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High throughput sequencing is an effective method for associating sexually dimorphic species. Increasing the
available taxonomic understanding of females is important for biodiversity and conservation efforts. Here, we
confirm the association of females caught in copulation with Calicnemia haksikWilson and Reels, 2003 males
in Vietnam using high throughput sequencing (92 loci) and provide the description of the female.
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Introduction

Associating different life stages and sexes of organisms is required to
fully understand the full breadth of taxonomy, biodiversity, ecology,
and evolution in biological systems. Molecular associations (eg
adult-larva, male-female) based on the barcoding region (COI) have
often proven reliable among insects (Miller et al. 2005, Zhou et al.
2007, Renaud et al. 2012, Shashank et al. 2015, Azevedo et al. 2016,
Kalkman and Orr 2016, Wilson et al. 2017, Toan and Phu 2019).
Barcoding approaches have reduced some of the time-consuming and
logistical challenges (eg rearing insects in the field) that come from
more traditional morphological association methods. Large-scale
identification and association efforts of different life stages using
next-generation sequencing (NGS) barcoding workflows have dem-
onstrated the ability to build barcoding libraries and simultaneously
associate large amounts of data (Shokralla et al. 2014, Wang et al.
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2018, Yeo et al. 2018). However, challenges to barcoding efforts are
well documented (eg quality of reference library or sequence, high
amplification requirements, interspecific overlap, co-amplification
of pseudogenes and contamination, phylogenetic resolution, etc.) as
they rely on a single molecular marker (Moritz and Cicero 2004,
DeSalle et al. 2005, Song et al. 2008, Shokralla et al. 2014, Yeo et
al. 2018, Cheng et al. 2023). Studies have argued that additional loci
can help to overcome the limitations of barcoding and provide reso-
lution, especially in complex taxonomic systems for various types
of associations (Dupuis et al. 2012, Bourke et al. 2013, Dowton et
al. 2014, Liu et al. 2017). Additional data generation does come
with additional challenges around cost, efficiency, success of mul-
tiple PCRs, ultimately limiting the available specimens to those of
high enough quality to reliably generate these markers with trad-
itional methods. Overcoming some of these challenges is possible
by using modern high-throughput sequencing tools that allow for
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multiplexing many loci simultaneously for species identification and/
or association.

Traditionally, methods of association (eg rearing nymphs in the
field and observation of male/female copulation) for taxonomic de-
scription are complicated when the level of undescribed odonate
diversity is high. This is especially true for females where the taxo-
nomic literature can be sparse. The limitations are compounded
by the relatively high rate of sexual dimorphism found across
Odonata (Corbet 1999, Crowley et al. 2002). Calicnemia (Odonata:
Platycnemididae) is currently composed of 23 species restricted to
Southeast Asia, China, and India (Yu and Bu 2008, Paulson et al.
2024). Males are often characterized as having a black and yellow
or red striped thorax with a black or red abdomen and can be div-
ided into two groups by the genital ligula (Lieftinck 1984, Phan et
al. 2017). As is common for many groups of insects, comparatively
little taxonomic work focusing on females has been done (Phan et
al. 2017). The male taxonomic bias has led to a lack of identifica-
tion resources for females with only two, Calicnemia akahara Phan,
Kompier & Karube and Calicnemia uenoi Asahina, being described
to date (Lieftinck 1984, Phan et al. 2017, Yeo et al. 2018). Females,
even when collected, are often not worked on taxonomically due to
the difficulty of identifying them and the overall lack of literature
describing female morphology. Unfortunately, this leads to a con-
tinued poor understanding of intraspecific variation and can increase
the rarity problem faced in biodiversity surveys and both ecological
and evolutionary studies (Yeo et al. 2018). Increasing female taxo-
nomic information via associations and descriptions in a biodiversity
hotspot such as Vietnam is important for biodiversity monitoring,
conservation, and survey efforts (Yeo et al. 2018). Here, we use a
high throughput, multilocus (92 total loci) method to associate fe-
males with males using both nuclear and mitochondrial markers to
confirm that the association of females caught in copulation with
Calicnemia haksik Wilson and Reels males and provide the scientific
description of the female.

