by itself and the impedance magnitude at the last-
phase valley point (Z,nase—valley at Buatley) by itself, the proposed phase-based differential
impedance magnitude of the first-phase peak point and last-phase valley point AZpy;_p; ff
(given by Equation (4)) has the following advantage: it has a higher immunity against the
measurement shift/offset error (Z, ) due to its differential nature and because the two
impedance values (Zypgse— peak a0d Zppase—valley) are measured at a phase peak point (6 y,x)
and valley phase point (6y411¢), regardless of the phase absolute values.

On the one hand, what is important in finding the AZpy;_p;¢s value becomes the
identification of the two points at which the phase peak and the valley occur, rather than
the measurement accuracy of the phase values themselves at these two points. In real-time
or during the AZpy;p;s tracking process, the occurrence of the phase peak can be detected
when the phase or time shift between the battery’s voltage and the battery’s current is at
a maximum (before it starts to decrease), and the occurrence of the phase valley can be
detected when the phase or the time shift between the battery’s voltage and the battery’s
current is at a minimum (before it starts to increase). On the other hand, what is important
in finding the AZpy;p;fs value becomes the difference between the impedance magnitude
value at 00k (Zphase— pea) and the impedance magnitude value at 0y110y (Zphase—vatley), @S
given by Equation (4), even if there is a shift/offset in the measurement of the impedance
magnitude. In real-time or during the AZp);_p;f tracking process, the values of Zse— peak
and Zpjase—vatley can be obtained by dividing the battery’s voltage magnitude by the
battery’s current magnitude at 6. and 0,,,, respectively, as given by Equation (5).

AZPM*Diff = |thasefpeuk - thusefzmlley‘
Vmag(epmk) Vmag(ewl,ey) (5)

Imag(epeak) Imag(gvulley)

In order to obtain further validation for the presented AZpy; p;ry SOH indicator,
based on the presented Phase-Magnitude relationship/plot, the measured EIS data and
the estimated capacity data for a Samsung 35E Li-lon battery cell, as published by NASA
researchers in reference [3], were utilized (for one battery cell example from this reference).
Figure 8 shows the Phase-Magnitude plots for the measured battery cell’s EIS as the number
of ageing cycles increased and, therefore, as the battery cell aged (the SOH decreased),
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while Figure 9 shows the SOH as a function of the phase-based differential impedance
magnitude AZpypify-
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Figure 8. The experimentally measured Phase-Magnitude plots of the EIS as a function of ageing
cycles (charge/discharge cycles) for a Samsung 35E Li-lon battery cell, based on the data obtained by
NASA, published in [3] (data points estimated from the Nyquist plots in [3]).
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Measured differential impedance magnitude between the first-
phase peak point and the last-phase valley point (mQ) from the
Phase-Magnitude relationship

Figure 9. The estimated percentage SOH as a function of the phase-based differential impedance
magnitude of the first-phase peak point and last-phase valley point of the Phase-Magnitude relation-
ship for a Samsung 35E Li-Ion battery cell, based on the data obtained by NASA, published in [3]
(data points estimated from the discharged capacity plot in [3]).

The results, based on the published data by the NASA researchers [3], for a Samsung
35E Li-Ion battery cell yielded the same conclusion (related to the strong relationship
between AZpy;pifs and the SOH) as the one based on the data obtained by the author for
the Tenergy ICR 18650-2600 Li-Ion battery cell. The following should be noted: (1) the EIS
data were estimated from the Figure 6¢c Nyquist plot of reference [3], which is available
down to only a ~89% SOH, and (2) the SOH values were estimated from the Figure 14
reference [3].

4. Additional Analysis and Observation

While the presented EIS Phase-Magnitude relationship and/or the phase-based differ-
ential impedance magnitude indicator of the SOH can be utilized in a variety of advanced
algorithms (such as Machine Learning algorithms) for SOH estimation for improved SOH
estimation accuracy, it can be observed from the results of the two battery cells in this
paper that the relationship between the presented phase-based differential impedance
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magnitude (AZpyspify) of the EIS Phase-Magnitude relationship and the SOH can also be
approximated with a relatively simple linear or polynomial function while maintaining a
relatively good accuracy (especially when the SOH is higher than 50%). This can be used to
provide an acceptable SOH estimation accuracy when simplicity /a low processing power
is desired. However, such simplification might not be viable or sufficient in most cases,
especially for batteries used in power-demanding applications and/or in variable and/or
harsh environments, where, therefore, advanced algorithms would likely be needed.

Figures 10 and 11 show example linear and polynomial approximations for the re-
lationship between AZpy;pifs and SOH, using the data obtained from the two battery
cells (where y is the SOH and x is the value of AZpysp;fs). The R-squared values are also
shown for each approximation. It can be observed from Figures 10 and 11 that relatively
high (close to 1) R-squared values can be obtained using a simple linear approximation
(0.9529 for the Tenergy ICR 18650-2600 Li-Ion battery cell and 0.9831 for the Samsung 35E
Li-Ion battery cell). By using higher order polynomial approximation, the R-squared values
might be increased to be closer to one, as shown on the figures.