Materials and Methods

Taxon Sampling

We included 14 out of 23 (60%) species within Calicnemia. Fresh
male and potential female representatives of C. haksik (two mated
pairs) were collected and preserved in 95% EtOH in June 2022
from Dong-Song Ky Thuong and Bach Ma National Parks in
Vietnam. The outgroup consisted of representatives from a closely
related genus, Coeliccia (Gassmann 2005, Dijkstra et al. 2014).
The remaining specimens included were identified and provided by
Brigham Young University (BYU), the Naturalis Biodiversity Center
(RMNH), and the Florida State Collection of Arthropods (FSCA).
Images were taken with Helicon Remote 4.4.4 using a Canon EOS
6D camera fitted with 100 mm and 65 mm lens and stacked with
Helicon Focus 8.2.2.

DNA Extraction and Sequencing

Thoracic flight muscle was extracted using a Qiagen DNeasy Blood
and Tissue kit (Valencia, CA), following manufacturer protocols.
Specimens were deposited in the BYU genomic collection (Provo,
UT) as vouchers or returned to the original institution. The extrac-
tion was quantified using a high-sensitivity qubit fluorometer before
being sent to LGC Genomics for anchored hybrid enrichment (AHE)
sequencing. Probes were previously designed by Bybee et al. (2021)
to capture 92 loci (~20 KB) representing both nuclear (90) and mito-
chondrial (2) conserved regions across Odonata.

Tree Reconstruction

The bioinformatics pipeline was adapted from Breinholt et al. (2018)
to analyze the raw reads received from LGC Genomics using the
BYU supercomputer. The raw reads were assembled using SPAdes
(Bankevich et al. 2012), and contamination was eliminated (BLAST).
Top orthologs for each taxon and loci were selected based on bit
score, length, and coverage. Alignments for each locus were gener-
ated using MAFFT v.7.45 (Katoh and Standley 2013) and cleaned
with Aliscore 22.i1.2012 (Misof and Misof 2009, Kiick et al. 2010)
and AliCUT v2.31 (Kiick 2009). PartitionFinder (Lanfear et al.
2017) and ModelFinder (Kalyaanamoorthy et al. 2017) were run to
produce the optimal partition and model scheme according to BIC
scores. A maximum likelihood reconstruction was produced using
IQTree v2.2.0 (Minh et al. 2020) with 1000 ultra-fast bootstraps
(Hoang et al. 2018) as support. iTOL (Letunic and Bork 2021) and
Adobe Illustrator 28.3 were used for tree visualization and annota-
tion. Male-female association was primarily determined based on
monophyly within the phylogenetic result.

Distance Analysis

The concatenated alignment was imported into Geneious v. 2023.2.1
where a genetic distance (similarity) matrix was generated. Male-
female association was confirmed based on the percentage similarity
between the sequences. There has been a 1% to 3% dissimilarity

threshold used for barcoding studies in the past, and here we will use
a 1% cutoff (Koroiva and Kvist 2018, Zhang and Bu 2022).

Results

The DNA alignment for phylogenetic reconstruction was based on
a total of 21,683 bp of concatenated nucleotide sequence. All repre-
sentatives of Calicnemia haksik were recovered together with max-
imal support, indicating strong support for the species association.
The distance matrix revealed that the females were >99.7% similar
to males of C. haksik (Fig. 1), confirming copulation observations
made in the field.

Female Description of Calicnemia haksik (Fig. 2)

Head

Occiput black with two pale spots originating at the two posterior ocelli
and extending to the antennae (Fig. 2D and E). Frons black, vertex
black, antennae black, postclypeus black with pale spots at the pos-
terior edge, anteclypeus pale green with dark spots close to the posterior
edge (Fig. 2D, E, and F). Genae pale green. Labrum pale green, labium
pale blue-gray. Eyes posterior black, anterior pale green (Fig. 2A and E).