100
; 90 .". For SOH 2> 50%
. 5 30 y =-4.0705x + 121.7
X3 For SOH down to 15% R"=0/9977
=] 70
Q w 60 |y=-3.9666x+121.18
o -
.8 :§ 50 R?=0.9529
S £ 40 [y=-0.0199° +0.8894x2 - 15.814x + 166.67
3 2 30 R? = 0.9689 ",
= E 2 -
S y =-0.0047x% + 0.2842)3 - 6.0425x2 + 49.3x - 40.978 ?
© 10 R?=0.9833
0
0 5 10 15 20 25 30

Measured differential impedance magnitude between the first-
phase peak point and the last-phase valley point (mQ) from the
Phase-Magnitude relationship (Tenergy ICR 18650-2600)

Figure 10. Linear and polynomial approximations and related R-squared values for the relationship
between AZpys—pifs and the SOH using the data obtained from a Tenergy ICR 18650-2600 Li-Ion
battery cell [30], where y is the SOH and x is the value of AZpy;_pjfy-

100
z o
= g 98
X8
T 8 9% S
0 y=-2.1162x + 106.4
n < 2_ K3
SE o R? = 0.9831 <. |
-
] y = 0.2178x? - 4.8097x + 114.19 )
§ g 92 R? = 0.9997 e,
S § o0 [y=0.0293x-03265x- 1.5625x + 107.99 Pt
£ R?=1 IR 4
88
0 2 4 6 8 10

Measured differential impedance magnitude between the first-
phase peak point and the last-phase valley point (mQ) from the
Phase-Magnitude relationship (Samsung 35E)

Figure 11. Linear and polynomial approximations and related R-squared values for the relationship
between AZpy;p;fr and SOH using the data obtained from Samsung 35E Li-Ion battery cell [3],
where y is the SOH and x is the value of AZpy_pjy-
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The root mean square error (RMSE) values and the mean absolute percentage error
(MAPE) values for both the batteries were calculated as summarized in Table 1 using
Equation (6) and Equation (7), respectively.

1 2%
RMSE = VMSE = \/ Y (Si - Si) ©®)

S.—S.
100 —m ! !
MAPE = —) .  ——— 7
m Zl=1 S; ( )
Table 1. Calculated RMSE and MAPE values.
Battery Polynomial Order RMSE (%) MAPE (%)
Tenergy 1 (down to 15% SOH) 5.4 124
Tenergy 3 (down to 15% SOH) 4.4 8.9

Tenergy 4 (down to 15% SOH) 4.8 12.6
Tenergy 1 (down to 50% SOH) 0.56 0.74
Samsung 1 (down to 89% SOH) 0.43 0.47
Samsung 2 (down to 89% SOH) 0.055 0.053
Samsung 3 (down to 89% SOH) 0.01 0.01

It can be observed that the RSME and the MAPE error values for the Tenergy ICR 18650-
2600 Li-Ion battery cell are relatively small (<1%) when the approximation is performed
using only the SOH values that are >50%, while they are not small when all the SOH values
down to 15% are used in the approximation. From the results, it can be observed that
this is because the relationship between the presented phase-based differential impedance
magnitude (AZpypifs) of the EIS Phase-Magnitude relationship and the SOH is almost
linear for the SOH values that are >50%, while the relationship when the SOH values
are <50% exhibit nonlinearity. For the Samsung 35E cell, the EIS data were available only
down to a ~89% SOH, from reference [3], and as a result, the estimation error values are
very small.

The data presented in this paper and used for SOH estimation were taken at a tem-
perature of 25 °C. The characteristics and capacity of a lithium—ion battery changes as
a function of temperature. Therefore, if a battery is not under a controlled temperature
value, the SOH estimation models and algorithms need to take temperature variations into
account [34,35].

5. Conclusions

The EIS of a Li-Ion battery can reveal significant and important information about the
battery’s performance, including those as it ages, such as the SOH. This work revealed that
there is an EIS phase-based differential impedance magnitude value (AZpy;pifr), based
on an EIS Phase-Magnitude relationship, that has a strong and consistent correlation with
the SOH of lithium—ion battery (or the remaining capacity). Therefore, AZpy;_p;ss can be
used as an SOH indicator in SOH estimation algorithms. In addition, the AZpy;p;ss-based
SOH indicator has an additional advantage of reducing the effect of the shift/offset (error)
in the EIS measurements on the SOH estimation’s accuracy due to its differential nature.
This is important because the accuracy of the SOH estimation is highly dependent on the
accuracy of the measurements of the indicator used to indicate the SOH and on the strength
and consistency of the correlation between the indicator and the SOH.

This article (a) introduced the principle of the SOH differential indicator, (b) presented
battery aging data to validate the presented SOH differential indicator principle down to
a low SOH value (deep ageing), (c) provided additional validation based on data from
the literature, and (d) provided an illustration for how the presented SOH differential
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indicator can be used for SOH estimation, based on a method which requires relatively low
computational resources (as a first step towards future potential work on advanced and
improved SOH algorithms that utilize the presented SOH differential indicator).

Future work includes, but is not limited to, deep ageing data collection from other
types of batteries and at different temperature values; exploring other indicators from
the EIS Phase-Magnitude relationship; the utilization of these indicators in SOH and
SOC estimation algorithms, including, but not limited to, Machine Learning algorithms;
accounting for the temperature effect on the capacity and the SOH; and SOH estimation.
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