Thorax

Prothorax black with propleuron completely yellow, pronotum black,
mesostigmal plate black (Fig. 2A, C, and G). Pterothorax with black
carina, mesepisternum black with yellowish stripe start from anterior
to the posterior, mesepimeron black, metepisternum % pale yellow
dorsal from anterior to posterior and %5 black ventral starting from
the under of spiracle from the base interpleural suture up to the edge,
metepimeron mostly pale yellow with black extending to the dorsal
of interpleural suture, mesinfraepisternum and metinfraepisternum
pale yellow, mesocoxa and metacoxa yellow (Fig. 2A and C). Coxae
yellow, trochanters mostly yellow with %5 linear spot on dorsal and 14
triangular spot on distal, femora pale yellow fading halfway to dark
brown to black on dorsal to the distal end, hairs pale yellow ventral,
tibia black at the proximal, brown and black at the distal end, two
short spines close to the basal of tibia, tarsi brown with black edges,
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Coeliccia southwelli
" Coeliccia borneensis
Coeliccia arcuata
C. erythromelas
0.01 s
—_— C. imitans
4 C. miniata
EC. doonensis
C. pulverulans
C. sinensis
C. chaseni
C. rectangulata
C. miles
C. chaoi
C.haksik M2 C.haksik F2 C.haksik M1 C.haksik F1 C.haksik F C. akahara
C.haksik_M2 -
C.haksik_F2 99.925 =
C.haksik_M1 99.87 99.845 - C. mortoni
C.haksik_F1 99.905 99.94 99.855 C. haksik
C.haksik_F 99.845 99.86 99.785 99.83 - C. haksik
= C. haksik
EEC. haksik
C. haksik

Fig. 1. Resulting maximum likelihood reconstruction of Calicnemia with focus on C. haksik based on 92 loci. Bootstrap support values are indicated at each node,
* represents 100 and the value is given if less than 100. Results of genetic similarity matrix for two mated pairs and an additional female of C. haksik.

Fig. 2. A) lateral habitus, B) lateral terminalia, C) dorsal thorax, D) dorsal head, E) frontal head, F) lateral head, and G) dorsal pronotum.

two rows of lateral spines long dark reddish brown, dark red tarsal
claws that darken apically to black tips, claws with a small tooth lo-
cated on the basal half of their length (Fig. 2A).

Wings
Hyaline, 17 postnodal crossveins in forewing and 16 in hindwing.
Pterostigma brown (Fig. 2A).

Abdomen

S1 pale yellow, S2 to $4 dark red-orange start from proximal to % of
the segment, ¥ orange at distal with black dorsal stripe, S1 to S4 black
lines encircling the posterior end, overall all ventral segments are yellow

with black ventral stripe, S5 to S7 orange with black dorsal stripe, black
lines expanding half way down the posterior end, S8 to S10 orange with
black dorsal spot (Fig. 2A). Ovipositor overall dark yellow (Fig. 2B).

Measurements (mm)
Abdomen (including anal appendages): 26.84 mm; Forewing:
23.30 mm; Hindwing: 21.89 mm.

Discussion

There are numerous challenges when studying and associating closely
related species (eg DNA concentration and quality, sequencing
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success, co-amplification of contaminants, cost, incomplete lineage
sorting, etc.) (Moritz et al. 2004, Shokralla et al. 2014, Cheng et
al. 2023). DNA barcoding provides an empirical assessment that
is valuable when determining conspecifics but also remains imper-
fect due to many of the aforementioned issues (Bourke et al. 2013,
Dowton et al. 2014, Shokralla et al. 2014). The barcoding region of
COI has known limitations; it is clear that the inclusion of additional
markers may be more effective at species delimitation (Dupuis et al.
2012). By limiting analyses to only one marker, there is the potential
to infer incorrect evolutionary patterns and relationships as well as a
need to account for additional genetic complexity as a gene tree does
not always equate to a species tree (Dowton et al. 2014, Liu et al.
2017). High throughput sequencing is a method that accepts a lower
initial DNA concentration, DNA quality, and avoids the difficulties
of successful PCR and sequencing costs for multiple loci, and has
efficient quality control procedures (Goodman et al. 2023). It has
been previously demonstrated that there is a positive relationship
between the number of loci incorporated into the analysis and the
success of species delimitation by allowing for more robust evolu-
tionary relationships to be inferred which therefore increasing confi-
dence in species identification (Dupuis et al. 2012). Further, multiple
loci approaches offer more post hoc phylogenetic research that seeks
to place all species in an evolutionary context.

In this study, there were several issues that rendered barcoding
impractical. While initial extractions were successful, traditional
Sanger sequencing was consistently unsuccessful and became costly.
Numerous PCR protocols and primer combinations (8) were at-
tempted for regions in COI and COII with limited success. As
the PCR protocols became less specific to capture the sequence,
significant double banding issues began to arise. After several
months, enough PCR products were generated and acceptable for
sequencing. Sequencing was then attempted, with very limited suc-
cess. Consensuses sequences were not able to be generated for the
majority of the samples either due to failed sequencing of the for-
ward or reverse or a significant amount of variation between the
two sequences. These issues were consistent regardless of the pri-
mers, and there was not enough overlap between the sequences. All
of these issues were negated once AHE sequencing was performed.

There continues to be questions around the minimum number of
loci necessary to identify and delineate species (Dupuis et al. 2012,
Dellicour and Flot 2018). High throughput sequencing minimizes
the problems associated with barcoding by capturing many loci
simultaneously, resulting in many reads for each locus, allowing for
rigorous quality control and even the identification of known gen-
etic issues with current COI barcodes (eg NUMTs). However, high
throughput sequencing could be considered excessive for species as-
sociations if the data is not generated more broadly within the focal
group where associations are being attempted. High throughput
sequencing is typically generated for higher-level phylogenomic hy-
pothesis testing, such as updated classifications and/or evolutionary
histories of lineages/traits (eg Bybee et al. 2021, 2022, Kohli et al.
2021). Here, we expand the utility of previously generated AHE data
originally intended for higher-level phylogenetic research to answer
more narrow questions, such as associations of life stages and sexes
used for traditional taxonomic descriptions, which help form the
backbone of research focused at higher levels. We were able to con-
firm the association of C. haksik females and provide a description
of the female increasing the amount of female taxonomic literature
available. The odonate diversity in Vietnam is high (eg Phan et al.
2018, Toan and Phu 2019) and being able to identify females on
sight will assist in biodiversity and ecological studies in the future.

Conclusion

Here we demonstrate additional uses of AHE data previously de-
signed to answer higher-level phylogenomic questions to be an ef-
ficient way to also answer narrow taxonomic questions such as
male-female associations with high confidence. We acknowledge that
the initial cost for high throughput sequencing is high (eg cost of
genome sequencing to support probe design, probe design, probes,
and sequencing in large batches of at least 96 taxa), as well as high
costs associated with the subsequent required bioinformatics (eg
pipeline development, supercomputer resources). Simply, we aim to
show that high throughput data is robust and can be used to ex-
plore questions beyond the intended use of the original data. This
method is not a feasible option, nor should it be required for all
association or ‘barcode’ projects. However, AHE data could be used
to complement ongoing barcoding efforts (eg Nguyen 2022, Putt et
al. 2023, Hu et al. 2024) if the AHE loci include the barcode region
and it is publicly available. High throughput sequencing is an estab-
lished method and has become an approach to explore higher-level
phylogenetics in many groups (eg Coleoptera (Haddad et al. 2017),
Diptera (Young et al. 2016), Hymenoptera (Klopfstein et al. 2019),
Lepidoptera (Toussiant et al. 2018), Trichoptera (Frandsen et al.
2024)). With large amounts of data continuing to be generated and
published, it is becoming more realistic for researchers to work to-
gether in extensive data exploration with narrow-focused questions.
We accomplished this by confirming the association of C. haksik
females caught with identifiable males in Vietnam, allowing for the
description of the previously unknown female.
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